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Preface

Recent advances in information and communication technologies, and the incessantly
tighter connectivity these advances have resulted in among the world’s population and
between humans and machines, pose significant security challenges that impact all
aspects of modern society. Concerted efforts are being directed toward alleviating the
underlying vulnerability, protecting heterogeneous, large-scale and dynamic systems,
and managing security risks faced by critical infrastructures, through rigorous and
practically relevant analytical methods. Decision and game theoretic framework is the
centerpiece of these efforts, involving also several neighboring disciplines and tech-
niques, such as distributed optimization, information theory and communication,
statistics, economics, dynamic control, and mechanism design, toward an ultimate goal
of building resilient, secure, and dependable networked systems, and also securing
existing ones. Advancing the research landscape requires the establishment of a forum
that brings together security researchers with different backgrounds, but with a com-
mon base of decision and game theory, to share their knowledge and exchange ideas.
Driven by this need and goal, the Conference on Decision and Game Theory for
Security (GameSec) was launched in 2010, to bring together academic, government,
and industrial researchers in an effort to identify and discuss the major technical
challenges and recent results that highlight the connections between decision and game
theory, information and communication, control, distributed optimization, economic
incentives and real-world security, reputation, trust and privacy problems. It has grown
over the years and endured the test of time, with the latest event held in Seattle being
the ninth one in the series.

Consistent with its goal from its inception, GameSec provides an international
forum for researchers from academia, industry, and government to discuss various
decision-theoretic approaches to security using the framework and tools of game
theory. It features presentations on recent results in regular contributed sessions as well
as poster sessions. It has special sessions focused on emerging topics of interest to the
security community, as well as panel discussions. It also features plenary talks by
distinguished researchers with outstanding contributions to the security field, who share
their perspectives with the participants. As mentioned earlier, this conference series
was inaugurated in 2010, with Berlin (Germany) being the first venue. It quickly
became a well-established and well-recognized annual gathering of security research-
ers, with follow-up conferences held in College Park (Maryland, USA, 2011), Buda-
pest (Hungary, 2012), Fort Worth (Texas, USA, 2013), Los Angeles (USA, 2014),
London (UK, 2015), New York (USA, 2016), and Vienna (Austria, 2017). This year’s
event was held on the campus of the University of Washington, Seattle (Washington,
USA, 2018) during October 29–31.

As in the previous years, GameSec in Seattle featured high-quality contributions
from researchers across the globe, addressing theoretical as well as practical challenges
faced by the security community, using the framework of game theory. Among the



topical areas covered were: use of game theory, control theory, and mechanism design
for security and privacy; decision-making for cybersecurity and security requirements
engineering; security and privacy for the Internet of Things, cyber-physical systems,
cloud computing, resilient control systems, and critical infrastructure; pricing, eco-
nomic incentives, security investments, and cyber insurance for dependable and secure
systems; risk assessment and security risk management; security and privacy of
wireless and mobile communications, including user location privacy;
socio-technological and behavioral approaches to security; deceptive technologies in
cybersecurity and privacy; empirical and experimental studies with game, control, or
optimization theory-based analysis for security and privacy; and adversarial machine
learning and crowdsourcing, and the role of artificial intelligence in system security.
The conference attracted 44 high-quality submissions, from which 28 full papers were
selected for oral presentation, and eight short papers for poster presentation, as a result
of a stringent review process that yielded at least three reviews on each submission. All
accepted papers are included in these proceedings. In addition, the conference program
featured a tutorial session on “Game Theory and Deception,” organized by Quanyan
Zhu (New York University, USA); a special session on “Adversarial AI” followed by a
panel discussion, organized by Eugene Vorobeychik (Vanderbilt University, USA);
and a panel session on “Real-World Uses of Game Theory for Security,” organized by
Milind Tambe (University of Southern California, USA). Two plenary talks were
delivered, by John Baras (University of Maryland, USA) and Joao Hespanha
(University of California, Santa Barbara, USA). We thank the special session and panel
organizers and the plenary speakers for their outstanding contributions to the program.
We thank also members of the Technical Program Committee and the Organizing
Committee (who are listed in the Proceedings) for their diligence and hard work that
contributed to the success of this year’s GameSec.

Several organizations and government agencies provided support for this year’s
GameSec. We thank the Army Research Office (ARO), the Office of Naval Research
(ONR), the National Research Foundation (NSF), Association for Computing
Machinery (ACM), Springer Lecture Notes in Computer Science (LNCS), and the
MDPI journal Games for their continuing support of the conference. ARO, ONR, NSF,
and Springer LNCS provided student travel support, and Games sponsored the two best
paper awards at the conference. Local arrangements were handled smoothly and
competently by the University of Washington Electrical and Computer Engineering
Events Team.

We hope that a broad group of constituents involved with and in security, from
theoreticians to practitioners and policy makers, benefited from this record of
state-of-the-art presentations at GameSec 2018.

October 2018 Linda Bushnell
Radha Poovendran

Tamer Başar

VI Preface



Organization

Steering Committee

Tansu Alpcan University of Melbourne, Australia
John S. Baras University of Maryland, USA
Tamer Başar University of Illinois at Urbana–Champaign, USA
Anthony Ephremides University of Maryland, USA
Milind Tambe University of Southern California, USA

Organizers

General Chairs

Tamer Başar University of Illinois at Urbana–Champaign, USA
Radha Poovendran University of Washington, USA

TPC Chair

Linda Bushnell University of Washington, USA

Special Track Chair

Eugene Vorobeychik Vanderbilt University, USA

Tutorial Track Chair

Quanyan Zhu New York University, USA

Local Arrangements Chair

Lillian Ratliff University of Washington, USA

Publicity Chairs

Jun Moon UNIST, South Korea
Dario Bauso University of Sheffield, UK
Miroslav Pajic Duke University, USA

Web Chair

Andrew Clark Worcester Polytechnic Institute, USA



Program Committee

Habtamu Abie Norsk Regnesentral - Norwegian Computing Center,
Norway

Saurabh Amin Massachusetts Institute of Technology, USA
Bo An Nanyang Technological University, Singapore
Battista Biggio University of Cagliari, Italy
Linda Bushnell (Chair) University of Washington, USA
Alvaro Cardenas UT Dallas, USA
Anil Kumar Chorppath TU Dresden, Germany
Andrew Clark Worcester Polytechnic Institute, USA
Mark Felegyhazi Budapest University of Technology and Economics,

Hungary
Rosario Gennaro City University of New York, USA
Rica Gonen Yahoo!, USA
Jens Grossklags Technical University of Munich, Germany
Noam Hazon Ariel University, Israel
Eduard Jorswieck TU Dresden, Germany
Charles Kamhoua US Army Research Laboratory, USA
Murat Kantarcioglu University of Texas at Dallas, USA
Alex Kantchelian University of California, Berkeley, USA
Christopher Kiekintveld University of Texas at El Paso, USA
Aron Laszka University of Houston, USA
Yee Wei Law University of South Australia, Australia
Chang Liu University of California, Berkeley, USA
Daniel Lowd University of Oregon, USA
Patrick Mcdaniel Pennsylvania State University, USA
Prasant Mohapatra University of California, Davis, USA
Shana Moothedath University of Washington, USA
Mehrdad Nojoumian Florida Atlantic University, USA
Andrew Odlyzko University of Minnesota, USA
Miroslav Pajic Duke University, USA
Manos Panaousis University of Surrey, UK
Nicolas Papernot Pennsylvania State University, USA
David Pym University College London, UK
Bhaskar

Ramasubramanian
University of Washington, USA

Stefan Rass Universität Klagenfurt, Germany
Sang Sagong University of Washington, USA
Reza Shokri National University of Singapore, Singapore
Arunesh Sinha University of Michigan, USA
William Streilein Massachusetts Institute of Technology, USA
George

Theodorakopoulos
Cardiff University, UK

Long Tran-Thanh University of Southampton, UK
Doug Tygar University of California, Berkeley, USA

VIII Organization



Yevgeniy Vorobeychik Vanderbilt University, USA
Neal Wagner Massachusetts Institute of Technology, USA
Haifeng Xu University of Southern California, USA
Tao Zhang New York University, USA
Zizhan Zheng Tulane University, USA
Quanyan Zhu New York University, USA
Jun Zhuang SUNY Buffalo, USA

Additional Reviewers

Barreto, Carlos
Basak, Anjon
Boudko, Svetlana
Caulfield, Tristan
Celik, Berkay
Demontis, Ambra
Elfar, Mahmoud
Farhang, Sadegh
Feng, Xiaotao

Giraldo, Jairo
Gu, Tianbo
Gutierrez, Marcus
Huang, Yunhan
Matterer, Jason
Padilla, Edgar
Peng, Guanze
Qian, Yundi
Roy, Abhishek

Shan, Xiaojun
Song, Cen
Spring, Jonathan M.
Uttecht, Karen
Veliz, Oscar
Wachter, Jasmin
Xu, Hong
Zeng, Yunze

Organization IX



Sponsors

X Organization



Contents

Impact of Privacy on Free Online Service Markets . . . . . . . . . . . . . . . . . . . 1
Chong Huang and Lalitha Sankar

Cyber-Warranties as a Quality Signal for Information Security Products. . . . . 22
Daniel W. Woods and Andrew C. Simpson

Game Theoretic Security Framework for Quantum Key Distribution . . . . . . . 38
Walter O. Krawec and Fei Miao

Training Set Camouflage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Ayon Sen, Scott Alfeld, Xuezhou Zhang, Ara Vartanian, Yuzhe Ma,
and Xiaojin Zhu

Multi-stage Dynamic Information Flow Tracking Game . . . . . . . . . . . . . . . . 80
Shana Moothedath, Dinuka Sahabandu, Andrew Clark, Sangho Lee,
Wenke Lee, and Radha Poovendran

Less is More: Culling the Training Set to Improve Robustness
of Deep Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Yongshuai Liu, Jiyu Chen, and Hao Chen

Optimal Placement of Honeypots for Network Defense . . . . . . . . . . . . . . . . 115
Mark Bilinski, Ryan Gabrys, and Justin Mauger

Perfectly Secure Message Transmission Against Rational
Timid Adversaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Maiki Fujita, Kenji Yasunaga, and Takeshi Koshiba

Reinforcement Learning for Autonomous Defence
in Software-Defined Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Yi Han, Benjamin I. P. Rubinstein, Tamas Abraham, Tansu Alpcan,
Olivier De Vel, Sarah Erfani, David Hubczenko, Christopher Leckie,
and Paul Montague

Colonel Blotto Game with Coalition Formation for Sharing Resources. . . . . . 166
Joseph L. Heyman and Abhishek Gupta

Data Poisoning Attacks in Contextual Bandits . . . . . . . . . . . . . . . . . . . . . . 186
Yuzhe Ma, Kwang-Sung Jun, Lihong Li, and Xiaojin Zhu

Analysis and Computation of Adaptive Defense Strategies Against
Advanced Persistent Threats for Cyber-Physical Systems . . . . . . . . . . . . . . . 205

Linan Huang and Quanyan Zhu



Multi-sided Advertising Markets: Dynamic Mechanisms and Incremental
User Compensations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Moran Feldman, Gonen Frim, and Rica Gonen

A Game-Theoretic Analysis of the Adversarial Boyd-Kuramoto Model . . . . . 248
Antonin Demazy, Alexander Kalloniatis, and Tansu Alpcan

A Game Theoretic Analysis of the Twitter Follow-Unfollow Mechanism . . . . 265
Jundong Chen, Md Shafaeat Hossain, Matthias R. Brust,
and Naomi Johnson

Game Theoretic Analysis of a Byzantine Attacker in Vehicular Mix-Zones. . . . 277
Nick Plewtong and Bruce DeBruhl

Distributed Aggregative Games on Graphs in Adversarial Environments . . . . 296
Bahare Kiumarsi and Tamer Başar

Disappointment-Aversion in Security Games . . . . . . . . . . . . . . . . . . . . . . . 314
Jasmin Wachter, Stefan Rass, Sandra König, and Stefan Schauer

Moving Target Defense for the Placement of Intrusion Detection Systems
in the Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Sailik Sengupta, Ankur Chowdhary, Dijiang Huang,
and Subbarao Kambhampati

Approximating Power Indices to Assess Cybersecurity Criticality . . . . . . . . . 346
Daniel Clouse and David Burke

A Differentially Private and Truthful Incentive Mechanism
for Traffic Offload to Public Transportation . . . . . . . . . . . . . . . . . . . . . . . . 366

Luyao Niu and Andrew Clark

Deep Learning Based Game-Theoretical Approach to Evade
Jamming Attacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

Sandamal Weerasinghe, Tansu Alpcan, Sarah M. Erfani,
Christopher Leckie, Peyam Pourbeik, and Jack Riddle

Towards Scientific Incident Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
Jonathan M. Spring and David Pym

Rational Trust Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
Mehrdad Nojoumian

Scaling-Up Stackelberg Security Games Applications
Using Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

Arunesh Sinha, Aaron Schlenker, Donnabell Dmello, and Milind Tambe

A Learning and Masking Approach to Secure Learning . . . . . . . . . . . . . . . . 453
Linh Nguyen, Sky Wang, and Arunesh Sinha

XII Contents



Towards True Decentralization: A Blockchain Consensus Protocol
Based on Game Theory and Randomness. . . . . . . . . . . . . . . . . . . . . . . . . . 465

Naif Alzahrani and Nirupama Bulusu

A Game Theoretical Framework for Inter-process Adversarial
Intervention Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

Muhammed O. Sayin, Hossein Hosseini, Radha Poovendran,
and Tamer Başar

Cyber-Insurance as a Signaling Game: Self-reporting and External
Security Audits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

Aron Laszka, Emmanouil Panaousis, and Jens Grossklags

A Bayesian Multi-armed Bandit Approach for Identifying
Human Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

Erik Miehling, Baicen Xiao, Radha Poovendran, and Tamer Başar

Hypothesis Testing Game for Cyber Deception . . . . . . . . . . . . . . . . . . . . . . 540
Tao Zhang and Quanyan Zhu

Algorithms for Subgame Abstraction with Applications to Cyber Defense . . . 556
Anjon Basak, Marcus Gutierrez, and Christopher Kiekintveld

A Two-Stage Deception Game for Network Defense . . . . . . . . . . . . . . . . . . 569
Wei Wang and Bo Zeng

Imbalanced Collusive Security Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
Han-Ching Ou, Milind Tambe, Bistra Dilkina, and Phebe Vayanos

A Robust Optimization Approach to Designing Near-Optimal Strategies
for Constant-Sum Monitoring Games. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

Aida Rahmattalabi, Phebe Vayanos, and Milind Tambe

An Initial Study of Targeted Personality Models in the FlipIt Game . . . . . . . 623
Anjon Basak, Jakub Černý, Marcus Gutierrez, Shelby Curtis,
Charles Kamhoua, Daniel Jones, Branislav Bošanský,
and Christopher Kiekintveld

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637

Contents XIII



Impact of Privacy on Free Online Service
Markets

Chong Huang(B) and Lalitha Sankar

Arizona State University, Tempe, AZ 85281, USA
{chong.huang,lsankar}@asu.edu

Abstract. The emerging marketplace for online free services in which
service providers (SPs) earn revenue from using consumer data in direct
and indirect ways has led to significant privacy concerns. This begs
understanding of the following question: can the marketplace sustain
multiple SPs that offer privacy differentiated free services? This paper
studies the impact of privacy on free online service markets by augment-
ing the classical Hotelling model for market segmentation analysis. A
parametrized game-theoretic model is proposed which captures: (i) the
fact that for the free service market, consumers value service not in mon-
etized terms but by the quality of service (QoS); (ii) the differentiator of
services is not product price but the privacy risk advertised by an SP;
and (iii) consumer’s heterogeneous privacy preference for SPs. For the
two-SP problem with uniformly distributed consumer privacy preference
and linear SP profit function, the results suggest that: (i) when con-
sumers place a higher value on privacy, it leads to a larger market share
for the SP providing untargeted services and a “softened” competition
between SPs; (ii) SPs offering high privacy risk services are sustainable
only if they offer sufficiently high QoS; and (iii) SPs that are capable of
differentiating on services that do not directly use consumer data gain
larger market share. Similar results are observed when the consumer’s
privacy preference is modeled as a truncated Gaussian distribution.

Keywords: Free online services · Privacy differentiated services
Quality of service · Market segmentation

1 Introduction

There has been a steady increase in online interactions between consumers and
retailers, where the term retailer refers to entities who offer products for free (e.g.,
social media, search engines, free applications etc.). The advances in technology
have enabled retailers (henceforth referred to as service providers) to collect,
store, sell, and share customer-specific information that in turn can be used for
targeted advertising and tiered pricing tactics. In fact, many oft used online
services are free and consumers implicitly accede to tracking for customized
services. Targeted ads are a part of the emerging revenue/profit model for service
providers (SPs) offering free services. Consumers are delighted by free services
c© Springer Nature Switzerland AG 2018
L. Bushnell et al. (Eds.): GameSec 2018, LNCS 11199, pp. 1–21, 2018.
https://doi.org/10.1007/978-3-030-01554-1_1
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until they begin encountering privacy violations on a daily/frequent basis. While
such infractions taken individually could be ignored or discounted, the totality
of data available about consumers with a variety of retailers and the resulting
privacy consequences raise serious concerns [1,2].

SPs are beginning to acknowledge that consumers are sensitive to privacy
violations. For example, Google [3] and Apple [4] recently adopted differentially
private mechanisms for collecting user data for statistical analyses. However, the
details of these mechanisms are opaque and offer even less clarity on whether
the consumer actually has a choice. In this context, it is worth understanding
if privacy differentiated services can provide such choices for consumers. In a
competitive marketplace, the aggregated weight of targeting may drive some
consumers to seek more privacy-protective alternatives. The cost to the consumer
of this action may be a lower quality of service (QoS) (e.g., poorer search engine
capabilities). However, it could eventually lead to a more open model for sharing
private information, i.e., one from implicit assent to informed consent [1].

To understand the influence of consumers’ heterogeneous privacy preference
on SPs’ behavior in a competitive market, we take a game-theoretic approach to
model the interactions between SPs and consumers. In particular, we address the
following questions: (i) Can privacy-differentiated services lead to a sustainable
marketplace? (ii) What are the equilibrium QoS-privacy risk strategies for the
SPs? (iii) How do various consumer/SP parameters, such as consumers’ privacy
preference/valuation and SPs’ profit/cost affect the equilibrium outcome?

1.1 Related Work

Targeted advertising is a common method for service providers to exploit knowl-
edge of consumers; this in turn can lead to privacy violations. Our work is
informed by the literature on targeting strategies for retailers [5–14], but rather
than optimizing retailer strategies, we are interested in identifying how privacy
differentiated services can address privacy concerns.

The problem of market segmentation is a classic and well-studied problem in
microeconomics with focus on how pricing and product differentiation can lead
to a stable and competitive marketplace. A nuanced model that captures dif-
ferentiation between two firms and consumer preferences is the Hotelling model
[15]. It has been widely used for market analysis across many fields such as
electrical vehicle market [16] and Internet market [17]. However, the free online
service market presents a new challenge wherein monetary quantification of both
‘free’ services and the data collected about consumers is not simple and straight-
forward. Equally challenging is the quantification of consumer privacy since it
requires capturing the heterogeneous expressions of privacy sensitivity that can
range from ‘don’t care’ at one extreme to ‘hyper vigilant’ at the other.

An extensive body of literature on economic models for privacy was reviewed
by Acquisti et al. [18]. Jentzsch et al. [19] propose a model to study competitions
between two SPs by taking consumer’s privacy preference (low privacy/high pri-
vacy) into account using a vertical Hotelling model. Consumers select the service
provider based on their privacy concerns and the amount of payment to the SP.
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Lee et al. [20] study the influence of privacy protection on the segmentation of
a duopoly. In their model, firms may offer standard and personalized products
with personalized prices to three different types of privacy-sensitive consumers.
In contrast to both above-mentioned models, our model focuses on ‘free’ ser-
vices, and thus, introduces new models for quantifying QoS- and privacy-based
differentiators. Furthermore, our model generalizes the discrete set of privacy
sensitive consumers in [20] to a continuous set of privacy risks, thus allowing
analysis over an entire range of privacy expression and a more nuanced view of
how SPs should offer services to all types of consumers.

1.2 Our Contributions

We propose a novel model for the privacy differentiated market segmentation
problem in which service providers offer free services differentiated by QoS and
privacy risk. Our model captures a variety of free online services such as search
engines, social networking sites, and software apps that are free, and therefore,
use consumer data in a variety of ways for revenue generation. Each SP’s gain
from using consumer data is captured by a revenue function and its cost of
doing so is captured by a cost function. The goal of each SP is to choose a QoS
and privacy risk tuple that maximizes its profit (difference of revenue and cost).
We assume that consumers can map their heterogeneous privacy sensitivity to a
quantitative scale. The SPs use this quantitative scale to differentiate themselves.
Each consumer chooses the SP that maximizes a desired function of its privacy
risk valuation and the QoS-privacy risk tuple offered by the SP.

Our model is built upon the classical ‘spatial’ Hotelling model for market
segmentation wherein the location is now proxy for privacy risk (that both SPs
offer and consumers prefer). The QoS offered by the SP models the product
price in the Hotelling model. In contrast to the classical Hotelling model in
which there is a non-negative transportation cost irrespective of the locations of
consumer and retailer, here consumers will always benefit from SPs that offer
lower privacy risk than what they prefer. Thus, there is an asymmetry in the
transportation cost. We model the interactions between SPs and consumers as a
three-stage sequential game and compute the equilibrium QoS-privacy risk tuple
as well as consumers’ choices using backward induction. We also compute the
resulting market share and profit for specific models of cost and revenue (to SPs),
distribution of consumer heterogeneous privacy choices, as well as consumer
privacy valuation. We show that there is no equilibrium in which both SPs offer
the same privacy risk for the two-SP market with linear valuation function (cost,
revenue, consumer utility). Furthermore, we study the equilibrium behavior of
both SPs and consumers under different privacy preference models.

2 Problem Model and Game Formulation

Formally, we introduce a game-theoretic model for two SPs and infinitely many
consumers. Each SP offers the same type of free services (e.g., search engine,
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social network) with a quantified privacy risk guarantee ε and QoS v. Just as
Google at present advertises RAPPOR with a certain level of differential privacy
risk, in the future, it is possible that SPs will adopt one or more metrics to
quantify their privacy risks. This paper makes such an assumption of privacy risk
quantifiability. Furthermore, we assume SPs advertise their quantified privacy
risk and QoS to consumers. Thus, both ε and v are observable to consumers. The
observable privacy risk value could be the ε value in differential privacy adopted
by Google RAPPOR and the QoS could be the accuracy of search results. An
SP differentiates its service by a tuple (v, ε) that it advertises to all consumers.
A consumer’s preference of privacy differentiated service is modeled by a utility
function which depends on its privacy risk valuation and the QoS-privacy risk
tuple offered by the SP. In reality, it is natural to assume that consumers prefer
high QoS and low privacy risk. Thus, in our model, a consumer will have a higher
utility if he or she receives higher QoS or lower privacy risk. Finally, consumer
privacy heterogeneity is modeled as a distribution.

2.1 Two-SP Market Model

SP Model. We consider two rational (i.e., profit maximization entities) SPs,
denoted by SP1 and SP2. Both SPs provide the same kind of free service; but
they differ in the QoS offered. Since we focus on free online service market, it is
very difficult to use a monetized quantity to quantify these services. Therefore,
we use QoS rather than price to quantify the consumers’ gains from using the
services. Thus, SP1 and SP2 offer QoS v1 and v2, respectively, where in general
v1 �= v2. Furthermore, SP1 and SP2 guarantee that the privacy risk for using
their services is at most ε1 and ε2, respectively, where ε1, ε2 ∈ [0, ε̄]. Without
loss of generality, we assume ε2 ≥ ε1. Under these assumptions, SP2 must offer a
higher QoS (v2 ≥ v1). Otherwise, its strategy will be dominated by its opponent
since SP1 will offer both higher QoS and lower privacy risk. For example, SP1

and SP2 could be Duckduckgo and Google, respectively, in the search engine
market, with the QoS given by the accuracy of search results. On the other
hand, the privacy risk can correspond to different guarantees they provide on
consumer data use; e.g., whether they will use consumer data only for statistical
purposes or target consumers with tailored ads. We model this privacy risk
guarantee as a variable taking values over a continuous range. In practice, such
guarantees may be coarse granular choices; for example, between completely
opting out of the targeting or allowing data use only for statistical purposes or
complete data use only by SP or all possible data usage and sale. We assume
that the SPs generate revenue in two ways: (i) by exploiting the private data
of consumers to offer targeted ads and other services to consumers; and (ii)
by providing interested advertisers an online platform to reach consumers. This
latter revenue is independent of private data and simply derived from the revenue
capability of the platform.

Let RP (εi) and RNP,i denote the per consumer revenue of SPi generated
from using the private data and without using consumers’ private information,
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respectively. The total per consumer revenue, R(εi) is thus

R(εi) = RP (εi) + RNP,i, i ∈ {1, 2}. (1)

Notice that in reality, through spillovers and externalities associated with
using consumers’ private data, the revenue generating capabilities for SPs can
increase even from sources that don’t directly use consumer personal informa-
tion. However, it is very hard to capture these externalities precisely since they
are highly data and service model dependent. We start with a simple model in
which we assume that SPs will not use consumers’ private data for services that
do not require private data. Our proposed model provides an intuition on the
equilibrium strategies of SPs and market. Furthermore, it is useful to note that
even this relatively simple revenue decoupled setting is highly parameterized.
Our analysis allows us to understand the dependencies on various parameters.

Offering free services to consumers often comes with a cost to the SPs, such
as the cost of service, online platform creation, and continued operations. Fur-
thermore, we note that free online services profit from using consumer data
and therefore incur data processing related costs. Let C(vi; εi) denote the per
consumer cost of offering free services. We model C(vi; εi) as sum of two non-
negative costs: (i) CQoS(vi) of providing services with QoS vi; and (ii) CP (εi) as
the processing (data analytics) cost of using data with privacy risk εi such that

C(vi; εi) = CQoS(vi) + CP (εi), i ∈ {1, 2}. (2)

We assume RP (εi) > CP (εi). Otherwise, SPi will not exploit consumers’ private
information since the cost exceeds revenue from using private information.

Consumer Model. We formulate the consumer-SP game based on the classical
Hotelling model. The Hotelling model maps retailers to two locations (x1, x2)
on a [0, 1] line such that the strategy of each retailer is to determine the best
location-price tuple that maximizes its profit. The location (see Fig. 1a) is a
proxy for a specific product differentiator. A consumer with its own product
differentiator preference (traditionally assumed to be uniformly distributed over
[0, 1]) is mapped to a location x ∈ [0, 1] on the line as shown in Fig. 1a. Such
a spatial model allows computing the market segment by identifying both the
optimal locations of the retailers and an indifferent threshold between the two
optimal retailer locations at which both retailers are equally desirable. For such a
uniform consumer preference model, the segmentation for each retailer is simply
its distance to the indifference point. Consumers choose the retailer with the
least product price and “transportation cost” (a linear function of location) for
a desired consumer valuation of the product. Note that transportation costs are
metaphorical for any non-price-based differentiation of the two retailers.

For our problem, we obtain a Hotelling model by: (i) introducing a normalized
privacy risk and mapping it to spatial location; and (ii) by viewing the QoS as the
net valuation of service by the consumer. Note that since we study a free services
market, we use QoS as a measure of consumer satisfaction. We note that in the
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classical Hotelling model, the consumer pays a non-negative transportation cost
for any retailer whose location is different from its own. However, our problem
departs from this model in that higher and lower privacy risks offered by SPs
relative to a consumer preferred privacy risk choice are not viewed similarly.

We assume there exists infinitely many rational consumers that are inter-
ested in the services provided by the SPs. In keeping the standard game-theoretic
definition, rational refers to consumers interested in maximizing some measure
of utility via interactions with the SPs. We use a random variable E ∈ [0, ε̄]
to denote the heterogeneous privacy preferences of consumers; such a model
assumes that the privacy preferences of consumers are independent and identi-
cally distributed, a reasonable assumption when the consumer set is very large.
Let E = ε denote the privacy risk preference of a consumer. If SPi offers a pri-
vacy risk guarantee εi higher than ε, then using its service will result in a privacy
cost to the consumer due to perceived privacy risk violation. On the other hand,
the consumer gains from choosing an SPi that offers an εi < ε as a result of
the extra privacy protection offered. Let x = FE(ε) ∈ [0, 1] be a differentiable
cumulative distribution function of ε. Thus, x can be considered as a normalized
privacy risk tolerance (i.e., restricted to [0, 1]) which indicates the proportion of
the consumers with a privacy risk preference of at most ε. Since ε can be over an
arbitrary range [0, ε̄], the normalized spatial privacy risk is given by the cumula-
tive distribution function (CDF) FE(ε). We can similarly map the privacy risks
offered by the SPs to normalized locations x1 = FE(ε1) and x2 = FE(ε2) on the
[0, 1] line as shown in Fig. 1b.

Analogous to the Hotelling model, we let ui(x) denote the utility (in units
of QoS) from SPi as perceived by a consumer with a normalized privacy pref-
erence (location) x. Our model for ui(x) contains two parts: (i) a positive QoS
vi offered by SPi; and (ii) the gain or loss in the perceived QoS as a result of
a mismatch between consumer privacy preference and SPi’s privacy risk offer-
ing. We introduce a gain factor t that allows mapping the privacy mismatch
t(x − xi)εi to a QoS quantity. This mismatch utility indicates that when the
SP offers a service with privacy risk lower than the consumer’s tolerance, the
consumer receives a positive utility due to extra privacy protection. However, if
the service offered has a higher privacy risk than the consumer’s tolerance, the
consumer will receive negative utility for privacy risk violation.

Fig. 1. User choice model for using different SPs
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Consumer Utility and SP Profits. For the consumer located at x, the overall
perceived utility for choosing services provided by SP1 and SP2 are

ui(x) = vi + t(x − xi)εi, i ∈ {1, 2}. (3)

For each SPi, i ∈ {1, 2}, let (v−i, ε−i) be its competitor’s strategy. For the rev-
enue and cost models in (1) and (2), the profit of SPi is simply the difference

πi(vi; εi; v−i; ε−i) = [R(εi) − C(vi; εi)]ni(vi; εi; v−i; ε−i), (4)

where ni(vi; εi; v−i; ε−i) denotes the fraction of consumers who choose SPi.

Modelling Assumption 1. We assume that the services provided by both SPs
have non-negative QoS.

Since consumers are rational, they expect to have positive utility through the
interactions with the SPs. It is reasonable to assume that SPs have no incentive
to offer services with a negative QoS (i.e., v1 ≥ 0 and v2 ≥ 0).

Modelling Assumption 2. We assume the model parameters are chosen such
that they ensure the market is completely covered by SP1 and SP2.

Assumption 2 implies that each consumer must choose one of the SPs. Such
an assumption is implicitly built into the classical Hotelling model to ensure
competition between SPs and we continue to do so. Later we provide a sufficient
condition for sustaining the competitive market under these assumptions.

2.2 Two-SP Non-cooperative Game Formulation

We note that the SPs compete against each other through their distinct QoS
and privacy risk offerings, which in turn affects consumer choices and helps
determine the stable market segmentation. Thus, the interactions between SPs
can be formulated as a non-cooperative game in which the strategy of each
SP is a (QoS, privacy risk) tuple and that of the consumer is choosing an SP.
Furthermore, we assume that the SPs are rational and have perfect and complete
information. They play to maximize their own profits and know the exact profit
function and their competitors’ strategies.

The Game: the interactions between retailers and consumers in the Hotelling
model can be viewed as a sequential game [15]. For our model, such a sequen-
tial game involves three stages. In the first stage, the differentiator, i.e., the
normalized privacy risk εi, is advertised by SPi. This is followed by each SP
determining its QoS for the advertised risk. Finally, the consumers choose the
preferred SP based on the (vi, εi) tuple that maximizes its utility. Our sequential
game assumes that the selection of privacy risk happens before the selection of
the QoS. This is due to the fact that SPs first advertise their privacy risks to
differentiate themselves from their competitors (e.g., Google advertises RAP-
POR while Duckduckgo advertises not using private data of the consumers) and
then adjust their QoS strategies. Since the profit function of an SP is dependent
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on the privacy risk and QoS of itself and its competitor, for fixed privacy risk
strategies, the best response QoS strategy of an SP is affected by the privacy
risk strategies as well as consumers’ preferences.

The game can be formally described as follows: (i) a set of players {1, 2, C},
where 1 and 2 denote SP1 and SP2, respectively, and the set C contains infinitely
many consumers; (ii) a collection of strategy tuples (vi, εi) ∈ Vi ×Ei for SPi and
a collection of binary choices (strategies) for the consumer b ∈ B = {1, 2}; and
(iii) a profit function πi for each SPi and a utility function ui for each consumer
for choosing SPi.

3 Subgame Perfect Nash Equilibrium for Two-SP Game

In a sequential game, each stage is referred to as a subgame [21]. One often asso-
ciates a strategy profile with a sequential game. A strategy profile is a vector
whose ith entry is the strategy for all players at the ith stage of the sequen-
tial game. A non-cooperative sequential game has one well-studied solution: the
Subgame Perfect Nash Equilibrium (SPNE). A strategy profile is an SPNE if
its entries are the Nash equilibria of the subgame resulting at each stage of the
sequential game. The SPNE of a sequential game captures an equilibrium solu-
tion such that no player can make more profit by unilaterally deviating from this
strategy in every subgame. Since the two-SP game has finite number of stages
and perfect information, it can be solved by backward induction:

Stage 3, Users’ Decisions: Each consumer located at x ∈ [0, 1] can choose
the services provided by either SPs based on its valuation function in (3). The
resulting optimal strategy for the consumer is to choose the SP whose index is

arg max
i∈{1,2}

vi + t(x − xi)εi. (5)

Since the consumer’s utility is a linear function of the normalized privacy risk
x and the market is completely covered by the SPs, there exists a threshold xτ

such that the consumer located at xτ is indifferent to using services provided by
SP1 or SP2. Thus, at the indifference threshold xτ , we have

u2(xτ ) = u1(xτ ) =⇒ xτ =
v1 − v2 + t(FE(ε2)ε2 − FE(ε1)ε1)

t(ε2 − ε1)
, (6)

where x1 and x2 have been replaced by their corresponding normalized privacy
risk values. Thus, given the SPs’ strategies (vi, εi), i ∈ {1, 2}, the optimal strat-
egy of a consumer located at x is to use the service of SP1 if x ≤ xτ and SP2

otherwise. If v1 = v2 and ε1 = ε2, consumers are indifferent between SP1 and
SP2. In this case, we assume the consumers use the following tie-breaking rule:

Modelling Assumption 3. If v1 = v2 and ε1 = ε2, consumers choose either
SPs with probability 1

2 .
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Stage 2, SPs Determine QoS: For a given privacy risk guarantee εi, SPi

chooses its QoS vi to maximize its profit πi. Since a consumer’s normalized
privacy risk tolerance denotes the fraction of the population whose privacy risk
tolerance is at most ε, xτ determines the proportion of consumers who choose
SP1, i.e., n1. As a result, the profit functions of SP1 and SP2 can be written as

π1(v1; ε1; v2; ε2) =[R(ε1) − C(v1; ε1)]xτ , (7)
π2(v1; ε1; v2; ε2) =[R(ε2) − C(v2; ε2)](1 − xτ ). (8)

To find the SPNE in this stage, we use the best response method [21]. The
best response is a function which captures the behavior of each player while
fixing the strategies of the other players. For any v−i ∈ V−i, we define BRi(v−i)
as the best strategy of SPi such that

BRi(v−i) = arg max
vi

πi(vi; εi; v−i; ε−i), i ∈ {1, 2}. (9)

In the SPNE, each player plays the best response strategy. Thus, a Nash equilib-
rium in this stage is a profile v∗ = (v∗

i , v∗
−i) for which v∗

i ∈ BRi(v∗
−i),∀i ∈ {1, 2}.

For a given set of privacy risk guarantees {ε1, ε2}, the optimal QoS v∗
i of

SPi, i ∈ {1, 2} in the SPNE is

v∗
i = arg max

vi

πi(v1; ε1; v2; ε2), i ∈ {1, 2}. (10)

Stage 1, SPs Determine Privacy Risk Guarantee: In the first stage, we
compute equilibrium strategies ε1 and ε2 that the two SPs should advertise for
optimal market share. Note that v∗

1 , v
∗
2 , and xτ have been computed in stages 2

and 3 for a fixed ε1 and ε2, this implies the equilibrium strategy ε∗
1 and ε∗

2 can
be obtained using the best response method.

4 Two-SP Market with Linear Cost and Revenue Models

Thus far, we have considered a general model for SPs. To obtain better intuition
and meaningful analytical solutions, we consider linear cost and revenue models
for SPs. The per consumer cost function of SPi is

C(vi; εi) = cvi + cλεi, i ∈ {1, 2}, (11)

where c and λ are constant scale factors in units of cost/QoS and QoS/privacy
risk, respectively. We model the per consumer revenue of each SP from offering
a privacy guaranteed service by a linear function

R(εi) = rεi + pi, i ∈ {1, 2}, (12)

where r is the revenue per unit privacy risk for using consumers’ private data.
The parameters p1 and p2 model the fixed revenues of the SPs that are indepen-
dent of consumers’ private data.
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Theorem 1. There is no SPNE in which both SPs offer the same privacy risk.

Proof sketch: The detailed proof of Theorem 1 is in Appendix A; we briefly
outline the proof. First, we assume there exists an SPNE where both SPs offer
the same privacy risk ε̃. Using backward induction, we show that one of the SPs
is better off by unilaterally deviating from the equilibrium strategy ε̃; implying
that there is no SPNE in which both SPs offer the same privacy risk.

Remark: Note that the result of Theorem 1 does not exhibit the minimal differ-
entiation behavior (i.e., both firms place themselves close to each other) observed
in [15]. This is due to the fact that higher and lower privacy risks offered by SPs
relative to a consumer preferred privacy risk choice are not viewed similarly;
that is, the symmetric transportation cost no longer holds in our model, and
thus resulting an asymmetric gain due to privacy mismatch in (3).

4.1 Uniform Consumer Privacy Risk Tolerance

We assume consumers have uniformly distributed privacy risk tolerance between
0 and ε̄ [22]. The resulting normalized privacy risk of each SP is given by xi =
FE(εi) = εi

ε̄ , i ∈ {1, 2}. We define

α =
r

c
− λ, C̃ = ctε̄. (13)

Note that α is the ratio of net profit from using consumer data for a unit of
privacy risk to the cost for providing a unit of QoS. Furthermore, C̃ is the
cost of providing non-zero utility to the consumer with a maximal mismatch of
privacy risk (relative to SP). By using backward induction, the computed SPNE
of the two-SP non-cooperative game is presented in the following theorem.

Theorem 2. There exists an SPNE given by

ε∗
2 =

12ε̄cα + 15ctε̄ − 16(p2 − p1)
24tc

, (14)

v∗
2 =

(2α + t)cα6ε̄ + (α − t)9ctε̄ + (t − 2α)8p2 + (α + t)16p1
24ct

, (15)

ε∗
1 = ε∗

2 − 3ε̄

4
, (16)

v∗
1 = v∗

2 − 3ε̄

4
α +

p2 − p1
3c

, (17)

if the model parameters {c, r, λ, t, ε̄, p1, p2} satisfy

−1 ≤ 16(p2 − p1)
9ctε̄

≤ 1, (18)

4α − 3t

3
≤ 16(p2 − p1)

9cε̄
≤ 4α − t

3
, (19)

(12(r − cλ)ε̄)2 − (15ctε̄)2 + 288ctε̄(p2 + p1) ≥ [16(p2 − p1)]2. (20)
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At this SPNE, the market segmentation and the total profits of both SPs are

x∗
τ =

1
2

− 8(p2 − p1)
9ctε̄

=
1
2

− 8(p2 − p1)
9C̃

, (21)

π∗
1 =

4c

27tε̄
(
9tε̄

8
− 2(p2 − p1)

c
)2 =

1
3
(
3
4

√
C̃ − 4(p2 − p1)

3
√

C̃
)2 (22)

π∗
2 =

4c

27tε̄
(
9tε̄

8
+

2(p2 − p1)
c

)2 =
1
3
(
3
4

√
C̃ +

4(p2 − p1)

3
√

C̃
)2, (23)

where α and C̃ are defined in (13).

Proof sketch: The proof of Theorem 2 is provided in Appendix B. We briefly
sketch the proof details here. Our approach involves using a three-stage back-
ward induction to compute equilibrium strategies starting from the third stage;
at each stage, the equilibrium strategies are computed using those computed
from future stages. In the third stage, for a fixed pair of strategies of each SP,
the consumer makes the choice, this in turn helps determining the indifference
threshold xτ . This xτ is now used in the second stage to compute the equilib-
rium QoS (v∗

1 , v
∗
2) for a fixed set of risk (ε1, ε2). Finally, the first stage involves

computing the equilibrium privacy risk for these choice of v∗
1 , v

∗
2 and xτ by solv-

ing the corresponding best response functions, thereby obtaining the solutions
in (14)–(17). The conditions in (18)–(20) result from requiring the equilibrium
strategies as well as the equilibrium market segmentation to satisfy the follow-
ing: (i) feasible threshold: 0 ≤ x∗

τ ≤ 1; (ii) feasible risk: 0 ≤ ε∗
1, ε

∗
2 ≤ ε̄; (iii)

non-zero consumer utility: v∗
1 − tx∗

1ε
∗
1 ≥ 0 or v∗

2 − tx∗
2ε

∗
2 ≥ 0.

Remark: Note that the equilibrium in (14)–(17) is highly parametrized. For a
given set of parameters that satisfy conditions in (18)–(20), the sequential game
yields an SPNE. By (21), the SP with higher privacy-independent revenue owns
a larger market share, leading to a higher total profit in the SPNE (see (22)
and (23)). Note that p1 and p2 are the only differentiator of SPs in the set of
model parameters. For a fixed p2 − p1, both π∗

1 and π∗
2 are decreasing functions

of C̃ when C̃ ∈ [0, 16|p2−p1|
9 ] and increasing afterwards. On the other hand, (18)

implies C̃ ≥ 16|p2−p1|
9 . Thus, both π∗

1 and π∗
2 are increasing functions of C̃ in

the SPNE. In the following, we highlight the effect of each one of these model
parameters on the SPNE while keeping all other parameters fixed.

1. Heterogeneity of consumer privacy preferences (ε̄): for the SPNE presented
in Theorem 2, observe that v∗

i and ε∗
i , i ∈ {1, 2} are linear functions of ε̄.

Furthermore, ε∗
2 = ε∗

1 + 3
4 ε̄; this implies that at the SPNE, the SP that offers

the higher privacy risk (i.e., ε∗
2) offers exactly 3

4 ε̄ higher than that of its
competitor. For all other parameters fixed, as ε̄ increases, SP2’s privacy risk
increases linearly. On the other hand, SP1’s privacy risk increases linearly
with ε̄ only if the model parameters are such that 4(r−cλ) > ct; otherwise, it
decreases linearly (see (14) and (16)). To further understand the dependency,
we consider the following two cases:
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– If p2 − p1 > 0, as ε̄ increases, SP2 can increase its revenue by increas-
ing its privacy risk offerings. As a result, more consumers who have low
privacy risk preferences will choose SP1. Therefore, the market share of
SP2 decreases. However, the profits of both SPs increases as ε̄ increases.
The intuition is that both SPs can exploit consumers’ private information
from a larger range of privacy risk preferences. As a result, their revenue
from exploiting consumers’ private information also increases, which in
turn leads to an increase in both SPs’ profits.

– If p2 − p1 < 0, as ε̄ increases, SP2 increases its advertised privacy risk to
exploit more private information from consumer. Despite this, the market
share of SP2 increases with ε̄. This is because as ε̄ increases, SP2 provides
a higher utility than SP1 to some consumers who prefer SP1 before.
Furthermore, each SP’s profit increases as ε̄ increases.

2. Operation cost (c): when c increases, by (21), the SP with lower privacy-
independent revenue benefits since its market share increases. Observe from
(14) and (15) that if p2 − p1 > 0, both SPs increase their privacy risk strate-
gies in the SPNE as c increases. They do so because SPs can use consumers’
private information to increase its privacy dependent revenue, thereby offset-
ting their cost. Otherwise, they decrease their privacy risks. As a result of
these strategies, when c increases, both SPs’ profits also increase.

3. Privacy independent revenue (p1, p2): as the difference in the privacy inde-
pendent revenues (p2 − p1) increases, both SPs offer lower privacy risks to
attract consumers. From (21)–(23) and condition (18), we see that as p2 − p1
increases, the market share and profit of SP1 decreases while SP2’s market
share and profit increases. This is because a larger difference in the revenue
independent of consumer’s private data gives SP2 more market power in the
competition. As a result, SP2’s profit increases while SP1’s profit decreases.

4. Consumer privacy valuation or skittishness (t): when t increases, by (14)–
(17), we have ε∗

1 = 12ε̄cα−16(p2−p1)
24tc − 1

8 ε̄ ≥ 0. Therefore, both SPs decrease
their privacy risks as t increases. Furthermore, by (21), the SP with lower
privacy-independent revenue benefits since its market share increases. For
this linear model, as t increases, both SPs decrease their privacy risks. This
results in a decrease in the cost and revenue of both SPs but cost decreases
more than revenue, thereby leading to a profit for both SPs. In other words,
a higher privacy valuation from consumers “softens” the competition.

4.2 Truncated Gaussian Consumer Privacy Risk Tolerance

In this section, we model a consumer’s privacy tolerance as a random variable E
that follows a Gaussian distribution N ( ε̄

2 , σ2) with a mean of ε̄
2 and a standard

deviation of σ. Since E ∈ [0, ε̄], we restrict the Gaussian distribution to lie within
the interval [0, ε̄]. Thus, E follows a truncated Gaussian distribution with CDF

FE(ε) =

⎧
⎪⎨

⎪⎩

Φ(
ε− ε̄

2
σ )−Φ(− ε̄

2σ )

Φ( ε̄
2σ )−Φ(− ε̄

2σ )
ε ∈ [0, ε̄]

0 ε ∈ [−∞, 0]
1 ε ∈ [ε̄,+∞]

, (24)
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where Φ(y) denotes the CDF of the standard Gaussian distribution.
In contrast to the uniform distribution case, the CDF in (24) is not amenable

to a closed form solution. Thus, we characterize the equilibrium numerically.
To find the SPNE, we first compute the SPNE QoS in the second stage as
functions of privacy risk guarantees by solving (10). Then, we use an iterated
best response method to find the optimal privacy risk guarantee of an SP by
fixing its competitor’s strategy in each iteration. When the process converges,
we have found an SPNE.

4.3 Illustration of Results

In this section, we illustrate our model and results. First, we assume consumers
have uniformly distributed privacy risk tolerance. We plot each SP’s SPNE strat-
egy, market share, and total profit with respect to consumers’ maximum privacy
risk tolerance ε̄ for different values of consumer privacy risk valuation t. Later,
we study the model in which consumers’ privacy risk tolerance follows a Gaus-
sian distribution N ( ε̄

2 , 1) truncated between 0 and ε̄. The model parameters are
given as follows:

Table 1. Numerical example model parameters

Parameter c λ r p1 p2

Value 0.5 0.75 0.7 0.4 0.8

Uniform Consumer Privacy Risk Tolerance. In this section, we vary ε̄
from 3 to 5 to study properties of SPNE. Our choice of values in Table 1 is one
set of parameters for which we can determine a meaningful range of t values.
However, there exists many such combinations of parameter values. Note that
by (18)–(20) in Theorem 2, t must belong to [0.58, 0.85] when other parameters
are given in Table 1 for sustaining the SPNE. In Fig. 2, the equilibrium strategies
of different SPs are plotted. As ε̄ increases, both SPs increase their privacy risk
offerings. Furthermore, it can be seen that as t, the valuation of privacy by
consumer, decreases, each SP increases its privacy risk to generate more profit
from using private data. Correspondingly, the SPs will have to provide higher
QoS to attract consumers. On the other hand, if t increases, both SPs reduce
their privacy risks to avoid violating consumers’ privacy.

It is worth noting that for the special case of t = 0.7, we observe that SP1

caters to smaller set of privacy sensitive consumers. The reason for this is as
follows: indeed, one generally expects SP1 to offer a larger privacy risk as ε̄
increases. However, for a large enough privacy valuation (in this case t = 0.7),
since consumers highly value privacy, the cost of offering a high QoS proportion-
ally increases for SP1. The resulting profit is insufficient to justify the cost.

The market shares of different SPs in the SPNE are presented in Fig. 5a.
We observe that the equilibrium market share of SP2 decreases as t increases.
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Fig. 2. SPNE strategies of SPs under uniform consumer privacy risk

The intuition is that if t increases, the consumer’s valuation of privacy mismatch
also increases. Thus, it is more difficult for SP2 to attract consumers with privacy
tolerance lower than ε2. As a result, its market share decreases. Notice that in
Fig. 5a, as ε̄ decreases, the equilibrium market share of SP2 increases. This is
because consumers experience a lower negative utility from the mismatch when ε̄
is smaller (the utility from mismatch is t(x−xi)εi). As a result, more consumers
will choose the SP with a higher privacy risk to enjoy a higher QoS.

In Fig. 3, we plot the total profit at the SPNE for each SP as a function of the
maximum consumer privacy risk tolerance ε̄ for different values of t. The total
profit of both SPs at SPNE increases as ε̄ increases. This is because a larger
ε̄ indicates a larger range of consumer preferences, and then, more possibilities
for the SPs to exploit private information. Thus, both SPs can benefit from
using private data of consumers that have a higher privacy risk tolerance. As t
increases, both SPs decrease their privacy risks. As a result, the cost and revenue
of both SPs decrease. However, in this case, cost supersedes revenue. Therefore,
both SPs make more profit. In other words, a higher privacy valuation from
consumers “softens” the competition.

Truncated Gaussian Consumer Privacy Risk Tolerance. We now con-
sider the case in which consumers’ privacy risk tolerance follows a truncated
Gaussian distribution with a mean of ε̄

2 and a standard deviation of 1. The
equilibrium strategies of different SPs are shown in Fig. 4. As with the uniform
distribution scenario, here too we observe that the privacy risk and the QoS
offered by each SP are linear functions of ε̄. We also notice that in this SPNE,
SP2 will always provide service with maximum privacy risk (Fig. 4a) for the set
of parameters in Table 1. This is because in contrast to the uniform distribution,
for the truncated Gaussian distribution, there are a relatively smaller number of
consumers concentrated in the tail end of [0, ε̄]. Thus, for SP1 to make a profit,
it has to offer a higher privacy risk so that it can capture a large number of
consumers in the middle of the [0, ε̄] range. This in turn forces SP2 to increase
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Fig. 3. Profit of SPs at SPNE under uniform consumer privacy risk

its privacy risk to differentiate its QoS offering and thus have a higher profit.
Since the privacy risk preference is bounded by [0, ε̄], SP2 can only offer the
highest privacy risk in this example.
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Figure 5b shows market shares of different SPs at SPNE vs. consumers’ max-
imum privacy risk tolerance for different values of t under truncated Gaussian
privacy tolerance distribution. As t decreases, the market share of SP2 at SPNE
increases, and vice versa. Also, when ε̄ decreases, the equilibrium market share of
SP2 increases. Furthermore, it can be seen that for the same ε̄, the market share
of SP2 (SP1) is smaller (larger) when consumers’ privacy tolerance follows the
truncated Gaussian distribution compared to uniform distribution. Our numeri-
cal analysis shows that at SPNE, SP2 is forced to provide service with maximum
privacy risk. We argue that this is due to the shape of the distribution that lim-
its the number of consumers at the two extremes thus compelling the two SPs
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to compete for the large bulk of consumers distributed around ε̄/2. Given the
ability of SP2 to make more profit on untargeted services relative to SP1, the
SPNE solution leads to SP1 increasing its market share to be profitable and SP2

achieving profitability with a smaller market share.
The relationship between total profit of different SPs at SPNE vs. consumers’

maximum privacy risk tolerance for different values of t is shown in Fig. 6. Similar
to Fig. 3, both SPs’ total profit increase as ε̄ increases. However, in contrast to
Fig. 3, as t decreases, the total profit of SP2 increases. This is because SP2 always
offers ε̄ in the SPNE. Notice that SP2’s SPNE QoS is also a linear function of ε̄
(see Fig. 4b). On the other hand, SP2’s market share increases as t decreases (see
Fig. 5b). By (4), (11), and (12); the total profit of SP2 increases as t decreases.
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5 Conclusions

This work seeks to understand the effect of offering privacy- and QoS- differen-
tiated online services to consumers with heterogeneous privacy sensitivities. We
have quantified this effect as the fraction of consumers that prefer lower privacy
risks with the accompanying lower QoS to the alternative of higher risks and
higher QoS. We have presented an analysis built upon the classical Hotelling
model to compute equilibrium QoS-privacy risk strategies and market segmen-
tation for the two-SP problem. Analogous to the classical models, our problem
also involves parameters that capture cost, revenue, and consumer valuation
functions that are dependent and independent of privacy risks. While such a
parametrized model can make the analysis challenging, our results for relatively
simple yet meaningful functions such as linear cost models and uniform (as well
as truncated Gaussian) distribution of consumer preferences suggest that SPs
that have higher profits from untargeted services have an edge in the market.
SPs competing on offering higher privacy risk services have to offer better QoS
or figure out other means of increasing untargeted revenue to gain market share.

Our model assumes that the SPs were able to overcome the barrier to entry
and differentiate themselves. Thus, a related question we will address going for-
ward is whether such barriers to entry are in fact surmountable when competitors
use privacy as a differentiator. Also, extending the model to competitive settings
that allows more than two SPs and captures externalities of using private data
could lead to interesting insights into real-world market interactions. Another
challenge to address is to develop models to capture privacy risks that are not
directly observable to consumers. These analyses are crucial for developing better
privacy policies to effectively enable safe and secure online commerce.

Acknowledgments. This work is supported in part by the National Science Founda-
tion under Grant No. CCF-1350914

Appendix

A Proof of Theorem 1

We prove by contradiction. Suppose that both SPs offer the same privacy risk
ε̃. Without loss of generality, we assume p1 ≤ p2. We start at the third stage
wherein each consumer chooses the SP which maximizes its utility (5). Since
ε∗
1 = ε∗

2 = ε̃, every consumer will choose the SP that offers the highest QoS. At
the second stage, given the privacy risk strategy ε∗

1 = ε∗
2 = ε̃ and the equilibrium

strategy in the third stage, each SP determines its QoS offering by solving (10).
Finally, we show that SP2 will be better off if it deviates from ε̃ unilaterally. By
Assumption 3, each SP has equal share of the market if v1 = v2 and ε1 = ε2.
The profit of SPi can be written as

πi =

⎧
⎨

⎩

rεi + pi − c(vi + λεi) if vi > v−i
rεi+pi−c(vi+λεi)

2 if vi = v−i

0 if vi < v−i

. (25)
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As argued in Sect. 2.1, we assume that the net profit from using consumers’
private data is non-negative RP (εi) − CP (εi) > 0. Thus, (r − cλ)εi > 0 ∀εi ∈
[0, ε̄], which indicates r − cλ > 0. Since every consumer will choose the SP
that offers the highest QoS, each SP’s best response strategy with respect to
its competitor is to increase vi until one of the SPs realizes it is not profitable
to increase QoS anymore. Therefore, by (25), both SPs will increase vi until
R(εi) − C(vi, εi) = 0 for one of the SPs. Since we assume p1 ≤ p2, we have the
following two cases:

Case 1: p1 = p2 = p. In this case, given ε∗
1 = ε∗

2 = ε̃, each SP will increase its
QoS to beat its competitor until R(εi) − C(vi, εi) = rε̃ + p − c(vi + λε̃) = 0. As
a result, both SPs’ equilibrium strategies at this stage are given by

v∗
1 = v∗

2 =
(r − cλ)ε̃ + p

c
. (26)

At the first stage, the SPs determine their privacy risks based on the equilibrium
strategies in the second and the third stages. Given the equilibrium strategies in
the second stage (26), both SPs have zero profit. Since we assume ε1 ≤ ε2, SP1

can only reduce its privacy risk from ε̃ and SP2 can only increase from it. We
now prove that it is a non-profitable deviation for SP1 to decrease its privacy
risk to ε̃1 unilaterally. Since SP1’s QoS strategy is given by v∗

1 = (r−cλ)ε̃+p
c , its

profit is given by R(ε̃1)−C(v∗
1 , ε̃1) = rε̃1+p−c(v∗

1 +λε̃1) = (r−cλ)(ε̃1− ε̃) < 0.
Thus, SP1 does not have incentives to deviate from playing ε̃ unilaterally. On
the other hand, if SP2 increases its privacy risk from ε̃ to ε̃2 unilaterally, its
profit is given by R(ε̃2)−C(v∗

2 , ε̃2) = rε̃2+p−c(v∗
2 +λε̃2) = (r−cλ)(ε̃2− ε̃) > 0.

Therefore, SP2 is better off by changing from ε̃ to ε̃2 unilaterally. Thus, there is
no SPNE such that both SPs offer the same privacy risk when p1 = p2.

Case 2: p1 < p2. In this case, since p1 < p2, both SPs will keep increasing its QoS
until SP1 has zero profit. Thus, by solving R(ε̃) − C(v1, ε̃) = 0, SP1 will play
v∗
1 = (r−cλ)ε̃+p1

c at the equilibrium. On the other hand, SP2 will offer an QoS
slightly higher than v∗

1 and captures the entire market. At the first stage, given
the equilibrium strategy of the second stage described above, both SPs choose
their privacy risk offerings. We now prove that it is a non-profitable deviation
for SP1 to decrease its privacy risk to ε̃1 unilaterally. Substitute v∗

1 = (r−cλ)ε̃+p1
c

to (25), we have π1 = (r − cλ)(ε̃1 − ε̃) < 0. Thus, SP1 does not have incentives
to deviate from playing ε̃ unilaterally. On the other hand, if SP2 increases its
privacy risk from ε̃ to ε̃2 unilaterally, its profit is given by

π2 = (r − cλ)(ε̃2 − ε̃) + p2 − p1 = (r − cλ)(ε̃2 − ε̃) + R(ε̃) − C(v∗
2 , ε̃)

> R(ε̃) − C(v∗
2 , ε̃).

Thus, SP2 has incentives to deviate from offering the same privacy risk. There-
fore, playing ε∗

1 = ε∗
2 = ε̃ is not an SPNE when p1 < p2.
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B Proof of Theorem 2

Starting form the last stage in which consumers choose different SPs, we use
backward induction to find the SPNE of the sequential game. In the last stage,
each consumer located at x ∈ [0, 1] chooses an SP which maximizes its utility
function (3). By (6) and the assumption that consumers’ privacy risk tolerances
are uniformly distributed, the indifference threshold xτ is given by

xτ =
v1 − v2 + t(ε2

2−ε2
1)

ε̄

t(ε2 − ε1)
= n1(v1; ε1; v2; ε2). (27)

At the second stage, the optimal strategy of each SP is determined by the
solution of (10). For fixed privacy risk guarantees ε2 and ε1, the objective func-
tion of SPi, i ∈ {1, 2} in this stage, i.e., πi(vi; εi; v−i; ε−i), is a concave function
with respect to its own strategy vi. Furthermore, the feasible set of SPi’s strat-
egy is a convex set (vi ∈ [0,+∞]). Thus, the non-cooperative subgame between
SP2 and SP1 in this stage can be considered as a two-player concave game. By
Theorem 1 and 2 in [23], we can establish

Proposition 1. For fixed privacy risk strategies, there exists a unique Nash
equilibrium in the game between SP2 and SP1 at the second stage.

Proof. To compute the equilibrium strategy of the second stage, we first sub-
stitute (11), (12), and (27) into (8) and (7). Then, we apply the first order
condition to SPs’ profit functions and solve the simultaneous equations given by
∂πi(vi;εi;v−i;ε−i)

∂vi
= 0 ∀i ∈ {1, 2}.

For given privacy guarantees ε1 and ε2, solving the simultaneous linear equa-
tions above yields the unique equilibrium strategy

v∗
1 =

2(rε1 + p1) + rε2 + p2
3c

+
t(1 + x1)ε1 − λ(ε2 + 2ε1) − t(1 + x2)ε2

3
, (28)

v∗
2 =

2(rε2 + p2) + rε1 + p1
3c

+
t(2 − x1)ε1 − λ(2ε2 + ε1) − t(2 − x2)ε2

3
. (29)

At the first stage, SPs determine their optimal privacy risks by considering
the QoS of each SP and the market segmentation computed in previous stages
as functions of privacy risks offered by SPs. Substituting (29) and (28) into (8)
and (7) and apply the first order condition to SPs’ profit functions yields (14)
and (16). Substitute (14) and (16) to (29) and (28) yields (15) and (17).

Next, we prove the sufficient condition for the existence of the above SPNE.
First of all, the model parameters must sustain a competitive market environ-
ment. Thus, in the equilibrium, each SP must have non-zero market share. This
indicates the parameters must satisfy 0 ≤ x∗

τ = v∗
1−v∗

2+t(x∗
2ε∗

2−x∗
1ε∗

1)
t(ε∗

2−ε∗
1)

≤ 1. Substi-
tute (14), (15), (16), and (17) into the above inequality, we have (18). Further-
more, in the SPNE, the QoS of each SP must be non-negative (QoS feasibility)
and the privacy risk guarantees must be bounded between 0 and ε̄ (privacy risk
feasibility). By the model assumption in Sect. 2.1, we have ε1 ≤ ε2. Thus, we



20 C. Huang and L. Sankar

only requires ε2 ≤ ε̄ and ε1 ≥ 0. Substitute (14) and (16) into the two inequali-
ties above yields (19). Let x∗

i = ε∗
i

ε̄ denote the normalized privacy risk of each SP
in the SPNE. The SPNE strategies must satisfy the complete market coverage
condition given by ui(x) = v∗

i − t(x − x∗
i )ε

∗
i ≥ 0,∀x ∈ [0, 1] for at least one SP.

Substituting (19) into (17), we have v∗
2 −v∗

1 = 3ε̄
4 α− p2−p1

3c ≥ 3tε̄
16 + 2(p2−p1)

3c >
0, thus we only need v1 ≥ 0 for QoS feasibility. Furthermore, the Hotelling
model feasibility condition implies v∗

1 − tx∗
1ε

∗
1 ≥ v∗

2 − tx∗
2ε

∗
2. Since ui(x) is an

increasing function of x, complete market coverage condition can be simplified
to u1(0) ≥ 0. As a result, the QoS feasibility condition and the complete market
coverage condition can be simplified to v∗

1 − tx∗
1ε

∗
1 ≥ 0. Therefore, the sufficient

condition for the existence of SPNE is given by: (i) 0 ≤ v∗
1−v∗

2+t(x∗
2ε∗

2−x∗
1ε∗

1)
t(ε∗

2−ε∗
1)

≤ 1;
(ii) 0 ≤ ε∗

1, ε
∗
2 ≤ ε̄; (iii) v∗

1 − tx∗
1ε

∗
1 ≥ 0. Solving the above three inequalities yield

(18)–(20). The equilibrium market share and profits of the SPs are obtained by
substituting (14)–(17) into (6)–(8).
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Abstract. Consumers struggle to distinguish between the quality of
different enterprise security products. Evaluating performance is compli-
cated by the stochastic nature of losses. It is recognised that this infor-
mation asymmetry may lead to a “market for lemons” in which suppliers
face no incentive to provide higher quality products. Some security ven-
dors have begun to offer cyber-warranties—voluntary ex-ante obligations
to indemnify the customer in the event of a cyber attack—to function as
a quality signal. Much like how consumer protection laws are relatively
more costly to firms offering low quality products, cyber-warranties are
more costly for firms developing low quality enterprise security prod-
ucts. In this paper, we introduce a decision-theoretic model to explore
how consumers might use cyber-warranties to increase information when
purchasing security products. Our analysis derives four inferences that
consumers can make about a security product. We discuss the difficul-
ties customers might face in using these inferences to make real world
decisions.

Keywords: Cyber warranties · Decision theory · Enterprise security
Quality signals · Cyber insurance

1 Introduction

The “market for lemons” has been used to understand how information asymme-
try can degrade the quality of traded goods [1]. Akerlof illustrated the concept
by considering a used-car market dominated by sellers of “lemons” (low-quality
cars) in which buyers are unable to distinguish between a “lemon” and a “peach”
(a high-quality car). Recent work has used this analogy to explain the cyber
crime market [18] and secure software markets [2].

It may be argued that enterprise security products exhibit qualities of a mar-
ket for lemons. Security firms must decide whether to invest additional resources
in developing a more effective product or, alternatively, sell the less-developed
product (a “lemon”). If buyers are unable to distinguish between the two prod-
ucts, there is no incentive for the security firm to develop a more effective prod-
uct; buyers will purchase the “lemon” regardless and the seller avoids incurring
c© Springer Nature Switzerland AG 2018
L. Bushnell et al. (Eds.): GameSec 2018, LNCS 11199, pp. 22–37, 2018.
https://doi.org/10.1007/978-3-030-01554-1_2
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additional development costs. Enterprise security products lack a signal of qual-
ity that might address the information asymmetry.

Rao et al. [28] suggest that “brand name can convey unobservable quality
credibly when false claims will result in intolerable economic losses”. These losses
can result from damage to the reputation of a brand, which is used by consumers
to identify perceived product quality [12]. Alternatively, consumer protection
laws place involuntary obligations on vendors that are more costly for the sellers
of low quality products. Firms may be required to replace faulty products or may
even be liable for the resulting damages in the case of strict product liability,
which “induces firms to improve product safety” [27].

Such signals may be inappropriate in the context of enterprise security prod-
ucts. Evaluating the performance of security products is complicated. Preventing
all attacks (giving rise to what might be termed ‘absolute security’) is widely
held to be impossible [3]. A cyber attack may result from misfortune rather than
from a faulty or low-quality product. Consequently, it is difficult to link product
performance to product quality, not least because firms are reluctant to share
detailed information about breaches [22]. This undermines both the function of
reputation and the ability to identify faulty products to assign liability.

Enterprise security firms have begun to use so-called cyber-warranties as
an alternative signal of quality. For example, a managed security provider1 has
offered a $100,000 warranty and an end-point protection firm2 offers a $1,000,000
warranty. In this paper, we consider cyber-warranties to be voluntary ex-ante
obligations in which enterprise security providers promise to indemnify con-
sumers in the event of a successful attack. The voluntary ex-ante aspect of
cyber-warranties differentiates them from the concept of software liability found
in tort law [15,30,33] (or even criminal law [31]). By accepting and publicis-
ing these obligations, security firms seek to unilaterally shape market dynamics.
There are many questions regarding what consumers can infer from these signals,
how cyber-warranties impact the investment in security products, and whether
this reduces the expected losses for the consumer.

This paper presents an economic consideration of how cyber-warranties affect
the market for enterprise information security products. Section 2 identifies
related work. In Sect. 3, we introduce a decision-theoretic model that captures
both the vendor’s short-run decision of setting the warranty level while invest-
ment is fixed and the long-run decision in which investment can vary. Section 4
contains our main contribution: the derivation of four inferences the consumer
can make based on the cyber-warranty level. Section 5 illustrates how these infer-
ences depend on the information structure between the consumer and the ven-
dor. We discuss how applicable these inferences are with regards to real world
decisions in Sect. 6. Section 7 offers conclusions and some directions for future
work.

1 https://www.armor.com/cyber-warranty/.
2 https://www.sentinelone.com/press/sentinelone-establishes-1-million-cyber-threat-

protection-guarantee/.

https://www.armor.com/cyber-warranty/
https://www.sentinelone.com/press/sentinelone-establishes-1-million-cyber-threat-protection-guarantee/
https://www.sentinelone.com/press/sentinelone-establishes-1-million-cyber-threat-protection-guarantee/
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2 Background and Motivation

Cyber-warranties blur the line between risk mitigation and risk transfer. The
vendor is tasked with both setting the optimal investment in product devel-
opment and transferring the optimal amount of risk from the consumer in the
form of a warranty. However, there has not been an academic consideration of
cyber-warranties. Consequently, in this section we highlight how the literature
on information security investments and risk transfer is relevant to our model
(which we introduce in Sect. 3).

We focus on research into cyber insurance because it is concerned with a
similar phenomenon: a cyber-warranty is a promise of indemnification much like
an insurance contract. Cyber-warranties may lead to greater investment in the
development of security products in the same way that insurance provides incen-
tives for organisations to better manage information security [32]. For example,
an insurer considering whether to directly invest in software security [24] faces a
similar incentive structure to vendors offering cyber-warranties. Further, vendors
may purchase market insurance to cover the liability for cyber-warrenties, which
relates to research into cyber insurance for third party providers [21].

Böhme and Schwartz [10] introduce a framework to describe how different
cyber insurance models approach this problem. A common approach [14,19,26]
characterises the risk to the consumer by: a fixed loss li; insurance coverage
βi ∈ [0, 1] that indemnifies a fraction of the loss; and a defence function Di

representing the probability of suffering a loss. Our model broadly adopts this
framework to describe cyber-warranties, although it diverges on some specifics.
We opt for simplicity, rather than trying to incorporate considerations such as
secondary losses [5] made in other models.

The defence function Di links the probability of suffering a loss to the “secu-
rity investment si” [10]. In game-theoretic approaches, Di has been assumed
to have linear returns on investment in [14] and diminishing marginal returns
on investment in [26], while Johnson et al. [19] assume that the other players’
defensive investments influence Di [19]. The seminal decision-theoretic work of
Gordon and Loeb [16] introduces two probability breach functions analogous to
Di, which were corroborated using data on e-local governments in Japan [35].

Although representing the warranty level as a fraction of a set loss has prece-
dent in the insurance literature [10,14,19,26], doing so abstracts away from the
myriad challenges of transferring so-called cyber risks. Empirical work reveals a
more legalistic reality in which coverage is delimited into first and third party
losses, with losses related to reputation damage and intellectual property loss
not covered [29]. Policymakers have suggested that standardised policy wordings
may help consumers understand what exactly they are purchasing [37]. These
results from cyber insurance suggest there are significant real world problems in
defining what a warranty covers.

Risk transfer leads to principal–agent problems such as adverse selection and
moral hazard [4]. The first, adverse selection, occurs when riskier consumers
purchase insurance at a greater frequency in the knowledge they are more likely
to make a claim. Insurers attempt to better understand an applicant’s risk by
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collecting information about information security controls [29,36]. Based on this
decision, they may decide to refuse coverage or offer it at a higher price [13].
However, empirical work suggests that less than a third of cyber insurers price
risk according to information security factors [29]. Vendors might reflect on how
to prevent warranties being purchased by the riskiest consumers. The second,
moral hazard, occurs when an insured engages in risky behaviour in the knowl-
edge the insurer will cover the losses. Traditionally, insurers address this problem
by offering partial coverage so that the insured also suffers some financial conse-
quences resulting from losses [38]. Another method involves exclusions, whereby
insurers are no longer liable if certain procedures are not followed. For example,
Kesan et al. [20] identify that a “failure to take reasonable steps to maintain and
upgrade security” invalidates each of the policies in their study. Here we push
up against the problem of defining the warranty as detailed conditions regarding
risky behaviour increase contractual complexity.

Table 1. Descriptions of each parameter in the model.

Symbol Description

Vi The i-th vendor

Si The product offered by the i-th vendor

cfi The fixed costs incurred in offering product Si

zi The amount of investment into security during development of Si

Pi The price of Si

Ψi The proportion of realised losses the i-th vendor will indemnify

λ The set loss resulting from a successful attack

v0 The consumer’s vulnerability before employing a security product

S(v0, zi) The probability of successful attack given an investment of zi

Rc(Rv) The revenue of the consumer (vendor)

Having identified a common modelling approach to cyber insurance and some
of the associated real world principal–agent problems, we introduce our model
for cyber-warranties in the next section.

3 Model

The model considers a number of vendors V1, ..., Vn, with each Vi selling a single
security product Si. Each vendor sets the amount of development investment zi

that represents costs, including developer time, training costs, participation in
threat intelligence schemes and purchasing development tools.

We assume a Bertrand model of competition [6] in which a vendor can
chooses a price Pi and a warranty Ψi ∈ [0, 1]; how this choice interacts with
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market demand determines the quantity supplied. The Bertrand model is rele-
vant to software markets where quantity supplied can dynamically meet market
demand [34]—unlike, for example, car manufacturers who must forecast mar-
ket demand in order to begin a production process that may take months to
complete.

To model the random nature of cyber attacks, we consider a Bernoulli trial in
which the consumer faces a set loss λ with probability of occurrence pi when the
consumer purchases product Si and a probability of v0 if no purchase is made.
This realisation of losses is in line with the common approach to modelling other
forms of risk transfer [10,14,19,26]. As the set loss is fixed, the security products
mitigate the probability of successful attack without affecting the impact of the
attack. Consequently, our analysis will be less relevant to security products that
seek to reduce the impact of losses.

As identified in Sect. 2, there are many functions relating pi to the investment
zi in the security product Si. Gordon and Loeb’s seminal paper [16] established
three core assumptions that such a function should fulfill in the context of pro-
tecting an information set. These are listed below.

A1: S(zi, 0) = 0 for all zi ∈ R

A2: S(0, v0) = v0 for all v0 ∈ [0, 1]
A3: δS

δz (zi, v0) < 0 and δ2S
δz2 (zi, v0) > 0 for all v0 ∈ [0, 1] and zi ∈ R. Further-

more, for all v0 ∈ [0, 1] we have,

lim S(zi, v0) → 0 as zi → ∞

The third assumption ensures that further investment reduces the probability of
attack, but does so at a diminishing rate. Further, no finite investment results
in perfect security.

In [16], Gordon and Loeb propose two classes to which the security breach
probability function may belong. These will be used going forward and may be
expressed in the form

SI(zi, v0) =
v0

(αzi + 1)β
(1)

and
SII(zi, v0) = vαzi+1 (2)

These assumptions and the corresponding functions were introduced in the con-
text of protecting an information set. It can be argued that there is relevance to
enterprise security products, particularly when the products out-source the task
of protecting an information set.

The vendor incurs total cost cfi
+zi, where cfi

represents the costs unrelated
to security in offering the product, which we assume to be fixed. While zi is the
variable describing investment in security, which a vendor can may set. Each
vendor seeks to maximise their profit Πi by setting Pi, zi and Ψi:

Πi = Pi − S(zi, v0)(λ · Ψi) − (cfi
+ zi) (3)
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The consumer only has knowledge of the price Pi, warranty Ψi and set loss λ.
The investment zi is assumed to be unobservable due to information asymmetry.
The consumer chooses the security product Si that minimises

Rc = Pi + S(zi, v0) · λ(1 − Ψi) (4)

We assume that customers are homogeneous and all demand the same product,
leading to the kind of winner-takes-all market dynamics that have been observed
in many other software markets [2,34].

4 Analysis

We consider a market without security warranties (Ψi = 0) to illustrate the
market for lemons. Using Eq. 3, the vendor receives

Pi − (cfi
+ zi)

while the consumer’s expected security expenditure is

Pi + S(zi, v0) · λ

The vendor has no incentive to increase the development investment beyond
zi = 0 because the consumer cannot observe ex-ante the resulting decrease in
vulnerability. In a competitive market without warranties, the market equilib-
rium is Pi = cfi

with zi = 0. Clearly vendors still invest in product development
without offering warranties in spite of this result and we discuss why they might
do so in Sect. 6. The rest of this section identifies four inferences consumers can
make regarding security products, as well as the information they need to do so.

First, we consider a vendor Vi with a fixed investment of cfi
+ z′

i in the
product. Each vendor can offer the product at a price Pi with warranty Ψi.
Equation 3 shows that the vendor’s profit at the price Pi is as follows.

Πi(Pi) = Pi − S(z′
i, v0)(λ · Ψi) − (cfi

+ z′
i) (5)

In the short-run, the vendor may incur losses up to the value of the fixed costs
of operation (cfi

+ z′
i). This observation leads to the constraint

Πi(Pi) ≥ −(cfi
+ z′

i)

from which we derive Inference 1.

Inference 1. Vendor Vi can offer Si in the short-run with a warranty level of
Ψi ∈ [0, 1] at any price

Pi ≥ S(z′
i, v0)λ · Ψi

The left-hand side represents the expected value of the indemnification payment
to the consumer. It is reasonable to assume that no risk-neutral vendor would
offer the warranty unless they receive at least this value as an up-front payment.
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This provides an upper bound of Pi

Ψi
for the expected loss a consumer faces—

dividing by Ψi adjusts for the proportion of the loss that the vendor pays. The
inference can be made in the presence of information asymmetry regarding the
vendor’s security efficiency (α, β), the shape of the probability breach function
S(·, ·), or their security investment during development zi.

The consumer seeks to minimise Eq. 4 despite having incomplete information
about zi. The consumer can use Inference 1 to calculate a lower bound zmini

,
which represents the smallest investment value such that vendor i can break
even in offering offer a product with warranty Ψi at price Pi. This value may be
used to calculate the worst-case expected loss Rcmin

resulting from purchasing
the product Si:

Rcmin
(Si) = Pi + S(zmini

, v0) · λ(1 − Ψi) (6)

The consumer is assumed to be indifferent between purchasing the product Si

and the product Sj if
Rcmin

(Si) = Rcmin
(Sj) (7)

From this, we can construct a (worst-case) indifference curve for the consumer.
Calculating the (worst-case) indifference curve involves finding the smallest

zi such that
Π(Si) ≥ −(cfi

+ z′
i) (8)

Using Eq. 3 and the formulae for each class of probability breach function,
we derive Inference 2.

Inference 2. If the product Si has been offered at price Pi and the warranty
level is Ψi we have that

zmini
=

⎧
⎨

⎩

(
λΨ′v0

Pi
)
1
β −1

α if S(·, ·) is Class I
ln(Pi)−ln(Ψλv0)

αln(v0)
if S(·, ·) is Class II

It is worth noting that Inference 2 may provide an under-estimate of the prod-
uct investment. A profit-making vendor analysed as if the vendor was breaking
even would appear to have invested less than they did in actuality.

The long-run decision reduces to first selecting a warranty level and then
determining the optimal investment as setting the investment first would reduce
to the short-run analysis.

Suppose that the vendor unilaterally sets the warranty level at Ψ ′
i > 0. The

vendor will make the long-run investment z∗
i that optimises profit Πi(Pi) for all

values of Pi. The marginal net benefit of investment is given by

∂Πi

∂zi
= −δS

δz
(zi, v0)(λ · Ψ ′) − 1 (9)

Using the convention that investment is non-negative (0 ≤ zi), we can derive the
following.
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Inference 3. If the vendor has committed to the warranty level Ψ ′
i , the optimal

choice of product investment is

z∗
i =

⎧
⎪⎪⎨

⎪⎪⎩

(αβλΨ ′v0)
1

β+1 −1

α if S(·, ·) is Class I and αβλΨ ′v0 > 1
−ln(−αλΨ ′vln(v))

αln(v) if S(·, ·) is Class II and αλΨ ′vln(v) > −1

0 otherwise

Inference 3 allows the consumer to infer the exact level of investment providing
the warranty level was decided in the long-run and investment was optimised
for this decision. If the investment z∗

1 can be inferred, the consumer can expect
revenue Rc(Si) if they purchase Si, where

Rc(Si) = P1 + S(z∗
i , v0)(1 − Ψi)λ (10)

In a fully competitive market, we can expect that

Pi = S(z∗
i , v0)Ψ ′λ + cfi

+ z∗
i (11)

However, Inference 2 and 3 both rely on the consumer knowing the shape of the
probability breach function and the vendor’s security productivity.

In both the short-run and the long-run, the price Pi must increase to com-
pensate for any increase in the warranty Ψi at a rate equal to the risk-transfer
rate of substitution (RTRS) ∂Πi

∂Ψi
in order to keep profits constant.

Inference 4. The risk-transfer rate of substitution for the vendor Vi is equal to
the consumer’s expected loss when the security product Si is in place.

∂Πi

∂Ψi
= S(z′

i, v0)λ

The consumer can discover the expected loss if the risk-transfer rate of sub-
stitution is observed. This inference can be made with knowledge of only the
price and warranty level regardless of whether the warranty has been offered
in the short-run or the long-run. This inference might be considered the most
powerful as it can be made with information asymmetry regarding the vendor’s
technological constraints.

The price and warranty offered by each vendor will depend on the market
environment in both the short-run and the long-run. If the vendors have perfect
information about the competitors’ investments in product development, there
may exist one vendor who can extract a supplier surplus by setting (Pi, Ψi) such
that any competitor would suffer an economic loss in offering a competing prod-
uct. However, this will depend on the particular values of both investments zi,
existing vulnerability v0 and breach probability function S(zi, v0). The relative
risk aversion of the vendor and the consumer will determine the optimal pair
(Pi, Ψi).
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Fig. 1. The price at which the vendor would shut down if price fell any further, for
different investment levels z and a Class I probability breach function with: α = 0.9, β =
1, λ = 500, v0 = 0.5 and cf = 5.

5 Numerical Illustration

In this section we illustrate each of the inferences in turn.
Firms will only shut down in the short-run if price exceeds average cost.

Figure 1 shows how the minimum price is determined by the warranty level and
the investment. We define the shutdown-isoprofits to be the lines with a loss
equal to fixed costs; the curve for z = z′

j represents the possible pairs (Pj , Ψj)
for which the j-th vendor’s profit (Πj(Sj)) is equal to cfj

+z′
j . Although vendors

V1 and V5 have invested z1 = 1 and z5 = 40 respectively, both accept a minimum
price of 0 when no warranty is offered. The difference between the size of their
losses will be given by

Π5(0) − Π1(0) = (cf5 + z5) − (cf1 + z1) = −39

because V5 has larger fixed costs as a result of higher fixed investment z5.
Figure 2 illustrates the isoprofits when the firms break even. For a given

warranty level Ψ , the vendor with the isoprofit curve intersecting x = Ψ at the
lowest point can offer the most competitive product. This provides a graphical
illustration of the market for lemons as the product with investment z = 1 is most
competitive when no warranty is offered. The downside of over-investment can
be seen by considering that the vendor who invested z = 30 is more competitive
at every warranty level than the vendor who invested z = 40.

If the consumer had knowledge about the shape of the probability breach
function and the vendor’s security efficiency, Inference 2 can provide informa-
tion about the vendor’s minimum investment zmini

in the short-run. Figure 3
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Fig. 2. The price at which the vendor would shut down if price fell any further, for
different levels of security investment z and a Class I probability breach function with:
α = 0.9, β = 1, λ = 500, v0 = 0.5 and cf = 5.

Fig. 3. The minimum investment value zmini and worst-case loss Rcmin for a given
price Pi and warranty level Ψi, for a Class I probability breach function with: α =
0.9, β = 1, λ = 500, v0 = 0.9 and cf = 5.

highlights the points at which the strongest inference can be made; more infor-
mation is contained in a warranty as the price it is offered at decreases. Consider
a duopoly with vendors V1 and V2 who have made investments of z1 = 5 and
z2 = 10 respectively. If vendor V2 sets (P2, Ψ2) to be equal to any pair of Fig. 3
with zmin > 5, then V1 would sooner shut-down operation than offer the same
contract. Offering such a contract functions as a reliable signal of product quality
in this scenario.

For each contract (Pi, Ψi), Inference 2 may also be understood graphically as
the smallest value of zi for which the associated isoprofit curve intersects (Pi, Ψi)
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or falls beneath it. For zmini
to be the worst case, we have to assume that the

isoprofit corresponded to the points where the loss is equal to the fixed costs.
Inference 2 might lead to different conclusions if we used the isoprofit curves
corresponding to a different profit condition, such as breaking even as in Fig. 2.
If a functional form is difficult to obtain for a given profit condition, the graphical
interpretation of Inference 2 may be used instead.

Turning to long-run investments, Fig. 4 shows the price a vendor must charge
for a given warranty level in order to break even. We have circled the optimal
investment for each warranty level and can see that it is increasing in Ψi. Con-
sumers may use Inference 3 to discover the optimal investment level z∗ and use it
to calculate their expected loss. When investment costs are fixed, the consumer
can only infer a lower bound for investment whereas the consumer can now infer
the optimal investment level for a given warranty level.

Fig. 4. The choices of price and investment level that lead a vendor to make zero
profit, for different investment levels Ψ , for a Class I probability breach function with:
α = 0.9, β = 1, λ = 500, v0 = 0.9 and cf = 5.

Figure 5 describes the expected loss (Rc) for each customer if they purchase
a product with warranty Ψi assuming the optimal investment has occurred. As
the curve is always downward-sloping we must have

∂Rc

∂Ψi
< 0 for all Ψi ∈ [0, 1]

However, the customer’s expected loss falls at a diminishing rate so that

∂2Rc

∂Ψ2
i

> 0 for all Ψi ∈ [0, 1]



Cyber-Warranties as a Quality Signal for Information Security Products 33

These results, derived via Inference 3, suggest that greater risk transfer to the
agent deciding amount of security investment leads to a more efficient allocation
of resources. As such, consumers should push to increase the warranty level over
time, which can be seen in the decreasing expected loss for greater warranty
levels in Fig. 5. Inference 3 requires knowledge about the vendor’s technological
constraints, much like Inference 2.

Inference 4 states that the risk-transfer rate of substitution (RTRS) of the i-
th vendor is equal to the expected loss when employing the i-th security product.
The RTRS for a given vendor is equal to the slope of that vendor’s isocost curve
(in Figs. 2 and 1). The lowest investment has the steepest isoprofit curve and
hence the highest expected loss. Negotiating with the vendor might reveal the
RTRS if the vendor stated how much the price would have to rise for a given
increase in warranty level.

In summary, Inference 1 provides a lower-bound on expected losses and Infer-
ence 2 provides a lower bound on product investment. Both of these are valid
in the short-run. Inference 3 provides an exact value of the optimal investment
for a given warranty but it is only valid in the long-run. However, Inference 2
and Inference 3 require knowledge about the vendor’s technological constraints.
Inference 4 provides an exact value of the expected loss. It is valid in both the
long-run and the short-run, and requires no knowledge beyond the RTRS. The
next section discusses some of the real world limitations of these inferences.

Fig. 5. The choices of price and investment level that lead a vendor to make zero
profit, for different investment levels Ψ , for a Class I probability breach function with:
α = 0.9, β = 1, λ = 500, v0 = 0.9 and cf = 5.



34 D. W. Woods and A. C. Simpson

6 Discussion

The consumer can use inferences 1–4 to estimate the expected loss when imple-
menting the security product Si, which can be compared against the expected
loss without any security product or some other security product Sj . This allows
the consumer to estimate the expected benefit from the security product. More
knowledge about the vendor or the risk transfer rate of substitution may allow
the consumer to make stronger inferences and increase confidence in these esti-
mates. Unfortunately, these estimates will be weakened by many complicating
factors in the real world.

The warranty level will likely take the form of a contract that will not stipu-
late a proportion of risk the vendor will cover. The contract might instead define
a selection of events for which the warranty is valid. Estimating the propor-
tion of the expected loss that these events represent requires that risk managers
understand their organisation’s risk profile.

Although the model suggests that full risk transfer achieves the optimal solu-
tion for the consumer, it may not be possible in the real world. Cyber insurance
policies do not cover intangible losses such as reputation damage and intellectual
property loss precisely because it is difficult to quantify such losses. There is no
reason why vendors are better suited to offer warranties covering these risks.

A further complicating factor is that prices must reflect principal–agent prob-
lems such as adverse selection and moral hazard. These problems have presented
a major problem for cyber insurance, as we observed in Sect. 2. Solutions to these
problems, such as monitoring the consumer’s security practices to prevent moral
hazard or performing an in-depth assessment to prevent adverse selection, come
at a cost that may be reflected in the price. However, consumers may accept
a higher price because they need to invest less resources in evaluating product
quality; cyber warranties incentivise the vendor to invest in the product regard-
less of whether the consumer can observe these investments.

The risk-transfer rate of substitution is only equal to the expected loss if the
vendor is risk neutral. Otherwise the consumer would have to correct for the ven-
dor’s discomfort with holding greater liability associated with a higher warranty
level. Vendors should also be concerned by the possibility of a “cyber hurricane”
in which interdependent events trigger multiple indemnification claims [7,8].

Furthermore, the insolvency risk to vendors grows as they hold more liability.
The risk may be managed via self-insurance or market insurance to ensure that
vendors have funds available for indemnification. An equilibrium between the
cost of these risk management techniques and consumer demand will determine
the warranty level available to the consumer at a given price.

7 Conclusion and Future Work

Customers face information asymmetry when deciding which information secu-
rity product to purchase. Cyber-warranties can overcome this information asym-
metry by creating a separating equilibrium in which the vendor reveals the level
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of product investment to the consumer. Vendors selling information security
products face lower costs in offering cyber-warranties if they invest in develop-
ing more effective products.

Our model identifies four inferences that customers can make about a poten-
tial information security purchase based on the warranty offered. In general,
more information is gained when there is more prior knowledge about the vendor.
However, these inferences are likely to be weaker in the real world. Consumers
must adjust for factors including the extent of the vendor’s risk aversion, costs
incurred to mitigate principal–agent problems, and risk-loading to deal with the
variability of (potentially correlated) losses.

Future work could explore how the balance of risk aversion between vendors
and consumers affects the supply and demand for cyber-warranties. Another
factor to consider is the vendor’s costs in terms of mitigating (via self insurance
or market insurance) the insolvency risk when increasing the warranty level.
Identifying an empirical basis for the parameter choices may increase relevance
for practitioners. Further, future work could reflect some active research topics
in information security investments including:

– the benefits from adaptive security in which a defender makes defensive invest-
ments in response to observed losses [9];

– the role of investments in recovery as opposed to just mitigation, particularly
in light of recent developments in cyber crime [23];

– the interaction with the vulnerability disclosure process, particularly the role
of government policy [11];

– the relevance of the stage in the development process at which investments
are made [17]; and

– approaches applying game theory to consider strategic interactions between
vendors and consumers [25] (for example, vendors and consumers might dis-
honestly avoid indemnification or fraudulently claim indemnification respec-
tively).
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Abstract. In this paper, we propose a game-theoretic model of security
for quantum key distribution (QKD) protocols. QKD protocols allow
two parties to agree on a shared secret key, secure against an adversary
bounded only by the laws of physics (as opposed to classical key distribu-
tion protocols which, by necessity, require computational assumptions to
be placed on the power of an adversary). We investigate a novel frame-
work of security using game theory where all participants (including the
adversary) are rational. We will show that, in this framework, certain
impossibility results for QKD in the standard adversarial model of secu-
rity still remain true here. However, we will also show that improved
key-rate efficiency is possible in our game-theoretic security model.

Keywords: Quantum cryptography · Game theory · Security

1 Introduction

Quantum key distribution (QKD) protocols allow for the establishment of a
shared secret key between two parties, referred to as Alice (A) and Bob (B),
which is secure against an all-powerful adversary, customarily referred to as Eve
(E). Such a task is impossible to achieve when using only classical communica-
tion; indeed, when parties have access only to classical resources, key-distribution
is only secure if certain computational assumptions are made on the power of the
adversary. With QKD protocols, however, the only required assumption is that
the adversary is bounded by the laws of physics. Furthermore, QKD is a practi-
cal technology today with several experimental and commercial demonstrations.
For a general survey of QKD protocols, the reader is referred to [1].

In general, most QKD protocols are designed, and their security proven,
within a standard adversarial model of security. In this case, parties A and B run
the protocol with the goal of establishing a shared secret key. An all-powerful
adversary sits in the middle of the channel, intercepting, and probing, each
quantum bit (or qubit) sent from A to B. As is standard in this usual model of
c© Springer Nature Switzerland AG 2018
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cryptography, it is assumed that E is simply malicious and has no motivation
to attack, nor does E “care” about the cost of attacking.

In this paper, we investigate the use of game theory to study the security of
QKD protocols. While we are not the first to propose a game theoretic analysis
of cryptographic protocols (quantum or otherwise - see the “Related Work”
section below for a summary), we propose a more general-purpose model which
can be applied to arbitrary QKD protocols. Compared with prior work, our
new approach is more general and, most importantly, allows for meaningful key-
rate and noise tolerance computations to be performed which are vital when
considering QKD security and comparing benefits of distinct protocols.

Beyond introducing our model, we also apply it to analyze certain important
QKD protocols against both all-powerful, quantum, attacks and also more prac-
tical attacks based on current-day technology. For each, we compute the critical
noise tolerance values and compare with the standard adversarial model. We also
discuss the efficiency of the resulting protocols in our model. Such computations
were not possible in prior work, applying game theory to QKD thus showing the
significance of our new methods. We stress that this work’s prime contribution
is to develop a general framework for the modeling of QKD security, and various
important computations involving these protocols (namely, key-rate computa-
tions and noise tolerances), through the use of game theory. We expect this
work to be the foundation of future significant developments both in the fields
of quantum key distribution, and also in game theory. Furthermore, our rational
model of security may lead to more efficient secure communication systems as
we discuss in the text.

1.1 Related Work

Game theory has seen great success when applied to classical cryptography (see
[2] for a general survey). It has also raised a lot of interest recently in the study
of Cyber-Physical System (CPS) security problems and network security [3–6].

Only recently have there been attempts and interest in applying game theory
to quantum cryptography. Outside of key-distribution (our subject of interest in
this paper), game theory has been used for secret sharing [7], rational state
sharing [8], bit commitment [9], certain function computations [10], and secure
direct communication [11].

The prior work discussed above all involve cryptographic primitives very
different from QKD. However, some attempt has been made recently to apply
game theory to QKD. In [12] a cooperative game was used to establish a quantum
network consisting of point-wise QKD links which could relay information from
one node to the other. However, QKD was only used as a tool in their work,
the primary motivation for using game-theory was for the nodes to construct an
optimal network topology in a vehicular network.

Closest to our work are [13,14]. In [13], game theory was used to analyze the
BB84 QKD protocol. Their model, however, only considered strategies affecting
certain choices within the protocol. In their work, a three-party game was con-
structed (consisting of A, B, and the adversary E). The strategy space of each
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participant was to chose a basis (either Z or X) to send and receive quantum
bits in (we will discuss quantum measurement in the next section). The goal of
the parties A and B was to detect E while the goal of E was to avoid detection.
There was no goal of establishing an actual secret key at the end of maximal
length; furthermore, E did not have a goal of learning information on the key.
Both of these goals will be incorporated in our more general model.

In the recently published work of [14], the model proposed in [13] was
extended and applied to the so-called Ping-Pong protocol [15] and also the LM05
protocol [16]. Their work considered certain attacks E may perform against the
system which were previously proposed in the literature against the ping-pong
protocol. The strategy space for A and B (now considered one party in their
work) consisted of choosing to run the protocol, or a variant of it (there was no
choice to simply “abort” which is an important choice in QKD security [1]). The
goal of E was to maximize her information on the final raw-key while avoiding
detection; the goal of the party “AB” was to maximize their mutual informa-
tion. Our model will also consider these two as goals; however we will not be
concerned about probability of detection (which, in typical applications, is not
a concern as there is always natural noise in the channel anyway). However,
we will go beyond this by also setting a goal to maximize the efficiency of the
protocol. Furthermore, the model we introduce in this work allows for critical
key-rate and noise tolerance computations, not possible in prior work.

1.2 Notation and Definitions

We use H(X) to denote the Shannon entropy of random variable X. In particu-
lar, if P (X = x) = px, then H(X) = −∑

x px log px, where all logarithms in this
paper are base two unless otherwise stated. By h(x) we mean the binary entropy
function defined h(x) = −x log x−(1−x) log(1−x). Given two random variables
X and Y , then H(XY ) is the joint Shannon entropy of random variables X and
Y defined in the usual way. H(X|Y ) denotes the conditional entropy defined
H(X|Y ) = H(XY ) − H(Y ). By I(X : Y ) we mean the mutual information
between X and Y , defined to be I(X : Y ) = H(X) + H(Y ) − H(XY ).

We assume a familiarity with game theory, and include the following defini-
tions only for completeness. Given a tuple q = (q1, · · · , qn) we write q−i to mean
the n−1 tuple consisting of all qj for j �= i; i.e., q−i = (q1, · · · , qi−1, qi+1, · · · , qn).

Definition 1. An n-player normal (strategic) form game G is an n-tuple
{(S1, u1), . . . , (Sn, un)}, where for each i,

– Si is a nonempty set, called i’s strategy space, and
– ui:S → R is called i’s utility function, where S = S1 × · · · × Sn.

Definition 2. Dominant Strategy (DS). A strategy s′
i (weakly) dominates s′′

i , if
∀s−i ∈ S−i, ui(s′

i, s−i) ≥ ui(s′′
i , s−i), and ∃s′

−i ∈ S−i, ui(s′
i, s

′
−i) > ui(s′′

i , s′
−i).

Definition 3. Strict Nash Equilibrium (NE). s∗ ∈ S is a strict Nash equilibrium
of G = {(S1, u1), . . . , (Sn, un)} if for all i and for all si ∈ Si, ui(s∗

i , s
∗
−i) >

ui(si, s
∗
−i).
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2 Quantum Communication and Cryptography

For completeness, we review some basic concepts in quantum key distribution
and quantum communication. Due to length constraints, this section is neces-
sarily short; however, the interested reader is referred to [17].

A quantum bit or qubit is modeled, mathematically, as a normalized vector in
C

2. More generally, an arbitrary n-dimensional quantum state may be modeled
as a normalized vector in C

n. Quantum states are typically denoted as “kets”
of the form |ψ〉 where the ψ can be replaced with any arbitrary label. The inner
product of two kets |ψ〉 and |φ〉 is denoted 〈ψ|φ〉.

The measurement postulate of quantum mechanics gives rules for how quan-
tum states may be observed. We are interested only with projective measure-
ments in this work. Let B = {|v1〉 , · · · , |vn〉} be an orthonormal basis of C

n.
Then, given a quantum state |ψ〉 ∈ C

n, after measurement in basis B, one
observes basis state |vi〉 with probability | 〈vi|ψ〉 |2. Note, therefore, that mea-
surements are probabilistic processes and the outcome and distribution depends
on the basis one performs a measurement in. For qubits, two common bases
are the Z basis, denoted {|0〉 , |1〉} and the X basis, denoted {|+〉 , |−〉} where
|±〉 = 1√

2
(|0〉 + |1〉). Note that, once observed, the original quantum state is

destroyed and “collapses” to the observed basis state. In theory, one may per-
form a measurement in any basis. Note, also, that the No Cloning Theorem
prevents the exact duplication of an unknown quantum state. Thus, when used
as communication resources, an adversary is forced to attack immediately (she
cannot copy the qubits to attack later); furthermore, if she attempts to extract
information from the qubits via a measurement, this may cause disturbances
that may be detected by honest users later. (Measurements are not the only
way E can attack a qubit - however, for understanding our work in this paper,
measurements are sufficient.)

2.1 Quantum Key Distribution

Quantum key distribution takes advantage of certain properties unique to quan-
tum mechanics to allow for the establishment of a shared secret key between A
and B, secure against an all powerful adversary E, a task impossible to achieve
with classical communication only. There are many different QKD protocols at
this point, with the first being discovered in 1984 now known as the BB84 pro-
tocol [18]. Another important protocol, discovered in 1992, is the B92 protocol
[19]. The basic operation of these protocols is shown in Protocols 1 and 2. It is
important to note that, in addition to a quantum channel, allowing for the trans-
mission of qubits from A to B, there is also an authenticated classical channel
connecting the two users. This channel is not secret, however, so any message
sent from A to B can be read by the attacker (though, the attacker cannot write
on this channel). Authentication may be done in an information theoretic man-
ner assuming the existence of an initial (small) secret key. Thus, QKD protocols
are sometimes referred to as quantum key expansion protocols as, technically,
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they require an initial shared secret key which they will then expand through
the use of quantum communication.

In general, QKD protocols consist of a quantum communication stage fol-
lowed by a classical reconciliation stage. The first stage utilizes, through multiple
iterations the quantum and authenticated channels to produce a raw key - a
string of classical bits that is partially correlated and partially secret. If the
error rate is “low enough” (which depends on the protocol and security model),
the second stage is employed which consists of an error-correcting protocol (done
over the authenticated channel, thus leaking information to E “for free”) and a
privacy amplification protocol, yielding a secret key. The size of the secret key
is directly correlated with the noise in the quantum channel and the amount of
information an adversary potentially has on the raw-key. The more information
the adversary has and the more noise, the smaller the secret key will be. In the
standard adversarial model of security, the noise is assumed to be the product of
the adversary’s attack and the two are directly correlated; in fact, one important
aspect of QKD research is to determine a protocols maximally tolerated noise
level, that is the value of noise for which QKD is possible against a malicious
adversary.

For more details on all these concepts, the reader is referred to [1].

Protocol 1. BB84 [18]
Public Knowledge: A key-bit “0” is encoded as a qubit |0〉 or |+〉 while a key-bit of
“1” is encoded as |1〉 or |−〉.
Quantum Communication Stage (Repeat for N iterations):
1. A chooses a random key bit kA ∈ {0, 1} and a random basis bA ∈ {Z, X}. She sends
the encoding of kA as a qubit using her randomly chosen basis.
2. B chooses a random basis bB ∈ {Z, X} and measures in that basis.
3. A and B share, over the authenticated channel, their choice bA and bB respectively.
Parties only keep those iterations where bA = bB . All other results are discarded
(approximately half should remain).

Protocol 2. B92 [19]
Public Knowledge: A key-bit “0” is encoded as a qubit |0〉 while a key-bit of “1” is
encoded as a qubit |+〉.
Quantum Communication Stage (Repeat for N iterations):
1. A chooses a random key bit kA ∈ {0, 1} and prepares an appropriate qubit for B.
2. B chooses a random basis bB ∈ {Z, X} and measures in that basis. If bB = Z and
he observes |1〉, the B sets kB = 1. If bB = X and he observes |−〉, then B sets kB = 0.
All other results are considered “inconclusive.”
3. B informs A, over the authenticated channel, which iterations he considered “incon-
clusive.” All inconclusive iterations are discarded. It is expected that one-quarter of
the iterations will remain.
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3 Game Theoretic Model

We now introduce our game theoretic security model for QKD. While in practice,
A and B are two separate entities, in our game theoretic model, we will consider
them as one party which we denote by AB. We therefore consider a two-party
game consisting of player AB and player E. The goal of party AB is to establish
a long, secret key shared between each other. The goal of E is to limit the length
of the final secret key. Since it is trivial for E to cause a denial-of-service attack
in a point-to-point communication protocol (of which QKD is one), we limit
E’s strategy space to consisting of attacks which induce less noise than some
maximal value Q which AB advertise as tolerating. This parameter Q can also
represent certain “natural” noise in the quantum channel - AB will abort if the
noise exceeds this value, thus if E attacks, she must “hide” in the natural noise.
Noise for us is defined to be the average probability of a |i〉 flipping to a |1 − i〉
and a |±〉 flipping to a |∓〉. One key interest to us will be for what values of
Q, QKD is possible in our game theoretic model and compare this with the
standard adversarial model.

Beyond these goals, there are costs for using certain quantum (and potentially
also classical) resources. For AB sending and receiving qubits can be a costly
activity. Thus, though AB wish to establish a key, if doing so is “too expen-
sive” they may wish to simply “abort” and do nothing. On the other hand, to
gain information is E’s goal (as this limits the size of the secret key), however
attacking the quantum channel is a costly activity and extracting maximal infor-
mation may require expensive quantum memory systems. Thus, it is the goal
of our framework to construct a protocol (game strategy) where it is in AB’s
interest to run the protocol (and not abort), while it is in E’s interest not to
perform a complicated attack against it. Passive attacks (as opposed to more
powerful quantum attacks) can greatly increase the efficiency of the protocol as
we will see. Thus, if users employ the rational model of security for QKD, more
efficient quantum communication may be possible.

One may consider applying our model to classical key-distribution (for
instance, by using a hard problem that takes a large amount of classical resources
to break); however this problem scenario, and the rewards for attacking, are very
different from the quantum case. In a QKD protocol, the generated key is infor-
mation theoretically secure, thus, for example, any message encrypted using
the produced key is perfectly secret for all time. However, if a classical key-
distribution system is used, an adversary may copy all communication sent by
the protocol and attack offline; eventually if the system is broken, that adversary
can learn all messages encrypted with that key. This is a very powerful motivat-
ing factor for an adversary. Contrast this with QKD: first, the adversary cannot
attack offline and must attack actively. Furthermore, the adversary cannot learn
the produced secret key nor any message encrypted with it.

We formulate our game-theoretic security model as follows. Let ΣAB be a set
of strategies (i.e., protocols) which party AB may choose to run and let ΣE be
the set of strategies (i.e., attacks) which party E may choose to employ against



44 W. O. Krawec and F. Miao

AB. We always assume the “do nothing” strategy (denoted IAB for AB and IE

for E) is an option for either party. (We use I for “identity operation.”)
Now, in reality, player AB actually consists of two separate entities, thus it is

important to ensure that our game-theoretic model can actually be employed in
practice. In particular, we must ensure that A and B can agree on a strategy in
a way that makes sense. There are many ways to achieve this; one in particular
is they can sacrifice some of their initial shared secret key to send a constant-
length message encrypted with one-time-pad (this message is the protocol to
use). As mentioned earlier (see Sect. 2.1), for the authentication channel to work,
A and B must begin with some shared random key already. They may use a
constant amount c = log2 |ΣAB | to send, with perfect secrecy, the choice of
protocol. So long as c is not a function of the number of iterations used in the
quantum channel (which it is not), there is no contradiction to the key-expansion
properties of QKD. Note that one cannot use this shared initial key to send
securely a longer classical key - it can only be used for a small, constant, amount
of initial communication such as picking from a small subset of strategies.

There are other ways for A and B to agree on a strategy, however, we may
safely assume that party AB, though two distinct entities separated physically,
may, at the start, agree on a single protocol to use from the set of allowed
strategies ΣAB . Note that a mixed strategy may also be agreed on by having A
choose a random protocol and sending the choice, securely, to B.

Let Q ∈ [0, .5] be the maximal noise level in the channel which is publicly
known to both players before the game begins (alternatively, Q may be a value
set by AB that is the “maximal tolerated” noise allowed in the channel, either
naturally or artificially). Thus, even if E chooses not to attack (i.e., she chooses
strategy IE), she will still learn something about the raw key without incur-
ring any costs (due to the information leaked by error correction). However, if
she wishes to learn more (causing the secret key length to drop further) she
must choose to attack the channel. We will assume that this attacker, if she
chooses to attack, is able to replace the noisy quantum channel with an ideal
one and then hide the noise her attack inevitably creates within this natural
noise parameter Q. Such an operation (attacking, and setting up her equipment
to hide within the natural noise) will be potentially expensive, though she will
gain more information on the raw key thereby decreasing the efficiency of AB,
her goal.

After running their respective protocol Π ∈ ΣAB (which includes running
a quantum communication stage for N iterations, followed by error correction
and privacy amplification), with E attacking using attack A ∈ ΣE , each party is
given a utility for the outcome of the game. The outcome of the game for party
AB is a function of the resulting secret key length (i.e., after error correction and
privacy amplification), denoted M along with the cost of running the chosen
strategy (denoted, CAB(Π)). For our analysis, we will assume the utility is a
simple linear function of the form:

uAB(M,CA(Π)) = wAB
g M − wAB

c CAB(Π).
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where wAB
g and wAB

c are non-negative weights for the “gain” and “cost” respec-
tively of AB’s utility. We will assume that these weights are simply 1.

For E, her utility is a function of the information she learned on the error-
corrected raw key (before privacy amplification but after error correction) and
the cost of running her chosen attack. Let K be the information E learns on the
raw-key and CE(A) the cost of attack A ∈ ΣE . Then, her utility will be:

uE(K,CE(A)) = wE
g K − wE

c CE(A).

where wE
g and wE

c are non-negative weights for the “gain” and “cost” of E’s
utility. As with uAB , we will assume that these weights are simply 1.

The reader may wonder what E’s rational motivation would be for learning
information about the raw-key (before privacy amplification) when it is the secret
key (after privacy amplification) that is actually used by A and B later to, for
example, encrypt messages. First, note that if we define the model to be E
gains utility for learning information on the secret key, by the very definition
of privacy amplification, her gain would be negligible (and, in the asymptotic
scenario, we may even say it would be zero); thus this could never motivate
her. On the other hand, we could not give her utility for causing A and B to
simply abort due to high noise levels above Q as this is a form of denial of
service attack which would cost E little to nothing to execute (E can simply cut
the quantum channel!) and is a weakness for any point-to-point communication
system, especially QKD. Thus, since gaining information on the secret key is not
possible, and since a denial of service attack is outside the scope of the model,
E’s goal is to minimize the key-rate of the protocol (i.e., minimize its efficiency).
Since the more information E has on the raw-key the smaller the secret key will
be (after privacy amplification), it is E’s goal to increase her information (thus
shrinking the size of the final secret key) while minimizing her cost and staying
below the natural noise level of Q.

We will use UAB(Π,A) to denote the expected utility given to player AB
if that player chooses strategy Π ∈ ΣAB and if E chooses strategy A ∈ ΣE .
UE(Π,A) is defined similarly for E.

The goal in our game-theoretic model of QKD security is to construct a
protocol (strategy) “Π” such that the joint strategy (Π, IE) is a strict Nash
equilibrium (NE). In particular AB are motivated to actually run the protocol
while E is motivated to not launch a complicated quantum attack against it. If
such a protocol exists, then, under the assumption of a rational adversary, that
adversary will choose not to implement a powerful quantum attack as it will be
too expensive. This security model guarantees that if AB and E are rational,
then, assuming the protocol is a strict NE, the resulting key is information
theoretically secure. In the standard adversarial model the key is also information
theoretically secure, however the effective key-rate will be lower after privacy
amplification as one must “remove” E’s additional information from her quantum
attack. Thus, by assuming rational adversaries, one still maintains information
theoretic security, but with greater communication efficiency.
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In this work, we will consider standard QKD protocols (such as BB84 [18])
and add to these protocols additional “decoy” iterations. These decoy iterations
will be, during the operation of the protocol, completely indistinguishable from
standard iterations. At the end of the game (protocol run), AB will announce
which iterations were “real” and which were decoys. Decoy iterations, which are
useless to both parties, cost AB resources as they must still prepare and measure
qubits (if they do not send qubits, this is distinguishable to E and she will know
it is a decoy). However, since E cannot tell which are the decoy iterations, she is
forced to attack them all the same, thus costing her resources also. If E’s attack
is very expensive (e.g., requires an expensive quantum memory to operate), then
the more decoy iterations there are, the less incentive she will have to attack at
all. Of course, the more decoy iterations there are, the less incentive AB will
have to run the protocol as it will become too expensive for too little reward.

To incorporate this decoy method, we will introduce a parameter α ∈ [0, 1]
which may be set by AB. On any iteration of a protocol, during the quantum
communication stage, AB (in practice, just party A) will decide whether this
iteration is a real iteration (with probability α) or a decoy iteration (with proba-
bility 1−α), however they run the iteration normally regardless so that E cannot
distinguish the two cases. At the conclusion of the protocol, all decoy iterations
are discarded (to achieve this in practice, A will transmit, at the conclusion of
the protocol, through the authenticated classical channel, which iterations were
decoys - thus E also learns this at the end of the game, but at that point, she
already used resources to attack ; furthermore, properties such as the No-Cloning
Theorem, prevent her from making copies of qubits and later changing her attack
based on this new knowledge). A protocol strategy, therefore, will be denoted
Π(α). Ultimately, the goal within this game-theoretic model is to find a value
for α such that the joint strategy (Π(α), IE) is a strict NE. Furthermore, we
wish to determine what values of Q allow for an α to exist and to determine the
efficiency of the resulting protocol.

3.1 All-Powerful Attacks Against BB84

In this section, we apply our framework to model security of the BB84 protocol
allowing E the ability to launch all-powerful attacks (e.g., attacks requiring
quantum memories). We will prove that the noise tolerance of the BB84 protocol
in our game theoretic framework remains 11%, the same as in the standard
adversarial model [20]. However, we will show that, for noise levels less than 11%,
the efficiency of the protocol can be substantially higher in our game theoretic
model than in the standard adversarial model.

We will consider the BB84 protocol parameterized by α, denoted here as
Π

(α)
BB84. We will consider what is required for (Π(α)

BB84, IE) to be a strict Nash
equilibrium. First, consider AB’s utility for this strategy; we assume N is the
number of iterations they run the protocol for. In this case, since E is not
attacking, after error correction and privacy amplification, the secret key will be
of expected length Nα

2 (1 − h(Q)) (recall, in BB84, only half the iterations are
expected to be kept - see Protocol 1). Thus:
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UAB(Π(α)
BB84, IE) =

N

2
α(1 − h(Q)) − CAB , (1)

were we use CAB to mean CAB(Π(α)
BB84) (a value that AB must decide on, though

its actual numerical value will not be important to us in this section). On the
other hand, we have UAB(IAB , IE) = 0. Thus, for a strict NE to exist, we require:

α >
2CAB

N(1 − h(Q))
.

Naturally, this requires 1 − h(Q) > 2
N CAB . Thus, if this expression cannot be

satisfied, then the natural noise in the quantum channel (denoted Q) is too great
and AB cannot justify the cost of running the protocol. In the following analysis,
we will assume this inequality is satisfied.

Let us now consider E’s expected utility. If E does not attack (i.e., she
chooses to play strategy IE), then, since we are also considering “natural noise”
in the channel at a rate of Q, party E will gain Nα

2 h(Q) bits of information
on AB’s raw key “for free” simply by listening in to the authenticated classical
channel (we are assuming optimal error-correcting). Thus her expected utility
is: UE(Π(α)

BB84, IE) = αN
2 h(Q).

Now, assume that E chooses an optimal quantum attack strategy A ∈ ΣE .
From this, she will gain more information on the raw key (thus shrinking the
final secret key size, her ultimate goal), though it also will cost something to
implement. Furthermore, she will waste resources on attacking decoy states. It
is known that I(A : E) = αN

2 h(Q) when E performs an optimal attack [1].
Thus, her utility (based on I(A : E) and also the information learned from error
correction) is:

UE(Π(α)
BB84,A) = I(A : E) + α

N

2
h(Q) − CE(A) = αNh(Q) − CE(A)

Thus, to be a strict NE, we require UE(Π(α)
BB84, IE) > UE(Π(α)

BB84,A). For this
inequality to hold it must be that: α < 2CE(A)

Nh(Q) . Thus, for the strategy (Π(α)
BB84, I)

to be a strict NE, we require an α to exist that satisfies the following inequalities:

2CA

N(1 − h(Q))
< α <

2CE(A)
Nh(Q)

. (2)

If such an α exists, and if AB choose that for their decoy state probability,
they can be assured, in our rational model of security, that E will prefer to not
attack the quantum channel but instead, simply eavesdrop on the authenticated
channel. Furthermore, with such an α, rational AB are also motivated to run
the protocol, as opposed to simply aborting.

To determine suitable values for α we require values for CAB and CE(A).
Let’s assume a worst-case scenario in that CAB = CE(A). Note that, to imple-
ment A in practice, E must somehow cut into the quantum channel, replace
the natural noise with a more precise channel, setup attack equipment, and, in
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this scenario where I(A : E) = h(Q), construct and operate a perfect quantum
memory. In reality, it seems reasonable to expect that CE(A) > CAB . Thus,
making these equal models a “worst-case” scenario of benefit to E.

Now, by assumption, we have 2
N CAB < 1 − h(Q) (i.e., the cost per-bit for

AB is less than (1 − h(Q))/2; if this assumption is not made, then AB have no
motivation to run the protocol). Thus, the left-hand-side of Eq. 2 is strictly less
than 1 and, so, a solution for α exists only if the following inequality is satisfied:

CA

1 − h(Q)
<

CE(A)
h(Q)

.

Since we are assuming in this section that CAB = CE(A), then (Π(α)
BB84, IE) is a

strict NE only if the noise in the channel Q satisfies the following inequality:

1 − 2h(Q) > 0. (3)

This is exactly the same noise tolerance bound as is derived in the standard
adversarial model for BB84 as reported in [1,20,21]! In particular, a solution for
α exists only if Q ≤ 11%.

However, despite the noise tolerance threshold being the same in our new
game-theoretic model and the standard adversarial model, our game theoretic
model may be used to gain a significantly improved key-rate as we now demon-
strate. Assume that Q ≤ 11% (and so 1 − 2h(Q) > 0 and thus an α exists). Let
α be the largest allowed by Eq. 2 (the higher α is, the better for AB as the more
“real” iterations are being used on average). We may thus set:

α = min
(

2cE(A)
Nh(Q)

− ε, 1 − ε

)

,

for some small ε > 0. Since we are assuming CE(A) = CAB and we also require
2
N CA < 1 − h(Q), we may write CE = γ

2 · N(1 − h(Q)) for some constant γ < 1
and thus we have:

α = min
(

γ
1 − h(Q)

h(Q)
− ε, 1 − ε

)

. (4)

With α chosen as this, it is in E’s interest to not attack, but to instead
only gain the free information from the error-correction due to the natural noise
level Q. In this case, the Csiszar-Korner bound [22] applies (as E no longer has
a quantum system, but a classical one) which gives us a secret key size, after
privacy amplification and error correction, of:

	GT (N) = α
N

2
(1 − h(Q)) =

N

2
min

(

γ · (1 − h(Q))2

h(Q)
, (1 − ε)(1 − h(Q))

)

. (5)

On the other hand, in the standard adversarial model for a noise level of Q, the
secret key size would be: 	SAM (N) = N

2 (1 − 2h(Q)). Discounting the ε term
(which may be made arbitrarily close to 0), we plot the conditional key-rate of
the BB84 protocol in both our new game theoretic model and the standard adver-
sarial model (i.e., we plot 2	GT (N)/N and 2	SAM (N)/N respectively) in Fig. 1.
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Note that, even though the noise tolerance is the same in both security mod-
els, our game-theoretic security model may provide a much higher key-rate (i.e.,
efficiency) depending on the cost CAB (i.e., γ). Thus, by using a game-theoretic
model of security, more efficient quantum secure communication systems may be
employed!

Fig. 1. Showing the key-rate of the BB84 protocol in the Standard Adversarial Model
(SAM) compared with our game-theoretic model at high noise levels (x axis) for various
values of γ. Higher means more efficient communication.

3.2 Intercept/Resend Attacks

In the previous section, we considered ΣAB = {IAB ,Π
(α)
BB84} while E’s strat-

egy space was ΣE = {IE ,A} where A was an optimal attack against the BB84
protocol utilizing a quantum memory system. We also assumed that the cost of
performing attack A was similar to the cost of AB running the actual protocol
(a very strong assumption in favor of the adversary). In practice, such an attack
would be very difficult to launch against the protocol (and, with current tech-
nology, impossible as it would require a perfect quantum memory to perform
successfully). In this section, we consider practical, so-called Intercept-Resend
(IR) attacks. These attacks can be performed using today’s technology; they
also require hardware similar to that used by A and B, allowing us to more
accurately compute the cost of an attack compared with the cost of running the
actual protocol.

For this attack, on each iteration of the quantum communication stage, E
will, with probability p, choose to attack and with probability 1 − p choose to
ignore the incoming qubit. This value p will control how much noise E’s IR attack
actually creates (which, as before, must be kept below the natural noise level Q).
This choice to attack or not is part of the strategy and is made independently
for each iteration of the quantum communication stage. This is also different
from the IE strategy which chooses to not attack every iteration.

Should E decide to attack a particular iteration (with probability p), she will
first measure the incoming qubit in a basis {|ν0〉 , |ν1〉} (this is fixed for each
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iteration and part of the strategy) causing the qubit to collapse to one of the
basis states |ν0〉 or |ν1〉. If E observes |νi〉, she will “guess” that the key-bit for
this iteration is i ∈ {0, 1}. She will then send a fresh qubit in the state |νi〉 to B.

There are two important parameters for an IR attack; first the value p and,
second, the basis choice. We consider three common bases choices for IR attacks:
Z = {|0〉 , |1〉}, X = {|+〉 , |−〉} (see Sect. 2, and the Breidbart basis B =
{|φ0〉 , |φ1〉}, where: |φ0〉 = cos π

8 |0〉 + sin π
8 |1〉 and |φ1〉 = sin π

8 |0〉 − cos π
8 |1〉.

The value of p will be fixed to be the maximum value so that the induced
noise is equal to Q. This makes sense, since the larger the value of p, the more
information E may learn (since she is attacking more often), and since we cannot
have p so large that the induced noise is higher than Q, the allowed maximum.
Thus, once Q is given, the set ΣE will consist of four distinct strategies: IE (the
“do nothing” attack); along with three strategies, one for each basis choice (we
denote these attack strategies simply as Z,X, and B).

As for AB, we will consider three possible strategies: IAB (i.e., “do nothing”);
Π

(α)
BB84 the BB84 protocol as analyzed previously (see Protocol 1); and Π

(α)
B92, the

B92 protocol [19] (see Protocol 2). Both BB84 and B92 are common protocols
used in practical implementations of QKD [1]; B92 has the advantage that it
requires less quantum resources to implement (and, so, is cheaper). However, at
least in the standard adversarial model, B92 has a lower noise tolerance [20]. In
this section, we will show that, so long as Q satisfies certain bounds, the joint
strategy (Π(α)

BB84, IE) is a strict NE (for suitably chosen α); we will also show
that Π

(α)
BB84 is a dominate strategy for player AB and IE is a DS for E for certain

critical values of noise levels Q.
We begin by computing the utility of each possible action pair (Π(α),A).

First, we must compute the cost associated to each strategy. To do so, we will
define the following cost values for certain, basic, functionalities needed to imple-
ment the QKD protocol, and the IR attack:

CS : The initial cost forE to setup her attack equipment
(e.g., splicing into the quantum channel)

CM : The cost to perform a measurement in a single basis
CP : The cost to prepare a qubit basis state

CR(δ) : The cost to produce a δ -biased bit
We assume that CR(δ) = h(δ)CR for some cost CR

Cauth : The cost for AB to use the authenticated channel

We will assume that, if one requires an apparatus that is capable of producing
a qubit in x different states, the cost is γxCP for some function γx. Similarly,
for an apparatus capable of measuring a qubit in x different states, the cost is
γxCM . Our analysis below will be suitable for any non-decreasing γx; however
when we evaluate our results, we will consider two cases: first γx = 1 for all
x (i.e., there is no increase in cost) and, second, γx = x (the cost increases
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linearly in the number of required states). Note that we will assume CP ≤ CM

which is a reasonable assumption since measurement devices are generally more
complicated (and sensitive) than preparation devices [1]. These cost values may
take into account such practical issues as device energy consumption over time
for example (thus running the devices for longer, or having devices capable of
performing additional measurements, will potentially cost users more).

From this, we can compute the following costs after N iterations of each
protocol:

CAB(Π(α)
BB84) = N [(3 + h(α))CR + γ4CM + γ4CP ] + Cauth (6)

CAB(Π(α)
B92) = N [(2 + h(α))CR + γ4CM + γ2CP ] + Cauth.

For BB84, AB must choose, each iteration, whether the iteration is a decoy or
not (costing h(α)CR); what basis A should send in (with probability 1/2 each,
thus costing CR); what basis to measure in (costing CR); and, finally, A must
choose a random key bit (again, costing CR). For B92, only one basis choice is
required (from B). Finally, note that, BB84 is a four-state protocol in that A
must prepare one of four possible qubit states each iteration. B92, however, is
a two-state protocol - A must only be capable of preparing a state of the form
|0〉 or |+〉. In both cases, however, B must be able to measure one of four states
(from two bases). It is clear that the cost of running B92 is no greater than the
cost of running BB84.

The cost for E to operate attack IE is zero (i.e., CE(IE) = 0). The cost
for the other strategies is the same: first, she must choose to attack or not,
costing h(p)CR; then she must measure and prepare a qubit in one basis. Those
operations are performed for all N iterations of the quantum communication
stage. Furthermore, she must also spend resources costing CS to setup her attack
initially (this is a one-time cost). The total cost for any attack A = Z,X,B is:

CE(A) = N [h(p)CR + p(γ2CM + γ2CP )] + CS , for any A ∈ {Z,X,B}. (7)

To complete our utility computation, we must also compute the secret key
length for each protocol under each attack. Since an IR attack results in three
classical random variables (one for Alice, Bob, and Eve), we may use the Csiszar-
Korner bound [22] to compute the number of secret bits that may be distilled
from these sources. Let 	(N,Π(α),A) be the amount of secret key bits that may
be distilled after N iterations of protocol Π(α) given that E used attack A. Then
from this bound, we have: 	(N,Π(α),A) = ηNα[I(A : B) − I(A : E)], where
η is the proportion of non-discarded iterations; namely η = 1/2 for BB84 and
η = 1/4 for B92 (see Protocols 1 and 2).

Note that the information computations above are dependent on only a single
iteration of the protocol when faced with the specified attack since we are assum-
ing iid attacks. Let I(Π(α),A) be equal to I(A : E) for the specified protocol
and attack; then, the utility functions, for a fixed N , will be:

UAB(Π(α),A) = ηNα[I(A : B) − I(Π(α),A)] − CAB(Π(α)) (8)

UE(Π(α),A) = ηNα[I(Π(α),A) + h(Q̃)] − CE(A), (9)
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where we use Q̃ to denote the raw-key error rate; i.e., the error of the actual
raw key which undergoes error correction (which, in the case of B92, is actu-
ally greater than the noise in the channel Q). The value ηNαh(Q̃) denotes the
information leaked to E “for free” during error correction.

To complete the utility computation, we require I(A : B) and I(A : E)
for all possible protocols and strategy pairs. It is not difficult to show that
I(A : B) = 1 − h(Q̃). For BB84, a raw-key error occurs when a |i〉 flips to a
|1 − i〉 (for i = 0, 1) or when a |±〉 flips to a |∓〉. By definition, this is exactly
the channel noise level Q. Thus, for Π

(α)
BB84, we have I(A : B) = 1 − h(Q). For

B92 it can be shown (see, for example, [23]) that the raw-key error is in fact:
Q̃ = 2Q/(1 − 2Q). Next, we must compute I(Π(α),A). Clearly, I(Π(α), IE) = 0
for any protocol. Consider, now, an IR attack where E measures and resends
in a basis {|v0〉 , |v1〉} (in our case, either Z, X, or B, however the equations
we derive here may be applied to other attack bases). By the measurement
postulate, if A sends a qubit of the form |i〉 (for i = 0, 1,+,−), E will observe
|vj〉 with probability vi,j = | 〈i|vj〉 |2. To compute I(Π(α),A) we will need the
joint distribution held between A and E. This is straight-forward arithmetic:
one must simply trace the execution of each protocol and use the measurement
postulate. We summarize this distribution in Table 1.

Table 1. Showing the joint probability distribution for A’s raw key bit and E’s “guess”
based on her attack (conditioning on the event she chooses to attack). For B92, we
require a normalization term, denoted M which is: M = v0,0(v−,0 + v1,0) + v0,1(v−,1 +
v1,1) + v+,0(v−,0 + v1,0) + v+,1(v−,1 + v1,1). The values here are found by tracing the
protocol and using the measurement postulate.

AE BB84 B92

00 1
4
(v0,0 + v+,0)

1
M

v0,0(v−,0 + v1,0)

01 1
4
(v0,1 + v+,1)

1
M

v0,1(v−,1 + v1,1)

10 1
4
(v1,0 + v−,0)

1
M

v+,0(v−,0 + v1,0)

11 1
4
(v1,1 + v−,1)

1
M

v+,1(v−,1 + v1,1)

By definition, we have I(Π(α),A) = p(H(A) + H(E) − H(AE)) where the
Shannon entropies may be computed easily from data in Table 1 and substituting
in |vi〉 for the appropriate basis state depending on the attack E uses (note that
when E chooses to not attack, which occurs with probability 1 − p, she learns
nothing, thus the need for the factor p in this expression). In summary, these
are found to be:

I(Π(α)
BB84, Z) ≈ .189p I(Π(α)

BB84,X) ≈ .189p I(Π(α)
BB84, B) ≈ .399p

I(Π(α)
B92, Z) ≈ .459p I(Π(α)

B92,X) ≈ .459p I(Π(α)
B92, B) = 0.

What remains is to find a value for p. As stated, we will assume that p is
chosen to maximize E’s information while keeping the induced noise from her
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attack equal to Q. The natural noise in the channel is the average of the Z basis
noise (which, in turn, is the average error of a |i〉 flipping to a |1 − i〉 when it
arrives at B’s lab) and X basis noise (the average of a |±〉 flipping to a |∓〉);
that is: Q = p

4 (v0,0v1,0 + v0,1v1,1 + v1,0v0,0 + v1,1v0,1 + v+,0v−,0 + v+,1v−,1 +
v−,0v+,0 + v−,1v+,1), from which it easily follows that p = 2Q for A = Z,X and
p = 4Q for A = B. Note that E may attack more often with the B basis as
it induces less noise, on average, than the Z or X based IR attacks. From this
analysis, we are now able to prove our two main results in this section involving
sufficient conditions of the noise level for (Π(α)

BB84, IE) to be a strict NE and for
each to be a DS.

Theorem 1. Assume classical resources are free for both parties AB and E
(that is, let CR = Cauth = CS = 0) and let CP ≤ CM (as discussed in the text).
Define A1 and A2 as follows:

A1 =
(γ4 − γ2)CP

1
4 + 1

4h
(

2Q
1−2Q

)
− 1

2h(Q)
A2 =

2γ4(CM + CP )
1 − h(Q)

.

If max(A1, A2) < 1 and Q, the noise in the channel is less than 0.232 and
satisfies the following inequality:

{
10.025

(
1
4 + 1

4h
(

2Q
1−2Q

)
− 1

2h(Q)
)

−
(

γ4
γ2

− 1
)

> 0, If A1 ≥ A2

2.506(1 − h(Q)) − γ4
γ2

> 0, Otherwise
(10)

Then there exists an α ∈ [0, 1] such that (Π(α)
BB84, IE) is a strict NE.

Proof. Since Cauth = CS = 0, the factor of N may be divided out of the utility
functions (we are only interested in relations between them and the factor N
appears in both UAB and UE . This allows us to construct the function table
shown in Table 2. From this table, we see that, for (Π(α)

BB84, IE) to be a strict
NE, the following inequalities must be satisfied:

α >
2γ4(CM + CP )

1 − h(Q)

α >
(γ4 − γ2)CP

1
4 + 1

4h
(

2Q
1−2Q

)
− 1

2h(Q)

[

If
1
4

+
1
4
h

(
2Q

1 − 2Q

)

− 1
2
h(Q) > 0

]

α <
4γ2(CM + CP )

0.378
≈ 10.582γ2(CM + CP )

α <
8γ2(CM + CP )

1.596
≈ 5.013γ2(CM + CP ).

Note that, if Q < .232 (as assumed in the hypothesis), then 1
4 + 1

4h(2Q/(1 −
2Q)) − 1

2h(Q) > 0. From this, it is clear that if we can find an α that satisfies:

max(A1, A2) < α <
8γ2(CM + CP )

1.596
,
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Table 2. Function table for utility functions UAB and UE assuming Cauth = CS = 0
and dividing out the factor of N on both functions.

ΠAB E = IE

IAB UAB = 0

UE = 0

Π
(α)
BB84 UAB = α

2
(1 − h(Q)) − [(3 + h(α))CR + γ4CM + γ4CP ]

UE = α
2
h(Q)

Π
(α)
B92 UAB = α

4

(
1 − h

(
2Q

1−2Q

))
− [(2 + h(α))CR + γ4CM + γ2CP ]

UE = α
4
h

(
2Q

1−2Q

)

E = Z = X (No difference between Z and X for these protocols)

IAB UAB = 0

UE = 0

Π
(α)
BB84 UAB = α

2
(1 − h(Q) − 0.378Q) − [(3 + h(α))CR + γ4CM + γ4CP ]

UE = α
2
(h(Q) + 0.378Q) − [h(2Q)CR + 2Qγ2(CM + CP )]

Π
(α)
B92 UAB = α

4

(
1 − h

(
2Q

1−2Q

)
− 0.918Q

)
− [(2 + h(α))CR + γ4CM + γ2CP ]

UE = α
4

(
h

(
2Q

1−2Q

)
+ 0.918Q

)
− [h(2Q)CR + 2Qγ2(CM + CP )]

E = B

IAB UAB = 0

UE = 0

Π
(α)
BB84 UAB = α

2
(1 − h(Q) − 1.596Q) − [(3 + h(α))CR + γ4CM + γ4CP ]

UE = α
2
(h(Q) + 1.596Q) − [h(4Q)CR + 4Qγ2(CM + CP )]

Π
(α)
B92 UAB = α

4

(
1 − h

(
2Q

1−2Q

))
− [(2 + h(α))CR + γ4CM + γ2CP ]

UE = α
4
h

(
2Q

1−2Q

)
− [h(4Q)CR + 4Qγ2(CM + CP )]

the resulting joint strategy will be a strict NE (recall, by hypothesis, max(A1, A2)
< 1). For such a value to exist, it must be that max(A1, A2) is strictly less than
the right-hand side of the above expression.

We show this in two cases. First, assume A2 > A1. Then, by our assumptions
on the channel noise Q, we have:

γ4
γ2

< 2.506(1 − h(Q))

=⇒γ4(CM + CP )
1 − h(Q)

<
4γ2(CM + CP )

1.596
=⇒ 2γ4(CM + CP )

1 − h(Q)
<

8γ2(CM + CP )
1.596

,

as desired.
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For the second case, assume A1 ≥ A2. Then, by assumption on the channel
noise Q, we have:

γ4
γ2

− 1 < 10.025
(

1
4

+
1
4
h

(
2Q

1 − 2Q

)

− 1
2
h(Q)

)

=⇒ 2(γ4 − γ2)CP

1
4 + 1

4h
(

2Q
1−2Q

)
− 1

2h(Q)
<

8γ2(2CP )
1.596

.

Noting that CP ≤ CM completes the proof.

Table 3. Showing the allowed noise tolerance for which (Π
(α)
BB84, IE) is a strict NE.

When γ4 = γ2 then it is always true that A2 ≥ A1 (since A1 = 0 and A2 is always
non-negative) and so we do not need to evaluate the case for A1 > A2. When γ4 = 2γ2,
we must evaluate both cases. See text for explanation.

A2 ≥ A1 A1 > A2

γ4 = γ2 Q ≤ .146 n/a

γ4 = 2γ2 Q ≤ .031 Q ≤ .207

Theorem 1 gives conditions on the noise parameter Q for which (Π(α)
BB84, IE)

becomes a strict NE. The restrictions on max(Ai) < 1 may be satisfied if the
cost CP and CM are low enough. The restrictions on Q depend only on the value
γ4 and γ2. So long as Q satisfies Eq. 10, then AB are motivated to run the BB84
protocol and E is motivated to not perform an intercept/resend attack (but,
instead, to simply “listen” on the authenticated channel). We evaluate the noise
tolerance in Table 3. Surprisingly, if γ2 = γ4, the noise tolerance is 14.6% also
the maximal noise tolerance of BB84 in the standard adversarial model against
optimal individual attacks (which are more general/powerful than IR attacks).
Note, however, while the noise tolerance may be lower in our game theoretic
model, as before, the efficiency in our game theoretic model may improve as E
is not motivated to attack.

Theorem 2. Assume classical resources are free for both parties (i.e., let CR =
Cauth = CS = 0) and let CP ≤ CM (as discussed in the text). Define A1 and A2

as follows:

A1 =
(γ4 − γ2)CP

1
4 + 1

4h
(

2Q
1−2Q

)
− 1

2h(Q) − 0.798Q
A2 =

2γ4(CM + CP )
1 − h(Q) − 1.596Q

. (11)

If max(A1, A2) < 1 and if Q, the noise in the channel, is strictly less than 0.185
and if it satisfies the following inequality:

{
10.025

(
1
4 + 1

4h
(

2Q
1−2Q

)
− 1

2h(Q) − 0.798Q
)

−
(

γ4
γ2

− 1
)

> 0, If A1 ≥ A2

2.506(1 − h(Q) − 1.596Q) − γ4
γ2

> 0, Otherwise
(12)
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then there exists a value for α such that Π
(α)
BB84 is a dominate strategy (DS) for

AB and IE is a DS for E.

Proof. Fix α. For Π
(α)
BB84 to be a DS for AB, we must show that, for every

strategy E ∈ ΣE , it holds that UAB(Π(α)
BB84, E) ≥ UAB(Π(α), E) for Π(α) =

Π
(α)
B92 and Π(α) = IAB . We see from Table 2, for this to be true, the following

inequalities must be satisfied:

α >
2γ4(CM + CP )

1 − h(Q)
α >

(γ4 − γ2)CP

1
4 + 1

4h
(

2Q
1−2Q

)
− 1

2h(Q)

α >
2γ4(CM + CP )

1 − h(Q) − 0.378Q
α >

(γ4 − γ2)CP

1
4 + 1

4h
(

2Q
1−2Q

)
− 1

2h(Q) + 0.0405Q

α >
2γ4(CM + CP )

1 − h(Q) − 1.596Q
α >

(γ4 − γ2)CP

1
4 + 1

4h
(

2Q
1−2Q

)
− 1

2h(Q) − 0.798Q

Note that, the denominators of the above six inequalities are all positive by
assumption that Q < 0.185. Note also, that there are only six inequalities, and
not eight, since two are repetitions.

It is not difficult to see that if we take α ≥ max(A1, A2), where A1 and A2

are defined in Eq. 11, then all the above inequalities are automatically satisfied
and, so, Π

(α)
BB84 will be a DS for party AB.

Now, we consider E’s strategy IE . For IE to be a DS for party E, the following
inequalities must be satisfied (again, consulting Table 2):

α <
4Qγ2(CM + CP )

.378Q
≈ 10.582γ2(CM + CP )

α <
8Qγ2(CM + CP )

1.596Q
≈ 5.013γ2(CM + CP )

α <
8Qγ2(CM + CP )

0.918Q
≈ 8.715γ2(CM + CP )

Clearly if α < 8Qγ2(CM+CP )
1.596Q , the other two are also satisfied. All that remains to

be shown is that an α exists allowing both Π
(α)
BB84 to be a DS for AB and IE to

be a DS for E. In particular, we must show that: max(A1, A2) < 8γ2(CM+CP )
1.596 .

However, this can be proven in a similar manner as in the proof of Theorem1,
using the new bounds on Q from Eq. 12. This completes the proof.

The allowed noise tolerances for Π
(α)
BB84 to be a DS for AB and IE to be a DS

for E, are reported in Table 4.

4 Closing Remarks

In this paper, we introduced a new game-theoretic model of QKD security. Many
interesting problems remain open. It would be interesting to analyze best-reply
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Table 4. Showing the allowed noise values Q from Theorem 2.

A2 ≥ A1 A1 > A2

γ4 = γ2 Q ≤ .094 n/a

γ4 = 2γ2 Q ≤ .024 Q ≤ .13

strategies under different noise values and decoy probabilities. We may also con-
sider adding additional strategies for AB, different, non-linear, utility functions,
and support for multi-user protocols [24]. One may also analyze the NE strategies
based on Stackelberg game model, when the attacker E observes the strategy
of party AB and chooses her strategy accordingly. One can envision a system
whereby parties re-evaluate their choices after large sequences of N iterations,
taking into account noise conditions, to chose new optimal strategies.
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Abstract. We introduce a form of steganography in the domain of
machine learning which we call training set camouflage. Imagine Alice
has a training set on an illicit machine learning classification task. Alice
wants Bob (a machine learning system) to learn the task. However, send-
ing either the training set or the trained model to Bob can raise suspi-
cion if the communication is monitored. Training set camouflage allows
Alice to compute a second training set on a completely different – and
seemingly benign – classification task. By construction, sending the sec-
ond training set will not raise suspicion. When Bob applies his standard
(public) learning algorithm to the second training set, he approximately
recovers the classifier on the original task. Training set camouflage is a
novel form of steganography in machine learning. We formulate training
set camouflage as a combinatorial bilevel optimization problem and pro-
pose solvers based on nonlinear programming and local search. Exper-
iments on real classification tasks demonstrate the feasibility of such
camouflage.

Keywords: Machine teaching · Adversarial learning · Steganography

1 Introduction

Look at the classification training set shown in Fig. 1a. The top row contains
instances of class positive (+), and the bottom shows instances of class negative
(−). These images can be fed into a machine learner to learn a model which
will successfully classify future, previously unseen instances (images) as + or −.
If you think that the task is fruit image classification (orange vs. apples) then
you have already been successfully fooled, in a sense to be made precise below.
The actual intended task is to classify woman vs. man, with samples shown in
Fig. 1b. Indeed, a standard logistic regression learner [26] trained on only the
images in Fig. 1a achieves high gender classification accuracy on the images in
Fig. 1b.

In this paper, we consider an agent Alice who has a secret classification
task (e.g., classifying images of women and men) and a corresponding private
training set (women and men images). Alice wants to train a second agent, Bob,
c© Springer Nature Switzerland AG 2018
L. Bushnell et al. (Eds.): GameSec 2018, LNCS 11199, pp. 59–79, 2018.
https://doi.org/10.1007/978-3-030-01554-1_4
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on the secret task. However, the communication channel between them has an
eavesdropper we refer to as a third agent Eve. Eve takes the role of a data verifier,
who will terminate communication (and refuse to deliver the data to Bob) if she
is suspicious of what Alice is sending. Sending the private training set would
reveal Alice’s intention; sending the model parameters directly will also raise
suspicion. Alice must camouflage the communication for it to look mundane to
Eve, while avoiding excessive coding tricks with Bob beforehand. In the present
work, we show how Alice can construct a camouflaged training set on a cover
task which (i) does not look suspicious to Eve, and (ii) results in Bob learning
an accurate model for the secret task. In the previous example, Eve noticed that
Alice sent images of apples and oranges which seems benign, and knew nothing
of Alice’s secret task of women vs men.

Hiding information in plain sight such that its presence is not suspected is
known as steganography. Steganography is not new. In the fifth century BCE
messengers would have their heads shaved and a message written on their scalp.
Regrowing their hair served to hide the message which would only be revealed
because the intended recipient knew to shave the messenger’s head [40]. In more
modern times, steganographic techniques are used to detect unauthorized dis-
tribution of digital media [15].

Note that, steganography is different from cryptography [31,61], where the
goal is to hide the data content. In cryptography, the communicating agents
have access to some particular key (pairs) which is used to encrypt and decrypt
data. Cryptography cannot be used if someone monitoring the data can alter
the data or stop the data transmission entirely. In such cases, steganography
becomes important because we do not want any intervening eavesdropper to
become suspicious and stop the data transmission.

The role and capabilities of the eavesdropper are key in selecting how to hide
information. Eve can be either passive and merely observes traffic [13], or active
and tries to modify the hidden message [14,51]. In this manuscript we assume a
passive observer, whose only ability is to refuse to deliver Alice’s message. To our
knowledge, steganography for machine learning in this context is new. In the area
of adversarial learning [5], however, much work has been done investigating how
an agent can assert control over a learner by manipulating input data. We note
that training set camouflage differs from so called training-time or “poisoning
attacks” [36] in two primary ways: (i) Alice aims to communicate information
to Bob about a potentially completely unrelated task, not affect his behavior on
the original task and (ii) Alice specifically aims to avoid detection by Eve.

Due to the widespread use of machine learning in sensitive fields ranging from
social media to health care, the study of the security ramifications of using ML
techniques is well studied [3,47]. The work presented herein adds to this con-
versation, as we reveal an additional avenue of attack. For example, Bob might
be a model that classifies job applicants as “should hire” and “shouldn’t hire”.
The company may have many records (collected over years) of job applicants
and how they performed. It is expected from Alice to select a subset of these
records and present to Bob, with the idea that training on the complete set is too
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time consuming. But Alice may be a malicious agent and wants Bob to actually
learn some additional bias (e.g., racial, gender etc.). In such a scenario, Alice
will select a subset of records that satisfies her goals while Eve’s responsibility is
to verify the data sent by Alice to Bob. Our specific contributions in this paper
are as follows: (i) We propose a general mathematical framework for defining
how Alice can achieve training set camouflage. (ii) We formulate a nonlinear-
program based approach for performing Alice’s task for a general class of learner
(Bob) and eavesdropper (Eve), and two combinatorial-search based approaches
for arbitrary learners/eavesdroppers.

(a) Camouflaged training set

(b) Secret classification task

Fig. 1. Example of training set camouflage

2 Training Set Camouflage

In this section we describe the three agents Bob, Alice and Eve, and formulate
a camouflage optimization problem for Alice, parametrized by Bob and Eve’s
definitions.

The agent Bob uses a standard learning algorithm A : D �→ H which, given a
training set D, learns a hypothesis A(D) in a hypothesis space H. The resulting
hypothesis maps instances in the input space X to the output space Y. This
can be multi-class classification (three or more classes) or regression, though
in the present work we focus on binary classification. We assume that Bob’s
learning algorithm is “open source”. That is, all information about A is known
to all agents. However, Bob and Alice have shared knowledge on class naming:
which class is positive and which negative. For K-class classification this shared
knowledge requires O(K log K) bits, as Alice must communicate a mapping from
K classes to K classes. For example, when Alice sends Bob orange and apple
images for the secret task of woman vs man, Alice must communicate to Bob
whether orange maps to woman and apple to man, or vice versa.
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Table 1. Information available to different agents

Agent Secret set
DS

Camouflage
pool C

Bob’s
learner A

Detection
function Ψ

Camouflaged
training set D

Bob No Yes/No Yes Yes/No Yes

Alice Yes Yes Yes Yes Yes

Eve No Yes Yes Yes Yes

Alice is an agent who wants to train Bob. She has a secret classification
task and the corresponding private dataset DS . In addition, she has access to
a public pool of n instances C = {(xi, yi)1:n} (the camouflage pool) drawn i.i.d.
from Q(x,y) which we call the cover data distribution. Note that this is not
the distribution from which DS is drawn. In the preceding example, Q(x,y) is
the distribution over orange and apple images, whereas DS is a collection of
photographs of women and men.

Alice seeks to select a camouflaged training set D ⊂ C which she will send to
Bob for training. Alice wants Bob to succeed on the secret task, thus she seeks
to find a D which minimizes the risk of Bob’s resulting model:

LA(D) =
1

|DS |
∑

(x̃,ỹ)∈DS

�(A(D)(x̃), ỹ)

where �(ŷ, y) is a loss function. Note the private DS is used to define the quality
of D. Also, we note that DS and D are in different domains.

Eve is a passive eavesdropper. She observes the dataset D which Alice sends
to Bob, but does not alter it. Her goal is to determine if D is normal or suspicious.
Specifically, Eve is suspicious of any data unless it appears to be an i.i.d. sample
drawn from Q(x,y). She has access to the camouflage pool C, but like Alice
she cannot draw additional instances from Q(x,y). Eve uses C and a detection
function Ψ : D × D �→ R+ to examine D. Here D is the domain of all possible
training sets. She flags D as suspicious if Ψ(C,D) ≥ 0. It is useful to think of Ψ
as a two-sample statistical test that aims to determine whether C,D come from
the same underlying distribution. We envision Alice as Eve’s adversary. As with
Bob, we assume that Eve is “open source”. Namely, Alice can see Eve’s detection
function Ψ .

The agents Alice and Eve have conflicting goals. Alice aims to secretly com-
municate to Bob by way of constructing a training set, while Eve is suspicious
and will flag any data sent to Bob if it looks suspect. Bob dutifully learns a
model and for our purposes has no explicit intentions. We make explicit each
Agent’s knowledge in Table 1.

With the agents defined, we can now formulate Alice’s goal:

argmin
D⊂C

1
|DS |

∑

(x̃,ỹ)∈DS

�(A(D)(x̃), ỹ)

s.t.Ψ(C,D) < 0 (1)
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That is, she seeks a camouflaged training set D from the cover data pool. D
should not be flagged as suspicious by Eve. D should also make Bob learn well,
similar to as if Alice directly gave Bob her private data set DS . An example of
the training set camouflage in action is shown in Fig. 2.

Fig. 2. Training set camouflage framework. We show the three agents along with the
classification task, camouflage pool, camouflage training set and Eve’s detection func-
tion

3 Solving the Camouflage Problem

In this section, we propose three methods of solving the optimization problem
defined in (1). We first show how the optimization problem can be reduced
to a nonlinear programming problem for a broad class of learners. We relax the
resulting optimization problem to one which is computationally efficient to solve.
We then present two combinatoric methods as heuristic methods applicable to
any learner.

3.1 Nonlinear Programming (NLP)

We assume Bob’s machine learning algorithm A solves a convex optimization
problem. Specifically, Bob performs regularized empirical risk minimization. This
covers a wide range of learners such as support vector machines [23], logistic
regression [26], and ridge regression [24]. Let Θ be Bob’s hypothesis space, � his
loss function, and λ his regularization parameter, respectively. Let m := |D| be
given. We convert Alice’s optimization problem (1) into a nonlinear programming
problem as follows.
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Step 1. Using the definition of Bob, we rewrite (1) as

min
D⊂C,θ̂∈Θ

1
|DS |

∑

(x̃,ỹ)∈DS

�(θ̂, x̃, ỹ)

s.t. θ̂ = argmin
θ∈Θ

∑

(x,y)∈D

�(θ,x, y) +
λ

2
‖θ‖2

Ψ(C,D) < 0,

|D| = m. (2)

We make note that in both levels of this bilevel optimization problem (the upper
and lower levels corresponding with Alice and Bob, respectively) �(·) is being
minimized. That is, Alice and Bob both seek to minimize the loss of Bob’s result-
ing model. Due to its combinatorial nature, this is a computationally difficult
problem to solve.

Step 2. Since Bob’s learning problem (the lower level optimization problem) is
assumed to be convex, satisfying its Karush-Kuhn-Tucker (KKT) conditions is
necessary and sufficient for a point to be optimal [44,63]. Thus we replace the
lower level optimization problem in (2) with the KKT conditions to obtain a
single-level optimization problem:

min
D⊂C,θ̂∈Θ

1
|DS |

∑

(x̃,ỹ)∈DS

�(θ̂, x̃, ỹ)

s.t.
∑

(x,y)∈D

��(θ̂,x, y) + λθ̂ = 0,

Ψ(C,D) < 0,

|D| = m. (3)

While now a single level optimization problem, selecting a subset D ⊂ C is still
a combinatorial problem and computationally expensive to solve. In what comes
next we relax this problem to one of continuous optimization.

Step 3. We introduce binary indicator variable bi for each instance (xi, yi) ∈ C.
A value of 1 indicates that the instance is a member of the training set D. Also
dropping the hat on θ̂ for simplicity. This yields:

min
θ∈Θ;b1,...,b|C|;bi∈{0,1}

1
|DS |

∑

(x̃,ỹ)∈DS

�(θ, x̃, ỹ)

s.t.
n∑

i=1

bi��(θ,xi, yi) + λθ = 0,

Ψ(C, {bi(xi, yi)|(xi, yi) ∈ C, bi �= 0}) < 0
n∑

i=1

bi = m. (4)
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This is known as a Mixed Integer Non-Linear Optimization Problem
(MINLP) [12]. MINLP problems are generally hard to solve in practice. However,
phrasing the problem in this way yields a natural relaxation. Namely we relax
bi to be continuous in [0, 1], resulting in the following non-linear optimization
problem:

min
θ∈Θ;b1,...,bn∈[0,1]

1
|DS |

∑

(x̃,ỹ)∈DS

�(θ, x̃, ỹ)

s.t.
n∑

i=1

bi��(θ,xi, yi) + λθ = 0,

Ψ(C, b1, . . . , b|C|) < 0,
n∑

i=1

bi = m. (5)

Note that in this equation we scale the gradient of the loss function for each
(xi, yi) by the corresponding bi. This bi indicates the importance of an instance
in the training set. In essence, the learner is training on a “soft” version of the
dataset, where each training example is weighted. Similarly, when calculating the
detection function we weigh each instance in the training set by its corresponding
bi. The exact nature of this weighing depends on the detection function itself.
We further note that the nonlinear optimization problem is non-convex. As such,
Alice must seed her solver with some initial {bi}. This is discussed further in
Sect. 4.

After solving this (continuous) optimization problem, Alice must round the
{bi}’s into binary indicators so that she can select a training set to send to Bob.
Alice uses a rounding procedure that proposes m + 1 candidate training sets
D(1), . . . , D(m+1) from the continuous solution {b}. The candidate training sets
include (1) the training set D(1) consisting of the m items with the largest b val-
ues, (2) the seed training set before running optimization, (3) m−1 other training
sets that “interpolate” between 1 and 2. Alice then checks D(1), . . . , D(m+1) for
feasibility (satisfying Ψ) and picks the best one. Note the seed training set is
feasible, hence Alice is guaranteed to have a solution. The interpolation scheme
ensures that Alice will find a solution no worse than the seed set.

Concretely, let S be the m-item seed training set and C\S be the remaining
items. Alice sorts items in S by their b values. Separately, Alice sorts items in
C\S by their b values. Then, Alice starts from S and sequentially swaps the least-
valued item in S with the largest-valued item in C\S. She performs m swaps.
This produces the m+1 candidate training sets, including the original S. It can
be shown that the m items with the largest b values will be one of the training
sets.

3.2 Uniform Sampling

For any learner Bob, even one which does not solve a convex empirical risk
minimizing problem discussed above, Alice has a simple option for finding a
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training set. Let Alice’s budget B denote the number of times Alice is able to
train the classifier A. She first creates B training sets D(1), . . . , D(B), each by
sampling m points uniformly without replacement from her camouflage pool C,
such that each D(j) successfully bypasses Eve i.e., Ψ(C,D(j)) < 0. Among these
B training sets, she then picks the D(j) with the lowest objective value in (1).
This procedure captures what Bob would learn if given each feasible training
set.

3.3 Beam Search

We now describe a heuristic beam search algorithm [53] to approximately solve
Alice’s optimization problem (1). This process is similar to uniform sampling,
described above, but instead of independently generating a new training set
every time, Alice performs a local search to augment a proposed training set
incrementally.

The state space consists of all training sets D ⊂ C such that |D| = m and
Ψ(C,D) < 0. Two training sets that differ by one instance are considered neigh-
bors. For computational efficiency, we do not consider the entire set of neighbors
at each step. Instead, we evaluate a randomly selected subset of neighbors for
each training set in the beam. The beam D is initialized by selecting w training
sets at random. The width (w) of the beam is fixed beforehand. From the union
of evaluated neighbors and training sets in the current beam, we select the top w
training sets (based on the value of the objective function in (1)) to reinitialize
the beam and discard the rest. Note that training sets which would be flagged
by Eve are not present in the statespace (because Alice has full knowledge of
Eve, she need not consider any set that Eve would reject). We continue the
search process until a pre-specified search budget B (number of times the clas-
sifier A is trained) is met. Algorithm 1 shows the search procedure with random
restarts.

Algorithm 1. Beam Search for Solving the Camouflage Problem
1: Input: Camouflage Pool: C, Risk: LA, Beam Width: w, Budget: B, Neighborhood

Function: N , Size: m, Detection Function: Ψ , Restarts: R
2: for r = 1 → R do
3: D ← w randomly selected subsets of size m from C such that Ψ(C, D) < 0
4: while budget B/R not exhausted do
5: D ← D ∪ N (D, C, Ψ), the neighbors
6: D ← w training sets from D with smallest LA(D) values
7: end while
8: end for
9: return the best D found within total budget
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4 Experiments

We investigated the effectiveness of training set camouflage through empirical
experiments on real world datasets. Our results show that camouflage works on a
variety of image and text classification tasks: Bob can perform well on the secret
task after training on the camouflaged training set, and the camouflaged training
set passes Eve’s test undetected. We start by discussing the three agents.

Bob. We considered the logistic regression learning algorithm for Bob. Logistic
regression is a popular learner and is regularly used in practice. Bob set the
weight of the regularization parameter to 1.

Eve. The training set camouflage framework is general with respect to Eve’s
detection function. For our experiments we used Maximum Mean Discrepancy
(MMD) [20] as the core of Eve’s detection function. We used MMD as it is
a popular and widely used two-sample test [17]. Unfortunately MMD cannot
be directly applied to the camouflage framework as its application requires that
the two samples have the same size. We introduce MMD and how Eve used it
in AppendixA. The level-α for this detection function was set to 0.05 (i.e., the
probability of incorrectly rejecting a benign training set is 5%).

Alice. We considered three different Alices. Each of them used one of the pro-
posed solvers. For each secret task, Alice had access to multiple camouflage
candidate tasks. Alice can run her solver on each of these tasks separately and
then select the best one, but this would be time consuming and thus instead
she started by identifying a suitable camouflage task. For this purpose, all three
Alices used uniform sampling (as this is the easiest algorithm to implement, and
makes the weakest assumptions) with a search budget of 80, 000 (divided equally
among candidate tasks). This meant that Alice stopped after training the logis-
tic regression learner 80, 000 times. For each candidate task Alice identified a
training set using this budget. Then she selected the best task (as her cover
task) based on the loss on the secret set.

Next, all three Alices used their respective solvers (NLP, beam search and
uniform sampling) to find a camouflaged training set. We assumed that all of
them were allotted a fixed amount of time for this purpose. This time was set
as the time required to run the NLP solver.

The Alice who used the NLP solver seeded the solver with the camouflaged
training set found during the candidate task identification phase. The Alice who
used the beam search solver performed random restarts each with a per-restart
budget of B/R = 16, 000. Here the width of the beam was w = 10 and for each
training set in the beam, 50 randomly selected neighbors were evaluated during
each iteration. It should be noted that both beam search and uniform sampling
are stochastic in nature. We run the Alices who used these solvers five times.
We then report the average. Alice constructed camouflaged training sets of size
m = 2, 20 and 50, and set the loss � to logistic loss with natural logarithm.
All experiments were run on an Intel(R) Core(TM) i7-7700T CPU @2.90 GHz
machine, using one thread.
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Table 2. Summary of secret sets and camouflage pools.

Dataset Type # features Class 1 Class 2 # class 1 # class 2

WM Image 2048 woman man 500 500

GP Image 2048 handgun phone 400 400

CA Text 300 christian atheist 599 480

DR Text 300 democratic republican 800 800

17 Image 2048 digit 1 digit 7 600 600

25 Image 2048 digit 2 digit 5 600 600

69 Image 2048 digit 6 digit 8 600 600

OA Image 2048 orange apple 600 600

BH Text 300 baseball hockey 994 999

IM Text 300 ibm mac 982 963

AM Text 300 autos motorcycles 990 996

MX Text 300 ms-windows windows x 985 988

Evaluation Metrics. As is standard to estimate generalization performance
of a learned model, we used a separate test set, generated from the same dis-
tribution as the secret set DS and not known to any agent, to estimate Bob’s
generalization error when trained on Alice’s camouflaged training set D. We com-
pare these values to two additional quantities: (“random”) when Bob is trained
on a uniform sample of size m from the cover data distribution, which we expect
to perform poorly; and (“oracle”) when Bob is trained directly on Alice’s secret
set DS , ignoring Eve’s presence. The oracle gives us an estimate on how much
performance Bob is losing due to using the camouflage framework to fool Eve.

4.1 Datasets

We performed experiments for four secret tasks: WM (CIFAR-100 [41]),
GP (OpenImages [39]), CA (20-newsgroups [28]) and DR (All The News
dataset [60]). The two letters in the acronym represent the two classes in the
corresponding task (see Table 2). The first two tasks were image classification
while the remaining two were text classification. For the image tasks we selected
eight candidate cover tasks. Six of them were from the MNIST handwritten dig-
its: 17, 71, 25, 52, 69 and 96. The other two were from the CIFAR-100 dataset:
OA and AO. Similarly for the text tasks we also selected eight candidate cover
tasks. All of them were from the 20-newsgroups dataset: BH, HB, IM, MI, AM,
MA, MX and XM. As before the acronyms here represent the class names.

For images we used ResNet [22] to generate feature vectors of dimension
2048. For this purpose we removed the output layer and used the values found
in the penultimate layer of the network. For text we used Word2Vec [50] to
generate feature vectors of dimension 300 by averaging over the word vectors
in an article. We also removed punctuation and stop words before generating
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Table 3. Logistic loss ( 1
|DS |

∑
(x̃,ỹ)∈DS

log(1 + exp(−ỹw�x̃))) after performing Uni-
form Sampling search with search budget 10, 000 for image secret tasks. The best results
for each secret task is shown in bold.

m
���������Secret

Camouflage
17 71 25 52 69 96 OA AO

2 WM 0.671 0.631 0.643 0.638 0.671 0.640 0.606 0.647
GP 0.481 0.541 0.458 0.443 0.516 0.463 0.541 0.558

20 WM 0.790 0.611 0.672 0.688 0.798 0.679 0.584 0.731
GP 0.480 0.510 0.433 0.390 0.632 0.337 0.510 0.531

50 WM 0.874 0.614 0.705 0.772 1.116 0.802 0.606 0.856
GP 0.565 0.479 0.473 0.387 1.047 0.421 0.479 0.506

the word vectors. A summary of the secret sets and camouflage pools can be
found in Table 2. As mentioned previously, we kept a held out test set for each
of the secret tasks. The number of class 1 and class 2 instances were 100/100,
100/100, 398/319 and 200/200 respectively for WM, GP, CA and DR. Here the
two numbers (num1/num2) represent the number of instances in class 1 and
class 2 respectively.

Alice first selected a suitable camouflage task for each of the secret tasks. For
each candidate task she used a search budget of 10, 000 (for a total of 80, 000
budget). The results of this phase are shown in Tables 3 and 4. For m = 2 the
camouflage tasks selected for WM, GP, CA and DR were OA, 52, XM and HB
respectively. Similarly for m = 20 the selected camouflage tasks were OA, 96,
BH and BH respectively. OA, 52, HB and BH were the selected camouflage tasks
respectively when m = 50. It should be noted that the logistic error reported in
the tables are large (>0.693) in some cases indicating that some of these cover
tasks will perform worse than random chance on secret tasks. However, this was
not true for the selected cover tasks. The top three camouflaged training sets for
GP (m = 20) identified during this phase are shown in Fig. 3.

Table 4. Logistic loss after performing Uniform Sampling search with search budget
10, 000 for text secret tasks. The best results for each secret task is shown in bold.

m
��������Secret

Camouflage
BH HB IM MI AM MA MX XM

2 CA 0.6845 0.6846 0.6868 0.6862 0.6861 0.6862 0.6844 0.6843
DR 0.6889 0.6886 0.6891 0.6893 0.6888 0.6887 0.6890 0.6894

20 CA 0.672 0.673 0.676 0.675 0.676 0.674 0.675 0.675
DR 0.681 0.684 0.682 0.683 0.682 0.682 0.682 0.683

50 CA 0.671 0.669 0.672 0.671 0.674 0.670 0.671 0.671
DR 0.677 0.681 0.679 0.680 0.678 0.680 0.683 0.679

�
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(a) Samples from the secret task Handgun vs. Phone (GP)

(b) Camouflaged training set using 9 vs. 6

(c) Camouflaged training set using 5 vs 2

(d) Camouflaged training set using 2 vs. 5

Fig. 3. Samples of GP secret set, and the top three camuflaged training set found
during the candidate selection phase for m = 20.

4.2 Results

For m = 2, the NLP solver ran for 23363, 33763, 48 and 44 s respectively for
WMOA, GP96, CABH and DRBH. The solver ran for 29150, 65697, 50 and 57 s
respectively for WMOA, GP96, CABH and DRBH when m = 20. The run time
was 39656, 171637, 126 and 193 s respectively when m = 50. We present our
results for all three solvers in Fig. 4. For the text secret tasks, Alice could not
find a better camouflaged training set using either beam search or uniform sam-
pling than the one found during the initial run of uniform sampling (with a total
budget of 80,000). To explore the sensitivity of beam search and uniform sam-
pling regarding the time budget, we ran both solvers for an additional two hours.
But the results only improved marginally. We observe that Alice, using any of
the three solvers can find much better camouflage training sets than random and
in many cases approach oracle performance. Note that Alice’s solutions do not
trigger Eve’s suspicion function. This shows that such subterfuges are plausible
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Fig. 4. Test error rates found by solving the camouflage framework. We also show
random and oracle error for comparison. Error bars are also shown. All three solvers
were run for the same amount of time.

in practice and can actually yield good results from Alice’s point of view. We
note that Alice yields the best results when m = 50 in most of the experiments,
but this may not hold for larger values of m e.g., when m is equal to the size
of the camouflage pool. We plan to run further experiments to understand the
effect of m.

Figure 1 shows the result of WMOA when Bob’s learner is logistic regression
and the solver is NLP (m = 20). Visually, the camouflaged training set D bears
no resemblance to the secret training set DS . This is true for the text camouflage
experiments as well, where articles in the camouflaged training sets have no
obvious semantic connection to the secret task. See Table 5 for results on the
text experiment CABH. This is indeed bad news for human Eves: not only did
camouflage fooled MMD detector, it will also likely fool human inspectors.

Table 5. Camouflage results for the CABH experiment with m = 20 for the NLP
solver

Sample of Secret Set Sample of Camouflaged Training Set
Class Article Class Article

Christianity . . .Christ that often causes christians to be very Baseball . . .Boys, hats off to any Cubs fan who can actually
critical of themselves and other christinas. We. . . muster up the courage to put down Braves fans. I. . .
. . .I’ve heard it said that the accounts we have . . . NPR’s Morning Edition aired a report this morning
of Christs life and ministry in the Gospels were. . . to get (4/19) on Hispanic/Latin American players in MLB. . .

Atheism . . .This article attempts to provide a general Hockey . . . Would Kevin Dineen play for the Miami Colons???
introduction to atheism. Whilst I have tried to be. . . As a Flyers fan, I resent you making Kevin Dineen. . .
. . .Science is wonderful at answering most of our . . .Good point - there haven’t even been any recent posts
questions. I’m not the type to question scientific. . . about ULf! Secretly, I’m convinced that he is responsible . . .

5 Related Work

Concealing the existence of messages is known as steganography. One illustration
of steganography (first presented in 1983 in [55]) is where prisoners Alice and
Bob wish to devise an escape plan. All their communication is observed by the
adversary (the warden, Eve) who will thwart their plan as soon as she detects
any sign of hidden message.
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Steganography has multiple real-world applications including secret com-
munication [64], feature tagging elements [48], and copyright protection [48].
Although many different data formats can be used for steganography, images [29,
51] are by far the most popular format due to their popularity on the internet and
the fact that they are rich with noise-insensitive information. Image steganog-
raphy can be broadly classified into spatial domain, transform domain, spread
spectrum and model based [56], and has been thoroughly studied. On the other
side, steganalysis is the study of detecting the existence of hidden messages
(using steganography). Identifying such messages in text by looking at patterns
in texts, odd language and unusual white space was explored in [14]. The authors
of [18,32,51] explore the detection of hidden messages in images.

A study of steganography from a complexity-theoretic point of view is pre-
sented in [25,52]. An information-theoretic model for such a setup is presented
in [13]. This complexity-theoretic security notion is similar to modern cryptog-
raphy and they try to define a secure stegosystem such that the stegotext is
computationally indistinguishable from the covertext. In such a scenario a new
term called steganographic secrecy of stegosystem is introduced which is defined
as the inability of a polynomial-time adversary (Eve) to distinguish between
observed distributions of unaltered covertext and stegotexts. To the best of our
knowledge, steganographic techniques have not been used in the domain of train-
ing sets for machine learning models.

Steganography is often confused with cryptography [31,61], however the goal
of these two systems are completely different. The goal of cryptography is to
ensure confidentiality of data in communication and storage processes. Hiding
the existence of sensitive data is not the end goal here (unlike steganography).
According to Kerckhoffs’s principle [33,34], this confidentiality must not rely on
the obfuscation of the encoding scheme, but only on the secrecy of the decryp-
tion key.

One particular branch of cryptography we highlight is homomorphic encryp-
tion [54]. Consider a situation where you seek to delegate some computation to
another computer (e.g., using a cloud computation service to a perform machine
learning task). You would like to utilize their computation power, but you do not
trust them with your private data. Homomorphic encryption allows a method by
which you can encrypt your data prior to sending it. The untrusted computer will
then perform its operations on the encrypted data, returning to you the result
(e.g., a learned model). You then decrypt the result, yielding what the remote
computer would have computed had you provided your original (unencrypted)
data. A homomorphic cryptosystem which supports arbitrary computation on
ciphertexts is known as fully homomorphic encryption (FHE). The first plausible
construction of such a system was proposed in [57]. This scheme supports both
addition and multiplication operations on ciphertexts, which in turn makes pos-
sible to construct circuits for arbitrary computations. Some second generation
solutions were proposed in [6,7,19,46].

In our setting, encryption (homomorphic or otherwise) is not enough to solve
Alice’s task. After Alice has transmitted her data to Bob, Bob learns a model.
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Alice’s goal is not only for Eve to not know the model (which could easily be
achieved by Alice simply sending an encrypted model), but also for Eve not to
be suspicious. Eve believes that Alice is drawing data points i.i.d. from some
distribution and thus data encrypted by standard methods will cause alarm. We
do note that the relatively new method of “honey encryption” [30] may be a
useful alternative approach for Alice, which we leave as future work.

The idea of constructing a dataset keeping a particular machine learning
algorithm and a target model in mind is known as machine teaching. Machine
teaching is the inverse of machine learning and has applications in various
fields [44,65]. In particular, machine teaching has applications in the domain
of adversarial learning which studies the use of machine learning in security-
sensitive domains. Numerous attacks against various machine learners have been
explored, highlighting the security ramifications of using machine learning in
practice [3,4,16,27,42,59].

In the work presented herein, Alice can be thought of as “attacking” the
learner Bob, in that she aims to provide a dataset which causes Bob to learn a
model with parituclar properties. We highlight how this differs from the classical
adversarial learning framework in two ways. First, Alice is not perturbing an
existing training set, but rather generating one. Thus, this is more akin to the
Machine Teaching framework. Second is the presence of Eve. Namely, Alice is
trying not only to affect Bob’s resulting model, but also to hide her involvement
from a third party eavesdropper. In spirit, this is similar to the adversarial
learning work performed on intrusion detection systems [35,37]. In terms of
the details of the mathematics, our framework and strategies for solving Alice’s
optimization problem more closely follow [49].

Within adversarial machine learning, a line of research has posed the problem
of learning in the presence of adversaries in game theoretic contexts [8–10,16,21,
45]. [1,16,43] specifically address a learner’s defense strategy in various contexts.
Randomization has also been explored as a method of defense [11,62], as well as
in the context of machine teaching [2]. Our work contributes to this conversation
as Eve can be seen as a form of defense for Bob.

6 Conclusion and Discussions

We introduced the training set camouflage setting where a carefully constructed
training set can be sent over an open channel with the intention of training a
machine learner on a secret classification task. Using this framework, an agent
can hide the intention of the secret task from a third party observer. Our exper-
imental results show that training set camouflage is indeed a plausible threat.
We present three approaches to solve the optimization problem. We observe that
all three solvers perform well but both NLP and beam search outperform uni-
form sampling in all cases. The NLP solver often performs a bit better than
beam search. This suggests that for the logistic regression learner NLP is Alice’s
preferred solver of choice. However, the NLP solver cannot be applied to all pos-
sible learners (non-convexity prevents the application of KKT conditions). Thus
in such cases beam search becomes the preferred solver.
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We note that MMD is stronger with larger sample sizes. It will be harder
for Alice to fool Eve given a large camouflage pool C and also if she is forced to
select a large camouflaged training set D. MMD is also stronger with smaller
feature dimensions [20]. Also, it is harder for Alice to fool Eve if she increases
the value of α. Since α is the upper bound of the probability of the Type I
error for the null hypothesis i.e., the camouflage pool and camouflaged training
set come from the same distribution, increasing α allows Eve to become more
suspicious. As future work we plan to devise defensive strategies against Alice.
In such scenarios it is advisable to assume that Eve’s detection function is known
to the attacker (Kerckhoffs’s principle [33,34]) which we make here.

We note that camouflage seems easier for Alice to do if the cover task is in fact
somewhat confusable, presumably because she can generate different decision
boundaries by picking from overlapping camouflage items. This can be imagined
easily in the 2D case with two overlapping point clouds forming the cover task.
In such a scenario any separable secret task (no overlap between the secret
task instances) can be taught to Bob by Alice. One interesting open question is
whether there is a universal cover task for all secret tasks. We also note that
achieving Alice’s goal becomes much harder in the multi-class setting as finding
a cover task becomes more challenging.

As mentioned previously, Bob fixed his learning hyperparameters (e.g., reg-
ularization parameter of the logistic regression). This was done for speed. How-
ever, nothing prevents Bob from using cross validation [38]. Cross validation is
popular technique used in machine learning where the learner is trained multiple
times on different subsets of the whole training set to tune the hyperparameters
of the learner. Alice would simply emulate the same cross validation while opti-
mizing the camouflaged training set. This can be easily done in beam search and
uniform sampling, at the cost of more computation. Unfortunately significant
modifications will be required for NLP.

Also, the loss function � used by Alice and Bob is the same, as seen in the
upper and lower optimization problems in (2). It is straightforward to allow
different losses. For example, Bob may learn with the logistic loss since it is a
standard learner, while Alice uses 0-1 loss to directly optimize Bob’s accuracy.

We note that training set camouflage can be extended to cross modality cor-
respondence, e.g., use an image camouflage pool while the secret classification
task is to classify text articles. Alice and Bob can communicate via the private
channel to establish the correspondence between images features and text fea-
tures. Another possible way to extend the camouflage pool is to allow perturbed
instances as well.

Acknowledgment. This work is supported in part by NSF 1545481, 1704117,
1623605, 1561512, and the MADLab AF Center of Excellence FA9550-18-1-0166.

A Appendix A: MMD as Eve’s Detection Function

One critical component of our camouflage framework is Eve’s detection function
Ψ—how she determines if a training set is suspicious or not. Eve’s detection func-
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tion is a two-sample test as its goal is to discern if the two sets C,D are drawn
from the same distribution or not. In what follows we discuss using Maximum
Mean Discrepancy (MMD) [20] as Eve’s detection function, as we do in our
experiments. MMD is a widely used two-sample test [17], but, of course other
detection functions can be used in (1). We first review basic MMD following [20].
Let p and p′ be two Borel probability measures defined on a topological space
Z. Given a class of functions F such that f : Z �→ R, f ∈ F , MMD is defined
as MMD(p, p′) = supf∈F (Ez[f(z)]−Ez′ [f(z′)]). Any unit ball in a reproducing
kernel Hilbert space (RKHS) can be used as the function class F if the ker-
nel is universal (e.g., Gaussian and Laplace kernels [58]). Using this function
space, MMD is a metric. This means MMD(p, p′) = 0 ⇔ p = p′. Computing
MMD requires the expectations to be known, which generally, is not the case in
practice. We obtain an empirical estimation by replacing the population expec-
tations with empirical mean computed on i.i.d. samples Z = {z1, . . . , zn} and
Z ′ = {z′

1, . . . , z
′
m} from p and p′, respectively. We define

MMD(Z,Z ′) =
[

1
n2

∑n
i,j=1 k(zi, zj) − 2

nm

∑n,m
i,j=1 k(zi, z′

j) + 1
m2

∑m
i,j=1 k(z′

i, z
′
j)

] 1
2

where k is the kernel of the RKHS. Let d = |MMD(Z,Z ′) − MMD(p, p′)|.
Gretton et al. show that P

(
d > 2

(√
K
n +

√
K
m

)
+ ε

)
≤ 2e− ε2nm

2K(n + m) , where K

is an upperbound on the kernel values. We convert the above bound into a
one-sided hypothesis testing procedure. Under the null hypothesis p = p′ we
have MMD(p, p′) = 0. We consider positive deviations of MMD(Z,Z ′) from
MMD(p, p′). Equating the RHS with α (probability of incorrectly stating p �=
p′ also known as the type I error) gives a hypothesis test of level-α, where

solving ε as a function of α gives α = e− ε2nm
2K(n + m) ⇒ ε =

√
2K(n+m)

nm log 1
α .

We retain the null hypothesis if MMD(Z,Z ′) − T < 0, where the threshold

is T = 2
(√

K
n +

√
K
m

)
+

√
2K(n+m)

nm log 1
α . This also defines Eve’s detection

function (Ψ(C,D)) at level-α: Ψ(C,D) ≡ MMD(C,D) − T. If Ψ(C,D) ≥ 0 then
Eve realizes that D is not drawn i.i.d. from Q(x,y) and flags it as suspicious.

For all our experiments Eve used the RBF kernel k(zi, zj) =

exp
(
−‖zi − zj‖2

2σ2

)
. Eve set σ to be the median distance between points in the

camouflage pool as proposed in [20]. Eve also included the scaled class label as a
feature dimension: [xi, c1{yi = 1}] where c = maxk,l such that yk=yl

‖xk −xl‖ and
1{·} is the indicator function. This augmented feature enables Eve to monitor
both features and labels. When using the NLP solver Alice only has to consider
instances from camouflage pool. She calculated MMD in the following manner:

MMDb(Z, b1, . . . , b|Z|) = [ 1
n2

∑n
i,j=1 k(zi, zj) − 2

n
∑n

i=1 bi

∑n
i,j=1 bik(zi, zj) + 1

(
∑n

i=1 bi)2

∑n
i,j=1 bibjk(zi, zj)]

1
2

(6)
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Abstract. Advanced persistent threats (APTs) consist of multiple
attack stages between entry and exit points of the attack. In each stage
of the attack, the adversary gathers more privileges, resources, and infor-
mation about the system and uses this information to gain access to the
targeted data of the next stage to reach the final goal. APTs are not only
persistent but also stealthy and hence difficult to detect. The persistent
nature of APTs, however, creates information flows in the system that
can be monitored. One monitoring mechanism is Dynamic Information
Flow Tracking (DIFT), which taints and tracks malicious information
flows through a system and inspects the flows at designated traps. Since
tainting all flows in the system will incur prohibitive resource costs, effi-
cient tagging policies are needed to decide which flows to tag in order
to maximize the probability of APT detection while minimizing resource
overhead. At present such an analytical model for DIFT for multi-stage
APT detection does not exist. In this paper, we propose a game theo-
retic framework modeling real-time detection of multi-stage APTs via
DIFT. We formulate a two-player (APT vs DIFT) nonzero-sum stochas-
tic game with incomplete information to obtain an optimal tagging pol-
icy. Our game model consists of a sequence of stages, where each stage of
the game corresponds to a stage in the attack. At each stage, the goal of
the APT is to reach a particular destination, corresponding to a targeted
resource or privilege, while the goal of the defender is to detect the APT.
We first derive an efficient algorithm to find locally optimal strategies
for both players. We then characterize the best responses of both players
and present algorithms to find the best responses. Finally, we validate
our results on a real-world attack data set obtained using the Refinable
Attack INvestigation (RAIN) framework for a ScreenGrab attack.
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1 Introduction

Advanced persistent threats (APTs) are highly sophisticated multi-stage cus-
tomized attacks by skilled adversaries. In each stage of the attack, the attacker
gathers more privileges, resources, and information about the system, using vari-
ous modes of information gathering techniques, to build a target profile and uses
this information to gain access to the targeted data of the next stage and reach
the final goal [2,19]. These attacks are not only persistent, but also stealthy, and
hence APT detection and defense is a challenging task. GhostNet, Operation
Aurora, Stuxnet [7], Duqu, Flame [1], Red October, and Miniduke [16] are some
of the attacks that evaded the detection mechanisms of the security community
and resulted in the exfiltration of vast amount of data or sabotaging critical
infrastructures [14,18].

After infiltrating a system, actions of APTs introduce malicious signals in the
system in the form of data exchange commands and control commands, referred
as information flows. Detection of such malicious flows can lead to the detection
of APT’s actions. Information Flow Tracking (IFT) is a widely used method
in offline threat analysis after the occurrence of an attack to identify spurious
information flows generated by untrustworthy I/O channels [5,20]. The key idea
of the IFT system is to tag or taint unauthorized information flows as spurious
and track the propagation of the tagged data through the system [20]. For proac-
tive detection of spurious flows, a modified version of IFT known as Dynamic
Information Flow Tracking (DIFT) was introduced in [15]. Under DIFT, when a
spurious flow mixes with regular flows, the resulting mix still preserves the tag.
The tagged information flows are inspected by DIFT at designated locations in
the system referred to as traps [15] enabling real-time threat analysis.

Although tagging all sensitive processes (e.g., an instance of a program in a
personal computer) in the system using DIFT will enhance the system security,
it leads to performance and memory overhead. This will result in considerable
slowdown of the system as noted in [6]. There exists a trade-off regarding the
effectiveness of the detection system and the performance of the system. In
order to reduce the performance overhead, the system may choose to tag a
subset of flows passing through certain processes, at the cost of reducing the
probability of detection. An efficient tagging policy decides which processes to
tag so as to minimize the performance overhead of the system and at the same
time maximize the probability of detection. As the susceptibility of a process to
an attack depends on the attacker’s behavior, the decision to tag a process in
the system depends on the interaction of the adversary with the system. Also,
the propagation of an attack through the system depends on the actions of the
detection system. Thus an efficient tagging policy of the DIFT depends on the
actions of the attacker which is determined by the interaction of the attacker with
the system. This interdependent nature of the actions of the detection system
and the attacker motivates a game theoretic framework.

A recent game model of defense against APTs is FlipIt [17], in which the
defense and the adversary compete with each other for capturing the control
of the system. A control-theoretic approach to model competing malwares in
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FlipIt is given in [11]. The interplay between the APT attacker and the insiders
for joint attacks is studied using a game model in [9]. While these approaches
model the incursion part of the attack, our focus is on the progression of the
attack through the system, referred as lateral movement. In this direction, a
game-theoretic model describing the interaction between DIFT and adversarial
information flows is given in the recent work [13]. Paper [13] characterized the
optimal strategies of the APT and DIFT and derived an efficient algorithm to
compute the optimal strategies. However, the approach in [13] only considered
a single stage of the attack, while APTs are mostly multi-stage attacks.

Each attack stage corresponds to a unique set of critical locations, referred
to as destinations. The intermediate stages in the attack hold information that
is critical to the adversary achieving its goals at the final stage. In each stage of
the attack, the adversary strategizes to reach destination of that specific stage
and to launch a stealthy attack. The defender’s strategy is to tag the flows in
a resource-efficient manner to detect the APTs before reaching the final desti-
nation. The defense mechanism does not know the stage and the specific goal
of the adversary for that stage of the attack. This results in an asymmetry in
the player’s information about the game. This information asymmetry is not
captured by the existing model in [13] and requires a new approach.

In this paper, we develop a game-theoretic model for the detection of multi-
stage APTs via DIFT. In our formulation, the adversary decides the next process
reached by the information flow based on the current stage, the process at which
the adversary is located, and the processes it can transition to. The defense
decides whether to tag a process or not based on the performance overhead and
detection probability associated with tagging that particular process. A multi-
stage stochastic game model with incomplete information incorporates these
features. We make the following contributions:

• We model the interaction between the DIFT system and APT on a system
consisting of N processes and M stages as a two-player nonzero sum stochastic
game with incomplete information. This formulation captures the interaction
between the DIFT system and the APT, the multi-stage nature of the attack,
and the information asymmetry among the players.

• Our game formulation consists of a sequence of stages, where each stage of the
game corresponds to a stage in the attack. In each stage, the attacker decides
the path to be traversed through the processes in the system aiming towards
capturing the target locations of that stage, and the DIFT system decides
the processes to be tagged so as to increase the probability of detecting the
attacker in that stage.

• We provide an algorithm to obtain locally optimal equilibrium strategies for
both the players using the notion of correlated equilibria by transforming the
two-player game to an (NM + N + 1)-player game.

• We evaluate the best responses of both players. We compute the best response
for the APT by proving that this computation is equivalent to a shortest
path on the provenance graph constructed using the system log data. For
the DIFT system, we show that the payoff function is submodular and then
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exploit the submodularity to obtain an approximate algorithm to compute
the best response.

• We provide experimental validation of our model and results using real-world
attack data set obtained using Refinable Attack INvestigation system (RAIN)
for ScreenGrab attack.

The organization of the rest of the paper is as follows. In Sect. 2, we introduce
the notations used in the sequel and give the game theoretic formulation of the
multi-stage game for designing optimal tainting policies for the DIFT. The game-
theoretic model focuses on stage-based attacks and serves as a general model for
the multi-stage security game. In Sect. 3, we discuss the notion of Nash equilibria
and correlated equilibria in the context of multi-stage game model. In Sect. 4,
we present an algorithm to find a locally optimal solution to the game using
the concept of correlated equilibria. This section also describes a method to
evaluate the best response of the attacker and the defender. We evaluate the
best responses of the players using the graph theoretic notion of shortest path
and exploiting the submodularity of the payoff functions. In Sect. 5, we give
experimental validation of our results using real-world data sets. In Sect. 6, we
conclude the paper and briefly discuss future directions of work.

2 Notations and Game Formulation

In this section, we introduce the notations used in the sequel and then present the
game-theoretic formulation of the problem. We perform the analysis of the multi-
stage APTs on the provenance graph of the system obtained from the system log
data [8]. A provenance graph G represents the lineage of data transformed by a
system. In networked systems, G represents the graphical representation of the
log data using the whole-system execution and workflow during the entire period
of logging. Here, nodes form the processes in the system and edges represent the
information flow in the system from one process to the other. These graphs are
widely used in the security research as a part of static APT detection schemes
[8,10]. We analyze security in systems consisting of many processes interacting
with each other through information flows using their provenance graph. Figure 1
shows the provenance graph of a networked system and the information flow in
it. While the information flows in the system at any given instant result in
acyclic graphs as given in Fig. 1a and b, the resulting information flow graph
that captures the temporal dependencies among these individual graphs can be
cyclic as shown in Fig. 1c. Consider a provenance graph G = (S , ES) where
the node set S := {s1, . . . , sN} is the set of processes in the system and the
edge set ES ⊂ S × S captures the interactions between the processes using the
system log data. The graph G consists of a set of critical processes which must be
protected against any malicious attack in the system. We consider multi-stage
attacks which consists of M stages, such that each stage corresponds to a set of
destinations. Let Dj := {dj

1, . . . , d
j
nj

} denotes the set of destinations in the jth

stage. The set of all destinations is D := ∪M
j=1Dj . We use DIFT as the detection
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mechanism of the system. In this section, we model this problem as a two-player
(APT vs DIFT) multi-stage non-zero sum game with incomplete information
which is discussed below.

Fig. 1. A provenance graph G with 10 nodes obtained by incorporating the temporal
dependencies. Any directed path in G corresponds to an information flow in the system.
For example, the dipath shown in red represents an information flow from s1 to s10.

The security game considered in this paper consists of two players, adver-
sary denoted as PA and defender (DIFT) denoted as PD. The two-player game
between PA and PD evolves in the provenance graph, G = (S , ES). The detec-
tion system of the system deploys a set of trap nodes T and a set of tag nodes
Y in the system and monitors the information flow through Y . The trap nodes
T := {t1, . . . , th} ⊂ S is a set of processes deployed in the system a priori
in order to capture any information flow in the system initiated by potential
malicious agents. The tagged nodes Y := {y1, . . . , yh′} ⊂ S are such that any
information flow passing through a process yi ∈ Y is tagged/tainted. Once a
flow is tagged, the defender keeps track of the flow and thus incurs memory and
performance overhead. The trap nodes are capable of accurately verifying the
authenticity of a tagged information flow passing through them. As a result, a
tagged malicious flow passing through a trap node generates a security alert in
the system. Even though the detection system allows tagging of processes, it is
desired to tag minimum number of processes while guaranteeing a reliable and
secure operation of the system. This paper deals with optimal selection of tagged
nodes in the system.

Let λ ⊂ S be the set of vulnerable processes in the provenance graph G. The
adversary enters the system by exploiting a process in λ, thus, λ characterizes all
possible entry points of the attack. We introduce a node s0 referred to as pseudo-
process into the provenance graph and s0 is connected to all the processes in the
set λ. Let Eλ denotes the edges from the pseudo-process s0 to all processes in
the set λ. After the inclusion of the pseudo-process into the system, the set of
processes is modified as S ∪ {s0} and the edge set is modified as ES ∪ Eλ. Let
S := S ∪{s0} and E := ES ∪Eλ. Without loss of generality, we assume that the
source of an attack is s0. Note that, transitions are allowed from pseudo-process



Multi-stage Dynamic Information Flow Tracking Game 85

s0 and no transition is allowed into pseudo-process s0 as it is the root node.
Further, s0 is always in stage 1, and is not tagged.

Depending on whether the process is tagged or not and in which stage the
players are, the state space of the game is defined as S̄ := {S × {1, . . . , M} ×
{0, 1}} ∪ {(s10, 0)}, where S̄ = {s̄1, . . . , s̄2NM+1} such that s̄i = (sj

i , k), where
j ∈ {1, . . . , M} and k ∈ {0, 1}. Here,

s̄i :=

{
(sj

i , 1), if process si is in stage j and it is tagged,

(sj
i , 0), if process si is in stage j and it is not tagged.

For an adversarial flow in the state space S̄ originating at the state (s10, 0),
we give the following definition.

Definition 2.1. An information flow in the state space S̄ that origi-
nates at state (s10, 0) and terminates at state (sj

i , k) is said to satisfy
the stage − constraint if the flow passes through some destinations in
D1, D2, . . . , Dj−1.

The players PA and PD have finite action sets over the state space S̄ denoted
by sets AA and AD, respectively. The set AA contains the set of processes that
the adversary’s flow is going to traverse. Further, the adversary can also end
the game by dropping the information flow at any point of time. In such a
case, the adversary transitions to a null state ∅. Thus AA = {sj

i : si ∈ S , j ∈
{1, . . . , M}} ∪ {∅}. The defender decides whether to tag a process or not, and
hence AD = {0, 1}S . Note that, although the existing architecture of DIFT
[15] also decides the location of the trap nodes (T ), as a first step to obtain an
analytical model for DIFT we assume the trap locations are pre-specified and
the defender’s actions only decide where to place the tagging (Y). Moreover, a
process once tagged at some point of time in the game, remains tagged through
out the game and there is no untagging of a process at a later stage of the game.
While the objective of PA is to exploit the vulnerable processes λ (in effect the
pseudo-process s0) of the system to successfully launch an attack, the objective
of PD is to select an optimal set of tagged nodes, say Y�, such that any spurious
information flow in the system is captured at some trap node before reaching
the destination.

The players PA and PD have different information sets about the state
space. Both the adversary and the defender know the graph G and the locations
of the trap nodes. The defender also has the information about the tagged nodes:
however, the adversary is unaware whether a process si is tagged or not. On the
other hand, while the adversary knows the stage of the attack, the defender does
not know the stage of the attack. Thus, both the adversary and the defender
have incomplete information about the game.

Now we define the strategies on the state space S̄ . In order to reduce the
complexity and considering the fact that the action sets of the players, i.e.,
tagging and adversarial information flow, are lower level processes with memory
constraints and computational limitations, in this paper we consider stationary
strategies for both the players. A stationary strategy is defined below.
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Definition 2.2. A player strategy is stationary if it depends only on the current
state.

Additionally, the player strategies considered in this paper are mixed strate-
gies. Unlike in a pure strategy where the actions of the players solely depend
on the past actions, in a mixed strategy there is a randomness associated with
the strategies of the players. Thus the action sets AA and AD are defined as
probability distributions. The strategies of the players crucially depend on the
nature of the process (destination, trap, or other) and the stage at which the
attack occurs (to satisfy the stage-constraint). The randomness associated with
the actions of the defender and the adversary is captured by assigning a proba-
bility for tagging a process and by assigning a probability for transitioning from
one process to another process, respectively. As the defender is unaware of the
stage of the attack, the defender strategy does not depend on the stage. Thus
for every process si ∈ S , we define the probability of tagging the process si

as 0 � pD(si) � 1, if it was not tagged before. The tagging probability of the
pseudo-process is always set to zero, i.e., pD(s0) = 0. The adversary on the
other hand is aware of the stage of the attack and hence the adversary’s actions
depend on the stage. Consider two processes, process si at stage j and process
si′ at stage j′, i.e., sj

i and sj′
i′ . Here, si ∈ S and si′ ∈ S . The possible cases in

which the adversary is able to transition from a process in stage j to a process in
stage j′ are: (1) j = j′ and (si, si′) ∈ E, 2) j′ = j +1 and si = si′ ∈ Dj , and (3)
sj′

i′ = ∅. Case 1) corresponds to transition from a process in S to a process in
S in the same stage, case (2) corresponds to transition from one stage to the
next stage at a destination, and case 3) corresponds to adversary transitioning
to a null state ∅. The adversary transition is given by the transition probabil-
ity vector pA, where 0 � pA(sj

i , s
j′
i′ ) � 1, such that

∑
si′ ∈N (si)

pA(sj
i , s

j′
i′ ) = 1

and N (si) := {si′ : (si, si′) ∈ E} ∪ {si, ∅}. Also, pA(sj
i , s

j′
i′ ) �= 0 implies either

j = j′ with si′ ∈ N (si) or j′ = j + 1 with si = si′ ∈ Dj . Thus the strate-
gies of PA and PD are given by the vectors pD = {pD(si) : si ∈ S } and
pA = {pA(sj

i , s
j′
i′ ) : si ∈ S , j, j′ ∈ {1, . . . , M}, and si′ ∈ S ∪ {∅}}, respec-

tively. Notice that pA is defined in such a way that in the state space S̄ , the
state (s10, 0) has only outgoing edges and any flow originating at (s10, 0) reaches
a state (sj

i , k) after passing through some destinations of stages 1, . . . , j − 1. By
this construction of S̄ and pA, all possible information flows in S̄ satisfy the
stage-constraints and can affect the performance of the system and even result
in system breakdown, if malicious.

We now introduce the cost parameters associated with the game. To model
the game in every stage of the attack, we include stage-based attacks in our
problem formulation by introducing penalties and rewards at the intermediate
stages, for the adversary and the defender. If the adversary successfully reaches
a destination of stage j after passing through some destination for all stages
before j, then he/she receives an intermediate reward. On the other hand, if the
adversary gets caught at some stage j, then he/she incurs a penalty and the game
terminates. If the adversary reaches some destination at a stage j, the defender
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incurs an intermediate penalty. On the other hand, if the defender catches the
adversary at stage j, then he/she receives a reward and the game terminates.
In addition to this, the defender is also associated with a cost for tagging the
processes, as tagging leads to resource overhead such as memory and storage.

Now we define the payoff functions of the defender (UD) and the adversary
(UA) for a given strategy, using the intermediate values and tagging costs. The
payoff functions UA and UD depend on the following factors. The adversary
payoff UA consists of two components: (i) a reward βA

j > 0 for successfully
reaching a destination in the jth stage after passing through some destinations
in D1, . . . , Dj−1, and (ii) a cost αA < 0 if the adversary is tagged and trapped
by the defender. Similarly, the defender utility UD consists of three components:
(a) a memory cost CD(si) < 0 for tagging a process si ∈ S , (b) a cost βD

j < 0
if the adversary reaches a destination in the jth stage after passing through
some destinations in D1, . . . , Dj−1, and (c) a reward αD > 0 for catching the
adversary. We assume that the cost of tagging a process CD(si) is independent
of the strategy of the adversary and the stage. However, CD(si) depends on the
average traffic at process si and hence CD(si) := c B(si). Here, c ∈ R− is a fixed
tagging cost, where R− is the set of negative real numbers, and B(si) denotes
the average traffic at process si. The cost CD(si) is incurred only once when the
process is tagged.

With respect to strategies pD and pA, the payoffs of the game on S̄ for the
defender, UD, and the adversary, UA, are as follows.

UD(pD,pA) =
∑
si∈S

pD(si) CD(si) +
M∑

j=1

(
pT (j)αD + pR(j)βD

j

)
, (1)

UA(pD,pA) =
M∑

j=1

(
pT (j)αA + pR(j)βA

j

)
. (2)

Without loss of generality, the entry point of any adversarial information
flow in the state space S̄ is (s10, 0). Here, pT (j) denotes the probability that a
flow originating at state (s10, 0) in S̄ will get tagged and trapped at level j. The
term pR(j) denotes the probability that a flow originating at state (s10, 0) in S̄
will reach some destination in set Dj . The payoff functions UA and UD captures
the global return of the game. For calculating these values, we introduce the
concept of local payoffs referred to as utilities at every state in the state space
S̄ . With respect to each state in S̄ , we define utility functions UA : S̄ → R and
UD : S̄ → R for the adversary and defender, respectively. Firstly, we characterize
all possible attacks in a system. In a system consisting of M stages, an attack
on the state space S̄ belongs to one of the following M + 2 scenarios.

• The adversary drops out of the game before reaching some destination in D1.
• The adversary reaches some destination each in D1, . . . , Dj and then drops

out of the game, for j = 1, . . . , M − 1.
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• The adversary reaches some destination each in D1, . . . , DM .
• The defender catches the adversary at some stage.

For the first case, both adversary and defender incurs zero payoff. For the
second case, adversary earns rewards for reaching stages 1, . . . , j, defender incurs
penalty for not catching the adversary at stages 1, . . . , j, and the game termi-
nates. In the third case, adversary wins the game and earns the total reward for
reaching destinations in all stages, and the defender incurs a total penalty for
not catching the adversary at all the stages. In the last case, adversary incurs
the penalty for getting caught and the defender wins the game and earns the
reward for catching the adversary. While calculating the payoffs of PD and PA

at a state in S̄ , we consider all possible attacks listed above that can occur at
that state, using the notion of PR,j(·, ·) and PT (·, ·) explained below.

Let q(sj′
i ) denotes the probability with which the adversary drops out of the

game at state (sj′
i , k), for k ∈ {0, 1}. Let PR,j(s

j′
i , k) denotes the probability that

an information flow originating at (s10, 0) reaches a destination in Dj and then
drops out before reaching a destination in Dj+1, without being trapped, when
the current state is (sj′

i , k). We have PR,j(s
j′
i , k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for si ∈ T , k = 1

q(sj′
i ) +

∑

s�∈N (si)

pA(sj′
i , sj′+1

� )
(
pD(s�)PR,j(s

j′+1
� , 1) + (1 − pD(s�))PR,j(s

j′+1
� , 0)

)
,

for si ∈ Dj , j′ = j, k = 0

q(sj′
i ) +

∑
s�∈N (si)

pA(sj′
i , sj′+1

� )PR,j(s
j′+1
� , 1), for si ∈ Dj , j′ = j, k = 1

0, for si ∈ Dj′ , j′ = j + 1
0, for j′ > j + 1
∑

s�∈N (si)
pA(sj′

i , sj′
� )

(
pD(s�)PR,j(s

j′
� , 1) + (1 − pD(s�))PR,j(s

j′
� , 0)

)
,

for j′ ≤ j, k = 0
∑

s�∈N (si)
pA(sj′

i , sj′
� )PR,j(s

j′
� , 1), for j′ ≤ j, k = 1

q(sj′
i ) +

∑

s�∈N (si)

pA(sj′
i , sj′

� )
(
pD(s�)PR,j(s

j′
� , 1) + (1 − pD(s�))PR,j(s

j′
� , 0)

)
,

for j′ = j + 1, k = 0

q(sj′
i ) +

∑
s�∈N (si)

pA(sj′
i , sj′

� )PR,j(s
j′
� , 1), for j′ = j + 1, k = 1

Let PT (sj′
i , k) denotes the probability that an information flow is tagged and

trapped when the current state is (sj′
i , k). Then PT (sj′

i , k) satisfies

PT (sj′
i , k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, si ∈ T , k = 1
0, j′ = M, si ∈ DM
∑

s�∈N (si)
pA(sj′

i , sj′
� )

(
pD(s�)PT,j(s

j′
� , 1) + (1 − pD(s�))PT,j(s

j′
� , 0)

)
, k = 0

∑
s�∈N (si)

pA(sj′
i , sj′

� )PT,j(s
j′
� , 1), k = 1
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Using the definitions of PR,j and PT at a state in S̄ , the payoffs of the
defender and the adversary at a state (sj′

i , k) is given by

UD(sj′
i , k) =

∑
sa∈S

pF,a(sj′
i , k) CD(sa) +

M∑
j=1

pR,j(s
j′
i , k)

j∑
v=1

βD
v + PT (sj′

i , k)αD,

(3)

UA(sj′
i , k) =

M∑
j=1

pR,j(s
j′
i , k)

j∑
v=1

βA
v + PT (sj′

i , k)αA. (4)

Here, pF,a(sj′
i , k) denotes the probability that process sa ∈ S is tagged in

a flow whose current state is (sj′
i , k). This gives a system of 2NM + 1 linear

equations for the utility vectors UD and UA, where UA(b), UD(b) denote the
utilities at the bth state in S̄ . Now we give the following result, which relates
UD, UA with UD, UA.

Lemma 1. Consider the defender and adversary strategies pD and pA,
respectively. Then, the following hold: (i) UA(pD,pA) = UA(s10, 0), and
(ii) UD(pD,pA) = UD(s10, 0).

Proof. (i): By definition, UA(s10, 0) =
∑M

j=1 PR,j(s10, 0)
∑j

v=1 βA
v + PT (s10, 0)αA.

Note that,

M∑

j=1

PR,j(s
1
0, 0)

j∑

v=1

βA
v = βA

1

M∑

j=1

PR,j(s
1
0, 0)+βA

2

M∑

j=2

PR,j(s
1
0, 0)+. . .+βA

M PR,M (s10, 0),

(5)

Here,
∑M

j=1 pR,j(s10, 0) is the total probability that a flow originating at (s10, 0)
reach some destination in D1. Similarly,

∑M
j=2 pR,j(s10, 0) is the total probability

that a flow originating at (s10, 0) reach some destination in D2. Thus

M∑
j=1

PR,j(s10, 0) = pR(1),
M∑

j=2

PR,j(s10, 0) = pR(2), . . . , PR,M (s10, 0) = pR(M). (6)

From Eqs. (5) and (6), we get

M∑
j=1

PR,j(s10, 0)
j∑

v=1

βA
v =

M∑
j=1

pR(j)βA
j . (7)

Since PT (s10, 0) =
∑M

j=1 pT (j),

PT (s10, 0)αA =
M∑

j=1

pT (j)αA. (8)
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From Eqs. (7) and (8), we get UA(s10, 0) =
∑M

j=1

(
pR(j)βA

j + pT (j)αA
)

=

UA(pD,pA).
(ii): Notice that pF,i(s10, 0) is the probability that the process si is tagged in a flow
originating at (s10, 0). Thus pF,i(s10, 0) = pD(si). This along with Eqs. (7) and (8)

implies that UD(s10, 0) =
∑

si∈S pD(si)CD(si) +
∑M

j=1

(
pR(j)βD

j + pT (j)αD
)

=

UD(pD,pA). This completes the proof of (i) and (ii). �	

3 Equilibria in Security Games

This section presents an overview of the notions of equilibrium considered in
this work. We first describe the concept of a player’s best response to a given
strategy of an opponent.

Definition 3.1. Let pA : {S×{1, . . . , M}}∪{s10} → [0, 1]E denote an adversary
strategy (transition probabilities). The set of best responses of the defender is
given by

BR(pA) = arg max {UD(pD,pA) : pD ∈ [0, 1]S }.

Similarly, the best responses of the adversary are given by

BR(pD) = arg max {UA(pD,pA) : pA ∈ [0, 1]E}.

Intuitively, the best responses of the defender are the set of tagging strate-
gies that maximize the defender’s utility for a given adversary strategy, while
the best responses of the adversary are the sets of transition probabilities that
maximize the adversary’s utility for a given defense (tagging) strategy. The Nash
equilibrium is defined as follows.

Definition 3.2. A pair of strategies (pD,pA) is a Nash equilibrium if

pD ∈ BR(pA), pA ∈ BR(pD).

The Nash equilibrium occurs when neither player can improve its utility by
unilaterally changing its strategy. As the game considered in this paper is a
finite game with mixed strategy, there exists a Nash equilibrium [12]. While the
Nash equilibrium captures the behavior of rational, uncooperative players, it is
NP-hard to compute in general, especially for nonzero-sum games of the type
considered in this paper. A weaker solution concept is the correlated equilibrium
defined in [4].

Definition 3.3. Let P denote a joint probability distribution over the set of
defender and adversary actions. The distribution P is a correlated equilibrium
if for all strategies p′

A and p′
D,

E(UD(pD,pA)) ≥ E(UD(p′
D,pA)

E(UA(pD,pA)) ≥ E(UA(pD,p′
A)
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Here, E(·) denotes the expectation. We next consider a simpler version of the
correlated equilibrium that models the local policies at each process.

Definition 3.4. Let P denote a joint probability distribution over the set of
defender and adversary actions. The distribution P is a local correlated equilib-
rium if for all states si ∈ S , j ∈ {1, . . . , M}, and strategies p′

D(si) and p′
A(sj

i , ·),
we have

E(UD(pD,pA)) ≥ E(UD(p′
D,pA)

E(UA(pD,pA)) ≥ E(UA(pD,p′
A)

where p′
D denotes a strategy with p′

D(si) = p′
D(si) and p′

D(si′) = pD(si′) for i �=
i′, and p′

A denotes a strategy with p′
A(sj

i , ·) = p′
A(sj

i , ·) and p′
A(sj′

i′ , ·) = pA(sj′
i′ , ·)

for (i, j) �= (i′, j′).

4 Analysis of Multi-Stage Security Model

In this section, we present an efficient algorithm to compute a locally optimal
correlated equilibrium for the game. We also find the best responses of both the
players.

4.1 Algorithm and Results

We now present an algorithm for computing a local correlated equilibrium of
the DIFT game. Our approach is to map the two-player game into a game with
(M + 1)N + 1 players. The adversary’s strategy is represented by MN players,
each of which represents the adversary’s actions at a single process and stage.
The defender’s strategy is represented by N players, each of which represents
the defender’s strategy (tag or not tag) at a single process. The last player
corresponds to the pseudo-process introduced, whose strategy decides the entry
point of the attacker into the network.

Formally, we consider a set of players {PAij : i = 1, . . . , N, j = 1, . . . , M} ∪
{PDi : i = 1, . . . , N} ∪ {Ps0}. Each of the players in PAij has action space
A Aij = N (si), each player in PDi has action space {0, 1}, representing whether
or not to tag, and the player Ps0 has action space λ. We let aD denote the set
of actions chosen by the players {PDi : i = 1, . . . , N} and aA denote the set of
actions chosen by the players {PAij : i = 1, . . . , N, j = 1, . . . , M} ∪ {Ps0}.

The payoffs of the players from a particular action set are given by

UAij (aA,aD) = UA(aA,aD),
UDi(aA,aD) = UD(aA,aD),

where UA and UD are as defined in Sect. 2. Hence, all adversarial players receive
the same utility UA, while all defender players receive the utility UD. Equiva-
lently, the adversarial players UAij cooperate in order to maximize the adver-
sary’s utility, while the defender players UDi attempt to maximize the defender
utility.
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Under the solution algorithm, the game is played repeatedly, with each player
choosing its action from a probability distribution (mixed strategy) over the
set of possible actions. After observing their utilities, the players update their
strategies according to a no-regret learning algorithm [4]. A description is given
as Algorithm 4.1.

Algorithm 4.1. Algorithm for computing correlated equilibrium.
1: procedure Correlated Computation
2: t ← 0
3: for n = 1, . . . , (M + 1)N + 1 do
4: pt,n ← uniform distribution over set of actions
5: end for
6: while ||pt − pt−1|| > ε do
7: for n = 1, . . . , (M + 1)N + 1 do
8: at,n ← action chosen from distribution pt,n

9: end for
10: for n = 1, . . . , (M + 1)N + 1 do
11: at,−n ← (at,l : l �= n)
12: for all (r, s) actions of player n do
13: pr→s

t,n ← pt,n

14: pr→s
t,n (r) ← 0

15: pr→s
t,n (s) ← pt,n(r) + pt,n(s)

16: Δ(r,s),t,n ← exp (η
∑t−1

u=1 E(Un(pr→s
u,n ,au,−n)))

∑
(x,y):x�=y exp (η

∑t−1
u=1 Un(p

x→y
u,n ,au,−n))

17: pt,n ← fixed point of equation pt,n =
∑

(i,j):i�=j p
r→s
t,n Δ(r,s),t,n

18: end for
19: end for
20: t ← t + 1
21: end while
22: end procedure

The algorithm initializes the strategies at each process to be uniformly ran-
dom. At each iteration t, an action is chosen for each player according to the
probability distribution pt,n of player n. After observing the actions from other
players, the probability distribution pt,n is updated as follows. For each pair of
actions r and s, the new probability distribution pr→s

t,n is generated, in which all
of the probability mass allocated to action r is instead allocated to action s. The
expected utility arising from pr→s

t,n can be interpreted as the expected benefit
from playing action s instead of r at previous iterations of the algorithm.

For each pair (r, s), a weight Δ(r,s),t,n is computed that consists of the relative
benefit of each distribution pr→s

t,n , i.e., pairs (r, s) such that allocating probability
mass from r to s produces a larger expected utility will receive higher weight.
A new distribution pt,n is then computed based on the weights Δ(r,s),t,n, so
that actions that produced a higher utility for the player will be chosen with
increased probability. The algorithm continues until the distributions converge.
The convergence of the algorithm is described by the following proposition.
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Proposition 4.1. Algorithm 4.1 converges to a local correlated equilibrium of
the game introduced in Sect. 2.

Proof. By [4], Algorithm 4.1 converges to a correlated equilibrium of the (MN +
N + 1)-player game. Equivalently, by Definition 3.3, for any si and p′

Di
∈ [0, 1],

the joint distribution P returned by the algorithm satisfies

E(UDi(pDi
,pD−i

,pA)) ≥ E(UDi(p′
Di

,pD−i
,pA)). (9)

Since the utility UDi is equal to UD for all i ∈ {1, . . . , N}, Eq. (9) is equivalent
to

E(UD(pDi
,pD−i

,pA)) ≥ E(UD(p′
Di

,pD−i
,pA)). (10)

Similarly, for any sj
i ∈ {S × {1, . . . , M}} ∪ {s10} and any p′

Aij
, we have

E(UAij (pD,pA−ij
, pAij

)) ≥ E(UAij (pD,pA−ij
, p′

Aij
)) (11)

which is equivalent to

E(UA(pD,pA−ij
, pAij

)) ≥ E(UA(pD,pA−ij
, p′

Aij
)) (12)

Equations (10) and (12) imply that the output of Algorithm 4.1 satisfies the
conditions of Definition 3.4 and hence is a local correlated equilibrium. �	

We now discuss the complexity of the algorithm.

Proposition 1. With probability (1 − δ), Algorithm 4.1 returns an ε-correlated
equilibrium using O

(
N2(M+1)+N

ε2 ln
(

N2(M+1)+N
δ

))
evaluations of the utility

function.

Proof. By [4, Chapter 7, Sect. 7.4], learning-based algorithms return an ε-
correlated equilibrium with probability (1−δ) within maxn

16
ε2 ln NnK

δ iterations,
where Nn is the number of actions for player n and K is the number of players,
incurring a total of 16NnK

ε2 ln NnK
δ evaluations of the utility function. In this case,

Nn ≤ N and K = N(M + 1) + 1, resulting in the desired complexity bounds. �	

Proposition 1 shows that convergence of the algorithm is sublinear in the number
of processes, with a total complexity that is quadratic in the number of processes
and linear in the number of stages.

4.2 Best Response for the Defender

We now present an approach for approximating the best response of the defender.
In this approach, the set of possible responses at si is discretized. Define

V = {sz
i : si ∈ S , z = 1, . . . , Z}

for some integer Z > 0. For any V ′ ⊆ V , define pD(si;V ′) = 1
Z |{sz

i : z =
1, . . . , Z} ∩ V ′|, and define pD(V ′) to be the resulting vector of tagging proba-
bilities. For a given adversary strategy, say pA, let f(V ′) = UD(pD(V ′), pA).
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Proposition 2. The function f(V ′) is submodular as a function of V ′, that is,
for any V ′, V ′′ with V ′ ⊆ V ′′ and any sz

i /∈ V ′′,

f(V ′ ∪ {sz
i }) − f(V ′) ≥ f(V ′′ ∪ {sz

i }) − f(V ′′).

Proof. Consider UD as defined in Eq. (1). In this case, the first term is equal to

∑
si∈S

CD(si)
Z

|{sz
i : z = 1, . . . , Z} ∩ V ′|,

which is modular as a function of V ′. The second term can be written as

∑
ω

π(ω)
M∑

j=1

(pT (j;ω)αD + pR(j;ω)βD
j ),

where pT (j;ω) (resp. pR(j;ω)) denotes the probability that the flow is tagged
and trapped (resp. reaches destination j) when the sample path is ω and the
defender strategy is pD(V ′) (the V ′ is omitted from the notation for simplicity).
Since the last destination that is reached before dropping out is determined by
the choice of path (denote this destination j(ω)), we have

M∑
j=1

(pT (j;ω)αD + pR(j;ω)βD
j ) = g(ω;V ′)αD + (1 − g(ω;V ′))βD

j(ω)

= g(ω;V ′)(αD − βD
j(ω)) + βD

j(ω).

Since αD −βD
j(ω) ≥ 0 and βD

j(ω) is independent of pD(V ′), it suffices to show that
g(ω;V ′) is submodular as a function of V ′. Let V ′ ⊆ V ′′ and sz

i /∈ V ′′. We can
write

g(ω;V ′′) = 1 −

⎡
⎢⎢⎣ ∏

sik
∈ω:

ik=i

(1 − pD(sik
))

⎤
⎥⎥⎦

⎡
⎢⎢⎣ ∏

sik
∈ω:

ik �=i

(1 − pD(sik
))

⎤
⎥⎥⎦

= 1 − γ(V ′′)(1 − pD(si))r(si;ω),

where pD(sik
) denotes the tagging probability of node sik

under the policy
pD(V ′) and

γ(V ′′) =
∏

sik
∈ω:

ik �=i

(1 − pD(sik
)), r(si;ω) = |{sik

∈ ω : ik = i}|.

Hence, g(ω;V ′′ ∪ {sz
i }) − g(ω;V ′′)

= 1 − γ(V ′′)(1 − (pD(si;V ′′) +
1
Z

))r(si;ω) − (1 − γ(V ′′)(1 − pD(si;V ′′)))r(si;ω)

= γ(V ′′)
[
(1 − pD(si;V ′′))r(si;ω) − (1 − pD(si;V ′′) − 1

Z
)r(si;ω)

]
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When V ′ ⊆ V ′′, pD(si;V ′) ≤ pD(si;V ′′), and hence

(1−pD(si;V ′′))r−(1−pD(si;V ′′),
1
Z

)r ≤ (1−pD(si;V ′))r−(1 − pD(si;V ′)− 1
Z

)r.

Furthermore, V ′ ⊆ V ′′ implies γ(V ′ ≥ γ(V ′′). Hence

g(ω;V ′ ∪ {sz
i }) − g(ω;V ′) ≥ g(ω;V ′′ ∪ {sz

i }) − g(ω;V ′′),

completing the proof of submodularity. �	

Submodularity of f(V ′) implies the following.

Proposition 4.2. There exists an algorithm that is guaranteed to select a set V ∗

satisfying f(V ∗) ≥ 1
2 max {f(V ′) : V ′ ⊆ V } within O(NZ) evaluations of UD.

Proof. The proof follows from submodularity of V ′ and [3]. �	

4.3 Best Response for the Adversary

The best response of the adversary to a given defender strategy is described
here. Firstly, we present the following preliminary lemma.

Lemma 2. Consider a defense policy pD. For each destination dj
b ∈ Dj, let

Ωdj
b

denote the set of paths that originate at s10 and terminate at dj
b. For

any path ω, let p(ω) denote the probability that a flow reaches the destina-
tion without being tagged and trapped. Finally, for every dj

b, choose a path
ω∗

dj
b

∈ arg max {p(ω) : ω ∈ Ωdj
b
}. Let

ω∗ ∈ arg max {p(ωdj
b
) : dj

b ∈ Dj , j = 1, . . . , M}.

Finally, define the policy p∗
A by p∗

A(sj
i , s

j′
i′ ) =

{
1, (sj

i , s
j′
i′ ) ∈ ω∗

0, else
Then, ω∗ ∈

BR(pD).

Proof. Let pA be any adversary policy, and let Ω denote the set of paths that
are chosen by the policy with nonzero probability. The utility of the adversary
can be written as

UA =
∑
ω∈Ω

π(ω)(p(ω)βA
j(ω) + (1 − p(ω))αA)

=
M∑

j=1

∑
dj

b∈Dj

∑
ω∈Ω

d
j
b

π(ω)(p(ω)βA
j + (1 − p(ω))αA,

where j(ω) is equal to the stage where the path terminates and π(ω) is the
probability that the path is chosen under this policy. The utility UA is then
bounded above by the path that maximizes p(ω)(βA

j −αA), which is exactly the
path ω∗. �	
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By Lemma 2, the following approach suffices to select a best response to
a given defense policy. For each destination in

⋃M
j=1 Dj , choose a path to that

destination that maximizes p(ω) while traversing destinations at all intermediate
stages. Then, among those paths, select the one that maximizes p(ω)(βA

j − αA).
An approach for computing the maximal path is shown as Algorithm 4.2.

Lines 5–16 describe a Dijkstra-like procedure for computing the sequence of
processes that maximize the probability of reaching dj

b ∈ Dj without being
tagged or trapped. The following proposition describes the optimality guarantees
of Algorithm 4.2.

Algorithm 4.2. Algorithm for computing adversary’s best response.
1: procedure Adversary BR
2: for j = 1, . . . , M do
3: for dj

b ∈ Dj do
4: Q ← {dj

b}
5: pA(dj

b, d
j
b) ← 1

6: while Q �= {S × {1, . . . , M}} ∪ {s10} do
7: Z ← neighbors of Q
8: for sj′

i ∈ Z do

9: z(sj′
i ) ← max {(1 − pD(sj′

i ))pA(sj′′
i′ , dj

b) : si′ ∈ N (si) ∩ Q}
10: r(sj′

i ) ← arg max {(1 − pD(sj′
i ))pA(sj′′

i′ , dj
b) : si′ ∈ N (si) ∩ Q}

11: end for
12: s∗ ← arg max {z(sj′

i ) : sj′
i ∈ Z}

13: Q ← Q ∪ {s∗}, pA(s∗, dj
b) ← z(s∗), next(s∗, dj

b) ← r(s∗)
14: end while
15: u(dj

b) ← pA(s0, d
j
b)β

A
j

16: end for
17: end for
18: d∗ ← arg max {u(dj

b) : b ∈ Dj , j = 1, . . . , M}
19: ω∗ ← {s0}, z ← s0
20: while z �= d∗ do
21: z ← next(z, dj

b)
22: ω∗ ← ω∗ ∪ {z}
23: end while
24: return ω∗

25: end procedure

Proposition 4.3. The path ω∗ returned by Algorithm 4.2 is a best response to
the defender strategy pD.

Proof. By Lemma 2, it suffices to show that the procedure of Lines 5–16 results in
a path with maximum probability of reaching dj

b without tagging and trapping.
For any path ω ∈ Ωdj

b
, the probability that the flow reaches dj

b without being
tagged or trapped is equal to

∏
si∈ω (1 − pD(si)). Maximizing this probability is
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equivalent to minimizing −
∑

si∈ω log(1 − pD(si)), making the problem equiva-
lent to finding the shortest path from s0 to dj

b in a graph where the edge weights
are equal to − log(1 − pD(si)) for each edge incoming to sj′

i , j′ ∈ {1, . . . , M}.
Since Lines 5–16 are equivalent to Dijkstra’s algorithm on this modified graph,
the path that is computed is a path from s0 to dj

b that minimizes the probability
of tagging. �	

5 Numerical Analysis

In this section, we provide the experimental validation of our model and results
using real-world attack data set obtained using Refinable Attack INvestigation
system (RAIN) [10] for a ScreenGrab attack. We implement our model and run
Algorithm 4.1 on the provenance graph generated using the system log data
obtained using the RAIN system for a ScreenGrab attack. Using the results
obtained we verify the correctness of the proposed algorithm and also perform
sensitivity analysis by varying the trap locations in the system, and the traffic
and tagging cost of the processes. This analysis enable us to infer the optimal
strategies of the players and the sensitivity of the model with respect to cost
parameters for a given attack data set (provenance graph with specified des-
tinations and trap locations). In order to apply the proposed analysis on any
real-time data attack data set, one need to construct the provenance graph for
the system under consideration and run Algorithm 4.1 on this graph to obtain
the defense policy, i.e., tagging locations, at a local equilibrium of the multi-stage
game.

We consider provenance graph generated using RAIN for a system under-
going ScreenGrab attack in which the implant-core downloads a ScreenGrab
program which occasionally captures screenshots of the victim’s desktop and
sends selected images to the attacker’s server [10]. The provenance graph con-
sists of 12 processes as shown in Fig. 2a. On this data, we analyze a two-stage
attack. Thus N = 12 and M = 2. The vulnerable processes in the system are
λ = {s1, s6, s12} and the destinations in stage 1 and stage 2 are D1 = s5 and
D2 = s12, respectively. Node 12 represents the ScreenGrab process whose con-
trol is desired by the adversary. The cost parameters of the players are set as
βA
1 = βA

2 = 300, αA = αD = −100, βD
1 = βD

2 = 300, and c = −100. For this
system setting, we analyze the strategies of the players PA and PD correspond-
ing to the correlated equilibrium obtained using Algorithm 4.1. We validate our
results in Sect. 4 using three test cases. Test cases 1 and 2 are setup in such a
manner that the optimal policy of the adversary can be directly obtained. We
compare the adversary’s policy obtained using our approach with the optimal
policy to verify the correctness. In case 1, the locations of the trap nodes in
the system are assigned such that there exists an action set for the adversary
which assures his/her win irrespective of the defense’s strategy. In case 2, the
trap nodes in the system are set such that the adversary is guaranteed to arrive
at the destination of stage 1 irrespective of the defense’s action, and the defense
is guaranteed to detect the adversary in stage 2 if at least one of the process
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in the system is tagged. For cases 1 and 2, the traffic at every node is kept
same (B(si) = 0.0833, for i = 1, . . . , 12) and hence the tagging cost of a process
depends only on its tagging probability. In case 3, we analyze the impact of the
traffic at the processes and c on the defender’s policy and the performance of
the algorithm.

Case (i): The trap setting is T = {s2, s6}. Here, there exists a path from
the pseudo-process s0 to the final destination s12 of stage 2 passing through
s5, the destination of stage 1, without any trap nodes. The optimal strategy of
the adversary is to perform transitions to traverse this path irrespective of the
strategy of the defender and win the game. We ran Algorithm 4.1 on this setup
of the system, and the results are shown in Fig. 2a. The adversary takes the path
s0 → s1 → s5 → s10 → s11 → s12 with probability one and wins the game as
expected (shown in red in Fig. 2a). The tagging probabilities of the processes
are shown in red (these values are rounded to two decimal places). These obser-
vations demonstrate that the adversary’s policy for this case is governed by the
system topology due to the presence of a path without traps.

Case 2: Here, T = {s2, s6, s11} and there exists a path from s0 to s5, the
destination of stage 1, that has no trap nodes in it. However, all possible paths
from s5 to s12 have traps. As the adversary is guaranteed to reach the destination
in stage 1 without getting detected by the defense, its optimal policy in stage 1
is to take the path without traps. Later in stage 2, it is optimal for the adversary
to drop out of the game as the defense is guaranteed to detect it if at all any one
of the process in the system is tagged. The results obtained by our algorithm is
in agreement with the optimal policy. According to the output of the algorithm,
there are three possible paths for the adversary: (a) with 0.4857 probability
s0 → s1 → s5 → s7 and drops out of the game, (b) with 0.0286 probability
s0 → s1 → s5 → s10 and drops out of the game, and (c) with 0.4857 probability
s0 → s1 → s5 and drops out of the game. Notice that in all three cases the
adversary reaches stage 1 and then drops out in stage 2. Further, the policy of the
defense does not depend on stage and this is reflected in the tagging probabilities
obtained (rounded to two decimal places and shown in red in Fig. 2b).

Case 3: For the trap setting T = {s2, s6, s11}, we study two cases, case 3(a) and
case 3(b), by varying the traffic B and the fixed tagging cost c. The results of
these scenarios are then compared with that of case 2 (case 2 has the same trap
setting and equal traffic at all processes, i.e., B(si) = 0.0833 for i = {1, . . . , 12}).
The chosen average traffic at the processes and the obtained tagging probabilities
corresponding to the output of Algorithm 4.1 for cases 3(a) and 3(b) are given
in Table 1.

In case 3(a), we analyze a scenario where the trap nodes s2, s6, and s11
are the busiest processes in the system and c = −100. Notice that, the tagging
probabilities of the processes s2, s6, s11 are lesser than that in case 2, as expected.
For processes with higher traffic than case 2, the tagging probabilities either
remain same as in case 2 or decrease slightly. For processes with lower traffic than
in case 2, the tagging probabilities either remain same as in case 2 or increase
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Fig. 2. Provenance graph built using real world log data from RAIN system for Screen-
Grab attack with specified set of destinations and trap nodes.

slightly. Although there are changes in the tagging probabilities of the processes
with respect to variation in the traffic in the two cases (case 2 and case 3(a)),
it is not significant due to the small value of fixed tagging cost. To understand
the sensitivity with respect to c, we test the algorithm after increasing c.

Table 1. Average traffic and tagging probabilities of the processes for ScreenGrab
attack

Node # 1 2 3 4 5 6 7 8 9 10 11 12

B(si) 0.03 0.25 0.1 0.03 0.03 0.25 0.03 0.03 0.03 0.03 0.25 0.03

pD(si) c = −100 0.05 0.56 0.5 0.5 0.03 0.86 0.15 0.5 0.5 0.53 0.5 0.48

pD(si) c = −10000 0 0 0.5 0.47 0.16 0 0 0.5 0.5 0.05 0 0

In case 3(b), for the same trap setting and average traffic we assign c =
−10000 to study the sensitivity with respect to c. As the tagging costs are very
high, the defense decides not to tag most of the processes. Even though the
processes s2, s6, s11 are traps, their tagging probabilities are zero due to the
large tagging cost. Also, notice that the tagging probabilities of processes s3, s8
and s9 remain same in cases 2, 3(a) and 3(b). The tagging probability of s4 does
not alter much. Notice that these processes have lower traffic rates and there are
paths from these processes to the final destination s12, but there are no paths
to reach them passing through s5. As the defense is unaware of the stages of
the attack, it tags processes s3, s8 and s9 with 0.5 probability and s4 with a
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slightly less probability (since B(s4) is slightly higher). By comparing the values
of pD for case 3(a) and case 3(b), we infer that the least busy processes have
more chance of getting tagged than a trap node when the tagging costs are large.
Case 3 thus demonstrates the sensitivity of the players’ policies with c.

6 Conclusion and Future Work

In this paper, we developed a game theoretic model based on a DIFT detection
system to obtain an efficient allocation of security resources during multi-stage
attacks. Our model is a two-player (DIFT vs. APT) stochastic nonzero-sum game
with incomplete information. This formulation captures the interaction between
the DIFT system and the APT, the multi-stage nature of the attack, and the
information asymmetry among the players. The game unfolds in a sequence
of stages where each stage in the game corresponds to a stage in the attack
characterized by a unique set of destinations. Note that, computation of Nash
equilibrium is in general NP-hard, for nonzero-sum games of the type considered
here. To this end, we first proposed an efficient algorithm for computing a local
correlated equilibrium of this game. Then we derived algorithms to find the best
responses of both the players. The best response for the APT is obtained by
proving that this computation is equivalent to a shortest path on the prove-
nance graph constructed using the system log data. For the DIFT system, we
showed that the payoff function is submodular and then exploited the submod-
ularity to obtain an approximate algorithm to compute the best response. The
proposed algorithms and results are validated using the provenance graph con-
structed from the real-world attack data set obtained using refinable attack
investigation system (RAIN). The experimental results obtained shows that the
proposed model is successful in detecting multi-stage APTs. Characterizing the
Nash equilibria for this game and analyzing the uniqueness of Nash equilibria are
part of future work. In addition, modeling and analysis of DIFT-based detection
system with unspecified trap nodes and incorporating the feature of untagging
processes at a later stage in the attack will also be a future work.
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Abstract. Deep neural networks are vulnerable to adversarial exam-
ples. Prior defenses attempted to make deep networks more robust by
either changing the network architecture or augmenting the training set
with adversarial examples, but both have inherent limitations. Moti-
vated by recent research that shows outliers in the training set have a
high negative influence on the trained model, we studied the relation-
ship between model robustness and the quality of the training set. We
first show that outliers give the model better generalization ability but
weaker robustness. Next, we propose an adversarial example detection
framework, in which we design two methods for removing outliers from
training set to obtain the sanitized model and then detect adversarial
example by calculating the difference of outputs between the original and
the sanitized model. We evaluated the framework on both MNIST and
SVHN. Based on the difference measured by Kullback-Leibler divergence,
we could detect adversarial examples with accuracy between 94.67% to
99.89%.

1 Introduction

Deep neural networks have demonstrated impressive performance on many hard
perception problems [9,12]. However, they are vulnerable to adversarial exam-
ples [7,16,18], which are maliciously crafted to be perceptually close to normal
examples but which cause misclassification. Prior defenses against adversarial
examples fall into the following categories: 1. Incorporating adversarial exam-
ples in the training set, a.k.a. adversarial training [7,18] 2. Modifying the network
architecture or training method, e.g., defense distillation [17] 3. Modifying the
test examples, e.g., MagNet [14] The first defense requires knowledge about the
process for generating adversarial examples, while the last two defenses require
high expertise and are often not robust [2].

We propose a new direction to strengthen deep neural networks against adver-
sarial examples. Recent research showed that outliers in the training set are
highly influential on the trained model. For example, outliers may be ambiguous
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images on which the model has low confidence and thus high loss [8]. Our insight
is that outliers give the model better generalization ability however also make
the model more sensitive to adversarial examples. When we detect and discard
outliers in the training set, the new model will be less sensitive to adversarial
examples. And we utilize the sensitivity difference between the original model
and the new model to distinguish adversarial examples from normal examples.

We call the process of removing outliers from the training set sanitization1.
We propose two methods for detecting outliers. First, for some AI tasks, we may
find canonical examples. For example, for handwritten digit classification, we
may use computer fonts as canonical examples. We trained a canonical model
using canonical examples, and then used the canonical model to detect outliers
in the training set. We call this method canonical sanitization. Second, for AI
tasks without canonical examples, we considered examples with large training
errors as outliers. We call this method self sanitization.

After culling the training set, we trained a model called the sanitized model.
We compared the robustness of the unsanitized model, which was trained on the
entire training set, with the sanitized model on adversarial examples using two
criteria with respect to different attack methods. For IGSM attack, the criterion
is classification accuracy of adversarial examples. For Carlini & Wagner attack,
the criterion is the average distortion. In Sect. 3.3, the result of sanitization
exactly validates that the outliers help model do better generalization meanwhile
decrease the robustness. Given the result, the sanitized models allow us to detect
adversarial examples which is shown in Sect. 3.4.

To measure the sensitivity difference, we computed the Kullback-Leibler
divergence from the output of an example on the unsanitized model to the out-
put of the same example on the sanitized model and found that this divergence
was much larger for adversarial examples than for normal examples. Based on
this difference, we were able to detect the adversarial examples generated by the
Carlini & Wagner attack on MNIST and SVHN at 99.26% and 94.67% accuracy,
respectively. Compared to prior work for detecting adversarial examples (e.g.,
[15]), this approach requires no knowledge of adversarial examples.
We make the following contributions.

– We propose two methods for detecting outliers in the training set: canonical
sanitization and self-sanitization. By performing data sanitization, we show
how the outliers will affect the model’s robustness and generalization ability.

– We propose a new adversarial example detection framework based on the
sanitized model. The detector leverages the Kullback-Leibler divergence from
the unsanitized model to the sanitized model. Neither modifications to the
model structure nor data preprocessing methods are required.

1 Unlike data sanitization, which commonly modifies individual datum, we modify no
example but merely remove outliers from the training set.
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2 Methodology

2.1 Definitions

– Normal examples are sampled from the natural data generating process. For
examples, images of handwritten digits.

– Outliers are examples in the training set of normal examples. They are dif-
ficult to classify by humans. Sanitization is the process of removing outliers
from the training set.

– Adversarial examples are crafted by attackers that are perceptually close to
normal examples but that cause misclassification.

– Unsanitized models are trained with all the examples in the training set. We
assume that the training set contains only normal examples.

– Sanitized models are trained with the remaining examples after we remove
outliers from the training set.

2.2 Sanitization

Sanitization is the process of removing outliers from the training set. We propose
two automatic sanitization methods.

Canonical Sanitization. This approach applies to the AI tasks that have
canonical examples. For example, for handwritten digit, computer fonts may
be considered canonical examples2. Based on this observation, we use canonical
examples to discard outliers in our training set X by the following steps:

– Augment the set of canonical examples by applying common transformations,
e.g., rotating and scaling computer fonts.

– Train a model f using the augmented canonical examples.
– Use f to detect and discard outliers in the training set X. An example x(i) is

an outlier if f(x(i)) has a low confidence on y(i), the class for x(i).

Self Sanitization. Not all AI tasks have canonical examples. For such tasks,
we use all the examples to train a model, and then discard examples that have
high training errors.

After removing outliers from the original training set, we get a sanitized
set which is used to train a model, called sanitized model. Then, we evaluate if
the sanitized model is more robust than unsanitized models using two metrics:
classification accuracy and distortion of adversarial examples.

2 Some computer fonts are difficult to recognize and therefore are excluded from our
evaluation
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2.3 Detecting adversarial examples

We take advantage of the Kullback-Leibler divergence [10] between the outputs
of the original and the sanitized models to depict the difference of sensitivity to
the adversarial examples. The Kullback-Leibler divergence from a distribution
P to Q is defined as

DKL (P ‖ Q) =
∑

i

P (i) log
P (i)
Q (i)

By setting a proper threshold, we are able to detect nearly all adversarial exam-
ples with acceptable false reject rate. No modifications to the original model
structure or other data outside the original dataset are required.

The detection method is hard to distinguish between adversarial examples
and normal examples when the distortion of the adversarial image is very small.
To address this problem, we designed a complete adversarial example detection
framework. We will discuss the framework detailedly in Sect. 3.4.

3 Evaluation

3.1 Set up

We used two data sets, MNIST3 and SVHN4, to evaluate our proposed method.
We performed both canonical sanitization and self sanitization on MNIST and
only self sanitization on SVHN. For SVHN, we pre-processed it with the following
steps to get individual clean digit images. After the process, we obtained 40556
images from the original SVHN training set and 9790 test images from the
original SVHN test set.

1. Cropping individual digits using the bounding boxes.
2. Discarding images whose either dimension is less than 10.
3. Resizing the larger dimension of each image to 28 while keeping the aspect

ratio, and then padding the image to 28 × 28. When padding an image, we
used the average color of the border as the padding color.

The models we used to train these two datasets are different. We designed
Convolutional Neural Networks for MNIST and SVHN separately. Correspond-
ingly, we achieved an accuracy of 99.3% and 98.62% on the unsanitized models.

– MNIST CNN: Input → (Conv + Pool) * 2 → FC → FC → Output
– SVHN CNN: Input → (Conv + Conv + Pool) * 3 → FC → FC → Output

Given the trained model, we performed two popular attacks, Iterative Gra-
dient Sign Method (IGSM) [7,11] and Carlini & Wagner’s attack [2], to attack
the CNN models. We will discuss the attacks in Sect. 3.3.
3 http://yann.lecun.com/exdb/mnist/.
4 http://ufldl.stanford.edu/housenumbers/.

http://yann.lecun.com/exdb/mnist/
http://ufldl.stanford.edu/housenumbers/
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3.2 Sanitization

Canonical Sanitization. We did canonical sanitization on MNIST by dis-
carding outliers that are far different from canonical examples. We chose 340
fonts containing digits as canonical examples. To accommodate variations in
handwriting, we also augmented the fonts by scaling and rotation. After the
augmentation, we acquired 71400 images, from which we randomly chose 80%
as the training set and the remaining 20% as the test set. We trained the MNIST
CNN on canonical examples and achieved an accuracy of 98.7%. We call this the
canonical model.

We fed each example in MNIST training set to the canonical model. If the
example’s confidence score of the correct class was below a threshold, we consid-
ered it an outlier and discarded it. Figure 1 shows examples with low and high
confidence. Table 1 shows the number of examples left under different thresholds.
We used these examples to train the sanitized models.

(a) Confidence < 0.7 (b) Confidence > 0.999 99

Fig. 1. Examples in MNIST with low and high confidence, respectively.

Table 1. Size of the MNIST training set after discarding examples whose confidence
scores on the canonical model are below a threshold

Threshold 0 0.7 0.8 0.9 0.99 0.999 0.9999

Set size 60000 51241 50425 49128 44448 38230 30618

Self-Sanitization. We did self sanitization on both MNIST and SVHN. To
discard outliers in self sanitization, we trained the CNN for MNIST and SVHN
separately, used the models to test every example in the training set, and con-
sidered examples whose confidence scores were below a threshold as outliers.
Tables 2 and 3 show the number of examples left under different thresholds.
We used these examples to train the sanitized models. Table 3 also shows that
the sanitized models maintain high classification accuracy when it has adequate
training data to prevent overfitting.
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Table 2. Size of the MNIST training set after discarding examples whose confidence
scores on the self-trained model are below a threshold

Threshold 0 0.999 0.9999 0.99999 0.999999 0.9999999

Set size 60000 56435 52417 45769 36328 24678

Table 3. The sizes of the sanitized SVHN training set and the classification accuracy
of the self-sanitized models at different thresholds

Threshold Training set size Classification accuracy (%)

0 40556 94.26

0.7 39330 93.68

0.8 38929 93.22

0.9 38153 92.74

0.99 34408 91.30

0.999 28420 89.41

3.3 Robustness against adversarial examples

We ran the IGSM and Carlini & Wagner attacks on both the unsanitized and
sanitized models.

IGSM Attack. Figure 2 compares the classification accuracy of the unsanitized
and sanitized models on the adversarial examples generated by the IGSM attack
on MNIST, where Fig. 2a and b correspond to canonical sanitization and self
sanitization, respectively.
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Fig. 2. Classification accuracy of normal and IGSM adversarial MNIST examples in
different threshold. The threshold 0 represents the original data set.

Figure 2 shows that a higher threshold of sanitization increases the robustness
of the model against adversarial examples and maintains classfication accuracy
on normal examples. For example, on adversarial examples generated after five
iterations of IGSM, the classification accuracy is 82.8% with a threshold of 0.9999
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in canonical sanitization, and is above 92.6% with a threshold of 0.9999999 in
self sanitization. For normal examples, the classfication accuracy is always higher
than 95.0% in different threshold.

Carlini & Wagner’s Attack. We ran Carlini & Wagner’s L2 target attack
to generate adversarial examples on our sanitized models for both MNIST and
SVHN. Figures 3 and 4 show that the sanitized models forced the adversarial
examples to add larger distortions in order to fool the sanitized models. The
higher the threshold, the larger the distortion.
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Fig. 3. Average L2 distortions of normal and C&W’s adversarial MNIST examples in
different threshold. The threshold 0 represents the unsanitized model.
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Fig. 4. Average L2 distortions of nor-
mal and C&W’s adversarial SVHN
examples in different threshold. The
threshold 0 represents the unsanitized
model.
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Fig. 5. SVHN: CDF of the KL diver-
gence from the output of unsanitized
model to that of a sanitized model with
different C&W attack condidences.

Discussion. From the experiments, we concluded that the original dataset with
outliers has higher generalization ability but weaker robustness. With the san-
itization, the model obtained much more robustness by only sacrificing limited
generalization ability.

3.4 Detecting adversarial examples

We evaluated the effectiveness of using the Kullback-Leibler divergence to detect
adversarial examples (Sect. 2.3).
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MNIST. We generated adversarial examples on two sanitized models on
MNIST:

– A canonical sanitized model. The discard threshold was set to be 0.9999.
– A self sanitized model. The discard threshold was set to be 0.9999999.

We computed the Kullback-Leibler divergence from the output of the unsan-
itized model to that of each of the sanitized models.

Figure 6 compares the CDF of Kullback-Leibler divergence between nor-
mal and adversarial examples generated by IGSM after different iterations. It
shows that the majority of normal examples have very small divergence, while
most adversarial examples have large divergence where more iterations generated
examples with higher divergence. Figure 7 compares the CDF of Kullback-Leibler
divergence between normal and adversarial examples generated by the Carlini
& Wagner attack using different confidence levels, which is more prominent.
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Fig. 6. MNIST: CDF of KL divergence from the output of the unsanitized model to
the output of a sanitized model with different IGSM iterations.

Fig. 7. MNIST: CDF of KL divergence from the output of the unsanitized model to
the output of a sanitized model with different C&W confidences.

Table 4 shows the accuracy of detecting adversarial examples based on the
KL divergence from the unsanitized model to a canonical sanitized model. We
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used a threshold of KL divergence to divide normal and adversarial examples:
examples below this threshold were considered normal, and all above adversarial.
We determined the threshold by setting a target detection accuracy on normal
examples. For example, when we set this target accuracy to 98%, we needed a
threshold of KL divergence of 0.0068. At this threshold, the accuracy of detecting
all the Carlini & Wagner adversarial examples at all the confidence levels is all
above 95%. The accuracy of detecting IGSM adversarial examples is high when
the number of iterations is high (e.g., 10 or 15). When the number of iterations is
low (e.g., 5), the detection accuracy decreases; however, since the false negative
examples have low KL divergence, they are more similar to normal examples
and therefore can be classified correctly with high probability as discussed next.

Table 4. MNIST: accuracy of detecting adversarial examples based on the Kullback-
Leibler divergence from the unsanitized model to a canonical sanitized model when
detection accuracy for normal examples is 98%

Attack IGSM (iterations) Carlini & Wagner (confidence)

Attack parameter 5 10 15 0 0.1 0.5 1 3 5

Detection accuracy (%) 33.80 85.47 96.31 99.26 99.26 100.00 99.26 98.52 95.56

To take advantage of both the KL divergence for detecting adversarial exam-
ples and the sanitized models for classifying examples, we combined them into
a framework shown in Fig. 8. The framework consists of a detector, which com-
putes the KL divergence from the unsantized model to the sanitized model and
rejects the example if its divergence exceeds a threshold, and a classifier, which
infers the class of the example using the sanitized model. The framework makes
a correct decision on an example when

– if the example is regard as normal, the classifier correctly infers its class.
– if the example is adversarial, the detector decides the example as adversarial
or the classifier correctly infers its true class.

Table 5 shows the accuracy of this system on adversarial exampled generated
by the IGSM attack on a canonical sanitized model on MNIST. At each tested
iteration of the IGSM attack, the accuracy of this system on adversarial examples
is above 94%. The accuracy of this system on the normal examples is 94.8%.

SVHN. Figure 5 compares the CDF of the Kullback-Leibler divergence of
normal examples and adversarial examples generated by the Carlini & Wag-
ner attack at different confidence levels. We trained the sanitized model with a
discard threshold 0.9 (self sanitization). We can see normal examples have small
divergence, while all the Carlini & Wagner adversarial examples under difference
confidence levels have large divergence.
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Fig. 8. A framework combining a detector, which detects if an example is adversarial
based on the KL divergence from the unsantized model to the sanitized model, and a
classifier, which classifies the example using the sanitized model.

Table 5. Accuracy of the framework in Figure 8. The column “detection”, “classifier”,
and “combined” shows the accuracy of the detector, classifier, and system overall. The
overall accuracy on normal examples is 94.8%.

IGSM iterations Accuracy (%)

Detector Classifier Overall

5 33.80 99.84 99.89

10 85.47 72.72 96.03

15 96.31 1.71 96.37

Table 6 shows the impact of sanitization threshold on the detection accuracy
on adversarial examples generated by the Carlini & Wagner attack. We auto-
matically determined the threshold of KL divergence by setting the detection
accuracy on normal examples to 94%. Table 6 shows that as the sanitization
threshold increases from 0.7 to 0.9, the detection accuracy increases. However,
after the sanitization threshold increases even further, the detection accuracy
decreases. This is because after the sanitization threshold exceeds 0.9, the size
of the training set decreases rapidly, which causes the model to overfit.

4 Discussion and future work

From the observation in Sect. 3.3 that the sanitized models will obtain higher
robustness, we speculate the causation of this phenomenon is that the outliers
will extend the decision boundary and give the model better generalization abil-
ity. However, since the outliers are usually not of big proportion and not represen-
tative, the extended decision boundary would also include adversarial examples.
We call this phenomenon as ’negative generalization’.

The state-of-the-art techniques of handling the negative generalization prob-
lem are various advanced adversarial retraining methods, which use adversarial
examples as a part of the training data and force the model to correctly clas-
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Table 6. SVHN: the impact of sanitization threshold on the accuracy of detecting
adversarial examples based on the KL divergence

Sanitization
threshold

Training
set size

KL divergence
threshold

Detection accuracy (%)

Attack confidence

0 0.5 1

0.7 39330 0.7295 93.50 94.56 94.67

0.8 38929 0.5891 93.56 94.67 95.72

0.9 38153 0.7586 94.67 94.78 95.78

0.99 34408 1.0918 90.00 91.17 92.56

0.999 28420 1.6224 83.22 85.78 87.33

sify. These methods are essentially enriching the proportion of the outliers and
making the decision boundary more sophisticated to improve the robustness.

In this paper, we focus on another direction. By culling the dataset, we
restrict the decision boundary thus also limit the negative generalization on the
sanitized model. The sanitized model can help to make a gap of the negative
generalization (sensitivity to adversarial examples) between itself and the origi-
nal model, while the capability of classifying normal examples for both models
would stay similar. This lets us leverage the gap to detect adversarial examples.

Section 3.4 showed that we can use the Kullback-Leibler divergence as a reli-
able metric to distinguish between normal and adversarial examples. In our
future work, we plan to evaluate if the attacker can generate adversarial exam-
ples to evade our detection if she knows our detection method.

5 Related work

Most prior work on machine learning security focused on improving the network
architecture, training method, or incorporating adversarial examples in training
[1]. By contrast, we focus on culling the training set to remove outliers to improve
the model’s robustness.

5.1 Influence of training examples

Influence functions is a technique from robust statistics to measure the estimator
on the value of one of the points in the sample [5,6]. Koh et al. used influence
functions as an indicator to track the behavior from the training data to the
model’s prediction [8]. By modifying the training data and observing its corre-
sponding prediction, the influence functions can reveal insight of model. They
found that some ambiguous training examples were effective points that led to
a low confidence model. Influence Sketching [19] proposed a new scalable ver-
sion of Cook’s distance [3,4] to prioritize samples in the generalized linear model
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[13]. The predictive accuracy changed slightly from 99.47% to 99.45% when they
deleted 10% ambiguous examples from the training set.

5.2 Influence of test examples

Xu et al. [20] observed that most features of test examples are unnecessary for
prediction, and that superfluous features facilitate adversarial examples. They
proposed two methods to reduce the feature space: reducing the color depth of
images and using smoothing to reduce the variation among pixels. Their feature
squeezing defense successfully detected adversarial examples while maintaining
high accuracy on normal examples.

6 Conclusion

Adversarial examples remain a challenging problem despite recent progress in
defense. In this paper, we study the relationship between outliers in the data set
and model robustness and propose a framework for detecting adversarial exam-
ples without modifying the original model architecture. We design two methods
to detect and remove outliers in the training set and used the remaining examples
to train a sanitized model. On both MNIST and SVHN, the sanitized models
improved the classification accuracy on adversarial examples generated by the
IGSM attack and increased the distortion of adversarial examples generated by
the Carlini & Wagner attack, which indicates that the sanitized model is less
sensitive to adversarial examples. Our detection is essentially leveraging the dif-
ferent sensitivity to adversarial examples of the model trained with and without
outliers. We found that the Kullback-Leibler divergence from the unsanitized
model to the sanitized model can be used to measure this difference and detect
adversarial examples reliably.

Acknowledgment. This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 1801751.
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Abstract. We seek to combine recent advances in game theory of
both cyber defense and deception to model the interactions between
an attacker and defender on a network. We define a new class of games
called (n, k, c,w, γ)-honeynet games which extend those defined in pre-
vious research. These games have incomplete and imperfect information
since the attacker is unaware of moves made by the defender to secure
a system, and the defender is not certain of the true identity of the
attacker.

Keywords: Game theory · Network security · Honeynets
Cyber defense

1 Introduction

Deception strategies attempt to prevent an attack through the use of misdirec-
tions, fake responses, and obfuscations [8]. However, many current techniques do
not employ game theoretic strategies when determining when and how resources
are to be allocated for use in deceptive scenarios. In this paper, we examine the
use of game theory to guide deception and cyber defense strategies. In particular,
we derive explicit expressions for the Nash equilibria of a network defense game
under specific conditions reflecting an insider threat scenario.

Existing work has modeled the interactions between a defender (attempting
to secure some system) and an attacker as a non-cooperative dynamic game with
and without complete information in behavioral game theory [4]. Other works
have used Instance-Based Learning Theory to model human decisions involving
hackers and analysts [2] or Prospect Theory, where people value gains and losses
differently based upon the greater emotional impact of losses versus gains [5].

In this preliminary paper, we model the interactions between an attacker
and defender using a game-theoretic framework. The basic premise is that there
is a defender seeking to protect a collection of hosts on some network from a
potential attacker. The defender has a fixed set of resources and, as a result, is
only able to defend at most k of the total hosts on the network – incurring a
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fixed cost for each host so defended. For symmetry, the attacker can attack at
most k hosts at a time, but does not incur a cost. For shorthand, a host which is
protected from attackers is referred to as a honeypot, and a honeynet is simply of
collection of connected honeypots. Under this setup, the attacker wins the game
if it attacks any host which is not a honeypot, otherwise the defender wins.

This setup resembles an insider threat scenario. From the attacker’s per-
spective, they are already on the network as an insider so they already know
the values of the hosts and so there is no need for reconnaissance. Further,
as an attacker, they can run a script that attacks multiple hosts regardless of
the number, so the cost of taking an action is negligible. From the defender’s
perspective, every time they swap out a real host with a honeypot they are
disrupting a service or otherwise inconveniencing their users, so each successive
defensive action is costly. Further the defender suffers a significant asymmetric
disadvantage because any undefended host that is attacked results in defeat.

We model our work after [3] and [6]. The former considers the case of a
wireless ad-hoc network where the defender is uncertain of the identity of a
particular node. The authors calculate the mixed strategy Nash equilibria in
the static one-shot game with a parameter γ that represents the probability
the node is malicious. We extend their work by assuming that not all resources
on the network have uniform importance, similar to the setup in [7]. However,
unlike [7], we also assume the presence of incomplete information where the
utility functions of some of the players are unknown. The incomplete information
arises from the defender’s uncertainty about the type of the node, only having
an initial assumption about the expected number of attackers.

The work in [3] is extended in [1], where the authors use signaling to convert
the game from one of incomplete information to one of imperfect information. In
this paper, we focus on the static case, while [1,3], and [6] go on to analyze the
iterated (dynamic) version of their respective games. However, our setup is more
general in that it allows for the node to attack more than one host at a time. In
addition, we include a cost to the defender deploying a honeypot, unlike [1]. We
note our work may also be considered an extension of [6], since the defender is
attempting to secure a collection of hosts rather than a single host.

The contributions of this preliminary paper will be the following: (a) We
formulate a static model for a game involving honeynets based upon prior art
that models deception, (b) we characterize Nash Equilibria for a general case
under slightly reduced assumptions, (c) We present a proof in Theorem 2 and
Lemma 3 of how such a network environment guarantees a significant defender
disadvantage. Our analysis also leads to the insight that a defender in such
scenarios must carefully balance the defense of systems. In particular, we show
that the intuitive approach of redirecting limited defenses to protect higher value
systems leaves them vulnerable through less defended lower value systems.

This paper is organized as follows: We setup our notation and definition of
the (n, k, c,w, γ)-honeynet game in Sects. 2 and 3. Section 4 discusses the general
case. We conclude in Sect. 5, providing avenues for further research into deception
using honeynets.
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2 Problem Setup

We now describe an (n, k, c,w, γ)-honeynet game. For a binary vector v ∈
{0, 1}n, let wt(v) denote the number of non-zero components of v. Let the
support of v be supp(v) = {i | vi = 1}. For a,d ∈ {0, 1}n, let δad = 1
if supp(a) ⊂ supp(d), 0 otherwise. We will often write a ⊂ d instead of
supp(a) ⊂ supp(d). Let c > 0, and γ ∈ (0, 1].

Definition 1. An (n, k, c,w, γ)-honeynet game consists of:

1. Two players N (the node) and D (the defender). With probability γ, N has
type E, which means the node is an enemy attacker, and otherwise N has
type F so that the node is friendly.

2. The set of actions for each player:
(a) If N has type E, then the set of actions for N is AE = {a ∈ {0, 1}n : 1 ≤

wt(a) ≤ k}. If ai = 1 for i ∈ [n], then N attacks host i.
(b) If N has type F , then the set of actions for N is AF = {0}. In this case,

N is a friendly node and it does not attack any hosts.
(c) The set of actions for D is AD = {d ∈ {0, 1}n : 0 ≤ wt(d) ≤ k}. If

di = 1 for i ∈ [n], then D places a honeypot at host i. Otherwise, D
places a regular host at i. The special action 0 is the defender choosing
not to place any honeypots. Note that AD = AE ∪ {0}.

3. A value wa ≥ 0 for each action a ∈ AF ∪ AE, where wa = 0 ⇔ a = 0.
4. The utility functions for each player. For each pair of actions a,d:

uN (a,d) = (1 − 2δad)wa

uD(a,d) = (2δad − 1)wa − c · wt(d)

These formulas hold independently of the type of N , with the understanding
that a = 0 when N is of type F .

5. KE = |AE | =
∑k

j=1

(
n
j

)
, and KD = |AD| = KE + 1.

This game is a Bayesian game. For shorthand, when N has type E, then uE

is the utility function for N , and similarly when N has type F , then uF is the
utility function for N . Then, expected utilities over the identity of N are:

uN (a,d) =uE(a,d)P (N = E) + uF (0,d)P (N = F ) = γ(1 − 2δad)wa

Similarly,

uD(a,d) =uD(a,d)P (N = E) + uD(0,d)P (N = F )

=γ
(
(2δad − 1)wa − c · wt(d)

)
+ (1 − γ)

( − c · wt(d)
)

=γ(2δad − 1)wa − c · wt(d)

From this point forward, we will abuse notation slightly and use uN , uD to mean
the expected values defined above.

In this model is that there are two players: a defender (D) and another node
(N) whose identity is unknown. With probability γ, the node is an attacker (i.e.,
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it has type E). We refer to a ∈ {0, 1}n as the attack vector, where a = 0 if and
only if the node is friendly and otherwise 1 ≤ wt(a) ≤ k.

The purpose for this is to model an insider threat scenario. A user on the
network knows the value of the weights wa because they are insiders and can
accurately recon the network, but perhaps do not have full access. The defender
cannot be sure which user is malicious, only that a certain proportion γ are.

The utility for the action a by the node and d by the defender is determined
by the hosts the node chooses to attack. If the node attacks at least one host
which is not a honeypot, then the attack is successful and the attack has utility
wa for the node. Otherwise, if the node only attacks honeypots, then the utility
for the attack is −wa from the point of view of the node. The defender has
a similar utility function except that the defender pays an additional cost for
defense which is represented by the parameter c.

The cost parameter can represent infrastructure cost in deploying virtual
machines, or disruption to a regular user. In our setup, the attacker has no cost
because for an insider reconnaissance is automatic and attacker cost is negligible.

Notice that one property of our model is that given an attack a, the value of
the attack, wa , depends only on the attack vector itself and not on which hosts
were undefended. Motivation from this setup comes from where an attacker gains
access to an entire group when they gain a foothold on a single host, say through
a single compromised credential and then move laterally through the group.

Our model can be interpreted as an extension of the work from [3] as illus-
trated in the next example for the case where w1 = w2.

Example 1. Suppose n = 2, k = 1, w1 = w2 = w, c = 0, and γ = 1 so that N is
always an attacker. Then, we have the following payoff matrix (shown below) for
our (2, 1, 0, (w,w), 1)-honeynet game where the each pair in the table represents
the attacker’s then defender’s payoff respectively.

(1,0) (0,1) (0,0)

(1,0) −w, w w,−w w,−w

(0,1) w,−w −w, w w,−w

Notice that without the (0, 0) column (i.e. the choice to defend neither host) this
is identical to the prototype strategic game from [3].

It can be shown that this game has a Nash equilibrium where both players
choose either host with 1

2 probability, identical to the Nash for the game from [3]
– meaning the defender will never choose to NOT defend either host provided
that there is no cost for defense (i.e., c = 0).

Our interest will be in games for which there is a cost parameter c associated
with defense, and both the attacker and defender can choose to attack/defend
at most k out of n hosts. We will be particularly interested in the case where
the weights associated with our games are non-decreasing. In other words, we
will be interested in games that have weights with the property that for any
a, ā ∈ {0, 1}n with ā ⊃ a, then wā ≥ wa . For shorthand, if a game has weights
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satisfying this property, then we say that the game has monotonic weights. We
will show that when a game has monotonic weights, then we can characterize
the actions chosen by the defender in any Nash equilibrium.

3 Nash Equilibria and Notation

A mixed strategy for the attacker can be defined by a vector p = (pa)a∈AA

satisfying 0 ≤ pa ≤ 1 and
∑

a pa = 1. Here, pa can be interpreted as the prob-
ability that the attacker will choose the action a = (a1, . . . , an). For instance,
if n = 4 and a = (0, 1, 1, 0), then pa is the probability the attacker will attack
hosts 2 and 3 simultaneously. Similarly, a mixed strategy for the defender can
be represented as a vector q = (qd)d∈AD

. When a single component pa = 1, p
then represents the pure strategy a. We will sometimes refer to a mixed strategy
simply as a strategy. If pa > 0, we say the action a is active in the strategy p. A
friendly node only has the pure strategy consisting of the single active action 0.

The utility functions for mixed strategies are

uE(p, q) =
∑

a∈AE

pauE(a, q) =
∑

a∈AE
d∈AD

pa qd uE(a,d) (1)

uD(p, q) =
∑

d∈AD

qduD(p,d) =
∑

a∈AE
d∈AD

pa qd uD(a,d) (2)

Definition 2. The simplex ΔM ⊂ R
M is the set of points

{
(x1, x2, . . . , xM ) |

∑
j xj = 1, xj ≥ 0

}
.

Defender mixed strategies q are in one-to-one correspondence with points in
ΔKD

, and likewise for attacker mixed strategies p and points in ΔKE
. 1

Definition 3. A mixed strategy Nash equilibrium (p∗, q∗) is a pair satisfying

uE(p∗, q∗) ≥ uE(p, q∗) for all p ∈ ΔKE

uD(p∗, q∗) ≥ uD(p∗, q) for all q ∈ ΔKD

In full generality, a mixed strategy pN for the Node player is either a vector
pE ∈ ΔKE

if N is of type E, or the pure strategy 0 if N is of type F . It is clear
that the equations of Definition 3 hold for uN (pN , q) exactly when they hold for
uE(pE , q), so we will focus on uE for finding equilibrium strategies.

4 The General Case

Consider general parameters of n and k. We begin by first deriving some con-
ditions on the components of any equilibrium strategy pair (p∗, q∗). Recall that
1 The domain of p∗

N is ΔKE

∐
Δ0, where Δ0 is just the point {1} representing the

friendly node’s unique strategy.
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we say a game has monotonic weights if for a, ā ∈ {0, 1}n with a � ā, wā ≥ wa .
If wā > wa , then the game has strictly monotonic weights.

For a strategy pair (p, q), let Ep,q denote the set of active actions in p for the
attacker. Similarly let Dp,q denote the set of active actions in q for the defender,
and let D+

p,q denote the non-zero actions in Dp,q. For strategy p and vector
w = (wa)a∈AE

, let <p,w>=
∑

a∈AE
pawa .

Theorem 1. Assume we have a mixed strategy Nash equilibrium (p∗, q∗) for an
(n, k, c,w, γ)-honeynet game. Then

uE(a, q∗) = wa

(
1 − 2

∑

d⊃a

q∗
d

)
(3)

uD(p∗,d) = 2γ
∑

a⊂d

p∗
awa − γ <p∗, w> −c · wt(d) (4)

uD(p∗,0) = −γ <p∗, w> (5)

Proof.

uE(a, q∗) =
∑

d∈AD

q∗
d

(
(1 − 2δad)wa

)

= wa

( ∑

d∈AD

q∗
d − 2

∑

d⊃a

q∗
d

)
= wa

(
1 − 2

∑

d⊃a

q∗
d

)

uD(p∗,d) =
∑

a∈AE

p∗
a

(
γ(2δad − 1)wa − c · wt(d)

)

=2γ
∑

a⊂d

p∗
awa − γ

∑

a∈AE

p∗
awa − c · wt(d)

∑

a∈AE

p∗
a

=2γ
∑

a⊂d

p∗
awa − γ <p∗, w> −c · wt(d)

The following corollary follows from Theorem 1 because for any a,a′ ∈ Ep∗,q∗ ,
uE(a′, q∗) = uE(a, q∗) and similarly for any d,d′ ∈ Dp∗,q∗ .

Corollary 1. Assume we have a mixed strategy Nash equilibrium (p∗, q∗). Then
for any a,a′ ∈ Ep∗,q∗ , and d,d′ ∈ D+

p∗,q∗ , we have

wa

(
1 − 2

∑

d⊃a

q∗
d

)
= wa′

(
1 − 2

∑

d⊃a′
q∗
d

)

2γ
∑

a⊂d

p∗
awa − c · wt(d) = 2γ

∑

a⊂d′
p∗
awa − c · wt(d′)

If 0 ∈ Dp∗,q∗ , then for any d ∈ D+
p,q,

2γ
∑

a⊂d

p∗
awa = c · wt(d) (6)
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The next claim, which holds in general, says that any active defender action
must cover at least one active attacker action.

claim. Let d ∈ D+
p∗,q∗ . Then

1. There exists an a ⊂ d such that a ∈ Ep∗,q∗ .
2. If wt(d) = 1, then d ∈ Ep∗,q∗ as well.

Proof. To prove (1), let d ∈ D+
p∗,q∗ . Then uD(p∗,d) ≥ uD(p∗,0) = −γ <p∗, w>,

which implies 2γ
∑

a⊂d p∗
awa ≥ c · wt(d). Since wt(d) > 0, there exists a non-

zero summand, i.e. there exists a ⊂ d with p∗
a > 0. For (2), If wt(d) = 1, then

there is only one possible summand: d itself, and thus d ∈ Ep∗,q∗ .

In general, deriving explicit expressions for (p∗, q∗) is challenging and may
involve a significant amount of casework. Particularly challenging is determining
the active actions for both the attacker and defender. Therefore, we will shift
our attention to scenarios where we can partially characterize (p∗, q∗) (and the
associated active actions). In particular, we will first focus on the case where
k = 1, and then move on to the case where our game has monotonic weights.

Rewriting the expressions from Theorem 1 for k = 1, we arrive at:

uD(p∗,d) = 2γp∗
dwd − γ <p∗,w> −c for d 	= 0 (7)

uD(p∗,0) = −γ <p∗, w> (8)
uE(a, q∗) = wa(1 − 2q∗

a) (9)

The next lemma characterizes (p∗, q∗) for k = 1.

Lemma 1. Suppose k = 1. Then, for any d,d′ ∈ D+
p∗,q∗ ,

p∗
d = p∗

d′
wd′

wd

For any a,a′ ∈ Ep∗,q∗ ,

q∗
a =

1
2

− wa′

wa

(
1
2

− q∗
a′

)

In addition,

1. D+
p∗,q∗ ⊂ Ep∗,q∗ .

2. If d ∈ AD, d 	= 0, and wd < c
2γ , then d 	∈ Dp∗,q∗ .

3. If q∗ is a mixed strategy with |D+
p∗,q∗ | ≥ 2, then for any d ∈ D+

p∗,q∗ , q∗
d ≤ 1

2 .

Proof. The expressions for p∗
a , q∗

d follow by applying Theorem 1 to (7), (8), (9).
(1) follows from Lemma 4. (2) follows by noting that if wd < c

2γ , then uD(p∗,d) <

uD(p∗,0), and so the defender will prefer action 0 over d. For 3), suppose that
there exist two non-zero actions d,d′ ∈ AD where q∗

d > 1
2 . Then, q∗

d′ = 1
2 −

wd ′
wd

(
1
2 − q∗

d

)
= 1

2 + ε, where ε > 0. However, q∗
d + q∗

d′ > 1, a contradiction.
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We note that p∗
a is inversely proportional to wa whereas q∗

d is proportional
to wd . Thus, the more valuable the host, the more likely it is defended. Because
more valuable hosts are more likely to be defended, it is then less likely to be
attacked given that the attacker and defender achieve a Nash equilibrium.

If |D+
p∗,q∗ | ≥ 1, let H =

(∑
d∈D+

p∗,q∗
wd

−1
)−1 be the unnormalized harmonic

mean of the weights associated to the actions in D+
p∗,q∗ . Choose a single d ∈ D+

p∗,q∗

and let p1 = pd , w1 = wd . Let s = q∗
0.

Lemma 2. Suppose k = 1. The payoffs for each player at the Nash equilibrium
(p∗, q∗) satisfy

uN (p∗, q∗) = 2γsH + 2γH
( |D+

p∗,q∗ |
2 − 1

)
(10)

uD(p∗, q∗) = 2γs(p∗
1w1 − H) − 2γH

( |D+
p∗,q∗ |
2 − 1

) − c (11)

Furthermore,

uN (p∗, q∗) + uD(p∗, q∗) = 2γs p∗
1w1 − c = cs − c (12)

Proof. For shorthand, let α = uN (p∗, q∗) = γuE(p∗, q∗). From (9), γwa(1 −
2q∗

a) = α for all a ∈ Ep∗,q∗ . Thus

q∗
a =

1
2

(
1 − α

γwa

)
(13)

Summing the terms in (13) gives

1 =
∑

d∈Dp∗,q∗

q∗
d = q∗

0 +
|D+

p∗,q∗ |
2

− α

2γH

Writing q∗
0 as a free parameter q∗

0 = s and solving for α gives the first result.
For the second,

uD(p∗, q∗) = 2γp1w1 − γ
( ∑

b∈D+
p∗,q∗

pbwb +
∑

b∈Ep∗,q∗\Dp∗,q∗

pbwb

) − c

Each term in the first sum is equal to p1w1. For b ∈ Ep∗,q∗ \ Dp∗,q∗ , equation
(9) implies wb = α

γ . Now

∑

b∈Ep∗,q∗\Dp∗,q∗

pb = 1 −
∑

b∈Ep∗,q∗

pb = 1 − p1w1

∑

a∈D+
p∗,q∗

1
wa

= 1 − p1w1H
−1

Thus

uD(p∗, q∗) = 2γp1w1 − γ|D+
p∗,q∗ |p1w1 − α

(
1 − p1w1H

−1
)

Substituting (10) for α and simplifying gives the desired result. From (6), q∗
0 =

s > 0 if and only if p1w1 = c
2γ , so (12) holds whatever the value of s is.
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We now state the following theorem which is the main result of this section.
Before we can prove it, we will need several intermediate results.

Theorem 2. Suppose that (p∗, q∗) is a Nash equilibrium for an (n, k, c,w, γ)-
honeynet game with strictly monotonic weights. Then for any active action s ∈
Ep∗,q∗ ∪ Dp∗,q∗ , either wt(s) = k or wt(s) = 0.

Lemma 3 then states that when a is an active action for the attacker, and the
defender uses the mixed strategy q∗ while the attacker adopts a pure strategy a,
then the attacker will win with probability at least 1

2 . Note that Lemma 3 does
not depend upon the assumption that our game has strictly monotonic weights.

Lemma 3. For n > 2 and any active action a ∈ Ep∗,q∗ ,

∑

d∈AD
d⊃a

q∗
d = Pr(d ∈ Dp∗,q∗ : d ⊃ a) <

1
2

Proof. Suppose ∃a ∈ Ep∗,q∗ with Pr(d ∈ Dp∗,q∗ : d ⊃ a) ≥ 1
2 . Then uE(a, q∗) =

γwa(1 − 2
∑

d⊃a q∗
d) ≤ 0, which implies that for any other a′ ∈ Ep∗,q∗ ,

uE(a′, q∗) = γwa′(1 − 2
∑

d⊃a′
q∗
d) ≤ 0

since according to Theorem 1, uE(a′, q∗) ≤ uE(a, q∗). However, this would then
imply that for every vector ā ∈ AE with wt(ā) = k, we would have

γwā(1 − 2
∑

d⊃ā

q∗
d) = γwā(1 − 2q∗

ā) ≤ 0

which requires that q∗̄
a ≥ 1

2 . This would imply in turn that
∑

d∈AE

wt(d)=k

q∗
d > 1

when n > 2. When n = 2 and k = 1, it can be shown that this sum can equal 1.

We will make use of the following identity, which can easily be verified.

Lemma 4. Let a ⊂ ā be two attacker strategies. Then

uE(ā, q∗) − uE(a, q∗) =γ(wā − wa)
(
1 − 2

∑

d⊃ā

q∗
d

)
+ 2γwa

∑

d⊃a
d �⊃ā

q∗
d

Proof. The proof rests on separating the summation over d ⊃ a in (3) into a
sum over d ⊃ a and d 	⊃ a.

The next Lemma shows that when the weights are monotonic, the only sen-
sible choice for the defender is to either not defend any hosts or defend the
maximum number allowed despite the cost.
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Lemma 5. In the monotonic weight case, all active defender actions have
weight 0 or k. That is, if d ∈ Dp∗,q∗ and d 	= 0, then wt(d) = k.

Proof. Suppose there exists d∗ ∈ Dp∗,q∗ with 0 < wt(d∗) < k. From Claim 4,
there exists a ∈ Ep∗,q∗ with d∗ ⊃ a. Let ā ∈ AE be an action of weight k that
covers a, i.e. ā ⊃ a. We show that uE(ā, q∗) > uE(a, q∗), contradicting that a
is an active attacker action in the Nash equilibrium (p∗, q∗). By Lemma 4,

uE(ā, q∗) − uE(a, q∗) = γ(wā − wa)(1 − 2q∗
ā) + 2γwa

∑

d⊃a
d �⊃ā

q∗
d ≥ 2γwaq∗

d∗ > 0

The first inequality follows because q∗̄
a ≤ ∑

d⊃a q∗
d < 1

2 by Lemma 3, and wā ≥
wa . The second follows because q∗

d∗ > 0 since d∗ is active.

In the strictly monotonic case, the attacker behaves similarly to the defender
in that it will attack the maximum number of hosts. Interestingly, strictly mono-
tonic is needed to motivate the attacker despite incurring no cost per host.

Lemma 6. In the strictly monotonic case, all active attacker actions have
weight k.

Proof. Suppose there exists some a ∈ Ep∗,q∗ with wt(a) < k. As in the proof of
Lemma 5, let ā ∈ AE be an action of weight k that covers a. Then

uE(ā, q∗) − uE(a, q∗) ≥ γ(wā − wa)
(
1 − 2

∑

d⊃ā

q∗
d

)
> 0

This holds since wā > wa , and
∑

d⊃ā q∗
d < 1

2 by Lemma 3.

Theorem 2 now follows immediately from Lemmas 5, 6. As a consequence of
Theorem 2, if the weights wa are strictly monotonic for an (n, k, c,w, γ)-honeynet
game, then uE(a, q∗), uD(p∗,d) have the following expressions for p∗, q∗, which
mirror the k = 1 case:

uD(p∗,d) = 2γp∗
dwd − γ <p∗,w> −kc for d 	= 0 (14)

uD(p∗,0) = −γ <p∗, w> (15)
uE(a, q∗) = wa(1 − 2q∗

a) (16)

Thus, the behaviors of the attacker and defender will be as before. In partic-
ular, the attacker will always attack k hosts and p∗

a will be inversely proportional
to wa . Under this setup, the defender will defend either zero or k hosts and q∗

d

will be proportional to wd .
We now show a similar version of Theorem 2 under the relaxed assumption

that the weights are monotonic.

Theorem 3. Suppose that (p∗, q∗) is a Nash equilibrium for an (n, k, c,w, γ)-
honeynet game with monotonic weights. Then, for any d ∈ D+

p∗,q∗ , wt(d) = k.
Furthermore, there exists a p̃ such that uE(p̃, q∗) = uE(p∗, q∗) and uD(p̃, q∗) =
uD(p∗, q∗) where every a ∈ Ep̃,q∗ has weight k.
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Proof. The fact that all d ∈ Dp∗,q∗ , wt(d) ∈ {0, k} follows immediately from the
first part of the proof of Theorem 2, where it was shown that if there exists at
least one d∗ ∈ D+

p∗,q∗ where wt(d∗) < k, then (p∗, q∗) is not a Nash. The second
part of the lemma follows from the same logic as in the proof of Lemma 6.

We note that as a result of Theorem 3, the expressions in (14) and (15) will
hold in this case as well. The reason why (16) also does not hold is the following.
Suppose wa = wd where d ⊃ a and wt(d) = k. Under this setup, the attacker
has no incentive to choose d rather than a since the payoff is the same. However,
it should be noted that the payoff to the attacker would be the same if he/she
chooses the action d rather than a since there is no penalty associated with
choosing to attack a larger number of hosts.

5 Conclusions and Future Work

We have extended prior work using honeynets by allowing for variable payoffs
for each attack vector a, as well as introducing a cost c to the defender for
each honeypot employed. We feel that allowing the attacker to be successful
even when only one of the targeted hosts is compromised more closely mirrors
scenarios of interest. Our work here sets up the framework to analyze these types
of scenarios through future work.

One interesting result of our framework is the counter-intuitive result that
increasing the value of a host causes an attacker to target it with lower proba-
bility. This is as a result of the defender being more likely to defend the host,
causing the attacker instead to shift away from it since it did not matter where
exactly the attacker found their foothold.

However, this behavior may well result from the asymmetry in the cost struc-
ture: the attacker can target any number of hosts at will, while the defender has
to consider the cost c. Future work could include assigning a similar marginal
cost σ to the attacker. We anticipate the relative value of this constant vis-a-vis
the values wa to affect the Nash Equilibria just as the defender marginal cost
did, i.e. by allowing for special cases arising from inequalities involving γ, c, σ.

Theorem 2 then indicates that regardless of the resource limitation of attack-
ing or defending k hosts, neither player will chose to engage in half measures.
They will either do nothing or act maximally. For the attacker this seems fairly
straightforward as there is no cost, but for the defender it is interesting as they
do suffer that marginal cost per host defended and still choose to defend as many
as possible (if they choose to act at all).

While we used Lemma 3 in order to prove Theorem 2, the significance of the
lemma itself is worth pointing out. It formally captures just how significant the
asymmetric disadvantage is for the defender. In the Nash equilibrium, instead
of having to carefully craft an ideal mixed strategy, the attacker can simply pick
from any of the active strategies that comprise the equilibrium and win at least
half the time (a very loose bound). So while the defender is carefully crafting
their strategy the attacker basically does not even have to try.
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A novel development to consider at this point would be breaking the symme-
try of information. In the current instantiation of our game, both players know
the payoffs wa . It is conceivable that the attacker’s valuations of each attack vec-
tor a are inaccurate. In such a situation, the players would hold different beliefs
about the equilibrium strategies, and playing them may turn out to generate
higher payoffs to the defender for certain defender strategies. Through decep-
tion, it may be possible for the defender to manipulate the attacker’s beliefs of
the payoffs. One way to accomplish this would be to make a honeypot appear
like a real machine running a particular service with known vulnerabilites.

A natural extension is to consider a dynamic game, where attacker and
defender take turns in sequence, adjusting their strategies depending on the
actions of the other player. A more subtle method for the defender to achieve
deception is to play sub-optimally in the initial stage of the game in order to con-
fuse the attacker. The attacker could doubt their valuation of the payoffs or the
sophistication of the defender and get lured into altering their own play, allowing
the defender to spring a trap otherwise unreachable from the Nash equilibrium.

Acknowledgements. We thank Kimberly Ferguson-Walter and Dr. Sunny Fugate
for their technical direction and the reviewers for their helpful comments.
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Abstract. Secure Message Transmission (SMT) is a two-party crypto-
graphic protocol by which the sender can securely and reliably transmit
messages to the receiver using multiple channels. It is assumed that an
adversary corrupts a subset of the channels, and makes eavesdropping
and tampering over the corrupted channels. In this work, we consider
a game-theoretic security model for SMT. Specifically, we introduce a
rational adversary who has the preference for the outcome of the proto-
col execution. We show that, under some reasonable assumption on the
adversary’s preference, even if the adversary corrupts all but one of the
channels, it is possible to construct SMT protocols with perfect secu-
rity against rational adversaries. More specifically, we consider “timid”
adversaries who prefer to violate the security requirement of SMT, but
do not prefer the tampering actions to be detected. In the traditional
cryptographic setting, perfect SMT can be constructed only when the
adversary corrupt a minority of the channels. Our results demonstrate a
way of circumventing the impossibility results of cryptographic protocols
based on a game-theoretic approach.

Keywords: Cryptography · Secure message transmission
Game theory · Rational adversary

1 Introduction

It is common to use the information network to send and receive messages. In
the physical sense, the channels between senders and receivers might be real-
ized by combining apparatus for communication, which allow some adversary
to eavesdrop or tamper. As a technique for protecting data over communication
from their leakage, we often use public-key cryptosystems. Since the security of
public-key cryptosystems is based on computational assumptions and the com-
putational assumptions might be falsified, it is desirable to develop methods of
protecting data in the information-theoretic sense.
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While a single communication channel is assumed in the typical two-party
cryptographic schemes, the current information network technologies can let
many channels be available. Secure Message Transmission (SMT), originally
proposed by Dolev et al. [10], is a cryptographic protocol by which a sender
can transmit messages through multiple channels in a secure way. Even if any
adversary corrupts t out of n channels and makes eavesdropping and tampering
over the corrupted channels, the messages are securely and correctly transmit-
ted to the receiver by using SMT. The requirements for SMT consist of pri-
vacy and reliability. The privacy guarantees that the adversary can obtain no
information about the transmitted message, and the reliability does that the
message transmitted by the sender is recovered by the receiver. If an SMT pro-
tocol satisfies both the requirements in the perfect sense, the protocol is called
a perfect SMT. The most round-efficient perfect SMT is given by Kurosawa and
Suzuki [29]. Dolev et al. [10] showed that any one-round perfect SMT must satisfy
t < n/3 and any perfect SMT whose round complexity is at least two must sat-
isfy t < n/2. Franklin and Wright [11] defined almost-reliable SMT, which allows
transmission failures of small probability. They showed that almost-reliable SMT
against t < n corruptions is achievable by using a public channel in addition to
the normal channels. Later, Garay and Ostrovsky [15] and Shi et al. [32] gave
the most round-efficient almost-reliable SMT protocols using public channels.

In the standard setting in cryptography, the participants are assumed to
be either honest or malicious. The former follow the protocol description hon-
estly, and the later may deviate from the protocol maliciously. In general,
malicious behavior may be illegal and involve some risks, which implies that
adversaries in the standard cryptographic setting behave maliciously regard-
less of their risk. However, some adversary in reality may decide his behav-
ior by taking the risk into account. To capture such situations, we incor-
porate the notion of “rational” participants of game theory into cryptogra-
phy. Halpern and Teague [22] firstly studied the rational behavior of partic-
ipants in cryptography in the context of secret sharing. Since then, rational
secret sharing has been intensively studied [1,4,12,16,26–28]. Moreover, there
have been many studies using game-theoretic analysis of cryptographic primi-
tives/protocols, including two-party computation [3,18], leader election [2,17],
Byzantine agreement [19], consensus [23], public-key encryption [35,36], delega-
tion of computation [5,7,8,20,21,24], and protocol design [13,14]. Among them,
several work [5,13,19–21] used the rationality of adversaries to circumvent the
existing impossibility results.

Groce et al. [19] studied the problem of Byzantine agreement in the pres-
ence of a rational adversary. They showed that, given some knowledge of the
adversary’s preference, perfectly secure Byzantine agreement is possible for t
corruptions among n players for any t < n, for which the impossibility against
t ≥ n/2 corruptions is known in the standard setting.

In this work, we show that the impossibility results of SMT can be also
circumvented by considering the rationality of adversaries. As in the case of
Byzantine agreement, we introduce a rational adversary for SMT who has some
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preference for the outcome of the protocol execution. More specifically, we define
timid adversaries who prefer to violate the security requirements of SMT, but
do not prefer the tampering actions to be detected. For such adversaries, first
we show that the almost-reliable SMT protocol of [32], which employs a tamper-
proof public channel, works as a “perfect” SMT protocol. Second, we show that,
for “strictly” timid adversaries, who prefer being undetected to violating the
security requirements, secret sharing schemes with some robustness can be used
as a non-interactive SMT protocol. Both protocols are perfectly secure against
timid adversaries corrupting t out of n channels for any t < n, which is impossible
in the standard setting of SMT protocols. In addition, we present an impossi-
bility result of constructing SMT protocols against general timid adversaries
corrupting t ≥ n/2 channels. The result demonstrates the necessities of the
tamper-proof public channel in the first protocol and the restriction of strictly
timid adversaries in the second protocol. The results are summarized in Table 1.

Table 1. Summary of previous work and our results.

Adversary types PC∗ Resiliency Security Construction

Malicious – t < n/2 Perfect Exist [10,29]

Malicious – t ≥ n/2 Perfect Impossible [10]

Malicious � t < n Almost reliable Exist [11,15,32])

Timid � t < n Perfect Exist (Theorem 4)

Strictly timid – t < n Perfect Exist (Theorem 5)

Timid – t ≥ n/2 Perfect Impossible (Corollary 2)
∗ PC represents the use of the public channel.

2 Preliminaries

2.1 Secure Message Transmission

We assume that a sender S and a receiver R are connected by n channels, and
they may use an authentic and reliable public channel. Messages sent over the
public channel are publicly accessible and correctly delivered to the receiver.
SMT protocols proceed in rounds. In each round, one party may synchronously
send a message over each channel and the public channel. The messages will be
delivered before the next round starts.

The adversary A can corrupt at most t channels. Such an adversary is
referred to as t-adversary. Messages sent over corrupted channels can be eaves-
dropped and tampered by the adversary. We assume that A is computationally
unbounded.

Let M be the message space. In SMT, the sender tries to send a message in
M to the receiver by using n channels and the public channel, and the receiver
outputs some message after the protocol execution. For an SMT protocol Π, let
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MS denote the random variable of the message sent by S and MR the message
output by R in Π. An execution of Π can be completely characterized by the
random coins of all the parties, namely, S, M, and A, and the message MS

sent by S. Let VA(m, rA) denote the view of A when the protocol is executed
with MS = m and the random coins rA of A. Specifically, VA(m, rA) consists of
the messages sent over the corrupted channels and the public channel when the
protocol is run with MS = m and A’s random coins rA.

We formally define the properties of SMT protocols.

Definition 1. A protocol between S and R is (ε, δ)-Secure Message Transmis-
sion (SMT) against t-adversary if the following three conditions are satisfied
against any t-adversary A.

– Correctness: For any m ∈ M, if MS = m and A does not corrupt any
channels, then Pr[MR = m] = 1;

– Privacy: For any m0,m1 ∈ M and rA ∈ {0, 1}∗, it holds that

SD(VA(m0, rA), VA(m1, rA)) ≤ ε,

where SD(X,Y ) denotes the statistical distance between two random variables
X and Y over a set Ω, which is defined by

SD(X,Y ) =
1
2

∑

u∈Ω

|Pr[X = u] − Pr[Y = u]| ;

– Reliability: For any message m ∈ M, when MS = m,

Pr[MR �= m] ≤ δ,

where the probability is taken over the random coins of S, R, and A.

If a protocol achieves (0, 0)-SMT, the protocol is called perfect SMT, and
if a protocol achieves (0, δ)-SMT, which admits transmission failures of small
probability δ, the protocol is called almost-reliable SMT.

For perfect SMT, Dolev et al. [10] showed the below.

Theorem 1 ([10]). Perfect SMT protocols against t-adversary are achievable if
and only if t < n/2.

2.2 Secure Message Transmission with Public Channel

In this paper, we will employ an almost-reliable SMT protocol given by Shi,
Jiang, Safavi-Naini, and Tuhin [32], and refer it as the SJST protocol. Note
that we only use some specific properties of the SJST protocol in the security
analysis. Thus, other protocols, such as one by Garay and Ostrovsky [15], can
also be employed instead of the SJST protocol.

Let us review the SJST protocol, which uses the public channel. The protocol
is based on the simple protocol for “static” adversaries in which the sender
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sends a random key Ri over the i-th channel for each i ∈ {1, . . . , n}, and the
encrypted message c = m⊕R1 ⊕ · · ·⊕Rn over the public channel. Suppose that
the adversary sees the messages sent over the corrupted channels, but does not
change them. Since the adversary cannot see at least one key Rj when corrupting
less than n channels, the mask R1 ⊕ · · · ⊕ Rn for the encryption looks random
for the adversary. Thus, the message m can be securely encrypted and reliably
sent through the public channel. To cope with “active” adversaries, who may
change messages sent over the corrupted channels, the SJST protocol employs
a mechanism for detecting the adversary’s tampering by using hash functions.
Specifically, the universal hash functions (see AppendixA) satisfy the following
property: when a pair of keys (ri, Ri) is changed to (r′

i, R
′
i) �= (ri, Ri), the hash

value for (ri, Ri) is different from that for (r′
i, R

′
i) with high probability if the

hash function is chosen randomly after the tampering occurred. In the SJST
protocol, the sender sends a pair of keys (ri, Ri) over the i-th channel. Then,
the receiver chooses n universal hash functions hi’s, and sends them over the
public channel. By comparing hash values for (ri, Ri)’s sent by the sender with
those for (r′

i, R
′
i)’s received by the receiver, they can identify the channels for

which messages, i.e., keys, were tampered with. By ignoring keys sent over such
channels, the sender can correctly encrypt a message m with untampered keys
and send the encryption reliably over the public channel.

We describe the SJST protocol below, which is a three-round protocol, and
achieves the reliability with δ = (n − 1) · 21−�, where � is the length of hash
values.

Protocol 1 (The SJST protocol [32]). Let n be the number of channels,
m ∈ M the message to be sent by the sender S, and H = {h : {0, 1}k → {0, 1}�}
a class of universal hash functions.

1. For each i ∈ {1, . . . , n}, S chooses ri ∈ {0, 1}� and Ri ∈ {0, 1}k uniformly at
random, and sends the pair (ri, Ri) over the i-th channel.

2. For each i ∈ {1, . . . , n}, R receives (r′
i, R

′
i) through the i-th channel, and

then chooses hi ← H uniformly at random. If |r′
i| �= � or |R′

i| �= k, set bi = 1,
and otherwise, set bi = 0. Then, set T ′

i = r′
i ⊕ hi(R′

i), and Hi = (hi, T
′
i ) if

bi = 0, and Hi = ⊥ otherwise. Finally, R sends (B,H1, . . . , Hn) over the
public channel, where B = (b1, . . . , bn).

3. S receives (B,H1, . . . , Hn) through the public channel. For each i ∈ {1, . . . , n}
with bi = 0, S computes Ti = ri ⊕ hi(Ri), and sets vi = 0 if Ti = T ′

i ,
and vi = 1 otherwise. Then, S sends (V, c) over the public channel, where
V = (v1, . . . , vn), and c = m ⊕ (

⊕
vi=0 Ri).

4. On receiving (V, c), R recovers m = c ⊕ (
⊕

vi=0 Ri).

Theorem 2 ([32]). The SJST protocol is (0, (n − 1) · 21−�)-SMT against t-
adversary for any t < n.

We can find a complete proof of the above theorem in [32]. For self-
containment, we give a brief sketch of the proof.
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– Privacy : The adversary can get c = m ⊕ (
⊕

vi=0 Ri) through the public
channel. Since m is masked by uniformly random Ri’s, the adversary has to
corrupt all the i-th channels with vi = 0 to recover m. However, since any
t-adversary can corrupt at most t (< n) channels, the adversary can cause
vi = 1 for at most n − 1 i’s. Hence, there is at least one i with vi = 0, for
which the adversary cannot obtain Ri. Thus, the protocol satisfies the perfect
privacy.

– Reliability : Since the protocol uses the public channel at the second and
the third rounds, the adversary can tamper with channels only at the first
round. Suppose that the adversary tampers with (ri, Ri). If Ri �= R′

i and
Ti = T ′

i , then R would recover a wrong message, but the tampering is not
detected. It follows from Lemma 1 that the probability that the above event
happens is at most (n − 1)21−�. Thus, the protocol achieves the reliability
with δ = (n − 1) · 21−�.

2.3 Robust Secret Sharing

Secret sharing, introduced by Shamir [31] and Blackley [6], enables us to dis-
tribute the secret information in a secure way. Let s ∈ F be a secret from some
finite field F. A (threshold) secret-sharing scheme gives a way for distributing s
into n shares s1, . . . , sn such that, for some parameter t > 0, (1) any t shares
give no information about s; and (2) any t + 1 shares uniquely determine s.
Shamir [31] give a scheme based on polynomial evaluations for any t < n.

Shamir’s scheme also achieves robustness in the sense that even if t/3
shares are maliciously tampered, the original secret can be correctly recovered.
Although the robustness is a desirable property, it is known that robust secret
sharing is impossible when t/2 shares are tampered with [25].

In this work, we need a weaker notion of robustness in which any tampering
actions should be detected with high probability. Such robust secret sharing was
studied by Cramer et al. [9]. They introduced the notion of algebraic manipula-
tion detection (AMD) codes, and presented a simple way for constructing robust
secret sharing from linear secret sharing and AMD codes. More precisely, the
robustness required for our protocol is slightly different from one defined in [9].1

Definition 2. Let t, n be positive integers with t < n. A (t, n, δ)-robust secret
sharing scheme with range G consists of two algorithms (Share,Reconst) satisfy-
ing the following conditions:

– Correctness: For any s ∈ G and I ⊆ {1, . . . , n} with |I| > t,

Pr [Reconst ({i, si}i∈I) = s] = 1,

where (s1, . . . , sn) ← Share(s).
1 The robustness in [9] requires that the output of the reconstruction algorithm should

be either the original message or the failure symbol with high probability. Namely,
it is allowed to recover the original message even if some shares are tampered with.
In Definition 2, we require that if some shares are tampered with, the output of the
reconstruction algorithm should be the failure symbol.
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– Perfect Privacy: For any s, s′ ∈ G and I ⊆ {1, . . . , n} with |I| ≤ t,

SD ({si}i∈I , {s′
i}i∈I) = 0,

where (s1, . . . , sn) ← Share(s) and (s′
1, . . . , s

′
n) ← Share(s′).

– Robustness: For any s ∈ G and I ⊆ {1, . . . , n} with |I| ≤ t and adversary A,
if s̃i �= si for some i ∈ {1, . . . , n},

Pr
[
Reconst

({i, s̃i}i∈{1,...,n}
) �= ⊥] ≤ δ,

where

s̃i =

{
A(i, s, {si}i∈I) if i ∈ I

si if i /∈ I

and (s1, . . . , sn) ← Share(s).

We can see that the construction of [9] satisfies the above definition. Specifi-
cally, we have the following theorem, which will be used in our protocol against
strictly timid adversaries in Sect. 4.2. See AppendixB for the proof.

Theorem 3. Let F be a finite field of size q and characteristic p, and d an
integer such that d + 2 is not divisible by p. For any positive integers t and n
satisfying t < n ≤ qd, there is an explicit and efficient scheme of (t, n, (d+1)/q)-
robust secret sharing with range F

d, where each share is an element of Fd+2.

3 Rational Secure Message Transmission

We define our security model of SMT in the presence of a rational adversary. A
rationality of the adversary is characterized by a utility function which represents
the preference of the adversary over possible outcomes of the protocol execution.

We can consider various preferences of the adversary regarding the SMT
protocol execution. The adversary may prefer to violate the privacy or the reli-
ability of SMT protocols. In addition, the adversary may prefer to violate the
above properties without the detection of tampering actions. Here, we consider
the adversary who prefers (1) to violate the privacy, (2) to violate the reliability,
(3) the tampering actions to be undetected, and (4) the protocol execution to
be finished without abort.

To define the utility function, we specify the SMT game as follows.

The SMT Game. First set four parameters guess = suc = detect = abort = 0.
Given an SMT protocol Π with the message space M, choose m ∈ M uniformly
at random, and run the protocol Π in which the message to be sent is MS = m. In
the protocol execution, as in the usual SMT, the adversary A can corrupt at most
t channels, and tamper with any messages sent over the corrupted channels. If
the protocol finishes with abort, set abort = 1. If the sender or the receiver sends
a special message “DETECTION” during the execution, set detect = 1. After
running the protocol, the receiver outputs MR, and the adversary outputs MA.
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If MR = MS , set suc = 1. If MA = MS , set guess = 1. The outcome of the game
is (guess, suc, detect, abort).

The utility of the adversary is defined as the expected utility in the SMT
game.

Definition 3 (Utility). The utility u(A, U) of the adversary A with utility
function U is the expected value E[U(out)], where U is a function that maps
the outcome out = (guess, suc, detect, abort) of the SMT game by A to real val-
ues, and the probability is taken over the random coins of the sender, the receiver,
and the adversary, and a random choice of message MS.

The utility function U characterizes the type of adversaries. If the adver-
sary has the preferences (1)-(4) as above, the utility function may have the
property such that for any two outcomes out = (guess, suc, detect, abort) and
out′ = (guess′, suc′, detect′, abort′) of the SMT game,

1. U(out) > U(out′) if guess > guess′, suc = suc′, detect = detect′, and abort =
abort′;

2. U(out) > U(out′) if guess = guess′, suc < suc′, detect = detect′, and abort =
abort′;

3. U(out) > U(out′) if guess = guess′, suc = suc′, detect < detect′, and abort =
abort′;

4. U(out) > U(out′) if guess = guess′, suc = suc′, detect = detect′, and abort <
abort′.

Based on the utility function of the adversary, we define the security of ratio-
nal secure message transmission.

Definition 4 (Security of RSMT). An SMT protocol Π is perfectly secure
against rational t-adversaries with utility function U if there is a t-adversary B
such that for any t-adversary A,

1. Perfect security: Π is (0, 0)-SMT against B; and
2. Nash equilibrium: u(A, U) ≤ u(B, U) in the SMT game.

The perfect security guarantees that an adversary B is harmless. The Nash
equilibrium guarantees that no adversary A can gain more utility than B. Thus,
the above security of RSMT implies that no adversary A can gain more utility
than the harmless adversary. Namely, the adversary does not have an incentive
to deviate from the strategy of the harmless adversary B.

In the security proof of our protocol, we will consider an adversary B who
does not corrupt any channels, and outputs MA by choosing a message uniformly
at random from M. For such B, the perfect privacy and reliability immediately
follows if Π satisfies the correctness.

4 Protocols Against Timid Adversaries

We present several protocols that are secure against timid rational adversaries.
Timid adversaries are rational adversaries who firstly do not prefer the tampering
to be detected, and secondly prefer to violate the reliability.
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More formally, utility function U of such adversaries should have the prop-
erties such that

1. U(out) > U(out′) if suc < suc′ and detect = detect′; and
2. U(out) > U(out′) if suc = suc′ and detect < detect′,

where out = (guess, suc, detect, abort) and out′ = (guess′, suc′, detect′, abort′) are
the outcomes of the SMT game. Let Utimid be the set of utility functions that
satisfy the above conditions.

In addition, timid adversaries may have the following property:

3. U(out) > U(out′) if suc > suc′ and detect < detect′.

Let U st
timid be the set of utility functions satisfying the above three conditions.

An adversary is said to be timid if his utility function is in Utimid, and strictly
timid if the utility function is in U st

timid.
In the analysis of our protocols, we need the following four values of utility:

– u1 is the utility when Pr[guess = 1] = 1/|M|, suc = 0, detect = 0, and
abort = 0;

– u2 is the utility when Pr[guess = 1] = 1/|M|, suc = 1, detect = 0, and
abort = 0;

– u3 is the utility when Pr[guess = 1] = 1/|M|, suc = 0, detect = 1, and
abort = 0;

– u4 is the utility when Pr[guess = 1] = 1/|M|, suc = 1, detect = 1, and
abort = 0;

It follows from the properties of utility functions in Utimid that the relations
u1 > max{u2, u3} and min{u2, u3} > u4 hold. For utility functions in U st

timid, it
holds that u1 > u2 > u3 > u4.

4.1 Protocol with Public Channel

We show that the SJST protocol of [32] works as a perfect SMT protocol against
timid adversaries. More specifically, we slightly modify the SJST protocol such
that in the second and the third rounds, if bi = 1 in B or vj = 1 in V for some
i, j ∈ {1, . . . , n}, the special message “DETECTION” is also sent together. We
clarify the parameters for which the SJST protocol works as RSMT against timid
adversaries.

Theorem 4. If the parameter � in the SJST protocol satisfies

� ≥ max
{

1 + log t + log
u3 − u4

u2 − u4 − α
, 1 +

1
t

log
u1 − u3

α

}

for some α ∈ (0, u2 − u4), then the protocol is perfectly secure against rational
t-adversaries with utility function U ∈ Utimid for any t < n.
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Proof. We consider the adversary B in Definition 4 such that B does not corrupt
any channels, and outputs a uniformly random message from M as MA. Then,
the perfect security of Definition 4 immediately follows.

Next, we show that the strategy of B is a Nash equilibrium. Note that
u(B, U) = u2, since Pr[guess = 1] = Pr[MA = MS ] = 1/|M| in the SMT
game. Thus, it is sufficient to show that u(A, U) ≤ u2 for any t-adversary A.
Also, note that, since the SJST protocol achieves the perfect privacy, it holds
that Pr[guess = 1] = 1/|M| for any t-adversary.

Since messages in the second and the third rounds are sent through the public
channel, the adversary A can tamper with messages only in the first round. If
A changes the lengths of ri and Ri, the tampering of the i-th channel will be
detected. Such channels are simply ignored in the second and third rounds. Thus,
such tampering cannot increase the utility. Hence, we assume that A does not
change the lengths of ri and Ri in the first round.

Suppose that A corrupts some t channels in the first round. Namely, there
are exactly t distinct i’s such that (r′

i, R
′
i) �= (ri, Ri). Note that the tampering on

the i-th channel such that r′
i �= ri and R′

i = Ri does not increase the probability
that suc = 0, but may increase the probability of detection. Thus, we also assume
that R′

i �= Ri for all the corrupted channels. We define the following three events:

– E1: No tampering action is detected in the protocol;
– E2: At least one but not all tampering actions are detected;
– E3: All the t tampering actions are detected.

Note that all the events are disjoint, and either event should occur. Namely, we
have that Pr[E1] + Pr[E2] + Pr[E3] = 1. It follows from the discussion in Sect. A
that the probability that the tampering action on one channel is not detected is
21−�. Since each hash function hi is chosen independently for each channel, we
have that Pr[E1] = 2(1−�)t. Similarly, we obtain that Pr[E3] = (1 − 21−�)t. Note
that the utility when E1 occurs is at most u1. Also, the utilities when E2 and
E3 occur are at most u3 and u4, respectively. Therefore, the utility of A is

u(A, U) ≤ u1 · Pr[E1] + u3 · Pr[E2] + u4 · Pr[E3]
= u3 + (u1 − u3) Pr[E1] − (u3 − u4) Pr[E3]

≤ u3 + (u1 − u3)2(1−�)t − (u3 − u4)
(
1 − t21−�

)

≤ u3 + α − (u3 − u4)
(
1 − t21−�

)
(1)

≤ u2, (2)

where we use the relations � ≥ 1 + 1
t log u1−u3

α and � ≥ 1 + log t + log u3−u4
u2−u4−α

in (1) and (2), respectively. Thus, the utility of A is at most u2, and hence the
statement follows. ��

If u2 > u3, which holds for strictly timid adversaries, by choosing α = u2−u3,
the condition on � is that

� ≥ max
{

1 + log t, 1 +
1
t

log
u1 − u3

u2 − u3

}
.
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4.2 Protocol Without Public Channel Against Strictly Timid
Adversaries

We show that, under the condition that u2 > u3, robust secret sharing of Defi-
nition 2 gives a non-interactive perfect SMT protocol. Namely, we can construct
a non-interactive protocol for strictly timid adversaries.

Let (Share,Reconst) be a (t, n, δ)-robust secret sharing scheme with range
M. In the protocol, given a message m ∈ M, the sender generates n shares
(s1, . . . , sn) by Share(m), and sends each si over the i-th channel. The receiver
simply recovers the message by Reconst({i, s̃i}i∈{1,...,n}), where s̃i is the received
message over the i-th channel.

Theorem 5. The above protocol based on a (t, n, δ)-robust secret sharing scheme
is perfectly secure against rational t-adversaries with utility function U ∈ U st

timid

if U satisfies that u2 > u3 and

δ ≤ u2 − u3

u1 − u3
.

Proof. As in the proof of Theorem 4, we consider B who does not corrupt any
channels, and output a random message as MA. Then, the perfect security imme-
diately follows.

We show that, for any t-adversary A, u(A, U) ≤ u(B, U). As discussed in the
proof of Theorem 4, it is sufficient to prove that u(A, U) ≤ u2 for any A. Since
the underlying secret sharing has the perfect privacy, we have that Pr[guess =
1] = 1/|M| for any t-adversary. Suppose A corrupts some t channels and alters
some messages si into different s̃i. It follows from the robustness of secret sharing
that the tampering actions is detected with probability at least 1 − δ, in which
case the secret is not recovered. Thus, the utility of A is

u(A, U) ≤ (1 − δ)u3 + δu1

≤ u2, (3)

where (3) follows from the assumption. Therefore, the statement follows. ��
The following corollary immediately follows.

Corollary 1. Let F be a finite field of size q = 2�, and d be any odd integer.
The non-interactive protocol based on Theorem3 is an SMT protocol with mes-
sage space F

d that is perfectly secure against rational t-adversaries with utility
function U ∈ U st

timid for any t < n ≤ 2�d if

� ≥ log(d + 1) + log
u1 − u3

u2 − u3
.

5 Impossibility Result for General Timid Adversaries

We show that there is no RSMT protocol without public channel that is secure
against general timid t-adversaries for t ≥ n/2. The result implies that the use
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of the public channel in Theorem4 is necessary for achieving t ≥ n/2. It also
demonstrates the necessity of restricting the utility in Theorem 5 for constructing
protocols for t ≥ n/2 without using public channels.

Theorem 6. For any SMT protocol without public channel that is perfectly
secure against rational t-adversaries with utility function U ∈ Utimid, if U has
the relation

u2 <
1
2

(
1 − 1

|M|
)

u3

then t < n/2, where M is the message space of the protocol.

Proof. Let Π be a protocol in the statement. We construct a t-adversary A for
t = n/2� that can successfully attack Π. For simplicity, we assume that n = 2t.

Let B be any (harmless) adversary in the security of RSMT protocols of
Definition 4. Since Π is (0, 0)-SMT against B, it holds that u(B, U) ≤ u2. We
show the existence of a t-adversary A that achieves u(A, U) > u2, which implies
that Π cannot achieve a Nash equilibrium.

In the SMT game, a message m ∈ M is randomly chosen, and, on input m,
Π generates (sj

1, . . . , s
j
n) for j = 1, . . . , where sj

i is the message to be sent over
the i-th channel in the j-th round. In the game, A does the following:

– Randomly choose I ⊆ {1, . . . , n} such that |I| = t, and corrupt the i-th
channel for every i ∈ I.

– Randomly choose m̃ ∈ M, and simulate Π on input m̃.
Let s̃j

i be the message generated for the i-th channel in the j-th round.
– In each round j, for every i ∈ I, on receiving sj

i through the i-th channel,
exchange sj

i for s̃j
i .

For this attack, it is impossible for the receiver to distinguish which message, m
or m̃, was originally transmitted by the sender, since both messages for m and
m̃ are equally mixed. Hence, the probability that suc = 1, denoted by ps, is at
most

ps ≤ 1
2

(
1 − 1

|M|
)

+
1

|M| =
1
2

(
1 +

1
|M|

)
,

where 1/|M| comes from the even that m̃ = m.
Let pd be the probability that Π outputs “DETECTION” messages during

the execution against the above attack. Without loss of generality, we assume
that if Π does not output “DETECTION” messages, the receiver outputs some
message at the end of the protocol. If the tampering actions of A are not detected,
the utility of A is at least u1 with probability 1 − ps, and at least u2 with
probability ps. If some tampering actions are detected, then there can be two
cases: (1) the receiver does not output any message; and (2) the receiver outputs
some message. In case (1), the utility of A is u3. In case (2), the probability that
the suc = 1 is at most ps by the same argument as above. Hence, the utility of
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A when the tampering was detected is at least (1 − ps)u3. Thus, the utility of
A in the SMT game is at least

u(A, U) ≥ (1 − pd) ((1 − ps)u1 + psu2) + pd(1 − ps)u3

= (1 − ps)u1 + psu2 − pd ((1 − ps)u1 + psu2 − (1 − ps)u3)
≥ (1 − ps)u3 (4)

≥ 1
2

(
1 − 1

|M|
)

u3

> u2, (5)

where (4) follows from the fact that pd ≤ 1 and (1−ps)u1+psu2−(1−ps)u3 ≥ 0,
and the assumption on U is used in (5). Therefore, Π does not satisfy the security
of RSMT protocols for t ≥ n/2.

When n = 2t−1, the same attack of the above A can be realized by invalidat-
ing the n-th channel by substituting ⊥ for every message over the n-th channel.

��
The theorem gives the following corollary.

Corollary 2. There is no SMT protocol without public channel that is perfectly
secure against rational t-adversaries with utility function U for every U ∈ Utimid

and t ≥ n/2�.

6 Conclusion

We have introduced the notion of rationality into secure message transmission.
Specifically, we have defined timid adversaries, who prefer to violate the security
requirements of SMT, but do not prefer the tampering actions to be detected.
It is shown that some type of almost-reliable SMT protocols using a public
channel (such as [32]) work as perfect SMT for any timid adversary corrupting
t < n channels. By imposing the assumption that u2 > u3, which captures
strictly timid adversaries, it is possible to construct a non-interactive perfect
SMT protocol against t < n corruptions without using public channels.

A future work is to construct protocols against adversaries having different
preferences from timid ones. It is important to clarify for which rational adver-
sary the existing impossibility results hold.
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A Universal Hash Functions

Wegman and Carter [34] defined a notion of (almost) universal hash functions
and gave its construction. We use an SMT protocol in which universal hash
functions are used.
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Definition 5. Suppose that a class of hash functions H = {h : {0, 1}m →
{0, 1}�}, where m ≥ �, satisfies the following: for any distinct x1, x2 ∈ {0, 1}m

and y1, y2 ∈ {0, 1}�,

Pr
h∈H

[h(x1) = y1 ∧ h(x2) = y2] ≤ γ.

Then H is called γ-almost strongly universal. In the above, the randomness
comes from the uniform choice of h over H.

Here we mention a useful property of almost universal hash functions, which
guarantees the security of some SMT protocols.

Lemma 1 ([32]). Let H = {h : {0, 1}m → {0, 1}�} be a γ-almost strongly uni-
versal hash function family. The for any (x1, c1) �= (x2, c2) ∈ {0, 1}m × {0, 1}�,
we have

Pr
h∈H

[c1 ⊕ h(x1) = c2 ⊕ h(x2)] ≤ 2�γ.

In [34], Wegman and Carter constructed a family of 21−2�-almost strongly
universal hash functions. In particular, their hash function family Hwc =
{h : {0, 1}m → {0, 1}�} satisfies that

Pr
h∈Hwc

[h(x1) = y1 ∧ h(x2) = y2] = 21−2�

for any distinct x1, x2 ∈ {0, 1}m and for any y1, y2 ∈ {0, 1}� and also

Pr
h∈Hwc

[c1 ⊕ h(x1) ∧ c2 ⊕ h(x2)] = 21−�

for any distinct pairs (x1, c1) �= (x2, c2) ∈ {0, 1}m × {0, 1}�.

B Proof of Theorem3

To prove the theorem, we define the notion of algebraic manipulation detection
(AMD) codes in which the security requirement is slightly different from that
in [9] for our purpose.

Definition 6. An (M,N, δ)-algebraic manipulation detection (AMD) code is a
probabilistic function E : S → G, where S is a set of size M and G is an additive
group of order N , together with a decoding function D : G → S ∪ {⊥} such that

– Correctness: For any s ∈ S, Pr[D(E(s)) = s] = 1.
– Security: For any s ∈ S and Δ ∈ G \ {0}, Pr[D(E(s) + Δ) �= ⊥] ≤ δ.

An AMD code is called systematic if S is a group, and the encoding is of the
form

E : S → S × G1 × G2, s �→ (s, x, f(x, s))

for some function f and random x ∈ G1. The decoding function D of a systematic
AMD code is given by D(s′, x′, f ′) = s′ if f ′ = f(x′, s′), and ⊥ otherwise.
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Note that, for a systematic AMD code, the correctness immediately follows from
the definition of the decoding function. The security requirement can be stated
such that for any s ∈ S and (Δs,Δx,Δf ) ∈ S × G1 × G2 \ {(0, 0, 0)}, Prx[f(s +
Δs, x + Δx) = f(s, x) + Δf ] ≤ δ.

We show that a systematic AMD code given in [9] satisfies the above defini-
tion.

Proposition 1. Let F be a finite field of size q and characteristic p, and d
any integer such that d + 2 is not divisible by p. Define the encoding function
E : Fd → F

d × F × F by E(s) = (s, x, f(x, s)) where

f(x, s) = xd+2 +
d∑

i=1

six
i

and s = (s1, . . . , sd). Then, the construction is a systematic (qd, qd+2, (d+1)/q)-
AMD code.

Proof. We show that for any s ∈ F
d and (Δs,Δx,Δf ) ∈ F

d ×F×F\{(0d, 0, 0)},
Pr[f(s + Δs, x + Δx) = f(s, x) + Δf ] ≤ δ. The event in the probability is that

(x + Δx)d+2 +
d∑

i=1

s′
i(x + Δx)i = xd+2 +

d∑

i=1

six
i + Δf , (6)

where s′
i is the i-th element of s+Δs. The left-hand side of (6) can be represented

by

xd+2 + (d + 2)Δxxd+1 +
d∑

i=1

s′
ix

i + Δxp(x)

for some polynomial p(x) of degree at most d. Thus, (6) can be rewritten as

(d + 2)Δxxd+1 +
d∑

i=1

(s′
i − si)xi + Δxp(x) − Δf = 0. (7)

We discuss the probability that (7) happens when x is chosen uniformly at
random. We consider the following cases:

1. When Δx �= 0, the coefficient of xd+1 is (d + 2)Δx, which is not zero by
the assumption that d + 2 is not divisible by p. Then, (7) has at most d + 1
solutions x. Hence the event happens with probability at most (d + 1)/q.

2. When Δx = 0, we consider two subcases:
(a) If Δs �= 0, then s′

i − si �= 0 for some i. Hence (7) has at most d solutions
x. Thus the event happens with probability at most d/p.

(b) If Δs = 0, (7) is equivalent to Δf = 0. Since Δf �= 0 for this case, the
event cannot happen.

In every case, the event happens with probability at most (d + 1)/q. Thus the
statement follows. ��
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As discussed in [9], a robust secret sharing scheme can be obtained by com-
bining an AMD code and a linear secret sharing scheme. Let (Share,Reconst)
be a (t, n)-secret sharing scheme with range G that satisfies correctness and
perfect privacy of Definition 2, where we drop the parameter δ for robust-
ness. A linear secret sharing scheme has the property that for any s ∈ G,
(s1, . . . , sn) ∈ Share(s), and vector (s′

1, . . . , s
′
n), which may contain ⊥ symbols, it

holds that Reconst({i, si+s′
i}i∈I) = s+Reconst({i, s′

i}i∈I) for any I ⊆ {1, . . . , n}
with |I| > t, where ⊥+x = x+⊥ = ⊥ for all x. Examples of linear secret sharing
schemes are Shamir’s scheme [31] and the simple XOR-based (n − 1, n)-scheme,
in which secret s ∈ {0, 1}n is shared by (s1, . . . , sn) for random si ∈ {0, 1}n with
the restriction that s1 ⊕ · · · ⊕ sn = s.

We show that the same construction as in [9] works as a construction of
robust secret sharing of Definition 2.

Proposition 2. Let (Share,Reconst) be a linear (t, n)-secret sharing scheme
with range G that satisfies correctness and perfect privacy of Definition 2, and
let (E,D) be an (M,N, δ)-AMD code of Definition 6 with |G| = N . Then, the
scheme (Share′,Reconst′) defined by Share′(s) = Share(E(s)) and Reconst′(S) =
D(Reconst(S)) is a (t, n, δ)-robust secret sharing scheme.

Proof. Let (s1, . . . , sn) ∈ Share′(s). Let I ⊆ {1, . . . , n} with |I| ≤ t, and
(s̃1, . . . s̃n) be a sequence of shares satisfying the requirement for input shares in
robustness of Definition 2. We assume that s̃i = si + Δ′

i for each i ∈ {1, . . . , n}.
Note that Δ′

i = 0 for every i /∈ I. Then,

Pr
[
Reconst′

({i, s̃i}i∈{1,...,n}
) �= ⊥]

= Pr
[
D

(
E(s) + Reconst({i,Δi}i∈{1,...,n})

) �= ⊥]

= Pr [D (E(s) + Δ) �= ⊥] ,

where Δ = Reconst
({i,Δi}i∈{1,...,n}

)
is determined by the adversary. It follows

from perfect privacy of the secret sharing scheme that Δ is independent of E(s).
Thus, if s̃i �= si for some i ∈ {1, . . . , n}, the probability is at most δ by the
security of the AMD code. Hence, the statement follows. ��

By combining Shamir’s secret sharing scheme with range F
d and the AMD

code of Proposition 1, the robust secret sharing scheme of Theorem 3 is obtained
by Proposition 2.
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Abstract. Despite the successful application of machine learning (ML)
in a wide range of domains, adaptability—the very property that makes
machine learning desirable—can be exploited by adversaries to contam-
inate training and evade classification. In this paper, we investigate the
feasibility of applying a specific class of machine learning algorithms,
namely, reinforcement learning (RL) algorithms, for autonomous cyber
defence in software-defined networking (SDN). In particular, we focus on
how an RL agent reacts towards different forms of causative attacks that
poison its training process, including indiscriminate and targeted, white-
box and black-box attacks. In addition, we also study the impact of the
attack timing, and explore potential countermeasures such as adversarial
training.

Keywords: Adversarial reinforcement learning
Software-defined networking · Cyber security · Adversarial training

1 Introduction

Machine learning has enjoyed substantial impact on a wide range of applica-
tions, from cyber-security (e.g., network security operations, malware analysis)
to autonomous systems (e.g., decision-making and control systems, computer
vision). Despite the many successes, the very property that makes machine learn-
ing desirable—adaptability—is a vulnerability to be exploited by an economic
competitor or state-sponsored attacker. Attackers who are aware of the ML
techniques being deployed can contaminate the training data to manipulate a
learned ML classifier in order to evade subsequent classification, or can manip-
ulate the metadata upon which the ML algorithms make their decisions and
exploit identified weaknesses in these algorithm—so called Adversarial Machine
Learning [6,11,27].
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This paper focuses on a specific class of ML algorithms, namely, reinforcement
learning (RL) algorithms, and investigates the feasibility of applying RL for
autonomous defence in computer networks [7], i.e., the ability to “fight through”
a contested environment—in particular adversarial machine learning attacks—
and ensure critical services (e.g., email servers, file servers, etc.) are preserved
to the fullest extent possible.
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Fig. 1. An example network setup. The attacker propagates through the network to
compromise the critical server, while the defender applies RL to prevent the critical
server from compromise and to preserve as many nodes as possible. (Color figure online)

For example, consider a network as shown in Fig. 1 that consists of 32 nodes,
one (node 3.8) of whom connects to the critical server, two (nodes 3.9 and
4.5) connect to potential migration destinations, and three (nodes 1.5, 2.7 and
3.6) connect to the attacker’s hosts. The attacker aims to propagate through
the network, and compromise the critical server. We aim to prevent this and
preserve as many nodes as possible through the following RL approach:

– We first train two types of RL agents: Double Deep Q-Networks (DDQN) [24]
and Asynchronous Advantage Actor-Critic (A3C) [38]. The agents observe
network states, and select actions such as “isolate”, “patch”, “reconnect”,
and “migrate”. The agents gradually optimise their actions for different net-
work states, based on the received rewards for maintaining critical services,
costs incurred when shutting down non-critical services or migrating critical
services.

– Once a working agent is obtained, we then investigate different ways by which
the attacker may poison the training process of the RL agent. For example,
the attacker can falsify part of the reward signals, or manipulate the states of
certain nodes, in order to trick the agent to take non-optimal actions, resulting
in either the critical server being compromised, or significantly fewer nodes
being preserved. Both indiscriminate and targeted, white-box and black-box
attacks are studied.

– We also explore possible countermeasures—e.g., adversarial training—that
make the training less vulnerable to causative/poisoning attacks.
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– To make use of the developed capacity for autonomous cyber-security opera-
tions, we build our experimental platform around software-defined network-
ing (SDN) [2], a next-generation tool chain for centralising and abstracting
control of reconfigurable networks. The SDN controller provides a centralised
view of the whole network, and is directly programmable. As a result, it is very
flexible for managing and reconfiguring various types of network resources.
Therefore, in our experiments the RL agents obtain all network information
and perform different network operations via the SDN controller.

– Our results demonstrate that RL agents can successfully identify the optimal
actions to protect the critical server, by isolating as few compromised nodes
as possible. In addition, even though the causative attacks can cause the
agent to make incorrect decisions, adversarial training shows great potential
for mitigating the impact.

The remainder of the paper is organised as follows: Sect. 2 briefly introduces
the fundamental concepts in RL and SDN; Sect. 3 defines the research problem;
Sect. 4 introduces in detail the different forms of proposed attacks against RL;
Sect. 5 presents the experimental results on applying RL for autonomous defence
in SDN, and the impact of those causative attacks; Sect. 6 overviews previous
work on adversarial machine learning (including attacks against reinforcement
learning) and existing countermeasures; Sect. 7 concludes the paper, and offers
directions for future work.

2 Preliminaries

Before defining the research problems investigated in this paper, we first briefly
introduce the basic concepts in reinforcement learning and software-defined net-
working.

2.1 Reinforcement Learning

In a typical reinforcement learning setting [56], an agent repeatedly interacts
with the environment: at each time step t, the agent (1) observes a state st of
the environment; (2) chooses an action at based on its policy π—a mapping
from the observed states to the actions to be taken; and (3) receives a reward
rt and observes next state st+1. This process continues until a terminal state
is reached, and then a new episode restarts from a certain initial state. The
agent’s objective is to maximise its discounted cumulative rewards over the long
run: Rt =

∑∞
τ=t γτ−trτ , where γ ∈ (0, 1] is the discount factor that controls the

trade-off between short-term and long-term rewards.
Under a given policy π, the value of taking action a in state s is defined

as: Qπ(s, a) = E[Rt|st = s, at = a, π]. Similarly, the value of state s is defined
as: V π(s) = E[Rt|st = s, π]. In this paper, we mainly focus on two widely
cited RL algorithms: Double Deep Q-Networks (DDQN) [24] and Asynchronous
Advantage Actor-Critic (A3C) [38].
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Q-Learning. Q-learning [56] approaches the above problem by estimating the
optimal action value function Q∗(s, a) = maxπ Qπ(s, a). Specifically, it uses the
Bellman equation Q∗(s, a) = Es′ [r + γ maxa′ Q∗(s′, a′)] to update the value iter-
atively. In practice, Q-learning is commonly implemented by function approxi-
mation with parameters θ: Q∗(s, a) ≈ Q(s, a; θ). At each training iteration i, the
loss function is defined as: Li(θi) = E[(r + γ maxa′ Q(s′, a′; θi−1) − Q(s, a; θi))2].

Deep Q-Networks (DQN). Classic Q-learning networks suffer from a number
of drawbacks, including (1) the i.i.d. (independent and identically distributed)
requirement of the training data being violated as consecutive observations are
correlated, (2) unstable target function when calculating Temporal Difference
(TD) errors, and (3) different scales of rewards. Deep Q networks (DQN) [39]
overcome these issues by (1) introducing experience replay, (2) using a target
network that fixes its parameters (θ−) and only updates at regular intervals,
and (3) clipping the rewards to the range of [−1, 1]. The loss function for DQN
becomes: Li(θi) = E[(r + γ maxa′ Q(s′, a′; θ−

i ) − Q(s, a; θi))2].

Double DQN (DDQN). To further solve the problem of value overestimation,
Hasselt et al. [24] generalise the Double Q-learning algorithm [23] proposed in
the tabular setting, and propose Double DQN (DDQN) that separates action
selection and action evaluation, i.e., one DQN is used to determine the max-
imising action and a second one is used to estimate its value. Therefore, the loss
function is: Li(θi) = E[(r + γQ(s′, arg maxa′ Q(s′, a′; θi); θ−

i ) − Q(s, a; θi))2].

Prioritised Experience Replay. Experience replay keeps a buffer of past
experiences, and for each training iteration, it samples uniformly a batch of
experiences from the buffer. Prioritised experience replay [53] assigns higher
sampling probability to transitions that do not fit well with the current esti-
mation of the Q function. For DDQN, the error of an experience is defined as
|r + γQ(s′, arg maxa′ Q(s′, a′; θ); θ−) − Q(s, a; θ)|.
Asynchronous Advantage Actor-Critic (A3C). Mnih et al. [38] propose
an asynchronous variant of the classical actor-critic algorithm, which estimates
both the state value function V (s; θv) and a policy π(a|s; θp). Specifically, the
A3C algorithm uses multiple threads to explore different parts of the state space
simultaneously, and updates the global network in an asynchronous way. In addi-
tion, instead of using discounted returns to determine whether an action is good,
A3C estimates the advantage function so that it can better focus on where the
predictions are lacking.

2.2 Software-Defined Networking

In order to better serve today’s dynamic and high-bandwidth applications, a
new architecture called Software-Defined Networking (SDN) has emerged [2].
There are three layers in the SDN architecture: (1) the application layer includes
applications that deliver services. These applications communicate their network
requirements to the controller via northbound APIs; (2) the SDN controller
translates these requirements into low-level controls, and sends them through
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southbound APIs to the infrastructure layer; (3) the infrastructure layer com-
prises network switches that control forwarding and data processing. One major
advantage of SDN is that it decouples network control and forwarding functions,
rendering the controller directly programmable. As a result, network resources
can be conveniently managed, configured and optimised using standardised pro-
tocols. There have been a number of proprietary and open-source SDN controller
software platforms. In this paper, we have opted to use OpenDaylight [35], which
is the largest open-source SDN controller today and which is updated regularly.

3 Problem Statement

In this paper, we seek to answer the question: Can reinforcement learning be used
for autonomous defence in SDN? We start with a scenario that does not consider
the attacker poisoning the training process, and then investigate the impact
of adversarial reinforcement learning. While we also briefly discuss potential
countermeasures, we largely leave defences to future work.

3.1 Reinforcement Learning Powered Autonomous Defence in SDN

Consider a network of N nodes (e.g., Fig. 1), H = {h1, h2, ..., hN}, where HC ⊂
H is the set of critical servers to be protected (blue nodes in Fig. 1), HM ⊂ H
is the set of possible migration destinations for h ∈ HC (green nodes), and
HA ⊂ H is the set of nodes that have initially been compromised (red nodes).
The attacker aims to propagate through the network, and penetrate the mission
critical servers, while the defender/SDN controller monitors the system state,
and takes appropriate actions in order to preserve the critical servers and as
many non-critical nodes as possible.

Reflecting suggestions from past work, we consider a defender adopting RL.
In this paper, we start with a simplified version, and make the following assump-
tions (Sect. 7 explains how they may be replaced): (1) each node (or link) only
has two states: compromised/uncompromised (or on/off); (2) both the defender
and the attacker know the complete network topology; (3) the defender has in
place a detection system that can achieve a detection rate of 90%, with no false
alarms (before the causative attacks); (4) the attacker needs to compromise all
nodes on the path (i.e., cannot “hop over” nodes). Given these assumptions, in
each step the defender:

1. Observes the state of the network—whether a node is compromised, and
whether a link is switched on/off, e.g., there are 32 nodes and 48 links in Fig. 1,
so one state is an array of 80 0s/1s, where 0 means the node is uncompromised
or the link is switched off, and 1 means the node is compromised or the link
is switched on;

2. Takes an action that may include: (i) isolating and patching a node; (ii) recon-
necting a node and its links; (iii) migrating the critical server and selecting
the destination; and (iv) taking no action. Note that, in this scenario, the
defender can only take one type of action at a time, and if they decide to
isolate/reconnect, only one node can be isolated/reconnected at a time;
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Table 1. Problem description: RL powered autonomous defence in SDN

Defender Attacker

State (1) Whether each node is compromised;
(2) Whether each link is turned on/off.

Actions (1) Isolate and patch a node;
(2) Reconnect a node and its links;
(3) Migrate the critical server and select
the destination;
(4) Take no action

Compromise a node that satisfies
certain conditions, e.g., the node (1) is
closer to the “backbone” network; (2)
is in the backbone network; or (3) in
the target subnet

Goals (1) Preserve the critical servers;
(2) Keep as many nodes
uncompromised and reachable from the
critical servers as possible.

Compromise the critical servers

3. Receives a reward based on (i) whether the critical servers are compromised;
(ii) the number of nodes reachable from the critical servers; (iii) the number of
compromised nodes; (iv) migration cost; and (v) whether the action is valid,
e.g., it is invalid to isolate a node that has already been isolated.

Meanwhile, the attacker carefully chooses the nodes to compromise. For
example, in the setting of Fig. 1, they infect a node only if it (1) is closer to
the “backbone” network (nodes on the dashed circle); (2) is in the backbone
network; or (3) is in the target subnet. Table 1 summarises this problem setting.

3.2 Causative Attacks Against RL Powered Autonomous Defence
System

As an online system, the autonomous defence system continues gathering new
statistics, and keeps training/updating its model. Therefore, it is necessary and
crucial to analyse the impact of an adversarial environment, where malicious
users can manage to falsify either the rewards received by the agent, or the
states of certain nodes. In other words, this is a form of causative attack that
poisons the training process, in order for the tampered model to take sub-optimal
actions. In this paper, we investigate the two forms of attacks below.

1. Flipping reward signs. Suppose that without any attack, the agent would
learn the following experience (s, a, s′, r), where s is the current system state,
a is the action taken by the agent, s′ is the new state, and r is the reward.
In our scenario, we permit the attacker to flip the sign of a certain number of
rewards (e.g., 5% of all experiences), and aim to maximise the loss function
of the RL agent. This is an extreme case of the corrupted reward channel
problem [19], where the reward may be corrupted due to sensor errors, hijacks,
etc.

2. Manipulating states. Again, consider the case where the agent learns an
experience (s, a, s′, r) without any attack. Furthermore, when the system
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reaches state s′, the agent takes the next optimal action a′. The attacker
is then allowed to introduce one false positive (FP) and one false negative
(FN) reading in s′, i.e., one uncompromised/compromised node is reported
as compromised/uncompromised to the defender. As a result, instead of learn-
ing (s, a, s′, r), the agent ends up observing (s, a, s′ +δ, r′) (where δ represents
the FP and FN readings), and consequently may not take a′ in the next step.

4 Attack Mechanisms

This section explains in detail the mechanisms of the attacks introduced above.

4.1 Attack I: Maximise Loss Function by Flipping Reward Signs

Recall that the DDQN agent aims to minimise the loss function: Li(θi) = E[(r+
γQ(s′, arg maxa′ Q(s′, a′; θi); θ−

i ) − Q(s, a; θi))2]. In the ith training iteration, θi

is updated according to the gradient of ∂Li/∂θi. The main idea for the first form
of attack is to falsify certain rewards based on ∂Li/∂r, in order to maximise the
loss Li.

Specifically, after the agent samples a batch of experiences for training, we
calculate the gradient of ∂Li/∂r for each of them, and flip the sign of experience
with the largest absolute value of the gradient |∂Li/∂r| that satisfies r · ∂Li/∂r <
0 (if r · ∂Li/∂r > 0 flipping the sign decreases the loss function).

4.2 Attack II: Prevent Agent from Taking Optimal/Specific Actions
by Manipulating States

Our experimental results show that the above form of attack is indeed effective
in increasing the agent’s loss function. However, it only delays the agent from
learning the optimal actions. Therefore, the second form of attack directly targets
the value function Q (against DDQN agent) or the policy π (against A3C agent).

1. Indiscriminate attacks. For each untampered experience (s, a, s′, r), indis-
criminate attacks falsify the states of two nodes in the new state s′, in order to
prevent the agent from taking the next optimal action a′ that has been learned
so far (which may be different from the final optimal action for the given
state), i.e., against DDQN agent the attacks minimise maxa′ Q(s′ + δ, a′),
while against A3C agent the attacks minimise maxa′ π(a′|s′ + δ).

2. Targeted attacks. Targeted attacks aim to prevent the agent from taking
a specific action (in our case, we find that this is more effective than tricking
the agent to take a specific action). As an extreme case, this paper allows the
attacker to know the (final) optimal action a∗ that the agent is going to take
next (a∗ may be different from a′), and they seek to minimise the probability
of the agent taking that action: for DDQN, the attacks minimise Q(s′ +δ, a∗);
for A3C, the attacks minimise π(a∗|s′ + δ).
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Algorithm 1. Attack II – Manipulating states
Input : The original experience (s, a, s′, r); The list of all nodes LN ; Target

action at (at = −1 for indiscriminate attack); The main DQN Q
Output: The tampered experience (s, a, s′ + δ, r′)

1 if at == −1 then
// indiscriminate attack

2 at = arg maxa′ Q(s′, a′);

3 for node n in LN do
4 if n is compromised then
5 mark n as uncompromised;
6 if Q(s′ + δ, at) < minQFN then

// δ represents the FP and/or FN readings
7 FN = n;
8 minQFN = Q(s′ + δ, at);

9 restore n as compromised;

10 else
11 mark n as compromised;
12 if Q(s′ + δ, at) < minQFP then
13 FP = n;
14 minQFP = Q(s′ + δ, at);

15 restore n as uncompromised;

16 Change node FN to uncompromised;
17 Change node FP to compromised;
18 return (s, a, s′ + δ, r′)

The details of the above two types of attacks are presented in Algorithm 1
(Algorithm 1 is for the attacks against DDQN. Due to similarity, the algorithm
for attacks against A3C is omitted). In addition, we consider the following vari-
ants of the attacks:

1. White-box attacks vs. Black-box attacks. In white-box attacks, the
attacker can access the model under training to select the false positive and
false negative nodes, while in black-box attacks, the attacker first trains sur-
rogate model(s), and then uses them to choose the FPs and FNs.

2. Limit on the choice of FPs and FNs. The above attacks do not set any
limit on the choice of FPs and FNs, and hence even though the attacker can
only manipulate the states of two nodes each time, overall, they still need to
be able to control a number of nodes, which is not practical. Therefore, we
first run unlimited white-box attacks, identify the top two nodes that have
been selected most frequently as FPs and FNs respectively, and only allow
the attacker to manipulate the states of those nodes.

3. Limit on the timing of the attack. The last type of attacks only introduces
FPs and FNs in the first m steps (e.g., m = 3) in each training episode.
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5 Experimental Verification

This section begins with a discussion of the experimental results obtained when
applying RL to autonomous defence in a SDN environment without consider-
ing causative attacks. We then analyse the impact of the two forms of attacks
explained in Sect. 4. Finally, we discuss adopting adversarial training as a poten-
tial countermeasure, and present some preliminary results. Experiments on
causative attacks were performed on eight servers (equivalent to two Amazon
EC2 t2.large instances and six t2.xlarge instances [1]), and each set of experi-
ments was repeated 15 to 25 times.

5.1 Autonomous Defence in a SDN

For our experiments, as shown in Fig. 1, we created a network with 32 nodes and
48 links using Mininet [3], one of the most popular network emulators. OpenDay-
light [4,35] serves as the controller, and monitors the whole-of-network status.
The RL agent retrieves network information and takes appropriate operations by
calling corresponding APIs provided by OpenDaylight. In the setup, the three
nodes in red, i.e., nodes 1.5, 2.7 and 3.6, have already been compromised. Node
3.8 is the critical server to be protected, and it can be migrated to node 3.9 or
4.5.

We trained a DDQN (with Prioritised Experience Relay) agent and an A3C
agent. We set the length of training such that the reward per episode for both
agents reached a stable value well before training ended. The two agents learned
two slightly different responses: the DDQN agent decides to first isolate node 3.6,
then 1.3, 2.2 and finally 2.1, which means 21 nodes are preserved (see Fig. 2a);
while the A3C agent isolates nodes 1.5, 3.3, 2.2 and 2.1, keeping 20 nodes uncom-
promised and reachable from the critical server (see Fig. 2b).
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Fig. 2. Optimal results without causative attacks (nodes in the shade are preserved)
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Fig. 3. Cumulative loss before and after flipping reward sign attacks (against DDQN)

5.2 Attack I: Flipping Reward Sign

This subsection presents the results of the first form of attack that flips the
reward sign. In our experiments, we limit the total number of tampered experi-
ences to 5% of all experiences obtained by the agent, and also set the number of
tampered experiences per training iteration to the range of [1, 5].

As can be seen in Fig. 3, the attack is effective in increasing the agent’s loss
function. However, our results also suggest that this form of attack only delays
the training as the agent still learns the optimal actions (although the delay can
be significant).

5.3 Attack II: Manipulate State—Indiscriminate Attacks

Unlimited White-Box Attacks. We start with unlimited indiscriminate
white-box attacks, the case where the attacker has full access to the model under
training. For each experience (s, a, s′, r) obtained by the agent, they can manip-
ulate the states of any two nodes in s′, i.e., one false positive and one false nega-
tive, in order to prevent the agent from taking the next optimal action a′ that has
been learned so far (note that it may be different from the final optimal action).
Specifically, for the DDQN agent, the attacker minimises maxa′ Q(s′ + δ, a′); for
the A3C agent, the attacker minimises maxa′ π(a′|s′ + δ).

Figure 4 presents the results we obtained during our experiments. The left-
most bars in Figs. 4a and 4b suggest that the unlimited indiscriminate white-box
attacks are very effective against both DDQN and A3C. Specifically, the average
number of preserved nodes decreases from 21 and 20 to 3.3 and 4.9, respectively.

White-Box Attacks with Limits on the Choices of False Positive and
False Negative. As pointed out in Subsect. 3.2, even though the attacker only
manipulates the states of two nodes each time, overall, they still need to be
able to control a number of nodes, which is unlikely in practice. We calculate
the number of times that each node is chosen in the above unlimited attacks,
and find that some nodes are selected more frequently than others (Fig. 5; the
histograms for the A3C case are omitted due to similarity).

Therefore, when poisoning the DDQN agent, we limit the false positive nodes
to {3.5 (node ID 18), 4.1 (node ID 23)}, and limit the false negative nodes to
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Fig. 4. Indiscriminate attacks against DDQN & A3C. The bars indicates the percentage
of attacks (left y−axis) that (1) have no impact; (2) cause fewer nodes to be preserved;
and (3) cause the critical server to be compromised. The line marked by “×” indicates
the average number of preserved servers (right y−axis). The five types of attacks are:
(1) white-box, no limit on FNs&FPs; (2) white-box, with limits on FP but not on FN,
(3) white-box, with limits on both FP and FN; (4) black-box, same algorithm, with
limits on both FPs and FNs; (5) black-box, different algorithm, with limits on both
FPs and FNs.

{2.7 (node ID 12), 3.6 (node ID 19)}. We use node 4.1 instead of 3.4 (node
ID 17), as otherwise both selected nodes would be from the target subnet and
directly connected to the target, which is unlikely in real situations. In the A3C
case, the false positive and false negative nodes are limited to {1.3 (node ID 2),
3.5 (node ID 18)}, and {2.7 (node ID 12), 1.5 (node ID 4)}, respectively.

The second and third bars in Figs. 4a and 4b show that the limit has an
obvious negative impact on the attack, especially the limit on the false negative
nodes. Still, less than half of the nodes are preserved on average, compared with
the scenarios without attacks.

Fig. 5. Histograms of the false positive and false negative nodes being selected against
DDQN. N.B.: The node IDs {0, 1, ..., 31} are ordered and mapped to the node sequence
{1.1, 1.2, ..., 1.6, 2.1, ..., 2.8, 3.1, ..., 3.9, 4.1, ..., 4.9}
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Black-Box Attacks with Limits on the Choices of False Positive and
False Negative Nodes. In our black-box attacks (both intra- and cross-
models), the attacker does not have access to the training model. Instead, they
train their own agents first, and use the surrogate models to poison the training
of the target models by choosing false positive and false negative nodes. Specif-
ically, we have trained a few DDQN and A3C agents with a different number
of hidden layers from the target model, and observed that these surrogates can
still prevent the critical server from compromising.

As illustrated by the rightmost two bars in Figs. 4a and b, black-box attacks
are only slightly less effective than the counterpart white-box attacks despite the
surrogate using a different model. This lends support that transferability also
exists between RL algorithms, i.e., attacks generated for one model may also
transfer to another model.

5.4 Attack II: Manipulate State—Targeted Attacks

In the targeted attacks considered here, the attacker is assumed to know the
sequence of final optimal actions, and attempts to minimise the probability of
the agent following that sequence. It should be pointed out that we have also
studied the case where the attacker instead maximises the probability of taking
a specific non-optimal action for each step, but our results suggested that this
is less effective.

We find that in targeted attacks, certain nodes are also selected more fre-
quently as a false positive and false negative. In this scenario, we limit false
positive nodes to (1) {3.5 (node ID 18), 4.1 (node ID 23)} against DDQN, (2)
{2.6 (node ID 11), 1.4 (node ID 3)} against A3C, and limit false negative nodes
to (1) {1.5 (node ID 4), 2.1 (node ID 6)} against DDQN, (2) {4.1 (node ID 23),
2.4 (node ID 9)} against A3C.

Our results, summarised in Fig. 6, indicate that (1) compared with the
results on indiscriminate attacks, targeted attacks work better, especially against
DDQN (fewer nodes are preserved on average), as the attacker is more knowl-
edgeable in this case; (2) similar to the indiscriminate case, black-box attacks
achieve comparable results to the white-box attacks, further demonstrating the
transferability between DDQN and A3C.

5.5 Timing Limits for the Attacks

The attacks discussed so far allowed the attacker to poison every experience
obtained by the agent. A possible limitation on this assumption is to examine
whether these attacks can remain successful when the attacker can only manipu-
late part of the experiences. Therefore, in this subsection we shall look at attacks
that poison only a subset (the first three steps) in each training episode.

Figures 7a and 7b depict the results of the time-limited version of (cross-
model) black-box attacks against DDQN and white-box attacks against A3C
(both with limit on the choices of FPs and FNs), respectively. The results suggest
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Fig. 6. Targeted attacks against DDQN & A3C.
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Fig. 7. Attacks against DDQN&A3C with time limit. The attacker only poisons the
first three steps per training episode.

that even though the time limit has a negative impact in every scenario studied,
the attacks are still effective.

5.6 Discussion on Countermeasures

In supervised learning problems, adversarial training [21,57,58] has the defender
select a target point (x, y) from the training set, modify x to x∗ (i.e., generates an
adversarial sample), and then inject (x∗, y) back into the training set, under the
implicit assumption that the true label y should not change given the instance
has been only slightly perturbed.

In our RL setting, while the attacker manipulates the observed states to
minimise the probability of the agent taking the optimal action a in state s,
the defender can construct adversarial samples that counteract the effect. For
example, for each experience (s, a, s′, r), the defender can increase r by a small
amount, e.g., 5% of the original value, given that r is positive and a is not
chosen randomly (the probability of choosing an action randomly decreases as
the training proceeds). The rationale behind this modification is that when the
poisoning attack starts out, it is likely that a is still the optimal action (that
has been learned so far) for state s. If r is positive it means that action a is
a relatively good option for s, and since the attacker has poisoned the state to
prevent the agent from taking a, we slightly increase r to encourage the agent
to take action a.
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Fig. 8. Adversarial training against indiscriminate white-box attacks with limits on
the choices of FPs and FNs (against DDQN), FP ∈ {18, 23}, FN ∈ {12, 19}

We have tested the above idea against indiscriminate white-box attacks with
a limit on the choices of FPs and FNs against DDQN. Specifically, for each
experience (s, a, s′, r) whose r is positive and a is not selected randomly, we
change it to (s, a, s′,min(1.0, 1.05r)). Note that our experimental results suggest
that adding 5% error to the reward signal when there is no attack will not prevent
the agent from learning the optimal actions, although it may cause some delay.
The results in Fig. 8 indicate that adversarial training can make the training
process much less vulnerable.

However, the results are still preliminary, and we plan to further investigate
other forms of adversarial training. For example, Pinto et al. [51] model all
potential disturbances as an extra adversarial agent, whose goal is to minimise
the discounted reward of the leading agent. They formulate the policy learning
problem as a two player zero-sum game, and propose an algorithm that optimises
both agents by alternating learning one agent’s policy with the other policy being
fixed. In addition, we will also study the impact of the loss function, prioritised
experience replay, ensemble adversarial training [58] and other, more intrusive
types of attacks, where the adversary is aware of the defence method, and attacks
the defended model.

6 Related Work

This section reviews ways in which attackers can target machine learning sys-
tems and current defence mechanisms. We first present a taxonomy on attacks
against (primarily) supervised classifiers, and then summarise recent work that
applies/modifies these attacks to manipulate RL systems. Finally, we review
existing countermeasures against adversarial machine learning.

6.1 Taxonomy of Attacks Against Machine Learning Classifiers

Barreno et al. [6] develop a qualitative taxonomy of attacks against ML classi-
fiers based on three axes: influence (causative vs. exploratory attacks), security
violation (integrity vs. availability attacks) and specificity (indiscriminate vs.
targeted attacks).
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Table 2 uses the taxonomy to classify previous work on adversarial machine
learning against classifiers. As can be seen, more focus has been paid to
exploratory integrity attacks. Presently, the Fast Gradient Sign Method (FGSM)
attack [21] is widely studied, and the C&W attack [14] is the most effective found
so far on the application domains tested, mostly in computer vision. Both of these
attack methods can be used for targeted or indiscriminate attacks.

With further examination of the attacker’s capabilities, a powerful attacker
may also know the internal architecture and parameters of the classifier. There-
fore, a fourth dimension can be added to the above taxonomy according to
attacker information: in white-box attacks, the adversary generates malicious
instances against the target classifier directly; while in black-box attacks, since
the attacker does not possess full knowledge about the model, they first approx-
imate the target’s model. Then if the reconstructed model generalises well, the
crafted adversarial examples against this model can be transferred to the target
network and induce misclassifications. Papernot et al. [47,48] have demonstrated
the effectiveness of the black-box attack in certain specific domains.

6.2 Attacks Against Reinforcement Learning

In more recent studies, several papers have begun to study whether attacks
against classifiers can also be applied to RL-based systems. Huang et al. [28] have
shown that deep RL is vulnerable to adversarial samples generated by the Fast
Gradient Sign Method [21]. Their experimental results demonstrate that both
white-box and black-box attacks are effective, even though the less knowledge
the adversary has, the less effective the adversarial samples are. Behzadan &
Munir [8] establish that adversaries can interfere with the training process of
DQNs, preventing the victim from learning the correct policy. Specifically, the
attacker applies minimum perturbation to the state observed by the target,
so that a different action is chosen as the optimal action at the next state.
The perturbation is generated using the same techniques proposed against DNN
classifiers. Lin et al. [34] propose strategically-timed attacks and enchanting
attacks against deep reinforcement learning agents.

6.3 Adversarial Machine Learning Defences

A number of countermeasures have been proposed since the discovery of adver-
sarial samples. These can be roughly categorised into two classes: data-driven
defences and learner robustification.

Data-Driven Defences. This class of defences are data driven—they either
filter out the malicious data, inject adversarial samples into the training dataset,
or manipulate features via projection. These approaches are akin to black-box
defences since they make little to no use of the learner.
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Table 2. Taxonomy of attacks on machine learners, with representative past work. As
the taxonomy was designed for supervised learners, we include attacks on reinforcement
learning in Sect. 6.2.

Integrity Availability

Causative,
targeted

Rubinstein et al. [52]: boiling frog attacks
against the PCA anomaly detection
algorithm; Li et al. [32]: poison training
data against collaborative filtering
systems; Mei and Zhu [36]: identify the
optimal training set to manipulate
different machine learners; Burkard and
Lagesse [12]: targeted causative attack on
SVMs that are learning from a data
stream

Newsome et al. [45]:
manipulate training set
of classifiers for worms
and spam to block
legitimate instances;
Chung and Mok [16]:
generate harmful
signatures to filter out
legitimate network
traffic

Causative,
indiscriminate

Biggio et al. [11]: inject crafted training
data to increase SVM’s test error; Xiao
et al. [60]: label flips attack against
SVMs; Koh and Liang [29]: minimise the
number of crafted training data via
influence analysis

Newsome et al. [45];
Chung and Mok [16];
Nelson et al. [43]:
exploit statistical
machine learning
against a popular email
spam filter

Exploratory,
targeted

Nelson et al. [44]: probe a classifier to
determine good attack points; Papernot
et al. [49]: exploits forward derivatives to
search for the minimum regions of the
inputs to perturb; Goodfellow et al. [21]:
design FGSM to generate adversarial
samples; Carlini and Wagner [14]:
propose the C&W method for creating
adversarial samples; Han and Rubinstein
[22]: improve the gradient descent
method by replacing with gradient
quotient

Moore et al. [40]:
provide quantitative
estimates of
denial-of-service
activity

Exploratory,
indiscriminate

Biggio et al. [10]: find attack instances
against SVMs via gradient descent;
Szegedy et al. [57] demonstrate that
changes imperceptible to human eyes can
make DNNs misclassify an image;
Goodfellow et al. [21]; Papernot et al.
[47,48]: attack the target learner via a
surrogate model; Moosavi-Dezfooli et al.
[41,42]: propose DeepFool against DNNs;
Carlini and Wagner [14]; Nguyen et al.
[46]: produce images that are
unrecognisable to humans, but can be
recognised by DNNs; Han and
Rubinstein [22]

Moore et al. [40]
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– Filtering instances. These counter-measures assume that the poisoning data
in the training dataset or the adversarial samples against the test dataset
either exhibit different statistical features, or follow a different distribution.
Therefore, they propose to identify and filter out the injected/perturbed
data [20,30,33,37,55].

– Injecting data. Goodfellow et al. [21] attribute the existence of adversarial
samples to the “blind spots” of the training algorithm, and propose injecting
adversarial examples into training to improve the generalisation capabilities
of DNNs [21,57]. Tramer et al. [58] extend such adversarial training methods
by incorporating perturbations generated against other models.

– Projecting data. Previous work has shown that high dimensionality facilitates
the generation of adversarial samples, resulting in an increased attack sur-
face [59]. To counter this, data can be projected into lower-dimensional space
before testing [9,17,61]. However, these results contradict with [31], which
suggests that more features should be used when facing adversarial evasion.

Learner Robustification. Rather than focusing solely on training and test
data, this class of methods—which are white-box in nature—aim to design mod-
els to be less susceptible to adversarial samples in the first place.

– Stabilisation. Zheng et al. [62] design stability training that modifies the
model’s objective function by adding a stability term. Papernot et al. [50]
provide examples using a distillation strategy against a saliency-map attack.
However, this method is shown to be ineffective by Carlini and Wagner [13].
Hosseini et al. [26] propose to improve adversarial training by adding an addi-
tional “NULL” class.

– Moving target. Sengupta et al. [54] apply moving target defences against
exploratory attacks: the defender prepares a pool of models instead of a single
model, and for each image to be classified, one trained DNN is picked following
certain strategy.

– Robust statistics. Another avenue that has remained relatively unexplored is
to leverage ideas from robust statistics, e.g., influence functions, M -estimators
with robust loss functions. Rubinstein et al. [52] applied a robust form of PCA
to defend against causative attacks on network-wide volume anomaly detec-
tion. Recently, interest in the theoretical computer science community has
turned to robust estimation in high dimensions, e.g., Diakonikolas et al. [18].

Lessons Learned. Despite many defences proposed, several recent studies
[15,25] point out that most of these methods unrealistically assume that the
attacker is not aware of the defence mechanism, and only consider relatively
weak attacks, e.g., FGSM [21]. Negative results are reported on the effectiveness
of these methods against adaptive attackers that are aware of the defence and
act accordingly, and against the C&W attack [14]. More recently, Athalye et al.
[5] show that defences relied on obfuscated gradients can also be circumvented.
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7 Conclusions and Future Work

In this paper, we demonstrated the feasibility of developing autonomous defence
in SDN using RL algorithms. In particular, we studied the impact of differ-
ent forms of causative attacks, and showed that even though these attacks
might cause RL agents to take sub-optimal actions, adversarial training could
be applied to mitigate the impact.

For future work, we plan to (1) use a traffic generator to introduce back-
ground traffic between nodes, and use network performance metrics to replace
the current binary states; (2) consider different types of network traffic, so that
the actions of the RL agent could include partial isolation in terms of blocking
certain protocols between nodes; (3) change full observability of the network sta-
tus to partial observability—the defender may have limited resources, and the
attacker may not know the entire topology; and (4) remove limiting assumptions,
e.g., the attacker having to compromise all nodes along the path to the critical
server.
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Abstract. In this paper, we consider a 4-player, two stage Colonel
Blotto game in which one player, the attacker, simultaneously partic-
ipates in three disjoint Colonel Blotto games against three defenders.
During the first stage of the game, the defenders can choose to form
independent coalitions by transferring resources (troops, funds, comput-
ing resources, etc.) among each other if the transfer benefits the defenders
involved. In the second stage, the attacker observes these transfers among
defenders and then allocates a portion of his overall resources to fight
against each defender. We find that the formation of coalitions depends
on both the ratios of resources between the attacker and the defend-
ers and on each defender’s total battlefield value to resource ratio. For
one parameter region, we completely characterize the subgame-perfect
Nash equilibrium. For another parameter region, we show that there are
parameters of the game for which transfers occur and provide a compu-
tational method to calculate those transfers.

Keywords: Constant sum game with resource constraints
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1 Introduction

The Colonel Blotto game, first proposed by Borel in 1921 [2,3], is a classic
constant-sum model of resource allocation between two budget constrained play-
ers. In this game, two players, Colonels A and B, have resource levels XA and
XB , respectively. Each player allocates his resources across a finite number of
battlefields. Whichever player allocates the most resources to a single battle-
field wins that battle. The winner of the game is the player that wins the most
battlefields.

The Colonel Blotto game has diverse applications within military and secu-
rity domains, where agencies allocate limited resources across various geographic
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locations to counter adversarial threats. In addition, the model is useful to ana-
lyze situations including network resource games [12,20], cyber-security games
[5,11,16], economic contests [7,14], and political contests [8,15,19].

While the Colonel Blotto game seems relatively straightforward, it has proven
difficult to solve. Borel’s original formulation was first solved by Borel and Ville
in 1938 for two players, three battlefields, and symmetric resource allocation [4].
In 1950, Gross and Wagner [9] solved the game for symmetric resource allocation
and more than three battlefields. They also solved the case of two battlefields
and asymmetric resource allocation. However, the Colonel Blotto game remained
unsolved for asymmetric player resources and an arbitrary number of battle-
fields until Roberson’s seminal work in 2006 [17]. Roberson advanced the field
significantly, with many follow-on works that extended his solution to specific
applications.

In this work, we consider a four-player, two-stage Colonel Blotto game in
which one player, the attacker, simultaneously participates in three disjoint
Colonel Blotto games against three defenders. During the first stage of the game,
the defenders can choose to form an alliance, or coalition, by transferring a
single-dimensional resource (troops, funds, computing resources, etc.) from one
defender to another. This transfer between two defenders only occurs when the
transfer will not decrease both defenders’ payoffs in the final stage. The attacker
observes these transfers between defenders and then allocates a portion of his
overall resources to the final stage Colonel Blotto game against each defender.

Similar to [10,11,13], we consider a model of noncooperative alliances in
which only individually rational ex ante transfers of resources are allowed. As
such, the model does not rely on any assumption of commitment to a coalition
nor the ex post division of payoffs.

We find that the formation of coalitions, based on the transfer of resources,
depends on both the ratios of resources between the attacker and a defender and
on each defender’s total battlefield value to resource ratio. In one case that we
study, only resource rich defenders are willing to transfer resources. However,
in another case, somewhat counter-intuitively, the most resource rich defender
does not necessarily transfer resources to other defenders. Instead, defenders that
have a lower total battlefield value to resource ratio are those that tend to be
willing to transfer resources.

Other authors have considered coalition formation in Colonel Blotto games.
In [14], Kovenock and Roberson consider the same game that we’ve described
above but with only two defenders. In addition, they only consider cases where
transfers between defenders strictly improve the payoff of each defender. The
authors characterize the attacker’s resource division strategy for multiple regions
of the resource budget and calculate parameters for when a transfer of resources
between defenders occurs. However, they do not calculate the amount of resource
transfer. In [11], Gupta et al. also consider a multi-stage, one attacker, two
defender complete information Colonel Blotto game. In their formulation, in
addition to transferring resources, the two defenders can choose to add additional
battlefields, at some cost per battlefield. The authors find the subgame-perfect
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Nash equilibrium (SPNE) for this game for certain parameter regions. Finally, in
[10], Gupta et al. consider a change to the information structure from [11], where
the attacker can not observe the resource transfer between the two defenders.
They find that in some parameter regions the SPNE remains unchanged, while
in other regions the SPNE is significantly different from [11].

As far as we are aware, this work is the first attempt to extend this multi-stage
Colonel Blotto game setting to more than two defenders. In the two defenders
case, there is only one possible coalition formation. In the N defender case,
the number of possible coalitions are N(N−1)

2 = O(N2). Thus, the seemingly
simple extension to the previous case requires us to investigate a large number
of possible coalition formations. We view our work as an attempt to identify
situations where the analysis can be simplified and understand regimes where
coalitions can be formed.

1.1 Outline of the Paper

In Sect. 2, we present a brief overview of the Classical Colonel Blotto game and
review the pertinent results from [17]. Following that, we formalize the multi-
stage model used throughout this paper in Sect. 3 and present the main results.
In Sect. 4, we derive the best response of the attacker. Sections 5 and 6 are
devoted to computing the equilibrium transfers among the defenders under two
assumptions on the strength of the attacker. Finally, in Sect. 7, we conclude with
an analysis of the work and highlight directions for future work.

2 The Classical Colonel Blotto Model

In this section, we introduce the classic asymmetric resource, homogeneous bat-
tlefield value Colonel Blotto game (CBG) and appropriate notations. In the clas-
sic CBG, two players, call them A and B, simultaneously allocate their forces,
XA and XB , across a finite number, n, of homogeneous battlefields with value v.
Battlefield values are homogeneous; therefore, we have vj = vk ∀j, k ∈ {1, . . . , n}.
If a player sends a higher level of force to battlefield j, then that player wins that
battlefield and receives a payoff of vj . If the player sends a lower level of force to
battlefield j, then that player loses and receives a payoff of 0. Each player’s total
payoff in the game is the sum of the payoffs across the battlefields. Without loss
of generality, assume XA ≤ XB , so that player B is the “stronger” player. In
the case of a tie, we follow [17] and assume that player B wins the battlefield.

More formally, we can define the classic CBG similarly to the definition in
[6]. The classic CBG

{P, {X}i∈P , {Xi}i∈P ,N , {vj}n
j=1, {Ui}i∈P

}
is defined by six

components: (a) the players in the set P � {A,B}, (b) the strategy spaces Xi

for i ∈ P, (c) the available resource Xi for i ∈ P, (d) the set of n battlefields,
N , (e) the homogeneous value of each battlefield, vj = vk ∀j, k ∈ N , and (f) the
utility function Ui for each player i ∈ P.

The force allocated to each battlefield must be non-negative. Therefore, the
strategy space of each player corresponds to the set of feasible allocations across
the n battlefields and is given by
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Xi =

{

xi ∈ Rn
≥0 |

n∑

j=1

xi,j ≤ Xi

}

, (1)

where xi,j is the number of allocated resources by player i to battlefield j.
The payoff of player i on battlefield j is defined as:

ui,j(xi,j , x−i,j) =

⎧
⎪⎨

⎪⎩

vj if xi,j > x−i,j ,

t.b.r if xi,j = x−i,j ,

0 if xi,j < x−i,j ,

(2)

where t.b.r indicates the tie breaking rule and we use the common game
theoretic notation −i to refer to all players except player i. We follow [17] and
the tie breaking rule is to assume that the stronger player (player with greater
resources) wins the battlefield.

Finally, the utility function, Ui, for each player is defined as:

Ui(xi,x−i) =
n∑

j=1

ui,j(xi,j , x−i,j). (3)

The classic CBG is a complete information game. All parameters of the game,

CBG
{P, {X}i∈P , {Xi}i∈P ,N , {vj}n

j=1, {Ui}i∈P
}
,

are assumed to be common knowledge among all players.

2.1 Strategies of the Players

In the trivial case, 1
nXB ≥ XA, there exists a pure strategy equilibrium where

player B plays such that xB,j ≥ 1
nXB ≥ XA, xB ∈ XB and wins all of the

battlefields. For non-trivial cases, 1
nXB < XA ≤ XB , it is well known that there

is no pure strategy equilibrium [17]. Following [17], we define a mixed strategy,
or distribution of force, for player i as an n-variate distribution function Pi :
Rn

≥0 → [0, 1] with support in Xi, and with one-dimensional marginal distribution
functions

{
F j

i

}
j∈{1,...,n}. A single play of the game for player i corresponds to a

random n-tuple drawn from Pi with the set of univariate marginal distribution
functions

{
F j

i

}
j∈{1,...,n}.

2.2 Nash Equilibrium of the Classic Colonel Blotto Game

Roberson completely characterized the unique equilibrium payoffs for the asym-
metric resource, homogeneous battlefield value CBG in [17]. Below we summarize
his results for the cases that we study in this work.

Lemma 1 (Roberson [17,18]). For the Classic Colonel Blotto Game,

CBG
{{1, 2}, {B1,B2}, {r1, r2},N , {v}, {U1, U2}

}
,
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with n ≥ 3, assume that r1 and r2 are such that 1
n−1 ≤ r1

r2
≤ n − 1. Then the

payoff functions under Nash equilibrium are given by:

P 1(CBG) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

nv
(

2
n − 2r2

n2r1

)
if 1

n−1 ≤ r1
r2

< 2
n ,

nv
(

r1
2r2

)
if 2

n ≤ r1
r2

≤ 1,

nv
(
1 − r2

2r1

)
if 1 ≤ r1

r2
≤ n

2 ,

nv
(
1 − 2

n + 2r1
n2r2

)
if n

2 < r1
r2

< n − 1,

P 2(CBG) = nv − P 1(CBG).

If r1 = 0, then P 1(CBG) = 0.

For a detailed proof of Lemma1, see [17,18]. Roberson’s result in [17] estab-
lishes the existence of the n-variate distributions with support in B1,B2 and with
the equilibrium payoffs in Lemma1. These n-variate distributions are not unique.
However, since the game is constant sum, (P 1(CBG) + P 2(CBG) = nv), the
equilibrium payoffs are unique by ordered interchangeability property of multi-
ple saddle-point equilibria in zero-sum games (we note here that constant sum
games are strategically equivalent to zero-sum games).

3 Problem Formulation and Main Results

We consider a 3 + 1 players, two-stage Colonel Blotto game. In this formulation,
the first three players (defenders) fight against a common attacker. The initial
resource allocation of the three defenders is denoted by βi, i ∈ {1, 2, 3}. Similarly,
we use α to denote the total resources of the attacker. The battle between the
attacker and Player i takes place on ni ≥ 3 battlefields, where each battlefield
has equal payoff vi > 0. The description of the two stages are given below.

3.1 Stage One

In this stage, each defender decides on an amount of resources to transfer to the
other two defenders, based on whether this transfer of resources will not decrease
her expected payoff at the final stage. She also decides whether or not to accept
resources from other defenders. We define ti,j as the transfer of resources from
defender i to defender j and tj,i as transfer in the opposite direction. Since each
defender’s resource level, ri, in the final stage game must be greater than or
equal to zero, the total transfer out from defender i must be less than or equal
to her starting resource level, βi.

Thus, the resource level of each defender after transfer is complete is:

ri(ti,1, ti,2, ti,3, t1,i, t2,i, t3,i) = βi +
3∑

j=1

(tj,i − ti,j),

ti,i = 0,

3∑

j=1

ti,j ≤ βi.
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For notational clarity, we define the strategy vector of transfers to/from
defender i as ti = (ti,1, ti,2, ti,3, t1,i, t2,i, t3,i). We also define t = (t1, t2, t3) to
represent all of the defenders’ strategy vectors. In addition, in a slight abuse of
notation, we use ri to represent ri(ti) and αi to represent αi(t).

3.2 Stage Two (Final Stage)

Once the transfers are complete in the first stage, the attacker decides on the
amount of resources, αi, to allocate to each final stage battle such that:

3∑

i=1

αi(t) ≤ α, αi(t) ≥ 0.

In the final stage of the game each defender battles with the attacker in
an independent classic Colonel Blotto game using the resource allocation deter-
mined in stage one. The set of players for each battle is P � {A,Bi}, where
A represents the attacker and Bi represents defender i. Each individual battle
takes place over a set of battlefields, Ni = {1, . . . , ni}, belonging to defender i.
For defender i, each battlefield has homogeneous value vk = vk′ ∀k, k′ ∈ Ni. The
strategy space of the attacker and defender in this game is, respectively,

Ai =

{

αi ∈ Rni

≥0 |
∑

j∈Ni

αi,j ≤ αi

}

, Ri =

{

ri ∈ Rni

≥0 |
∑

j∈Ni

ri,j ≤ ri

}

.

Using the notation introduced in Sect. 2, each defender battles the attacker
in a CBG given by:

CBG
{{A,Bi}, {Ai,Ri}, {αi, ri},Ni, vi, {Ui}i∈P

}
.

In shorthand notation, we refer to this individual final stage game as CBGi.
We annotate the overall two-stage game described in this section as:

2CB
{{A, {Bi}}, {α, {βi}}, {Ni}, {vi}

}
with i ∈ {1, 2, 3}

and refer to this overall two-stage game as 2CB.
In the overall game 2CB, the payoff to defender i is her payoff in the game

CBGi. The attacker’s overall payoff is the sum of his payoffs in the individual
CBGi games.

In this work, we consider a small subset of the possible parameter regions.
We focus on games where if all players play according to the SPNE in the first
stage, then the resource allocation at the final stage is such that 2

ni
< αi

ri
< ni

2
for all i ∈ {1, 2, 3} or αi = 0 for some i ∈ {1, 2, 3}. The two specific cases that
we consider are:

1. 2
ni

< αi

ri
< 1 ∀i ∈ {1, 2, 3},

2. 2
ni

< ri

αi
< 1 ∀i ∈ {1, 2, 3}.

We also introduce the following notation for clarity in presentation of the
results. Let D = {1, 2, 3} represent the set of defenders. Also, let Ki = nivi,
which is the total battlefield value (value of the game) CBGi.
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3.3 Main Results

In this subsection, we present the main results of the paper and briefly discuss
the results. For clarity, we present the proofs of these results and a more detailed
discussion in Sects. 4–6.

The proof outline for all three of the theorems we present here is similar and
relies on using backwards induction to find the subgame-perfect Nash equilib-
rium (SPNE). Starting at the final stage, games, CBGi, we use the results from
[17] to calculate the Nash equilibrium (NE) of the final stage. We then calculate
the attacker’s optimal resource allocation in response to the stage one resource
transfers between the defenders. Finally, we rank order the defenders based on
the starting resource levels and calculate the defenders’ optimal resource alloca-
tion to find the NE of the subgame starting at stage one.

We first consider the case where the attacker is the weakest player in the
game. As such, the resource levels of the defenders and attacker are such that
α < min{β1, β2, β3}. In addition, assume that the vector of resource transfers, t,
is such that the game remains in case 1, 2

ni
< α

ri
< 1 ∀i ∈ {1, 2, 3}. In general,

one can think of the ratio Ki

βi
as the relative strength of each defender. Without

loss of generality, we index defenders by inverse relative strength:

K1

β1
≥ K2

β2
≥ K3

β3
. (4)

Theorem 1. Consider a two-stage game, 2CB, where the parameters of the
game are such that:

1. α < min{β1, β2, β3},
2. 2

ni
< α

ri
< 1 ∀i ∈ {1, 2, 3},

3. β2(K1 + K3) − K2(β1 + β3) ≥ 0,
4. K1

β1
> K2

β2
.

then there is a family of SPNEs such that:

α∗
1 = α,

α∗
2 = 0, α∗

3 = 0,

t∗1,2 = t∗1,3 = 0,

t∗2,1 + t∗2,3 ≥ 0,

t∗3,1 + t∗3,2 ≥ 0,

t∗2,1 + t∗2,3 < t∗3,2 +
β2(K1 + K3) − K2(β1 + β3)

K1 + K2 + K3
,

t∗3,1 + t∗3,2 < t∗2,3 +
β3(K1 + K2) − K3(β1 + β2)

K1 + K2 + K3
.
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From Theorem 1, we see that when the attacker is the weakest player in the
game his optimal strategy is to battle with only one defender. However, the
defender that he battles with is not necessarily the weakest defender in terms of
overall resources, but the defender that is weakest in terms of resources to total
battlefield value. Another observation is that defenders with less resources are
willing to transfer resources to a defender with a higher resource level, as long
as that transfer doesn’t result in the defender making the transfer becoming the
relatively weakest player.

We next consider the case where the attacker is much stronger than all of
the defenders combined. We assume that α >

∑3
i=1 βi. In addition, assume that

the vector of resource transfers, t, is such that the game remains in case 2,
2
ni

< ri

αi
< 1 ∀i ∈ {1, 2, 3}.

Theorem 2. Consider a two-stage game, 2CB, where the parameters of the
game are such that:

1. 2
ni

< ri

αi
< 1 ∀i ∈ {1, 2, 3},∀t,

2. βi − βk > 2
√

Ki

Kk

√
βiβk +

√
βk

Kk

√
Kjβj

then there is a positive transfer from defender i to defender k, ti,k > 0.

Unlike the weakest attacker case, we observe from Theorem 2 that resource
transfers only occur from a defender with a higher resource level to a defender
with a lower resource level. In addition, if the difference in the resource levels
between two defenders is higher than a certain threshold, then we observe that
a transfer of some resources is a dominant strategy for those defenders. Finally,
recall from the problem formulation in Sect. 3.1 that our model allows defender
k to choose whether or not to accept a transfer from defender i. In the proof of
Lemma 5 in Sect. 6, we find that defender k is always willing to accept resources
from defender i whenever defender i is willing to transfer those resources. We also
show that there are parameter regions where one defender is willing to accept
resources, but other defenders are not willing to transfer. As a result, there is
no coalition formation in this situation.

Finally, we consider a specific parameter configuration of the game and show
that, in equilibrium, the strongest defender in terms of initial resource allocation,
defender 1, transfers resources to at least one other defender and that there is
no transfer between defenders 2 and 3.

Theorem 3. Consider a two-stage game, 2CB, where the parameters of the
game are such that:

1. 2
ni

< ri

αi
< 1 ∀i ∈ {1, 2, 3},∀t,

2. β1 − β2 > 2
√

K1
K2

√
β1β2 +

√
β2
K2

√
K3β3,

3. β1 − β3 > 2
√

K1
K3

√
β1β3 +

√
β3
K3

√
K2β2,

4. β1+β2
2 − β3 ≤ 2

√
K2
K3

√
β2β3 +

√
β3
K3

√
K1

β1+β2
2 ,
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5. β1+β3
2 − β2 ≤ 2

√
K3
K2

√
β2β3 +

√
K1
K2

√
β1+β2

2
β2+β3

2 ,
6. β1 > β2 ≥ β3.

Then t∗2,3 = t∗3,2 = 0, t∗2,1 = t∗3,1 = 0, t∗1,2, t
∗
1,3 ≥ 0, where t1,2 and t1,3 are

solutions to defender 1’s optimization problem:

max
t1,2,t1,3

φ1(t1) =
√

K1r1
2α

(
3∑

j=1

√
Kjrj

)

subject to 0 ≤ t1,2 <
β1 − β2

2
, 0 ≤ t1,3 <

β1 − β3

2
.

(5)

From Theorem 3, one can immediately notice that if defender 1 has signif-
icantly more resources than defenders 2 and 3, and if defenders 2 and 3 have
a relatively similar level of resources then it is in the strongest defender’s best
interest to form a coalition and transfer resources to the other two defenders.
At the same time, the weaker defenders have no incentive to transfer resources.
Combining observations from Theorems 2 and 3, we note that the expected pay-
offs of all three players increases.

In the subsequent sections, we prove the results stated above. We first com-
pute the attacker’s resource allocation and Nash equilibrium payoffs of the play-
ers in the final stage game assuming the knowledge of the transfer. Thereafter,
in Sects. 5 and 6, we proceed to solve the stage 1 game for the cases stated in
the theorems above.

4 Best Response of the Attacker

In this section we calculate the attacker’s optimal resource allocation in response
to the resource transfers between the defenders. As the final stage payoffs are
given by Lemma 1 in Sect. 2.2, we are left to solve for the stage one optimal
resource allocation of the attacker and the optimal transfers by the defenders.
We first solve the attacker’s problem by using the best response strategies of the
attacker to the observed post-transfer resource allocations ri = βi +

∑3
j=1(tj,i −

ti,j). This will provide the attacker’s optimal resource allocation, α∗
i (t), to each

separate final stage game, CBGi.

Proposition 1. Consider a two-stage game, 2CB. For an admissible resource
transfer strategy, t, the attacker’s optimal payoff maximizing strategy is:

1. The case 2
ni

< α
ri

< 1 ∀i ∈ {1, 2, 3}: Let I =
{

i
∣
∣
∣ i ∈ max

i=1,2,3

Ki

ri

}
, Δ|I| =

{
p | pi ≥ 0,

∑
i∈I pi = 1

}
, p ∈ Δ|I|.

α∗
i (t) =

⎧
⎪⎨

⎪⎩

α if i ∈ I, |I| = 1,

0 if i �∈ I,

αpi if |I| > 1, i ∈ I.
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2. The case 2
ni

< ri

α

(
∑3

i=1

√
Kjrj

Kiri

)
< 1 ∀i ∈ {1, 2, 3}:

α∗
i (t) =

α
∑3

j=1

√
Kjrj

Kiri

.

Before proving Proposition 1, we first state a well known result from opti-
mization theory and prove an auxiliary lemma.

Lemma 2 (Optimization Over a Simplex [1]). In a constrained optimiza-
tion problem with the objective of maximizing f(x), consider the case where the
constraint set is a simplex

X =
{
x | xi ≥ 0,

n∑

i=1

xi = r
}

where r > 0 is a given scalar. Then the necessary condition for x∗ to be a local
maximum is

x∗
i > 0 =⇒ ∂f(x∗)

∂xi
≥ ∂f(x∗)

∂xj
, ∀j. (6)

If f(x) is concave, then (6) is also sufficient for the global optimality of x∗.

Lemma 3. Let N = 3 be the number of defenders in the game. For an attacker
with a payoff function that is the summation of strictly-increasing single-variable
functions,

π(α) =
N∑

i=1

πi(αi),

the attacker exhausts his entire budget,
∑N

i=1 αi = α, at the optimum.

Proof. Fix αj = α∗
j ∀j such that

∑N
j=1,j �=i α∗

j < α. Let ε > 0, and take

αi = α −
N∑

j=1
j �=i

α∗
j − ε < α∗

i = α −
N∑

j=1
j �=i

α∗
j .

Then we have

π(α) = πi(α −
N∑

j=1
j �=i

α∗
j − ε) +

N∑

j=1
j �=i

πj(α∗
j )

π(α∗) = πi(α −
N∑

j=1
j �=i

α∗
j ) +

N∑

j=1
j �=i

πj(α∗
j ).

By the definition of a strictly increasing function, α−∑N
j=1
j �=i

α∗
j > α−∑N

j=1
j �=i

α∗
j −

ε =⇒ πi(α − ∑N
j=1
j �=i

α∗
j ) > πi(α − ∑N

j=1
j �=i

α∗
j − ε) =⇒ π(α∗) > π(α). 
�
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We now proceed to prove Proposition 1. At the final stage of the game, the
attacker plays a CBG against each individual defender. As such, the expected
payoff of each individual CBGi is given by Lemma 1. The total expected payoff
for the attacker is the sum of the individual expected payoffs.

The attacker’s reaction curve is the strategy that maximizes his expected
payoff against the strategies of the 3 defenders. Therefore, fix the defenders’
resource allocation strategy, t. The attacker’s expected payoffs as a function of
his resource allocation strategy, α, for each of the two regions considered are:

Case 1: π1(α) =
3∑

i=1

Ki
αi

2ri
,

Case 2: π2(α) =
3∑

i=1

Ki

(
1 − ri

2αi

)
.

In both cases, one can easily verify that the payoff functions are summations
of strictly increasing functions in the individual battle allocations, αi. Therefore,
by Lemma 3, the attacker completely exhausts his resource budget. His budget
constraint is then the simplex

∑3
i=1 αi = α, αi ≥ 0.

For case 1, π1(α) is a summation of linear functions of αi and therefore linear.
Since linear functions are also concave, π1(α) is a concave function. Lemma 2
provides both the necessary and sufficient conditions for optimality. We then
arrive at the desired result for case 1 through a direct application of Lemma2.

In case 2, π2(α) is a summation of concave functions in αi. Since positive
weighted sums of concave functions are concave, π2(α) is concave. Similar to
case 1, Lemma 2 provides the necessary and sufficient conditions for optimality.
Therefore, by Lemma 2:

αi > 0 =⇒ ∂π2(α)
∂α1

=
∂π2(α)

∂α2
=

∂π2(α)
∂α3

n1v1r1
2α2

1

=
n2v2r2
2α2

2

=
n3v3r3
2α2

3

α2
1

n1v1r1
=

α2
2

n2v2r2
=

α2
3

n3v3r3
.

So, the attacker’s optimal strategy in case 2 is to allocate his resources such that
each partial derivative is a constant and equal. By setting this constant to k
and using the attacker’s budget constraint, we can solve for his optimal resource
allocation strategy by algebraic manipulation.

k =
α2

i

Kiri
=⇒ αi =

√
Kiri

√
k. (7)

Substituting (7) into the attacker’s budget constraint, we have:

3∑

j=1

αj = α =⇒
3∑

j=1

√
Kjrj

√
k = α =⇒

√
k =

α
∑3

j=1

√
Kjrj

. (8)
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Finally, substituting (8) into (7), we obtain the attacker’s optimal resource allo-
cation for case 2. 
�

In the next two sections, we find an optimal resource transfer strategy for
the defenders for each of the two cases that we study. The first case corresponds
to an attacker that has a significant disadvantage in resources compared to the
defenders. The second case is an attacker that is much stronger than the com-
bined strength of all of the defenders.

5 Weakest Attacker Leads to Proxy Wars

Here we present the proof of Theorem 1 for the case when the attacker has
less resources than each of the defenders. We show that in certain situations,
the attacker allocates all its resource to fight against one defender, while other
defenders carefully choose the amount of resource to transfer to the defender
fighting the attacker. This leads to a proxy war situation where some defenders
may choose to transfer resources in order to benefit another defender while they
themselves avoid fighting.

The attacker’s optimal strategy remains the same as in Proposition 1. For
the case when defender 1 is the relatively weakest player, K1

β1
> K2

β2
, we know

from Proposition 1 that the attacker allocates all of his resources to the battle
with defender 1. So, α1 = α, αi = 0 ∀i ∈ {2, 3}. The payoff to the attacker and
each defender is a result of Lemma 1 and Proposition 1 and is:

π(α) = π(αi) = Ki
α

2r1
,

φ1(t1) = K1 − π(αi) = K1(1 − α

2r1
),

φi(ti) = Ki ∀i ∈ {2, 3}.

Since defender 1’s payoff decreases as r1 decreases, she will never transfer any
resources out to other defenders as long as she is the relatively weakest player,
K1
r1

> K2
r2

≥ K3
r3

. In addition, defender 1 will always accept resources since her
payoff increases as r1 increases. Since in this game resources have no external
value, any defender i who is not the relatively weakest player is indifferent to
transferring resources since she avoids battle and her payoff does not change.
However, defenders 2 and 3 will never transfer out enough resources such that
they become the relatively weakest player. Defenders 2 and 3 will also always
accept resources since this helps them become relatively stronger and avoid bat-
tle. To summarize the above discussion, we have:

1. Defender 1 never transfers resources to other defenders: t1,j = 0 ∀j.
2. Defender i ∈ {2, 3} is indifferent to transferring resources out as long as:

K1

r1
=

K1

β1 +
∑

j∈D\{1} tj,1
>

Ki

ri
=

Ki

βi +
∑

j∈D\{1,i} tj,i − ∑
j∈D\{i} ti,j

. (9)

3. All defenders will always accept resources.
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By rearranging (9), we can write the supremum of defenders 2 and 3’s maximum
transfer amounts to defender 1 as:

t2,1 =
K1(β2 + t3,2 − t2,3)

K1 + K2
− K2(β1 + t3,1)

K1 + K2
,

t3,1 =
K1(β3 + t2,3 − t3,2)

K1 + K2
− K2(β1 + t2,1)

K1 + K2
.

(10)

Examining (10), it is apparent that the maximum amount that defender 2 is
willing to transfer to defender 1 increases as defender 3 transfers resources to
defender 2, decreases in terms of the amount that defender 2 transfers to defender
3, and, most critically, decreases as defender 3 transfers resources to defender 1.
Directly solving the system of equations above obtains the desired solution.

t∗2,1 + t∗2,3 < t∗3,2 +
β2(K1 + K3) − K2(β1 + β3)

K1 + K2 + K3
.

t∗3,1 + t∗3,2 < t∗2,3 +
β3(K1 + K2) − K3(β1 + β2)

K1 + K2 + K3
.

Note, that there is a possibility that defenders 2 and 3 do not transfer resources
between each other. Then t2,3 = t3,2 = 0. Since t2,1 + t2,3 ≥ 0, t3,1 + t3,2 ≥ 0,
this imposes the conditions

β2(K1 + K3) − K2(β1 + β3) ≥ 0, (11)
β3(K1 + K2) − K3(β1 + β2) ≥ 0. (12)

The condition imposed by (12) is satisfied by (4). The condition in (11) is a
condition in the statement of the theorem. 
�

5.1 The Case of No Transfer Between Defenders 2 and 3

Note that since defenders 2 and 3 do not fight against the attacker, the trans-
fers between them does not affect their equilibrium payoffs. Thus, a possible
refinement of multiple Nash equilibria would be to assume no transfer between
defenders who do not engage with the attacker. In this subsection, we make
this assumption and prove two corollaries of Theorem1 under the assumption of
t2,3 = t3,2 = 0. We first have the following auxiliary lemma.

Lemma 4. Let z, c > 0. Then

x + y

z + c
≥ x

z
⇐⇒ zy ≥ cx.

Proof. The proof follows from algebraic manipulation. 
�
Corollary 1. Consider the case of t2,3 = t3,2 = 0. In comparison to the
2-defender case, at equilibrium the maximum possible amount transferred to
defender 1, ∑

j∈D\{1}
ti,1,
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is nondecreasing when defender 3 joins the game (assuming defender 3’s relative
strength is weaker than that of defender 2). In addition, the maximum expected
payoff to defender 1 is nondecreasing.

Proof. Let t22,1 represent the transfer from player 2 to player 1 in the 2-defender
case, and t32,1, t

3
3,1 represent the transfers to player 1 in the 3-defender case. Then

the maximum total transfer to defender 1 in each case is

t22,1 =
β2(K1) − K2(β1)

K1 + K2
, (13)

t32,1 + t33,1 =
β2(K1 − K3) − K2(β1 + β3)

K1 + K2 + K3
+

β3(K1 − K2) − K3(β1 + β2)
K1 + K2 + K3

. (14)

By expanding and canceling common terms in (14) we have:

t32,1 + t33,1 =
(K1β2 − β1K2) + (K1β3 − β1K3)

K1 + K2 + K3
.

By definition, Ki > 0 ∀i ∈ D which implies that K1 + K2,K3 > 0. Thus, we
meet the conditions of Lemma 4; therefore, to show t32,1 + t33,1 ≥ t22,1, it suffices
to show that:

(K1 + K2)(K1β3 − β1K3) ≥ K3(K1β2 − β1K2). (15)

By algebraic manipulation, we can show that (15) is equivalent to:

K1β3 + K2β3 ≥ K3β2 + K3β1. (16)

Equation (16) always holds true due to the assumed relative strength index-
ing in (4). Defender 1’s payoff is a strictly increasing function of her resource
level, r1, which increases as the amount of resources transferred to her increases.
Therefore, her payoff is nondecreasing as defender 3 joins the coalition. 
�
Corollary 2. Assume that t2,3 = t3,2 = 0. Then, the maximum amount that
defender 2 is willing to transfer to defender 1 decreases or remains constant
when defender 3 joins the game.

Proof. Let t22,1 represent the case without defender 3, and t32,1 represent the case
with defender 3 in the game. Then

t22,1 =
β2K1 − K2β1

K1 + K2
,

t32,1 =
(β2K1 − K2β1) + (β2K3 − K2β3)

K1 + K2 + K3
.

By definition, Ki > 0 ∀i ∈ D which implies that K1 + K2,K3 > 0. Then by
Lemma 4

t2i,1 ≥ t3i,1 ⇐⇒ K3(β2K1 − K2β1) ≥ (K1 + K2)(β2K3 − K2β3). (17)
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Through algebraic manipulation, we can show that (17) is equivalent to:

K1β3 + K2β3 ≥ K3β2 + K3β1. (18)

Similar to Corollary 1, (18) always holds true due to the assumed relative
strength indexing in (4). Therefore, the resource transfer from defender 2 to
defender 1 is non-increasing as defender 3 joins the game. 
�

6 Strongest Attacker Fights Everyone

In this section we present the proofs for Theorem 2 and then identify the equi-
librium transfers for a special case in Theorem3.

Proof of Theorem 2: The payoff to the attacker and each defender in each
CBGi is a result of Lemma 1 and is respectively given by:

πi(αi, ri) = Ki

(
1 − ri

2αi

)
, φi(t) = Ki − π(αi) = Ki

( ri

2αi

)
.

The attacker’s optimal strategy remains the same as in Proposition 1. Substitut-
ing the result of Proposition 1, case 2 into the defender’s payoff results in:

φi(t) =
√

Ki

2α

(
√

ri

∑

j∈D

√
Kjrj

)

. (19)

We want to show that there is a parameter range for which it is beneficial for
player i to transfer resources to player k and also beneficial for player k to accept
those resources. In order to do so, we will show that, for a certain parameter
configuration, φi(t) and φk(t) are increasing in ti,k.

We first show the following result.

Lemma 5. If player i is willing to transfer resources to player k, then player k
is always willing to accept those resources.

Proof. One can verify that the partial derivative of the defender i’s payoff with
respect to resource transfers out, ti,k, is

∂φi(t)
∂ti,k

=
Ki

2α

[

− 1 +
1
2

√
Kk

Ki

(ri − rk −
√

rk

Kk

√
Kjrj

√
rirk

)]

. (20)

In addition, from defender k’s perspective, the partial derivative of her payoff
with respect to the transfer in, ti,k, is

∂φk(t)
∂ti,k

=
Kk

2α

[

1 +
1
2

√
Ki

Kk

(ri − rk +
√

ri

Ki

√
Kjrj

√
rirk

)]

. (21)
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Then, the two defenders will form a coalition if and only if

∂φi(t)
∂ti,k

> 0 ⇐⇒ ri − rk > 2
√

Ki

Kk

√
rirk +

√
rk

Kk

√
Kjrj , (22)

∂φk(t)
∂ti,k

> 0 ⇐⇒ ri − rk > −2
√

Kk

Ki

√
rirk −

√
ri

Ki

√
Kjrj , (23)

where we used (20) and (21). By definition, Ki,Kk,Kj > 0 ∀i, j, k ∈ D. In addi-
tion, by the restrictions imposed in Sect. 3, ri, rk, rj ≥ 0 ∀i, j, k ∈ D. Therefore,
the right hand side of (22) is always greater than or equal to zero, while the right
hand side of (23) is always less than or equal to zero. So, if the condition in (22)
holds true, then the condition in (23) must also hold true. The proof of the
lemma is thus complete. 
�

Finally, we now complete the proof of Theorem 2 in terms of the parameters
of the game. For fixed tj,l = 0 ∀(j, l) �= (i, k), if

βi − βk > 2
√

Ki

Kk

√
βiβk +

√
βk

Kk

√
Kjβj =⇒ ∂φi(t)

∂ti,k

∣
∣
∣
∣
ti,k=0

> 0.

Thus, there exists small values of ti,k > 0 for which the inequalities in (22) and
(23) will still hold. This will be true even if defender i and k transfer or receive
a small amount of resources from the other defender. This concludes the proof
of Theorem 2. 
�

From Lemma 5, one can immediately notice that the resource rich player can
have an incentive to trade resources to a poorer player. However, the required
difference in their respective resource levels is not just a function of the two
defender’s resources and total battlefield values, but also a function of the sum
of the other defender’s resources and total battlefield values.

By observing (22) and (23) closely, we conclude that there is a region where
player k would be willing to accept resources, but player i is not willing to send
those resources. This region is defined by:

ri − rk ∈
(

−2
√

Kk

Ki

√
rirk −

√
ri

Ki

√
Kjrj ,

√
Ki

Kk

√
rirk +

√
rk

Kk

√
Kjrj

)

.

In this parameter region, a resource rich player would be willing to accept
resources from a poor player, but the poor player would not be willing to transfer
those resources.

6.1 The Case of No Transfer Between Defenders 2 and 3

In this subsection, we present the proof of Theorem 3 and identify a parameter
region where there is no transfer between defenders 2 and 3 in equilibrium. In
what follows, only defender 1 transfers resources to the two defenders.

Proof. We now prove Theorem 3. The proof is divided into three steps:
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Step 1: In this step, we observe that the equilibrium transfers (assuming
they exist) satisfy t∗1,2 < β1−β2

2 and t∗1,3 < β1−β3
2 . Indeed, if the transfer

t1,i is higher than the upper bound, then r1 − ri < 0. This implies that the
derivative of the expected payoffs with respect to transfer out from defender
1 to defender i is negative. Thus, t∗1,2 < β1−β2

2 and t∗1,3 < β1−β3
2 is a dominant

strategy for defender 1.
Step 2: We next show that if Hypotheses 4, 5, and 6 hold, then no sharing
of resources between defender 2 and 3 is a dominant strategy. First, from
Lemma 5 there is no transfer of resources from defender 2 to defender 3 if

r2 − r3 < 2
√

K2

K3

√
r2r3 +

√
r3
K3

√
K1r1. (24)

Using the upper bound on t∗1,2 and Hypothesis 4, we upper bound the LHS
of the equation above by:

r2 − r3 < β2 +
β1 − β2

2
− β3 ≤ 2

√
K2

K3

√
β2β3 +

√
β3

K3

√

K1
β1 + β2

2
.

We now proceed to lower bound the RHS of (24) by noting that the first
term is at a minimum for t1,2 = 0, t1,3 = 0. Substituting for r1 and r3 in the
second term in the right hand side and rearranging, we have:

√
r3
K3

√
K1r1 =

√
K1

K2

√
(β3 + t1,3)(β1 − t1,2 − t1,3).

This term is concave and strictly decreasing in t1,2. Therefore, the lower bound
occurs when t1,2 = β1−β2

2 . Since the term is concave, it suffices to consider the
two bounds on t1,3, which are t1,3 = 0 and t1,3 = β1−β3

2 . Under Hypothesis 6,
one can show that the lower bound occurs when t1,3 = 0. We therefore have:

r2−r3 < 2
√

K2

K3

√
β2β3+

√
β3

K3

√

K1
β1 + β2

2
≤ 2

√
K2

K3

√
r2r3+

√
r3
K3

√
K1r1.

Therefore, if Hypotheses 4 and 6 hold, then for any t1,2 < β1−β2
2 and t1,3 <

β1−β3
2 , we have ∂φ2(t)/∂t2,3 < 0.

A similar result holds if Hypotheses 5 and 6 hold wherein defender 3’s
expected payoff reduces for positive transfer of resources from defender 3
to defender 2.
Step 3: Fix t1,3 ∈ (0, β1−β3

2 ), define r1 = β1 − t1,3, and assume that t1,3 is
chosen such that ∂φ1(t)/∂t1,2 > 0. Now, if defender 1 transfers t1,2 amount
to defender 2, then ∂φ1(t)/∂t1,2 > 0 iff

r1 − β2 − 2t1,2 > 2
√

K1

K2

√
(r1 − t1,2)(β2 + t1,2) +

√
(β2 + t1,2)

K2

√
K3r3.

Thus, as t1,2 increases from 0, the left side of the equation reduces and the
right side of the inequality increases. Thus, at some critical value t̄1,2(t1,3) the
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two sides are equal, and beyond this transfer amount, transferring resource
to defender 2 is not beneficial to defender 1. A similar argument holds for the
transfer between defender 1 and 3.

Thus, by solving defender 1’s optimization problem in (5), we obtain the
optimal transfer between the defenders.


�
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Fig. 1. Payoff of defender 1 for t1,2 ∈ [0, β1−β2
2

) and t1,2 ∈ [0, β1−β3
2

) with α =
160, β1 = 90, β2 = 10, β3 = 8, n1 = 5, n2 = 8, n3 = 6, K1 = 10, K2 = 8, K3 = 6, t2,3 =
0, t3,2 = 0.

Figure 1 shows defender 1’s payoff versus possible transfers for a configuration
of parameters that meet the conditions of Theorem3. One can observe that
defender 1’s payoff increases slightly as t1,2 and t1,3 increase from 0. For the
parameter configuration in Fig. 1, we find that t∗1,2 = 0.9390 and t∗1,3 = 0.2039.

7 Conclusion

In this paper, we formulated a 4-player, two-stage Colonel Blotto game where
defenders can choose to form a coalition by transferring resources in stage one
and the attacker observes the transfer among the defenders. This work builds
upon the previous work in [10,11], in which the authors considered only two
defenders fighting against one attacker. Our goal is to analyze the coalition
formation in multi-defender cases, which requires a much more intricate analysis.
In the case of two defenders, only one coalition can be formed; on the other
hand, if there are N defenders, then there can be N(N − 1)/2 possible number
of coalitions. Our work is an important step in the direction of analyzing the
more general case of N defenders.
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For certain parameter regions, we’ve calculated the subgame-perfect Nash
equilibrium (SPNE) and identified the parameter regions in which coalitions
are formed. Somewhat surprisingly, the resource rich player does not necessarily
transfer resources to poorer players when the attacker is the weakest player. In
addition, we’ve shown that in some situations, it is in the best interest of the
defenders to add additional weak defenders to the game.

In other parameter regions, we’ve shown that there are regions where a coali-
tion will form since it is beneficial to transfer resources, but we could not compute
the equilibrium transfers due to complex algebraic dependencies. We however
note that equilibrium transfers can be computed using computational methods.
Unlike the other case, transfer always occurs from the resource rich player to
the resource poor player, although there does exist a parameter region where a
resource rich player would accept resources from a poorer player.

In the future, we plan to consider the N + 1-player case that considers N
defenders and study the equilibrium transfers and payoffs to defenders as more
defenders join the coalition. We also plan to consider the case where the attacker
has incomplete information and can observe some transfers between defenders
but not all transfers.
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Abstract. We study offline data poisoning attacks in contextual ban-
dits, a class of reinforcement learning problems with important applica-
tions in online recommendation and adaptive medical treatment, among
others. We provide a general attack framework based on convex opti-
mization and show that by slightly manipulating rewards in the data, an
attacker can force the bandit algorithm to pull a target arm for a target
contextual vector. The target arm and target contextual vector are both
chosen by the attacker. That is, the attacker can hijack the behavior of a
contextual bandit. We also investigate the feasibility and the side effects
of such attacks, and identify future directions for defense. Experiments
on both synthetic and real-world data demonstrate the efficiency of the
attack algorithm.

Keywords: Data poisoning · Contextual bandit · Adversarial attack

1 Introduction

As an important step toward trustworthy AI, adversarial learning studies robust-
ness of machine learning systems against malicious attacks [7,10]. Training set
poisoning is a type of attack where the adversary can manipulate the training
data such that a machine learning algorithm trained on the poisoned data would
produce a defective model. The defective model is often similar to a good model,
but affords the adversary certain nefarious leverages [3,5,9,12,14,15,17]. Under-
standing training set poisoning is essential to developing defense mechanisms.

Recent studies on training set poisoning attack focused heavily on supervised
learning. There has been little study on poisoning sequential decision making
algorithms, even though they are widely employed in the real world. In this
paper, we aim to fill in the gap by studying training set poisoning against con-
textual bandits. Contextual bandits are extensions of multi-armed bandits with
side information and have seen wide applications in industry including news rec-
ommendation [13], online advertising [6], medical treatment allocation [11], and
also promotion of users’ well-being [8].
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Let us take news recommendation as a running example for poisoning against
contextual bandits. A news website has K articles (i.e., arms). It runs an adaptive
article recommendation algorithm (the contextual bandit algorithm) to learn a
policy in the backend. Every time a user (represented by a context vector) visits
the website, the website displays an article that it thinks is most likely to interest
the user based on the historical record of all users. Then the website receives
a unit reward if the user clicks through the displayed article, and receives no
reward otherwise. Usually the website keeps serving users throughout the day
and updates its article selection policy periodically (say, during the nights or
every few hours). This provides an opportunity for an attacker to perform offline
data poisoning attacks, e.g. the attacker can sneak into the website backend at
night before the policy is updated, and poison the rewards collected during the
daytime. The website unknowingly updates its policy with the poisoned data.
On the next day it behaves as the attacker wanted.

More generally, we study adversarial attacks in contextual bandit where the
attacker poisons historical rewards in order to force the bandit to pull a target
arm under a target context. One can view this attack as a form of offline reward
shaping [16], but it is adversarial reward shaping. Our main contribution is an
optimization-based attack framework for this attack setting. We also study the
feasibility and side effect of the attack. We show on both synthetic and real-world
data that the attack is effective. This exposes a security threat in AI systems
that involve contextual bandits.

2 Review of Contextual Bandit

This section reviews contextual bandits, which will be the victim of the attack
in this paper. A contextual bandit is an abstraction of many real-world deci-
sion making problems such as product recommendation and online advertising.
Consider for example a news website which strives to recommend the most inter-
esting news articles personalized for individual users. Every time a user visits
the website, the website observes certain contextual information that describes
the user such as age, gender, location, past news consumption patterns, etc. The
website also has a pool of candidate news articles, one of which will be recom-
mended and shown to the user. If the recommended article is interesting, the
user may click on it; otherwise, the user may click on other items on the page
or navigate to another page. The click probability here depends on both the
user (via the context) and the recommended article. Such a dependency can be
learned based on click logs and used for better recommendation for future users.

An important aspect of the problem is that the click feedback is observed
only for the recommended article, not for others. In other words, the decision
(choosing which article to show to a user) is irrevocable; it is impractical to
force the user to revisit the webpage so as to recommend a different article.
As a result, the feedback data being collected is necessarily biased towards
the current recommendation algorithm being employed by the website, raising
the need for balancing exploration and exploitation when choosing arms [13].
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This is in stark contrast to a typical prediction task solved by supervised learn-
ing where predictions do not affect the data collection.

Formally, a contextual bandit has a set X of contexts and a set A =
{1, 2, . . . ,K} of K arms. A contextual bandit algorithm proceeds in rounds
t = 1, 2, . . .. At round t, the algorithm observes a context vector xt ∈ Rd,
chooses to pull an arm at ∈ A, and observes a reward rt ∈ R. The goal of the
algorithm is to maximize the total reward garnered over rounds. In the news rec-
ommendation example above, it is natural to define rt = 1 if user clicks on the
article and 0 otherwise, so that maximizing clicks is equivalent to maximizing
the click-through rate, a critical business metric in online recommender systems.

In this work, we focus on the most popular and well-studied setting called
linear bandits, where the expected reward is linear map of the context vector.
Specifically, we assume each arm a is associated with an unknown vector θa ∈ Rd

with ‖θa‖2 ≤ S, so that for every t:

rt = x�
t θat

+ ηt , (1)

where ηt is a σ-subGaussian noise. For simplicity, we assume ηt is unbounded
and thus the reward can take any value in R.

Most contextual bandit algorithms adopt the optimism-in-face-of-uncertainty
(OFU) principle for efficient exploration. The OFU principle constructs an Upper
Confidence Bound (UCB) for the mean reward of each arm based on historical
data and then selects the arm with the highest UCB at each time step [1,4]. In
round t, the historical data consists of the context, action, reward triples (x, a, r)
from the previous t − 1 rounds. It is useful to split the historical data so that
the feedback from the same arm is pooled together. Define [K] = {1, . . . , K}.
Let ma be the number of times arm a was pulled up to time t − 1. This implies
that

∑
a∈[K] ma = t−1. For each a ∈ [K], let Xa ∈ Rma×d be the design matrix

for rounds, where arm a was pulled and each row of Xa is a previous context.
Similarly, let ya ∈ Rma be the corresponding reward (column) vector.

A UCB-style algorithm first forms a point estimate of θa by ridge regression

θ̂a = (X�
a Xa + λI)−1X�

a ya, ∀a ∈ [K], (2)

where λ > 0 is a regularization parameter. At round t, the algorithm observes
the context xt and then selects the arm with the highest UCB:

at = argmaxa∈[K]

{
x�

t θ̂a + αa‖xt‖V −1
a

}
, (3)

where ‖xt‖V −1
a

=
√

x�
t V −1

a xt is the Mahalanobis norm and Va = X�
a Xa +

λI. Intuitively, for less frequently chosen a, the second term above tends to be
large, thus encouraging exploration. The exploration parameter αa is algorithm-

specific. For example, in LinUCB [13] αa = 1 +
√

1
2 log 2

δ and in OFUL [1]

αa = σ

√

2 log(det(Va)
1
2 det(λI)− 1

2

δ ) + λ
1
2 S, where δ > 0 is a confidence parameter.

Here, we assume αa may depend on input parameters like δ and observed data
up to t − 1, but not xt.
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In Algorithm 1, we summarize the contextual bandit algorithm. While the
bandit algorithm updates its θ̂ estimates in every round (step 3), in practice due
to various considerations such updates often happen in mini-batches, e.g., several
times an hour, or during the nights when fewer users visit the website [2,13].
Between these consecutive updates, the bandit algorithm follows a fixed policy
obtained from the last update.

Algorithm 1. Contextual bandit algorithm
1: Parameters: confidence δ, regularizer λ, UCB function α.
2: for t = 1, 2, . . . , T do
3: Receive context xt, estimate θ̂a, a ∈ [K] with (2).

4: Pull arm at = argmaxa∈[K]

{
x�
t θ̂a + αa‖xt‖V −1

a

}
.

5: World generates reward rt = x�
t θat + ηt.

6: Append xt and rt to Xat and yat , respectively.
7: end for

3 Attack Algorithm in Contextual Bandit

We now introduce an attacker with the following attack goal:

Attack Goal [x∗ → a∗]: On a particular attack target context x∗, force
the bandit algorithm to pull an attack target arm a∗.

For example, the attacker may want to manipulate the news service so that a
particular article a∗ is shown to users x∗ from certain political bases. The attack
is aimed at the current round t, or more generally the whole period when the
arm-selection policy is fixed. Any suboptimal arm a∗ can be the target arm. For
concreteness, in our experiments the attacker always picks the worst arm a∗ as
the target arm. This is defined in the sense of the worst UCB, namely replacing
argmax with argmin in (3), resulting in the target arm in (21).

We assume the attacker has full knowledge of the bandit algorithm and has
access to all historical data. The attacker has the power to poison the histor-
ical reward vector1 ya, ∀a ∈ [K]. Specifically, the attacker can make arbitrary
modifications Δa ∈ Rma , ∀a ∈ [K] so that the reward vector for arm a becomes
ya+Δa. After the poisoning attack, the ridge regression performed by the bandit
algorithm yields a different solution:

θ̂a = V −1
a X�

a (ya + Δa). (4)

Because such attacks happen on historical rewards in between bandit algorithm
updates, we call it offline.

Now we can formally define the attack goal.
1 In this paper we restrict the poisoning to modifying rewards for ease of exposition.

More generally, the attacker can add, remove, or modify both the rewards and the
context vectors. Our optimization-based attack framework can be generalized to such
stronger attacks, though the optimization could become combinatorial.
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Definition 1 (Weak attack). A target context x∗ is called weakly attacked
into pulling target arm a∗ if after attack the following inequalities are satisfied:

x∗�θ̂a∗ + αa∗‖x∗‖V −1
a∗

> x∗�θ̂a + αa‖x∗‖V −1
a

, ∀a �= a∗. (5)

In other words, the algorithm is manipulated into choosing a∗ for context x∗.

To avoid being detected, the attacker hopes to make the poisoning Δa, a ∈
[K] as small as possible. We measure the magnitude of the attack by the squared
	2-norm

∑
a∈[K] ‖Δa‖22.2 We therefore formulate the attack as the following opti-

mization problem:

min
Δa:a∈[K]

∑

a∈[K]

‖Δa‖22

s.t. x∗�θ̂a∗ + αa∗‖x∗‖V −1
a∗

> x∗�θ̂a + αa‖x∗‖V −1
a

,∀a �= a∗

where θ̂a = V −1
a X�

a (ya + Δa), ∀a.

(6)

The weak attack above ensures that, given the target context x∗, the bandit
algorithm is forced to pull arm a∗ instead of any other arms. Unfortunately,
the constraints do not result in a closed convex set. To formulate the attack as
a convex optimization problem, we introduce a stronger notion of attack that
implies weak attack:

Definition 2 (Strong attack). A target context x∗ is called ε-strongly
attacked into pulling target arm a∗, for some ε > 0, if after attack the following
holds:

x∗�θ̂a∗ + αa∗‖x∗‖V −1
a∗

≥ ε + x∗�θ̂a + αa‖x∗‖V −1
a

, ∀a �= a∗ . (7)

This is essentially a large margin condition which requires the UCB of a∗ to be
at least ε greater than the UCB of any other arm a. The margin parameter ε is
chosen by the attacker. We achieve strong attack with the following optimization
problem:

min
Δa:a∈[K]

∑

a∈[K]

‖Δa‖22

s.t. x∗�θ̂a∗ + αa∗‖x∗‖V −1
a∗

≥ ε + x∗�θ̂a + αa‖x∗‖V −1
a

, ∀a �= a∗

where θ̂a = V −1
a X�

a (ya + Δa),∀a.

(8)

The optimization problem above is a quadratic program with linear constraints
in {Δa}a∈[K]. We summarize the attack in Algorithm 2. In the next section we
discuss when the algorithm is feasible.

2 The choice of norm is application dependent, see e.g., [15, Fig. 3]. Any norm works
for the attack formulation.
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Algorithm 2. Data Poisoning Attack in Contextual Bandit
1: Input: victim contextual bandit (Algorithm 1), target context x∗, target arm a∗,

attack margin ε, historical data Xa, ya, a ∈ [K].
2: Solve (8) for Δa, ∀a ∈ [K].
3: If a solution Δa is found, poison ya ← ya + Δa; otherwise return infeasible.

4 Feasibility of Attack

While one can always write down the training set attack algorithm as opti-
mization (8), there is no guarantee that such attack is feasible. In particular,
the inequality constraints may result in an empty set. One may naturally ask:
are there context vectors x∗ that simply cannot be strongly attacked?3 In this
section we present a full characterization of the feasibility question for strong
attack. As we will see, attack feasibility depends on the original training data.
Understanding the answer helps us to gauge the difficulty of poisoning, and may
aid the design of defenses.

The main result of this section is the following theorem that characterizes a
sufficient and necessary condition for the strong attack to be feasible.

Theorem 1. A context x cannot be strongly attacked into pulling a∗ if and only
if there exists a �= a∗ such that the following two conditions are both satisfied:

(i) x ∈ Null(Xa∗) ∩ Null(Xa), and
(ii) αa∗ ||x||V −1

a∗
< ε + αa||x||V −1

a
.

Before presenting the proof, we first provide intuition. The key idea is that a
context x cannot be strongly attacked if some non-target arm a is always better
than a∗ for x for any attack. This can happen because there are two terms in
the arm selection criterion (3) while the attack can affect the first term only.
It turns out that under the condition (i) the first term becomes zero. If there
exists a non-target arm that has a larger second term than that of the target
arm (the condition (ii)), then no attack can force the bandit algorithm to choose
the target arm.

We present an empirical study on the feasibility of attack in Sect. 6.3.

Lemma 1. x ∈ Null(Xa∗) ⇔ x�V −1
a∗ X�

a∗ = 0, where V −1
a∗ = X�

a∗Xa∗ + λI.

Proof. First, we prove x ∈ Null(Xa∗) ⇒ x�V −1
a∗ X�

a∗ = 0. Note that

x ∈ Null(Xa∗) ⇒ Xa∗x = 0

⇒ X�
a∗Xa∗x = 0

⇒ (X�
a∗Xa∗ + λI)x = λx

⇒ 1
λ

x = (X�
a∗Xa∗ + λI)−1x = V −1

a∗ x.

(9)

3 Even if some context x∗ cannot be strongly attacked, the attacker might be able to
weakly attack it. Weak attack is sufficient for the attacker to force an arm pull of
a∗. However, as ε → 0 strong attack approaches weak attack. Thus we only need to
characterize strong attacks.
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Therefore, we have

x�V −1
a∗ X�

a∗ =
1
λ

x�X�
a∗ =

1
λ

(Xa∗x)� = 0. (10)

Now we show the other direction. Note that

x�V −1
a∗ X�

a∗ = 0 ⇒ x�V −1
a∗ X�

a∗Xa∗ = 0

⇒ x�V −1
a∗ (Va∗ − λI) = 0

⇒ x� = λx�V −1
a∗

⇒ (X�
a∗Xa∗ + λI)x = λx

⇒ X�
a∗Xa∗x = 0

⇒ x�X�
a∗Xa∗x = 0

⇒ ‖Xa∗x‖22 = 0
⇒ Xa∗x = 0 ,

(11)

which implies x ∈ Null(Xa∗). �
Proof (Theorem 1). (⇐) According to Lemma 1, condition (i) implies

x�V −1
a∗ X�

a∗(ya∗ + Δa∗) = x�V −1
a X�

a (ya + Δa) = 0. (12)

Combined with (ii) we have for any Δa∗ and Δa,

x�V −1
a∗ X�

a∗(ya∗ + Δa∗) + αa∗ ||x||V −1
a∗

= αa∗ ||x||V −1
a∗

< ε + αa||x||V −1
a

= ε + αa||x||V −1
a

+ x�V −1
a X�

a (ya + Δa) .
(13)

Thus, x cannot be attacked.
(⇒) This is equivalent to prove if ∀a �= a∗,¬(i)∨¬(ii), then x can be attacked.

To show x can be attacked, it suffices to find a solution for the optimization
problem.

If ¬(i), then Xa∗x �= 0 or Xax �= 0. Assume Xa∗x �= 0 (similar for the case
Xax �= 0), then x�V −1

a∗ X�
a∗ �= 0. Let p = Xa∗V −1

a∗ x. For any a �= a∗, arbitrarily
fix some Δa, then define

qa = ε + αa||x||V −1
a

+ x�V −1
a X�

a (ya + Δa) − x�V −1
a∗ X�

a∗ya∗ − αa∗ ||x||V −1
a∗

. (14)

Let Δa∗ = kp, where k = maxa�=a∗ qa
‖p‖2

2
. Thus,

x�V −1
a∗ X�

a∗Δa∗ = p�Δa∗ = k‖p‖22 ≥ qa

‖p‖22
‖p‖22 = qa, ∀a �= a∗. (15)

Therefore, we have for all a �= a∗ that

x�V −1
a∗ X�

a∗(ya∗ + Δa∗) + αa∗ ||x||V −1
a∗

≥ ε + αa||x||V −1
a

+ x�V −1
a X�

a (ya + Δa) ,

(16)
which means x∗ can be attacked.

If ¬(ii), simply letting Δa∗ = −ya∗ and Δa = −ya suffices, concluding the
proof. �
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5 Side Effects of Attack

While the previous section characterized contexts x∗ that cannot be strongly
attacked, this section asks an opposite question: suppose the attacker was able
to strongly attack some x∗ by solving (8), what other contexts x are affected
by the attack? For example, there might exist some context x �= x∗ whose pre-
attack chosen arm is a(x) = 1, but becomes a′(x) = 2. The side effects can be
construed in two ways: on one hand the attack automatically influence more
contexts than just x∗; on the other hand they make it harder for the attacker
to conceal an attack. The latter may be utilized to facilitate detection by a
defender. In this section, we study the side effect of attack and provide insights
into future research directions on defense.

The side effect is quantified by the fraction of contexts in the context space
such that the chosen arm is changed by the attacker. Specifically, let X be the
context space and P be a probability measure over X . Let a(x) and a′(x) be
the pre-attack and post-attack chosen arm of a context x. Then the side effect
fraction is defined as:

s =
∫

x∈X
1 [a(x) �= a′(x)] P (x)dx. (17)

One can compute an empirical side effect fraction ŝ as follows. First sample m
contexts from P , and then let ŝ = 1

m

∑m
i=1 1 [a(x) �= a′(x)]. It is easy to show

using Chernoff bound that |s − ŝ| decays to 0 at the rate of 1/
√

m.
We now give some properties of the side effect. Specifically, we first show if

x is affected by the attack, cx is also affected by the attack for any c > 0.

Proposition 1. If a context x satisfies a(x) �= a′(x), then a(cx) �= a′(cx) for
any c > 0, where a(x) and a′(x) are the pre-attack and post-attack chosen arm
of x. Moreover, a′(cx) = a′(x), i.e., the post-attack chosen arms for cx and x
are exactly the same.

Proof. First, for any a �= a′(x), define

fa(x) = x�θ̂a′(x) + αa′(x)‖x‖V −1
a′(x)

− x�θ̂a − αa‖x‖V −1
a

. (18)

Note that a′(x) is the best arm after attack, thus fa(x) > 0, ∀a �= a′(x). There-
fore, for any c > 0, we have

fa(cx) = cfa(x) > 0, ∀a �= a′(x) , (19)

which implies that a′(cx) = a′(x). The same argument may be used to show
a(cx) = a(x). Therefore, a′(cx) = a′(x) �= a(x) = a(cx).

Proposition 1 shows that if a context x has a side effect, all contexts on the open
ray {cx : c > 0} also have the same side effect.

Proposition 2. If a context x is strongly attacked, then cx is also strongly
attacked for any c ≥ 1.
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Proof. First, for any a �= a∗, define

fa(x) = x�θ̂a∗ + αa∗‖x‖V −1
a∗

− x�θ̂a − αa‖x‖V −1
a

. (20)

Since x is strongly attacked, we have fa(x) ≥ ε, ∀a �= a∗. Therefore fa(cx) =
cfa(x) ≥ fa(x) ≥ ε, which shows that cx is also strongly attacked.

The above propositions are weak in that they do not directly quantify the side
effect fraction s. They only tell us that when there is side effect, the affected
contexts form a collection of rays. In the experiment section we empirically study
the side effect fraction. Further theoretical understanding of the side effect is left
as a future work.

6 Experiments

Our proposed attack algorithm works for any contextual bandit algorithm tak-
ing the form (3). Throughout the experiments, we choose to attack the OFUL
algorithm that has a tight regret bound and can be efficiently implemented.

6.1 Attack Effectiveness and Effort: Toy Experiment

To study the effectiveness of the attack, we consider the following toy experiment.
The bandit has K = 5 arms, and each arm has a payoff parameter θa ∈ Rd where
d = 10, distributed uniformly on the d-dimensional sphere, denoted Sd. To
generate θa, we first draw from a d-dimensional standard Gaussian distribution,
θ̃a ∼ N (0, Id) and then normalize: θa = θ̃a/‖θ̃a‖2.

Next, we construct the historical data as follows. We generate n = 103 his-
torical context vectors {x1, . . . , xn} again uniformly on Sd. For each historical
context x, we pretend the world generates all K rewards {ra : a ∈ A} from the
K arms according to (1), where we set the noise level to σ = 0.1. We then choose
an arm a randomly from a multinomial distribution: a ∼ multi(p1, p2, ..., pK),
where pi′ = exp(ri′ )∑

i′∈A exp(ri′ )
. This forms one data point (x, a, ra), and we repeat

it for all n points. We then group the historical data to form the appropriate
matrices Xa, ya for every a ∈ A. Note that the historical data generated in this
way is off-policy with respect to the bandit algorithm. The regularization and
confidence parameters are λ = 1 and δ = 0.05, respectively.

In each attack trial, we draw a single target context x∗ ∈ Rd uniformly from
Sd. Without attack, the bandit would have chosen the arm with the highest UCB
based on historical data (3). To illustrate the attack, we will do the opposite and
set the attack target arm a∗ as the one with the smallest UCB instead:

a∗ = argmina∈[K]

{
x∗�θ̂a + αa‖x∗‖V −1

a

}
, (21)

where αa is the UCB parameter of the OFUL algorithm [1]. We set the strong
attack margin as ε = 0.001. We then run the attack on x∗ with Algorithm 2.

We run 100 attack trials. In each trial the arm parameters, historical data,
and the target context x∗ are regenerated. We make two main observations:
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1. The attacker is effective. All ε-strongly attacks are successful.
2. The attacker’s poisoning Δ is small. The total poisoning can be measured by

‖Δ‖2 =
√∑

a∈[K] ‖Δa‖22 in each attack trial. However, this quantity depends
on the scale of the original pre-attack rewards ya. It is more convenient to
look at the poisoning effort ratio:

‖Δ‖2
‖y‖2 =

√
√
√
√

∑
a∈[K] ‖Δa‖22

∑
a∈[K] ‖ya‖22

. (22)

Figure 1 shows the histogram for the poisoning effort ratio of the 100 attack
trials. The ratio tends to be small, with a median of 0.26, which demonstrates
that the attacker needs to only manipulate about 26% of the rewards.

These two observations indicate that poisoning attack in contextual bandit is
easy to carry out.

Fig. 1. Histogram of poisoning effort ratio in the toy experiment

We now analyze a single, representative attack trial to gain deeper insight
into the attack strategy. In this trial, the UCBs of the 5 arms without attack are

pre-attack: (0.204, 0.097, 0.959, 0.507, 0.818).

That is, arm 3 would have been chosen. As mentioned earlier, a∗ = 2 is chosen
to be the target arm as it has the smallest pre-attack UCB. After attack, the
UCBs of all arms become:

post-attack: (0.204, 0.605, 0.604, 0.507, 0.604).

The attacker successfully forced the bandit to choose arm 2. It did so by poisoning
the historical data to make arm 2 look better and arms 3 and 5 look worse. It
left arms 1 and 4 unchanged.
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Figure 2 shows the attack where each panel is the historical rewards where
that arm was chosen. We show the original rewards (yai, blue circle) and post-
attack rewards (yai + Δai, red cross) for all historical points i where arm a was
chosen. Intuitively, to decrease the UCB of arm a the attacker should reduce
the reward if the historical context x is “similar” to x∗, and boost the reward
otherwise. To see this, we sort the historical points by the inner product x�x∗ in
ascending order. As shown in Fig. 2(c) and (e), the attacker gave the illusion that
these arms are not good for x∗ by reducing the rewards when x�x∗ is large. The
attacker also increased the rewards when x�x∗ is very negative, which reinforces
the illusion. In contrast, the attacker did the opposite on the target arm as shown
in Fig. 2(b).

(a) arm 1 (b) arm 2 (c) arm 3 (d) arm 4 (e) arm 5

Fig. 2. Original reward yai and post-attack reward yai+Δai for each arm. (Color figure
online)

(a) arm 1 (b) arm 2 (c) arm 3 (d) arm 4 (e) arm 5

Fig. 3. The reward poisoning Δai for each arm.

6.2 Attack on Real Data: Yahoo! News Recommendation

To further demonstrate the effectiveness of the attack algorithm in real appli-
cations, we now test it on the Yahoo! Front Page Today Module User Click
Log Dataset (R6A).4 The dataset contains a fraction of user click log for news
articles displayed in the Featured Tab of the Today Module on Yahoo! Front
Page (http://www.yahoo.com) during the first ten days in May 2009. Specifi-
cally, it contains about 46 million user visits, where each user is represented as
a 6-dimensional contextual vector. When a user arrives, the Yahoo! Webscope
program selects an article (an arm) from a candidate article pool and displays it

4 URL: https://webscope.sandbox.yahoo.com/catalog.php?datatype=r.

http://www.yahoo.com
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
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to the user. The system receives reward 1 if the user clicks on the article and 0
otherwise. Contextual information about users can be found in prior work [13].

To apply the attack algorithm, we require that the set of arms remain
unchanged. However, the Yahoo! candidate article pool (i.e., the set of arms)
varies as new articles are added and old ones are removed over time. Nonethe-
less, there are long periods of time where the set of arms is fixed. We restrict
ourselves to such a stable time period for our experiment (specifically the period
from 7:25 to 10:35 on May 1, 2009) in the Yahoo! data, which contains 243,667
user visits. During this period the bandit has K = 20 fixed arms. We further
split the time period such that the first n = 8000 user visits are used as the his-
torical training data to be poisoned, and the remaining m = 163, 667 data points
as the test data. The bandit learning algorithm uses regularization λ = 1. The
confidence parameter is δ = 0.05. The subGaussian parameter is set to σ = 1

4
for binary rewards.

We simulate attacks on three target user context vectors: The most frequent
user context vector x∗ = x̄, a middle user context vector x∗ =x, and the least
frequent user context vector x∗ = x in the test data. These three user context
vectors appeared 5508, 106, and 1 times, respectively, in the test data. Note
that there are potentially many distinct real-world users that are mapped to the
same user contextual vector, therefore the “user” in our experiment does not
necessarily mean a real-world individual that appeared thousands of times.

We again choose as the target arm a∗ the worst arm on the target user
as defined by (21). To determine the target arm, we first simulate the bandit
algorithm on the original (pre-attack) training data, and then pick the arm with
the smallest UCB for that user. For the three target users we consider, the target
arms are 8, 3, and 8 respectively. The attacker uses attack margin ε = 0.001.

Different from the toy example where the reward can be any value in R, the
reward in the Yahoo! dataset must be binary, corresponding to a click-or-not
outcome of the recommendation. Therefore, the attacker must enforce yai+Δai ∈
{0, 1}. However, this results in a combinatorial problem. To preserve convexity,
we instead relax the attacked reward into a box constraint: yai + Δai ∈ [0, 1].
We add these new constraints to (8) and solve the following optimization:

min
Δ∈Rn

∑

a∈[K]

‖Δa‖22

s.t. x∗�θ̂a∗ + αa∗‖x∗‖V −1
a∗

≥ ε + x∗�θ̂a + αa‖x∗‖V −1
a

, ∀a �= a∗,

yai + Δai ∈ [0, 1], ∀i ∈ [ma], ∀a,

where θ̂a = V −1
a X�

a (ya + Δa), ∀a.

(23)

After the real-valued Δai is computed, the attacker performs rounding to
turn yai + Δai into 0 or 1. Specifically, the attacker thresholds yai + Δai with a
constant c ∈ [0, 1], so that if yai +Δai > c, then let the post-attack reward be 1,
otherwise let the post-attack reward be 0. Note that the poisoned rewards now
correspond to “reward flipping” from 0 to 1 or vice versa by the attacker. In our
experiment, we let the attacker try out 104 thresholds c equally distributed in
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[0, 1]. The attacker examines different thresholds for two concerns. First, there
is no guarantee that the thresholded solution still triggers the target arm pull,
thus the attacker needs to check if the selected arm for x∗ is a∗. If not, the
corresponding threshold c is inadmissible. Second, among those thresholds that
indeed trigger the target arm pull, the attacker selects the one that minimizes the
number of flipped rewards, which corresponds to the smallest poisoning effort in
the binary reward case.

In Table 1, we summarize the experimental results for attacking the three
target users. Note that the attack is successful on all three target users. The
best thresholds c for x̄, x and x are 0.0449, 0.1911, and 0.0439, respectively. The
number of flipped rewards is small compared to n = 8000, which demonstrates
that the attacker only needs to spend little cost in order to force the bandit to
pull the target arm. Note that the poisoning effect ratio is relatively large. This
is because most of the pre-attack rewards are 0, in which case the denominator
in (22) is small.

Table 1. Results of experiments on Yahoo! data

x̄ x x

Strong attack successful? True True True

Number [percentage] of flipped rewards 82 [1.0%] 9 [0.1%] 19 [0.2%]

Poisoning effort ratio 0.572 0.189 0.275

In Fig. 4, we show the reward poisoning Δ on the historical data against
the three target users, respectively. In all three cases, only a few rewards of the
target arm are flipped from 0 to 1 by the attacker while those of the other arms
remain unchanged. Therefore, we only show the reward poisoning on historical
data restricted to the target arm (namely on ya∗). The 82 and 19 flipped rewards
overlap in Fig. 4(a) and (c). Note that the contexts of those flipped rewards are
highly correlated with x∗.

(a) Most frequent user x∗ = x̄ (b) Medium frequent user x∗ =x (c) Least frequent user x∗ = x

Fig. 4. The reward poisoning Δai on three target users.
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6.3 Study on Feasibility

The attack feasibility depends on the historical contexts X, the bandit algorithm-
specific UCB parameter α, the attack margin ε, the target arm a∗, and the target
context x∗. To visualize the infeasible region of strong attack on context, we
consider the following toy example.

The bandit has K = 4 arms. The attacker’s target arm is a∗ = 4, and the
target context x∗ lies in R3. The historical context vectors are

X1 = [1, 0, 0], X2 = [0, − 1, 1], X3 = [0, 2, 0], X4 = [2, 0, 0]. (24)

The problem parameters are σ = S = λ = ε = 1 and δ = 0.05. According to
Theorem 1, any infeasible target context x∗ satisfies X4x

∗ = 0. Thus such x∗

must lie in the subspace spanned by the y-axis and z-axis. This allows us to show
infeasible regions as 2D plots. In Fig. 5(a), we show the infeasible regions. We
distinguish the infeasible region due to each non-target arm by a different color.
For example, the infeasible region due to arm 1 consists of all contexts on which
the target arm a∗ can never be ε-better than arm 1 regardless of the attack. Note
that the infeasible region due to arm 2 is a line segment of finite length, while
that due to arm 3 is the whole y = 0 line. The shape of the infeasible region due
to each non-target arm varies because the historical data differs and therefore
the conditions in Theorem 1 characterizes different shapes. Note that the origin
x = 0 satisfies the conditions in Theorem 1 and therefore is always infeasible.

One important observation is that, if the bandit algorithm is trained on more
historical data, more context vectors x∗ can potentially be strongly attacked. For-
mally, as indicated by Theorem 1 as the null space of historical context matrices
Xa, a ∈ [K] shrinks, the infeasible region shrinks as well. To demonstrate this, in
Fig. 5(b) we add a context [0, 0, 0.5] to X1 such that the historical contexts are:

X1 =
[
1, 0, 0
0, 0, 0.5

]

, X2 = [0, − 1, 1], X3 = [0, 2, 0], X4 = [2, 0, 0] . (25)

Now that Null(X1) is reduced, the infeasibility region due to arm 1 shrinks
from the circle in Fig. 5(a) to a horizontal line segment in Fig. 5(b). However
the infeasible region may not shrink to a subset of itself, as indicated by the
line segment having wider length along y axis than the original circle, thus the
shrink happens in the sense of being restricted to a lower-dimensional subspace.

Next we add a historical context [0, 1, 0] to X4:

X1 =
[
1, 0, 0
0, 0, 0.5

]

, X2 = [0, − 1, 1], X3 = [0, 2, 0], X4 =
[
2, 0, 0
0, 1, 0

]

.

Then the infeasibility region due to arm 1 and arm 2 both shrink to the origin
while arm 3 becomes a line segment, as shown in Fig. 5(c).

In practice, historical data is often abundant so that ∀a �= a∗, Xa∗ ∪ Xa

spans the whole Rd space, and the only infeasible point is the origin. That is,
the attacker can choose to attack essentially any context vector.
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(a) original data (b) Context added to X1 (c) Context added to X4

Fig. 5. Infeasible region due to each non-target arm.

Another observation is that the infeasible region shrinks as the attack margin
ε decreases, as shown in Fig. 6. The historical data for each arm is the same
as (24). The reason is that a smaller ε makes the constraints in (8) easier to satisfy
and therefore more contexts are feasible. As ε → 0 the infeasible region converges
to those contexts that cannot be weakly attacked, which in this example is the
line y = 0 in Fig. 6(c). Note that the contexts that cannot be weakly attacked
are those that make (6) infeasible. Therefore, we see that without abundant
historical data, there will be some contexts that can never be strongly attacked
even when ε → 0. Also note that the origin x∗ = 0 can never be strongly attacked
by definition.

(a) ε = 1 (b) ε = 0.5 (c) ε = 0.1

Fig. 6. Infeasible region shrinks as attack margin ε decreases.

6.4 Study on Side Effects

We first give an intuitive illustration of the side effect in 2D space. The bandit has
K = 3 arms, where the arm parameters are θa. We generate n = 1000 historical
data same as before with noise σ = 0.1. The target context x∗ is uniformly
sampled from X . The bandit algorithm uses regularization weight λ = 1 and
confidence parameter δ = 0.05. Without attack, the UCB for the three arms are

pre-attack: (−0.419, 0.192, 1.013). (26)
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Therefore without attack arm 3 would have been chosen. By our design choice,
the target arm is a∗ = 1. The attacker uses margin ε = 0.001. After attack the
UCBs of all arms become:

post-attack: (0.290, 0.192, 0.289). (27)

As shown in Fig. 7, the attacker forces the post-attack parameter of the best arm
θ̂3 to deviate from x∗ while making θ̂1 closer to x∗. Note that the attacker could
also change the norm of the parameter. Note that arm 2 is not attacked, thus θ2
and θ̂2 overlap. The side effect is denoted by the brown arcs on the circle, where
the arms chosen for those contexts are changed by the attacker. The side effect
fraction for this example is ŝ = 0.315.

Fig. 7. Side effect shown in 2D context space.

Now we design a toy experiment to study how the side effect depends on
the number of arms and the problem dimension. The context space X is the d-
dimensional sphere Sd and P is uniform on the sphere. The bandit has K arms,
where the arm parameters are sampled from P . Same as before, we generate n =
2000 historical data with noise σ = 0.1. The bandit algorithm uses regularization
weight λ = 1. The target context x∗ is sampled from P . The attacker’s margin
is ε = 0.001 and the target arm a∗ is the worst arm on the target context x∗.
We sample m = 103 contexts from P to evaluate ŝ.

In Fig. 8, we fix d = 2 and show a histogram of ŝ as the number of arm varies.
Note that the attack affects about 30% users. The median ŝ for the three panels
are 0.249, 0.317, and 0.224 respectively, which shows that the side effect does
not grow with the number of arms.

In Fig. 9, we fix K = 5 and show the side effect as the dimension d varies.
The median ŝ for the three panels are 0.435, 0.090, and 0.035, respectively, which
implies that in higher dimensional space, the side effect tends to be smaller.
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(a) K = 2 (b) K = 20 (c) K = 200

Fig. 8. Side effect fraction as arm number K increases.

(a) d = 2 (b) d = 20 (c) d = 200

Fig. 9. Side effect fraction as dimension d increases.

As the dimension d increases, the attack has less side effect. This exposes the
hazard that in real-world applications where the problem dimension is high, the
attack will be hard to detect from side effects.

We also study the side effect for the real data experiment. There we use the
m = 163, 667 test users to evaluate the side effect. The side effect fraction for
the three users are 0.5391, 0.0750, and 0.5040, respectively. Note that the most
frequent user and the least frequent user have a large side effect, which makes
the attack easy to detect. In contrast, the side effect of the medium frequent
user is extremely small. This implies that the attack can induce different level
of side effect for different target users.

7 Conclusions and Future Work

We studied offline data poisoning attack of contextual bandits. We proposed an
optimization-based attack framework against contextual bandit algorithms. By
manipulating the historical rewards, the attack can successfully force the bandit
algorithm to pull a pre-specified arm for some target context. Experiments on
both synthetic and real-world data demonstrate the effectiveness of the attack.
This exposes a security concern in AI systems that involve contextual bandits.

There are several future directions that can be explored. For example, our
current attack only targets a single context x∗. Future work can characterize
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how to target a set of contexts simultaneously, i.e., force the bandit algorithm
to pull the target arm for all contexts in some target set. In the simplest case
where the set contains finitely many contexts, one can just replicate the con-
straint in (8) for each context in the set. The situation is more complicated if
the target set is infinite or just too large. Another interesting question is how
to develop defense mechanisms to protect the bandit from being attacked. As
indicated in this paper, the defender can rely on the side effect to sense the
existence of attacks. Conversely, it is also an open question how the attacker
might attempt to minimize its side effect during the attack, so that the chances
of being detected are minimized. Finally, in this paper we restrict the ability
of the attacker to manipulating only the historical rewards. However, there are
other types of attacks such as poisoning the historical contexts, adding addi-
tional data points, removing existing data points, or combinations of the above.
The problem could become non-convex or even combinatorial depending on the
type of the attack; some of these settings have been studied under the name
“machine teaching” [18,19]. Future work needs to identify how to extend our
current attack framework to more general settings.
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Abstract. Cyber-physical systems are facing new security challenges
from Advanced Persistent Threats (APTs) due to the stealthy, dynamic
and adaptive nature of the attack. The multi-stage Bayesian game cap-
tures the incomplete information of the players’ type, and enables an
adaptive belief update according to the observable history of the other
player’s actions. The solution concept of perfect Bayesian Nash equilib-
rium (PBNE) under the proactive and reactive information structures of
the players provides an important analytical tool to predict and design
the players’ behavior. To capture the learning process and enable fast
computation of PBNE, we use conjugate priors to update the beliefs of
the players parametrically, which is assimilated into backward dynamic
programming with an expanded state space. We use a mathematical
programming approach to compute the PBNE of the dynamic bi-matrix
game of incomplete information. In the case study, we analyze and study
two PBNEs under complete and one-sided incomplete information. The
results reveal the benefit of deception of the private attackers’ types and
motivate defender’s use of deception techniques to tilt the information
asymmetry. Numerical results have been used to corroborate the ana-
lytical findings of our framework and show the effectiveness of defense
design to deter the attackers and mitigate the APTs strategically.

Keywords: Multistage Bayesian game
Advanced Persistent Threats (APTs) · Optimal learning
Cyber deception · Proactive and strategic defense

1 Introduction

The integration of cyber-physical systems increases the operating efficiency and
promotes the cross-layer communication. However, the interconnections also turn
the industrial control systems (ICS) from the previous safe area to a hard-hit of
emerging advanced cyber attacks such as Petya and Stuxnet. After the Aurora
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generator test in 2007 warns us of the possibilities of physically destroying
power generators with merely 21 lines of malicious codes, Petya has attacked
the Ukrainian power plant in December 2015. Petya is the first known successful
attack on the power grid and causes a power cut to more than 80,000 people. It
takes a long time to recover, and the recovery under a similar attack would be
worse in the United States in 2018 because of the increasing degree of automa-
tion and integration. Similarly, Stuxnet discovered in 2010, have infected over
200,000 computers all over the world and caused over 1,000 centrifuges out of
operation. Stuxnet starts its initial infection through the USB driver of the hard-
ware provider. These USB drives are stealthily compromised by Stuxnet when
the hardware provider serves other less secure clients. Thus, Stuxnet manages
to compromise the air gap even though the nuclear system is carefully isolated
from the Internet. These attacks form the Advanced Persistent Threats (APTs)
to the ICS security and indicate the urgency of effective defensive mechanisms
to respond to the new threats.

APTs have the following three features distinct from the traditional attacks.
First, they use customized incursion techniques and have specific targets, such
as private organizations, state government, and critical infrastructures, with the
goal to gather intelligence and sabotage facilities [4]. Second, they adopt persis-
tent and stealthy attacking strategies to cause more permanent, significant, and
irreversible damages. Stuxnet persists in alternating the rotor speed for years to
increase the failure probability of the centrifuge. However, Stuxnet launches this
attack only once a month to remain stealthy, i.e., human operators do not relate
the increase in the number of inoperative centrifuges to an attack. Third, they
are methodically designed. For example, Stuxnet replays a 21-s pre-recorded nor-
mal sensory data to deceive the monitor when the attack has begun to change
the rotor speed.

Recent works on secure control systems [9] and intrusion detection systems
(IDS) [3] have provided prevalent methods for malware prevention and detec-
tion, yet they can be insufficient for human-expert operated APTs that adopt
advanced techniques and learn the detection rule during their lengthy stay in the
system to evade the detection. To protect infrastructures from APTs, defenders
need to design strategic and proactive policies that can learn, anticipate, and
adapt the defense strategies over time. To this end, a game theory approach pro-
vides a natural framework to develop strategic and adaptive security solutions
to harden the cyber-physical security [10,15]. Starting from the initial infection,
APTs establish the foothold and escalate privilege by exploiting zero-day vul-
nerabilities to sign malware with the private key from stolen certificates. Then,
they create tunnels and utilize the backdoor to control the Command and Con-
trol (C&C) server to receive additional instructions and malicious codes. Next,
APTs establish additional points of entries and propagate stealthily and later-
ally in the cyber network until they reach the target computer. Finally, they can
either collect data in the cyber layer or launch attacks on physical plants. The
attack path of APTs, as shown in Fig. 1, can be represented by a tree network
without loops and jumps. Thus, a multi-stage dynamic game [7] is a befitting
framework to study the lateral movement and privilege escalation of the attack.
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Flip-IT game [13], as one example of the dynamic game framework, has suc-
cessfully analyzed the scenario of the key leakage under APTs so that system
defender and APTs stealthily take over the system alternately. However, Flip-IT
is a complete-information game, and it cannot be sufficient to capture the decep-
tive nature of the attack and the information asymmetry of the game. In the
example of Stuxnet, it is hard to conclude from the observation of the alternating
of the rotor’s speed whether the system is under attack or what kind of attacks.
One way to model the incomplete information caused by deceptions in games is
to introduce the notion of types [5], which reflects the uncertainties of one player
about the other player’s motivation and objectives. Signaling game, a two-stage
game with the one-sided type has been applied to study the deception in cyber-
physical systems [14]. As a countermeasure for the deceptive attackers, [11] sur-
veys defensive deceptions including perturbation, moving target defense, obfus-
cation, mixing, honey-x and attacker engagement. For example, cyber denial and
deception (D&D) proposed in [12] aims to create sufficient amount of uncertain-
ties so that adversaries would waste time and resources on ‘honey files.’ The
authors in [6] show how the defender can manipulate the attacker’s belief to
deter attacks and minimize the damage inflicted to the network.

In our framework, we consider that attackers and defenders can adopt adver-
sarial and defensive deceptions, respectively, in the dynamic game of cyber-
physical systems. Each player has a type that characterizes his/her private infor-
mation. Hence we model the scenario with a two-sided dynamic Bayesian game
to uniformly capture the three characteristics of APTs, i.e., strategic adversaries,
multiple stages, and incomplete information. The history of both players’ actions
is fully observable. The private type represents the uncertainty of the two-sided
deception so that both players have to strategically gauge the other’s type to
respond optimally to their type-related utility functions. The solution concept
for this dynamic game is the perfect Bayesian Nash equilibrium (PBNE) in which
the players form a consistent belief and policy pair such that no player can gain
via unilateral policy deviation with the belief that supports the actions. The
computation of PBNE is challenging when the utility is a function of continu-
ous type space. We propose an equivalent mathematical program with infinite-
dimensional constraints to solve the dynamic Bayesian game and approximate
it by sampling the type space. In particular, for the one-sided incomplete infor-
mation bi-matrix game, we obtain two necessary conditions for the existence of
the equilibrium.

1.1 Organization of the Paper

The rest of the paper is organized as follows. Section 2 introduces the system
model and the Bayesian belief update. The solution concept of PBNE under
proactive and reactive information structures is introduced in Sect. 3. In Sect. 4,
we adopt the conjugate prior assumption for parametric update of the belief
and form an expanded-state dynamic programming to unify the forward and
backward processes. A case study of one-sided information is presented in Sect. 5,
and Sect. 6 concludes the paper.
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Fig. 1. The multi-stage life cycle of APTs forms a tree network. The threat actor
starts the infection by exploiting the human weakness (social engineering) or cyber
attacks. Then, APTs gain the foothold, escalate privilege, propagate laterally in the
cyber network and finally either cause physical damages or collect confidential data.
APTs use each stage as a stepping stone for the next and cannot jump directly to the
final stage. Attackers also have no incentives to go back to stages that they has already
compromised because their ultimate goal is to compromise the specific target at the
final stage.

2 System Model

This section introduces a multi-stage dynamic game of incomplete information
to model the strategic behaviors of APTs and defenders. Consider two players,
a system defender P1 (pronoun ‘she’) who holds different security levels and a
user P2 (pronoun ‘he’) of different threat levels to the system. The security or
threat level of player i ∈ {1, 2} is private information unknown to the other
player and is characterized by a continuous type θi ∈ Θi := [0, 1]. For any finite
set A, define �A := {p : A �→ R+|∑a∈A p(a) = 1} while for any infinite set
Θ, define �Θ := {p : Θ �→ R+| ∫

θ∈Θ
p(θ)dθ = 1}. Mathematically, type θi is

the realization of θ̃i, a random variable with an underlying probability space
(Ω,F , P ). The prior probability distribution B0

i ∈ �Θi is common knowledge.
User P2’s type θ2 indicates the strength of the user in terms of damages that he
can inflict on the system. A user with a large type value indicates a higher threat
level to the system. A user with θ2 less than a pre-defined threshold θ̄2 ∈ (0, 1)
is treated as legitimate. Similarly, the type of defender P1 indicates the defense
strength and the resource she has for security. For example, defenders can use
deception techniques (e.g., honeypots and honeyfiles) to detect the attackers
and cut links to isolate the attacker. The existence of honeypot can reduce
the number of attacks because an attacker cannot be sure whether it is a trap
or not when observing network vulnerability. In this case, a defender with a
higher type value θ1 indicates that she possesses a larger number of honeypots
to deploy. Since APTs move stage by stage from the initial infection to reach
the final target, we model the transition of APTs as a multi-stage game with a
finite horizon T .

At each stage t ∈ {0, 1, · · · , T}, each player Pi chooses an action at
i from

his/her feasible action set At
i. The user’s actions at

2 ∈ At
2 are the behaviors that
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are directly observable from activity log files, e.g., a privilege escalation request
and sensor access. Sine both legitimate and adversarial users can take these
activities, a defender cannot identify the user’s type directly from observing
these actions. The user’s type, however, determines the real actions and the
corresponding payoff, e.g., a legitimate user’s access to the sensor benefit the
system while a pernicious user’s access can cost a considerable loss. On the other
hand, the defender’s action at

1 will be mitigation or proactive actions such as
restricting the escalation request or monitoring the sensor access. These proactive
actions also do not directly disclose the system type. The action set At

i is stage-
variant and has a stage-dependent cardinality |At

i|. For example, at the early
stage of the attack on a nuclear plant, the defender can choose to shut down the
reactor, while in a later stage, the defender switches from automatic to manual
mode to control the feedwater flow. Each player cannot observe the current-stage
t action of the other player until the action appears in the log file at the next
stage. The perfect recall assumption leads to a fully observable history ht :=
{a0

1, · · · , at−1
1 , a0

2, · · · , at−1
2 } ∈ Ht to both players. State xt ∈ X t representing

the status of the system at stage t is the sufficient statistic of history ht because
a Markov state transition xt+1 = f t(xt, at

1, a
t
2) contains all the information of

the history update ht = ht−1 ∪ {at
1, a

t
2}. The function f t is deterministic and

may also be stage-dependent. In the example of nuclear power plant, at the
early stage, attacker and defender actions will determine whether the reactor
can be shut down successfully, while in a later stage of the attack, the actions
will determine whether the feedwater flow can be controlled appropriately to
maintain the steam generator with an adequate water level.

Information structure It
i ∈ It

i is a set that contains the information available
to player Pi at stage t. The behavioral strategy σt

i : It
i �→ �At

i for player Pi maps
his/her information structure set into a distribution over Pi’s action space. All
the potential behavioral strategies constitute the feasible set Σt

i . Let σt
i(a

t
i|It

i )
be the probability of taking action at

i under the information structure It
i , i.e.,∑

at
i∈At

i
σt

i(a
t
i|It

i ) = 1,∀It
i ∈ It

i . An action at
i is the realization of the behavioral

strategy σt
i . In this work, we study the reactive information structure It

i := Ht ×
Θi for outsider threats and the proactive information structure It

i := σt
−i ×Ht ×

Θi for insider threats as introduced in Sect. 3. For i ∈ I, notation −i means I \
{i}. For example, if I := {1, 2} and i = 1, then −i = 2. At stage t ∈ {1, · · · , T},
Pi forms a belief Bt

i : Ht �→ �Θ−i of the other player’s type according to
the history ht. Similarly, Bt

i (θ−i|ht) at stage t is the conditional probability
density function (PDF) of the other player’s type θ−i and

∫ 1

0
Bt

i (θ−i|ht)dθ−i =
1,∀t,ht, i ∈ {1, 2}. The belief of the type is updated according to the Bayesian
rule upon the arrival of the observations of actions at

i, a
t
−i with the boundary

condition B0
i :

Bt+1
i (θ−i|[ht, at

i, a
t
−i]) =

Bt
i (θ−i|ht)σt

−i(a
t
−i|ht, θ−i)

∫ 1

0
Bt

i (θ̂−i|ht)σt
−i(a

t
−i|ht, θ̂−i)dθ̂−i

, i ∈ {1, 2}, (1)

where we write σt
−i(a

t
−i|It

i ) as σt
−i(a

t
−i|ht, θ−i) for both information structures

because the belief Bt
i depends only on the history ht.
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At each stage t, J̄ t
i is the stage utility that depends on both types θi, θ−i,

both actions at
i, a

t
−i, the current state xt, and an external random noise wt

i

with a known distribution. We introduce the external random noise to model
other unknown factors that could affect the value of the stage utility. The exis-
tence of the external noise makes it impossible for each player i to directly
acquire the value of the other’s type based on the combined observation of input
parameters xt, at

1, a
t
2, θi plus the output value of the utility function J̄ t

i . In this
work, we consider any additive noise with the 0 mean J̄ t

i (x
t, at

1, a
t
2, θi, θ−i, w

t
i) =

J t
i (x

t, at
1, a

t
2, θi, θ−i) + wt

i , which leads to an equivalent utility over the expecta-
tion of the external noise Ewt

i
J̄ t

i = J t
i ,∀xt, at

1, a
t
2, θi, θ−i. The expected payoff of

a player is taken with respect to his/her time-varying belief Bt
i over the type of

the other player and their policy pair σt
i , σ

t
−i. Define a sequence of policies from

t′ to T , i.e., σt′:T
i := {σt

i ∈ Σt
i}t=t′,··· ,T ∈ Σt′:T

i , then for player i ∈ {1, 2} with
t′ as the initial stage, the expected accumulated utility is as follows.

U t′:T
i (σt′:T

i , σt′:T
−i ,hT+1, θi) :=

T∑

t=t′
Eθ−i∼Bt

i ,at
i∼σt

i ,at
−i∼σt

−i,wt
i
J̄ t

i (x
t, at

1, a
t
2, θ1, θ2, w

t
i)

=
T∑

t=t′

∫ 1

0

Bt
i (θ−i|ht)

∑

at
i∈At

i

σt
i(a

t
i|It

i )
∑

at
−i∈At

−i

σt
−i(a

t
−i|It

−i)J
t
i (x

t, at
1, a

t
2, θ1, θ2)dθ−i.

(2)
In the scenario of APTs, both players consider cumulative utility of T stages

because APTs have to move stage by stage to finish the entire life circle shown
in Fig. 1.

3 Solution Concepts

In this section, we investigate the perfect Bayesian Nash equilibrium (PBNE)
under two different information structures. The proactive PBNE (P-PBNE) cor-
responds to an insider threat, i.e, agent P2 can observe the policy of the principal
P1 at each stage. On the other hand, the reactive PBNE (R-PBNE) corresponds
to the outsider threat where both players cannot observe the other’s policy at
any stages. The PBNE under both information structures can be solved using
dynamic programming that is consistent with a type belief update in (1).

3.1 P-PBNE

We model the scenario of APTs as a dynamic principal-agent problem as shown
in Fig. 2. Attacker P2 acts as an insider who knows policy σt

1 and determines his
policy σt

2 as a best response to σt
1 that maximizes his expected cumulative utility

U t:T
2 . On the defender’s side, a sophisticated defender is aware of the potential

policy leakage through insider threats and anticipates the strategic response of
the attacker using the attack tree analysis or proactive defenses (e.g., honeypots
and honeyfiles). The described scenario leads to Definition 2 of P-PBNE. The
P-PBNE may not exist or be unique. A counterexample in the static setting is
shown in Remark 4.
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Defender

Stage 0 Stage 1 Stage t Stage T

Attacker

σ0
2 = R2(σ0

1) σ1
2 = R2(σ1

1) σt
2 = R2(σt

1) σT
2 = R2(σT

1 )

σ0
1 σ1

1 σt
1 σT

1

h0 = Ø h0 = {a0
1, a

0
2} ht = {ht−1, at−1

1 , at−1
2 } hT = {a0

1, ..., a
T−1
1 , a0

2, ..., a
T−1
2 }

a0
1 a1

1 at
1 aT

1

a0
2 a1

2 at
2 aT

2

Fig. 2. Example of sequential plays under the proactive information structure.

Definition 1. In the two-person dynamic game with the cumulative utility func-
tion U t′:T

i in (2) and a sequence of beliefs Bt
i , t ∈ {t′, · · · , T} in (1), define the

set

R2(σt′:T
1 ) := {γ ∈ Σt′:T

2 : U t′:T
2 (σt′:T

1 , γ) ≥ U t′:T
2 (σt′:T

1 , σt′:T
2 ),∀σt′:T

2 ∈ Σt′:T
2 }

as the best-response set of P2 to P1’s policy σt′:T
1 ∈ Σt′:T

1 . 	

Definition 2. In the two-person dynamic Bayesian game with P1 as the prin-
cipal, the cumulative utility function U t′:T

i in (2), a sequence of beliefs Bt
i , t ∈

{t′, · · · , T} in (1) and proactive information structure It
1 := Ht × Θ1, It

2 :=
σt
1 × Ht × Θ2, t ∈ {t′, · · · , T} , a sequence of strategies σ∗,t′:T

1 ∈ Σt′:T
1 is called a

proactive perfect Bayesian Nash equilibrium (P-PBNE) for the principal, if

U∗,t′:T
1 := inf

σt′:T
2 ∈R2(σ

∗,t′:T
1 )

U t′:T
1 (σ∗,t′:T

1 , σt′:T
2 )

= sup
σt′:T
1 ∈Σt′:T

1

inf
σt′:T
2 ∈R2(σt′:T

1 )
U t′:T
1 (σt′:T

1 , σt′:T
2 ).

(3)

A strategy σ∗,t′:T
2 ∈ arg maxσt′:T

2 ∈Σt′:T
2

U t′:T
2 (σ∗,t′:T

1 , σt′:T
2 ) := U∗,t′:T

2 is called a
P-PBNE for the agent P2. 	

Remark 1. Since the agent’s polices in the best-response set may not be unique,
principal P1 in (3) considers the worst-case policy among the best-response set
R2(σ

∗,t′:T
1 ). If the best-response set R2(σt′:T

1 ) = {σ∗,t′:T
2 } is a singleton, we have

U∗,t′:T
1 = supσt′:T

1 ∈Σt′:T
1

U t′:T
1 (σt′:T

1 , σ∗,t′:T
2 ) in (3). 	


3.2 R-PBNE

If each player does not know the policy of the other player at every stage, then
Pi chooses a sequence of behavioral strategies σ∗,t

i (at
i|It

i ) = σ∗,t
i (at

i|ht, θi), t ∈
{t′, · · · , T} so that she/he cannot gain if deviating unilaterally at any stage of
the game, which leads to Definition 3 of R-PBNE.

Definition 3. In the two-person dynamic Bayesian game with the cumulative
utility function U t′:T

i in (2), a sequence of beliefs Bt
i , t ∈ {t′, · · · , T} in (1)
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and reactive information structure It
i := Ht × Θi, t ∈ {t′, · · · , T} for player

Pi, i ∈ {1, 2}, a sequence of strategies σ∗,t′:T
i ∈ Σt′:T

i is called the ε-reactive
perfect Bayesian Nash equilibrium for player Pi if, for a given ε ≥ 0, i ∈ {1, 2}
and ∀θi ∈ Θi,

U t′:T
i (σ∗,t′:T

i , σ∗,t′:T
−i ,hT+1, θi) ≥ U t′:T

i (σt′:T
i , σ∗,t′:T

−i ,hT+1, θi) − ε,∀σt′:T
i ∈ Σt′:T

i .

If ε = 0, we have a reactive perfect Bayesian Nash equilibrium (R-PBNE). 	

Remark 2. The belief update (1) is strongly consistent as it applies to all possible
histories from stage t to t + 1: even when history ht has probability 0. In other
word, belief update (1) is valid starting from all states, even if the equilibrium
trajectory does not contain that state. The strong time consistency indicates
perfectness, i.e., even some trembling hand mistakes happen at stage t̂ and an
unexpected state is reached, the player can still achieve optimality from that
new state on by applying σ∗,t̂:T

−i . Thus, PBNE strategies can adapt to unexpected
changes. 	


3.3 Dynamic Programming

Given the type belief at every stage, we can use dynamic programming to find
the PBNE in a backward fashion because of the tree structure and the finite
horizon. Define the value function V t

i (ht, θi) := U t:T
i (σ∗,t:T

i , σ∗,t:T
−i ,ht+1, θi) as

the optimal utility-to-go function at stage t. Let V T+1
i (hT+1, θi) := 0 be the

boundary condition of the value function, we have the following recursive system
equations involving both players’ policies:

V t
1 (ht, θ1) = sup

σt
1

E
θ2∼Bt

1,at
1∼σt

1,at
2∼σ

∗,t
2

[V t+1
1 ({ht, at

1, a
t
2}, θ1) + J t

1(x
t, at

1, a
t
2, θ1, θ2)];

V t
2 (ht, θ2) = sup

σt
2

E
θ1∼Bt

2,at
2∼σt

2,at
1∼σ

∗,t
1

[V t+1
2 ({ht, at

1, a
t
2}, θ2) + J t

2(x
t, at

1, a
t
2, θ1, θ2)],

(4)
where σ∗,t

1 , σ∗,t
2 , t ∈ {0, · · · , T} are the PBNE policy pair. Figure 3 summarizes

the forward update of the history ht, belief Bt
i , and policy σt

i from stage t − 1
to t. The challenge is that the type belief is not directly known at each stage.
The forward belief update in (1) depends on the PBNE strategy. However, the
backward computation of PBNE strategy in (4) also couples with the belief as
shown in Fig. 4. Hence, we need to find the PBNE strategy consistent with the
belief at each stage.

4 Conjugate Prior Learning

If we assume that Bt
i is of the beta distribution and the strategy σt

−i of the
other player corresponds to a binomial distribution, then Bt+1

i is also a beta
distribution with updated hyperparameters. Figure 5 illustrates how a defender
can learn the type of the attacker to decrease the probability of attacks. An



Adaptive and Strategic Defense for APTs 213

Type θ1 ∈ Θ1
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Utility optimization
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2 Θ1
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Type belief
Bt

1 Θ2

History ht =
ht−1 ∪ {at−1

1 , at−1
2 }
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Perfect Bayesian
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Utility optimization

Mixed strategy σt
1

t
1

Mixed strategy σt
2

t
2

Action at
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1

Action at
2 ∈ At

2

Implementation

Implementation

Observable history and perfect recall

Type θ2 ∈ Θ2

Player 2: attacker

Observable history and perfect recall

Fig. 3. A two-player stage transition from stage t − 1 to stage t. The transition loop
iterates from stage t = 0 to the terminal stage t = T − 1, which constitutes the entire
multi-stage dynamic game. Both players’ history of actions are fully observable yet
their types are private information to the other player. Each player Pi learns to update
his/her belief Bt

i ∈ �Θ−i of the other’s private type θ−i based on the policy of the
other player σt

−i at stage t.

Stage 0 Stage 1 Stage T

V T
i

V 1
i

V 0
i

B0
i B1

i BT
i

Forward Belief Update

Backward Policy Computation

Fig. 4. The backward policy computation
and the forward belief update are coupled.

Table 1. Stage utility of two players.
Player P2 takes action aT

2 = 1 with proba-
bility q(θ2).

Action aT
2 = 0 aT

2 = 1

aT
1 = 0 R1

11(θ2), R
2
11(θ2) R1

12(θ2), R
2
12(θ2)

aT
1 = 1 R1

21(θ2), R
2
21(θ2) R1

22(θ2), R
2
22(θ2)

expanded state includes the parameters of the distribution, and we can form
one backward dynamic program with a larger dimension to unify the forward
and backward processes. Finally, as the type-related policy makes it challenging
to compute the PBNE for the expanded-state dynamic programming, we use a
mathematical programming approach to compute R-PBNE. The P-PBNE can
be analyzed likewise.

4.1 State Independent Belief Formation

At each stage t, player −i divides the action space of the other player Pi into
Ki + 1 time-invariant set of categories Ci

j , i.e., At
i = {∪Ci

j}j=0,1,··· ,Ki
,∀t, i = 1, 2

and mutual exclusive Ci
j ∩ Ci

l = ∅,∀j = l, i = 1, 2. Then, each at
−i uniquely corre-

sponds to one category and we can transform σt
−i(a

t
−i|ht, θ−i), the distribution

of at
−i, into a distribution of the corresponding category kt

−i ∈ {0, 1, · · · ,Ki}.
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After changing the history of actions ht = {a0
1, · · · , at−1

1 , a0
2, · · · , at−1

2 } into
the history of corresponding categories h̃t := {k0

1, · · · , kt−1
1 , k0

2, · · · , kt−1
2 }, we

rewrite the Bayesian update of the belief with respect to the category.

Bt+1
i (θ−i|[h̃t, kt

i , k
t
−i]) =

Bt
i (θ−i|h̃t)σt

−i(k
t
−i|h̃t, θ−i)

∫ 1

0
Bt

i (θ̂−i|h̃t)σt
−i(k

t
−i|h̃t, θ̂−i)dθ̂−i

, i = 1, 2. (5)

The distribution of σt
−i is assumed to be a binomial distribution with the

parameter q = θ−i and N = K−i. The probability mass function (PMF) of cat-
egory k is Pr(k) =

(
N
k

)
qk(1 − q)N−k. The prior belief Bt

i over the other player’s
private type θ−i ∈ [0, 1] is assumed to be a beta distribution with hyperparam-
eters α and β. With gamma function Γ (n) = (n − 1)! and Be(α, β) = Γ (α)Γ (β)

Γ (α+β) ,

the probability density function (PDF) of the type isBetaα,β(q) = qα−1(1−q)β−1

Be(α,β) .

Since binomial and Beta distributions are conjugate, the posterior belief con-
serves to be a Beta distributed with updated hyperparameters (αt+1

i , βt+1
i ) =

(αt
i + kt

i , β
t
i + Ki − kt

i), i = 1, 2, where kt
i is the category that the action of

player Pi at stage t falls into. Moreover, we can express in the closed form for
player Pi’s belief of the other player −i’s type at any stage t with parameters
αt

−i = α0
−i +

∑t
t′=1 kt′

−i and βt
−i = β0

−i + tKi − ∑t
t′=1 kt′

−i, where (α0
−i, β

0
−i) is

the prior distribution. Thus, every node just needs to count the frequency of
categories of the other player’s action at each stage t. Finally, we transform the
type belief conditioned on the categories back to the belief conditioned on the
corresponding actions using the hard de-aggregation, i.e., Bt+1

i (θ−i|h̃t, at
i, a

t
−i) =

Bt+1
i (θ−i|h̃t, at

i, ā
t
−i) = Bt+1

i (θ−i|h̃t, kt
i , k

t
−i),∀at

i ∈ Ci
kt

i
,∀at

−i, ā
t
−i ∈ C−i

kt
−i

. Here,

hard de-aggregation means that actions at
−i, ā

t
−i correspond to the same cate-

gory kt
−i share the same belief distribution of the type and approximate the true

type belief distribution.

Example 1. Consider a one-sided, incomplete information case where the sys-
tem type is known to the user who has a private continuous type satisfying beta
distribution (α, β). P1 classifies all possible actions of P2 into K + 1 categories,
and a larger category index means a higher threat level. For example, a low
occupancy of system resources is in the category 1, yet a frequent and longtime
resource occupancy belongs to the category K because of its potential intention
to block the system. Note that the category of action observation in one-shot
does not reveal the type because a legitimate user may sometimes also occupy
the resource for a long time and an attacker can behave legitimately to evade
detection. However, since the payoff function is type-related, neither the legit-
imate user will always have longtime occupancy, nor the attacker can always
hide. Thus, the belief will approach the truth after the multi-stage belief update
based on the action observations. 	


4.2 State-Dependent Belief Formation

Since the same action can lead to different payoffs at different states, we general-
ize our results to classify the action according to the state and the action at stage
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t. We divide a composed set Dt
i := X t×At

i into Ki+1 mutual exclusive partitions
C̄i

j , i.e., Dt
i = {∪C̄i

j}j=0,1,··· ,Ki
,∀t, i = 1, 2 and C̄i

j ∩ C̄i
l = ∅,∀j = l, i = 1, 2.

Example 2. Let the set of nodes of stage t in Fig. 6 be the possible states xt ∈ X t.
The state represents the value of the reactor pressure. The defender tries to sta-
bilize the pressure at the reference value to guarantee the product quality and
process safety in chemical plants. Reference values n0

3, · · · , nT
3 and the possible

pressure state xt could be stage-varying. The attacker aims to change the pres-
sure. A substantial deviation from the standard pressure brings a considerable
reward to attackers. The state transition is Markov, i.e., the current pressure xt

and the both players’ actions determine the pressure at stage t + 1. It could be
challenging to determine the legitimacy of the actions based merely on whether
the user increases or decreases the pressure. The state of the pressure can provide
additional information to determine the criticality of operations. For example,
it is clearly more dangerous when a user aims to increase the pressure when the
current pressure value already far exceeds the standard pressure. 	


Fig. 5. The multi-stage learning
scheme of attacker’s type mitigates the
probability of attacks.

0 TT − 1t − 1 tStage

n0
3

nT
1

nT
2

nT
3

nT
4

nT
5

Fig. 6. A multi-stage game with a
finite horizons T and a Markov state
transition xt+1 = f t(xt, at

1, a
t
2).

4.3 Expanded State and Sufficient Statistic

At each stage t, an expanded state yt = {xt, αt
i, β

t
i , α

t
−i, β

t
−i} contains the orig-

inal cyber state xt plus the belief state Bt
i , B

t
−i represented by the hyper-

parameters from the beta distribution. Define new state transition function
yt+1 = f̃ t(yt, at

1, a
t
2) where xt+1 = f t(xt, at

1, a
t
2) and (αt+1

i , βt+1
i ) = (αt

i +kt
i , β

t
i +

Ki − kt
i), i = 1, 2. Because of αt

i + βt
i = α0

i + β0
i + tKi, we only need αt

i (or βt
i )

to uniquely determine the βt
i (or αt

i). We choose α0
i = β0

i = 1 as the prior
belief, then αt

i, β
t
i ∈ [1, · · · , 1 + tKi], and the dimension of the expanded state

yt is |Xi|t × (1 + tKi). Define Ĩt
i = {yt, θi} for reactive information structure

(Ĩt
i = {σt

−i, y
t, θi} for reactive information structure), Ĩt

i is the sufficient statis-
tic of It

i because the history ht uniquely determines the cyber state xt as well
as the belief state. With the Markov assumption that σ̃t

i(a
t
i|Ĩt

i ) = σt
i(a

t
i|It

i ), the
new value function Ṽ t

i (yt, θi) is sufficient to determine the original value func-
tion V t

i (ht, θi). Unlike the entire history, the carnality of state space does not
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increase with the number of stages, which greatly reduces the computation com-
plexity. By letting Ṽ T+1

i (yT+1, θi) := 0, we have the following recursive form for
t = 0, · · · , T , i.e.,

Ṽ t
1 (yt, θ1) = sup

σ̃t
1

E
θ2∼βt

1,at
1∼σ̃t

1,at
2∼σ̃

∗,t
2

[Ṽ t+1
1 (f̃ t(yt, at

1, a
t
2), θ1) + J t

1(x
t, at

1, a
t
2, θ1, θ2)];

Ṽ t
2 (yt, θ2) = sup

σ̃t
2

E
θ1∼βt

2,at
2∼σ̃t

2,at
1∼σ̃

∗,t
1

[Ṽ t+1
2 (f̃ t(yt, at

1, a
t
2), θ2) + J t

2(x
t, at

1, a
t
2, θ1, θ2)],

Since the expanded state transition incorporates the parameter of the belief
update, we can compute the optimal utility-to-go function from stage T back
to 0 w.r.t. the expanded state space to obtain a consistent belief-PBNE pair at
each stage.

4.4 Computations of Static and Dynamic Bayesian Games

In this section, we formulate a mathematical program to compute the equilibrium
for both static and multi-stage Bayesian bi-matrix games. The computation of
static Bayesian games serves as a building block for the computation of the
PBNE for the multi-stage games. The stage-varying belief leads to a nonzero-
sum utility function. We also investigate the class of two-by-two matrices and
provide further analytical insights. In the static setting, i.e., T = 0, the P-PBNE
degenerates to be the Bayesian Stackelberg equilibrium (BSE) with leader P1

and follower P2. The R-PBNE degenerates to be a Bayesian Nash equilibrium
(BNE). In this section, we focus on the analysis of BNE and the analysis of
BSE can be done similarly. Define mt

i := |At
i| as the total number of alternatives

Pi can take at stage t. Let vector pt(θ1) = [pt
1(θ1), · · · , pt

mt
2
(θ1)]′ ∈ R

mt
2×1 and

qt(θ2) = [qt
1(θ2), · · · , qt

mt
1
(θ2)]′ ∈ R

mt
1×1 be the outcome vector of the behavioral

strategy σt
1 and σt

2, respectively. For example, pt
l(θ1) is the probability of P1

taking the l-th action (i.e., at
1 = l, l ∈ {1, · · · ,mt

1}) when her type is θ1 at stage
t. Notation ‘′’ is the transpose of a vector and lmt

i
:= [1, 1, · · · , 1]′ ∈ R

mt
i×1.

Player i’s utility matrix Ji(xt, θ1, θ2), i ∈ {1, 2} is a mt
1 × mt

2 matrix where the
element (k, l) is the value of J t

i (x
t, at

1 = k, at
2 = l, θ1, θ2). P1 is the row player

while P2 is the column player. Both players are rational and aim at maximizing
their own utilities.

Final Stage/Static Case. The computation starting from the final stage T
with a given belief BT

i is the same as a static Bayesian game. Thus, we suppress
the superscript of T , i.e., mi := mT

i , p(θ1) := pT (θ1), q(θ2) := qT (θ2). Also, we
write Ji(xT , θ1, θ2) as Ji(θ1, θ2) because the state xT is known.

Theorem 1. A strategy pair (p∗(θ1), q∗(θ2)) constitutes a mixed-strategy
Bayesian Nash equilibrium to the bi-matrix Bayesian game (J1(θ1, θ2),
J2(θ1, θ2)) under continuous private type θi ∈ Θi and a public belief Bi, i ∈
{1, 2}, if and only if, there exists a scalar function pair (s∗(θ1), w∗(θ2)) such
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that (p∗(θ1), q∗(θ2), s∗(θ1), w∗(θ2)) is a solution to the following mathematical
program:

sup
q,p,s,w

Eθ1s(θ1) + Eθ2w(θ2) + Eθ1Eθ2{p(θ1)′[J1(θ1, θ2) + J2(θ1, θ2)]q(θ2)}

s.t. Eθ1 [J ′
2(θ1, θ2)p(θ1)] ≤ −w(θ2)lm2 ,∀θ2, q(θ2)′lm2 = 1, q(θ2) ≥ 0,∀θ2,

Eθ2 [J1(θ1, θ2)q(θ2)] ≤ −s(θ1)lm1 , ∀θ1, p(θ1)′lm1 = 1, p(θ1) ≥ 0,∀θ1.
(6)

The computation challenge of the continuous Bayesian bi-matrix program (6) is
the infinite-dimensional constraints induced by the continuous type space. We
can obtain approximate solutions by sampling the bounded type space Θi :=
[0, 1] and solve a high-dimensional bilinear program. The bias between the value
of the objective function and value 0 measures the approximation accuracy.

Proof. Define the simplex set Γ := {p ∈ Rm1×1|p′lm1 = 1, p ≥ 0}. We first prove
that the mixed-strategy is the solution to the bilinear program. The constraints
imply a non-positive objective function. If p∗(θ1) ∈ Γ, q∗(θ2) ∈ Γ is a Bayesian
Nash equilibrium pair, i.e.,

q(θ2)′Eθ1 [J ′
2(θ1, θ2)p

∗(θ1)] ≤ (q∗(θ2))′Eθ1 [J ′
2(θ1, θ2)p

∗(θ1)],∀θ2,∀q(θ2) ∈ Γ,

p(θ1)′Eθ2 [J1(θ1, θ2)q∗(θ2)] ≤ (p∗(θ1))′Eθ2 [J1(θ1, θ2)q∗(θ2)],∀θ1,∀p(θ1) ∈ Γ.

Then the quadruple p∗(θ1), q∗(θ2), w∗(θ2) = −Eθ1 [p
∗(θ1)′J2(θ1, θ2)q∗(θ2)],

s∗(θ1) = −Eθ2 [p
∗(θ1)′J1(θ1, θ2)q∗(θ2)] is a feasible solution to the program

(because it satisfies all the constraints) and the value of the objective func-
tion is 0, which is the maximum solution to the non-positive objective function
and provides the value function V2(θ2) = maxq(θ2) Eθ1 [p

∗(θ1)′J2(θ1, θ2)q(θ2)] =
−w∗(θ2),∀θ2 and V1(θ1) = maxp(θ1) Eθ2 [p(θ1)′J1(θ1, θ2)q∗(θ2)] = −s∗(θ1),∀θ1.
Conversely, if the program has an optimal solution p∗(θ1), q∗(θ2), w∗(θ2), s∗(θ1),
then

Eθ1s(θ1) + Eθ2w(θ2) + Eθ1Eθ2{p(θ1)′[J1(θ1, θ2) + J2(θ1, θ2)]q(θ2)} = 0. (7)

and
q(θ2)′Eθ1 [J ′

2(θ1, θ2)p
∗(θ1)] ≤ −w∗(θ2),∀θ2,∀q(θ2) ∈ Γ

p(θ1)′Eθ2 [J1(θ1, θ2)q∗(θ2)] ≤ −s∗(θ1),∀θ1,∀p(θ1) ∈ Γ.
(8)

In particular, we pick p(θ1) = p∗(θ1), q(θ2) = q∗(θ2) to arrive at

(q∗(θ2))′Eθ1 [J ′
2(θ1, θ2)p

∗(θ1)] ≤ −w∗(θ2),∀θ2,

(p∗(θ1))′Eθ2 [J1(θ1, θ2)q∗(θ2)] ≤ −s∗(θ1),∀θ1.
(9)

Combined with (7), the inequality in (9) turns out to be an equality and equation
(8) becomes

q(θ2)′Eθ1 [J ′
2(θ1, θ2)p

∗(θ1)] ≤ (q∗(θ2))′Eθ1 [J ′
2(θ1, θ2)p

∗(θ1)],∀θ2,

p(θ1)′Eθ2 [J1(θ1, θ2)q∗(θ2)] ≤ (p∗(θ1))′Eθ2 [J1(θ1, θ2)q∗(θ2)],∀θ1,
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which verifies that (p∗(θ1), q∗(θ2)) is a BNE. 	

For the one-sided information, the information-superior player P2 knows the

type of P1 and the information-inferior player P1 does not know the type of P2.
Since the P1’s type is known, we can suppress writing Ji, p, s as a function of
θ1. Following similar proof steps, we have Corollary 1.

Corollary 1. A strategy vector pair (p∗, q∗(θ2)) constitutes a Bayesian Nash
equilibrium to the bi-matrix Bayesian game (J1(θ2),J2(θ2)) under private type
θ2 and the public type belief B2, if and only if, there exists a scalar function pair
(s∗, w∗(θ2)) such that (p∗, q∗(θ2), s∗, w∗(θ2)) is a solution to the mathematical
program:

sup
q,p,s,w

Eθ2{p′[J1(θ2) + J2(θ2)]q(θ2) + w(θ2)} + s

s.t J ′
2(θ2)p ≤ −w(θ2)lm2 ,∀θ2, q(θ2)′lm2 = 1, q(θ2) ≥ 0,∀θ2,

Eθ2 [J1(θ2)q(θ2)] ≤ −slm1 , p′lm1 = 1, p ≥ 0.

Two-by-Two Matrix. We specify m1 = 2,m2 = 2 with utility func-
tions of one-sided information as shown in Table 1. Let V1 = Eθ2∼B2 [V̂1] =
supp Eθ2 [R

1
21−R1

11+q∗(θ2)(R1
22−R1

12−R1
21+R1

11)]p+Eθ2 [R
1
11+(R1

12−R1
11)q

∗(θ2)]
be the expected value function under the belief B2 of private type θ2 and
V̂2 = supq(θ2)[R

2
21 −R2

11 +p∗(R2
22 −R2

12 −R2
21 +R2

11)]q(θ2)+R2
11 +(R2

12 −R2
11)p

∗

be the value function of complete information. The best response of P1 is
p∗ = 1{E[R1

21−R1
11+q∗(θ2)(R1

22−R1
12−R1

21+R1
11)]>0} and the best response of P2 is

q∗(θ2) = 1{R2
21−R2

11+p∗(R2
22−R2

12−R2
21+R2

11)>0}. The BNE is the result of the inter-
section of two best-response functions. Since p∗ is not a function of type, p∗ = 0
or 1 is the only stable value1. Then, P2 as a function of type is a threshold policy,
which leads to Lemma 1.

Lemma 1. For the one-sided information bi-matrix Bayesian game with utility
functions in Table 1 under the BNE solution concept, the information-inferior
player adopts a pure policy, and the information-superior player adopts a
threshold policy. 	

In particular, if p∗ = 1, we have q∗(θ2) = 1{R2

21−R2
11+(R2

22−R2
12−R2

21+R2
11)>0} =

1{R2
22(θ2)>R2

12(θ2)}, which should be consistent with the corresponding condition
E[R1

21 −R1
11 + q(θ2)(R1

22 −R1
12 −R1

21 +R1
11)] > 0. Likewise, we have a consistent

condition for p∗ = 0. Theorem 2 summarizes these two necessary conditions
for B2.

Theorem 2. There exists at most two mixed-strategy Bayesian Nash equilibri-
ums for the one-sided information bi-matrix game with utility functions shown

1 Note that q∗(θ2) =
R1

11(θ2)−R1
21(θ2)

R1
22(θ2)−R1

12(θ2)−R1
21(θ2)+R1

11(θ2)
, p∗ ∈ [0, 1] is a equilibrium pair

under a restrictive condition R1
22(θ2) − R1

12(θ2) − R1
21(θ2) + R1

11(θ2) = 0, R1
21(θ2) =

R1
11(θ2), ∀θ2.
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in Table 1, private type θ2 ∈ Θ2, and public type belief B2(θ2). First, the policy
pair p∗ = 1, q∗(θ2) = 1{R2

22(θ2)>R2
12(θ2)} is a BNE if

∫

θ2∈Θ2

(R1
21(θ2) − R1

11(θ2))1{R2
22(θ2)<R2

12(θ2)}B2(θ2)dθ2+
∫

θ2∈Θ2

(R1
22(θ2) − R1

12(θ2))1{R2
22(θ2)>R2

12(θ2)}B2(θ2)dθ2 > 0,

Second, the policy pair p∗ = 0, q∗(θ2) = 1{R2
21(θ2)>R2

11(θ2)} is a BNE if

∫

θ2∈Θ2

(R1
21(θ2) − R1

11(θ2))1{R2
21(θ2)<R2

11(θ2)}B2(θ2)dθ2+
∫

θ2∈θ2

(R1
22(θ2) − R1

12(θ2))1{R2
21(θ2)>R2

11(θ2)}B2(θ2)dθ2 < 0.

Remark 3. We cannot apply the indifference principle as in Sect. 5.2 to compute
the equilibrium under incomplete information because the information-inferior
player unknown the type θ2 is incapable of making decision p as a function
of θ2. 	


Dynamic Case. Recall the dynamic programming equation in Sect. 4.3:

Ṽ t
i (yt, θi) = sup

σ̃t
i

Eθ−i∼βt
i ,at

1∼σ̃t
1,at

2∼σ̃∗,t
2

[Ṽ t+1
i (yt+1, θi) + J t

i (x
t, at

1, a
t
2, θ1, θ2)].

The computation of the static BNE serves as building blocks to the computation
of dynamic R-PBNE via the following procedures. At the last stage T with a
known boundary condition Ṽ T+1

i , the value function Ṽ T+1
i + JT

i is the same as
the static objective function Ji and we can compute the equilibrium policy as
well as the value function Ṽ T

i via Theorem 1. At the second last stage T − 1,
since both Ṽ T

i and JT−1
i are known, we can treat Ṽ T

i + JT−1
i as the new static

objective function Ji and repeat the analysis in the static setting. In a backward
fashion, it is clear that at stage t ∈ {0, 1, · · · , T − 1}, we only need to replace
the static objective function Ji to the dynamic objective function Ṽ t

i + J t−1
i to

obtain the R-PBNE policy σ̃t−1
i at each stage t − 1 for each player Pi.

5 Case Study

Similar to our previous work [8], we consider a four-stage Bayesian game with
one-sided incomplete information, i.e., the information-inferior player P1 forms
a belief of attacker P2’s type θ2 via a beta distribution with parameters αt

2, β
t
2.

The first three stages model the cyber network transition while the last stage
model the sensor compromise of a physical plant, i.e., the benchmark Tennessee
Eastman (TE) chemical process [2]. Since APTs benefit mainly from their spe-
cific targets, i.e., sabotage the TE process, we assume a negligible utility for
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the intermediate stage t = 0, 1, · · · , T − 1 in this case study. However, the sce-
nario is still multi-stage rather than static because APTs have to go through
the intermediate stages stealthily to reach their final targets. Their actions at
the intermediate stages will affect the belief and the state at the final stage.
The state xT ∈ X T := {0, 1, 2} represents which sensors the attacker can con-
trol in the TE process. If the attacker changes the sensor reading, the system
states such as the pressure and the temperature may deviate from the desired
value, which degrades the product quality and even causes the shutdown of the
entire process if the deviation exceeds the safety threshold. To reach a favorable
state at the final stage, e.g., control the essential sensors of the TE process,
the attacker has to behave aggressively at the intermediate stages, e.g., esca-
lates the privilege, which thus increases the risk of being identified as malicious.
Both players have a binary action set At

i = {0, 1} where at
i = 1 means taking

either aggressive or defensive actions and at
i = 0 means no special operation

performed. As stated in the Sect. 2, the action is observable, yet the one-shot
observation does not directly reveal the type. Let K2 = 1, the secure category
k = 0 includes at

2 = 0 and k = 1 includes at
2 = 1, respectively. The util-

ity at the last stage is shown in Table 1 and defined as follows. The operation
time under state xT is the output of the mapping C : X T �→ R

+, which can
be determined using numerical experiments of the TE process under different
sensor-compromise scenarios. Since the defender’s stage utility should be propor-
tional to the operation time C(xT ), the normalized defender’s stage reward is
R1

11 = C(xT ), R1
12 = 0.5C(xT )(1 − θ2), R1

21 = 0.9C(xT ), R1
22 = 0.9C(xT ), which

satisfies two conditions. First, R1
21 = R1

22, R1
11 ≥ R1

21: The defensive action pre-
vents attacking loss while incurs a cost to deploy. Second, R1

12 ≤ R1
21: Attacks

cause a loss in lack of active defenses. Moreover, the loss is proportional to the
type, i.e., R1

12 is a monotonically decreasing function in type θ2. On the other
hand, we assign utility R2

11 = 2, R2
12 = 10θ2, R

2
21 = 4θ2, R

2
22 = 0 to attackers

according to the following reasonable conditions.

1. Attackers obtain R2
12 when attacks happen without defenses and R2

21 when P2

does not attack yet wastes system resources by deceiving defenders to defend.
Both cases benefit attackers proportionally to their type, i.e., R2

21 and R2
12 are

monotonically increasing functions in type θ2. Moreover, the latter scenario
brings more attacking rewards for the same type, i.e., R2

21(θ2) ≥ R2
12(θ2),∀θ2.

2. Attackers θ2 ≥ θ̄2 benefit from inflicting damages and deceiving defenders
to defend, i.e., R2

12(θ2) ≥ R2
11(θ2), R

2
21(θ2) ≥ R2

11(θ2),∀θ2 ≥ θ̄2. However,
benign users θ2 < θ̄2 benefit from a normal operation of the system, i.e.,
R2

12(θ2) ≤ R2
11(θ2), R

2
21(θ2) ≤ R2

11(θ2),∀θ2 < θ̄2.
3. The no-attack-no-defense scenario outweighs the scenario when P2 attacks

yet P1 defends because no damages are incurred and the defender obtains
extra information about the attacker. Thus, R2

11(θ2) ≥ R2
22(θ2),∀θ2.

5.1 The Final Stage with One-Sided Incomplete Information

At the terminal stage T , we need to solve the static Bayesian game for each
possible expanded state yT . Suppose that defender takes action aT

1 = 1 with
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probability p(yT ) and attacker takes action aT
2 = 1 with probability q(yT , θ2).

At the last stage, the accumulated utility function is the same as the stage utility
function. Since all elements R1

ij , i, j ∈ {1, 2} of the utility matrix is linear in
C(xT ) = 0, both players’ policies are not a function of C(xT ) and we can consider
a normalized value function V̂ T

1 (yT , θ2)/C(xT ) = maxp(yt)[0.5q∗(yT , θ2)(1+θ2)−
0.1]p(yT )+1−0.5(1+ θ2)q∗(yT , θ2), where p∗, q∗ is the PBNE policy pair. Since
defender does not know the type value, she can only form an expected value
function V T

1 (yT ) = maxp(yT )

∫ 1

0
BetaαT

2 ,βT
2 (θ2)[V̂ T

1 (yT , θ2)]dθ2. The attacker as
the information-superior player knows the type, and thus his objective function
V̂ T
2 (yT , θ2) is

max
q(yT ,θ2)

[2p∗(yT ) − 2 + 10θ2 − 14p∗(yT )θ2]q(yT , θ2) + 2(1 − p∗(yT )) + 4θ2p
∗(yT ).

Bayesian Nash Equilibrium. Bayesian Nash equilibrium corresponds to the
intersection of two best-response curves p∗ and q∗, as stated in Sect. 4.4. We
use Theorem 2 to show the existence and uniqueness of the BNE, i.e., q∗ =
1{θ2>0.2}, p∗ = 0 when the condition

∫ 1

0.2
BetaαT

2 ,βT
2 (θ2)(1+ θ2)dθ2 < 0.2 is true.

Small α2 and large β2, e.g., (1, 10), satisfy the condition as the probability density
is focused on the low θ2 value. The BNE does not exist when the condition is
not met.

Bayesian Stackelberg Equilibrium. After plugging in the attacker’s best
response to the value function V1, we need to maximize a function of p:

max
p

E[R1
21−R1

11+1{R2
21−R2

11+p(R2
22−R2

12−R2
21+R2

11)>0}(R
1
22 − R1

12 − R1
21 + R1

11)]p.

Since we assume that R2
ij(θ2) is linear in θ2, the follower P2’s best response

q∗(yT , θ2) = R2(p(yT ), θ2) = 1{R2
21−R2

11+p(R2
22−R2

12−R2
21+R2

11)>0} = 1{θ2>θ̄2(p)}
can be represented as an indicator function of a threshold type θ̄2 = 1−p(yT )

5−7p(yT )
,

which simplifies the computation of the leader’s optimal policy p∗. The exis-
tence of equilibrium depends on the type value classified as follows. First,
θ̄2 ≥ 1, p∗(yT ) ∈ [23 , 5

7 ) is not consistent with p∗(yT ) = 0 via the opti-
mization of the defender’s value function. Second, θ̄2 ≤ 0 leads to p∗(yT ) ∈
(57 , 1], q∗(yT , θ2) = 1{θ2<θ̄2} = 0. Then, p∗ = 0 is not consistent with p∗ ∈ ( 57 , 1].
Third, if p∗ = 5/7, q∗ = 0, then the optimization of defender’s value func-
tion returns p∗ = 0, which is not consistent with p∗ = 5/7. Finally, 0 <
θ̄2 < 1 leads to the feasible region p∗(yT ) ∈ [0, 2

3 ) and the value function
V T
1 (yT )/C(xT ) = maxp(yT )∈[0, 23 )

[
∫ 1

θ̄2
BetaαT

2 ,βT
2 (θ2)[0.5(1+ θ2)]dθ2 −0.1]p(yT )+

1 − 0.5
∫ 1

θ̄2
BetaαT

2 ,βT
2 (θ2)(1 + θ2)dθ2.

Remark 4. The BSE may not always exist. Take state {0, 4, 1} as an example,
the function is increasing during the interval [0, 2/3), with supreme value of
V T
1 = 0.56, V̂ T

2 = 2/3 + (8θ2)/3 under the limiting BSE (LBSE) policy p∗ →
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2/3, q∗ = 1{θ2>θ̄2} with θ̄2 → 1. The BSE does not exist because the feasible
region of policy does not include 2/3 as analyzed above. However, we can use
the supreme value under LBSE as an upper bound of the value function, which
serves as a good approximation in practice. 	


5.2 Final Stage with Complete Information

For the complete information, the type value θ2 is a common knowledge, thus
defender can respond to the threat by considering objective V̂ T

1 , V̂ T
2 rather

than expected objective V T
1 = maxp(yT )

∫ 1

0
BetaαT

2 ,βT
2 (θ2)[V̂ T

1 (yT , θ2)]dθ2, V̂
T
2

in Sect. 5.1.

Nash Equilibrium. Since both player’s policies are functions of type θ2 in the
complete information case, we can use the indifference principle for the following
three type classifications. First, when θ2 ∈ [0.2, 1], we obtain NE policy p∗ =
1−5θ2
1−7θ2

∈ [0, 2/3], q∗ = 1
5(1+θ2)

∈ [ 1
10 , 1

5 ] and value function V̂ T
1 = 0.9C(xT ),

V̂ T
2 = 2 + ((1 − 5θ2)(−2 + 4θ2))/(1 − 7θ2) = 20θ2

2
−1+7θ2

∈ [1.63265, 10
3 ]. Second, if

θ2 = 1/7, no NE exists and both players’ behaviors would be uncertain. Third,
for other θ2 ∈ [0, 1], NE policy q∗ = 0, p∗ = 0 leads to (C(xT ), 2). Figure 7(b)
shows that both defender and attacker’s policies are functions of their types. On
the one hand, P1 defends with a higher probability when the type value increases
because an attack with a larger type value incurs more loss once he succeeds.
On the other hand, the increasing probability of defensive actions reduces the
probability of attacks to a relatively low level. For benign users who do not attack
and inflict damages, which is known by the defender in the complete information
case, the defender will not take defensive actions and the system will operate
normally.

Stackelberg Game. Following a similar analysis as the NE, we can see that
the SE policy also depends on the realization of the type. If θ2 ∈ [0, 1/5), then
SE p∗ = 0, q∗ = 0 leads to the defender value (C(xT ), 2); if θ2 ∈ (1/5, 1], then
p∗ = 2/3 and q∗ = 0 is the SE with value functions (2.8/3C(xT ), (2 + 8θ2)/3); if
θ2 = 1/5, then q∗ = 0, p∗ → 0 is the limiting SE.

5.3 Comparison of Value Functions

For the complete information case, the best response set of the attacker R2(p, θ2)
exists and is a singleton for each p ∈ [0, 1] for all given θ2 ∈ [0, 1] except for
θ2 = 1/5. Thus, the leader player never does worse under SE than under NE
policy as stated in Theorem 3, which is also illustrated in Fig. 7(a). The proof is
similar to the proof of Proposition 3.16 in [1].

Theorem 3. For the finite two-person game defined in Sect. 2 and two solution
concepts defined in Sect. 3, let V̂ S

1 and V̂ N
1 be the value function of P1 under SE

and NE policy, respectively. If R2(σT
1 ) is a singleton for each σT

1 ∈ ΣT
1 , then

V̂ S
1 ≥ V̂ N

1 . 	
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In the incomplete information case, the best-response set of the attacker R2(p, θ2)
is also a singleton for each p ∈ [0, 1] for all given θ2. Thus, we further obtain that
the defender’s value function under BSE is better than that under BNE when
the belief is the same, which is supported by the numerical results in Fig. 7(c).
The above comparison of the proactive and reactive information structures, i.e.,
BSE/SE with BNE/NE demonstrates that acquiring the best response set of
the attacker via attack tree analysis can effectively confront the insider threat
of APTs.

Fig. 7. Comparisons of value functions at the terminal stage.

Comparisons of defender’s value function between the NE and BNE in
Fig. 8(a) and between SE, BSE in Fig. 8(b) show that the value function of the
defender P1 under incomplete information is always no better than that under
complete information, which is true for the PBNE under both proactive and
reactive information structures. The numerical result corroborates the current
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unfavorable situation of systems that the deception of APTs creates uncertain-
ties for defenders and decreases defenders’ utilities.

Fig. 8. The private type of APTs creates uncertainties for defenders and decreases
defenders’ value function under both outsider and insider threats.

The comparison of attacker’s value function V̂ T
2 under BNE, NE, SE, and

LBSE is shown in Fig. 7(d). We observe that V̂ T
2 under the LBSE as the upper

bound of BSE coincides with V̂ T
2 under SE. We also notice that the attacker’s

value function under BNE is always no worse than NE, which validates the
advantage of concealing a private type to increase the uncertainty of defenders.

5.4 Insights from Multi-stage Analysis

The main insight from the multi-stage analysis is the tradeoff between tak-
ing adversary actions to obtain instant attacking reward and hiding to arrive
at a more favorable expanded state yt = {xt, αt

2, β
t
2} in the future stages as

shown in Fig. 5. The system state xt and the belief parameter αt
2, β

t
2 comprise

the expanded state yt. Thus, on the one hand, a desirable yt for attacker is to
turn the system to a fragile state xt. On the other hand, attacks try to deceive
the defender into a Pollyanna. The more the defender belief in P2 as a legit-
imate user, the less probability she will act defensively and the attacker can
bear a smaller threshold θ̄2 to launch the attack. Other results and insights are
summarized as follows. First, the healthy system state xt at the terminal stage
dominates defender’s utility, while at the same time, a belief of a legitimate user
increases the defender’s utility. Second, due to the petty stage cost assumption,
the attacker chooses to hide at the initial stage to deceive defender to form
wrong beliefs. However, since attackers move at the intermediate stages to reach
their final target, the defender can gradually form the right belief based on the
observable footprints of the adversary.
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6 Conclusion

In this work, we propose a multi-stage game of incomplete information to model
the interactions between defenders and Advanced Persistent Threats (APTs).
The dynamic Bayesian game has captured the stealthy and persistent nature of
the APTs. Types are used to represent the private information of the players.
A defender forms a belief on the uncertainties of an attacker and updates it
using Bayesian rules with observations of attack footprints. We have adopted
conjugate priors to enable parametric and large-scale learning of the players and
extended the dynamic programming principles with an expanded state space.
We have developed mathematical programs to compute the perfect Bayesian
Nash equilibrium and studied the existence of Bayesian Nash equilibrium under
bi-matrix game. A case study of one-sided information has illustrated the disad-
vantage to the defender as well as the advantage to the attacker when the attack
manages to conceal his private type. It also motivates a further comparison of
our framework under two-sided incomplete information in the future so that the
defender can also use counter-deception to increase the attacking cost and tilt
the current information asymmetry caused by the attacker. We have compared
the PBNE under two different information structures and shown that disclosing
the best response set of the attacker via attack tree analysis or proactive defenses
such as honeypots and honey files can effectively confront the insider threat of
APTs. A preliminary multi-stage analysis has shown that although APTs hide
at the initial stages, yet the adaptive formation of the belief reveals the attacker
at intermediate stages.
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Abstract. Online advertising has motivated companies to collect vast
amounts of information about users, which increasingly creates privacy
concerns. One way to answer these concerns is by enabling end users to
choose which aspects of their private information can be collected. Based
on principles suggested by Feldman and Gonen (2018), we introduce a
new online advertising market model which uses information brokers to
give users such control. Unlike Feldman and Gonen (2018), our model is
dynamic and involves multi-sided markets where all participating sides
are strategic. We describe a mechanism for this model which is theo-
retically guaranteed to (approximately) maximize the gain from trade,
avoid a budget deficit and incentivize truthfulness and voluntary partic-
ipation. As far as we know, this is the first known dynamic mechanism
for a multi-sided market having these properties.

We experimentally examine and compare our theoretical results using
real world advertising bid data. The experiments suggest that our mech-
anism performs well in practice even in regimes for which our theoretical
guarantee is weak or irrelevant.

Keywords: Dynamic mechanisms · Mutli-sided markets
Online advertising market

1 Introduction

Online advertising currently supports some of the most important Internet
services, including: search, social media and user generated content sites. For
online advertising to be effective, companies collect vast amounts of information
about users, which increasingly creates privacy concerns [7]. Such concerns were
actively raised by EU regulators in recent years in efforts to find solutions to
guarantee users’ privacy. Recently privacy concerns have also reached the U.S.
Senate and Congress as a response to Facebook’s information leak to Cambridge
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Analytica. It was evident in Facebook’s hearing before the U.S. Senate, partic-
ularly in Senator Schatz’s line of questioning [8], that Facebook is expected to
develop tools to enable end users to configure their privacy settings and that the
notion of a data fiduciary was put forward to apply pressure to Facebook in this
area.

Based on this motivation, and extending principles suggested by [10], we
introduce a new model capturing a foreseeable future form of online advertising.
The market in this model includes advertisers as buyers, users as sellers (each
willing to sell her own information portfolio through a broker) and information
brokers as mediators representing the users.1 The objective of a mechanism for
this setting is to end up with a match between users and advertisers maximizing
the gain from trade. Towards that goal, the mechanism has to collect information
from the mediators and advertisers; and thus, needs to incentivize the mediators
and advertisers to report truthfully, which it can do by charging the advertisers
and paying the mediators. Additionally, unlike in [10], we assume here that the
users are strategic as well, which requires the mechanism to incentivize them
also by recommending for each mediator to forward some of the payment he
received to his users.

As the online advertising ecosystem is dynamic, the market in our model
is dynamic as well. We assume the mediators and advertisers arrive in a
uniformly random order, and refer to the arriving advertisers and media-
tors as arriving entities. Every time that a new entity arrives, the mech-
anism has an opportunity to assign users to advertisers. More specifically,
users enroll with a mediator offline, i.e., when the mediator arrives at the
market it has a list of users that are his customers and the mechanism is
allowed to assign users of the newly arriving mediator to advertisers that
have already arrived. Similarly, when an advertiser arrives the mechanism is
allowed to assign users of mediators that have already arrived to the newly
arriving advertiser. From a practical point of view, an assignment of a user p
to an advertiser a means that when p views interstitial advertising, it will be
from advertiser a. Given this meaning for an assignment, it is natural to assume
that the mechanism is not allowed to cancel assignments that have already been
made, or assign a user of a mediator that has already arrived to an advertiser
that has already arrived. These restrictions, together with the random arrival
order, represent the dynamicity of the setting. We note that our choice to model
a dynamic market using a random arrival order is a well established practice—for
a few examples, see [2,19]. Intuitively, this modeling choice reflects the assump-
tion that real arrival orders are arbitrary rather than adversarial.

A natural expectation from a dynamic exchange mechanism is to (approx-
imately) maximize the gain from trade, while maintaining desirable economic
properties such as incentivizing truthfulness, voluntary participation and avoid-
ing budget deficit. Unfortunately, as far as we know, no previous work has man-

1 The use of mediators is necessary because it should not be possible to link an infor-
mation portfolio offered for sell on the market to any particular user, which prevents
users from interacting directly with the market.
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aged to achieve these goals simultaneously. Wurman et al. [20] presented a mech-
anism incentivizing truthful reporting from either the buyers or the sellers, but
not simultaneously from both. A different mechanism given by Blum et al. [4]
maximizes the social welfare of buyers and non-selling sellers (as opposed to
maximizing the gain from trade).2 Finally, Bredin et al. [5] present a truthful
dynamic double-sided auction that is constructed from a truthful offline double-
sided auction rule, however its competitiveness with respect to the optimal trade
was only studied empirically.

The failure of the above works to maximize the gain from trade while main-
taining truthfulness, individual rationality (voluntary participation) and budget
balance (avoiding budget deficit) can be partially attributed to an impossibil-
ity result of [16]. This impossibility result states that, even in an offline setting
involving a single buyer and a single seller, maximizing the gain from trade while
maintaining truthfulness and individual rationality perforce runs a deficit (i.e.,
is not budget balanced). An additional reason for the above failure is that the
matching problem faced by the market maker (exchange mechanism) in multi-
sided dynamic markets combines elements of dynamic algorithms and sequential
decision making with considerations from mechanism design. More specifically,
unlike in a traditional dynamic algorithm, a mechanism for such a setting must
incentivize agents to report truthful information to the mechanism. Addition-
ally, unlike in traditional mechanism design, this is a dynamic setting with agents
that arrive over time, and the mechanism must deal with uncertainty and make
irrevocable decisions before all the agents arrive.

1.1 Our Result

In this work we present the first (to the best of our knowledge) dynamic mech-
anism for a multi-sided market setting which theoretically guarantees the eco-
nomic properties of truthfulness, individual rationality, and budget balance while
(approximately) maximizing the gain from trade. As our setting involves multi-
dimensional agents, our result shows that dynamic multi-sided markets can be
handled even in the presence of multi-dimensional agents. Moreover, we study the
practical performance of our mechanism using simulations based on real-world
advertisers’ bids. The data for these experiments was gathered from Facebook
advertising campaigns. These experiments suggest that our mechanism performs
well in practice even in input regimes for which our theoretical guarantee is weak.

The dynamic nature of our setting raises the question of what it means for
a mechanism to be individually rational. As usual, individual rationality should
imply that an agent never losses by participating. However, in a dynamic setting
it is natural to require also that an agent never losses by not leaving prema-
turely. We introduce a new concept called “continuous individual rationality”
which captures the above intuitive requirement. Formally, a mechanism is con-
tinuously individually rational for an agent (a user, a mediator or an advertiser)

2 Blum et al. [4] has multiple different objectives (maximizing profit, liquidity and
welfare). We refer to the objective which is most relevant to our work.
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if the agent’s utility can only increase over time when the agent is truthful.3

Note that this newly presented concept of continuous individual rationality is a
stronger concept than individual rationality in its classic form as it implies ex
post individual rationality.

Satisfying the requirements of continuous individual rationality, together
with the other economic properties our mechanism guarantees, requires our
mechanism to use a novel pricing scheme where users may be paid ongoing incre-
ments during the mechanism’s execution. The maximum total payment that a
user may end up with is pre-known (when the user arrives), however, the actual
increments are not pre-known and depend on the market’s dynamically chang-
ing demands and supplies. As users rarely ever get paid in reality, this pricing
scheme is new to mechanism design and might look odd at first glance. Nev-
ertheless, the principle it is based on can be observed in many common real
life scenarios such as executive compensation payments and company acquisi-
tion deals. For example, the eBay acquisition of Skype in 2005 involved both
an upfront payment and an additional payment whose amount depended on the
future performance of the bought company (see https://investors.ebayinc.com/
releasedetail.cfm?releaseid=176402).

Like in [3], we say that a mechanism is user-side incentive compatible if
truthfulness is a dominant strategy4 for each user given that her mediator is
truthful. Similarly, the mechanism is user-side continuously individually rational
if it is continuously individually rational for each user given that her mediator
is truthful. A mechanism is mediator-side incentive compatible if truthfulness is
a dominant strategy for each mediator whose users are all truthful, and it is
mediator-side continuously individually rational if it is continuously individually
rational for every such mediator. Finally, a mechanism is advertiser-side incen-
tive compatible if truthfulness is a dominant strategy for every advertiser, and it
is advertiser-side continuously individually rational if it is continuously individu-
ally rational for every advertiser. We construct a mechanism which is three-sided
incentive compatible (i.e., it is simultaneously user-side incentive compatible,
mediator-side incentive compatible and advertiser-side incentive compatible) and
also three-sided continuously individually rational (i.e., it is simultaneously user-
side continuously individually rational, mediator-side continuously individually
rational and advertiser-side continuously individually rational).

Our mechanism is termed “Observe and Price Mechanism” (OPM). The fol-
lowing theorem analyzes the economic properties guaranteed by OPM and its
competitive ratio. The parameter α is an upper bound, known to the mecha-
nism, on the market importance of any single agent. Formally, α bounds the
ratio between the size of the optimal trade and the maximum capacity of an
advertiser or the maximum number of users that a mediator can represent.

3 Informally, an agent is truthful if he/she reports the information as it is known to
him/her. A formal definition of what it means for a user, mediator or advertiser to
be truthful is given in Sect. 2.

4 Here and throughout the paper, a reference to domination of strategies should always
be understood as a reference to weak domination.

https://investors.ebayinc.com/releasedetail.cfm?releaseid=176402
https://investors.ebayinc.com/releasedetail.cfm?releaseid=176402


Multi-sided Advertising Markets 231

Theorem 1. OPM is budget balanced5, three-sided continuously individually
rational, three-sided incentive compatible and (1 − 9.5 6

√
α − 10e−2/ 3√α)-

competitive.

From a theoretical perspective, the most important feature of the competitive
ratio guaranteed by Theorem 1 is that it approaches 1 when no agent has too
much market power. Though this is a desirable aspect of the algorithm, we
are aware that the competitive ratio has an unintuitive form and is often non-
positive for markets of a moderate size. The latter can be significantly alleviated
by making the proof tighter (and less readable). Instead we chose to address
intuitiveness and readability by including experimental results in the paper.
The experimental results demonstrate that our mechanism performs well on
inputs derived by real world data even for moderate size markets despite what
the current theoretical analysis shows. We note that for large markets, such
as the market we study in this work, α is expected to be much smaller than
1. Nevertheless, our simulation results suggest that in practice OPM performs
well even for markets having a more moderate size and a larger value of α.
In addition, in order to demonstrate the need for an involved solution such as
OPM, we compare OPM’s practical performance to that of a straw-man mechanism.
This comparison demonstrates that our mechanism performs significantly better
than the straw-man mechanism even for moderate size markets. We also note
that the three-sided incentive compatibility of our mechanism implies that it is
universally truthful, i.e., truthful for all possible random coin flips.

1.2 Additional Related Work

From a motivational point of view our model is closely related to models involving
mediators and online advertising markets, such as the models studied by [1,18].
However, despite their network exchange motivation, these models are actually
auctions (i.e., one-sided mechanisms). Moreover, they focus on offline revenue
maximization mechanisms, which is very different from our focus. Other works
with a different motivation, such as [13,15,17], have studied mechanisms for
two-sided non-dynamic settings. However, with the exception of the very recent
last reference, they all considered single-dimensional agents. We are not aware
of any previous mechanism for a two-sided dynamic setting.

There is also a significant body of works studying dyanmic matching problems
with an adversarial arrival order. This body of work was originated by the work
of [14] who described an optimal dynamic algorithm for unweighted bipartite
online matching. Later works considered more general settings allowing various
kinds of weights—see, for example, [6]. We note that none of these works refers
to strategic considerations.

5 A mechanism is budget balanced if the amount it charges (from the advertisers) is at
least as large as the amount it pays.
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2 Model and Definitions

Let us now present the exact details of the model we consider. This model
consists of a set P of users, a set M of mediators and a set A of advertisers.
Each user p ∈ P has a non-negative cost c(p) which she suffers if she is assigned
to an advertiser; thus, the utility of p is 0 if she is not assigned and t−c(p) if she
is assigned and paid t. The users are partitioned among the mediators, and we
denote by P (m) ⊆ P the set of users associated with mediator m ∈ M (i.e., the
sets {P (m) | m ∈ M} form a disjoint partition of P ). The utility of a mediator
m ∈ M is the amount he is paid minus the total cost his users suffer; hence,
if x(p) ∈ {0, 1} is an indicator for the event that user p ∈ P (m) is assigned
and t is the payment received by m (part of which might have been forwarded
by the mediator to his users), then the utility of m is t − ∑

p∈P (m) x(p) · c(p).6

Finally, each advertiser a ∈ A has a positive capacity u(a), and she gains a
non-negative value v(a) from every one of the first u(a) users assigned to her;
thus, if advertiser a is assigned n ≤ u(a) users and has to pay t then her utility
is n · v(a) − t.

As explained in Sect. 1, we assume the entities (i.e., the mediators and adver-
tisers) arrive in a uniformly random order. A mechanism for this model knows
the total number of entities,7 and views the entities as they arrive; however,
it has no prior knowledge about the parameters of the entities or about the
users. To compensate for this lack of knowledge, each arriving entity reports
information to the mechanism. Each advertiser reports her capacity and value.
The reports of the mediators are formed in a slightly more involved way. Each
user reports her cost to her mediator, and based on these reports each mediator
reports the number of his users and their costs to the mechanism. The users,
mediators and advertisers are all strategic, and thus, free to produce incorrect
reports. In other words, an advertiser may report incorrect capacity and value, a
user may report an incorrect cost and a mediator may report a smaller number
of users and associate with each one of them an arbitrary cost.

Every time that a new entity arrives, the mechanism has an opportunity to
assign users to advertisers. More specifically, when a mediator arrives the mech-
anism is allowed to assign users of the newly arriving mediator to advertisers
that have already arrived. Similarly, when an advertiser arrives the mechanism is
allowed to assign users of mediators that have already arrived to the newly arriv-

6 The mediators’ utility functions are independent of the amount of money transferred
from the mediators to the users. This choice was made with the aim of balancing two
of the mediators’ conflicting objectives: on the one hand, mediators want to make
as much money as possible, and on the other hand, they want to acquire users and
have them use their services rather than switch to another mediator who is known
for paying more money to his users.

7 In some cases the assumption that the mechanism has a prior knowledge about the
number of entities might be considered unnatural. The mechanism we present can be
modified using standard techniques to work with an alternative assumption stating
that each entity arrives at a uniformly random time from some range (for example,
[0, 1]). See [11] for more details.
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ing advertiser. The objective of the mechanism is to end up with an assignment
of users to advertisers maximizing the gain from trade. In order to incentivize
the mediators and advertisers to report truthfully, the mechanism may charge
the advertisers and pay the mediators. Additionally, it is also allowed to rec-
ommend for each mediator how much of the payment he received to forward to
each one of his user. It is important to observe that, since the utility functions
of the mediators are not affected by the forwarding of payments to the users, it
is reasonable to believe that mediators follow the forwarding recommendations.

We say that a user is truthful if she reports her true cost. Similarly, an adver-
tiser is truthful if she reports her true capacity and value. Finally, a mediator
is considered truthful if he reports to the mechanism his true number of users
and the costs of the users as reported to him; and, in addition, he also pays
the users according to the recommendation of the mechanism (i.e., he lets them
know about their true balance).

We associate a set B(a) of u(a) slots with each advertiser a ∈ A. This allows
us to think of the users as assigned to slots instead of directly to advertisers.
Formally, let B be the set of all slots (i.e., B =

⋃
a∈A B(a)), then an assignment

is a set S ⊆ P ×B in which no user or slot appears in more than one ordered pair.
We say that an assignment S assigns a user p to slot b if (p, b) ∈ S. Similarly,
we say that an assignment S assigns user p to advertiser a if there exists a slot
b ∈ B(a) such that (p, b) ∈ S. It is also useful to define values for the slots. For
every slot b of advertiser a, we define its value v(b) as equal to the value v(a) of
a. Using this notation, the gain from trade of an assignment S can be stated as:
GfT(S) =

∑
(p,b)∈S [v(b) − c(p)].

Finally, we define two additional useful shorthands. Given a set A′ ⊆ A of
advertisers, let B(A′) =

⋃
a∈A′ B(a) be the set of slots belonging to the adver-

tisers of A′. Similarly, given a set M ′ ⊆ M of mediators, P (M ′) =
⋃

m∈M ′ P (m)
is the set of users associated with the mediators of M ′.

Comparison of Costs and Values. The presentation of our mechanism is simpler
when the values of slots and the costs of users are all unique. Clearly, this is
extremely unrealistic since all the slots of a given advertiser have the exact
same value in our model. Thus, we simulate uniqueness using a tie-breaking rule
(which must be independent of the reports of the agents). In the rest of this
paper, whenever costs/values are compared, the comparison is assumed to use
such a tie breaking rule.

Canonical Assignment. Given a set B′ ⊆ B of users and a set P ′ ⊆ P of slots,
the canonical assignment Sc(P ′, B′) is the assignment constructed as follows.
First, we order the slots of B′ in a decreasing value order b1, b2, . . . , b|B′| and the
users of P ′ in an increasing cost order p1, p2, . . . , p|P ′|. Then, for every 1 ≤ i ≤
min{|B′|, |P ′|}, Sc(B′, P ′) assigns user pi to slot bi if and only if v(bi) > c(pi).

The canonical assignment is an important tool we use often in this paper,
and it was proved by [10] that Sc(P ′, B′) is always an assignment of users from
P ′ to slots of B′ maximizing the gain from trade (among all such assignments).
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Occasionally, we refer to the user or slot at location i of a canonical assignment
Sc(P ′, B′), by which we mean user pi or slot bi, respectively.

3 Our Mechanism

In this section we describe and analyze our dynamic mechanism “Observe and
Price Mechanism” (OPM). OPM assumes |Sc(P,B)| > 0, and that there exists a
value α ∈ [|Sc(P,B)|−1, 1], known to the mechanism, such that we are guaranteed
that, for every advertiser a ∈ A and mediator m ∈ M :max{u(a), |P (m)|} ≤
α · |Sc(P,B)|. In other words, α is an upper bound on how large can the capacity
of an advertiser or the number of users of a mediator be compared to the size of
the optimal assignment Sc(P,B). We remind the reader that α can be informally
understood as a bound on the market importance of any single entity.

A description of OPM is given as Mechanism 1. Notice that Mechanism 1
accepts a parameter r ∈ (0, 1/2] whose value is specified later. Additionally,
Mechanism 1 often refers to parameters of the model that are not known to
the mechanism, such as the value of an advertiser or the number of users of a
mediator. Whenever this happens, this should be understood as referring to the
reported values of these parameters.

Mechanism 1. Observe and Price Mechanism (OPM)

1. Draw a random value t from the binomial distribution B(|A| + |M |, r), and
observe the first t entities that arrive without assigning any users. Let AT

and MT be the set of the observed advertisers and mediators, respectively.
We later refer to this step of the mechanism as the “observation phase”.

2. Let p̂ and b̂ be the user and slot, respectively, at location
�(1 − 2r−1 · 3

√
α) · |Sc(P (MT ), B(AT ))|� of the canonical assignment

Sc(P (MT ), B(AT )).
If (1−2r−1 · 3

√
α) · |Sc(P (MT ), B(AT ))| ≤ 0, then the previous definition of p̂

and b̂ cannot be used. Instead, define p̂ as a dummy user of cost −∞ and b̂ as
a dummy slot of value ∞. We say that a slot b or a user p corresponding to
an entity that arrived after the observation phase is assignable if v(b) > v(b̂)
or c(p) < c(p̂), respectively.

3. Let σE be the sequence of the entities that arrived so far after the observation
phase. Initially σE is empty, and entities are added to it as they arrive.

4. For every arriving entity:
a. Add the new entity to the end of σE .
b. If the arriving entity is a mediator m (advertiser a), then, as long as

m (a) has unassigned assignable users (slots) and there is an advertiser
(mediator) in σE having unassigned assignable slots (users), do:
• Let a (m) be the first advertiser (mediator) in σE having unassigned

assignable slots (users).
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• Assign the unassigned assignable user of mediator m with the lowest
cost to an arbitrary unassigned assignable slot of a, charge an amount
of v(b̂) from advertiser a and pay c(p̂) to mediator m.

c. For every mediator m ∈ σE , recommend m to transfer his assigned users
an additional amount that guarantees the following:
• If all the assignable users of m are assigned, the additional amount

should increase the total payment received so far by each assigned user
of m to c(p̂).

• Otherwise, let p be the unassigned assignable user of m with the mini-
mum cost. In this case the additional amount should increase the total
payment received so far by each assigned user of m to c(p).a

a Note that at every point in time m is budget balanced since he receives
a payment of c(p̂) for each one of his assigned users, and the total
amount recommended for him to pay to each one of these users is either
c(p̂) or equal to the cost of some assignable user (and thus, is upper
bounded by c(p̂)).

We would like to note that OPM is based on a mechanism of [10] named
“Threshold by Partition Mechanism”, and the analyses of both mechanisms go
along similar lines. However, OPM introduces additional ideas that allow it to work
in a dynamic setting. In particular, OPM uses an involved recommended payments
updating rule that keeps it three-sided continuously individually rational. More-
over, OPM is able to use an observation phase whose size is a small fraction of the
entire input (for α 	 1), whereas the analysis of the mechanism of [10] relies
on the symmetry properties induced by an even partition of the input (which is
inappropriate in a dynamic setting).

Let us start the analysis of OPM with the following simple observation, showing
that OPM obeys the restriction of our model on the way a mechanism may update
its assignment.

Observation 2. Each time OPM assigns a user to a slot, either the user belongs
to the newly arrived mediator or the slot belongs to the newly arrived advertiser.

At this point we would like to prove the following restatement of Theorem1.

Theorem 1. OPM is budget balanced, three-sided continuously individually ratio-
nal, three-sided incentive compatible and (1 − r − 22r−1 · 3

√
α − 10e−2/ 3√α)-

competitive. Hence, for r = min{1/2, 4 6
√

α} the competitive ratio of OPM is at
least: 1 − 9.5 6

√
α − 10e−2/ 3√α.

One part of Theorem 1 is proved by the following observation.

Observation 3. OPM is budget balanced.

Proof. We prove the observation by showing that whenever OPM assigns a user p
to a slot b, it charges the advertiser of b more than it pays the mediator of p.
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Consider an arbitrary ordered pair (p, b) from the assignment produced by
OPM. The fact that p is assigned implies that c(p) < c(p̂), and thus, p̂ is not a
dummy user (since c(p̂) = −∞ when p̂ is a dummy user). Similarly, the fact that
a user is assigned to b implies that v(b) > v(b̂), and thus, b̂ is not a dummy slot
(since v(b̂) = ∞ when b̂ is a dummy slot).

Recall that the fact that p̂ and b̂ are not dummy user and slot, respec-
tively, implies that p̂ and b̂ are matched by the canonical assignment
Sc(P (MT ), B(AT )). Since a canonical assignment never assigns a user p′ to a
slot b′ when c(p′) > v(b′), we get c(p̂) < v(b̂). The proof now completes by
observing that the advertiser of b is charged v(b̂) for the assignment of p to b,
and the mediator of p is paid only c(p̂) for this assignment. 
�

Following is a useful observation about OPM that we occasionally use in the
next proofs.

Observation 4. OPM preserves the invariant that one of the following is always
true immediately after OPM processes the arrival of an entity:

1. OPM assigned all the assignable users of mediators that have already arrived.
2. OPM assigned users to all the assignable slots of advertisers that have already

arrived.

Proof. Clearly the invariant holds during the observation phase because only
mediators and advertisers that arrive after the observation phase contribute
assignable users and slots, respectively. Next, assume the invariant held before
the arrival of some mediator m which arrives after the observation phase, and
let us prove that it holds also after the arrival of m. If before the arrival of m
case (2) of the invariant held, then this case also holds after the arrival of m
since m contributes no new slots. On the other hand, if case (1) held before the
arrival of m, then OPM assigns the assignable users of m to assignable slots of
advertisers that have already arrived till one of two things happen: either all
the assignable slots of advertisers that have already arrived get assigned (and
thus, case (2) of the invariant now holds), or all the assignable users of m get
assigned (and thus, case (1) of the invariant holds again). It remains to prove
that if the invariant held before the arrival of an advertiser a which arrives after
the observation phase, then it also holds after her arrival. However, this proof is
analogous to the above proof for mediators, and thus, we omit it. 
�

3.1 The Incentive Properties of OPM

In this section we prove the incentive parts of Theorem1. Specifically, we prove
three lemmata showing that OPM is three-sided continuously individually rational
and three-sided incentive compatible. The first lemma analyzes the incentive
properties of OPM for users. Due to space constraints, we defer the proof of this
lemma to the full version of this paper.
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Lemma 1. For every user p, assuming the mediator m of p is truthful, OPM is
continuously individually rational for p, and truthfulness is a dominant strategy
for her.

The next lemma analyzes the incentive properties of OPM for mediators.

Lemma 2. For every mediator m, assuming the users of m are truthful, OPM is
continuously individually rational for m, and truthfulness is a dominant strategy
for him.

Proof. If m arrives during the observation phase (i.e., m ∈ MT ), then no user
of m is ever assigned to a slot and m receives no payment. Hence, the lemma is
trivial in this case. Thus, we assume in the rest of the proof that m arrives after
the observation phase.

Note that OPM calculates the threshold c(p̂) based on the reports of advertisers
and mediators in AT and MT , respectively. Thus, m, who does not belong to
MT , cannot affect this threshold. Whenever a user p ∈ P (m) is assigned to
a slot the utility of m (and the user) decreases by c(p) and increases by the
additional payment m gets, which is c(p̂). In other words, the utility of m changes
by c(p̂) − c(p) (independently of the amount m forwards to p). When m is
truthful this change is always non-negative since the assignment of p implies
that she is assignable, i.e., her reported cost is smaller than c(p̂). This already
proves that each assignment of a user of m increases his utility by a non-negative
amount when he is truthful (assuming his users are also truthful), thus, OPM is
continuously individually rational for m.

Let s be the number of assignable users of m, according to his report. We
claim that there exists a value k which is independent of the report of m such
that for any report of m the mechanism assigns the min{k, s} users of m with the
lowest reported costs. Before proving this claim, let us explain why the lemma
follows from it. The above description shows that the utility of m changes by a
c(p̂) − c(p) for every assigned user p ∈ P (m), thus, m wishes to assign as many
as possible users having cost less than c(p̂), and if he cannot assign all of them
then he prefers to assign the users with the lowest costs. By being truthful m
guarantees that only users of cost less than c(p̂) are considered assignable, and
thus, have a chance to be assigned. Moreover, by the above claim OPM assigns the
k assignable users of m with the lowest costs (or all of them if s < k), which is
the best result m can hope for given that at most k of his users can be assigned.
Hence, truthfulness is a dominant strategy for m.

We are only left to prove the above claim. Note that Observation 4 implies
that OPM assigns no users of m as long as there are mediators appearing earlier
in σE which still have unassigned assignable users. Once there are no more such
mediators, OPM assigns users of m, in an increasing costs order, to unassigned
assignable slots till one of two things happens: either m runs out of unassigned
assignable users, or the input for OPM ends. This means that when the input
for OPM ends before all the assignable users of mediators appearing before m
in σE are assigned, then no users of m are assigned and the claim holds with
k = 0. Otherwise, we choose k to be the number of unassigned assignable slots
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immediately before OPM assigns the first user of m (we count in k both unas-
signed assignable slots of advertisers that have already arrived at this moment
and unassigned assignable slots of advertisers that arrive later). Notice that the
report of m does not affect the behavior of OPM up to the moment it starts
assigning users of m, thus, k is independent of the report of m. If s > k, then
the k users of m with the lowest costs are assigned before OPM runs out of input
and stops. Otherwise, if s ≤ k, then OPM stops assigning users of m only after
assigning all the s assignable users of m. 
�

Finally, the next lemma considers the incentive properties of OPM for adver-
tisers. The proof of this lemma is analogous to the proof of the previous lemma
(with slots exchanging roles with users, v(b̂) exchanging roles with c(p̂), etc.),
and thus, we omit it.

Lemma 3. For every advertiser a, OPM is continuously individually rational for
a, and truthfulness is a dominant strategy for her.

3.2 The Competitive Ratio of OPM

In this section we analyze the competitive ratio of OPM. Throughout the section
we use the letter τ as a shorthand for |Sc(P,B)|. We also define P̃ (B̃) as the
set of the users (slots) at locations 1 to �(1 − 6r−1 · 3

√
α)τ� of the canonical

assignment Sc(P,B) (P̃ and B̃ are defined to be empty when 1−6r−1 · 3
√

α ≤ 0).
The following observation shows that most of the gain from trade of the canonical
assignment Sc(P,B) comes from the users and slots of P̃ and B̃, respectively. For
convenience, let us denote by Po the set of users that are assigned by Sc(P,B),
and by Bo the set of slots that are assigned some user by Sc(P,B).

Observation 5.
∑

b∈B̃ v(b) − ∑
p∈P̃ c(p) ≥ (1 − 6r−1 · 3

√
α) · GfT(Sc(P,B)).

Proof. If 1 − 6r−1 · 3
√

α ≤ 0, then both B̃ and P̃ are empty, and the inequality
that we need to prove holds since its left hand side is 0 and its right hand side is
non-positive (recall that Sc(P,B) is an assignment of users from P to slots of B
maximizing the gain from trade, and thus, its gain from trade is at least 0 since
GfT(∅) = 0). Thus, we may assume in the rest of the proof that 1−6r−1 · 3

√
α > 0.

Since B̃ contains the �(1 − 6r−1 · 3
√

α)τ� slots with the largest values among
the slots of Bo, we get:

∑

b∈B̃

v(b) ≥ �(1 − 6r−1 · 3
√

α)τ� ·
∑

b∈Bo
v(b)

τ
.

Similarly, since P̃ contains the �(1 − 6r−1 · 3
√

α)τ� users with the lowest costs
among the users of Po, we get:

∑

p∈Ã

c(p) ≤ �(1 − 6r−1 · 3
√

α)τ� ·
∑

c∈Po
c(p)

τ
.
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Combining the two inequities gives:
∑

b∈B̃

v(b) −
∑

p∈P̃

c(p)

≥ �(1 − 6r−1 · 3
√

α)τ� ·
∑

b∈Bo
v(b) − ∑

p∈Po
c(p)

τ

= �(1 − 6r−1 · 3
√

α)τ� · GfT(Sc(P,B))
τ

≥(1 − 6r−1 · 3
√

α) · GfT(Sc(P,B)). 
�
Observation 5 shows that one can prove a competitive ratio for OPM by relating

the gain from trade of the assignment it produces to the gain from trade obtained
by assigning the users of P̃ to the slots B̃. The following lemma is a key lemma we
use to relate the two gains. In order to state this lemma we need some additional
definitions. Consider the following two sets.

P̂ = {p ∈ P (M \ MT ) | c(p) < c(p̂)}
and

B̂ = {b ∈ B(A \ AT ) | v(b) > v(b̂)}.

Intuitively, P̂ is the set of the assignable users, and B̂ is the set of the
assignable slots. It is important to note that P̂ and B̂ are both empty whenever
p̂ and b̂ are dummy user and slot, respectively. We also define two additional sets
AL and ML as follows. Let f be a random variable distributed according to the
binomial distribution B(|A \ AT | + |M \ MT |,min{16r−1 · 3

√
α, 1}), and let L be

the set of the last f entities in σE (or equivalently, the last f entities to arrive).
The sets AL and ML are then defined as AL = A ∩ L and ML = M ∩ L.

Lemma 4. There exists an event E of probability at least 1 − 10e−2/ 3√α such
that E implies the following:

(i) B̃ \ B(AT ) ⊆ B̂
(ii) P̃ \ P (MT ) ⊆ P̂
(iii) |P̂ \ P (ML)| ≤ |B̂|
(iv) |B̂ \ B(AL)| ≤ |P̂ |
(v) c(p) ≤ �(P,B) ≤ v(b) for every user p ∈ P̂ and slot b ∈ B̂, where �(P,B) is

a value which is independent of the random coins of OPM and obeys c(p) ≤
�(P,B) ≤ v(b) for every p ∈ Po and b ∈ Bo.

The proof of Lemma 4 is very similar to the proof of Lemma 4.6 in [9] (which
is a version of [10] with full proofs), and thus, we omit it. In the rest of this
section we explain how the competitive ratio of OPM follows from Lemma 4. Let
Ŝ be the assignment produced by OPM.

Lemma 5. The event E implies the following inequality:

GfT(Ŝ) ≥
∑

b∈B̃
b�∈B(AT ∪AL)

[v(b) − �(P,B)] +
∑

p∈P̃
p�∈P (MT ∪ML)

[�(P,B) − c(p)].
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Proof. Lemma 4 shows that given E we have |P̂ \ P (ML)| ≤ |B̂|, hence, Obser-
vation 4 implies that OPM assigns at least |P̂ \ P (ML)| users. Additionally, since
OPM assigns users of mediators from ML only after all the assignable users of
mediators from M \ (MT ∪ ML) are assigned to slots we get that all the users of
P̂ \ P (ML) are assigned by Ŝ given E . On the other hand, Lemma4 also shows
that given E all the users of P̃ \ P (MT ) belong to P̂ , and thus, the users of
P̃ \ P (MT ∪ ML) are all assigned by Ŝ. A similar argument shows that the slots
of B̃ \ B(AT ∪ AL) are all assigned users by Ŝ given E . Finally, observe that E
also implies that c(p) ≤ �(P,B) ≤ v(b) for every pair (p, b) ∈ Ŝ ⊆ P̂ × B̂.

In the rest of the proof we assume that E happens. Consider an ordered pair
(p, b) ∈ Ŝ. Then, the contribution of (p, b) to GfT(Ŝ) is:

v(b) − c(p) = [v(b) − �(P,B)] + [�(P,B) − c(p)].

By the above discussion, the two terms that appear in brackets on the right
hand side of the last equation are both positive. This allows us to lower bound
the gain from trade of Ŝ as follows:

GfT(Ŝ) =
∑

(p,b)∈Ŝ

[v(b) − c(p)]

=
∑

(p,b)∈Ŝ

{[v(b) − �(P,B)] + [�(P,B) − c(p)]}

≥
∑

b∈B̃
b�∈B(AT ∪AL)

[v(b) − �(P,B)] +
∑

p∈P̃
p�∈P (MT ∪ML)

[�(P,B) − c(p)].


�
Corollary 1. OPM is at least (1 − r − 22r−1 · 3

√
α − 10e−2/ 3√α)-competitive.

Proof. The corollary is trivial when r + 22r−1 · 3
√

α + 10e−2/ 3√α > 1. Thus, we
assume in this proof r+22r−1 · 3

√
α+10e−2/ 3√α ≤ 1. For every two sets M ′ ⊆ M

and A′ ⊆ A of mediators and advertisers, respectively, let Val(M ′, A′) denote
the expression:

∑

b∈B̃\B(A′)

[v(b) − �(P,B)] +
∑

p∈P̃\P (M ′)

[�(P,B) − c(p)].

The definition of �(P,B) guarantees that v(b)−�(P,B) ≥ 0 and �(P,B)−c(p) ≥ 0
for every b ∈ B̃ ⊆ Bo and p ∈ P̃ ⊆ Po. Thus, Val(M ′, A′) ≤ Val(∅, ∅) for every
two sets M ′ ⊆ M and A′ ⊆ A. Additionally, it is well-known that the way t is
chosen by OPM guarantees that every entity of M∪A belongs to T with probability
r, independently (a proof of this fact can be found, e.g., as Lemma A.1 in [12]).
Similarly, every entity of M ∪ A that does not belong to T is added to L with
probability min{1, 16r−1 · 3

√
α} = 16r−1 · 3

√
α, independently. Hence, every user

(slot) of P̃ (B̃) belongs to P̃ \ P (MT ∪ ML) (B̃ \ B(AT ∪ AL)) with probability

(1 − r)(1 − 16r−1 · 3
√

α) ≥ 1 − r − 16r−1 · 3
√

α.
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Therefore,

E[Val(MT ∪ ML, AT ∪ AL)]

≥ (1 − r − 16r−1 · 3
√

α) ·
{∑

b∈B̃
[v(b) − �(P,B)] +

∑

p∈P̃
[�(P,B) − c(b)]

}

= (1 − r − 16r−1 · 3
√

α) · Val(∅, ∅).

Using Lemma 5 and the observation that OPM always produces an assignment of
non-negative gain from trade, we now get:

E[GfT(Ŝ)] = Pr[E ] · E[GfT(Ŝ) | E ] + Pr[¬E ] · E[GfT(Ŝ) | ¬E ]
≥ Pr[E ] · E[Val(MT ∪ ML, AT ∪ AL) | E ]
= E[Val(MT ∪ ML, AT ∪ AL)]

− Pr[¬E ] · E[Val(MT ∪ ML, AT ∪ AL) | ¬E ]

≥ (1 − r − 16r−1 · 3
√

α) · Val(∅, ∅) − Pr[¬E ] · Val(∅, ∅)

= [(1 − r − 16r−1 · 3
√

α) − Pr[¬E ]] · Val(∅, ∅). (1)

Recall that Pr[¬E ] ≤ 10e−2/ 3√α by Lemma 4. Additionally, note that Obser-
vation 5 and the fact that |P̃ | = |B̃| by definition imply together:

Val(∅,∅)

=
∑

b∈B̃
[v(b) − �(P,B)] +

∑

p∈P̃
[�(P,B) − c(p)]

=
∑

b∈B̃
v(b) −

∑

p∈P̃
c(p)

≥(1 − 6r−1 · 3
√

α) · GfT(Sc(P,A)).

Plugging the last observations into (1) gives:

E[GfT(Ŝ)] ≥ [(1 − r − 16r−1 · 3
√

α) − Pr[¬E ]] · Val(∅, ∅)

≥ [(1 − r − 16r−1 · 3
√

α) − 10e−2/ 3√α] · (1 − 6r−1 · 3
√

α) · GfT(Sc(P,A))

≥ (1 − r − 22r−1 · 3
√

α − 10e−2/ 3√α) · GfT(Sc(P,B)).

The corollary now follows by recalling that Sc(P,B) is the assignment of users
from P to slots of B which maximizes the gain from trade. 
�

4 A Straw-Man Mechanism

In this section we describe a simple straightforward dynamic straw-man mech-
anism for matching advertisers and mediators. This mechanism maintains the
desired economic properties, and thus, it is a good candidate for comparison
with OPM. In Sect. 5 we use simulations to compare the two mechnaims. Our
simulations show that OPM significantly outperforms the straw-man mechanism.

Mechanism 2. Straw-Man Mechanism

1. Let σE be an ordered subset of the entities that have arrived so far. Initially
σE is empty, and entities are added to it as they arrive.
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2. For every arriving entity (mediator or advertiser):
a. Let i denote the index of the arriving entity among the previously arriv-

ing entities of the same type (in other words, if the arriving entity is a
mediator, then it is the i-th mediator to arrive, and if it is an advertiser,
then it is the i-th advertiser to arrive).

b. If i is odd and the arriving entity is a mediator m (advertiser a), draw a
random user of m (slot of a) and denote it by p̂i (b̂i). We say that c(p̂i)
(v(b̂i)) is the threshold for the users of the next mediator (slots of the
next advertiser). Moreover, every such user (slot) is assignable if her cost
is less than (its value is more than) this threshold.

c. Otherwise (i.e., when i is even), if the arriving entity is a mediator m
(advertiser a), then add m (a) to the end of σE . As long as m (a) has
unassigned assignable users (slots) and there is an advertiser (mediator)
in σE having unassigned assignable slots (users) whose threshold is above
(below) the threshold of m’s users (a’s slots), do:
• Let a (m) be the earliest advertiser (mediator) in σE of this kind.
• Assign the unassigned assignable user of mediator m with the lowest

cost to an arbitrary unassigned assignable slot of a, charge advertiser
a with an amount equal to the threshold of her slots and pay m an
amount equal to the threshold of his users.

d. For every mediator m ∈ σE of even index i, recommend m to transfer his
assigned users an additional amount that guarantees the following:
• If all the assignable users of m are assigned, the additional amount

should increase the total payment received so far by each assigned user
of m to c(p̂i−1).

• Otherwise, let pi be the unassigned assignable user of m with the mini-
mum cost. In this case the additional amount should increase the total
payment received so far by each assigned user of m to c(pi).

5 Simulations

We have used simulations to study the empirical performance of our mechanism
OPM. Our simulations involved two methods for generating the input. The more
interesting of these methods, which we call real-data based input was as follows.
The creation of the advertisers was based on data collected as part of a Horizon
2020 project from Facebook campaigns targeting Europeans between the ages
18 and 22 who are interested in entertainment. Every bid collected consisted of
a budget for the relevant campaign, the maximal CPC (cost-per-click) value, the
minimal CPC value and the median CPC value that the advertiser was willing
to pay. Based on these bids we constructed three advertisers for our generated
input, one advertiser for each one of the CPC values. More specifically, let β be
the budget specified by the bid, and let δ be one of the three CPC values specified
by this bid, then the advertiser created for this CPC value has a value of δ and a
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capacity of β
100δ .8 For every advertiser we also created a single mediator having

the same number of users as the capacity of the advertiser. Every user of these
mediators was assigned an independent cost chosen uniformly at random from
the range between the smallest and largest CPC values encountered in the real
world bids. To verify that the data fed into the mechanism was unbiased, we
designed a secondary input generation method which we call the random bids
input. The way input is generated by this method is very similar to the way real-
data based input was generated, except that the advertisers’ values were selected
as uniformly random independent values between the smallest and largest CPC
values encountered in the real world bids (rather then being taken directly from
the input bids, as in the real-data based input).

Our first simulation was designed to study the effect of market size on the
performance of the mechanism. In this experiment we used the above methods to
generate markets of various sizes and then we sent the entities of each generated
market into OPM in a uniformly random order. The observable performance of the
assignments produced by OPM (as a percent of the efficient canonical assignment)
are depicted in Fig. 1. In order to reduce variance and error margins, every value
given by this figure (and the next ones) was produced by averaging 3000 indepen-
dent executions. As expected, the performance of the algorithm improves with
the size of the market (as the size of the market is roughly inversely proportional
to α). Moreover, these results demonstrate that our mechanism performs well
(between 65% and 85% of the efficient gain from trade) on inputs derived by real
world data even for moderate size markets, which is better than what can be
predicted based on our theoretical result alone. While one might achieve better
performance, a 65% to 85% range seems reasonable given the need to handle
both an online setting and economic issues.9

In the previous experiment, we used the value of the parameter r of OPM
which was specified by the version of Theorem1 given in Sect. 3. Our second
simulation was designed to study the possibility of improving the performance
of the mechanism by varying the value of r. Specifically, we repeated the pre-
vious experiment with a market of 11961 advertisers (which is close to the size
of the largest market we considered before), but varied the value of the param-
eter r. The results of this experiment are depicted in Fig. 2. As in the previous
experiment, we see again that using the value of r specified by Theorem 1 (1/2 in

8 Our experiments are based on only a fraction of the entire data set, which signifi-
cantly increased the market strength of the entities in the input. To compensate for
this increase, and keep the market strength of each advertiser in the simulation sim-
ilar to the market strength of the corresponding real world advertiser, we introduced
a division by 100 into the capacity formula.

9 Note that the experiments did not simulate the information trading part of the
model since they were intended to study the mechanism’s competitive ratio. However,
information exchange can occur in our model in practice. Intuitively, one can think
of the users in a single execution of the mechanism as the users who agreed to sell
information that, if revealed, implies that they have one particular type t. Then, if
an advertiser’s ad is shown to a user, the advertiser may learn that the user is of
type t and the user is monetarily compensated for that.
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Fig. 1. The performance of OPM as a function of the market size. The number below
each column specifies the number of advertisers in the market.

0

20

40

60

80

100

0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5%
 o

f t
he

 O
p

m
al

 G
ai

n 
Fr

om
 T

ra
de

r

Real-Data Based Input Random Bids Input

Fig. 2. The performance of OPM as a function of the value of the parameter r on markets
with 11961 advertisers.

this case) leads to good performance for both input generation methods. For the
real-data based input, varying r does not improve the performance of OPM, but
for the random input bids one can significantly improve the outcome by decreas-
ing r. This is likely to be a consequence of a higher variance in the random bids
input, which allows OPM to calculate good thresholds based on a shorter obser-
vation phase (which are induced by decreasing r). Thus, for the random bids
input, decreasing r leads to improved performance as it allows OPM to harvest
value from a larger fraction of the market while inducing only a weak adversarial
effect on the selected thresholds.

Our last simulation was designed to demonstrate the need for creating
involved solutions such as OPM for solving a dynamic multi-sided market trade
problem. We used the straw-man mechanism described in Sect. 4 as a bench-
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mark for straightforward mechanisms solving the problem at hand and ran OPM
against it. Figure 3 shows that for medium size markets OPM improves by over
60% compared to the straightforward mechanism.

Fig. 3. The gain from trade improvment of OPM vs. the straw-man mechanism. The
number below each column specifies the number of advertisers plus mediators in the
market.

6 Conclusion

In this paper we have presented a dynamic model for a foreseeable form of the
online advertising market based on principles suggested by [10], and described a
mechanism called OPM for it. OPM is the first mechanism for a multi-sided market
that guarantees the economic properties of budget balance, incentive compati-
bility and individual rationality while having a non-trivial theoretical approx-
imation guarantee. For large markets, such as the online advertising market,
the theoretical competitive ratio of OPM approaches 1. However, this theoretical
guarantee becomes much weaker (or even non-relevant) for smaller markets, and
thus, we have complemented it with simulation results. These results suggest
that OPM performs well in practice even for markets of moderate size.

The model we study assumes that all users are equally valuable for the
advertisers. Handling users with different value to advertisers is not explicitly
described in the model but is supported. The approach would be to assume
multiple markets, one for each type of user, and every user is directed by its
mediator to the market corresponding to its type (based on the information it
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agrees to sell). While this reduction allows the advertisers to effectively have user-
dependent valuation functions, studying mechanisms for richer models which
directly allow advertisers to have such user-dependent valuation functions (with-
out having to go through the above reduction) is an extension of our current
research; which we consider for future work.
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Abstract. The “Boyd” model, also known as the “OODA loop”, rep-
resents the cyclic decision processes of individuals and organisations in
a variety of adversarial situations. Combined with the Kuramoto model,
which provides a mathematical foundation for describing the behaviour
of a set of coupled or networked oscillators, the Boyd-Kuramoto model
captures strategic (cyclic) decision making in competitive environments.

This paper presents a novel game-theoretic approach to the Boyd-
Kuramoto dynamical model in complex and networked systems. A two-
player, Red versus Blue, strategic (non-cooperative) game is defined to
describe the competitive interactions and individual decision cycles of
Red and Blue agent populations. We study the model analytically in the
regime of near phase synchrony where linearisation approximations are
possible. We find that we can solve for the Nash equilibrium of the game
in closed form, and that it only depends on the parameters defining the
fixed point of the dynamical system. A detailed numerical analysis of
the finite version of the game investigates the behaviour of the underly-
ing networked Kuramoto oscillators and yields a unique, dominant Nash
equilibrium solution. The obtained Nash equilibrium is further studied
analytically in a region where the underlying Boyd-Kuramoto dynamics
are stable. The result suggests that only the fixed point of the dynam-
ical system plays a role, consist with the analytical solution. Finally,
the impact of other variations of the Boyd-Kuramoto parameters on
the game outcomes are studied numerically, confirming the observations
from fixed point approaches. It is observed that many parameters of the
Kuramoto model affect the NE solution of the current game formulation
much less than initially stipulated, arguably due to the time-scale sep-
aration between the underlying Kuramoto model and the static game
formulation.

1 Introduction

The Boyd model or OODA loop is a cyclic decision process consisting of the
following four stages: Observe, Orient, Decide, and Act [4]. It models the decision
cycle of individuals and organisations in a variety of adversarial and competitive
c© Crown 2018
L. Bushnell et al. (Eds.): GameSec 2018, LNCS 11199, pp. 248–264, 2018.
https://doi.org/10.1007/978-3-030-01554-1_14
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situations. Though originating in tactical air-to-air combat, it is now a well-
known concept in business, litigation, and law enforcement [10]. For example,
the model can be used to capture the competition (for a pool of customers)
between two companies in their innovation cycles as they bring new products
to the market. The OODA loop is also used widely in military strategy, and
operational Command and Control (C2), far from the air-to-air combat context
in which it was originally derived.

The OODA loop matches the fundamental paradigms of system and control
theory. The “Observe” stage involves making observations about the environ-
ment and collecting data by an Observer. The “Orient” stage may process the
observed information in light of the identified models and past experiences. In the
“Decide” stage, available actions are evaluated based on some performance cri-
teria derived from utility, optimisation, or game theories. “Orient” and “Decide”
can be mapped to a Controller in control theory. Finally, an action is taken in
the “Act” stage, which corresponds to the behaviour of Actuators in systems.
A similar analogy can also be made to strategic decision making by companies
or organisations. Competitive firms observe the market trends and orient them-
selves accordingly; decide on their strategic investments, e.g. for innovation; and
act to bring new products and services to the market to get a higher share.

The Kuramoto model [9] provides a mathematical foundation for describing
the behaviour of a set of coupled or networked oscillators and their synchronisa-
tion characteristics. In this context, each oscillator corresponds to the decision
cycle of an individual or part of an organisation. The Kuramoto model has been
widely used to analyse complex systems in a variety of domains [1]. A novel
application of Kuramoto oscillators to Boyd-OODA cycles in adversarial inter-
actions between two populations, e.g. Red versus Blue, was proposed in [7],
and this is what is termed the ‘Boyd-Kuramoto’ model. Mathematically, such a
model is an application of certain multi-graph frustrated generalisation of the
Kuramoto model, as studied in works such as [5]. Since its proposal as a model
for adversarial decision cycles, it has been the subject of fixed points and sta-
bility analysis in the deterministic [8] and stochastic cases [6]. Specifically, the
internal synchronisation of individual OODA oscillators within the (Red and
Blue) populations as well as the average phase difference (“lags” or frustrations)
between the populations have been studied in detail with and without noise, and
thresholds for one side or the other to lose synchronisation have been derived.
This combined Boyd-Kuramoto model is immediately applicable to competitive
decisions as it captures the complex cyclic decision processes in adversarial pop-
ulations of networked heterogeneous agents. Going back to the example of two
competitive firms, the average phase difference may represent how much ahead
one firm is against the other in the innovation cycle.

Game Theory studies multi-agent decision making with versatile quantitative
methods. As a special case, security games have been used to successfully model
the decision processes in adversarial situations [2]. The inherently adversarial
nature of the interaction between Blue and Red populations in commercial com-
petition or strategic C2 decision making immediately motivates a game-theoretic
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approach to the Boyd-Kuramoto model. Thus, though one may derive thresholds
or optima for decisions by one side with fixed parameters for the other, as in [8],
the fact that the adversary has a say in the outcome means that a game-theoretic
treatment is essential.

Fig. 1. A conceptual diagram of the Boyd-Kuramoto Game. (Color figure online)

This paper applies the mathematical and conceptual framework of security
games to the Boyd-Kuramoto model of networked decision cycles (oscillators)
in Blue and Red populations within the adversarial/competitive context. As a
starting point, a novel Boyd-Kuramoto Game is introduced. In this 2-Player,
nonzero-sum strategic (non-cooperative) game, the Blue and Red players aim to
gain a phase (lag) advantage over their opponent based on the average phase
of their own agent populations, while achieving internal synchronisation of their
Boyd-OODA oscillators. Kuramoto’s order parameters of the player populations
and the average phase difference between them provide the main criteria in
modelling the player utility functions. This three-layer Boyd-Kuramoto Game
model (Fig. 1) is the first of its kind to the best knowledge of the authors.

The contributions of this paper include:

– Development of a novel game-theoretic model of Boyd-Kuramoto networked
oscillators in complex C2 systems, which describes the strategic decision-
making processes of Red vs Blue populations.

– A detailed numerical analysis of the game investigating the stable behaviour
of the underlying networked Kuramoto oscillators, and computing the Nash
Equilibrium solutions.

– A numerical study of the impact of Boyd-Kuramoto parameters on the game
outcomes.

– An analytic description of the Nash Equilibrium solution after linearisation
of the dynamical equations.

The rest of the paper is organised as follows. The next section presents the
main components of the Boyd-Kuramoto Model. Section 3 introduces a specific
game-theoretic formulation. A numerical analysis of the game is presented in
Sect. 4. The sensitivity of the game solutions to various parameters is discussed
in Sect. 6. Analytic solution is pursued in Sect. 5. The paper concludes with
remarks and a discussion on future directions in Sect. 7.
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2 Boyd-Kuramoto Model for Complex Competitive
Systems

We consider a deterministic Blue versus Red networked Kuramoto oscillator
model to describe complex, adversarial, and competitive interactions using Boyd
(OODA) cycles in both Blue and Red agent populations. Let B = {1, . . . , N}
and R = {1, . . . , M} be the respective sets of Blue and Red Agents. Each Blue
Agent i ∈ B has a frequency ωi and phase βi, and similarly each Red Agent
j ∈ R has frequency νj and phase ρj . The Blue Agents are connected to each
other symmetrically (which may be relaxed) via the N × N adjacency matrix
B and Red Agents via the M × M matrix R. The N × M matrix A represents
the unidirectional external links from Blue to Red Agents. Figure 1 visualises
one possible configuration. Finally, the ζB , ζR, ζBR, and ζRB , are the relevant
coupling constants. The resulting Boyd-Kuramoto model is

dβi

dt
= ωi − ζB

∑

j∈B
Bij sin(βi − βj) − ζBR

∑

j∈R
Aij sin(βi − ρj − φ), i ∈ B (1)

dρi

dt
= νi − ζR

∑

i∈R
Rij sin(ρi − ρj) − ζRB

∑

j∈B
AT

ij sin(ρi − βj − ψ), i ∈ R, (2)

where d/dt is the time derivative, (·)T is the transpose operator, and φ and ψ
are the phase lags (frustrations) [8]. These two phase parameters capture the
essence of Boyd’s proposal that advantage is gained by one side over the other
insofar as the coupled dynamics enable the realisation of one side being ahead
of the other by the desired amount: φ for Blue, and ψ for Red.

In general, the set of nonlinear Eq. (1) can only be solved numerically and
they may exhibit complex and chaotic dynamics. Let

CB :=
1
N

∑

i∈B
βi and CR :=

1
M

∑

i∈R
ρi (3)

be the respective centroids of the Blue and Red Agents’ phases. If the respective
populations are phase locked internally, i.e. βi ≈ βj , ∀i, j ∈ B and ρi ≈ ρj , ∀i, j ∈
R, then the difference between the centroids can be defined in a time-invariant
manner

Δ := CB − CR, (4)

where CB and CR are defined in (3). Having a time-invariant, non-zero Δ can be
interpreted as external phase locking between populations. Finally, the degree of
synchronisation within a given population is captured via the (local) Kuramoto
Order parameters,

OB :=
1
N

∣∣∣∣∣
∑

i∈B
ejβi

∣∣∣∣∣ and OR :=
1
M

∣∣∣∣∣
∑

i∈R
ejρi

∣∣∣∣∣ , (5)

where j denotes the value
√−1.
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3 Game-Theoretic Formulation

The adversarial nature of the Blue versus Red interaction and the associated
strategic decisions immediately motivate a game-theoretic perspective to the
Boyd-Kuramoto model presented in the previous section. Given the novelty of
combining game theory with the Boyd-Kuramoto model and as a starting point, a
static, 2-Player, nonzero-sum, strategic (non-cooperative) game [3] is formulated
next.

The two players of the game constitute the player set P := {Red,Blue} rep-
resenting the respective set of networked agent populations R,B along with their
adjacency matrices R,B. The cyclic decision process of each individual agents
is described by the respective Boyd (OODA) cycle as described in Kuramoto
Eq. (1). In the game, the players Blue and Red decide on their lead/lag tar-
gets φ ∈ [0, π] and ψ ∈ [0, π], respectively. The outcome of the player deci-
sions are captured by the pair of utility functions UB(φ, ψ) and UR(φ, ψ),
which will be defined later. The resulting game is formally defined by the tuple
G :=<P, (φ, ψ), (UB , UR)>.

In this game, once the players decide on their respective targets φ and ψ, the
Boyd-Kuramoto model (1) is computed numerically over a fixed time-horizon.
It is important to note that the equations may not converge to a point or even
a limit cycle in certain cases, and may exhibit chaotic behaviour. While it may
be in the interests of one side to drive the other into chaos, the concept that
one side is collectively ahead of the collective decision cycle of the other (as is
articulated by Boyd when generalising from one-on-one adversarial engagement)
implies a certain level of coherence - namely internal phase locking - in both
Blue and Red decision making. This leads us to a particular formulation of
the utility functions; for the alternative - forcing dislocation in the other side
- there is little meaning of being ahead of the other’s decisions. To capture
the existence or the lack of internal phase locking in agent populations, the
order parameters in (5) are used. If OB or OR is larger than a threshold value,
e.g. 0.9, then an approximate internal phase lock is said to be achieved [8],
which is consistent with numerical observations of phase trajectories. Once the
players have internal phase locking, then the difference (4) between centroids
(3) becomes time-invariant and meaningful. Note that, if there is no internal
phase locking even for one player (population), then the phases of agents of
that population are time-varying. In that case, it is impossible to talk about a
meaningful phase difference Δ between the Red and Blue centroids.

In light of the discussion above, one possible set of utility functions for the
players are

UB(φ, ψ) =

{
−(Δ(T ) − φ)2 , if OB(T ) > 0.9, OR(T ) > 0.9
−100 , otherwise

(6)

and

UR(φ, ψ) =

{
−(−Δ(T ) − ψ)2 , if OB(T ) > 0.9, OR(T ) > 0.9
−100 , otherwise

(7)
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Here, T denotes the finite time horizon over which the Boyd-Kuramoto model
(1) is solved numerically, and OB(T ) and OR(T ) are calculated using Kuramoto
model average results over [T/4, T ]. The value −100 is chosen as a large negative
value to express undesirability of outcomes when OB(T ) < 0.9 or OR(T ) <
0.9, i.e. there is no tangible internal phase locking in Blue or Red player agent
populations.

Definition 1. A specific Boyd-Kuramoto Game G is played between the two
adversarial Players P := {Red,Blue}. Each player represents a set of networked
agent populations with their decision cycles described by the Boyd-Kuramoto
model in (1), which is computed over the time horizon [0, T ]. The players Blue
and Red decide on their lead/lag targets φ ∈ [0, π] and ψ ∈ [0, π]. The outcome
of the player decisions are captured by the pair of utility functions UB(φ, ψ) and
UR(φ, ψ) given in (6) and (7), respectively. Then, the game is defined by the
tuple G :=<P, (φ, ψ), (UB , UR)>

The Nash Equilibrium (NE) is used in this paper as the main game solution
concept. A Nash Equilibrium is formally defined as the set of player strategies
and associated utilities, where no player can gain by deviating from the NE
when all other players play their own NE strategies. It corresponds to a fixed
point as well as the intersection point of the best responses of players [3]. It is
worth noting that bi-matrix games always have a solution in mixed strategies,
corresponding to a probability distribution over the actions (pure strategies) [3].

Fig. 2. Plots of Δ and Order for values approaching instability.

4 Numerical Analysis of the Boyd-Kuramoto Game

4.1 Properties of the Underlying Boyd-Kuramoto Model

Prior to discussing the specific game results, some considerations on the
Kuramoto model dynamics are offered. Depending on the pair of values (ψ, φ),
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Fig. 3. Plots of Δ and the Order Parameter for oscillatory/unstable values.

the Kuramoto model presents stable, oscillatory, or chaotic behaviour. An illus-
trated example of this behaviour around the values (ψ, φ) = (0, 0.95π) is depicted
in Figs. 2 and 3 using networks, frequency and coupling choices as given in [8].

For the parameters in the baseline scenario, the Order Parameter values of
the Blue Player are close to full synchronisation, OR ≈ 1, across all the values of
(ψ, φ) (not illustrated), while the Red Player Order Parameter values are close
to synchronisation only in the corner regions of (ψ, φ), close to (0, 0) or (π, π) as
illustrated in Fig. 4(a). Figure 4(b) shows the variance of OR and highlights the
(ψ, φ) regions where the system exhibits oscillatory or unstable behaviours as
studied in [8]. We observe that the region of (ψ, φ) where the system presents an
increased oscillatory behaviour coincides with the region where the Red Order
Parameter OR is at a minimum and well below the threshold 0.9 that is penalised
in the utility functions of players, UB(φ, ψ) and UR(φ, ψ). It constitutes, there-
fore, a region that both players will tend to avoid in the game.

Fig. 4. Red Player Order values and their variance for (ψ, φ) ∈ {0, π
36

, ..., nπ
36

, ..., 35π
36

, π}.
(Color figure online)
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4.2 Nash Equilibrium Solution in Baseline Scenario

As a baseline scenario for the numerical analysis of the game defined in the
previous section, the following parameters have been selected in continuity with
the previous studies [6]:

– The Blue network has 21 nodes in a complete 4-ary Tree configuration and
the Red network has the same number of (21) randomly connected nodes.

– The interaction network involves the leaves of the Blue Tree (Nodes 6–21)
linked to the correspondingly labelled nodes of the random Red network.

– The natural frequencies ω and ν are randomly chosen from a [0, 1] interval
with an average of 0.551329 for the Red agents and 0.503192 for the Blues.

– The coupling constants are ζR = 0.5 for Red and ζB = 8 for Blue, and the
cross-coupling constants are ζBR = ζRB = 0.4.

The action spaces of the players are discretised to obtain a bi-matrix game.
Specifically, each player has 36 strategies available, i.e. the player’s respective
phase lag targets φ and ψ are discretised in uniform 36 bins of size π/36 within
the interval {0, π}. The number 36 is chosen for its divisibility and taking into
account computational constraints.

The Kuramoto model (1) is solved for every pair of

(ψ, φ) ∈ {0,
π

36
, . . . ,

nπ

36
, . . . ,

35π

36
, π}.

The utility functions UB(φ, ψ) and UR(φ, ψ) are calculated accordingly using (6)
and (7), and provide the entries of the respective utility matrices (Fig. 5).

Even though the Boyd-Kuramoto model shows complex dynamic behaviour
(as discussed above) depending on the desired phase lags (ψ, φ), the associated
static 2-Player nonzero-sum strategic (non-cooperative) game as formulated in
Sect. 3 admits a pure strategy Nash Equilibrium that is mostly insensitive to
the model parameters, except the intrinsic frequencies ωi and νj of the Blue and
Red populations.

Fig. 5. Red and Blue player utilities in the baseline scenario. (Color figure online)
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For the baseline set of parameters, the player utilities are illustrated in Fig. 5.
The game admits then a single pure-strategy Nash Equilibrium as shown in
Table 1(a). To interpret this result, we first need to appreciate that the maximum
reachable utility for a player is equal to zero, that is when the difference (4)
between centroids (3) of the system is exactly equal to the desired phase for
the player. The calculated NE is therefore stating that the Red player could
enforce a very slight phase advantage to the player Blue. In order to increase
the resolution of the game discretisation in the area of the utility matrices where
the NE emerges, a new simulation has been executed with the same parameters
and (ψ, φ) ∈ {0, π

80 , ..., nπ
80 , ..., 79π

80 , π
4 }. The results, shown in Table 1(b), confirm

that Red player can actually enforce a slight lag of π
20 to the Blue player and

gains an advantage at the unique NE of the game. It is also worth noting that
this NE solution is at the same time a Dominant Strategy Equilibrium and the
game does not admit any other mixed strategy equilibrium solution.

Table 1. Nash Equilibrium strategies of players with refinement (zoom-in at location)
in the baseline scenario.

(a) NE strategy

Player Strategy Payoff

Red ψ = 2π
36

−0.00033

Blue φ = 0 −0.02598

(b) Refined NE

Player Strategy Payoff

Red ψ = 1π
20

0

Blue φ = 0 −0.02784

5 Analytic Study of the Game Solution

In [8], the stability properties of the Boyd-Kuramoto model were studied, where
it was identified that the fixed point of the dynamical system only depends
on the cross-coupling strengths and connectivity between Blue and Red, and
the native frequencies of the agents. The sensitivity analysis conducted next
in Sect. 6 indicates that the NE also depends mainly on these parameters, and
is relatively insensitive to the network structures and internal couplings of the
Blue and Red populations. This suggests an analytic study of the NE is feasible
through approximation.

Using the derivation further elaborated in [6], the expression for Δ may
be explicitly computed in the limit where Blue and Red achieve high internal
synchronisation, i.e. the origin, as indeed occurs in the region of the observed
NE (φ∗, ψ∗) = (0, π

20 ) here.
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Using the analysis from [8] and [6], we obtain

Δ = � + sin−1

(
μ√S2 + C2

)
(8)

� = tan−1(S/C) (9)

S = d
(BR)
T

(
ζBR sinφ

N
− ζRB sinψ

M

)
(10)

C = d
(BR)
T

(
ζBR cos φ

N
+

ζRB cos ψ

M

)
(11)

μ = ω̄ − ν̄, (12)

where Δ was defined in (4), d
(BR)
T is the number of links between Blue and Red,

and ω̄, ν̄ are the mean intrinsic frequencies within the Blue and Red populations.
From the baseline scenario chosen in Sect. 4, d

(BR)
T = 16, μ = −0.048.

Substituting the expression above for Δ in the utility functions for Blue
and Red, given in (6), (7), and the parameter choices from Sect. 4 results in an
approximation of player utilities in the stable region, and is shown in Fig. 6. The
figure also depicts the unconstrained best responses of the players superimposed
as lines corresponding to ∂UB/∂φ = ∂UR/∂ψ = 0, and the numerically obtained
unique NE in the baseline scenario. As expected, the NE sits on the line of optima
for Red at the edge of the feasible region for Blue, namely φ = 0. Moreover, any
increase of φ results in decreasing utility - confirming that Blue cannot improve
their outcome. The utility functions of the players at the NE solution are further
depicted in Fig. 7.

In the region around the origin where the Boyd-Kuramoto dynamics are
stable, the expression for Δ given in (8) can be linearised with respect to φ and
ψ around the point (0, 0). In fact, expanding the derivatives ∂UB/∂φ, ∂UR/∂ψ
and extracting the roots of ∂UB/∂φ = 0 = ∂UR/∂ψ leads to the following closed
form solution for the Nash equilibrium:

φ∗ = 0, ψ∗ = −
(ζBR + ζRB)

√
d2T (ζBR + ζRB)2 − N2μ2 arcsin

(
Nμ

dT (ζBR+ζRB)

)

ζBR

√
d2T (ζBR + ζRB)2 − N2μ2 + NμζRB arcsin

(
Nμ

dT (ζBR+ζRB)

)
.

(13)
With the respective parameter values inserted the non-zero phase evaluates to
ψ∗ = 0.156688, consistent with the previously obtained numerical result, π/20.
This analytical expression of the NE allows us to observe that the critical factor
in generating the asymmetry between Blue and Red is μ, the difference between
mean frequencies in the two populations.

6 Sensitivity Analysis of the Boyd-Kuramoto Game

The Boyd-Kuramoto Game defined in Sect. 3 is further analysed numerically
in order to gain insights into the solutions as well as their sensitivity to the
underlying game parameters. The underlying Boyd-Kuramoto model naturally
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(a) Utility functions of Blue and Red Players around the origin.

(b) Utility functions over the decision region (positive quadrant) near origin.

Fig. 6. Utility functions of Blue and Red Players calculated using the Δ expression in
(8). The superimposed lines represent the best responses of the players and the black
point is the Nash equilibrium. (Color figure online)

plays a significant role in the game outcomes. Therefore, four additional scenarios
have been explored changing one parameter at a time from the baseline scenario
in Sect. 4. Specifically,

2. Scenario decreases the blue coupling constant (ζB) from 8 to 2 to “loosen”
the coupling of the ordered network.
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Fig. 7. Utility functions of Blue and Red Players calculated using the Δ expression in
(8) at the Nash Equilibrium, (φ∗, ψ∗) = (0, π

20
). (Color figure online)

3. Scenario modifies the red network, from random to “hierarchic” (quasi 4-ary
matrix).

4. Scenario swaps the natural frequencies ω, ν of the Blue and Red player agent
populations.

5. Scenario increases the average natural frequency gap between the Blue and
Red populations.
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6.1 Scenario 2 - Smaller Blue Player Coupling Constant

The blue coupling constant ζB is decreased to 2 from 8 where all the other
parameters remain identical to the baseline scenario. Lowering the blue coupling
constant should loosen the tightness of the blue network. In this scenario, the
same Nash Equilibrium strategies as the baseline scenario are obtained (Table 2)
with a slightly better pay-off for the Red player and worse for the Blue. A
possible interpretation is that the red player can enforce slightly more easily the
phase gap to a less rigid blue network. It is to be noted that in this scenario, the
dynamics of the Boyd-Kuramoto model are very similar to the baseline scenario
in terms of pattern and oscillatory behaviour.

Table 2. NE in Scenario 2 with a smaller blue coupling constant of ζB = 2.

Player Strategy Payoff

Red ψ = 2π
36

−0.00001

Blue φ = 0 −0.03018

6.2 Scenario 3 - Hierarchical Red Network

The network matrix of Red player is modified from random to a hierarchical
similar to the one of the Blue player and all other parameters are reset to the
baseline. In this scenario, the same Nash Equilibrium as per the baseline sce-
nario is obtained (Table 3) with comparable player pay-offs. Apparently, with the
selected utility function, the structure of the player’s network has a very limited
influence on the Nash Equilibrium of the game. This can be attributed to the
static nature of the game and the underlying time-scale separation between the
Kuramoto model dynamics and game formulation. In other words, the game uses
an averaged outcome of the Kuramoto model, and hence, the influence of the
player networks on the game outcomes diminishes. Note that, similar to Scenario
2, the dynamics of the Boyd-Kuramoto model are very similar to the baseline
scenario in terms of pattern and oscillatory behaviour.

Table 3. NE in Scenario 3 with hierarchical Red network

Player Strategy Payoff

Red ψ = 2π
36

−0.00011

Blue φ = 0 −0.02846
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6.3 Scenario 4 - Swapping Red and Blue Player Population’s
Natural Frequencies

The natural frequencies of Blue player population ω are swapped with those of
the Red player population ν in order to investigate the impact of natural fre-
quencies on game outcomes. In the baseline scenario, those frequencies are not
symmetric and randomly selected from an interval [0, 1] with different means:
mean(ω) = 0.5032 and mean(ν) = 0.5513. The natural frequencies can be inter-
preted as an input to the Kuramoto system (1).

Fig. 8. Red Orders and their variance for (ψ, φ) ∈ {0, π
36

, ..., nπ
36

, ..., 35π
36

, π} (Color figure
online)

As a first observation after solving the Boyd-Kuramoto model for this sce-
nario, we realise that the system dynamics are significantly influenced by the
change. While the blue orders are still close to full synchronisation (OR ≈ 1)
across all the values of (ψ, φ) (not illustrated) and the red orders are still close
to synchronisation only in the corner regions, we note that the region of (ψ, φ)
for which the system presents oscillatory or unstable properties is displaced
compared to the anti-diagonal and with a significant increase of variance all
around the anti-diagonal as illustrated in Fig. 8 compared to the baseline sce-
nario (Fig. 4). Figure 9 shows the utilities for Red and Blue players, which also
reflects similar displacement compared to the baseline scenario (Fig. 5).

As an important second observation, when solving the game for Nash Equi-
librium in this scenario, we note an inversion of winner in the game as illustrated
in Table 4. The calculated Nash Equilibrium shows now the Blue player being
able to enforce on the Red player a small phase gap of 3π

36 with a symmetric pay-
off compared to the baseline scenario. Considering that the swap of frequencies
between blue and red is actually reversing the asymmetry of frequencies between
players, it appears that the asymmetry of the natural frequencies is playing an
important role. Specifically, the ‘faster’ player in average can enforce a small
phase lag to the ‘slower’ player.
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Fig. 9. Red and Blue player utility matrices with swapped natural frequencies. (Color
figure online)

Table 4. Nash Equilibrium - scenario 4 - swapped frequencies

Player Strategy Payoff

Red ψ = 0 −0.06512

Blue φ = 3π
36

−0.00019

6.4 Scenario 5 - Increased Natural Frequency Gap Between Players

In this scenario, the original frequency gap between red and blue player is dou-
bled by maintaining the original blue frequencies as per baseline mean(ωi) =
0.5032 and shifting the red frequencies further so that mean(νj) = 0.5994 from
0.5513 as per baseline value. Similar to the previous scenario, we observe that
the system dynamic is significantly influenced by that change. The blue orders
are still close to full synchronisation (OR ≈ 1) across all the values of (ψ, φ)
(not illustrated) and the red orders are still close to synchronisation only in the
corner regions. We note that the region of (ψ, φ), for which the system presents
oscillatory or unstable properties, shows a significant increase in variance all
around the anti-diagonal as illustrated in Fig. 10, when compared to the base-
line scenario in Fig. 4. Solving the game for Nash Equilibrium, we observe that

Fig. 10. Red Orders and their variance in Scenario 5. (Color figure online)
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the increase of Red player natural frequency allows it to slightly increase the
imposed phase lag to 3π

36 compared to 2π
36 of the baseline scenario (Table 5).

Table 5. Nash Equilibrium in Scenario 5 with increased gap of frequencies

Player Strategy Payoff

Red ψ = 3π
36

−0.00049

Blue φ = 0 −0.11346

7 Conclusion

The initial results in this paper show that combining a game-theoretic approach
with the Boyd-Kuramoto model is a fertile research direction for better under-
standing of strategic decisions in complex and competitive/adversarial systems.

The Boyd-Kuramoto Game studied as a baseline scenario in this report
admits a unique pure Nash Equilibrium solution that has interesting impli-
cations. The subsequent sensitivity analysis provides additional insights. It is
observed numerically that many parameters of the Kuramoto model affect the
NE solution of the current game formulation much less than initially stipu-
lated. This is arguably due to the time-scale separation between the underlying
Kuramoto model and the static game built on top of it. While these param-
eters play an important role in the Boyd-Kuramoto dynamics, they do not
directly affect (stable) stationary outputs. We expect this situation may change
in dynamic game formulations, which may encourage more dynamic decisions
than formulated in this paper. In terms of the dynamical system, it means that
the behaviour of fluctuations - which are known to depend sensitively on the
network structures [6] - will have an impact on the game dynamics. Numeri-
cal simulations also indicate that the natural frequencies of the agents have a
significant impact on NE outcomes of the game. Again, this can be attributed
to the fact that the natural frequencies have a direct impact on the underlying
Kuramoto model’s stationary solutions. From a decision-making perspective,
this may be interpreted as investment in individual agents may pay-off more in
certain cases than their organisational properties. All of these hypotheses are
supported by the analytic solution obtained by linearisation around the origin.
The analysis makes it explicitly clear that the static game outcomes depend on
the cross-couplings and numbers of connections, and the asymmetry between
mean frequencies in the two adversary populations.

There are multiple potentially promising future directions including investi-
gation of different utility functions and dynamic game formulations that allow
the players to change their decisions during the evolution of the underlying
Boyd-Kuramoto models.
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Abstract. Twitter users often crave more followers to increase their
social popularity. While a variety of factors have been shown to attract
the followers, very little work has been done to analyze the mechanism
how Twitter users follow or unfollow each other. In this paper, we apply
game theory to modeling the follow-unfollow mechanism on Twitter.
We first present a two-player game which is based on the Prisoner’s
Dilemma, and subsequently evaluate the payoffs when the two players
adopt different strategies. To allow two players to play multiple rounds
of the game, we propose a multi-stage game model. We design a Twitter
bot analyzer which follows or unfollows other Twitter users by adopting
the strategies from the multi-stage game. We develop an algorithm which
enables the Twitter bot analyzer to automatically collect and analyze the
data. The results from analyzing the data collected in our experiment
show that the follow-back ratios for both of the Twitter bots are very
low, which are 0.76% and 0.86%. This means that most of the Twitter
users do not cooperate and only want to be followed instead of following
others. Our results also exhibit the effect of different strategies on the
follow-back followers and on the non-following followers as well.

Keywords: Social network · Game theory · Machine learning
Twitter classification · Twitter bot

1 Introduction

On the Twitter platform, a user can follow and can be followed by other users.
In the early stage, Twitter allowed users to follow as many accounts as possible.
Many Twitter users abused this and hoped to increase the number of follow-
ers through following thousands of users instead of creating engaging content.
c© Springer Nature Switzerland AG 2018
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Therefore, Twitter set up a limit for the number of accounts users could follow.
The number of accounts that a Twitter user can follow cannot be 10% more
than the number of followers, and also must be less than 2, 000. In 2015, Twitter
changed this limit to 5, 000.

A follower’s count is one of the three measures which indicate a Twitter
users’ popularity and prestige [1]. Researchers have been investigating the vari-
ables which effect the follower behavior of online social networks (OSN). Hutto et
al. found that social behavior, message content, and network structure have dif-
ferent effects on determining other Twitter users to follow a Twitter user [2]. Liu
et al. built a model for inferring the different speed of follower growth of differ-
ent types of users on a microblog platform (Weibo) [3]. Mueller et al. integrated
multiple predictors from the profile information of a Twitter user to predict the
increase of the follower count [4].

Some researchers use Twitter bots to manipulate Twitter accounts to attract
followers to create influential Twitter accounts. Those Twitter bots implement
the functions of a regular Twitter account which is managed by a real user.
Such functions include follow, unfollow, and post tweets, etc. A Twitter bot is a
type of automated program which controls a Twitter account via Twitter API
[5]. Messias et al. found that a Twitter account operated by a Twitter bot is
capable of becoming influential by mimicking a real Twitter user through simple
strategies, such as following back the followers and posting tweets about trending
topics [6].

Game theory has been applied to model the influence from the interactions
between OSN users on the privacy settings. Chen et al. modeled privacy settings
of online social networks by a two-player game and an evolutionary game, and
investigated the effect of network connectivity and attribute importance on the
users’ profile disclosure [7,8].

For this paper, we developed two game theoretic models to analyze the
Twitter follow-unfollow mechanism. One is a two-player game, which is called
Twitter follower’s dilemma. The other one is called multi-stage follow-unfollow
game, which allows players to play the game multiple rounds. Then, we designed
two Twitter bot analyzers1 which can adopt the strategies derived from the
game models. Subsequently, the Twitter bot analyzers collect the response from
other Twitter users when different strategies are adopted. Our approach not only
explores the dynamics of the users when we follow them, but also discovers the
impact of the adopted strategies on the non-following users. We call the users
that follow us back the follow-back followers. The non-following followers mean
the users we do not follow but they still follow us.

The remainder of this paper is as follows. In Sect. 2, we derive the two-player
follow-unfollow game from the Prisoner’s Dilemma game, and subsequently the
multi-stage follow-unfollow game. In Sect. 3, we explain the method for classify-
ing the collected Twitter users. The process of data collection, the experiment

1 The two Twitter bot analyzers follow the same steps, except that Twitter bot 1
takes one more step, which is favoriting the tweets posted by other Twitter users.
This is to investigate the effect of favoriting tweets on the number of followers.
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design, and the algorithm that the Twitter bot utilizes in the multi-stage game
are elaborated in Sect. 4. We present the results and the discussion in Sect. 5.
We conclude this paper in Sect. 6.

2 Our Models

2.1 Twitter Follower’s Dilemma

Our approach to model the Twitter followers’ dynamics is inspired by the Pris-
oner’s Dilemma [9]. The Prisoner’s Dilemma models a situation with two com-
pletely rational individuals who might not cooperate, even if it is in their best
interests to do so. It provides a framework for us to understand a balance lin-
gering between cooperation and competition. In our game, there are two players
which are the two Twitter users, user A and user B. In each step each user can
choose between two strategies, “follow” and “unfollow”. The goal of each player
is to achieve high social popularity [10], which means to have as many followers
as possible.

The payoff matrix for the Twitter follower’s dilemma game is shown in
Table 1. There are 4 cells in the matrix. Each cell has a tuple which represents
the payoff for user A and user B, respectively. Therefore, we have 4 different
combinations according to different strategies adopted by the two users, which
are (follow, follow), (follow, unfollow), (unfollow, follow), and (unfol-
low, unfollow). We can summarize all these combinations into 3 different cases,
because (follow, unfollow), (unfollow, follow) are symmetric.

Case I: This case refers to (follow, follow). After one user follows the other
one, and the other one also responds with a “follow” strategy, then each one
receives a modest payoff, which is denoted by 2. This is because each user is
followed by the other one but still needs to invest one count of “following”.

Case II: This case refers to (follow, unfollow) or (unfollow, follow). When
one user follows the other one but the other one has not responded with the
“follow” strategy, then the user being followed gets more benefit because this
user can follow more accounts because of getting this following. In this case, we
say that a user with an “unfollow” strategy achieves the highest payoff denoted
by 3. However, the other user has the lowest payoff denoted 0. This is because
one user invests one count of following but this following ends up with no increase
in the number of followers, and this investment is in vain.

Case III: This case refers to (unfollow, unfollow). This case may happen
before or after these two users interact. Before they interact, no one takes any
action, which means “unfollow” for each one. After one user follows the other
one and later finds that the other one has no response, then this user decides
to disconnect with the other one. In this case, each user receives a payoff of 1,
which means no one reaches the highest payoff.

In this game we assume that one user decides to adopt any strategy by
only considering the payoff from the social popularity. We know that in some
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situations we can already benefit from only following an account. For example,
if one user is a fan of a celebrity from following the celebrity’s account, this user
receives the status update or some interesting activities. Or, if we follow some
Twitter account of a news website, we receive interesting news or stories.

Table 1. Payoff matrix for the follower’s Dilemma game.

Twitter User B

Follow Unfollow

Twitter User A
Follow (2, 2) (0, 3)

Unfollow (3, 0) (1, 1)

2.2 Revised Twitter Follower’s Dilemma

After considering the follower’s benefit of receiving news, we can revise the game
in Sect. 2.1, we obtain the following payoff matrix as shown in Table 2. We use
N to represent the benefit from receiving news. In this payoff matrix, since we
are using a Twitter bot as the player and the Twitter bot will not read the news
received from other Twitter users, news is not considered as a benefit for the
Twitter bot player.

Table 2. Payoff matrix for the revised Twitter follower’s Dilemma.

Twitter User
Follow Unfollow

Twitter Bot
Follow (2, 2 + N) (0, 3)

Unfollow (3, 0 + N) (1, 1)

2.3 Multi-stage Follow-Unfollow Game

One Twitter bot in our experiment plays multiple rounds of games with other
Twitter accounts by taking follow or unfollow strategies in turns. This process
is modeled as a multi-stage game as shown in Fig. 1.

In Fig. 1, P1 represents player 1 which is our Twitter bot, and P2 represents
a group of other Twitter users which is player 2 in this multi-stage game. In this
game, P1 at first follows all the Twitter users. Some of the Twitter users follow,
and others unfollow. For those Twitter users who do not follow, after waiting
for a period of time our Twitter bot gives up on them and unfollows them. For
those Twitter users who follow our Twitter bot, we play more rounds of the
game. After they follow us, our Twitter bot unfollows them with the intent of
maximizing the payoff. Some Twitter users may notice that they are unfollowed
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and as a countermeasure they unfollow our Twitter bot. Other Twitter users
may still follow. For those Twitter users who adopt the strategy of “unfollow”
as the countermeasure, our Twitter bot attempts to regain them and follow them
again. Some users may follow back again, however, other users may already lose
their trust to our Twitter bot and never follow back.

The expected payoff of the Twitter bot is calculated by

U = 3αβ + 2 · α(1 − β)γ + 1 · α(1 − β)(1 − γ) + 1 · (1 − α) (1)

where α, β, and γ represent the ratio of users who adopt a follow strategy at
different stages, which are denoted in the parenthesis behind each strategy.

P1

Follow

P2
Follow(α) Unfollow(1− α)

P1
Unfollow

P1

(1, 1)

Unfollow

P2

(3, 0+N)

Follow(β) Unfollow(1− β)

P1
Follow

P2

(2, 2+N)

Follow(γ) Unfollow(1− γ)

P1

(1, 1)

Unfollow

Fig. 1. Extensive form of the multi-stage follow-unfollow game.

3 Twitter User Classification

We use a machine learning method presented by Deshpande on PyCon France
2016 [11] to classify the Twitter users based on the tweets posted by each user.

In our experiment, we choose 8 typical categories, which include “Tech”,
“Business & CEOs”, “Entertainment”, “Science”, “Fashion, Travel & Lifestyle”,
“Sports”, “Music”, and “Politics” as shown in Table 3.
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Table 3. Category IDs and the corresponding category names.

Category ID Category name

Category 0 Tech

Category 1 Business & CEOs

Category 2 Entertainment

Category 3 Science

Category 4 Fashion, travel & lifestyle

Category 5 Sports

Category 6 Music

Category 7 Politics

4 Experiment

In our experiment, we use a Twitter crawler to collect Twitter users’ ids and
retrieve tweets for all of these users. A Twitter classifier assigns all the users into
different categories. Then, our Twitter bot plays game with the Twitter users
in different categories. We record the list of friends2 and that of followers for
the Twitter bot account over time. The structure of the experiment is given in
Fig. 2.

Fig. 2. Design of the Twitter bot analyzer.

4.1 Procedure of the Experiment

We proceed with the experiment by the following steps.

Step 1: Construct User Lists.
We use a Twitter crawler supported by Twitter API [12] to collect the user

dataset. In this dataset, we apply the snow ball sampling technique [13] to collect

2 The two terms, friends and followees, are interchangeable on Twitter. If we follow
one user, we can call that user as a friend or followee of our Twitter account.



A Game Theoretic Analysis of the Twitter Follow-Unfollow Mechanism 271

Twitter users’ ids. Each time running the crawler, we start from a different
Twitter account, which is called “seed”. We collect the user lists by selecting
different seeds at different locations in the world. Here, the different locations
correspond to different geographic coordinates.

In total, we have collected 11, 349 Twitter ids, and about 1, 000 tweets for
each Twitter user on average. We separate the Twitter ids in each category into
two groups for two Twitter bots. Then, we mix the Twitter ids from different
categories into one file and shuffle them. This is to ensure that each user is
randomly assigned to each Twitter bot and also guarantee that the users in each
category are equally assigned to the two Twitter bots.

Step 2: Post News from Different Sections.
Twitter bots follow the users in different lists and then post tweets with the

news from different news sections from ABC news.
In order to make tweet contents attractive to different types of people, we

post different types of tweets. We classify the Twitter accounts into 8 different
categories as in [11,14], which are listed in Table 3. Everyday we crawl news on
the website of ABC news3. There are only 5 sections of news which match the
interests of 5 different types of twitter users, which are “Technology”, “Enter-
tainment”, “Lifestyle”, “Sports”, and “Politics”. We post that message from that
sharing link obtained by clicking the Tweet share button.

Step 3: Twitter Bots Play a Game with Twitter Users.
As shown in Table 1, Twitter bots have two strategies to adopt. Depending

on the different strategies taken by different users, the Twitter bots respond with
different strategies.

The Twitter bot has to follow other Twitter accounts first to attract them in
order to increase the number of followers as a consequence. After being followed,
this bot will unfollow that follower to spare the quota of followings and spend
this number to follow another new account. After this bot unfollows an account,
that Twitter account may take a countermeasure to unfollow the bot. Then, this
bot follows back again. The follow and unfollow strategies may be adopted by
the bot and a Twitter account by turns in a couple rounds. We use a multi-stage
game to model this process as shown in Fig. 1.

Step 4: Collect the Data About the Dynamics of Strategies of the
Users.

Every day we check the followers and followees of our Twitter accounts. Then
we draw a trend curve for each of our Twitter accounts to show the changes of
the number of followers over time.

4.2 Twitter Bot Analyzer in the Multi-stage Game

We present the pseudocode in Algorithm 1 which describes the workflow of a
Twitter bot in the multi-stage game. The whole process is divided into two

3 http://abcnews.go.com.

http://abcnews.go.com
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phases. In all the phases, our Twitter bot keeps posting tweets of the news
from different news sections collected from ABC news. After the Twitter bot
starts following other users, we save the friends and followers of the Twitter bot
account into separate files each day. The purpose of the first phase is to attract
attentions of other Twitter users. In the second phase, the Twitter bot plays the
game with other Twitter users by taking the strategies described in the model
as shown in Fig. 1.

The first phase in the whole process is to follow Twitter users, and like
the tweets from those users. With the limits from Twitter, we only follow 1000
accounts in one day, and favorite 1200 tweets per day and one tweet per minute.
Twitter prohibits any aggressive following behavior, therefore we follow Twitter
users with the amount below the limit.

In the second phase, we keep tracking the followers and unfollower in different
stages and assign them into different sets. After waiting a period of time that our
Twitter bot follows all the Twitter users that we have collected, some users follow
back, and others do not. The followers are assigned into set S, and unfollowers
into set S′. The Twitter bot unfollows all of them, which is a strategy decided
in the algorithm. After passing through a date range from d3 to d4, the users
that are still followers are assigned into set S1, and unfollowers into S2. The bot
follows the users in S2 trying to regain their trust. After waiting a period, some
users in set S2 follow back and others do not. Then, we save the followers from
the set S2 to S21, and unfollowers to S22.

The set notations in the model and the algorithm are depicted in Fig. 3.

Fig. 3. Set structure diagram at different stages of the game.

5 Results and Discussion

The Twitter bot analyzers keep tracking the followers of our Twitter bots once
we start the experiment as described in Algorithm 1. Figure 4a and b show the
number of followers of the two Twitter bots changes over time. The figures only
show the records after the Twitter bots finish following all the assigned Twitter
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Algorithm 1. Twitter bot analyzer in the multi-stage follow-unfollow game
Input: Twitter accounts in 5 different categories
Output: Record of friends and followers of the twitter bot in each
day

1: countDays = d0 − 1
2: for each day in a date range [d0, d1] do
3: countDays++
4: Tweet news from different news sections
5: if Total number of followings less than 5000 then
6: Follow each of the Twitter users, 1000 users per day
7: end if
8: Retrieve friends and followers ids
9: end for

10: for each day in a date range (d1, d2] do
11: countDays++
12: Tweet news from different news sections
13: for every minute in a total of 20 hours do
14: Favorite a tweet for each of the Twitter users
15: end for
16: Retrieve friends and followers ids
17: end for
18: for each day in a date range (d2, d3] do
19: countDays++
20: Retrieve friends and followers ids
21: end for
22: Save all followers in set S
23: Save all unfollowers in set S′

24: Unfollow the users in set S′

25: Unfollow the users in set S
26: for each day in a date range (d3, d4] do
27: countDays++
28: Retrieve friends and followers ids
29: end for
30: Save the followers from set S to S1

31: Save the unfollowers from set S to S2

32: Follow the users in S2

33: Retrieve friends and followers ids
34: Save the followers from set S2 to S21

35: Save the unfollowers from set S2 to S22

36: Unfollow the users in set S22

users. Because of the limit from Twitter, each Twitter bot can only follow up to
5, 000 Twitter accounts in total and about 1, 000 per day. It takes 5 days to
follow about 5, 000 Twitter users. Day 0 in Fig. 4 means the 5th day after the
Twitter bots start following Twitter users.

Originally, there are 5, 000 Twitter ids in the list for each of the Twitter bots.
However, in fact, Twitter bot 1 follows 4, 981 users, and Twitter bot 2 follows
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Fig. 4. The number of followers for each Twitter bot changes over time. (a) Twitter
bot 1, (b) Twitter bot 2.

4, 980 users. This is because some of the accounts in the list are suspended or
not used after we build the list, and no one can follow them.

To better show the exact values, we use Table 4 to list the number of users
encompassed in different sets. The definitions of the sets are given in Sect. 4.2
and depicted in Fig. 3. The size of S and that of S′ together are equal to the
total number of Twitter users that a Twitter follows at the beginning of the
experiment. Set S is divided into S1 and S2 depending on if they unfollow after
the Twitter bots unfollow them. If they unfollow, then they are assigned to set
S2, otherwise remain in set S1.
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The first observation is that Figs. 4a and b exhibit almost the same change
pattern for the number of followers. In each figure, there are two curves. One
curve is for the number of followers who follow back, which is denoted as “num-
ber of follow-back followers”. The other one is for the number of followers that
our Twitter bots never follow, with the legend of “number of non-following fol-
lowers”. We find that at first both of the curves increase as time elapses. The
number of non-following followers increases until the Twitter bots unfollow the
Twitter users in set S and S′. In all the follow-back followers which are in set
S, if the Twitter bots unfollow them, they unfollow our Twitter bots immedi-
ately. This is why in the table the size of the set S1 for each bot is zero. This
means that for these users they adopt the strategy “follow” if the adversary has
a strategy “follow”, and respond with an “unfollow” strategy to an “unfollow”
strategy.

An interesting observation is that although Twitter bot 1 favorites the tweets
of other users, the number of followers still shows almost the same change pat-
tern. For both of the bots, the number of the non-following followers keeps
increasing for a short period and then drops. This means that favoriting the
tweets of other users has little effect on the change pattern of the number of
followers.

The second observation is from Table 4, Twitter bot 1 only gains 38 follow-
back followers after following 4, 980 users, and bot 2 gets 43 follow-back followers
after following 4, 981 users. The follow-back ratio is 0.76% and 0.86% for Twitter
bot 1 and 2, respectively. Both ratios are very low. This is not coincident and is
explained by our Twitter follower’s dilemma game model. Most of the Twitter
users do not cooperate and they only want to be followed instead of following
other users.

Table 4. The sizes of different sets at different phases of the game.

Set S S′ S1 S2 S21 S22

Size Twitter bot 1 38 4, 942 0 38 33 5

Twitter bot 2 43 4, 938 0 43 35 8

6 Conclusions

In this paper, we analyze the mechanism on Twitter about users following or
unfollowing others. We propose a two-player game, which is called a Twitter
follower’s dilemma. In this game, each player has two strategies: follow and
unfollow. Then, we design a multi-stage follow-unfollow game.

We also create two Twitter bot analyzers. The two analyzers prove that the
finding from one analyzer is not coincident and furthermore, investigate the effect
from favoriting tweets on the number of followers.

Two Twitter bots show the same change pattern for the number of followers.
Another finding is that for all the follow-back followers, if we unfollow them,
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they unfollow us as a countermeasure. Our results show that the follow-back
ratios are very low. Our results also show that favoriting tweets of other users
has little effect on the number of followers. As a by-product, our results exhibit
the change pattern for the number of non-following followers.

The approach presented in this paper provides a way to analyze and inves-
tigate the Twitter follow-unfollow mechanism and helps to optimize the design
of a social network platform.
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Abstract. Vehicular ad hoc networks (VANETs) promises to enable a
wide-range of safety and efficiency improvements to our roads. To secure
VANETs, they are often designed with authenticated communications
that allows for verification of the sender. In order to enable authenticated
communications without sacrificing user privacy VANET designers often
employ pseudonyms, temporary identifiers that are tied to a single user.
In order to maximize location privacy, vehicles must temporally coordi-
nate pseudonym changes using a mix-zone strategy. However, to be effec-
tive mix-zones either require vehicles to cooperate or have greedy motiva-
tion. Previously, game-theoretic analysis of greedy nodes have developed
equilibrium strategies. However, this work did not consider malicious
Byzantine attackers who only desire to minimize system-wide location
privacy. In this work, we design two Byzantine attackers that target loca-
tion privacy in VANETs. The first, which we call a näıve attacker, never
cooperates. The second, which we call a stealthy attacker, attempts to
minimize system wide location privacy while not being detected. We
simulate both of these attackers and show that an attacker can reduce
location privacy in a mix-zone by up to 12%.

Keywords: VANET privacy · Insider threat · Pseudonyms

1 Introduction

There is increasing interest in intelligent transportation systems (ITS) to improve
highway safety and efficiency. To make ITS a reality, Vehicular Ad-Hoc Net-
works, or VANETs [5,6,14], have been designed to enable vehicles to reliably
communicate for various application including safety systems, like collision detec-
tion systems, and efficiency improvements, such as platooning. As vehicles move
from autonomous to collaborative, VANETs will continue to become increasingly
important [12].

Since VANETs deal with safety critical application, we must consider security
and privacy in their design [11]. In this paper, we are particularly interested in
the challenge of enabling verifiable, authenticated communications while allowing
vehicles, and their passengers, to maintain location privacy [1,2,8,13]. Although
this problem has analogies in WiFi and cellular (GSM, LTE), it differs in a few
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important ways. First, VANETs require sharing real-time sensor and GPS data
to properly function. Second, VANETs require vehicle to vehicle communications
instead of all communications going to a router or basestation [13]. Therefore,
VANETs need to have authenticated communications to other vehicles without
depending on a central controller.

A näıve implementation for authenticated communications could use a com-
bination of public key signatures and unique identifiers. Whenever a vehicle
broadcasts a packet, they would include the signed unique identifier. However, if
a passive adversary can eavesdrop on these packets at multiple locations they can
track IDs and by proxy track the associated owner. This näıve system can lead
to a loss of location privacy which many people would consider unacceptable.

One technique to combat a passive adversary is for vehicles to change their
identifiers to temporary, verifiable identifiers known as pseudonyms [9]. This
allows for a vehicle to not use a static unique identifier the entire time but to
change its pseudonym in order to mitigate passive tracking. However, if a vehicle
changes pseudonyms näıvely their various pseudonyms can be reassociated [3].
To mitigate reassociation attacks, it has been proposed that vehicles coordinate
pseudonym switches to a limited spatial or temporal zone, otherwise known as
a mix-zone [1]. When all vehicles cooperate in a mix-zone, then the maximum
location privacy can be achieved in the system. However, a vehicle may be greedy
and decide to not cooperate to avoid resource-intensive pseudonym changes [8].

Previously, a game-theoretic model was developed that analyzed greedy vehi-
cles in a mix-zone [8]. In this previous work, the authors primarily focused on
selfish vehicles. We modify this work to include an adversarial player, or attacker,
who desire to minimize system-wide location privacy. In this work, we develop
a byzantine attacker that aims to minimize location privacy. In the remainder
of this paper, we model this attacker and then analyze its impact on location
privacy of greedy vehicles.

A näıve implementation of a byzantine attacker may choose to continuously
defect to cause minimum location privacy. However, this implementation could
be detected by an observant defender. We develop a detection scheme by aver-
aging the ratio of observed vs expected cooperating vehicles over times. If this
value ever exceeds a threshold then we trigger an alert to the network operator
or authorities. It is important to note that our detection scheme does not identify
which vehicle(s) is attacking but only that there is an attack occurring.

Lastly, we develop an attack in which a malicious vehicle minimize the loca-
tion privacy of the system while avoiding detection. This attacker adds in a
penalty to correct for the chance of detection and makes decisions accordingly.
We then simulate the näıve attacker, stealthy attacker, and detection algorithm.

To summarize, we make the following contributions in this paper.

– We create a formal game model for the impact of a byzantine attacker on
location privacy in a VANET.

– We create a light-weight detection scheme to identify the existence of potential
attackers.
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– We design a näıve attacker that always defects and a stealthy attacker that
only defects when it is improbable to be detected.

– We analyze our model in a 50-vehicle simulation and develop an optimal
strategy for the stealthy attacker.

– Based on our simulation, we find a single attacker can decrease system-wide
privacy by 0.6% while 5 attackers can decrease location privacy 2.6%.

– Based on our simulation, we also find that an attacker in a single mix-zone
can decrease the potential location privacy in the mix-zone by 12%

Overall, our results demonstrate the potential impact of a Byzantine attacks
against location privacy. This can help guide future research in maintaining
location privacy in a VANET.

The rest of the paper is organized as follows. In the remainder of this section,
we introduce related work in game-theoretic analysis of VANETs. In Sect. 2, we
introduce the system model we build on for modeling mix-zones. In Sect. 3, we
define our defender model and the näıve attacker model. In Sect. 4, we develop
a light-weight detection scheme as well as a stealthy attacker. In Sects. 5 and 6,
we outline important aspects of our simulation and introduce our quantitative
results. Lastly, in Sect. 7, we conclude this paper.

1.1 Related Work

Pseudonym switching and mix-zones have seen significant research including
game-theoretic analysis [4,7–10,13]. Different pseudonym changing approaches
[4] have been evaluated in order to determine problems and challenges that
exist within each strategy. This has included a robust set of metrics to evaluate
location privacy against reassociation attacks [7] and quantitative measure of
location privacy [8]. Furthermore, some of these papers introduce the possible
effects of adding adversaries to the VANET [10,15].

One important aspect of our work is the concept that vehicles will not always
be cooperative. Previously, there have been proposals of greedy vehicles [8]. In
this work, the authors describe a player that makes mix-zone decisions based on
selfish interest instead of altruistic interest. This was counter to many previous
models that explored fully cooperative networks of vehicles.

2 System Model

In this work, we consider a VANET where vehicles use pseudonyms to pre-
serve location privacy. To coordinate pseudonym changes, vehicles use mix-zones,
where sets of vehicles simultaneously change pseudonyms to mitigate reassoci-
ation attacks. When a vehicle in our system enters a mix-zone, they decides to
either cooperate or defect. In this section, we discuss our general model and our
quantitative location privacy formula.
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2.1 General Mixed-Zone Model

Since the number of vehicles on a highway varies widely, we design our model
with an adjustable number of vehicles. We denote the total number of vehicles
in our model as N . During each time step, we use the following process to model
vehicles participating in a mix-zone.

1. To form a mix-zone, vehicles are selected with a Bernoulli probability of pmix.
This results in a number of vehicles between 0 and N entering the mix-zone.
We denote the number of vehicles entering the mix-zone as n.

2. After the vehicles enter the mix-zone, each vehicle independently decides to
cooperate or defect.

3. Cooperating vehicles simultaneously change pseudonyms, making reassocia-
tion difficult.

4. Defecting vehicles take no action and keep their current pseudonym.
5. The vehicles then exit the mix-zone.

This mix-zone model is based on previous work that leveraged game-theory to
optimize a greedy vehicle’s behavior [8]. In Fig. 1, we illustrate this process for
a 20 vehicle network where 10 vehicles enter a mix-zone. Out of the 10 vehicles
in the mix-zone, 7 cooperate and change pseudonyms while 3 vehicles do not
change their pseudonyms.

Fig. 1. In this figure, we illustrate our mix-zone model with a 20 vehicle system. 10
vehicles are selected to enter the mix-zone out of which 7 decide to cooperate.

2.2 Location Privacy Model

In order to assess player strategy in a mix-zone we need a quantitative model of
location privacy. We use the previously developed logarithmic model [8]. Assum-
ing n vehicles cooperate in the mix-zone then

LPM(n) = log2 n∀n ≥ 2, (1)

where LPM represents the location privacy of cooperating vehicles after the
mix-zone. For notational clarity, we denote the last mix-zone location privacy
for vehicle i as LPMi.

We note that if there is a fixed-number of cars in a system then (1) guarantees
an upper bound on location privacy for a vehicle. For example, if there are 50
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vehicles in the system then the upper bound of location privacy for any vehicle is
log2 50 = 5.64. Conversely, the lower constraint on (1), represents the minimum
number of vehicles for a meaningful mix-zone.

Another important aspect of location privacy model is how it degrades over
time. We assume that when a vehicle does not change pseudonyms then they
are more susceptible to being tracked. We model this loss in location privacy as
a constant linear decrease, with a minimum of zero. This means that for each
instance of a mix-zone, regardless of whether or not a vehicle in the network
enters the mix-zone, cooperates or defects, there is a constant loss in location
privacy. We model location privacy loss over time for vehicle i as:

LPLTi(t) = x ∗ (t − ts,i) (2)

where LPLT is the location privacy loss over time, x is a constant for location
privacy loss, t represents the time, and ts represents the last pseudonym change
time. Based on (2) and (1), we define a vehicle i’s location privacy as

LPi(t) = LPMi − LPLTi(t). (3)

3 Greedy Defender and Näıve Attacker Model

In this section, we design two players for our model discussed in Sect. 2. The first
player is a greedy defender that aims to maximize its own location privacy with-
out concern of other vehicles’ location privacy. The second player is an attacker
that aims to minimize system-wide location privacy. In Sect. 4, we extend both
of these players by considering a attack detection scheme.

3.1 Defender Model

We refer to benign vehicles as defenders and assume that they are greedy and
not malicious. This means that defenders aim to maximize their own location
privacy without concern for other vehicles’ location privacy. It is important to
note that we choose our defender strategy with the assumption that all vehicles
are greedy.

Based on previous work [8], the behavior of a greedy vehicle in a mix-zone is
as follows.

1. When a defender enters a mix-zone, it observes the number of vehicles in the
mix-zone and its current location privacy.

2. The defender formulates the potential gain in location privacy based on a
predictive model and the expected decision of the other vehicles.

3. The defender decides whether or not to cooperate in the mix-zone based on
the calculated value. Since the defender is greedy the decision to cooperate
or defect is simply choosing the larger location privacy value.

In our model, the defender’s potential gain formulation is based on three
variables.
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1. The expected location privacy gained from cooperating with n vehicles in a
mix-zone.

2. The current location privacy of the defender before entering the mix-zone,
LPi(t), as defined in (3).

3. The cost it takes to change a pseudonym denoted by Pc.

We define the location privacy of a set of n vehicles cooperate in a mix-zone
in (1). However, the location privacy gained after cooperating in a mix-zone
depends on the number of cooperating vehicles. The defender does not know
this value before making their decision so to make reasoned decisions about
cooperation, they must predict an expected number of cooperating vehicles. This
prediction function should be a probability function that takes into account the
increased benefit to vehicles in large mix-zones. Considering this requirement,
we model the expected probability of cooperation as

EPC(n) =
log2 n

log2 N
+ ψ ∀n ≥ 1, n ≤ N. (4)

EPC represents the expected probability of cooperation of the vehicles in the
system, n represents the number of vehicles that are in the mix-zone, and N rep-
resents the total number of vehicles in the VANET. We define ψ as a correction
factor to account for the average location privacy of all vehicles over all time.

Using EPC(n) we calculate the expected number of cooperating vehicles as

ncoop = EPC(n) ∗ n. (5)

Using (1), we then calculate the expected location privacy after the mix-zone as

ELP = log2 ncoop. (6)

Lastly, there exist costs when changing pseudonyms [8]. This includes the cost
of acquiring new pseudonyms, the cost of updating the routing and addressing
tables of radios, and the cost of remaining silent while inside a mix-zone [8]. We
combine these costs into a single variable, Pc.

We combine these three values to define the defender’s expected payoff func-
tion as:

ELPGi = ELP − LPi(t + 1) − Pc (7)

where ELPGi represents the expected location privacy gained for a vehicle i.
A defender evaluates (7) to determine if they will cooperate. The defender

chooses to cooperate if ELPGi > 0 and defects otherwise. The defender’s actual
location privacy after the switch is defined using (1) and the actual number of
cooperating vehicles, nactual.

3.2 Näıve Attacker Model

For our initial attack model, we consider attackers that aim to minimize overall
system location privacy. We refer to this attacker as a näıve attacker. We consider
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a variable number of attacker vehicles to be able to model attacks where one
attacker attempts to degrade privacy. This also allows us to consider a more
sophisticated attack with multiple participants, either willing or unwilling and
coordinated or uncoordinated. For example we could consider the scenario when
vehicles that are members of a botnet which mount a coordinated attack.

Besides the obvious difference in objective, the attacker differs in scope from
the defending vehicles. While the defender vehicles are greedy and only care
about their privacy, an attacker has a system-wide goal. By lowering the location
privacy, the network becomes more susceptible to location tracking by privacy
violating attacks.

Since the näıve attacker only desires to minimize privacy, they always defect.
We define the expected attacker’s payoff as follows.

ETLPLnaive = (ncoop − a) ∗ (LPM(ncoop) − LPM(ncoop − a)) (8)

where ETLPLnaive represents the total location privacy lost for all cooperating
defenders in the mix-zone with näıve attackers, ncoop is defined in (5), a repre-
sents the number of attacker vehicles that defect in the mix-zone, and LPM is
defined in (1). After the game is played, the actual total location privacy loss is
defined as

ATLPLnaive = nactual ∗ (LPM(nactual + a) − LPM(nactual)), (9)

where nactual is the number of cooperating vehicles, a represents the number of
attacker vehicles that defect in the mix-zone, and LPM is defined in (1).

In Sect. 4, we define a second goal for the attacker to minimize probability
of detection.

3.3 Initial Game Model

Since the näıve attacker will always choose to defect, the initial game is based
soley on the decisions of the greedy defenders. We discuss the impact of the the
näıve attacker in Sect. 6.

4 Detection Protocol and Stealthy Attacker

In this section, we design a detection scheme to look for abnormal behavior in
VANETs. We then expand the player model we presented in Sect. 3 to include
this detection scheme.

4.1 Detection Scheme

To enable the detection scheme, we add a fourth step to the defenders mix-zone
model presented in Sect. 3.1. While exiting a mix-zone, defenders observe how
many vehicles cooperate, nactual, out of the number of vehicles in the mix-zone,
n.
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By comparing the actual and expected number of cooperating vehicles,
nactual and ncoop respectively, we design a lightweight anomaly detection. In
Sect. 6, we show that this scheme can effectively detect the näıve attacker pre-
sented in Sect. 3.2.

The detection scheme requires each defending vehicle to maintain a suspicion
level, S. We denote the suspicion level for car i as Si. After participating in a
mix-zone, the vehicle updates its suspicion formula

Si +=
nactual − ncoop

ncoop
. (10)

After updating the suspicion level, the defender tests whether it is above a thresh-
old Smax. Unless the defenders suspicion level is above the threshold, they have
no knowledge of the existence of an attack. Once an attack is suspected, the
attacker alerts the network operator which can take further action.

Consider the attacker from Sect. 3.2 who always defects. In our model, this
causes a loss of privacy across the whole system since the maximum achieved
privacy of any mix-zone involving the attacker is lower. A defender involved in
this mix-zone may observe a slightly lower than average ratio of cooperate to
defect, but it is likely to be within statistically normal bounds. However, over
time the attacker will be involved in more and more mix-zones. The attackers
involvement, when averaged over multiple defenders eventually causes a statisti-
cally unlikely deviation in the cooperate to defect ration. The choice of suspicion
threshold can be adapted depending on the application.

There are a variety of actions that a network operator can take when an
attack is detected. It is also important that the network operator compares the
alerts from multiple vehicles and mitigates false alarm attacks. However, in this
paper, we do not design the defense action once an attack is detected. While this
detection scheme can detect the näıve attack, we now design a stealthy attacker
that attempts to avoid detection by this scheme.

4.2 Stealthy Attack Model

For our stealthy attacker, we add a second objective to our näıve attack model.
Besides minimizing system-wide location privacy, the stealthy attacker aims to
minimize the probability of detection by defending vehicles in the network. This
second objective is important because a discovered attacker could be decommis-
sioned and not have long term effectiveness.

A stealthy attacker chooses to cooperate in the case when it wants to avoid
being detected by other defender vehicles. Another scenario for an attacker to
cooperate is when the number of vehicles entering the mix-zone is low. Since
an attacker wants to maximize the location privacy loss in a system, it wants
to affect the highest of defender vehicles when it chooses a strategy. Therefore,
cooperating when a low amount of vehicles are in a mix-zone will provide a lower
benefit for defender vehicles than cooperating when a high amount of vehicles
are in a mix-zone.
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Conversely, a stealthy attacker chooses to defect in order to lower the loca-
tion privacy gained by cooperating defender vehicles. However, because defender
vehicles are predicting a certain amount of cooperation, any deviation of an
attacker’s choice in strategy from that of a selfish defender vehicle can raise sus-
picion that there is an anomaly in the network. Stealthy attackers must balance
their mix-zone strategy in order to maximize the privacy loss while remaining
undetected.

We therefore expand the näıve attackers expected payoff function as follows.

ETLPLstealth = (ncoop − a) ∗ (LPM(ncoop) − LPM(ncoop − a)) − D (11)

where D is a value representing the level of possible detection the adversary is
currently facing. The actual payoff for the attacker is represented as

ATLPLstealth = nactual ∗ (LPM(nactual + a) − LPM(nactual)) − D. (12)

4.3 Game Model

In Fig. 2, we show the expected payouts for defenders and stealthy attackers in
our model. We only show a single attacker and defender, however, this can be
trivially expanded to n players. Given previous equations, a formal game model
is created for the attack and defense scenario for the interactions that occur in
a mix-zone.

Defender
Cooperate Defect

Attacker
Cooperate ELPG, 0 LPi(t+ 1), 0
Defect ELPG, ETLPLstealth LPi(t+ 1), ETLPLstealth

Fig. 2. In this figure, we show our formal game model for the stealthy attacker and
defender. This is based on multiple equations including (11), (7), and (3).

5 Implementation

In this section, we describe the implementation and tuning of our simulation for
analyzing our stealthy attacker and detection scheme. We define the following
parameters for our model.

– Total Number of vehicles in the VANET N - The total number of vehicles in
the VANET can be tuned to simulate various real-world scenarios.

– Cost of Pseudonym Change Pc - We estimate the cost of a pseudonym change
as a constant value. The higher the cost of a pseudonym change, the higher
the chance that a defender vehicle will not cooperate in the system due to
the negative effect of the payout.
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– Number of Mix-Zone Rounds tmax - The number of mix-zone rounds that
occur in each simulation. During each round, vehicles enter the mix-zone,
makes a decision on cooperation, and then exits the mix-zone.

– Probability of entering a mix-zone pmix - the probability an individual vehicle
in the VANET enters a mix-zone during a particular time slot. If pmix = .1
and N = 50 then an average of 5 vehicles will enter the mix-zone during each
round. However, the number of vehicles in each mix-zone can vary greatly.

– Location Privacy Loss Constant x - This value represents the constant loca-
tion privacy loss for each vehicle. We assume that if the location privacy of a
vehicle decreases to zero then it remains zero until it enters a mix-zone.

– Probability Error Adjustment ψ - The probability error adjustment represents
a constant offset to the expected cooperation function (4).

– Minimum Number of Vehicles that Enter a Mix-Zone nmin - Since mix-zones
with few vehicles do not increase location privacy, we bound the minimum
number of vehicles in each mix-zone. If the number of vehicles is less than
nmin, the mix-zone is considered invalid.

(a) Pc = 0.3 (b) Pc = 1.0

Fig. 3. In this figure, we show the defender’s strategy based on the number of vehicles
in the mix-zone. We show this with pseudonym change costs of Pc = 0.3 and Pc = 1.0.

5.1 Simulation of Greedy Defenders

We first model the behavior of greedy defenders to determine whether or not a
defender vehicle cooperates or defects in various scenarios. In this model, we set
the variables as shown in Table 1. The main value that we vary is the pseudonym
change cost. In Fig. 3, we show the strategy of greedy defenders with varying
pseudonym change costs. On the x-axis, we vary the number of vehicles in the
mix-zone. If the current location privacy of the defender is in the green area,
then the defender would choose to cooperate. If the current location privacy of
the defender vehicle is in the red area, then the defender would choose to defect.
In Fig. 3a, we show the simulation results with the cost of pseudonym change
set to .3. In Fig. 3b, we show the simulation results with the cost of pseudonym
change set to 1. Since the cost of pseudonym change is higher in Fig. 3b, there
is a considerably larger probability that the defender defects in a mix-zone.
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Table 1. Parameters for greedy defenders without attacker and ψ = 0.

Variable N Pc tmax pmix x ψ nmin

Value 50 0.3 and 1.0 10,000 0.1 0.1 0 5

Fig. 4. In this figure, we show the difference between expected and observed probability
of cooperation with ψ = 0 and no attackers.

5.2 Tuning Greedy Parameters

Next, we derive a value for ψ, the correction factor which equals average location
privacy of vehicles in the system. First, we model a system with only selfish
defender vehicles in the network using the parameters from Table 2. Each vehicle
starts with a random location privacy between zero and the maximum location
privacy. For each round, each vehicle has a chance of pmix to enter the mix-zone.
Each vehicle in the mix-zone evaluates its current location privacy and decides
whether to cooperate. In Fig. 4, we show the variance of expected probability of
cooperation and the actual number of cooperating vehicles with ψ = 0. If ψ is
chosen correctly, it is expected that this value would vary considerably but, on
average, fluctuate around zero. vary considerably from round to round, over time
it should fluctuate around zero. However, with ψ = 0 the actual probability of
cooperation is always greater than the expected to the error trends downwards.
The average error per round 0.021, or 2.1% per round. Based on the initial
simulation, we see the average location privacy of vehicles over time is 1.23.
Because of this error, we derive a value for ψ to mitigate this shift.

Table 2. Parameters for greedy defenders without attacker for tuning ψ.

Variable N Pc tmax pmix x ψ nmin

Value 50 0.3 10,000 .1 .1 varies 5
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We ran the experiment multiple times and observed a small variance of
around .01. To empirically derive ψ, we run multiple simulations and adjust the
error each time until the average probability difference per round is sufficiently
close to zero. In Fig. 5, we show the average variance of actual and expected
probability with ψ = 1.15. In this simulation, the average location privacy of
a vehicle at any given time is approximately 1.15. It is important to note that
the error correction varies according to multiple parameters and would need
recalculated.

Fig. 5. In this figure, we show the difference between expected and observed probability
of cooperation with ψ = 1.15 and no attackers.

Next, we run the simulation 30 times and average the error each round. In
Fig. 6, we show the results for this test and can see that the results tend towards
zero. The notable exception, is during the first rounds. This is due to the location

Fig. 6. In this figure, we show the average over 30 runs of the difference between
expected and observed probability of cooperation with ψ = 1.15 and no attackers.
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privacy initialization averaging around log2 N
2 instead of the stead state average

of 1.15. Therefore, the vehicles are more likely to defect until the system reaches
steady-state.

6 Results

In this section, we simulate attackers against the greedy defender tuned in
Sect. 5.2. We add two variables to our previous model. First, the number of
attackers in the system is denoted by a. Second, the suspicion level for the
detection algorithm is denoted by S. We summarize the values used for our sim-
ulations in Table 3. In the remainder of this section, we first analyze a näıve
attacker and then analyze our stealthy attacker.

Table 3. Parameters for our simulations that include an attacker.

Variable N Pc tmax pmix x ψ nmin a S

Value 50 0.3 10,000 0.1 0.1 1.15 5 1, 3, or 5 0.02, 0.01, or 0.005

6.1 Näıve Attacker

We first analyze the impact of an attacker that always defects. This allows us to
establish a worse case baseline for the impact an attacker can have on location
privacy. In Fig. 7, we plot the impact a group of 1 or 3 attackers, respectively,
have on the system. As stated previously, since the expected location privacy
loss is always positive then the attacker always defects.

(a) a = 1 (b) a = 3

Fig. 7. In this figure, we show the expected location privacy loss caused by a group of
a attackers in a 50 vehicle network.

In Fig. 8, we show the impact a single attacker that always defects has on the
average observed cooperation. This chart has a clear negative trend with about
.8 loss per round, compared to the average of 0 in Fig. 5. We summarize the
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results for similar experiments with 3 and 5 attackers in Table 4. As expected,
the deviation in observed cooperation probability increases as the number of
attackers increases. In Table 4, we also show the impact each näıve attack has on
location privacy. As expected, more attackers in the system equates to a larger
loss in location privacy.

Fig. 8. Graph of Difference of Expected and Actual Probability of Cooperation with
Probability Error Adjustment in a 50 Vehicle Network with 1 Attacker.

Table 4. Difference in actual and expected cooperation with various numbers of attack-
ers in a 50 vehicle network.

Number of attackers 0 1 3 5

Deviation of cooperation (10,000 rounds) −2.148 −82.257 −155.106 −274.080

Average deviation of cooperation per round −0.000 −0.008 −0.016 −0.027

Location privacy impact (10,000 rounds) 0.000 235.177 687.625 1109.522

Average location privacy impact per round 0.000 0.024 0.069 0.111

The trend of näıve attackers causing observable variance in our system
informed our detection scheme design in Sect. 4. We also use these values to
choose suspicion levels, or threshold values for triggering notifications to the
network operator. We choose our values based on Table 4 using the following
intuitions.

– We design a highly suspicious group of defenders to detect a single vehicle
that always defects. Since the average deviation of a single vehicle is −.008,
we choose the threshold at −.005 to allow for a buffer.

– We design a medium suspicious group of defenders to detect when 3 attack-
ers are always defecting. Since the average deviation for three vehicle is −.016,
we choose a threshold of −.01 to allow for a buffer.
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– We design a low suspicious group of defenders to detect when 5 attackers
are always defecting. Since the average deviation for three vehicle is −.027,
we choose a threshold of −.02 to allow for a buffer.

Next, we test whether our detection scheme falsely alarms with no attacker
or misses actual attacks. We simulate the detection scheme with each suspicion
level and various number of attackers 100 times. For each of these scenarios,
we record the number of runs that trigger an alert and summarize this data
in Table 5. We find that there is a 0% false positive rate implying when there
is not an attack there are no alarms triggered. We also find that 5 attackers
are always detected and 3 attackers are detected with the medium and high
suspicion schemes. Lastly, we find that the single attacker is difficult to detect,
only being found 80% of the time with the high suspicion detector.

Table 5. In this figure, we show the detection rate for the simulation with 0, 1, 3, and
5 attackers. This value is averaged over 50 runs, ignoring the initial 100 rounds where
the simulation is stabilizing.

Low suspicion Medium suspicion High suspicion

No Attacker 0% 0% 0%

1 Attacker 0% 4% 80%

3 Attackers 0% 100% 100%

5 Attackers 100% 100% 100%

Table 6. Effect of 1, 3 and 5 attackers on location privacy with optimal defect rate of
0.37 in a 50 vehicle network

Number of attackers Effect on location privacy

1 0.6%

3 1.7%

5 2.6%

6.2 Stealthy Attack

In this section, we analyze the location privacy caused by a stealth attacker.
For these simulations, we use the variables defined in Table 3. First, we consider
the impact of an attacker that chooses to defects with a varying probability. We
simulate each scenario 100 times for 10,000 mix-zone rounds. In Fig. 9, we show
the percentage of attacks that were detected for each combination of defect rate,
suspicion level, and number of attackers. In Fig. 10, we show the average total
location privacy loss for a given defect rate and number of attackers.
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(a) a = 1

(b) a = 3

(c) a = 5

Fig. 9. In this figure, we show the percentage of attacks that go undetected in various
scenarios. This include varying the number of attackers (a) and the probability an
attacker defects.
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Fig. 10. In this figure, we show the total location privacy loss from an idael attacker
in a 50 node network averaged over 100 simulations.

Next, we derive an ideal defect rate for the stealthy attacker. This should
balance minimizing system wide location privacy and simultaneously minimizing
probability of being detected. This equation is expanded as follows from (12):

ATLPLstealth = [nactual∗(LPM(nactual+a)−LPM(nactual))−D]∗(1−q). (13)

Referring back to Eq. (12), in addition, q represents the probability of choosing
the cooperate strategy and 1 − q thus represents the probability of choosing
the defect strategy. There is no representation of the cooperate strategy here as
the payoff for choosing that is zero. From (13), an attacker should maximize its
defect rate without D. For this particular model, D can maximize to nactual ∗
(LPM(nactual+a)−LPM(nactual)) resulting to a ATLPL = 0 when maximized.

The equation for D is as follows:

D = [nactual ∗ (LPM(nactual + a) − LPM(nactual))] ∗ [log10(10 ∗ (1 − q))] (14)

Examining these Eqs. (13) and (14), these equations are combined to obtain
an equation to maximize these requirements. The equation is as follows:

(1 − log10(10 ∗ (1 − q)) ∗ (1 − q) (15)

When finding the maximum point of this equation, it equates to a coopera-
tion rate for the attacker of approximately 63%. That means that the supposed
optimal defect rate for an attacker for maximizing location privacy loss and min-
imizing detecting is approximately 37%. Finally, we run the simulation with the
ideal defect rate of 37%. We average the results over 10 simulations with 10,000
rounds and show the results in Table 6.

7 Conclusion

VANETs can enable considerable improvements in highway safety and efficiency.
However, many of these applications are safety critical so maintaining security
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and privacy should be of the utmost concern. To preserve location privacy var-
ious approaches have been proposed including using temporary identifiers, or
pseudonyms. To maximize pseudonym effectiveness, previous work has proposed
mix-zones which allow for synchronized pseudonym changes.

In this work, we expand previous game-theoretic analysis of greedy nodes in
a vehicular network. We add an insider Byzantine adversary to the mix-zone.
This includes a näıve attacker which aims only to minimize system-wide location
privacy and a stealthy attacker which aims to minimize location privacy without
being detected. In order to analyze the possibility of detection, we also design
and analyze a lightweight detection scheme.

We analyze our model and show that there is strong evidence that an internal
attacker can have a significant impact on decreasing the location privacy of a
VANET. This is true even if a small number of attackers are present. We also
show our detection scheme can detect various attackers but a stealthy attacker
can avoid detection.

7.1 Future Work

There are multiple future directions to expand this work.

Continued Research on Threat Models on Mix Zones. The game-
theoretic analysis in this work ignores spatial locations of mix-zones when mak-
ing decisions about cooperating or defecting. However, an attacker could be
designed in a more robust simulation to attempt to minimize location privacy
using various signals.

Continued Research on Detection Methods. As described in this the-
sis, one possible way to detect a malicious activity is to monitor the predictive
model for any abnormalities. Further research could analyze other types of sig-
nals from vehicles that can indicate malicious behavior. In particular, a record
of pseudonyms could be kept to look for any long-term pseudonym usage.

Implementing the Model in a Real-World System. To further test the
validity of the model and the implementation concepts on real vehicles in a
VANET can help us understand real-world attack surfaces. Further, expanded
scaling of our model to encompass a network with more defenders and attackers
could also provide insights into attacks and detection in real-world systems.
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Abstract. Existing solutions to aggregative games assume that all play-
ers are fully trustworthy for cooperative tasks or, in a worst-case scenario,
are selfish players with no intent to intentionally harm the network. Nev-
ertheless, the need to believe that players will behave consistently exposes
the network to vulnerabilities associated with cyber-physical attacks.
This paper investigates the effects of cyber-physical attacks on the out-
come of distributed aggregative games (DAGs). More specifically, we are
seeking to answer two main questions: (1) how a stealthy attack can
deviate the game outcome from a cooperative Nash equilibrium, and by
doing so, (2) by how much efficiency of a DAG degrades. To this end, we
first show that adversaries can stealthily manipulate the outcome of a
DAG by compromising the Nash equilibrium solution and consequently
lead to an emergent misbehavior or no emergent behavior. This study
will intensify the urgency of designing novel resilient solutions to DAGs
so that the overall network sustains some notion of acceptable global
behavior in the presence of malicious agents. Finally, we corroborate
and illustrate our results by providing simulation examples. Simulations
reveal that the adverse effect of a compromised agent is considerably
worse than that of a selfish agent.

Keywords: Distributed aggregative games · Adversarial environment

1 Introduction

Game theory has been widely and successfully employed in many applications to
model both selfish objectives of participants, as well as their global and common
objectives. Aggregative game is a special type of a game in which the objective
function for each agent depends on the local state of the agent (to fulfill an
individual selfish objective) as well as on an aggregate quantity of the network,
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such as the average or sum of the states (actions) of all agents (to fulfill a com-
mon group objective) [1–7]. Applications span from demand-side management
in smart grids [8–10] to charging coordination of plug-in electric vehicles [11,12],
power and rate control in communication networks [13–15], and economic mar-
kets [16].

Most of the existing solutions to aggregative games employ a central coordi-
nator that receives the decision variable of all the agents, calculates the aggre-
gate decision, and broadcasts it to all agents. The agents then use this aggregate
estimate to minimize their objective functions and consequently find a Nash
equilibrium solution of the game. However, to avoid massive communication
requirement and provide scalability, decision algorithms need to be distributed
in the sense that each agent should take its decision using local information of its
own state and its neighbors’ states. In [17,18], a distributed method is presented
to estimate the aggregate decision and consequently find the Nash equilibrium.
Agents exchange their information with their neighbors to reach consensus on
the aggregate value. The information flow of agents is captured by a graph struc-
ture. Such a game will be referred to as distributed aggregate game (DAG) on
graphs, or simply, DAG, throughout the paper.

Existing Nash equilibrium solutions to DAGs, however, assume that all agents
are fully trustworthy for cooperative tasks or, in the worst-case scenario, are
selfish agents with no intent to intentionally harm the network. Nevertheless,
information exchange on a communication graph in DAGs makes it vulner-
able to malicious cyber-physical attacks and the need to believe that agents
will behave consistently exposes the network to threats associated with cyber-
physical attacks. In the case of a malicious attack, in contrast to selfish agents
with no intent to intentionally harm the system, compromised agents (i.e., agents
that are directly attacked) seek to intentionally maximize the damage inflicted
on the network at all cost. Therefore, a thorough analysis of the outcome of
a DAG in the presence of malicious agents is needed and this paper aims to
take the first step toward that objective. In the paper, we focus on the role of
the attacker and show that it can (1) compromise the Nash equilibrium solu-
tion through a malicious attack on only one agent and significantly degrade
the overall performance of the network, and (2) make the network never reach a
Nash equilibrium solution and thus lead to a non-emergent behavior significantly
affecting the agents’ interactions.

The rest of the paper is organized as follows. Section 2 introduces the basics
of graph theory and DAG on graphs. Vulnerability of Nash equilibrium to the
malicious behavior is discussed in Sect. 3. Simulation results and conclusions are
provided in Sects. 4 and 5, respectively.

2 Preliminaries

This section introduces some basic concepts of graph theory and formulates the
distributed aggregative games (DAGs) problem.
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2.1 Graph Theory

A directed graph (digraph) is a pair G = (VG , EG) where VG = {α1, α2, . . . , αN}
is a set of N nodes and EG is a set of edges. A typical element of EG is denoted
(αi, αj), which is viewed as an edge connecting αi to αj . The corresponding
adjacency matrix is denoted by E = [aij ] with weights aij > 0 if (αj , αi) ∈ EG ,
and aij = 0 if (αj , αi) /∈ EG and aii = 0 for all i = 1, 2, . . . , N . The in-degree
of node αi is di(αi) =

∑N
j=1 aij . The diagonal in-degree matrix D is defined

as D = diag{di(αi)}. The graph Laplacian matrix is defined as L = D − E.
Graph G is strongly connected if αi and αj are connected for all distinct nodes
αi, αj ∈ VG . A graph is undirected if there is a directed path from αi to αj , then
there is a directed path from αj to αi.

2.2 Aggregative Games

An aggregative game is modeled as a non-cooperative game being played among
a set of agents N = {1, . . . , N}. Agent i takes action ui to minimize its own
objective function, which is dependent on the aggregate value (e.g., summation
or average) of all agents.

The aggregate value (sum) of all agents is

ū =
N∑

j=1

uj (1)

Defining

ū−i =
N∑

j=1,j �=i

uj (2)

gives
ū = ui + ū−i (3)

Then, the objective of agent i is given by [19]

minimize Ji(ui, ū)
subject to uli ≤ ui ≤ uui

(4)

where Ji is the cost function of agent i and uli , uui
are allowable decision bounds

for agent i. One example that fits in this framework is demand side management
in the level of consumers for which the cost function of agent i is given as [20]

Ji(ui, ū) = di(ui − udi
)2 + l(ū)ui (5)

where the aggregate value ū is the sum of the power consumption of all agents,
and udi

is the nominal energy schedule required to provide the desired level
of comfort for the consumer. Moreover, l(ū) is an increasing price function as a
function of the aggregate value of power consumption. The first term in this cost
function models the curtailment cost that each agent encounters for deviating
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from its state of comfort (the selfish objective) and the second term models the
cost encounters for deviating from the optimal group behavior (the aggregate
group objective).

The most common solution concept for an aggregative game is the Nash
equilibrium solution. Letting the aggregate decision to be the sum value, the goal
of the dynamic aggregative game is to assure that the result of minimization is
Nash equilibrium, defined as follows [21].

Definition 1. (Nash equilibrium:) An N-tuple of policies {u∗
1, . . . , u

∗
N} is said

to form a Nash equilibrium for an N-agent games if

Ji(u∗
i ,

1
N

u∗
i +

1
N

ū∗
−i) ≤ Ji(ui,

1
N

ui +
1
N

ū∗
−i), ∀ui, i = 1, . . . , N (6)

and the N-tuple {J∗
1 , . . . , J∗

N} denotes the Nash equilibrium outcome of the N-
agent games.

In most of the existing solutions to aggregative games, a central coordinator
receives the decision variable of all the agents, calculates the aggregative decision
ū, and broadcasts it to all agents. However, to avoid massive communication
requirement and provide scalability, decision algorithms need to be distributed
in the sense that each agent should take its decision using local information of its
own state and its neighbors’ states. In [17,18], a distributed method is presented
to estimate the aggregate decision and consequently find the Nash equilibrium.
Agents communicate over a communication network specified by an undirected
graph to estimate the aggregate decision. The aggregate decision can be found
in a distributed fashion so that each agent exchanges its aggregate estimate with
its own neighbors on the graph to achieve consensus on the aggregate decision.

Let Ui be the estimation of the aggregate decision for agent i. For the cost
function (5), a distributed protocol can be designed as follows for agent i based
on its own decision variable ui and its estimate of the aggregate value [22]

U̇i = −Ui −
N∑

j=1

aij (Ui − Uj) −
N∑

j=1

aij (wi − wj) + Nui (7a)

ẇi =
N∑

j=1

aij (Ui − Uj) (7b)

u̇i = −αi(2di(ui − udi
) + li(Ui) + ui

∂li(Ui)
∂Ui

) (7c)

where αi is a fixed positive parameter and wi is an intermediate variable.

Remark 1. Note that the cost function (5) only shows up in (7c) and our fol-
lowing analysis is not limited to this type of cost function. In fact, as shown
later, (7a), which is used to estimate the aggregate value, is independent of the
cost function and can be adversely affected by the attacks, and consequently
affect the decision making done in (7b). Moreover, under some conditions on the
cost function, the existence of the Nash equilibrium of the aggregative game is
guaranteed (See Assumption 1 in [19]).
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Theorem 1. Consider N agents with cost function defined in (5). Let their

actions be updated based on (7a), (7b), (7c). Then, Ui →
N∑

i=1

ui and the agents

reach a Nash equilibrium.

Proof. See [22].

Remark 2. Distributed consensus algorithms over graphs, however, are vulnera-
ble to cyber-physical attacks [23–32]. If agents are not empowered with built-in
resilient functionalities, sophisticated attacks can be intentionally designed by
an intruder to maximize the damage to the network and prevent the multi-
agent system from accomplishing a desired emergent behavior. The attacker can
leverage a single compromise into becoming a network-wide compromise; intact
agents are not immune from disruption by attacks on compromised agents.

3 Vulnerability of Nash Equilibrium of DAG to Malicious
Behavior

In this section, we analyze the effects of malicious behavior on the outcome of
the aggregative games.

Before proceeding, we need the following definitions.

Definition 2. Agent i is called intact agent if it is not directly under attack.

Definition 3. Agent i is called compromised agent if it is directly under attack
and broadcasts disrupted information about its estimation of the aggregate value,
i.e. Ui, to its neighbors.

Definition 4. Agent i is called selfish agent if it broadcasts the correct infor-
mation about the estimation of the aggregate value, Ui, to its neighbors, but does
not update its action ui and choose it guided by its own selfish objective.

Definition 5. The matrices L̄ ∈ RN−1×N−1 and L ∈ RN−M×N−M are sub-
graphs of Laplacian matrix L ∈ RN×N obtained by removing one node and M
nodes, respectively.

Definition 6. The diagonal matrix G = diag[g1, . . . , gN−1] is called pinning
matrix and gi �= 0 if there is a edge between node i (intact node) and node N
(compromised node), otherwise gi = 0.

Remark 3. Note that a selfish agent only cares about its own selfish objective
and does not care about the global group objective. However, in contrast to a
compromised agent, it has no intention to harm the network.

Theorem 2. Let

Zi =
N∑

j=1

aij (wi − wj) (8)
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with wi defined in (7a), (7b), (7c). Then
N∑

i=1

Zi = 0, and consequently, one has

N∑

i=1

Ui → N
N∑

i=1

ui for (7a), (7b), (7c).

Proof. Since the graph is undirected, if agent i communicates wi to agent j (and
consequently Zi has wi − wj component,) agent j communicates wj to agent i
(and consequently Zj has wj − wi component). Therefore, for every wi − wj ,

there is a corresponding wj − wi that cancels it out in
N∑

i=1

Zi and consequently

N∑

i=1

Zi = 0. Now, in the steady state U̇i → 0 and Ui = Uj ∀j. Thus, for (7a), one

has

Ui → −
N∑

j=1

aij (wi − wj) + Nui (9)

Using the fact that
N∑

i=1

Zi = 0, this results in

N∑

i=1

Ui → N

N∑

i=1

ui (10)

This completes the proof.

Condition (10) is a necessary condition under which the agents reach consen-

sus on summation, i.e. Ui →
N∑

i=1

ui. In the following, it is shown that the attacker

can cause violation of this condition and consequently results in a wrong con-
sensus or no consensus at all, and thus adversely affects the effectiveness of the
games solution. It is also shown that if one agent in the graph is a compro-
mised agent and does not update its estimation about the aggregate value, the
compromised agent acts as a leader and the aggregate value of all other agents
reach consensus on its corrupted and wrong value, regardless of agents’ actions.
If more than one agent are compromised, then it is shown that agents do not
reach consensus on a single value, but different values within the convex hull
of compromised agents. Finally, it is also shown that this single compromised
agent compromises the Nash solution and can either harm the agents’ comfort
level by consuming less than they are allowed to or significantly increase the
price by consuming more than they have to for the case of demand response
management.

Lemma 1. Suppose A ∈ Rn×n satisfies A+AT < 0 and B ∈ Rn×n is invertible.
Then, the matrix

H =
[

A BT

−B 0

]

(11)

is Hurwitz.
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Proof. See [33].

Theorem 3. Suppose that agent N is a compromised agent and does not update
its estimation about the aggregate value, i.e. UN (t) = U. Then, the aggregate
values in (7a), (7b), (7c) converge to U, regardless of the actions of all the
agents, i.e, ui ∀i = 1, . . . , N .

Proof. The distributed protocol (7a), (7b), (7c) in the presence of one compro-
mised agent can be rewritten as

U̇i = − Ui − (
N−1∑

j=1

aij (Ui − Uj) + gi (Ui − U))−

(
N−1∑

j=1

aij (wi − wj) + gi (wi − w)) + Nui (12a)

ẇi =
N−1∑

j=1

aij (Ui − Uj) + gi (Ui − U) (12b)

u̇i = −αi(2di(ui − udi
) + li(Ui) + ui

∂li(Ui)
∂Ui

) (12c)

where gi is defined in Definition 6, and U and w are the constant values broad-
casted by the compromised agent.

Define error quantities as Ūi(t) := Ui(t) − U and W̄i(t) := wi(t) − w. The
error dynamics in compact form are given as

[
˙̄U(t)
˙̄W (t)

]

=
[−I − (L̄ + G) −(L̄ + G)

L̄ + G 0

] [
Ū(t)
W̄ (t)

]

+
[−1U + Nu(t)

0

]

(13)

where Ū = [Ū1, . . . , ŪN−1]T , W̄ = [W̄1, . . . , W̄N−1]T , and u = [u1, . . . , uN−1]T .
Define

K(t) = −1U + Nu(t) (14)

The transfer function from Ū(t) to K(t) is given as

T (s) =
Ū(s)
K(s)

= s[s2I + (I + (L̄ + G))s + (L̄ + G)2]−1 (15)

Note that L̄ + G is positive definite and thus can be written as L̄ + G =
Q Λ QT with eigenbasis Q = [q1, . . . , qN−1] corresponding to real eigenvalues
Λ = diag[λ1, . . . , λN−1] with λj > 0 ∀j = 1, . . . , N − 1. Using this fact, the
transfer function (15) can be rewritten as

T (s) =
Ū(s)
K(s)

=s[QT (s2I + (I + Λ)s + Λ2)Q]−1

=
N−1∑

j=1

s

s2I + (I + λj)s + λj
2 qj

T qj (16)
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Using (16), Ū(s) becomes

Ū(s) = T (s)K(s) = (
N−1∑

j=1

s

s2I + (I + λj)s + λj
2 qj

T qj)
−1U + Nu

s
(17)

Using Lemma 1 for (13), which shows that T (s) is stable, and the Final Value
Theorem, one has

lim
t→∞ Ū(t) = lim

s→0
sŪ(s) = lim

s→0
sT (s)K(s) = 0, (18)

which results in
Ui(t) → U (19)

This completes the proof.

Remark 4. One might argue that if a compromised agent does not update its
estimate of the aggregate value, it can be identified as a frozen agent and ignored
by its neighbors. However, a compromised agent can for example change its
update law to ẋN = b exp(−a t), xN (0) = U. It can be shown that, in this case,
agents’ estimates of the aggregate value will eventually converge to U + b, while
the compromised agent is not frozen.

Theorem 4. Let node N be a compromised agent. Then, on convergence, one

has
N∑

i=1

Ui �→ N
N∑

i=1

ui. Therefore, Ui → U �=
N∑

i=1

ui.

Proof. The equivalence of Zi that shows up in (7a) and defined in Theorem1 in
the presence of one compromised node is

N−1∑

j=1

aij (wi − wj) + gi(wi − w) (20)

where w is the value of the internal estimation variable of the compromised node.

It was shown in Theorem 2 that
N∑

i=1

N∑

j=1

aij (wi − wj) = 0. Letting agent N to

be the compromised agent and broadcasting w, and ignoring the information it
receives from its neighbors, one has

N−1∑

i=1

(
N−1∑

j=1

aij (wi − wj) + gi(wi − w)) =
N−1∑

i=1

gi(wi − w) �= 0 (21)

On the right-hand side of (21), the information flowed from neighbors of the
compromised agent is ignored since it does not listen to its neighbors.

At the steady state, (12a), (12b), (12c) satisfies

N−1∑

i=1

Ui = −
N−1∑

i=1

(
N−1∑

j=1

aij(wi − wj) + gi(wi − w)) + N

N−1∑

i=1

ui (22)
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Considering (21) in (22) and adding UN = U to both sides of (22) result in

N∑

i=1

Ui = −
N−1∑

i=1

gi(wi − w) + N
N−1∑

i=1

ui + U (23)

Since in the steady state, uN �= 1
N (−

N−1∑

i=1

gi(wi − w) + U), then (23) results in

N∑

i=1

Ui �→ N
N∑

i=1

ui. On the other hand,
N∑

i=1

Ui = N
N∑

i=1

ui is a necessary condition

for Ui =
N∑

i=1

ui. Therefore, Ui �→
N∑

i=1

ui and this completes the proof.

Theorem 5. Suppose that more than one agent in the network are compromised
and do not update their estimation about the aggregate value. Then, the aggregate
values in (7a) converge to a convex hull spanned by the value of the compromised
agents regardless of the actions of other agents.

Proof. The distributed protocol (7a), (7b), (7c) in the presence of multiple com-
promised agents can be rewritten as

U̇i = −Ui − (
N−M∑

j=1

aij (Ui − Uj) +
M∑

k=1

gki (Ui − Uk
0))−

(
N−M∑

j=1

aij (wi − wj) +
M∑

k=1

gki (wi − wk
0)) + Nui (24a)

ẇi =
N−M∑

j=1

aij (Ui − Uj) +
M∑

k=1

gki (Ui − Uk
0) (24b)

u̇i = −αi(2di(ui − udi
) + li(Ui) + ui

∂li(Ui)
∂Ui

) (24c)

where M is the number of compromised agents, Uk
0 , k = 1, . . . , M is the constant

values broadcasted by the compromised agents, and gki �= 0 if there is a direct
edge between node i and compromised node k, and gki = 0 otherwise.

The distributed protocol (24a) and (24b) in compact form are written as

U̇ = −U −
M∑

k=1

Hk (U − 1N−M ⊗ Uk
0)−

M∑

k=1

Hk (w − 1N−M ⊗ wk
0) + Nu (25a)

ẇ =
M∑

k=1

Hk (U − 1N−M ⊗ Uk
0) (25b)
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where

Hk =
L
M

+ Gk

and

Gk =

⎡

⎢
⎢
⎢
⎣

gk1 0 0 0
0 gk2 0 0

0 0
. . . 0

0 0 0 gkN−M

⎤

⎥
⎥
⎥
⎦

It is shown in [34] that the convex hull spanned by leaders is given as

C =
M∑

k=1

[[( M∑

r=1

Hr

)−1

Hk 1N−M

]

⊗Uk
0

]

(26)

Define error quantities as Ui := Ui−C and Wi := wi−w̄. The error dynamics
in compact form are given as

[
U̇(t)
Ẇ(t)

]

=
[−I − H −H

H 0

] [
U(t)
W(t)

]

+
[−1C + Nu(t)

0

]

(27)

where U(t) = [U1(t), . . . ,UN−M (t)]T , W(t) = [W1(t), . . . ,WN−M (t)]T , and H =
M∑

k=1

Hk.

Introduce
K(t) := −1C + Nu (28)

The transfer function from U(t) to K(t) is given by

T(s) =
U(s)
K(s)

= s[s2I + (I + H)s + H2]−1 (29)

Similar to Theorem3, the transfer function (29) can be rewritten as

T(s) =
N−M∑

j=1

s

s2I + (I + ηj)s + ηj2
pj

T pj (30)

where ηj , j = 1, . . . , N − M are the eigenvalues of matrix H, and pj are the
corresponding eigenvectors.

Using (15), U(s) is defined as

U(s) = T(s)K(s) = (
N−M∑

j=1

s

s2I + (I + ηj)s + ηj2
pj

T pj)
−1C + Nu

s
(31)

Using Lemma 1 and the Final Value Theorem, one has

lim
t→∞ U(t) = lim

s→0
sU(s) = lim

s→0
sT(s)K(s) = 0, (32)
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which results in
Ui → C (33)

This completes the proof.

Remark 5. The compromised agents might be able to collude and communicate
only with each other to reach consensus on a compromised value. This way,
compromised agents will update their values to avoid being identified as frozen
agents and the estimation of all agents will reach consensus on the consensus
value of compromised agents.

Theorem 6. Consider the aggregative game with cost function (5) and update
law (7a), (7b), (7c), with the setting of demand side management. Let u∗ =
(u∗

1, u
∗
2, . . . , u

∗
N ) be the Nash equilibrium solution to the game, when there is

no compromised agent. Assume now that agent N does not update its value and

broadcast U �= U∗ =
N∑

i=1

u∗
i . Then, the agents reach a compromised Nash solution,

and

(1) if U >> U∗, the level of comfort of the agents will be adversely and signifi-
cantly harmed.

(2) if U << U∗, the agents will be misled to increase their consumption and the
price will adversely be increased.

Proof

(1) It was shown in Theorem 4 that Ui ∀i = 1, . . . , N −1 converge to U, regard-
less of agents’ actions. Therefore, in convergence, (7a)–(7c) actually mini-
mize

Ji = di(ui − udi
)2 + l(U) ui (34)

Since l(U) is now independent of actions of other agents, they reach even-
tually their best response, which is decoupled from actions of other agents
and is affected only by the action of the compromised agent. In the most
extreme case, if U >> U∗, l(U) = lmax for all agents and then, (34) becomes

Ji = di(ui − udi
)2 + lmax ui (35)

Therefore, agents will misleadingly think that the overall consumption and
thus the price are high and take actions to minimize it by minimizing their
comfort level.

(2) The same as (1), l(U) is independent of actions of agents and is only con-
trolled by the compromised agent. Agents will misleadingly think that the
overall consumption and consequently the price are low and thus move
toward maximizing their comfort levels. In the most extreme case,

Ji = di(ui − udi
)2 + lmin ui (36)

This will significantly increase their price.



Distributed Aggregative Games on Graphs in Adversarial Environments 307

Remark 6. If there is more than one compromised agent, as shown in Theorem5,
agents do not reach consensus on the aggregate value and their estimations
on the aggregate value converge to different values within the convex hull of
compromised agents’ values. In this case, the same as Theorem 5, one can show
that the actions of agents are decoupled and l(ū) is only affected by compromised
agents. In fact, agent i on convergence minimizes

Ji = di(ui − udi
)2 + l(Ci)ui (37)

where Ci ∈ C and l(Ci) only depends on the compromised agents, but it is
different for all agents. Therefore, the attackers can adversely affect comfort
level of some of the agents and the price of some other agents at the same time.

Remark 7. Note that in the presence of an attack, if agent i cares mostly about
the price, i.e. di << 1 in (5), then if U >> U∗, it will choose its minimum
allowed action, which minimizes its comfort level. On the other hand, if agent
i is selfish, i.e. di >> 1, it will not be affected by the attack. Moreover, if the
compromised agent broadcasts a time varying signal such as a sinusoidal, agents
will never reach an emergent behavior and their actions will fluctuate and not
reach a steady state.

4 Simulation Results

In this section, we consider 5 agents that are communicating with each other
through an undirected graph shown in Fig. 1. Each agent optimizes the cost
function (5). Figure 2 shows the estimation of the aggregate value for all agents
in the absence of compromised agents in the network. Figure 3 shows the actions
of all agents in the absence of an adversary. It can be seen that from these results
that all agents estimate the same aggregate value, and this aggregate value in
Fig. 2 is the actual summation of the actions of agents in Fig. 3.

Fig. 1. Communication network between agents

Now, we consider the cases with compromised or selfish agents.
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Fig. 2. Estimation of the aggregate value by all agents in the absence of an adversary
in the environment

0 2 4 6 8 10 12 14 16 18 20
Time (Second)

0

10

20

30

40

50

60

Ag
en

ts
' a

ct
io

ns

u1
u2
u3
u4
u5

Fig. 3. The actions of all agents in the absence of an adversary

4.1 Presence of One Compromised Agent in the Network

In the scenario considered here, we assume that Agent 4 is a compromised agent
and does not listen to its neighbors about the aggregate value. This agent always
sends a fixed value 500 to its neighbors. Figure 4 shows that the estimates of all
agents of the aggregate value converge to the value of the compromised agent,
regardless of their actions. The actions of all agents in the presence of the com-
promised agent are shown in Fig. 5. These figures corroborate the results of
Theorems 3 and 4. It is obvious that, compared to Figs. 2 and 3, the actions of
agents are significantly affected by the compromised agent and their summation
is not equal to the estimated aggregate value.
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4.2 Presence of Multiple Compromised Agents in the Network

Here we assume that Agents 3 and 4 are compromised agents. Figures 6 and 7
show that the estimate of the aggregate value for all agents converge to different
values within the convex hull spanned by the compromised agents. It can be seen
that, compared to Fig. 3, the actions of agents are affected by the compromised
agents.

4.3 Presence of a Selfish Agent in the Network

In this scenario, we assume that Agent 3 just cares about its selfish comfort
objective and keeps its power consumption at 30 for all the time. Figures 8 and
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Fig. 4. Estimation of aggregate value by all agents in the presence of one compromised
agent
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Fig. 5. The actions of all agents in the presence of one compromised agent
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Fig. 6. Estimation of the aggregate value by all agents in the presence of multiple
compromised agents
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Fig. 7. The actions of all agents in the presence of multiple compromised agents

9 show the estimates of the aggregate value and all agents’ actions, respectively.
One can see that the estimates of the aggregate values converge to summation
of the actions of all agents and, compared to Fig. 3, the actions of the agents
except the selfish one do not change.
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Fig. 8. Estimation of the aggregate value by all agents in the presence of a selfish agent
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Fig. 9. The actions of all agents in the presence of a selfish agent

5 Conclusion

We have analyzed, in this paper, the adverse effects of malicious behavior on
the Nash solution of distributed aggregative games (DAGs) on graphs. We have
shown that the game solution can reach a consensus value that does not depend
on agents’ actions, and actually depends only on the broadcast value of the
compromised agent. This study intensifies the urgency of empowering the agents
with built-in resilient functionalities to decrease the damage to the network in
the presence of unexpected behaviour. The next step would be to design resilient
protocols to assure that all agents in the network operate in an acceptable level
of functionality in the presence of cyber attacks.
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21. Başar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. SIAM, Philadel-
phia (1999)

22. Ye, M., Hu, G.: Game design and analysis for price-based demand response: an
aggregate game approach. IEEE Trans. Cybern. 47, 720–730 (2017)

23. Teixeira, A., Sandberg, H., Johansson, K.H.: Networked control systems under
cyber attacks with applications to power networks. In: Proceedings of the 2010
American Control Conference, pp. 3690–3696, June 2010

24. Sundaram, S., Hadjicostis, C.N.: Distributed function calculation via linear itera-
tive strategies in the presence of malicious agents. IEEE Trans. Autom. Control
56, 1495–1508 (2011)

25. Pasqualetti, F., Bicchi, A., Bullo, F.: Consensus computation in unreliable net-
works: a system theoretic approach. IEEE Trans. Autom. Control 57, 90–104
(2012)

26. Pasqualetti, F., Drfler, F., Bullo, F.: Attack detection and identification in cyber-
physical systems. IEEE Trans. Autom. Control 58, 2715–2729 (2013)

27. Zhu, M., Martnez, S.: On the performance analysis of resilient networked control
systems under replay attacks. IEEE Trans. Autom. Control 59, 804–808 (2014)
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Abstract. Even though players in a game optimize their goals by play-
ing an equilibrium, the perceived payoff per round may (and in most
cases will) deviate from the expected average payoff. For the example
of loss minimization, an undercut of the expected loss is unproblematic,
while suffering more than the expected loss may disappoint the player
and lead it to believe that the played strategy is not optimal. In the worst
case, this may subsequently cause deviations towards seemingly better
strategies, even though the equilibrium cannot be improved in general.
Such deviations from the utility maximization principle are subject of
bounded rationality research, and this work is a step towards more accu-
rate game theoretic models that include disappointment aversion as an
additional incentive. This incentive necessarily creates discontinuities in
the payoff functionals, so that Nash’s classical equilibrium theorem is
no longer applicable. For games with disappointment aversion (defined
in this work) the existence of equilibria can nonetheless be shown, i.e.,
we are able to find Nash equilibria that comply with disappointment
aversion.

Keywords: Game theory · Multiobjective games · Disappointment
Endogenous-sharing rules · Bounded rationality

1 Introduction

Consider a standard security game as being a competition between a defender
and an attacker, where the defender aims to minimize losses caused by the
attacker. If the model is incomplete in the sense that the defender knows the
attacker’s action space but is unaware of the attacker’s payoff structure, we may
substitute this information by assuming the attacker’s intentions to be exactly
opposite to the defender’s aims. Formally, we define the attacker’s utility u2 as
u2 := −u1, where u1 is the defender’s payoff function, and thus create a zero-sum
game in this setting of incomplete information. It is easy to show that the value
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of the so-constructed zero-sum game bounds the outcome of the actual bi-matrix
game (with unknown payoff to the attacker), provided that the defender plays
a zero-sum Nash equilibrium strategy. Thus, such strategies are called security
strategies [17], and we shall call the respective game a security game in our con-
text (though the term has a much wider meaning including many further game
models with security applications).

A typical use-case for a security game is to estimate the amount of prepara-
tion against worst-case scenarios. In risk management, experienced disappoint-
ments can influence preparedness for expected incident scenarios. Consider a
critical infrastructure (CI) which is known to potentially fall victim to certain
attacks or experience natural disasters (fire, floods, etc.). If the CI risk man-
agement’s employs an optimized control of defensive resources, which can be
described through a game theoretic model (e.g., [1,2,13,14,18] to name only a
few), then the expected impact is what the CI provider will prepare for. This
optimal, yet worst-case expected impact can be obtained from a game theoretic
model which sets the bar for the preparations to be undertaken. Disappointment
occurs when the actual damage suffered, despite optimal (equilibrium) control
measures, exceeds the expected damage we were prepared for. Since the infras-
tructure is “critical”, it is a natural requirement to minimize the chances of
such an event, i.e., the case that despite all preparation, the damage is still such
that we CI cannot recover any more. Practically, this is exactly what insurances
are for, where the amount is set sufficiently high to cover the worst among the
expected scenarios. If this is too low (manifesting itself as the event of a disap-
pointment in the game), the insurance client may suffer irrecoverable losses.

In playing a security strategy, the defender is assured to never suffer more
damage than measured by the value of the zero-sum security game. Thus, the
residual damage under this best worst-case defense is what we would take out an
insurance for. However, when considering repeated games, the saddle-point value
is only an average value, and we will necessarily encounter rounds with higher
and lower payoffs than the expected value. For security games about minimizing
losses, this means that a security strategy can only bound the average loss;
we will henceforth call the event of losing more than expected disappointment.
Hence, when we conclude an insurance contract covering the expected maximal
damage under worst-case attack scenarios, disappointment is the event where the
insurance lot would be insufficient to cover the damage. Suffering from such not
fully recoverable damage too often, the defender may not “survive” on the long
run. For many utility provisioning infrastructures, such as water supply or power
networks, the matter is even more crucial, by definition of the infrastructure as
critical.

Therefore, in addition to minimizing the losses themselves, the likelihood
of disappointment, the disappointment rate, should be minimized too. Obvi-
ously, solely minimizing the disappointment rate itself does not make sense,
since avoiding disappointment is trivially done by preparing for maximal dam-
age in first place (i.e. no scenario can ever cause more damage in the game
model). Hence, disappointment aversion is always connected to some “primary”
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goal, and equilibria with disappointment aversion are always a matter of multi-
criteria optimization.

The main obstacle, which we will expose later, lies in the possible discon-
tinuities that incorporating disappointment in the game payoff functions may
introduce; these discontinuities render classical results inapplicable to study the
existence of equilibria. This is the technical difficulty explored in this work, for
which we propose several solutions.

1.1 Related Work

Several approaches exist to describe disappointment when playing games. In a
well-known classical example, Kahneman and Tversky [9] observed that in a one-
shot game (lottery), a majority of players prefer 3, 000$ for sure over an 80%
chance of receiving 4, 000$ (and a 20% chance at nothing), whereas a majority
prefer a 20% chance at 4, 000$ over a 25% chance at 3, 000$. Bell [4] was the
first to explain this phenomenon using the term disappointment. In his Bernoulli
model, the player wins x$ with probability p and y$ with probability (1 − p).
The expectation is px + (1 − p)y and the disappointment in receiving y$ is
modelled via Disappointment = d(px + (1 − p)y − y) = dp(x − y), i.e. it is
directly proportional (with constant d > 0) to the discrepancy between actual
and anticipated performance and the relation between economic payoff and dis-
appointment is linear and additive. Inman, Dyer and Jia [8] generalized this
concept to decision problems with more than two outcomes. The significance of
Kahneman and Tversky’s lottery for security is its similarity to choice situations
about security precautions to be implemented: if “protection A” is weaker than
“protection B” but A comes with deterministic guarantees over the mere proba-
bilistic assurances of B, then the practical choice may be guided by anticipated
disappointment. In applications of game theory for optimized resource planning
(e.g., [14]), practical choices may be more accurately be reflected by considering
disappointment aversion.

Decision making in the context of disappointment (aversion) has also been
investigated in [5], where disappointment is measured as a strictly increasing
function in the difference to the expected utility. In [6], a disappointment met-
ric is used to evaluate expert algorithms that quickly learn effective strategies
in repeated games. In this setting, minimizing disappointment is equivalent to
maximizing payoffs.

2 Preliminaries and Definitions

In the following we will use the notation Γ = (I, (Si)i∈I , (ui)i∈I) for a game
where I = {1, . . . , n}, n ∈ N denotes a finite index set representing players 1 to
n, (Si)i∈I is the strategy space and (ui)i∈I is the set of utility functions.

We let players have finite sets of strategies denoted as PSi (pure strategies)
for the i-th player. Mixed strategies are probability distributions supported on
a finite set PSi, all of which constitute the set, i.e., simplex, Si := Δ(PSi)



Disappointment-Aversion in Security Games 317

for the i-th player. Using the standard notation PS−i, S−i to denote the pure,
resp. mixed, strategies of player i’s opponents (all embodied within a single large
vector), we let the utility functions u i be vector-valued mappings from Si×S−i to
Rd, with d ≥ 1 and the j-th coordinate in u i be denoted as u

(j)
i : Si ×S−i → R.

Accordingly, vectors will hereafter appear in bold lower-case letters, sets and
random variables will be uppercase normal font letters. If the utilities are all
scalar-valued (d = 1), we simply speak about a game, as opposed to a multi-
objective game (MOG) having at least one player with at least two goals to
optimize. In the case of vectors u , v ∈ Rd, we write u < v to mean ui < vi for
all i = 1, 2, . . . , d. The complement relation u ≥1 v means the existence of at
least one index i0 for which ui0 ≥ vi0 , no matter what the other components do.
The usual Nash equilibrium condition, rephrased in terms of ≥1 for minimizing
players, then reads as: for each player i,

u i(x ,x ∗
−i) ≥1 u i(x ∗

i ,x
∗
−i) for all x ∈ Si. (1)

As usual, this expresses that any unilateral deviation from the equilibrium x ∗
i

for the i-th player would cause a suboptimal payoff in at least one of its goals
(by the ≥1-relation), even though other payoffs may be improved (in the sense of
decreased, since the player is minimizing). It is easy to see that (1) boils down to
the standard condition if the payoff is scalar-valued. Any mixed strategy profile
satisfying condition (1) is called a Pareto-Nash equilibrium.

For the sake of generality we shall consider games with a finite number of
players yet allow each to have an infinitude (up to a compact continuum) of
strategies. Nash’s classical result has been extended towards this direction by I.
Glicksberg [7]:

Theorem 1 (Glicksberg’s theorem). If for a game in normal form, the strat-
egy spaces are nonempty compact subsets of a metric space, and the utility-
functions are continuous w.r.t the metric, then at least one Nash equilibrium in
mixed strategies exists.

Remark 1. The requirement of continuous w.r.t the metric was later extended by
Dasgupta and Maskin [11], who generalized Glicksberg’s theorem to some classes
of semi-continuous utility functions, where the discontinuities are restricted to
occur only in subsets of the strategy space, in which all components of the
(mixed) strategy vector of player i can be expressed via a finite number of
1-to-1 invertible functions of a single component of another players strategy
vector. Furthermore, the sum of utility functions of all players must be upper-
semicontinuous and the individual utilities needs to be weakly-lower continuous
over the set of discontinuities.

It is not difficult to lift Glicksberg’s result to multi-goal equilibria, which will
become relevant once we include disappointment as an explicit goal to minimize
on its own:

Corollary 1. Let Γ be a (MOG) that satisfies the hypothesis of Glicksberg’s
Theorem for each payoff function of each player. Then, Γ has a Pareto-Nash
equilibrium in mixed strategies.
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Proof. Let 1 ≤ i ≤ n be an arbitrary among n maximizing players with di ≥ 1
payoff functions u

(1)
i , . . . , u

(di)
i . Let player i pick constants αi,1, . . . , αi,di

> 0, and
define the (scalarized) function fi :=

∑
j αi,j ·u(j)

i . Repeating this for each player,
call the game with the payoff functions f1, . . . , fn game Γsc. So, Glicksberg’s
theorem gives an equilibrium x ∗ = (x ∗

1, . . . ,x
∗
n) in mixed strategies in Γsc.

We show that this a Pareto-Nash equilibrium in the original game Γ : adopt an
arbitrary player i’s perspective and let it unilaterally deviate from x ∗ by playing
an arbitrary mixed strategy x ′ = (x ∗

1, x ∗
2,x

∗
i−1,x

′
i,x

∗
i+1, . . . ,x ∗

n) �= x ∗ Since
x ∗ is an equilibrium in Γsc, we have fi(x ′) ≤ fi(x ∗). Towards a contradiction,
suppose that x ′ were chosen to outperform the strategy x ∗ in Γ , meaning that

u
(j)
i (x ′) > u

(j)
i (x ∗) for all j = 1, 2, . . . , di. (2)

Because the constants αi,j are all by definition > 0, we have fi(x ′) > fi(x ∗),
contradicting the fact that x ∗ is an equilibrium. Thus, (2) cannot hold and there
must be an index j0 for which u

(j0)
i (x ′) ≤ u

(j)
i (x ∗) and hence u i(x ′) ≤1 u i(x ∗).

Since i was arbitrary, x ∗ is, as an equilibrium, Pareto-optimal. ��
Remark 2. Some authors [10] additionally assume the constants to add up to
1. This has the geometric appeal of exhibiting parts of the convex hull’s border
as the Pareto front containing all optimal among the admissible strategies. For-
mally, the requirement merely amounts to a scaling of the scalarized payoffs by
a positive factor, which just creates another strategically equivalent set of payoff
functions.

Since the strategy spaces that our players use in the following are just stated
to be compact (yet not necessarily discrete), we shall henceforth describe their
mixed strategies as measures supported on a strategy space (which practically
amount to certain distribution functions that help choosing a randomized action
in the concrete game’s instance). For the average (= expected) payoff u i (possi-
bly vector-valued) for the i-th player under a strategy profile µ = (μ1, . . . , μn)
for all players, we shall use the abbreviated notation

Eµ(u i) =
∫

∏
j Sj

u idµ,

where the integral is taken per coordinate function of u i. We shall write out the
vector of measures more explicitly whenever it aids the explanation.

3 The Main Results

Let us consider a conventional static and repeated game as the simplest model
to start with. Whenever there is an equilibrium in pure strategies, the payoff
in the game will be constant over all repetitions. However, when the optimum
exists in mixed strategies only, the equilibrium optimizes the long-run average
over a hypothetical infinitude of independent instances of the game. This may
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create an unwanted side-effect for the player, such as temporary losses, since
the actual payoff per round can be larger or lower than the average payoff that
the equilibrium promises. Suppose that the player is minimizing, say, it strives
for the least losses due to security breaches. Let (x ∗, y∗) be an equilibrium in
the game, and let u(X,Y ) be the payoff (loss) obtained from the game upon a
random choice X ∼ x ∗, Y ∼ y∗.

Calling Z = u(X,Y ) the random variable describing the loss incurred by
the game play, then a conventional equilibrium optimizes the first moment
z = E(x∗,y∗)(Z) = (x ∗)TAy∗ only. This optimization, however, does not extend
to higher moments (such as variance). Thus, among a sequence of repetitions of
the game, amounting to a set of samples z1, z2, z3, . . . from Z, we call the event
zi > z a disappointing round. We shall confine ourself to disappointment aversion
hereafter, noting that the definitions and treatment based on the opposite event
zi ≤ z follows mutatis mutandis.

Let us further confine our study to finite (matrix) games, so that z = (x )T ·
A · y for randomized actions x ,y .

Definition 1. Let Γ be an n-person game and let μ = (x∗
1, . . . , x∗

n) be an equi-
librium. Depending on the nature of the i-th player we define the disappointment
rate as

di =
{

Prµ(Z > Eµ(Z)), if player i is minimizing;
Prµ(Z < Eµ(Z)), if player i is maximizing.

Remark 3. As mentioned in Sect. 1.1, there exist numerous definitions and
concepts of disappointment. We chose this simple definition as an easy-to-
understand example and stress the fact that the following results also apply
for other disappointment concepts, such as [4–6,8].

From here onwards, and w.l.o.g., let us assume a finite two-person game and
a minimizing first player whose perspective we are going to adopt (the upcoming
results will be formulated to hold for more general games). It is straightforward
to take the disappointment rate as a goal to optimize in the game, but obviously,
this goal makes no sense by itself unless we combine it with at least one other
goal. Otherwise, in case of a zero-sum game, we could just play towards maximal
losses, in order to avoid being disappointed, but this is trivially against the
purpose of the game at all.

As the nontrivial cases occur when the optimization is on multiple goals
we shall coin the disappointment rate a weak goal, to express that the goal is
not meaningful on its own. This is opposed to the “actual” goals in the game
that we will call strong. The existence of goals whose optimization is only useful
relative to other aims is not a new discovery, as the switching cost (i.e., the cost
incurred when an instance of a mixed strategy is changed between repetitions of
a game) [14] is another example of such a weak goal.

Definition 2 (Game with Disappointment Aversion). Let any game Γ
be given which optimizes one (or more) goals for the players. If we add the
disappointment rate as an additional payoff to be minimized, we call the resulting
game a game with disappointment aversion.
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Formally, let the primary payoff be described by a payoff matrix A = (aij) ∈
Rn×m, whose average is u1(x ,y) = xT · A · y . The disappointment rate can,
by the law of large numbers, be written as a long-run average of payoffs, where
a loss given by u1 is counted into the sum if and only if it exceeds the average
loss u1. Thus, the disappointment rate d1 is

d1(x ,y) = lim
n→∞

1
n

n∑

k=1

I(ars > xT · A · y) =
n∑

i=1

m∑

j=1

xi · I(aij > xT · A · y) · yj

where the random indices r, s are sampled from the distributions x = (x1,
. . . , xn), y = (y1, . . . , ym), and I is the indicator function (returning 1 if and
only if the inner condition is satisfied and 0 otherwise).

Remark 4. Obviously, yet not discussed in more depth hereafter, the magnitudes
of the disappointment rate, being bounded within [0, 1] should be relatively equal
to the magnitudes of the other payoffs, in order to avoid the disappointment rate
becoming a “negligible” loss or gain throughout the game play. We can assume
this without loss of generality for any magnitude and number of payoffs, since it
is a simple matter of scaling to equalize the magnitudes of all payoffs accordingly
without strategically changing the game. For multi-objective games, this can be
done along the scalarization algorithm as described in [10].

Thus, in a finite game with disappointment aversion the resulting utility for
player 1 with disappointment aversion, denoted here as ud

1, takes the form

ud
1(x ,y) = α · xT · A · y + (1 − α) · d1(x ,y)

=: xT · U d(x ,y) · y

where U d(x ,y) = (ud
ij(x ,y))ij with ud

ij(x ,y) = α ·aij +(1−α) ·I(aij > xTAy)
and α > 0 is a scalarization factor (for the multi-objective optimization).

Observe that the individual utility function ud
1 in a game with disappointment

aversion need not be a continuous function, so neither Glicksberg’s nor Nash’s
theorems are applicable to assure the existence of equilibria. As shown by an
earlier example due to Sion and Wolfe [16], games with discontinuous payoff
functions may in general even lack any equilibria at all. In addition, even though
Dasgupta and Maskin have proven the existence of equilibria for some classes
of discontinuous utility functions (see Sect. 2), ud

1 may not fall into this classes
for several reasons: First, we observe that for given y the discontinuity set of
u1(x , ·) is in fact the set of all hyperplanes aij = xT ·A ·y of dimension n−1 (in
x ). The set of discontinuities over S1 × S2 is {(x ,y), xi, yi ≥ 0,

∑
i∈I1

xi = 1,
∑

i∈I2
yi = 1 | ∃i ∈ I1, ∃j ∈ I1 : aij = xT · A · y}. By definition of the

disappointment rate, it is in general not possible to express the components
of player 1’s strategy vector x in the discontinuity set by a finite number of
functions f : R1 → R1 as Dasgupta and Maskin assume [11]. Second, even if it
is possible to do so, ud

1 is by construction a piecewise continuous function, but
it neither has to be upper semi-continuous, nor weakly lower continuous on the
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set of discontinuities. Therefore, disappointment averse games as in Definition 2,
despite their decision theoretical value, are impractical and therefore ineffective
in applications.

To fix the theoretical aspects and to ensure the existence of equilibria, we
adopt Simon and Zame’s concept of games with endogenous-sharing rules [15]
that has also been used in [3]. In the following we will write S for (Si)i∈I to
improve readability. We stress that the results of [15] applies to scalar-valued
utility functions only, so, w.l.o.g., we assume our multi-criteria games to be
scalarized (according to [10,12] or also Corollary 1) before computing equilib-
ria. The resulting equilibria are then exactly the sought Pareto-Nash equilibria
(optimizing the disappointment rate besides the primary utility).

Definition 3 (Game with endogenous-sharing). A game with endogenous-
sharing rule, or an endogenous-sharing game is any Γs = (I, S, U), where I, S
are as in Sect. 2, and U : S � Rn is a correspondence that specifies a set of
utility payoff allocations for every combination of player’s strategies.

Thus, U is a multivalued function, and for any µ in S the correspondence U
allocates a set of utility payoff allocations to each player. Thus, U(µ) = (Ui)i∈I
where each Ui(µ) = {u1

i (µ), u2
i (µ), . . . } ⊆ R is a (not necessarily countable) set

of utilities for player i that could all occur, if strategy µ is chosen.

Definition 4 (Upper Hemicontinuity). A correspondence U : S � Rn

with closed values1 is upper hemicontinuous, if for all µ ∈ S and for all
sequences (µn)n∈N ∈ S and for all u ∈ U(S) and (un)n∈N,un ∈ U(μn) we
have limn→∞ µn = µ, limn→∞ un = u =⇒ u ∈ U(µ).

In other words, a correspondence U is upper hemicontinuous if the following
holds: for every convergent sequence (µn)n∈N in S which maps to a sequence of
sets (Un)n∈N in the range of U that contains a convergent sequence (un)n∈N, the
image of limiting point in the domain must contain the limit of the sequence in
the range. I.e. U(limn→∞(µn)n∈N)  limn→∞ un whenever the limits of (un)n∈N

and (µn)n∈N exist.

Definition 5. A correspondence U is bounded, if there exists a constant K such
that for all strategies µ ∈ S, for all i ∈ I and every uj

i (µ) ∈ Ui(µ) it holds:
|uj

i (µ)| < K.

Theorem 2 (Simon and Zame [15]). Let Γs be an endogenous-sharing game
as in Definition 3. Let S be a compact set within some metric space. Assume U is
an upper-hemicontinuous and bounded correspondence. Furthermore, assume for
each µ ∈ S the image U(µ) is a nonempty convex subset of Rn. Then there exists
some profile of utility functions (ûi(µ))i∈I ∈ U(µ) such that ûi is a measurable
function for every µ and the resulting game has at least one Nash equilibrium
in S.

1 A correspondence U : S � Rn has closed values, if all U(µ) µ ∈ S are closed subsets
of Rn.
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Following this approach, we do not consider disappointment averse utility
functions ud = (ud

1, u
d
2), but we define a correspondence U , for which U(µ) =

ud(µ) at points of continuity, and at the discontinuity points U maps µ to the
convex hull of all limiting values of ud. This can be interpreted as follows: in any
discontinuity point µ we define the correspondence U(µ) as set of all limits of
expected utility allocations that can be achieved by randomizing over strategy
profiles which are arbitrarily close to µ. It can be shown that the resulting U
is the coarsest upper hemicontinuous correspondence that only maps to convex
sets [15]. We call this resulting mapping a minimal correspondence.

By Theorem 2 we can now ensure that there exists some profile of utility
functions û such that ud and only differs from û at points of discontinuity and
an equilibrium of the resulting game Γ̂ = (I, S, (ûi)i∈I) exists.

Remark 5. At this point, it can easily be verified that the above results does not
only apply disappointment as defined in Definition 1, but also to disappointment
as defined in [4,8] or [5]. We can in fact use all kinds of disappointment functions
as long as it can be ensured that a minimal correspondence U exists.

Another possibility to incorporate disappointment is to consider a smoothed
version of Γ̂ = (I, S, (ûi)i∈I). Let S1, S2, . . . , Sn be the strategy sets of all play-
ers. W.l.o.g., let player 1 be minimizing its disappointment relative to a goal
u1 : S1 × S−1 → R. Let μ1, μ−1 be the probability measures (practically repre-
sented by distribution or density functions if the latter exist) from which player
1 and its opponents choose their strategies, denoted as X1,X−1. Recall the
disappointment rate as

d(µ1,µ−1) = E(µ1,µ−1)I
[
u1(X1,X−1) − E(µ1,µ−1)(u1(X1,X−1))

]

Choose a mollifier δh : Un → R of bandwidth h > 0 and so that δh ∈ C(
∏

i Si),
i.e., the function should be continuous w.r.t. the common metric of the host
spaces covering the Si’s. Define d̃h := d ∗ δh and observe that d̃h is now a
continuous payoff function. A simple admissible choice for a mollifier is the n-
fold tensor product of a univariate mollifier such as δk(x) := k

c g(|kx|) with the
C∞-function

g(r) :=

{
exp

(
− 1

1−r2

)
, for r ∈ (−1, 1)

0, otherwise.

and the normalization constant c :=
∫
R

g(|x|)dx. The support of the tensor
product δk(x1, . . . , xn) =

∏
j δk(xj) is then the compact hypercube [−1/k, 1/k]n.

Definition 6. Let Γ be an n-person game, and let μ = (x∗
1, . . . , x∗

n) be an equi-
librium. Depending on the nature of the i-th player, the smooth disappointment
rate with bandwidth h is defined as d̃ih := di ∗ δh.

Analogously to 2 we can now define games with smooth disappointment aver-
sion if we replace the disappointment rate by the smooth disappointment rate.

This corresponds to allowing not only a 0/1 formalism of disappointment but
to specify some kind of degree of disappointment at points close to the expected
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value. This enables a more distinct perspective on disappointment and also helps
in computing the equilibrium. It follows:

Theorem 3. Let the game Γ have compact strategy sets within some metric
space U , and let the initial payoff functions each be continuous let there be
a player in Γ who is minimizing the smoothed disappointment rate w.r.t. at
least one other goal. Then Γ has at least one Pareto-Nash equilibrium (in mixed
strategies).

Proof. Follows directly from Glicksbergs’s Theorem via Corollary 1. ��

x

di(x)

E(X)

di(x)

x

Di(x)

E(X)

Di(x)

(a) Disappointment Rate
(here as Indicator Function)

(b) Disappointment as an
Endogenous Sharing Rule

x
E(X)

d̃ih(x)

d̃ih(x)

(c) Smooth Disappointment Rate

Fig. 1. Comparison of disappointment concepts

Figure 1 sums up the three concepts of disappointment discussed in this paper.
Note that both (b) and (c) can be applied when dealing with games and display
two different notions: When considering disappointment as an endogenous shar-
ing rule (see (b)), we are disappointed whenever the utility exceeds the expected
value, yet whenever it equals the mean we are – just like Schrödinger’s cat – both
disappointed and not. The smooth disappointment rate allows for a continuous
view of disappointment. One may argue that smoothing may falsely incorporate
some notion disappointment, even when the encountered loss does not exceed
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the expected damage, but is somewhat below it. Indeed, insurances naturally do
not cover damages that are higher than the maximum liability amount, which
causes disappointment. Yet, there always remains the risk of not receiving the
full amount from an insurance company, but only partial compensation. The
higher the damage, the more insurance companies try to lower the sum they
have to come up for. Hence, smooth disappointment rates can incorporate this
additional phenomenon. If this is not desired, we advice to shift the of the dis-
appointment rate to the right, such that a positive disappointment value may
only occur when the expected value is exceeded.

4 Conclusion and Future Work

We have shown that disappointment aversion can be accounted for in the com-
putation of Nash equilibria in repeated games. In this being work in progress,
we close with a couple of directions that may merit exploration along future
work, including Stackelberg equilibria (where the problem is essentially one
of optimizing a discontinuous functional for the leading player), or the differ-
ence between equilibria with and without disappointment aversion (in the latter
regard, Remark 4 is a first insight). We stress that the meaning of disappointment
for individuals and for companies may be different, and our concept of disap-
pointment aversion was basically motivated by critical infrastructure protection
applications. In a follow-up work, we shall explore an application of disappoint-
ment aversion to individual’s decision making in more detail, specifically the
lottery mentioned Sect. 1.1, where we study the disappointment aversion as one
possible explanation for the empirically observed deviation of individuals from
the prediction of the Nash equilibrium.

A combination of different concepts of disappointment, e.g., [5,6], may be
interesting to look at when further modelling the insurance example from the
introduction, since the disappointment of the individual (customer) and the dis-
appointment event for the insurance may be conceptually different things, and
thus lead to different payoff functionals in the resulting security games (then no
longer being zero-sum or even repeated). From the insurance company’s perspec-
tive, thinking about retained amounts, a disappointment with an insurance may
occur if the bar for the deductibles is set so high that the customers would have
to pay for most of the incidents. In turn, they will soon look for other insurances
with better service. Conversely, if the bar is set too low, the insurance will not
be profitable while the customer is never disappointed. The resulting game can
thus be seen as one with disappointment aversion (on both sides even).
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Abstract. A lot of software systems are deployed in the cloud. Owing
to realistic demands for an early product launch, oftentimes there are
vulnerabilities that are present in these deployed systems (or eventu-
ally found out). The cloud service provider can find and leverage this
knowledge about known vulnerabilities and the underlying communica-
tion network topology of the system to position network and host-based
Intrusion Detection Systems (IDS) that can effectively detect attacks.
Unfortunately, deploying IDS on each host and network interface impacts
the performance of the overall system. Thus, in this paper, we address the
problem of placing a limited number of IDS by using the concept of Mov-
ing Target Defense (MTD). In essence, we propose an MTD system that
allows a defender to shift the detection surfaces and strategically switch
among the different IDS placement configurations in each round. To find
a secure switching strategy, we (1) formulate the problem of placing a
limited number of IDS systems in a large cloud network as a Stackelberg
Game between the cloud administrator and an (external or stealthy)
attacker, (2) design scalable methods to find the optimal strategies for
switching IDS placements at the start of each round, and (3) formally
define the problem of identifying the most critical vulnerability that
should be fixed, and propose a solution for it. We compare the strategy
generated by our method to other state-of-the-art strategies, showcasing
the effectiveness and scalability of our method for real-world scenarios.

Keywords: Moving Target Defense · Intrusion Detection Systems
Stackelberg games

1 Introduction

System Administrators, oftentimes, use Intrusion Detection Systems (IDS) to
detect on-going attacks on modern-day cyber-systems [34]. These IDS systems
perform sophisticated operations – like signature-matching [3], anomaly detec-
tion [11,15], machine learning [1,17,21] etc. – to investigate either live traffic on
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the wire (using Network-based IDS (NIDS) [2,33]), or monitor resources on a
machine (using Host-based IDS (HIDS) [13,43]) to flag anomalous requests that
might result in potential loss of confidentiality, integrity or availability. Cloud
service providers, who host third parties on their platform, encounter non-trivial
challenges when it comes to deploying these IDS that can identify vulnerabili-
ties present in their system on account of legacy or operational constraints [12].
The foremost among these challenges is the placement of IDS on all nodes of a
large network, which results in reduced performance [20,42] (also see Sect. 6.2).
Moreover, third party users of the cloud platform, due to privacy and security
reasons, have constraints about sharing their data with the cloud provider [6].

Thus, given a cloud service provider’s performance constraints and their cus-
tomer’s privacy constraints, we look at the problem of placing a limited number
of IDS systems in the various nodes of the cloud system. It is trivial to see that
if we place IDS systems statically that only monitor certain attacks on specific
nodes, an attacker (especially a stealthy one, i.e. one who resides inside a deployed
systems and can attack a node anywhere in the network as opposed to having
access to only hosts at the entry point) will eventually figure out our placement
strategy [42]. At this point, a strategic attacker can always select attacks that
circumvent the IDS placed, thus passing through our cloud network undetected
[38]. To address this, we design a Moving Target Defense (MTD) approach for
dynamic placement of IDS systems on cloud systems.

The placement mechanism for our cloud framework places both Network and
Host-based IDS. We will use a NIDS called snort [32] for detecting malicious
behavior over the network and a HIDS known as auditd on the hosts of our
cloud system. The assumption is that NIDS is placed at the gateway of each
tenant network and the HIDS is deployed on each individual VM. A dynamic
switching (or MTD) strategy selectively turns on/off the different HIDS or
NIDS systems that can be used to monitor requests or hosts, thereby shifting
the detection surface at each round without the need to consider switching costs
among configurations because on/off commands from a central server sent out
only at the start of every round hardly impact performance.

The cyber-security community has mostly defined and used MTD, so far,
to shift the attack surface of a system that takes away the advantage of recon-
naissance that an attacker has [45]. In this work, we generalize this notion of
MTD and introduce an MTD system that shifts the detection surface to keep
an attacker from guessing about whether their next attack will be detected or
not. In conjunction with that, the key contributions of this paper are,

– We formulate the problem of placing limited IDS systems in a large cloud-
based network using MTD as a two-player Stackelberg Game between the
defender and an attacker. The equilibrium of this game gives us the optimal
movement strategy that the defender should use to switch between the various
IDS placements.

– We obtain the utility values of the players in this game by combining (1)
the Common Vulnerability Scoring System (CVSS) that has been previously
used to represent the impact of attacks on the defender’s system [23] and (2)
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the centrality values of the nodes in which an IDS is deployed that lets us
capture (i) the connectivity information and (ii) the impact on performance
when an IDS is placed on that node [42].

– We design a scalable optimization problem to find the Stackelberg Equilib-
rium of our formulated game (Sect. 4). In this approach, we introduce an
input parameter α that lets the defender balance between the security of the
system and the impact on the performance of the system.

– We define the problem of finding the most critical vulnerability in a cloud
environment with a strategic attacker and a multi-objective utility function
and propose a method to solve it (Sect. 5).

– We demonstrate the effectiveness of our approach on a running example by
comparing it to state-of-the-art deterministic, uniformly random and central-
ity based MTD switching strategies. We then provide experimental results in
a real-world large-scale cloud-based environment that showcases the scalabil-
ity of our approach (Sect. 6).

2 Related Work

Moving Target Defense [45] has been recently used to thwart a wide range
of attacks against network-based [16,41] and cloud-based systems [7,9]. These
methods mostly shift the attack surfaces that takes away the advantage of recon-
naissance an attacker has. A stealthy and strategic adversary [5], who can reside
deep within the network, can still render these methods ineffective.

For such cases, researchers have previously investigated the placement of
detection systems in large network-based environments and designed both static
[20] and dynamic [42] placement mechanisms based on graph-theoretic measures.
Unfortunately, the former method cannot adapt its placement strategy when
facing a stealthy adversary. On the other hand, the latter method, which does
not incorporate the knowledge of known vulnerabilities, performs sub-optimally
when facing a strategic and rational adversary.

A switching strategy for any dynamic placement method or MTD system
needs to incorporate attacker modeling and thus, game theoretic reasoning for
it to be effective [31,37,39]. Previously, authors in [22] have modeled an MTD
system as a game called PLADD, based on FlipIt [40]. This work assumes that dif-
ferent agents control the server in different game rounds, which is an impractical
setting for cloud environments. In [19], researchers assume known vulnerabili-
ties and design a deception mechanism using a Stackelberg Model to introduce
honeynets against a specific class of attackers. Authors in [36] and [35] formu-
late the switching between various web-stack configurations and classifiers in an
ensemble respectively as a Stackelberg Game. Unfortunately, the methods to find
the Stackelberg equilibrium in these cases become intractable as the number of
defender strategies explodes combinatorially.

Researchers have shown that decomposition of the reward structure makes
the problem of finding the Stackelberg Equilibrium computationally efficient
[24]. We leverage this information and design the rewards for our game while
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ensuring that the Stackelberg equilibrium balances between two important met-
rics [23] – (1) the costs of placing IDSs (on performance, cost of countermeasure
deployment etc.) and (2) the impacts on the security of our system.

Lastly, researchers have leveraged the attack graph information of a network
and tried to come up with classical AI planning approaches [26] or MDP-style
approaches [14,29] to find effective ways of finding critical attacks against a
system. Unfortunately, these approaches cannot be easily applied in the case of
dynamic systems like MTD and thus we develop an approach to find the most
critical vulnerability that should be fixed in our system.

3 Game-Theoretic Modeling

In this section, we first define the threat model of our system, defining the players,
their action/strategy sets using a small real-world scenario that we set up on an
enterprise cloud (Fig. 1). We then describe how the rewards of this game are
formulated leveraging the CVSS data and network topology information.

Fig. 1. Defender’s system on the enterprise cloud that the attacker wants to attack.

Threat Model. In our attack model, we consider a multi-tenant cloud net-
work. The controller node, shown in the Fig. 1, is used for network management
and orchestration. The network administrator (or the defender) utilizes a man-
agement network to access controller nodes and cloud servers hosting VMs. We
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Table 1. The different VMs in the defender’s network, their betweenness centrality (cb)
in the graph, the known vulnerabilities in these nodes (VMs), and the corresponding
Network/Host-based Intrusion Detection Systems (NIDS/HIDS) which can detect these
attacks, also known as the Indicators of Compromise (IOC).

ID VM cb Vulnerability CVE ID IOC

a1 G1 4 SSH Buffer Overflow CVE-2016-6289 NIDS sshAlert

a2 G2 7 rlogin CVE-1999-0651 NIDS rlogin

a3 W 0 Cross Side Scripting CVE-2016-2163 HIDS webAccess

a4 D 0 Weak Credentials CVE-2001-0839 HIDS fileIntegrity

a5 F 0 vsftpd backdoor CVE-2015-1419 HIDS ftpLogin

consider two agents – the defender D, who is trying to deploy IDS and an (exter-
nal or stealthy) attacker A, who is trying to remain undetected while attacking
the system. As a running example, we will use the scenario deployed by D shown
in Fig. 1. Furthermore, this system has a set of known vulnerabilities, that are
yet to be fixed and as per our assumptions, known to both the agents D and A.

We assume that the attacker A can be located either inside or outside
the cloud network. The attacker’s primary goal is to (1) compromise a VM
using known vulnerabilities and (2) remain undetected while doing so. Since the
attacker can utilize network probing to identify the OS and software versions, it
will eventually get to know the vulnerabilities (CVEs) associated with the sys-
tem, and can then systematically exploit these in order to obtain network access
or elevated privileges. Furthermore, the attacker can only be detected when it
attacks a vulnerability for which the corresponding IDS is in place at the time of
exploitation. For stealthy attackers [5], who have to spend a lot of cost and/or
effort in gaining access to an internal node, the latter is of utmost importance.

Now given the system’s communication graph, we extract the set A of all the
n known vulnerabilities in our system (n = (|A|)). For our system, we choose the
ai IDs in the first column of Table 1 to represent an attack (and the corresponding
IDS that detects this attack). Thus, n = 5 and the set A = {a1, a2, a3, a4, a5}.
Note that this ID encodes a two-tuple 〈MachineName, CVE-ID〉. Thus, multiple
attacks corresponding to a single machine will each receive a unique ID.

The defender D, as mentioned before, has a limited budget to place only
k(< n) IDS mechanisms due to resource constraints. Also, we assume that, due
to privacy constraints, D cannot place an IDS mechanism on the ‘SQL Server
(M)’ (shown in Fig. 1). Thus, in our model, we disregard any vulnerabilities
present on this node. (Note that although our system can detect a class of
vulnerabilities that trigger NIDS alarms on the network interface G1 when they
affect M, we exclude such vulnerabilities from our example). Now, D has

(
n
k

)

ways in which it can deploy the k IDSs. This is the action set of D. Formally,
the defender’s action set is denoted by the set Ak = {S ∈ A : |S| = k}. In the
running example, we will assume that k = 2. Thus, the defender’s action set is:

{(a1, a2), (a1, a3), (a1, a4), (a1, a5), (a2, a3), (a2, a4), (a2, a5), (a3, a4), (a3, a5), (a4, a5)}
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Since, we assume a strong adversary who either knows or can find out all
the attacks in our system, the action set of the attacker is the attack set A =
{a1, a2, a3, a4, a5} itself.

In game theory, this action set is often referred to as the set of pure strategies,
where each action (either a placement strategy or an attack) is a pure strategy
(for D or A respectively). As stated earlier, if a defender chooses a pure strategy,
i.e., any one out of the ten pure strategies shown, to deploy k IDS systems, the
attacker, with reconnaissance on its side, will eventually figure out D’s strategy
and start choosing attacks that do not trigger these alarms. In order to address
this limitation, the defender can play a mixed strategy, i.e. have a probability
associated with playing each pure strategy and at the start of each round pick
one by randomly sampling a pure strategy from the set of pure strategies. Note
that this is similar to applying the concept of Moving Target Defense where the
defender chooses to switch randomly among the different deployment configura-
tions (i.e. by choosing one of the ten IDS placements in our case) at the start of
each time period.

Common Vulnerability Scoring System (CVSS). The CVSS metric pro-
vides two quantitative scores for each CVE present in our system – (1) the Impact
Score (IS) that represents the effect a particular attack has on the Confidential-
ity, Integrity, and Availability of a system and (2) the Exploitability Score (ES),
which encodes the complexity of actually exploiting a particular vulnerability.
The system defines a way to combine both of these scores to calculate a third
score, known as the Base Score (BS) that tries to consider both the impact of
an attack vs. the difficulty in exploiting it.

The CVSS scores thus leverage the knowledge of cybersecurity experts across
the globe to provide a numerical value corresponding to each (known) vulnerabil-
ity that reflects its severity and expertise necessary to exploit it. We, inspired by
other research work before us [27,36,44], use the CVSS to calibrate the reward
values of our game.

3.1 Stackelberg Games

Having defined the players and their action (or pure strategy) sets, there are
additional real-world aspects that we want to incorporate in the formulation
of our game. One such aspect is that the defender, who hosts the system that
an attacker attacks, plays first. To accurately model this scenario, we use the
concept of Stackelberg games in which one player (D) acts before the other player
(A) plays and find the Stackelberg Equilibrium of these games, in which the
leader’s (D) strategy is contingent upon the fact that the follower (A) can observe
D’s strategy and play accordingly. Thus, in this adversarial leader-follower game,
D can simulate A in their mind and decide on a mixed strategy that gives it the
highest utility keeping in mind (that a rational) A will choose the best action
(∈ A), i.e. the action that maximizes A’s reward, in response.
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3.2 Utility Modeling

Having designed the action sets of both the players, we can now specify the
utilities for both the players when each of them commits to a pure strategy.
Note that just to enumerate all the utility values for our game we would have
to specify 2 · (

n
k

) · n values corresponding to the reward values for each of the
players D and A in the normal form game matrix. With this general reward
structure, finding the mixed-strategy Stackelberg equilibrium of this game would
be computationally inefficient, specifically O(

(
n
k

)
) [10]. Thus, we now devise a

particular reward structure that captures all the aspects of our problem and lets
us efficiently compute the equilibrium strategy.

For each attack a ∈ A, if D places an IDS to detect it, we will say that
D covers it. Otherwise, we say that a is left uncovered. Since the defender can
allocate only IDS resources to cover k elements in A, the remaining n−k attacks
will remain uncovered at any point in time. We will now decompose the reward
structure of this game and define four types of utility values corresponding to
each attack a ∈ A.

〈UD
c,a, U

D
u,a, U

A
c,a, U

A
u,a〉

where UD
c,a and UD

u,a denotes the utilities that a defender gets for covering or
not covering an attack a respectively. Similarly, UA

c,a and UA
u,a represent the

utility an attacker gets when they use an attack a that is covered (and thus gets
detected) or not covered (and thus avoids detection) respectively. The values
for these symbols are obtained by leveraging the knowledge of security experts
as encoded in the Common Vulnerabilities Scoring System (CVSS) [28] and the
realistic costs of deploying IDSs. For each attack ai in the set of attack actions
A, we will represent these scores as ISai

, ESai
and BSai

using CVSS metrics,
previously discussed in Sect. 3.

Cost of Deploying IDS. We denote the cost of deploying an IDS corresponding
to an attack a ∈ A as ĉa. For our example, we assume the cost of deploying an
IDS (shown in the IOC column of Table 1) to be proportional to the betweenness
centrality of the VMs on which the IDS is deployed because a VM with high
betweenness centrality will affect the latency of routing packets or the latency
of processing a request. Also, the centrality values are normalized in the interval
[0, 10] to be comparable to the CVSS metrics ISa, ESa and BSa as discussed in
Sect. 3. Note that the model in this paper allows another user to define ĉa in a
different way.

We now leverage these defined metrics to design the following rewards for
the four utilities associated with each attack a present in our system,

UD
c,a = −1 ∗ ĉa , UD

u,a = −1 ∗ ISa

UA
c,a = −1 ∗ ESa , UA

u,a = +1 ∗ BSa

We now provide the rationale for modeling the rewards in this particular
manner. The value of UD

c,a is negative since even if it detected an attack, it
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incurred a cost in order to detect it and moreover there is no extra positive
reward given to D for protecting their system, which is supposed to be the
primary functionality. When D does not place an IDS for detecting the attack
a, it incurs a negative utility (UD

u,a) equal to ISa if the attacker uses attack a.
For the attacker A, if it chooses an attack action a which the defender covers

(i.e. can detect), it gets a negative utility UA
c,a proportional to the time and cost it

had to invest in doing it, which is (somewhat) measured by ES. Also, as A gains
nothing by doing this attack (since the defender can deploy a countermeasure on
detection [8]), no positive value is added to it. Lastly, when the attacker uses an
attack for which the defender has not placed an IDS, we give a positive utility
that (conceptually) adds the IS and subtracts the cost (ES) of performing the
attack. Since BS already captures this trade-off, we use it directly.

4 Computing the Stackelberg Equilibrium

We need to solve for the Stackelberg Equilibrium of our game to obtain proba-
bility values for each configuration mentioned in Ak, where Ak ⊂ A such that
|Ak| = k. Unfortunately, since there are

(
n
k

)
such probabilities (corresponding

to each element in Ak), solving for all these variables at once will not yield an
efficient solution. Instead, we will solve for the probabilities pa which represents
the probability that a certain attack a ∈ A is covered by an IDS in a round.

To that extent, we first describe a method that can help in generating the
marginal strategies for the defender by solving n (= |A|) Linear Programs. Note
that the solution can be found in polynomial time in our case because of the
particular reward structure our game has. Then, we shall propose an efficient
Mixed Integer Quadratic Program (MIQP) method based on this method that
helps us to obtain the same marginal strategy, but by solving just one opti-
mization problem. We show that although this formulation, in the general case,
is known to computationally hard to solve, in our case, by efficient use of the
branch-and-cut mechanism, we can solve it in polynomial time.

4.1 Multiple LP Method

Let T denote the set of k tokens that the defender D can allocate to cover k of
the n attacks. Allocating a token to an attack a means that D has placed the
IDS that can detect the particular attack. Now, let the variables pa represent
the probability with which an attack a is covered by one of the k tokens and
pa,t represent the probability with which a particular attack a is covered by
a particular token t ∈ T . Having defined the probabilities pa, the defender’s
expected utility for deploying an IDS to detect a particular attack a∗ should be
UD
u,a∗ ∗ (1 − pa∗) + UD

c,a∗ ∗ pa∗ [24,25]. Note that, for our scenario, this does not
capture the cost D incurs in deploying the other k − 1 IDS mechanisms. Thus,
we modify the defender’s utility to UD

u,a∗ ∗(1−pa∗)+ 1
k

∑
a∈A UD

c,a ∗pa, where the
second term denotes the average cost for a particular deployment configuration.
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On the other hand, we can simply define the attacker’s expected utility for
using a particular attack a as UA

c,a ∗ pa + UA
u,a ∗ (1 − pa). We now present the

optimization problem that maximizes the defender’s objective function and the
attacker’s utility given that an attacker chooses to use the attack a∗.

max α · 1
k

∑

a∈A

UD
c,apa + (1 − α) · UD

u,a∗(1 − pa∗) (1)

s.t. pa ∈ [0, 1] ∀ a ∈ A

pt,a ∈ [0, 1] ∀ a ∈ A, t ∈ T
∑

a∈A

pt,a = 1 ∀ t ∈ T

∑

t∈T

pt,a = pa ∀ a ∈ A

UA
c,apa + UA

u,a(1 − pa) ≤ UA
c,a∗pa∗ + UA

u,a∗(1 − pa∗)

where α is an input parameter that allows the defender to a trade the perfor-
mance of the system with respect to the security of the system (and vice versa).
In the extreme case when α = 0, the defender optimizes only for security and
completely ignores the fact that deploying k IDSs might affect the performance
of the system. In this case, as shown in Sect. 6, D ends up randomizing more
between the deployment configurations of the system. On the other hand, when
α = 1, the defender optimizes for performance, hardly placing an IDS on systems
that affect performance even when it is detrimental to security. We discuss the
effects of selecting various α-s in Sect. 6.

Before we dive into what the constraints mean, note that this is a Linear
Program (LP) and thus, can be solved in polynomial time. The first two sets of
constraints ensure that the optimization variables pa and pt,a are valid proba-
bilities. The third set of constraints ensures that all the tokens are utilized in
covering the different attacks in A. The equality of this constraint is possible
in our case since (1) all our tokens are homogeneous, i.e. any token t ∈ T can
be used to cover any attack a ∈ A and (2) the number of tokens k (= |T |)
is less than the number of attacks n (= |A|). Thus, we prune away solutions
that do not fully utilize all the tokens. The fourth set of constraints ensure that
the probabilities of allocating various tokens to cover an attack a add up to the
probability that a is covered. The final set of constraints ensure that the attacker
selecting a∗ maximizes their utility. Lastly, note that given the values of pt,a one
can easily obtain pa using the fourth set of constraints.

To obtain the (globally) optimal solution (and thus find the optimal marginal
strategy) for the defender, we can iterate over all the n attack choices made by
the attacker and pick the solution that maximizes D’s utility. Note that, here
we enforce the attacker to select a pure strategy as opposed to a mixed strategy.
This is not a limitation since for any mixed strategy the attacker can pick in
this Stackelberg Game, there always exists a pure strategy in support of it [30].

As the number of VMs and vulnerabilities, i.e., n, increase, this solution
method needs to solve a large number of LPs. Thus, we now propose an efficient
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MIQP that finds the solution in one go and provides an efficient branch-and-cut
algorithm for solving it in polynomial time.

4.2 Compiling Multiple LPs into an Efficient Mixed Integer
Quadratic Program (MIQP)

Now, we first introduce n binary switch variables, one for each attack a ∈ A
and represent it as wa. When the attacker exploits vulnerability a (i.e. uses the
attack action a), wa = 1. Otherwise, wa = 0. We now propose the following
optimization problem,

max α · 1
k

∑

a∈A

UD
c,apa + (1 − α) · wa ∗ UD

u,a(1 − pa) (2)

s.t. wa ∈ {0, 1} ∀ a ∈ A

pa ∈ [0, 1] ∀ a ∈ A

pt,a ∈ [0, 1] ∀ a ∈ A, t ∈ T
∑

a∈A

wa = 1

∑

a∈A

pt,a = 1 ∀ t ∈ T

∑

t∈T

pt,a = pa ∀ a ∈ A

0 ≤ va − (UA
c,apa + UA

u,a(1 − pa)) ≤ (1 − wa) ∗ M ∀ a ∈ A

where M represents a large number with respect to the maximum reward the
attacker can get, i.e. M 	 10, and va is the utility value of the attacker at
equilibrium. The first constraint ensures that the switch variables are binary.
The fourth constraint enforces the attacker to select a pure strategy since the
switch variable corresponding to only one attack can be turned on in a feasible
solution. As mentioned in the previous section, this is not a limiting assumption.
Lastly, the final set of constraints encodes the complementary slackness condition
of the attacker’s utility maximization problem [30].

As the defender plays first, it can reason about the attacker picking each
attack and select the strategy which gives D the maximum reward. If the attacker
responds to the defender’s strategy with attack a∗, then wa∗ = 1. In that case,
the RHS of the last constraint (with a∗) becomes zero and along with the LHS,
equality holds. Thus, va∗ is A’s utility value. For all the other attacks a(
= a∗)
that were not selected by A, both the inequalities can be trivially satisfied (as
M is a large number) by selecting an appropriate value for va.

Theorem 1. MIQP defined in Eq. 2 produces the same solution as the set of
LPs described in Eq. 1.

Proof. Let us say that when attacker selects an attack a1, the defender gets the
highest utility as per Eq. 1. Now, let us say that Eq. 2 decides that the defender’s



336 S. Sengupta et al.

wa1 = 0 wa1 = 1

wa2 = 0 wa2 = 1

wan−1 = 0 wan−1 = 1

wan = 1

Fig. 2. Branch-and-cut tree for the proposed MIQP. (Color figure online)

Table 2. Player utilities for each vul-
nerability depending on whether (or
not) an IDS is deployed to detect the
attacks that exploit it.

Attack a1 a2 a3 a4 a5

UD
c,a −5.7 −10.0 0.0 0.0 0.0

UD
u,a −6.4 −6.4 −2.9 −6.4 −2.9

UA
c,a −8.6 −10 −8.6 −10 −10

UA
u,a 6.8 7.5 4.3 7.5 5.0

Table 3. Probability of allocating a
token (in order to deploy the cor-
responding IDS) for detecting each
attack.

t1 t2

a1 a2 a3 a4 a5

a1 a2 a3 a4 a5

t1 0 0.44 0 0.22 0.34
t2 0.45 0 0.34 0.21 0

utility is strictly better when attacker selects any another attack a2(
= a1), and
thus, wa2 = 1. Notice that if this is true, then the objective function value of LP
when a∗ = a2 is strictly greater than the objective function value of the LP with
a∗ = a1. But that is a contradiction. Hence, the MIQP defined in Eq. 2 must
select a1 for the attacker.

Similarly, we can prove the other way–that a solution that is optimal for the
MIQP (Eq. 2) is also optimal for the LP case. �
Theorem 2. MIQP defined in Eq. 2 can be solved in polynomial time with the
branch-and-cut method.

Proof. To prove this, we first represent the branch-and-cut tree for our MIQP
in Fig. 2. In that, notice that the right children (shown in red) correspond to an
LP problem (similar to the one defined in Eq. 1) where only a particular attack
ai is selected (wai

= 1) and other attacks are not used by the attacker. Since no
children of any right child (red node) can generate another solution, the search
tree below them can be pruned away. Now, the tree can have at most n − 1 left
children which correspond to at most n right children, which in turn corresponds
to at most n LP problems that need to be solved. Since each LP can be solved
in polynomial time and we will solve no more than n LPs, this MIQP can be
solved in polynomial time. �
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Fig. 3. Optimal mixed strategy of the defender for our scenario (when α = 0.1). The
probability values for picking up one of the eight IDS placements at the start of each
round are written on the edges. For the strategy {a2, a5} (colored in Pink), the alloca-
tion matrix is shown on the right. (Color figure online)

4.3 Obtaining Implementable Strategies

Although we have obtained the values pa and pt,a, there are no guarantees that
we will be able to convert these marginal probabilities into

(
n
k

)
probability val-

ues that correspond to a defender’s deployment strategies, i.e. one that can be
implemented in practice. In order to convert these into implementable strategies,
we use the general version of the Birkhoff Von-Neumann Theorem as stated in
[25]. We state this here for completeness.

Birkhoff Von-Neumann Theorem. Consider an k × n matrix P with real
numbers pt,a ∈ [0, 1], such that for each 1 ≤ t ≤ k,

∑n
a=1 pt,a ≤ 1, and for each

1 ≤ a ≤ n,
∑k

t=1 pt,a ≤ 1. Then, there exist matrices P 1, P 2, . . . , P q and weights
w1, w2, . . . , wq ∈ (0, 1], such that (1)

∑q
x=1 wx = 1; (2)

∑q
x=1 wxP x = M ; (3)

for each 1 ≤ x ≤ q, the elements of Mx are pxt,a ∈ {0, 1} and (4) for each
1 ≤ x ≤ q, we have for each 1 ≤ t ≤ k,

∑n
a=1 pxt,a ≤ 1 and for each 1 ≤ a ≤ n,

∑k
t=1 pxt,a ≤ 1.
This theorem guarantees that given the probability matrix pt,a, we can always

obtain the probabilities of the
(
n
k

)
implementable strategies. The third and fourth

equalities in the optimization problem in 1 ensure that the constraint structure
imposed on P is a bi-hierarchy, which authors in [4] show as a sufficient condition
for any marginal probability matrix P to be implementable.
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Input: Utility Matrix
Output: a∗

Result: Finds and outputs the most critical vulnerability that results in the
highest defender utility when fixed

max def util ← −∞;
a∗ ← None;
while a ∈ A do

A′ ← A \ a;
obj val, ← solve MIQP (2) with action set A′;
if obj val > max def util then

max def util ← obj val;
a∗ ← a;

end
return a∗

end
Algorithm 1. Algorithm to find the most critical vulnerability in the
Defender’s system, which when fixed results in the highest utility.

For our example, assuming that the cost associated with deploying each IDS
on a certain VM is a function of the latency it creates. Furthermore, since VMs
that are responsible for communication between other VMs would impact the
latency the most when an IDS is placed on it. Thus, we assume time impact on
the overall latency of the system is equal to the normalized and scaled between-
ness centrality of the nodes in our network (∈ [0, 10]). With that, the utility
values for the attacker and defender are shown in Table 2. We first use these val-
ues to solve for the optimal marginal strategy (shown in Fig. 3) using the MIQP
described in 2. We then use Theorem 1 to obtain the mixed strategies that the
defender can actually use to deploy the IDS systems (shown in Fig. 3).

5 Identifying the Most Critical Vulnerability

In real-world scenarios, system administrators, who have a list of known vul-
nerabilities it should address, have limited developer resources to fix all of the
known CVEs in their system at once. Thus, the question of which vulnerability
they should fix in order to improve the security of the system is a critical one. In
our case, since (1) the rewards of the formulated game are not zero-sum and (2)
the defender wants to balance a multi-objective function (that tries to balance
the security and usability metrics), figuring out the (critical) vulnerability that
D needs to fix become even more difficult.

Given that we can find the utilities for the defender using Eq. 2, we can ask
the question which attack a when removed would produce the maximum utility
for D. A simple algorithm would be to iterate over all the attacks, removing them
one by one, reformulating the MIQP and selecting the attack that maximizes the
defender’s utility when removed. We describe this idea formally in Algorithm1
and use it to find the most critical vulnerability of our system. The utilities
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obtained by removing one vulnerability at a time are shown below (for α = 0.1).

〈a1 : −1.90; a2 : −1.70; a3 : −2.30; a4 : −2.23; a5 : −2.27〉
Thus, in our system, a2 is the most critical vulnerability since fixing a2 will
result in the highest (gain in) defender’s utility.

6 Experiments

We present the results of two different experiments – (1) comparison of our
placement strategy (Fig. 3) with existing approaches, and (2) implementation of
the Stackelberg Game Strategy (SGS) on a large cloud network instance.

6.1 Comparison with Existing Strategies

In this section, we compare our approach to three other MTD strategies in the
context of our running example where n = 5 and k = 2:

a1 a2 a3 a4 a5

URS 0.4 0.4 0.4 0.4 0.4
DPS 1 1 0 0 0
CBS 0.52 0.73 0.25 0.25 0.25

Fig. 4. Table showcasing the
marginal probabilities with
which IDS is places on a node
for the different strategies.

(1) Deterministic Pure Strategy (DPS). This
strategy selects a single pure strategy out of the(
5
2

)
placement strategies. As per work by [20], for

DPS, we place IDS to detect a1 and a2 (since G1
and G2 are the most critical VMs), which are on
the critical paths for any attack flow. Note that, in
the context of a stealthy attacker who can exploit
any vulnerability in the system, the definition of
a critical node, on which an IDS can be deployed,
is not clear. Thus, DPS has an inherent disadvan-
tage when compared to MTD strategies, which we
now describe.

(2) Uniform Random Strategy (URS). In this case, we select each of the
(
5
2

)

placements or pure strategies with an equal probability of 0.1. In this case, each
attack a is covered in four (out of the ten) pure strategies since having placed an
IDS (or token which denotes an IDS was placed) for a, there are

(
4
1

)
= 4 ways

of placing the other token. Thus, the marginal probabilities are 0.1 ∗ 4 = 0.4.

(3) Centrality Based Strategy (CBS). This strategy, motivated in the work by
[42], has previously been shown to be effective for detecting stealthy bot-nets
when PageRank is used as a centrality measure. Since our network is an undi-
rected graph, we use the betweenness centrality measure for evaluation. Since
only two of our nodes (G1 and G2) have non-zero values for betweenness cen-
trality, we switch between seven of the ten configurations – three in which only
a1 is covered, three in which only a2 is covered and one in which both a1 and
a2 are covered. Since G1, on which a1 is present has a lower centrality value in
comparison to G2, on which a2 is present, the first three configurations are less
likely than the next three. The last configuration, in which both a1 and a2 are
covered, is the most likely configuration. The marginal probabilities for covering
each attack in the system, as per this strategy, is shown in Fig. 4.
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Effectiveness of Our Approach. We plot the defender’s utility value for our
approach and compare it to all the other approaches. The results are shown in
Fig. 5. When adversaries are strategic, i.e. can reason about defender strategies
and act rationally to maximize their utility, our method clearly dominates the
other methods (see the plots for CBS(min), URS(min) and DPS).
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Fig. 5. Defender’s utility for the various MTD strategies as the security-usability trade-
off value (α) varies from zero to one.

On the other hand, if the attacker is irrational, i.e., selects attacks that do
not maximize their profit, Stackelberg Equilibrium may not always be the best
strategy. We plot the best case for the other MTD strategies (see URS(max) and
CBS(max)) and it turns out that only URS is a little better when α ∈ (0, 0.37]. In
this range, our algorithm selects nodes with high centrality measure to improve
security in the case of a strategic attacker. This increases the deployment cost
and reduces the multi-objective function value, letting URS dominate. CBS on
the other hand with no information about the known attacks or performance
costs, switches only among the useless and performance expensive configurations,
being strictly dominated by SGS. Note that none of the mechanisms we compare
against adapt to the security and performance trade-off that is important to the
defender. Thus, as the value of α changes, the marginal probabilities for selecting
nodes using CBS, URS or DPS remain constant, resulting in straight line plots.
On the other hand, SGS, our intelligent switching mechanism, solves the multi-
objective optimization when coming up with its mixed strategy.

When α is low (i.e. ∈ [0, 0.29]), our method switches among eight out of the
ten pure strategies. As α increases further and the costs start to matter, it places
IDS systems more on nodes that impact performance the least. Beyond a certain
value (when α > 0.76) it realizes that the cost of placing IDS on G1 and G2 (for
detecting a1 and a2) are extremely high on the performance of the system and
sticks to only (three) strategies where neither G1 nor G2 is covered.



MTD for the Placement of Intrusion Detection Systems in the Cloud 341

6.2 Testing on a Large Cloud Network

The setup comprised of 15 VMs and 42 CVEs distributed uniformly on a flat
network 10.0.0.0/24, as shown in the Fig. 6. In this experiment, we will measure
the throughput for the server (10.0.0.15) hosting an ssh application on port 5002
as the number of IDS systems placed increases. We now describe the different
NIDS and HIDS agents pre-configured on the system with the known attack
signatures to detect the intrusion attempts.

NIDS: AF_PACKET 
S15-eth1:h15-eth1 

NIDS: AF_PACKET 
S1-eth1:h1-eth1 

auditd 
/etc/sshd_conf 

/var/www 

HIDS HIDS HIDS HIDS 

s1-eth1 

h1-eth1 

s15-eth1 

h15-eth1 

s1-eth2 s15-eth2 

Fig. 6. Testing bandwidth on a flat network with 15 VMs and multiple Network and
Host Intrusion Detection Systems (NIDS and HIDS).

Network-Based IDS. Snort [32] was configured to run in IDS (intrusion-
detection) as well as IPS (intrusion-prevention) mode. For instance, the attack
signature below checks the payload for shellcode targeting remote buffer overflow
vulnerability on ssh service running on port 5022.

a l e r t TCP any any −> 1 0 . 0 . 0 . 1 5 5002 (msg : ”EXPLOIT ssh remote
over f l ow ” ; content : ”/ bin / sh ” ; r e f e r e n c e : Bugtraq , 2 3 4 7 ;

r e f e r e n c e : cve ,2008 −5161; s i d : 1 3 2 4 ; rev : 6 ; )

The AF packet, which is an IPS configuration, creates a bridge between
inspected interfaces (e.g., h1-eth1:s1-eth1). This leads to increased packet pro-
cessing latency since each packet on a particular bridge is inspected against all
traffic patterns which are part of signatures.

Host-Based IDS. Auditd [18] was configured to monitor file integrity of con-
figuration files such as /etc/sshd conf and binary files for vulnerable services
present on the network. A daemon was configured on each inspected host to
generate an alert if there is a change in the hash value of inspected files.

The goal of this experiment was to measure the impact of the HIDS/NIDS
deployment on the throughput of the service being accessed by normal users.
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We show that as D places more IDSs (1 to 15), we observe a substantial drop in
the throughput of the system from 18 Gbps to 6 Gbps (see Fig. 7). This shows
that deployment of IDS without considering the impact on network latency can
affect the Quality of Service (QoS) for legitimate users in a cloud network.
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Fig. 7. Change in throughput of the
flat network as the number of NIDS
and HIDS deployed increases.
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Fig. 8. Change in defender’s utility
value as the number of NIDS and HIDS
deployed increases.

In Fig. 8, we vary the number of IDS systems placed in the system and see how
the defender utilities vary. Initially, as the number of IDS increases from 2 to 17,
the defender’s utility increases at a slow rate since there are too few IDS systems
to detect attacks on all the 42 vulnerabilities. As the number of IDS systems
are increased beyond 18, the defender’s utility starts to increase substantially in
each step. At this point, if the attacker does not pick their attack strategically, it
is detected with high probability. However, the placement of more IDSs beyond
a certain point (30) as shown in the Fig. 8, results in a substantial decrease in
throughput, outweighing the benefits of security provided by IDS. Lastly, the
most critical vulnerability found in this system was CVE-2013-2207.

7 Conclusion and Future Work

In this paper, we addressed the problem of placing a fixed number of IDS systems
in a large cloud environment by proposing a Moving Target Defense (MTD)
approach for shifting the detection surface. We formulated this problem as a
two-player general-sum Stackelberg Game between the cloud administrator (our
defender) and an attacker. We then designed two scalable algorithms that can
(1) find the Stackelberg Equilibrium of the formulated game, which lets the cloud
service provided a balance between the security and usability of their system,
and (2) find the most critical vulnerability in their system. We assumed that the
attacker is rational, i.e. he will try to exploit the known vulnerabilities present
of VMs in the cloud network by scanning the network. Also, a sophisticated
attacker may perform reconnaissance over an extended period of time and use
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zero-day attacks that cannot be detected by IDS [38]. We plan to model these
types of attackers in the future.
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Abstract. This paper describes our work in developing approximation
algorithms to calculate the Banzhaf Power Index (BPI) in a bicooperative
game (that is, games with two coalitions) with large n for the number
of players. Our motivation for this work is applying a cooperative game-
theoretic framework to cybersecurity scenarios: our past experience with
network defense made us receptive to the principle that differences in
the criticality of players or network resources in a coalition setting is
not always proportional to their differences in weighting or numbers of
votes. Hence, calculating a game-theoretic power measure makes sense
as a basis for both assessments and allocation decisions. The challenge
is that for most real-world scenarios, the value of n is too high for an
exact algorithm to solve in time to be actionable in a network defense
scenario. We describe our approximation algorithm, and show empirical
results that demonstrate that it produces solid estimates of the BPIs that
would result from an exact calculation. Therefore, this approximation
approach has utility in scenarios where it is imperative to deliver timely
results and network membership can be dynamic.

1 Introduction

Cyber analysts require accurate assessments of their network’s defensive posture
in order to make effective decisions about resource allocations and next steps.
One approach to this challenge would be to categorize each asset on the network
as being in one of three states: secure, compromised, or indeterminate (where the
latter state can be interpreted as an assessment of not being sure whether the
asset is secure or compromised). The goal of the adversary is to alter the state
of the secure assets, either compromising them, or at least putting them into
an indeterminate state, or else moving indeterminate assets into the comprised
camp. The defender’s goal is the dual of the adversary. Each asset has a utility
to both the defender and the attacker, so knowing the state of each asset can
induce a score that captures the overall health of the network.

In order to make this approach more concrete, we recast this challenge in the
language of cooperative game theory. Specifically, we consider our motivating
scenario as being about coalition formation. The adversary is trying to create a
c© Springer Nature Switzerland AG 2018
L. Bushnell et al. (Eds.): GameSec 2018, LNCS 11199, pp. 346–365, 2018.
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coalition of compromised assets on the network, and once this coalition is of suffi-
cient strength, the adversary’s objectives have been met. Similarly, the defender
is attempting to harden the network in such a way as to create a sufficiently large
coalition of secure assets. Each asset is assigned a weight describing its value to
the defender in the secure state, and its value to the attacker in a comprised
state (these weights can be distinct from each other). We can set a threshold for
success for both attacker and defender (again, possibly distinct) such that if the
sum of the value of secure assets is over the defender’s success threshold, then
the network is assessed as fundamentally secure, and likewise for the attacker.
At any moment in time, attackers and defenders are trying to move assets into
a coalition structure more favorable to them.

In cooperative game theory, a key insight is that the actual power of a player
in a coalition is not equivalent to its weight, and this led to the formulation of two
well-known measures of player power in a cooperative game: the Shapley value,
and the Banzhaf power index. In the context of a network defense scenario, the
criticality of an asset to an adversary is not simply its weight(s), but rather its
power - its ability to turn a losing coalition into a winning coalition by defecting,
that is, moving out of one state/coalition into another.

Traditional cooperative game theory deals with the formation of one coali-
tion, with one associated threshold. Our use case involves two distinct attacker
and defender perspectives and is known in the literature as a bicooperative game
[1]. However, the fundamental drawback with the Shapley and Banzhaf power
measures is that the naive versions of these algorithms are extremely inefficient -
they are fundamentally exponential in their running time, which makes them less
than useful as real-time algorithms applied to real-world network sizes, which
can contain thousands of assets.

In this paper we first introduce the basic ideas behind coalition formation
and cooperative game theory, focusing on the Banzhaf power measure. We next
describe how the machinery of the cooperative setting can be extended to a bico-
operative game. With this background, we then introduce the lattice theoretic
ideas that provide the theoretical foundation for our approximation algorithms.
We show the approximation is structure preserving, minimal and encodes all
of the information of the non-approximate version and hence is likely less vari-
ance sensitive than other less principled approximations. We describe how our
approximations work, and argue that their accuracy is sufficient in the context
of network defense, where actionable decision-making is paramount. Finally, we
draw some conclusions and sketch out some promising areas for future research
and refinement.

2 Motivating Examples

We first motivate the subsequent discussion by presenting some representative
scenarios where cooperative game theoretic modeling has something to offer.
As a reminder, a loose description of cooperative game theory is that the field
studies those situations in which agents/players can agree to cooperate with
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each other: they form coalitions, with potentially mutually binding agreements
to enforce the coalition structure.

Both of our motivating examples are of bicooperative games, in particular,
a voting game with two coalitions, each with a success threshold. In the first
example, we use the bicooperative framework to model a network defense sce-
nario, and in the second, a policymaking scenario. Even though the situations are
superficially different, they both have similar underlying structures that can be
captured by a bicooperative framework. One advantage to using this framework
is that the richness of the coalition structure provides flexibility with respect
to perspective - since both the attacker and defender (using the example of a
network defense scenario) have separate asset weights and success thresholds.
We can, for example, model situations in which the attacker and defender have
reached their threshold, representing their separate perspectives - the defender
believes the network is secure, and the attacker believes it to be compromised.

2.1 Network Defense Scenario

A network consists of n assets. These assets have a specific value to the defender,
and a specific value to the adversary (and these values may be different). We
can describe the current state of the network by assigning each of the n assets to
one of three camps: the attacker, the defender, or ‘undetermined’. Furthermore,
for the purposes of network evaluation, we define thresholds for the attacker
and defender coalitions, such that if either threshold is reached, we say that
the network is either sufficiently compromised, or adequately protected, respec-
tively, and if neither threshold is reached, then the state of the network is still
under contention. Each network asset is assigned both an attacker and defender
weighting: the number of votes, so to speak, that it contributes to either coali-
tion. The overall state of the network (protected, compromised, indeterminate)
can be dynamic, depending on whether assets are moving from one coalition to
another as both attackers and defenders respond to each other.

2.2 Cyber Policy Scenario

Consider a scenario where the international community has developed a voting
strategy for developing international order and rules in cyberspace through inter-
national governance mechanisms and platforms. In theory, all members of the
international community should be entitled to equal participation in developing
international order and rules in cyberspace. However, the investment realities of
the impacts of international governance on the countries supporting and main-
taining the majority of the infrastructure necessary for worldwide cyber support
are also to be factored in. Hence, there is an argument for these countries at
greater financial risk to have more approval power than those with little or no
stake in the investments necessary. In order to balance this realization, it is
decided that there is need of a mechanism for a majority number of these less
vested countries to block a majority vote established by these more vested mem-
bers so that developing countries will not be “held financially hostage” in the
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future. It is further recognized that countries, developing countries in particular,
may not be adequately experienced in certain cyber matters or that parties may
have a position on an issue but it might not be politically expedient to vote
accordingly. Hence all members can place one of three votes, approve, block or
abstain and that party votes would be weighted in a manner relevant to party’s
global investments in cyber affairs.

3 Bicooperative Games

We are casting the challenge of assessing the security or political posture of a
network as an exercise in assessing the strength of coalitions on the network. By
doing so, we can leverage existing work in cooperative game theory, which has
extensively studied coalition formation. In particular, we use measures developed
for understanding voting power. One of the most common game-theoretic power
indices from cooperative game theory is called the Banzhaf Power Index (BPI),
which is one way of measuring the amount of power held by each player in a
coalition. The essential insight from Banzhaf is that a player’s power in a coali-
tion comes from that player’s defection threat: given all the winning coalitions,
how many of those coalitions would become losing coalitions if player p defects.

In this work, we will work with bicooperative games, an extension of cooper-
ative games that offers a richer coalition structure. In this section, we follow the
notation and definitions from Bilbao [1]. Specifically, instead of a player being
in or out of the coalition, we have three states a player can be in: a player is
either in the “for” coalition, the “against” coalition, or the “undecided” coali-
tion. The set of players in the first coalition is denoted by S, and the set of
players in the second coalition is denoted by T . Hence, any bicoalition is charac-
terized by (S, T ). As needed, we’ll use M = (S ∪ T )c to represent the ‘middle’,
or ‘undecided’ coalition.

Given N players, we can define a ternary bicooperative game b over the 3n

possible player states where b(S, T ) ∈ {−1, 0, 1}, and the following conditions
hold:

b(∅, N) = −1
b(∅, ∅) = 0

b(N, ∅) = 1

The standard BPI is based on the concept of a defender swing; a swing
occurs when the defection of player i turns a coalition from winning to losing. In
the bicooperative case, there is a defender swing for player i if the game value
changes from 1 when i moves out of set S and into set T . More formally, a
defender swing for i exists if

b(S ∪ i, T ) = 1 and b(S, T ∪ i) �= 1

Similarly, we can define a detractor swing for player i as taking place when

b(S, T ∪ i) = −1 and b(S ∪ i, T ) �= −1
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In the cooperative game case, the power of a player is related to their ability to
be critical to the formation of a winning coalition. In the bicooperative case, each
player can be critical by either participating in coalition S (the “for” coalition)
or participating in coalition T (the “against” coalition). Hence, each player has
two weights: their voting weight to “approve” a decision by joining coalition S
and their voting weight to “block” a decision by joining coalition T . Not joining
either S or T is akin to abstaining, or being undecided. There is both a quota
for a winning defender coalition qS , and a winning detractor coalition qT .

The above definition of defender swing for player i is equivalent to one of the
following conditions holding true:

1. Defender coalition S is no longer winning (that is, the sum of the player
weights in coalition S < qS)

2. Regardless of whether S is winning or not, detractor coalition T ∪ i is now
winning (the sum of the player weights in coalition T ≥ qS ).

These conditions for defender swing can also be described in the following
way that will be useful in the sequel. Given player i, we write the term S → T to
denote i’s move from coalition S to T . As mentioned, both the S and T coalitions
have thresholds associated with them. Since we have two thresholds, and each
one can either be reached or not, we have four possible threshold states. For
example, the state 10 refers to the state where the S threshold qS is currently
reached, while the T threshold qT is not currently reached. The following diagram
shows the S → T moves that lead to a state change.

Fig. 1. Defender swing moves by the Bilbao definition

Detractor swing is the dual of defender swing, assessing moves by player i
from T to S.

The naive algorithm to calculate BPI for a bicooperative game with n players
is proportional to O(3N ∗ N), because we have 3N states to evaluate, and each
state has O(n) players to check for being either a defender or detractor swing.
This inefficiency is our motivation for coming up with approximation algorithms
for the BPI in a bicooperative context.



Approximating Power Indices to Assess Cybersecurity Criticality 351

4 Lattice Theory and Problem Abstraction

4.1 The Plan

In this section we will expound upon the algebraic foundations for our approx-
imation algorithm and why we believe it to be robust. Our approximation relies
on identifying distinct states of the game as being equivalent, e.g. equivalence
classes, and thereby reducing the complexity. We first establish the lattice the-
ory foundations to facilitate this identification and Lemma 1 establishes the
natural algebraic structure bicooperative games afford, referred to as core reg-
ular double Stone algebras, CRDSA [3]. This allows us to cite Lemma 2 which
demonstrates the identification preserves CRDSA structure and is achieved in
a minimal manner. Theorem 2 then shows the identification still encodes all the
information necessary to reconstruct the original CRDSA. Hence the approxi-
mation is robust from the Universal Algebra perspective and likely less variance
sensitive than other approximations derived from more random identifications.

Let J be any non-empty set of network nodes, not necessarily finite. We will
consider all the nodes of the Universe, which subsumes our internal network,
generically. Categorizing “types” of nodes can quickly become very complex,
we wish to remain conceptually simple and computationally tractable and will
define 3 classes of nodes. Our 3 node classes will be denoted 0 = “False”, M =
“Minus” Vote, and 1 = “True”. From our defensive standpoint and drawing on
familiar terminology, the nodes in 0, M, and 1 are the nodes that are “known
bad”, “indeterminate” and “known good”, respectively, for our cause. Specific
details on what factors are satisfactory for a node to be put into one of those
classes are outside of our scope except for this important constraint:

1. Every node in the Universe must be in one and only one of these classes at
any given time.

We note J = 1 is our minimal case and up to 2 of the 3 classes are allowed to be
empty. Hence any given state of the network is a ternary node set partition, which
we visualize as a “3-piece pie” while acknowledging potential “trivial slices”. We
define the node set bounded distributive lattice through the pairwise disjoint
subsets of J with the well known binary operations of ternary set partitions. We
then show the resultant bounded distributive lattice is isomorphic to CJ

3 where
C3 is the 3 element chain CRDSA. From this result we use a result regarding
factor congruences to derive an approximation algorithm for the Banzhaf Power
Index of bi-cooperative game theory.

4.2 The CJ
3 Construction

For the basic notation in lattice theory and universal algebra, see Burris and
Sankappanavar [2]. We start with some definitions:

Definition 1. Let J be a non-empty set of network nodes and let
L = {(X1,X2)|X1,X2 ⊆ J such that X1 ∩ X2 = ∅}.
We define binary operations ∨ and ∧ on L as follows:
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– (X1,X2) ∨ (Y1, Y2) = (X1 ∪ Y1,X2 ∩ Y2) and;
– (X1,X2) ∧ (Y1, Y2) = (X1 ∩ Y1,X2 ∪ Y2).

• The fact that L is a bounded distributive lattice with bounds (J, ∅) and
(∅, J) is well known.

We refer to the operations ∨, ∧ as join, meet respectively, X1 are the class 1
or “known good” nodes, X2 are the class 0 or“known bad”, and the nodes in
(X1 ∪X2)c are of class M or “indeterminate”. We call this lattice the ”Node Set
bounded distributive lattice” and denote it NSJ for a given node set J .

We note that if J is defined and X1 and X2 are understood, we make no
mention of (X1∪X2)c. We further note that in addition to (J, ∅) and (∅, J), there
is another very important element of NSJ and it is k = (∅, ∅). Lastly, it is very
important to note that these binary operations coincide with the following partial
ordering on L where ≤ denotes the familiar “less than or equal to” concept:

– (X1,X2) ≤ (Y1, Y2) ↔ X1 ⊆ Y1 and Y2 ⊆ X2

So “moving up” = “more known good” nodes and/or “less known
bad” nodes and conversely! Our minimal example, J = {1} is evidently the 3
element chain denoted C3 and Fig. 1. gives the Hasse diagrams of C3 and also C2

3

for J = {1, 2}. We find these diagrams useful, although we mention J = {1, 2, 3}
is the minumum case where at least one node can be in all 3 states X1, X2 and
(X1 ∪ X2)c.

Fig. 2. Minimal examples, C3 and C2
3

Now we need to establish the CRDSA structure that will be the foundation
of our approximation.

Definition 2. A double Stone algebra, DSA, <L,∧,∨, ∗,+, 0, 1> is an algebra
of type <2, 2, 1, 1, 0, 0> such that:

1. <L,∨,∧, 0, 1> is a bounded distributive lattice
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2. x∗ is the pseudocomplement of x i.e y ≤ x∗ ↔ y ∧ x = 0
3. x+ is the dual pseudocomplement of x i.e y ≥ x+ ↔ y ∨ x = 1
4. x∗ ∨ x∗∗ = 1, x+ ∧ x++ = 0, e.g. the Stone identities.

Definition 3. Let L be a double Stone algebra. An element x of L is called a
central element of L if x+ = x∗. The center of L is denoted by C(L) = {x ∈
L|x+ = x∗}.
Definition 4. A double Stone algebra L is called regular, RDSA, if it addition-
ally satisfies

– x ∧ x+ ≤ y ∨ y∗

• this is equivalent to x+ = y+ and x∗ = y∗ → x = y

We will use the following result when we consider our approximation algo-
rithm.

Theorem 1. Let L be a regular double Stone algebra. Then C(L) is a Boolean
subalgebra of L with respect to the induced operations ∧, ∨ and ∗ [3].

Our structure is even more rigid than that of RDSA and that is demonstrated
through a very important element that is called the core element.

Definition 5. Every element x of a RDSA with the property x∗ = 0 (or equiv-
alently, x ∗ ∗ = 1) is called dense. Every element of the form x ∨ x∗ is dense
and we denote the set of all dense elements of L, D(L). Every element x with
the property x+ = 1 (or equivalently, x++ = 0) is called dually dense. Every
element of the form x ∧ x+ is dually dense and we denote the set of all dual
dense elements of L, D(L).

Definition 6. The core of a double Stone algebra L is defined to be K(L) =
D(L) ∩ D(L) and we call a regular double Stone algebra with non-empty core a
core regular double Stone algebra, CRDSA [3].

For any CRDSA L, |K(L)| = 1 follows easily from regularity. Now we define
the ∗ and + operations for NSJ and CJ

3 that are clearly the pseudocomplement
and dual pseudocomplement for those respective structures and demonstrate
that they are both double Stone algebras [4].

Definition 7. Let (X1,X2) ∈ NSJ , then

1. (X1,X2)∗ = (X2,X
c
2) and

2. (X1,X2)+ = (Xc
1 ,X1)

define the pseudocomplement and dual pseudocomplement operations of NSJ .
We define the following operations on C3:

1. ∗ : C3 → C3 is defined by 0 → 1, M → 0 and 1 → 0;
2. + : C3 → C3 is defined by 0 → 1, M → 1 and 1 → 0;
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The fact that the operations above extend to a (dual) pseudocomplement operation
on CJ

3 follows as operations are defined pointwise. Clearly both definitions of ∗
and + demonstrate the Stone identities of Definition 2.

Corollary 1. NSJ and CJ
3 are regular double Stone algebras.

Proof. We have already shown CJ
3 to be a double Stone algebra. Let x, y ∈ CJ

3

and suppose x∗ = y∗ and x+ = y+.

– xi = 1 → y∗
i = 0 = y+

i → yi = 1
– xi = M → ((y+

i = 1 → yi = 0 or M) and (y∗
i = 0 → yi = M or 1)) → yi = M

– xi = 0 → y+
i = 1 → yi = 0.

So, we see that x = y and CJ
3 is regular. It is straightforward to see that NSJ

is regular under its operations from Definition 7.

Note 1. We note that k = (∅, ∅) = D(L)∩D(L) is the only element of NSJ that
is simultaneously dense and dually dense. Clearly C3 and hence CJ

3 is a CRDSA
and from here forward we treat it as such. [4] exposites many properties indicat-
ing nearly Boolean nature of CRDSA including the fact that every CRDSA is a
subdirect product of C3. Now that we have established NSJ

∼= CJ
3 as CRDSA,

we are ready to show they’re isomorphic.

Lemma 1. NSJ
∼= CJ

3

Proof. We define α : NSJ → CJ
3 pointwise for (X1,X2) ∈ NSJ by α(X1,X2) =

(xi)i∈J =

1. 1 if i ∈ X1

2. M if i ∈ (X1 ∪ X2)c

3. 0 if i ∈ X2.

Clearly α is bijective and to see that α and α−1 are order preserving follows
from the partial order itself. Recall that (X1,X2) ≤ (Y1, Y2) ↔ X1 ⊆ Y1 and
Y2 ⊆ X2, we consider α−1 and α below:

1. α−1, suppose (xi) ≤ (yi)
(a) xi = 1 → yi = 1 and hence X1 ⊆ Y1.
(b) yi = 0 → xi = 0 and hence Y2 ⊆ X2.

2. α, suppose (X1,X2) ≤ (Y1, Y2) and consider their images (xi) and (yi)
(a) Suppose xi = 1, then X1 ⊆ Y1 → yi = 1.
(b) Suppose xi = M , if yi = 0 then ∃i such that i ∈ Y2 and i ∈ (X1 ∪ X2)c

yielding a contradiction with Y2 ⊆ X2.

The fact that it follows that α is a lattice isomorphism is well known, e.g.
Theorem 2.3 of [2]. The fact that α preserves ∗ and + follows from their defini-
tions and the fact that they are extended point-wise from C3 to CJ

3 . Recall:

1. ∗ : L → L is defined by (X1,X2) → (X2,X
c
2) and;

2. + : L → L is defined by (X1,X2) → (Xc
1 ,X1) so that
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(a) ∗ : C3 → C3 is defined by 0 → 1, M → 0 and 1 → 0;
(b) + : C3 → C3 is defined by 0 → 1, M → 1 and 1 → 0;

The fact that α preserves the constants 0 = (∅, J) and 1 = (J, ∅) is clear and we
note that it also preserves k = (∅, ∅).

Now that we have established NSJ
∼= CJ

3 as a CRDSA, we are ready to cite
some known results regarding its congruences we will use in our approximation
algorithm. Recall that congruences are equivalence relations on an algebra that
are compatible with its operations. They allow us to obtain quotient algebras
by partitioning the elements of the algebra into equivalence classes given by the
congruence relation. In the quotient algebra elements of the equivalence class are
identified as one element and this will allow for the reduction in complexity of
our approximation. Also, please recall that the set of congruences on an algebra
L forms a lattice ordered by inclusion with smallest, greatest elements Δ, L×L,
respectively. We refer the reader to [2] for facts about congruences and take the
following definition and Lemma directly from [3].

Definition 8. Let θ be a congruence on an algebra L. Then θ is said to ba a
factor congruence if there exists a congruence ψ on L such that

1. θ ∧ ψ = Δ and,
2. θ ∨ ψ = L × L.

We note that when the above holds we refer to θ and ψ as a pair of factor
congruences.

Lemma 2 [3]. Let L be a core regular double Stone algebra and x ∈ L and define
θx = {(p, q) ∈ L × L|x ∧ p = x ∧ q}, then the following hold:

1. θx is a congruence on L if and only if x ∈ C(L). Furthermore, θx is the
smallest congruence containing (x, 1).

2. θ is a factor congruence on L if and only if θ = θx for some x ∈ C(L).

Note 2. So, if identifying (x, 1) were desirable then θx would be the optimal
congruence to do so in the sense that it identifies the smallest subset of CJ

3 . In
[3] it is shown that θx and θx∗ are a pair of factor congruences for all x ∈ C(L).
Since x ∈ C(L), (X1 ∪ X2)c = ∅ and this means that the roles of known good
and known bad are being reversed in the two states represented by x and x∗.
The following theorem is known.

Theorem 2 [2]. Let θx and θx∗ be be a pair of factor congruences on L, then
L ∼= L/θx × L/θx∗ .

So as a pair θx and θx∗ encode the information contained in L. It is evident
from the definition in Lemma 2 and the fact that x ∈ C(L) that when we consider
the equivalence classes for θx and the related pairs (p, q) that pi and qi are free
whenever xi = 0 and pi = qi whenever xi = 1. Hence for finite J we can very
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easily determine |L/θx| based on the support of x. Evidently, if sup(x) = K then
|L/θx| = 3K and the cosets are of cardinality 3J−K . We finish this section by
considering a small example, recall J = {1, 2, 3} is the minumum case where at
least one node can be in all 3 states. We choose x = (100), hence x∗ = (011)
and we will choose our coset representatives minimally.

Example 1. Let x = (100) below we list the elements of L/θx and L/θx∗ , we
denote θx by θ and θx∗ as θ∗ as x is understood.

1. L/θ
(000)θ = {(000), (00M), (001), (0M0), (0MM), (0M1), (010), (01M), (011)}
(M00)θ = {(M00), (M0M), (M01), (MM0), (MMM), (MM1), (M10),
(M1M), (M11)}
(100)θ = {(100), (10M), (101), (1M0), (1MM), (1M1), (110), (11M), (111)}

2. L/θ∗

(000)θ∗ = {(000), (M00), (100)}(00M)θ∗ = {(00M), (M0M), (10M)}
(001)θ∗ = {(001), (M01), (101)}(0M0)θ∗ = {(0M0), (MM0), (1M0)}
(0MM)θ∗= {(0MM), (MMM), (1MM)}(0M1)θ∗= {(0M1), (MM1), (1M1)}
(010)θ∗ = {(010), (M10), (110)}(01M)θ∗ = {(01M), (M1M), (11M)}
(011)θ∗ = {(011), (M11), (111)}.

5 An Approximation Algorithm for Calculating BPI

We now discuss our approach to developing an algorithm for calculating an
approximate normalized BPI [1], herein referred to as BPI, in a bicooperative
game. Given a set Sn of n players we use the free variables in the coset rep-
resentatives of factor congruences from Sect. 4 to decompose Sn into subsets
Sk1 , Sk2 , ...Ski

where the size of each subset is small enough to be a tractable
exact BPI calculation. At this point, though, the exact BPI calculations are only
with respect to a particular subset; we still need to convert them to a BPI with
respect to all n players. Our method for doing so has two steps:

1. Aggregation. After the BPIs have been calculated inside each subset, there
are two ways to adjust them with respect to the group as a whole:
(a) Linear. In a linear approach, we simply add up all of the weights of the

players in a subgroup, and calculate the fraction of all n player weights
that this is. This fraction becomes a normalizing coefficient that is applied
to all of the weights in that subgroup.

(b) Banzhaf. If we have enough subgroups (empirically, 4 or more), we can
treat all the players in a subgroup as a “metaplayer”, whose weights
are the sums of the player weights in that subgroup. Then we do an
exact Banzhaf calculation against all of the subgroup metaplayers - the
resulting BPIs are then used as the normalizing factors to be applied to
all the players in that subgroup.
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2. Expected Value. The above step gives us one estimate of a player’s overall
BPI. This estimate may be skewed by “luck of the draw” - being put a
subgroup that contains too many powerful players (or weak players), such
that the BPI of the particular player measured against that subgroup may
well fail to give an accurate representation of that player’s power if it were
to be compared to the complete set Sn. Therefore, the decomposition and
aggregation steps are repeated many times, and we calculate the expected
value of a particular player’s power; the idea being that with a large enough
number of iterations, the randomness of the subgroups will result in a good
estimate for each player’s BPI.

The potential savings for this approximation strategy are significant. In
practice, we found that 10000 iterations was sufficient to get convergence on
the estimates. Imagine that we have an n of 100, and we decompose this
into ten subgroups of ten players each, and use a Banzhaf-style aggregation
method. That means that we have a total of 11 exact BPI calculations to
do, 10000 times each, which is a total of 110,000 exact BPI calculations with
n = 10. Since the exact BPI calculation is of order 3n ∗ n, we get a speedup
of (3100 ∗ 100)/((310 ∗ 10) ∗ 110, 000) > 388. This is turns a largely intractable
problem into one with complexity less than 323, easily executed on most laptops.

Considering that for the applications we’re considering, we’re looking for
solid estimates of the BPI for each player so as to inform decision-makers, not
many decimal points of precision for precision’s sake. If the approximation is
sufficiently close, this is a worthwhile tradeoff.

For very large n, we recursively choose elements in the C(L) from Definition
3 and the above algorithm, decomposing the group into subgroups and sub-
subgroups, until we have decomposed the original player set into a tree structure
where the leaves represent small enough groups to use the exact BPI algorithm.
Then the aggregation steps collapse the tree starting at the leaves, calculating
BPIs until we reach the root, which generates a full estimate of all n BPIs. Then
we repeat this process, returning the expected values over the iterations.

6 Experiments

In this section, we provide examples of how our approximation algorithm works
in practice, comparing its accuracy and performance to the exact algorithm.

6.1 Bilbao Example

The Bilbao paper presents an example of a ternary voting game based on the 19
autonomous communities of Spain. The game is defined by an approval vector

[501[178, 159, 136, 109, 60, 55, 47, 45, 44, 31, 29, 24, 23, 23, 13, 13, 7, 2, 2]]

and a blocking vector

[10; [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
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With n = 19, a calculation of the exact BPI is tractable. Using the exact
result as the baseline, we ran 10000 iterations where we split the 19 commu-
nities into two random disjoint groups, one with 9 players, and one with 10,
e.g. states x = (1111100000000001111) and x∗ = (0000011111111110000) etc.,
then we aggregated the results. Figure 2 below shows the typical results of an
approximation run, where the players are listed from greatest power to least.

Fig. 3. Total Banzhaf power comparison for the Bilbao example

We can begin to characterize the quality of the estimate by pointing out
that in doing numerous runs over 10000 iterations, in no case did we get an
error larger than 3.3% between the value of the estimated and actual values of
a specific community. The average RMS error across all 19 communities was
less than 2% and the ranking was the same. This is accurate enough for, say,
actionable resource allocation decision-making for cyber analysts, who generally
work with much higher levels of uncertainty in their day-to-day estimations.

6.2 Stress Testing

The approximations to the Bilbao results were promising enough to follow up
with further experimentation. In particular, we wanted to “stress test” the
approximation algorithm by the following conditions:

1. Divide the n players into small-sized sets, where a specific player’s power is
likely to be overestimated compared to its power against the whole group
(large voting weight), or underestimated (small voting weight). In all of our
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testing, we never saw any power swings that were large enough such that the
estimated power rankings would be different than the exact power rankings,
but we were concerned with bounding any kind of estimation error due to
a player with “superpower” compared to the others because of having an
inordinate amount of votes.

2. Create wide variations in the order of magnitude of blocking and/or approval
weights. And similarly, give some players wide discrepancies between their
blocking and approval votes. Again, these “corner cases” looked more likely to
generate discrepancies between estimated and exact values in our preliminary
testing.

The following weight vectors is a representative experiment that we ran with
ten players in order to stress the approximation algorithm as stated above. The
approval weights are:

[2005, [1000, 1000, 1000, 1000, 2, 2, 2, 1, 1, 1]]

and a blocking weights are

[856, [1, 10, 100, 1000, 99, 100, 101, 99, 100, 101]].

Figure 4 shows a comparison of the total power for the exact value and
approximated ones for each of the ten players, after running 10000 iterations.
Note that the largest discrepancy occurs for player 4, which has the largest sum
of approval and blocking weights (1000 in each case) - an example of how the
approximation is more likely to overestimate players that have weights that are
greater than most other players. Note this is unlikely to change the rank order.

Fig. 4. Total power comparison for the stress test example
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By separating out approval and blocking power, this approximation bias can
be seen more clearly in Figs. 5 and 6. There are 3 other players with approval
weights that are equal to player 4, and hence the approximation is closer in the
approval case than in the blocking case (7.6% versus 19%).

Fig. 5. Comparison of approval power for the stress test example

7 Extending the Set of Player Moves

The definition of the BPI for a ternary voting game as it appears in Bilbao’s
work can be written as the sum of approval power of each voter, as calculated
by the Banzhaf index, and the blocking power of the voter:

BPI = Powertotal = Powerapproval + Powerblocking

In the practical scenario that we are considering, though, we desire a power
measure that is more fine-grained. For instance, suppose we have an asset that
we assess has not been compromised, hence is in the defender coalition. The
Bilbao-style analysis assumes that the only moves that matter for the defender
swing are ones from the S coalition to the T coalition. In a real-world situation,
it matters not only if a trusted machine transitions to a compromised state, but
also if it transitions to an indeterminate state. The ambiguity about its ground
truth in the indeterminate state makes it of less value than a fully-trusted asset.

Therefore, we suggest extending the notion of power to include moves made
to and from the indeterminate state. From the point of view of the defender,
there are two additional classes of moves to consider:
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Fig. 6. Comparison of blocking power for the stress test example

1. S → M - an asset starting in the trusted state could move to the indetermi-
nate state

2. M → T - an asset starting in the indeterminate state could move to the
untrusted state.

The dual of these moves (reverse the arrows to get M → S and T → M)
completes the universe of possible swings. In Fig. 7, we depict the extended
universe of moves that represent a loss for the defender: the existing Bilbao
formulation only considers S → T moves, but additionally the S → M and
M → T moves as ones that would reflect a change in the security posture of the
network. The dual of this diagram would be the universe of moves that represent
a loss for the attacker.

Fig. 7. Expanded defender swing move set
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Translating this expanded set of moves into an extended power index based
on the Banzhaf approach is an avenue that we continue to explore. In partic-
ular, understanding how the behavior of each class of move is dependent on
the distribution of voting weights. For example, in Fig. 8, we depict the power
indices for the 19 players in the Bilbao example. The flat (red) curve shows
the typical power curve for any of these classes of moves (S → T , S → M ,
M → T ) that primarily depend on blocking weights (which, in the Bilbao exam-
ple, were uniformly distributed). The descending (blue) curve shows the typical
power curve for S → T and S → M , that primarily depend on approval weights.
The interesting anomaly to these characteristic shapes is the ascending (brown)
curve that applies to M → T moves. The absolute number of M → T moves
is almost two orders of magnitude smaller than S → T moves, so these swings
don’t materially affect the final power rankings when all classes of moves are
aggregated. However, this example demonstrates that our intuition about how a
voting distribution “should” translate into power rankings is not necessarily to
be trusted.

Note 3. In the context of a network defense scenario, the existence of the ascend-
ing curve points out a counterintuitive strategy for an attacker, which is to
concentrate on “flipping” low rank resources that are already in the indetermi-
nate state, as opposed to investing resources in attacking trusted resources.

Fig. 8. Characteristic power curves for the Bilbao example (Color figure online)
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8 Related Work

In the area of cybersecurity, most of the game-theoretic research has focused on
non-cooperative games. Non-cooperative game models are prevalent: two rep-
resentative examples (from a very extensive literature search) are calculating
Nash equilibria for denial-of-service attacks [7] or solving Stackelberg games [6]
for cyber-physical security. The animating idea behind non-cooperative games
is a strategic interaction that is very often purely adversarial, which makes the
non-cooperative model an obvious candidate for the domain of cybersecurity.
Applications of cooperative game theory for cybersecurity are somewhat rarer:
the underlying ideas behind cooperative game theory (building and maintaining
coalitions) aren’t necessarily an obvious mapping to adversarial scenario.

In cooperative game theory, the canonical problem has to do with the players
assessing whether the value they receive from joining a coalition outweighs the
costs of joining, which is a more natural fit for decision-making by self-interested,
but not explicitly adversarial players. So, for example, in [5] we find cooperative
game theory being applied to help model the decision-making that could take
place in an institution carrying out security risk management, where various
divisions of the organization need to make trade-offs between the vulnerabilities
that exist in their division versus the cost of joining a coalition, and managing
the inevitable friction between the goals and behavior of each division. In this
cooperative game, new coalitions form only if the two sub-coalitions assess that
they are under a friction threshold.

The above remarks notwithstanding, there exists cooperative game theoretic-
research that is related to the work presented in this paper. First of all, Bilbao’s
work in bicooperative games has been fundamental in influencing the starting
point for our research, especially his conceptualization of ternary voting games
in [1]. In Sect. 7 we have extended his ideas of defender and detractor swings.

We’re not the first to recognize the necessity of approximation algorithms
to calculate power indices. In [8], the authors present an approximation to the
Shapley value, a power index similar to the Banzhaf power index presented in
this paper, offered as an improvement of early work by Owen [9]. The key insight
of [8] is that there are two dimensions to a proposed approximation: the speed-up
over the exact version, and the amount of approximation error. They show that
as the number of players increases, average percentage error decreases.

9 Discussion and Future Work

9.1 Summary

Our work on this effort began as an exploration of how we could apply the Bilbao
bicooperative voting game framework to cybersecurity scenarios (and later on, to
other related domains, such as cyber policy). Our past experience with network
defense made us receptive to the principle that differences in the criticality of
players or network resources in a coalition setting is not always proportional to
their differences in weighting or numbers of votes. Calculating a game-theoretic
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power measure made sense to us as the basis for both assessments and allocation
decisions.

A bedrock principle of cyber security is that to be successful, it is critical to
put yourself in the adversary’s shoes. For this reason especially, the notion of an
explicit bicooperative game with two sets of weights (characterized as approval
or blocking) make sense. Instead of assuming that a particular player/resource is
valued equally by you and your adversary, this framework discourages this kind
of projection, and instead, forces you to get in the head of the adversary. This
is a compelling reason for adopting the two-weight vector approach.

For most real-world scenarios, we are dealing with a value of n that is too
high for an exact algorithm to solve in time to be actionable in a network defense
scenario, which motivated us to investigate approximation algorithms for calcu-
lating the Banzhaf Power Index for bicooperative games. Our initial results have
been promising: the lattice theoretic foundations, strategy of divide and aggre-
gate, combined with randomness and the law of large numbers, gives us not only
qualitative accuracy (ranking), but solid quantitative results (reliable estimates
of power relative to the other players).

9.2 Future Work

Our investigations thus far suggest some natural extensions and follow-on work.

Efficiency of Resource Usage. One of the primary reasons for doing the
kind of analysis we’ve been discussing in this paper is to decide which players
or resources have the most power in a ternary voting game. This information
should inform resource allocation decisions: in a cybersecurity scenario, which
network assets to harden, or in a policy scenario, who to spend time with to
influence. Given that there is always a finite investment limit when it comes to
allocating those resources, what is the most efficient way to do this allocation?

Uncertainty in Coalition Moves. The coalition framework we’ve studied
treats moves as deterministic, and only considers the moves of one player. It
would be worthwhile to expand the analysis to account for probabilistic moves,
as well as crowd behavior in policy scenarios. For example, one person’s shift
to another coalition may trigger a stampede of other players not wanting to be
stuck in a losing coalition.

Uncertainty in Assessing Weights. Our algorithms are based on knowing
the exact number of votes (both approval and blocking) for each player/resource.
In practice, it often won’t be possible to make such precise or accurate assess-
ments. Instead, we may find ourselves doing rough estimates, or grouping a set
of players and saying that they are perceived to have essentially the same voting
weights. It is important, therefore, to assess how sensitive our analysis strategy
and associated algorithms are to the precision of the weights, so as to establish
what kinds of limitations exist in drawing precise and/or accurate conclusions.

Multiple Coalitions. We would like to extend our approach to encompass more
than simply two explicit coalitions and thresholds. For example, the M coalition
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doesn’t have a threshold. The challenge here is that the number of potential
moves between coalitions goes up exponentially with the number of coalitions.
Handling higher numbers of coalitions lets us model more nuanced scenarios,
where a position isn’t simply one of for, against, or undecided.

Coalition Neighborhoods. Our analysis approach is based on the assumption
that for n players, all 3n possible states are equally likely. We could save sig-
nificant analysis time by only considering nearby states from the current state,
assuming we have a decent estimate of what the current state is. This would
give us power estimates that are conditional upon our assessment of the current
coalition state, and this would aid in cybersecurity scenarios where real-time
calculations are required.

Move Classes. As Fig. 8 depicted, our intuition about power curves for specific
kinds of moves may be flawed; we’d like to be able to make general statements
about voting distributions and power relative power rankings, by move class.

Scenario Development. We see our initial demonstrations as a useful tech-
nique to support scenario planning, where not only are the potential player
weights and thresholds unknown, but we are trying to understand a set of possi-
ble or counterfactual futures, not simply predict power rankings over one future.
We could be exploring sets of coalition neighborhoods, where these neighbor-
hoods are potentially disparate, and reporting back not the expected value, but
rather a vector of counterfactual outcomes.
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Abstract. Encouraging passengers to take public transportation
reduces cost and enhances sustainability of urban ecosystems. However,
the passengers incur some inconvenience cost due to potential delays and
discomfort when switching from private to public transit service. In this
paper, we propose a reverse auction-based mechanism so that the govern-
ment can incentivize the passengers to take public transit system instead
of private transit services. The proposed mechanism achieves individ-
ual rationality, truthfulness and near optimal social welfare. However,
revealing passengers’ truthful inconvenience cost raises privacy concerns.
Hence, a truthful and privacy preserving auction mechanism is investi-
gated in this paper. The mechanism design is formulated as a mixed
integer program, which makes the VCG-like payment scheme computa-
tionally intractable. To mitigate the computation complexity, a heuristic
algorithm is proposed as an approximation. We show that truthfulness,
near optimal social welfare, individual rationality and differential pri-
vacy are preserved by the heuristic algorithm. The proposed approach is
demonstrated using numerical case study.

Keywords: Urban transportation · Traffic offload · Auction theory
Differential privacy

1 Introduction

Rapid urban population growth around the world brings huge traffic demand
and poses enormous burden on urban transportation system [27]. Due to the
unbalance between the huge traffic demand caused by fast growing population
and urban transportation infrastructure development, citizens are suffering from
the worse and worse traffic condition, e.g., traffic congestion during rush hours
in big cities such as New York City and Seattle [5].

Urban transit services are divided into two categories, denoted as private
transit services such as taxis and ride-hailing services (e.g., Uber and Lyft) and
public transit services such as buses and subways. Both services have their own
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advantages and disadvantages. Private transit services intend to provide non-stop
or few stop services which offer high quality of service (QoS). Thus the passengers
incur higher operation cost. Moreover, private transit services can provide the
passengers more flexibility in terms of route selection or destination selection.
Public transit services intend to provide shared riding for a large number of
passengers so that the operation cost is reduced while QoS is sacrificed. Thus
the passengers incur less transit fare comparing to private transit services such as
taxi. However, the passengers have less flexibility because the buses and subways
follow fixed routes.

As a consequence of the popularity of private vehicles and passengers’ higher
budget, private transit systems are currently more popular, which introduces
extra traffic congestion. To improve the urban transportation system’s perfor-
mance, policy makers have two choices. On one hand, they can improve the
transportation infrastructure (e.g., widen the most often congested roads and
build more roads). On the other hand, if the number of operating vehicles at
the same time is reduced or balanced, the transportation condition is improved.
Since the first choice is expensive and time consuming, we are motivated to focus
on the second choice. Considering the natures of public transit services and pri-
vate transit services, one way to implement the second choice is to offload the
traffic to public transit services. However, when a passenger takes public instead
of private transit services, it incurs more inconvenience costs due to several rea-
sons such as delay, the fare charge, and the decrease of QoS. For example, the
arrival time is delayed when taking buses comparing to taking taxi. Therefore,
the passengers, who are rational and selfish, have no interest to change their
transit habits, i.e., taking public instead of private transit services.

To incentivize the passengers’ conversion from private to public transit ser-
vices, in this paper we provide a reverse auction-based mechanism. The passen-
gers first simultaneously bid the amount of traffic offload they can contribute
and the associated inconvenience cost to the government. Then the government
selects the passengers that should contribute to traffic offload and issue them the
corresponding incentives. Three game-theoretic properties are satisfied: individ-
ual rationality (i.e., the passengers get non-negative utility), truthfulness (i.e.,
the passengers bid truthfully), and near optimal social welfare.

Although bidding truthfully is a desired property from the government’s
perspective, it raises privacy concerns from the passengers’ perspectives. The
bids submitted by the passengers normally contain private information such as
transit behavior and region of interest that the passenger does not like to reveal
to other passengers or public. Hence, a privacy sensitive passenger would intend
not to bid truthfully, but rather introduce some noise into its bid and earn a
suboptimal utility. Adopting the concept of differential privacy as the privacy
measure [8,9], the mechanism is imposed an extra constraint that differential
privacy should be achieved.

In this paper, we focus on the problem of designing a mechanism that guar-
antees individual rationality, truthfulness, approximate social welfare maximiza-
tion, and differential privacy, we make the following contributions:
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– We consider the problem of improving transportation system’s performance
by incentivizing the passengers to switch from private transit service to public
transit service.

– We model the problem using a reverse auction, in which the government is
the auctioneer and the passengers are the bidders. The mechanism achieves
individual rationality, truthfulness, approximate social welfare maximization,
and differential privacy.

– The problem we formulated is a mixed integer program, which makes the cal-
culation of VCG-like payments infeasible. Therefore, we give an approximate
algorithm to mitigate the computational complexity. The proposed algorithm
is solvable in polynomial time, and it preserves the desired properties.

– We evaluate the proposed approach using a numerical case study. The results
show that the proposed approach achieves positive social welfare, positive
passenger utility and differential privacy.

The rest of this paper is organized as follows. Related works are reviewed
in Sect. 2. The problem formulation is given in Sect. 3, and the proposed solu-
tion is presented in Sect. 4. A numerical case study is presented in Sect. 5 as a
demonstration. We conclude the paper in Sect. 6.

2 Related Work

In this section, we review related works on improving transportation system’s
performance and works on mechanism design with differential privacy.

Traffic congestion pattern is analyzed in [4]. Motion planning problems on
mobile systems have been investigated in [19,32], while distributed routing poli-
cies are investigated on dynamical networks [6,7]. Resource allocation based
smart parking system is proposed in [11], and spatial temporal parking demand
modelling is proposed in [10]. Recently, vehicle balancing approaches have been
proposed. Various approaches on control of mobility-on-demand systems have
been proposed in [29,34]. Balancing on bike sharing systems is investigated in
[30]. The works in [25] aims to improve the transportation system performance
by focusing on taxis. Robust vehicle balancing problem is solved in [24]. Dynamic
taxi ride-share systems aiming to bring together travelers with similar itineraries
and time schedules on short-notice utilizes optimization technology to match
drivers and riders in real-time [17,20]. Different from previous works focusing on
improving the transportation system’s performance from either private transit
service side or public transit service side, to the best of our knowledge, this is
the first work that focusing on encouraging passengers to switch from private to
public transit service.

Auction is one of the popular approaches for market resource allocations
[18]. Among the efforts on auction-based mechanism design, Vickrey-Clarke-
Groves (VCG) mechanism is widely adopted to preserve truthfulness [33]. Wide
deployment of sensors and real-time sensing technology raised the concerns on
confidentiality of the customers’ data in different application domains including
smart grid [22], smart transportation systems [14], smart buildings [1] and so
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on. To resolve the privacy issues, multiple efforts have been devoted from earlier
ad hoc solutions [2,21,31] to recently more rigorous solutions such as informa-
tion theoretic privacy [26] and differential privacy [8,9]. Various mechanisms
have been designed to preserve differential privacy [13,23]. Motivated by the
nice properties of exponential mechanism [15], we integrate reverse auction with
differential privacy in this work. Due to the presence of inconvenience cost, the
exponential mechanisms in [15,23] are not applicable to our problem. Moreover,
how to efficiently select the winners and compute the VCG-like payments are
not addressed in [15,23], and are studied in this paper.

3 Problem Formulation

In this section, we present the reverse auction model. We first give the models
for the passengers and the government. Then we formulate the problem of traffic
offload as a mixed integer program.

3.1 Passenger Model

In the auction model, the passengers act as the bidders. Denote the set of pas-
sengers as N = {1, 2, · · · , N}. Each passenger i ∈ N incurs some inconvenience
cost ci,s if it switches from private transit service to public transit service for
some road segment s ∈ S due to discomfort, time of arrival delays and so on.
The inconvenience cost ci,s is private information and is only known to the pas-
senger. Any passenger j �= i has no information about ci,s. To participate in
traffic offload, each passenger i needs to submit a bid bi = [b1, b2, · · · , bS ] to
the government, where each bid bi,s is a pair (hi,s, c̄i,s) implying the amount of
traffic offload hi,s the passenger is willing to offer and the corresponding claimed
inconvenience cost c̄i,s. Depending on the preference, the claimed cost c̄i,s does
not necessarily be the real cost ci,s. The bids from all passengers are submitted
simultaneously. By agreeing to switch from private transit service to public tran-
sit service, the passenger that is selected by the government will be reimbursed
ri,s for the cost it incurred. Hence, the utility of each passenger i is computed as

Ui = ri −
∑

s∈S
xi,sci,s, ∀i ∈ N , (1)

where xi,s ∈ {0, 1} is a binary indicator computed by the government implying
if passenger i is selected for road segment s. The passengers are assumed to be
rational and selfish. Hence, the passengers always maximize (1) and never accept
negative utilities.

3.2 Government Model

In the auction model, the government acts as the auctioneer. The govern-
ment focus on a set of road segments S = {1, 2, · · · , S} that require traffic
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offload, and it will incentivize the passengers nearby to participate in traffic
offload. Based on the historical traffic information, the set of road segments S
that will require traffic offload from passengers in the near future time hori-
zon can be obtained. After receiving the bid profile B = [b1,b2 · · · ,bN ]T , i.e.,
the bids from all passengers N , the government computes a selection profile
X = [x1,x2, · · · ,xN ]T ∈ {0, 1}N×S , with each element xi,s ∈ {0, 1} defined as

xi,s =

{
1 if passenger i is selected for road segment s;
0 otherwise.

(2)

If passenger i is selected by the selection profile, i.e.,
∑

s∈S xi,s ≥ 1, the govern-
ment issues passenger i an incentive ri. In the meantime, the selected passengers
switch from private to public transit service to contribute to the transportation
system’s performance improvement hi,s. The utility obtained by the government
is represented as

V =
∑

s∈S

∑

i∈N
xi,s(αhi,s) −

∑

i∈N
ri, (3)

where α is the parameter to transfer the amount of traffic offload into monetary
utility. Without loss of generality, we assume α = 1. Since a passenger can only
contribute to one road segment s at each time, the government has the following
constraint: ∑

s∈S
xi,s ≤ 1, ∀i ∈ N . (4)

Finally, the public transit service has certain capacity Qs at each road segment
s. Hence we have ∑

i∈N
xi,s ≤ Qs, ∀s ∈ S. (5)

3.3 Social Welfare

Define the social welfare generated by incentivizing passengers to switch from
private transit systems to public transit systems as the aggregated utilities of
the government and passengers. Then the social welfare is represented as

Ω(X,B) = V +
∑

i∈S
Ui =

∑

s∈S

∑

i∈N
xi,s(hi,s − ci,s). (6)

Note that the reward ri,s in (1) and (3) get cancelled.
The objective of the government is to maximize the social welfare defined in

(6). The optimization problem that the government intends to solve is as follows.

max
X

∑

s∈S

∑

i∈N
xi,s(hi,s − ci,s) (7)

s.t.
∑

s∈S
xi,s ≤ 1, ∀i ∈ N



A Differentially Private and Truthful Mechanism for Traffic Offload 371

∑

i∈N
xi,s ≤ Qs, ∀s ∈ S

xi,s ∈ {0, 1}, ∀i ∈ N ,∀s ∈ S

4 Reverse Auction Solution

In this section, we first introduce the properties that we want to satisfy. Moti-
vated by exponential mechanism [15,23], we first give a modified exponential
mechanism. To mitigate the computation complexity for VCG-like payment in
exponential mechanism, we then present a solution approach that satisfies the
admired properties.

4.1 Game-Theoretic Properties and Differential Privacy

Game-Theoretic Solution Concepts. The passengers are assumed to be
rational. Therefore the utility obtained by each passenger should be non-
negative, i.e.,

Ui = ri −
∑

s∈S
xi,sci,s ≥ 0, ∀i ∈ N (8)

The government intends to reveal the truth inconvenience cost from the pas-
sengers, i.e., c̄i,s = ci,s for all i ∈ N and s ∈ S. We characterize if the passengers
tell the truth using the truthfulness property defined as

Definition 1. (Truthfulness): An auction is truthful if and only if bidding the
true inconvenience cost ci,s is the dominant strategy for any passenger i ∈ N
regardless of the bids from the other passengers, i.e., given the bids from other
passengers other than i, claiming c̄i,s = ci,s gives passenger i the maximum
utility.

Differential Privacy. Suppose a mechanism satisfies truthfulness property.
Then by observing how passengers participate in traffic offload, other passen-
gers or a third party player might be able to infer the private information that is
encoded in the selected passengers’ bids. For instance, a greedy and smart pas-
senger might infer the inconvenience cost reported by the selected passengers to
gain some advantage in future rounds of the auction. Therefore a concern of the
passengers is that any other passenger can possibly infer the private information
that is encoded in the bid profile. Taking the privacy concern into considera-
tion, the passenger might not bid in a truthful manner. Hence, the government
wishes that although the participation of passengers can be observed and pub-
licly known, no one can compromise the privacy of each individual passenger.
Differential privacy [8,9], which is emerging as one of the standard metrics of
privacy measures, is used in this work to model the privacy concern of the pas-
sengers. Formally, it is defined as follows.
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Definition 2 (ε-Differential Privacy). Given ε ≥ 0, a mechanism M is said to
be ε-differentially private if for any two input sets K1 and K2 that differ in a
single element and for any set of outcomes L ⊆ Range(M)

Pr(M(K1) ∈ L) ≤ exp(ε) · Pr(M(K2) ∈ L), (9)

where Range(M) is the set of all outcomes of computation P .

Parameter ε gives the level of privacy. A smaller ε value implies a higher level
of privacy. A more relaxed and general definition of differential privacy is as
follows.

Definition 3 ((ε, δ)-Differential Privacy). Given ε ≥ 0 and δ ≥ 0, a mechanism
M is said to be (ε, δ)-differentially private if for any two input sets K1 and K2

that differ in a single element and for any set of outcomes L ⊆ Range(M)

Pr(M(K1) ∈ L) ≤ exp(ε) · Pr(M(K2) ∈ L) + δ. (10)

In particular, Definition 3 reduces to Definition 2 when δ = 0.
Differential privacy satisfies composability property [23].

Lemma 1 (Composability [23]). Suppose mechanisms M1 and M2 achieves ε1-
differential privacy and ε2-differential privacy, respectively. Then a new mecha-
nism M = (M1,M2) achieves ε1 + ε2-differential privacy.

Exponential mechanism provides us an approach to design a mechanism with
differential privacy [15,23]. Let q : K × L → R be a score function mapping the
input data set K and an outcome l ∈ L to R. Then an exponential mechanism
EXP picks an outcome l with probability

Pr(EXP (K,L, q, ε) = l) ∝ exp
( ε

2Δ
q(K, l)

)
,

where Δ is the Lipschitz constant of the score function q. Given an exponential
mechanism, we have the following theorem indicating that the probability of
achieving a highly suboptimal solution is exponentially low.

Theorem 1 [12,23]. The exponential mechanism is ε-differentially private and
ensures that

Pr

(
q(K,EXP (K,L, q, ε)) < max

l
q(K, l) − ln |L|

ε
− t

ε

)
≤ exp(−t). (11)

4.2 Solution Approach

In this subsection, we leverage exponential mechanism to obtain a truthful and
differentially private traffic offload mechanism for the government. The mecha-
nism design can be accomplished applying Algorithm1.

We remark that due to the passenger incur inconvenience cost when switch-
ing from private to public transit service, the payment schemes in [15,23] are
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not applicable to the problem we investigate since individual rationality and
truthfulness cannot be preserved. To achieve all the game-theoretic properties
discussed earlier, we propose the payment scheme (16). The payment (16) is still
a VCG-like payment. However, it is determined by the social cost introduced by
each passenger rather than the social welfare.

In the following, we characterize the game-theoretic properties and differen-
tial privacy of mechanism presented in Algorithm1 following the analysis in [15].
We first characterize the social welfare obtained using the mechanism described
in Algorithm 1 as follows.

Lemma 2. The mechanism described in Algorithm1 gives near optimal social
welfare.

Proof. Suppose the selection profile is subject to some probability distribution
D̃. Then the expected social welfare can be rewritten as

E
X∼D̃

{Ω(X,B)}

=
∑

X

PrX∼D̃(X)
∑

s∈S

∑

i∈N
xi,s(hi,s − ci,s)

=
2Δ

ε

∑

X

PrX∼D̃(X)
∑

s∈S

∑

i∈N

ε

2Δ
xi,s(hi,s − ci,s)

=
2Δ

ε

∑

X

PrX∼D̃(X) ln

(
exp

(
∑

s∈S

∑

i∈N

ε

2Δ
xi,s(hi,s − ci,s)

))

=
2Δ

ε

∑

X

PrX∼D̃(X) ln

(
exp

(∑
s∈S

∑
i∈N

ε
2Δxi,s(hi,s − ci,s)

)
∑

X exp
(∑

s∈S
∑

i∈N
ε

2Δxi,s(hi,s − ci,s)
)
)

+
2Δ

ε
ln

(
∑

X

exp

(
ε

2Δ

∑

s∈S

∑

i∈N
xi,s(hi,s − ci,s)

))

=
2Δ

ε

∑

X

PrX∼D̃(X) ln (PrX∼D(X))

+
2Δ

ε
ln

(
∑

X

exp

(
ε

2Δ

∑

s∈S

∑

i∈N
xi,s(hi,s − ci,s)

))
, (12)

where the last equality follows from (15). Following [28], we introduce the concept
of free social welfare defined as

Ω̃(X,B) = E
X∼D̃

{Ω(X,B)} +
2
ε
E(D̃), (13)
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where E(·) is the Shannon entropy. Substitute (12) into (13), the free social
welfare can be rewritten as

Ω̃(X,B) =
2Δ

ε

∑

X

PrX∼D̃(X) ln
(

PrX∼D(X)
PrX∼D̃(X)

)

+
2Δ

ε
ln

(
∑

X

exp

(
ε

2Δ

∑

s∈S

∑

i∈N
xi,s(hi,s − ci,s)

))

=
2Δ

ε
DKL(D||D̃) +

2Δ

ε
ln

(
∑

X

exp

(
ε

2Δ

∑

s∈S

∑

i∈N
xi,s(hi,s − ci,s)

))
.

(14)

where DKL(D||D̃) is the KL-divergence. Observing that the second term is inde-
pendent of D̃, by the property of KL-divergence, we have (14) is maximized if
D̃ is computed following (15).

By the definition of free social welfare (13), we have that the free social
welfare is obtained by adding a term into the social welfare Ω(X,B). Hence
we have that the mechanism described in Algorithm 1 gives near optimal social
welfare.

Algorithm 1. Mechanism design for the government.
1: procedure Mechanism(B)
2: Input: Bid profile B
3: Output: Selection profile X, incentives R
4: Choose a selection profile X that is feasible for social welfare maximization

problem (7) with probability

Pr(X) ∝ exp
( ε

2Δ
Ω(X, B)

)
. (15)

5: For each passenger that is selected, issue incentive ri as

ri = E
X∼D(bi,B−i)

⎧
⎨
⎩

∑
j

∑
s

xj,shj,s −
∑
j′ �=i

∑
s

xj′,scj′,s

⎫
⎬
⎭ +

2Δ

ε
E(D(bi, B−i))

− 2Δ

ε
ln

(∑
X

exp
( ε

2Δ
Ω(X−i, B−i)

))
, (16)

where Δ is the difference between the upper and lower bound of social welfare
Ω(X, B), E(·) is the Shannon entropy, D(·) is the probability distribution over
selection profile B, and X−i and B−i are the matrix obtained by removing the i-th
row and i-th column in selection profile and bid profile, respectively.

6: end procedure

Next, we focus on the truthfulness of the mechanism.



A Differentially Private and Truthful Mechanism for Traffic Offload 375

Lemma 3. The solution approach achieves truthfulness.

Proof. Due to the space limit, we give a sketch of the proof. We prove truth-
fulness by showing for each player i, truth-telling is the dominant strategy. The
difference between the utility of passenger i by bidding bi and b̂i is represented
as

(
ri −

∑

s

xi,sci,s

)
−

(
r̂i −

∑

s

x̂i,sci,s

)

= E
X∼D(bi,B−i)

{Ω(X,(bi, B−i))} +
2Δ

ε
E(D(bi, B−i))

− E
X∼D(b̂i,B−i)

{
Ω

(
X, (b̂i, B−i)

)}
− 2Δ

ε
E(D(b̂i, B−i))

= Ω̃ (X, (bi, B−i)) − Ω̃
(
X, (b̂i, B−i)

)
≥ 0, (17)

where the last inequality holds by Lemma2 which implies that the free social
welfare is maximized when X ∼ D(bi, B−i).

To guarantee the participation from the passengers, the individual rational-
ity is required for each passenger that is selected by X. Individual rationality
property is stated in the following.

Lemma 4. The mechanism described in Algorithm1 achieves individual ratio-
nality.

Proof. By Lemma 3, we have that the passengers always bid truthfully. In the
following, we show that the passengers obtain non-negative utilities when bidding
truthfully.

The utility of passenger i can be rewritten as

Ui = ri −
∑

s

xi,sci,s

= E
X∼D(bi,B−i)

⎧
⎨

⎩
∑

j

∑

s

xj,shj,s −
∑

j′ �=i

∑

s

xj′,scj′,s

⎫
⎬

⎭ +
2Δ

ε
E(D(bi, B−i))

− 2Δ

ε
ln

(
∑

X

exp
( ε

2Δ
Ω(X−i, B−i)

))
−

∑

s

xi,sci,s

= ˜Ω(X,B) − 2Δ

ε
ln

(
∑

X

exp
( ε

2Δ
Ω(X−i, B−i)

))
. (18)

By (14), we have the maximum free social welfare can be represented as

Ω̃(X,B) =
2Δ

ε
ln

(
∑

X

exp

(
ε

2Δ

∑

s∈S

∑

i∈N
xi,s(hi,s − ci,s)

))
.
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Hence, we have that (18) can be rewritten as

Ui = Ω̃(X,B) − 2Δ

ε
ln

(
∑

X

exp
( ε

2Δ
Ω(X−i, B−i)

))

=
2Δ

ε
ln

(
∑

X

exp

(
ε

2Δ

∑

s∈S

∑

i∈N
xi,s(hi,s − ci,s)

))

− 2Δ

ε
ln

(
∑

X

exp
( ε

2Δ
Ω(X−i, B−i)

))

≥ 0,

where the inequality holds by the fact that the free social welfare is maximized.

Lemma 5. The solution approach achieves ε-differential privacy.

The proof follows from the analysis on exponential mechanism [23].

4.3 Efficient Algorithm

The social welfare maximization problem (7) is a mixed integer programming and
hence is NP-hard, which makes the computation of VCG-like incentive design
(16) intractable. In this subsection, we propose a polynomial time algorithm
that guarantees the properties or the relaxed version of the properties stated in
Lemmas 2 to 5.

First, we decompose the optimization problem (7) with respect to each road
segment s ∈ S. Then we have a set of optimization problems

max
xs

∑

i∈N
xi,s(hi,s − ci,s) (19)

s.t.
∑

i∈N
xi,s ≤ Qs, ∀s ∈ S

xi,s ∈ {0, 1}, ∀i ∈ N ,∀s ∈ S.

In real world implementation, such a decomposition is feasible since the passen-
gers are geographically distributed and normally they are only willing to partic-
ipate in traffic offload near them. Hence, except for the road segment near the
passengers, the inconvenience cost submitted by the passengers can be extremely
high for road segments that are far away. For the ease of presentation, we drop
the index of s when the context is clear.

By observation, we have that the objective function (7) can be rewritten as

Ω(X,B) =
∑

s∈S
Ωs(xs, B),

where Ωs(xs, B) is the objective function (19). In the following, we give a heuris-
tic algorithm that solves the decomposed problems (19) efficiently while guar-
anteeing the properties stated in Lemmas 2 to 5.
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Denote the set of passengers that are selected by the government for road
segment s as Ws. The selected passenger set Ws is initialized as Ws = ∅ for all
s ∈ S. Then Ws is updated iteratively. At each iteration k, the probability of
choosing a passenger i who has not been selected is represented as

Pr (Ws ←Ws ∪ {i}) ∝
{

exp (ε′(hi,s − c̄i,s)) , if i has not been selected;
0 otherwise,

∀s∈S,

(20)
where ε′ = ε

e ln(e/δ) . After a passenger i is selected, then i is removed from the
passenger set for all sub-problems. By switching from private transit service to
public transit service for road segment s, passenger i receives incentive

ri = (hi,s − c̄i,s) exp (ε′(hi,s − c̄i,s)) −
∫ hi,s−c̄i,s

0

exp(ε′y)dy. (21)

We present the detailed algorithm to solve each sub-problem in Algorithm 2.
Algorithm 2 takes O(N) time to select the set of passengers for sub-problem
(19).

Using Algorithm 2 as a subroutine, social welfare maximization problem 7 is
solved following Algorithm3. First, we make a copy of passengers Ns for each
road segment s. Then we remove the passengers that provide negative social
welfare. Then Algorithm 3 calls Algorithm 2 iteratively to solve the social welfare
maximization problem 7. Using Algorithm2, the government can computes the
set of passengers in O(SN) time, which provides us the potential of scalability.

Algorithm 2. Solution algorithm for decomposed problem (19).
1: procedure Decompose(B)
2: Input: Bid profile B
3: Output: Selection profile Ws

4: Initialization: Selected passenger set Ws ← ∅, ε′ ← ε
e ln(e/δ)

5: while |Ws| ≤ Qs ∧ N �= ∅ do
6: for i ∈ N do
7: Compute the probability of selecting passenger i as (20).
8: end for
9: if passenger i is chosen then

10: N ← N \ {i}
11: end if
12: end while
13: return Ws

14: end procedure

We conclude this section by characterizing how the properties stated in Lem-
mas 2 to 5 are preserved by Algorithm 2.

First, we give a lower bound of the social welfare by using Algorithm2 in the
following theorem.
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Algorithm 3. Solution algorithm for problem (7).
1: procedure Social Max(B)
2: Input: Bid profile B
3: Output: Selection profile X
4: Initialization: Ns = N for all s
5: Remove all passengers that provide negative social welfare B ← [(hi,s, c̄i,s) :

hi,s, c̄i,s ≥ 0]
6: for s ∈ S do
7: Decompose(B)
8: Ns = Ns \ ∪s−1

s′=1Ws′

9: end for
10: return X = ∪s∈SWs

11: end procedure

Theorem 2. By selecting the set of passengers given by Algorithm2, the gov-
ernment achieves social welfare at least Ω∗

s − O(ln Qs) with at least probability
1 − 1

Qs
O(1) , where Ω∗

s is the maximum social welfare that can be achieved by the
government for sub-problem associated with road segment s.

Proof. By Theorem 1, we have

Pr

(
∑

i

(hi,s − ci,s) < Ω∗
s − ln |L|

ε
− t

ε

)
≤ exp(−t),

where Ω∗
s is the optimal social welfare for sub-problem indexed s. Ignore the term

ln |L|
ε and let t = ln(Qs). We have Pr

(∑
i(hi,s − ci,s) < Ω∗

s − O(lnQs)
ε′

)
≤ 1

Qs
O(1) .

Reversing the inequality, we then have that with probability of at least 1− 1
Qs

O(1) ,

∑

i

(hi,s − ci,s) > Ω∗
s − O(ln Qs)

ε′ . (22)

Proposition 1. Using Algorithm3, the government achieves social welfare at
least Ω∗−SO(ln Qs) with at least probability 1− 1

Q∗O(1) , where Ω∗ is the maximum
social welfare that can be achieved by the government and Q∗ = maxs Qs.

Proof. Given Theorem 2, we sum over s ∈ S for (22). Then we have that with
probability of at least 1 − 1

Q∗O(1) ,

∑

s

∑

i

(hi,s − ci,s) >
∑

s

Ω∗
s −

∑

s

O(ln Qs)
ε′

≥ Ω∗ − SO(ln Q∗),

where the second inequality follows from
∑

s Ω∗
s ≥ Ω∗ and Q∗ ≥ Qs. By observ-

ing LHS of the inequality above is the social welfare obtained using Algorithm2,
the theorem is proved.
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Before analyzing the truthfulness property, we define a concept named virtual
bid bv

i for each passenger as bv
i =

[
bv
i,1, b

v
i,2, · · · , bv

i,S

]
, where each entry bv

i,s =
hi,s − c̄i,s. Then we characterize how truthfulness property is preserved when
using Algorithm 2 in the following theorem.

Theorem 3. The solution proposed in Algorithm2 achieves truthfulness.

Proof. Denote the set of passengers that are selected by the government as Ws.
Assume that i /∈ Ws. Then the probability that Ws is the selected by the gov-
ernment is represented as

Pr(i /∈ Ws) = (1 − exp(ε′(hi,s − c̄i,s)))
|Ws|

.

We observe that the probability of not selecting i is monotone decreasing with
respect to the virtual bid bv

i,s. As a consequence, the probability of selecting
passenger i is monotone non-decreasing with respect to virtual bid bv

i,s. By [3],
we have that the solution proposed in Algorithm2 is truthful in expectation.

Next, we consider the individual rationality property.

Lemma 6. Payment scheme (21) achieves individual rationality.

Proof. By Algorithm 3, we have that only the passengers that can provide the
government non-negative social welfare can be selected. Moreover, by Theorem 3,
truthfulness is preserved using the proposed algorithm. Therefore we have hi,s −
c̄i,s = hi,s − ci,s ≥ 0. By observing (21), we have that the first term models the
size of a rectangle whose length is hi,s−c̄i,s and width is exp (ε′(hi,s − c̄i,s)), while
the second term models the size of the area below the curve exp (ε′(hi,s − c̄i,s)).
By the convexity of exponential function, we have that the payment scheme (21)
is always non-negative.

We finally prove that Algorithm2 achieves differential privacy with respect
to passengers’ bids.

Theorem 4. Algorithm2 achieves
(

εΔ
e(e−1) , δ

)
-differential privacy.

Proof. Consider two bid profiles B and B̂ that differ in single entry for some
road segment s. Denote the sets of passengers that are selected associated with
B and B̂ as Ws and Ŵs, respectively, where Ws = Ŵs = {1, 2, · · · ,W}. Then
the ratio of the probability of obtaining selection profile Ws and Ŵs given bid
profiles B and B̂ is represented as

Pr(Ws)
Pr(Ŵs)

=
W∏

i=1

exp (ε′(hi,s − ci,s)) /
∑

j∈N i
s
exp (ε′(hj,s − cj,s))

exp
(
ε′(ĥi,s − ĉi,s)

)
/

∑
j∈N i

s
exp

(
ε′(ĥj,s − ĉj,s)

)

=
W∏

i=1

exp (ε′(hi,s − ci,s))

exp
(
ε′(ĥi,s − ĉi,s)

) ·
W∏

i=1

∑
j∈N i

s
exp

(
ε′(ĥj,s − ĉj,s)

)

∑
j∈N i

s
exp (ε′(hj,s − cj,s))

, (23)
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where N i
s is the set of passengers that have not been selected at iteration i.

In the following we consider the following two cases. Suppose hi,s − ci,s >

ĥi,s − ĉi,s. Then (23) can be rewritten as

W∏

i=1

exp (ε′(hi,s − ci,s))

exp
(
ε′(ĥi,s − ĉi,s)

) ·
W∏

i=1

∑
j∈N i

s
exp

(
ε′(ĥj,s − ĉj,s)

)

∑
j∈N i

s
exp (ε′(hj,s − cj,s))

≤
W∏

i=1

(
exp

(
ε′

(
hi,s − ci,s −

(
ĥi,s − ĉi,s

))))

= exp

(
ε′

W∑

i=1

(
hi,s − ci,s −

(
ĥi,s − ĉi,s

)))

= exp(ε′Δs),

where Δs is the difference between the social welfare associated with B and B̂
for s. The first inequality holds by the fact that the second term in (23) is upper
bounded by one, and the last equality follows from definition (6).

Next, we suppose that hi,s − ci,s < ĥi,s − ĉi,s. Then (23) can be rewritten as

W∏

i=1

exp (ε′(hi,s − ci,s))

exp
(
ε′(ĥi,s − ĉi,s)

) ·
W∏

i=1

∑
j∈N i

s
exp

(
ε′(ĥj,s − ĉj,s)

)

∑
j∈N i

s
exp (ε′(hj,s − cj,s))

≤
W∏

i=1

∑
j∈N i

s
exp

(
ε′(ĥj,s − ĉj,s)

)

∑
j∈N i

s
exp (ε′(hj,s − cj,s))

=
W∏

i=1

∑
j∈N i

s
exp

(
ε′

(
ĥj,s − ĉj,s − (hj,s − cj,s)

))
exp (ε′(hj,s − cj,s))

∑
j∈N i

s
exp (ε′(hj,s − cj,s))

=
W∏

i=1

Ej∈N i
s
{exp(ε′βj,s)} ,

where βj,s = ĥj,s − ĉj,s − (hj,s − cj,s). The first inequality holds due to the first
term in (23) is upper bounded by one. For all ε′ ≤ 1 and βj,s ≤ 1 (which can be
achieved by normalizing the social welfare), we have

W∏

i=1

Ej∈N i
s
{exp(ε′βj,s)} ≤

W∏

i=1

Ej∈N i
s
{1 + (e − 1)ε′βj,s}

≤ exp

(
(e − 1)ε′

W∑

i=1

Ej∈N i
s
{βj,s}

)
,
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where the first inequality holds due to for all β ≤ 1, exp(β) ≤ 1+β(e−1). When
Ej∈N i

s
{βj,s} ≤ Δ ln(e/δ), we have

exp

(
(e − 1)ε′

W∑

i=1

Ej∈N i
s
{βj,s}

)
≤ exp ((e − 1)ε′Δ ln(e/δ)) = exp

(
εΔ

e(e − 1)

)
.

By [12], the probability that Ej∈N i
s
{βj,s} > Δ ln(e/δ) is at most δ. Hence, we

have

Pr(Ws) ≤ exp
(

εΔ

e(e − 1)

)
Pr(Ŵs) + δ.

Proposition 2. Algorithm3 achieves
(

εΔS
e(e−1) , δS

)
-differential privacy.

Proof. Given Theorem 4, Proposition 2 follows by applying Lemma 1 S times.

We finally remark that the result presented in Theorem 4 holds regardless of the
order that the passengers are selected. If the passengers intend to protect the
privacy against other passengers, then we can achieve

(
εΔ

e(e−1) , δ
)
-differential pri-

vacy since only the passengers that take the same transit service can observe the
outcome, i.e., a passenger that is selected for road segment s′ has no knowledge
about the participation of road segment s �= s′. However, when the passenger
intends to protect the privacy against some third party that can observe the tran-
sit behaviors of all road segments, we achieve

(
εΔS

e(e−1) , δS
)
-differential privacy.

In this case, the level of privacy is weakened.

5 Case Study

In this section, we demonstrate the proposed approach using a numerical case
study.

5.1 Case Study Settings

In this case study, we focus on the transportation network near Boston, MA dur-
ing rush hours (AM peak or PM peak). The government intends to improve the
transportation performance between three road segments S = {s1, s2, s3}. The
first road segment that the government is interested in is s1 = (South Station,
Logan airport). Instead of driving, an alternative transit is to take Silver line
(bus), which departs every 8 min during rush hours. Another two routes we con-
sider are s2 = (Malden,Chinatown) and s3 = (Copley,North Station). Both
routes can be accomplished by taking subway transit services, which depart every
6 min during rush hours. Due to lack of transit data from passengers, we use the
five-minute electricity demand data [16] to simulate the pattern of traffic on road,
which is further used to simulate the number of passengers for each road seg-
ment. The transportation capacity is assumed as Qs1 = 50 and Qsi

= 150 for all
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i ∈ {1, 2}. The transportation performance improvement induced by each pas-
senger is generated as hi,s ∼ N (10, 0.5). Assume that the inconvenience cost is
caused by the expected time delay and discomfort. Here we let the expected time
delay be 0.8 times the departure time, and discomfort be generated following a
Normal distribution with mean 2 and variance 0.1. Then the inconvenience cost
is the l2 norm of expected delay and discomfort. The detailed source-destination
pairs and the associated private and public transit methods are listed in Table 1.
The simulation is conducted with time scale 10 min.

Fig. 1. The social welfare obtained from each route is presented in (a). The aggregated
utilities of all selected passengers is presented in (b). The bars on the left denote the
aggregated utility for s1. The bars in the middle denote the aggregated utility for s2.
The bars on the right denote the aggregated utility for s3. (Color figure online)

We evaluate the proposed approach using the metrics including social welfare,
individual rationality, and privacy leakage. The privacy leakage is defined as
follows.

Definition 4. Given two bid profiles B and B′ that differ in one entry. Let
Pr(X) and Pr′(X) be the probability of obtaining selection profile X given bids
B and B′. Then the privacy leakage is defined as maxX ln

(
Pr(X)
Pr′(X)

)
.

Table 1. Source-Destination Pairs and corresponding transit approaches

Road segment Private transit Public transit

South Station-Logan Airport Drive via I-90E Silver Line

Malden-Chinatown Drive via I-93S Orange Line

Copley-North Station Drive via MA-28N Green Line
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Fig. 2. Privacy leakage under different ε parameter. (Color figure online)

5.2 Performance Evaluation

In this subsection, we evaluate the proposed approach from the prospects of
social welfare, passengers’ utilities and privacy leakage.

We first show the social welfare obtained from each route listed in Table 1 at
each time step in Fig. 1a. Due to the traffic demands and transit capacity, we
have that the Silver Line obtains the minimum social welfare while the Orange
Line obtains the highest social welfare. Also, we observe that the social welfare
is positive, implying that traffic offload benefits the urban ecosystems. Next, we
present the aggregated utilities from all selected passengers at each time step
in Fig. 1b. We have that individual rationality is achieved using the proposed
mechanism. Note that the difference between the values presented in Fig. 1a and
the values presented in Fig. 1b is the utility obtained by the government, which is
shown to be positive. Finally, the privacy leakage is presented in Fig. 2. In Fig. 2,
we compare the privacy leakage under settings ε = 0.5 (bars on the left) and
ε = 0.1 (bars on the right). Figure 2 implies that the proposed approach preserves
privacy well. Privacy leakage under a higher level of privacy requirement (ε = 0.1)
is smaller. Consider the extreme case where no privacy concern is considered.
The passengers’ preferences are completely revealed and hence an intelligent
and malicious passenger can always prohibit other passengers being selected by
bidding in a smart way. Then the privacy leakage can be arbitrarily large.

6 Conclusion

In this paper, we propose a reverse auction-based mechanism to incentivize the
passengers to convert from private to public transit services to improve the urban
transportation performance. The mechanism preserves game-theoretic properties
including truthfulness, individual rationality and social welfare maximization.
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The model also considers the privacy concerns from the passengers. The problem
is formulated as a mixed integer program. Motivated by exponential mechanism
design, whose payment scheme is computationally infeasible in our problem,
we given a heuristic algorithm. We prove the game-theoretic properties and
differential privacy are preserved using the proposed algorithm. Numerical case
study is used as a demonstration.
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Abstract. Software-defined radios (SDRs) with substantial cognitive
(computing) and networking capabilities provide an opportunity for
malicious individuals to jam the communications of other legitimate
users. Channel hopping is a well known anti-jamming tactic used in
order to evade jamming attacks. We model the interaction between a
transmitter, who uses chaotic pseudo-random patterns for channel hop-
ping, and a sophisticated jammer, who uses advanced machine learning
algorithms to predict the transmitter’s frequency hopping patterns as a
non-cooperative security game. We investigate the effectiveness of adver-
sarial distortions in such a scenario to support the anti-jamming efforts
by deceiving the jammer’s learning algorithms. The optimal strategies
in the formulated game indicate how adversarial distortions should be
used by the players at every step of the game in order improve their out-
comes. The studied jamming/anti-jamming scenario combines chaotic
time series generators, game theory, and online deep learning.

Keywords: Jamming · Game theory · Adversarial learning

1 Introduction

Recent advances in software-defined radios (SDRs), cognitive networking tech-
nologies, and the increasing availability of low-cost hardware, have resulted in
most applications becoming dependent on wireless networks for their regular oper-
ations. Inevitably, this has given adversaries new opportunities to conduct attacks
and harm systems that rely on wireless networks. One of the most common forms
of attacks in wireless networks is jamming attacks. Adversaries can utilize cheap
and compact transmitters and receivers [8] to scan the transmission channels in
a particular area and disrupt the communication between two or more legitimate
parties by causing interference or collisions at the receiver side.
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This paper focuses on a particular scenario where stochastic channel hopping
is utilized as an evasion strategy in the presence of a sophisticated jammer. Con-
sider a unit immobilized in a contested environment with its location unknown
to friendly search and rescue units in the area. Assume that the immobilized
unit (T ) still has the capability to transmit signals using its radio transmitter.
Multiple friendly units in the area (receivers R) attempt to locate and rescue
the immobilized unit (T ) by using radio direction finding (RDF). In order to
successfully triangulate the location of T , the search and rescue units need to
establish communication with it via one of n pre-defined channels. All units are
equipped with software defined radios (SDRs), which allows them to switch the
transmission/receiver channels on the fly.

The problem of locating the transmitter T becomes challenging if an intel-
ligent jammer J attempts to disrupt the communication through interference.
Anti-jamming tactics for wireless networks have been an area of research for some
time. For example, [13] propose channel surfing/hopping and spatial retreats as
possible strategies for evading jamming attacks. In channel hopping, the signal
transmitter would proactively switch the transmission channel according to some
pattern (shared with the receiver).

In this paper, we propose a scheme in which the transmitter uses chaotic
pseudo random patterns for frequency hopping and the jammer attempts to
learn the underlying patterns by training a state of the art Recurrent Neural
Network (RNN) in an online setting (i.e., updating the prediction model as
new data becomes available). This allows the transmitter to deceive the jammer
into learning a false representation of the generator functions by introducing
adversarial distortions on top of the generated probability distributions. We
apply a game theoretic approach to the interaction between a transmitter and
a sophisticated jammer where the two players attempt to mislead each other
by maliciously distorting data used by the other player to make decisions. The
combination of games, pseudo-random generators and deep learning have not
been used in jamming applications to the best of our knowledge.

The main contributions of the paper are highlighted as follows:

– A novel adversarial (deep) learning approach to jamming, where the trans-
mitter and jammer attempt to mislead each other by maliciously distorting
data used by the other player to make decisions.

– Integrated use of pseudo-random generators and online machine (deep) learn-
ing methods in the context of a frequency hopping scheme.

– An overarching security game modeling the decision making in the context
of adversarial (deep) learning and deception by the transmitter and receiver.

2 Related Work

We focus on prior work that utilizes game theory for analyzing jamming prob-
lems. For example, the paper [3] uses a game-theoretical approach to analyze
jamming/anti-jamming behavior between cognitive radio systems. The authors
formulate the jamming problem as a fictitious play between the jammer and the
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transmitter. In [14], a non-cooperative game is formulated to model the interac-
tion between wireless users and a malicious node that can act as a jammer and
an eavesdropper. The authors also utilize a fictitious play based algorithm to find
mixed strategy Nash equilibrium solutions. While machine learning techniques
have been extensively used for intrusion detection, their usage in jamming appli-
cations is relatively recent. For example, [12] uses supervised learning to detect
jamming attacks on IEEE 802.11 networks. They train a random forest classifi-
cation model based on metrics collected from simulations and attempt to predict
if a network is under a jamming attack.

In [2], the authors explore the use of chaotic systems to generate frequency
hopping sequences. More recently, [6] proposes a pseudo-random sequence gen-
erator based on the Chen chaotic system. In order to make multi-step predic-
tions on chaotic time series, [4] propose a variant of RNNs, which attempts
to reduce the number of redundant connections between nodes prior to train-
ing. More recently, particular interest has been put into predicting chaotic time
series using Long Short-Term Memory networks (LSTMs). A knowledge-based
prediction modeled combined with a machine learning based prediction model
is utilized by [11] to predict chaotic systems.

3 Problem Definition

We consider the interaction between a sophisticated jammer and a transmitter,
where the transmitter T is attempting to establish communication with several
receivers R while being interfered by the jammer J . At the network level, the
only action available to T (J) is choosing a single channel out of the n available
channels to transmit (cause interference on). The jammer may successfully dis-
rupt the communication between the transmitter and the receivers by decreasing
the signal-to-interference-plus-noise ratio (SINR) at the receivers. However, this
would then give away the location of the jammer, which may be an unacceptable
risk.

Instead of using just one specific channel to transmit signals over a specific
time interval, the transmitter switches between the available channels according
to some probability distribution pT . If the transmitter chooses a static proba-
bility distribution pT throughout, the jammer can approximate pT by observing
the channels used by T over a specific time period. To prevent the jammer
from approximating pT , and thereby successfully carry out jamming attacks,
the transmitter should periodically change pT . The manner in which pT (k) is
changed over time cannot be purely random, as that would make it very difficult
for the receivers to listen to the correct channel at any given time in order to
successfully locate T . But if the changing mechanism is easily perceived, the
jammer would learn the new pT (k) with minimal effort. Therefore, the transmit-
ter utilizes a pseudo-random number generator function gi(k) : R → R for each
channel ci, i ∈ [1...n] in order to create probability distributions that change
periodically. In this paper, we use chaotic pseudo-random number generators as
a starting point, similar to [2,6]. Then, the probability of selecting channel ci
during the kth interval is given by
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pTi (k) =
gi(k)

∑n
j=1 gj(k)

. (1)

Making the probability distribution over the n channels during the kth interval
pT (k) = [pT1 (k), pT2 (k), . . . , pTn (k)]. Note that the transmitter T has the freedom
to decide the duration of each time interval in which a particular pT (k) is used.
If the interval duration changes with each k ∈ Z≥0, the jammer can use a
change point detection algorithm to identify that the probability distribution
has changed and react accordingly [7,9]. Therefore, without loss of generality, we
assume that the time interval during which a particular probability distribution
is used is fixed.

The jammer can observe the channel usage of the transmitter and approxi-
mate the probability distribution during the kth interval by creating a histogram
(p̂T (k)). In order to successfully interrupt T ’s transmission, the jammer would
have to know in advance the probability distribution T would use in the next
time interval. Therefore, the jammer attempts to learn gi, i ∈ [1, n] by training
prediction models for each gi as new observations p̂T (k) become available. For
example, by using the observed p̂T values from intervals 1 to k − 1, the jammer
would be able to predict the possible pT (k) distribution.

The transmitter, who also has spectrum sensing capabilities, observes the
channels utilized by the jammer during the kth interval and attempts to approx-
imate the probability distribution J uses over the n-channels for jamming
(p̂J(k)). If the observed p̂J(k) does not diverge from pT (k) significantly (i.e.,
p̂J(k) ≈ pT (k)), it implies that the jammer has closely predicted pT (k) based on
the transmitter’s previous probability distributions. To hinder the online learners
of the jammer, the transmitter T can mislead the jammer by introducing adver-
sarial distortions to each pTi (k). By adding adversarial distortions to each of the
probabilities, the transmitter expects the jammer to learn a prediction model
that is different from the actual generator functions used by the transmitter
and predict a strategy pJ(k) that is significantly different from pT (k). But the
transmitter cannot greedily add significantly large distortions as the receivers
who are attempting to locate the transmitter would be unaware of these distor-
tion functions, and would continue to use the original pseudo-random generator
functions to decide the channels they would listen to. As the transmitter’s main
objective is to be located without delay, adding adversarial distortions would
have a detrimental effect.

If the jammer successfully predicts the pT values over a period of time, the
transmitter can react by either increasing the adversarial distortion intensity
or by switching to different generator functions. If the transmitter switches the
generator functions, the jammer would have to restart the learning processes.
If the transmitter increases the adversarial distortions, it would make learning
the true generator functions harder. Therefore, to prevent the transmitter from
deviating from the usual generator patterns, the jammer could periodically add
adversarial distortions to its own strategies pJ in order to mislead the trans-
mitter into believing that the jammer has not learned the generator functions.
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Therefore, the interaction between that jammer and transmitter has a two way
obfuscation nature where both players attempt to confuse each other.

The following specific assumptions are made to reduce the complexity of the
transmitter-jammer interaction as a starting point and formalize it as a game:

– The jammer and transmitter will only utilize a single channel at a time (with
maximum power to maximize the range).

– The n channels are non-overlapping, therefore jamming on channel ci would
not cause interference on channel cj where i �= j.

– Jamming is modeled as a discrete event, it will either completely disrupt the
communications or not.

– The transmitter has the flexibility of choosing different generators for each
channel ci. But once transmissions begin, the generator assignments are
assumed to be fixed.

– While the transmitter can also decide the duration of the time interval to
keep a particular probability distribution (i.e., Δt ∈ [T1, T2],Δt ∈ Z≥0), we
assume the duration, in seconds, to be fixed for every time interval.

4 Methodology

The observations of the players, p̂T and p̂J , are a combination of the other
players’ genuine probability distribution, pJ and pT , and their respective adver-
sarial distortions, dT and dJ . As introducing adversarial distortions can lead to
probability values becoming negative or greater than one, the resulting vector is
projected onto the probability simplex as p̃Ti (k) = [pTi (k) + dTi (k)]P , where [.]P
is the projection onto the probability simplex Δ defined as

Δ :=
{
p ∈ R

n :
n∑

i=0

pi = 1 and 0 ≤ pi ≤ 1, ∀i
}
. (2)

4.1 Chaotic Time Series

While hardware based random number generators are available, especially for
non-civilian usage, pseudo-random generators are essential in the above scenario
for there needs to be a synchronization method (through pre-shared informa-
tion) between the transmitter and the listeners. As a starting point [2,6], we
select several chaotic time series, such as Rossler attractor, Lorenz attractor and
Henon attractor as the generator functions for the transmitter. Even though
chaotic time series appear to unpredictable and show divergent behavior, they
are governed by well-defined nonlinear equations [1]. We will investigate alter-
native, cryptographic pseudo-random number generators and compare them to
chaotic ones in our future work.

At every step of the game, we obtain the corresponding time series values
from each generator function and derive the probability distribution of the trans-
mitter by normalizing the values (1). Figure 1 shows the phase diagrams, where
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(a) original Henon (b) normalized (c) original Lorenz (d) normalized

Fig. 1. The original phase graphs of the Henon and Lorenz attractors and the decor-
related graphs after combining with the other time series.

the times series value at time k + 1 is plotted against the time series value at
time k, for Henon and Lorenz attractors. The phase diagrams indicate that the
normalization process, which creates a dependency among the chaotic attrac-
tors, makes each time series decorrelated. Therefore each time series exhibits
more “randomness”. Due to this loss of correlation between adjacent time series
values, the learning (prediction) task of the jammer becomes harder.

4.2 Learning Algorithm

Chaotic time series are generated by deterministic dynamical systems. Therefore,
in order to predict future values, the jammer has to learn the underlying non-
linear mappings of the time series. In the particular application scenario we are
concerned, the time series have to be learned solely from the past observations,
without prior knowledge of the dynamical system.

As the future values of a time series depend on its previous values, we choose
RNNs as the learners for the jammer. Unlike traditional feed forward neural net-
works, RNNs have feed back connections within the layers. It is these feedback
connections that allow past experience to be taken into account when predicting
the subsequent steps in time series. We use Long Short Term Memory (LSTM)
networks, a variant of RNNs that is not affected by the vanishing gradient prob-
lem as the jammer’s learning algorithm [5].

5 Game Formulation

This section describes the transmitter-jammer interaction, modeled as a two-
player static game between the jammer J and transmitter T , repeated over
discrete time k. The myopic players interact over a sequence of steps (can be
finite or infinite), and at each step they solve the static game and determine the
actions they would play during that time step. Although the games at each time
step are independent, the learner’s of the jammer evolve with time, enabling
more accurate predictions as time goes on.

Since both players are equipped with SDRs, the possible actions available to
both players at the network layer can be defined by choosing one of the n trans-
mission channels in order to maximize range. For the transmitter, the probability
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distributions over the n channels would depend on the output of the generators
as well its adversarial distortions. Since the generator values are given at each
step of the game, we focus on the mechanism used to generate adversarial dis-
tortions to formulate the game actions of T . Similarly, the jammer’s probability
distributions would depend on the output of the learning algorithms as well as
its own adversarial distortions. As the outputs of the learning algorithms are
beyond the jammer’s control, we focus on its adversarial distortion mechanism
to formulate its game actions.

5.1 Player Actions

Using adversarial distortions for deception of the other player comes with con-
sequences. For the transmitter, adding adversarial distortions means using a
probability distribution over the n channels that is different from what the lis-
teners are using. This leads to unsuccessful radio transmissions (without the
jammer’s influence) as the listeners would be listening on different channels at
a given time. For the jammer, it means using a probability distribution that
is different from what the learning algorithm predicts, as a form of deception.
Using a distorted probability distribution results in more unsuccessful jamming
attempts as both players would be using different probabilities over the channels.

The action sets of both players are defined as different distortion severity
values using an arbitrary uniform quantization:

– transmitter: aT = {0.1, 0.2, . . . , 0.9}
– jammer: aJ = {0, 0.1, 0.2, . . . , 0.9}
The distortion severity value at the kth time step is used to determine the adver-
sarial distortion vectors dT (k) and dJ(k) for each player obtained by sampling
from a uniform distribution with different support sets. For example, the jammer
would decide aJ (k) and create the adversarial distortion vector dJ(k) by ran-
domly sampling from a uniform distribution over the interval [−aJ(k), aJ (k)].

Since dT
(
aT (k), k

)
and dJ

(
aJ(k), k

)
are functions of the players’ actions, the

distorted probability distributions, p̃T
(
aT (k), k

)
and p̃J

(
aJ(k), k

)
, also become

dependent on the actions of the players.

Adversarial Deviation: Adversarial deviations are scalar values (φT
(
aT (k), k

)

and φJ
(
aJ (k), k

)
) that indicate how much the originally intended probability

distributions pT (k) and pJ(k) deviate from the actually played distributions
p̃T

(
aT (k), k

)
and p̃J

(
aJ(k), k

)
. As one possible metric, we choose root-mean-

square error (RMSE) to measure the adversarial deviation caused by the distor-
tions added during the kth time step:

φT
(
aT (k), k

)
=

( 1
n

n∑

i=1

(
pTi (k) − p̃Ti

(
aT (k), k

))2
) 1

2
, (3)

φJ
(
aJ(k), k

)
=

( 1
n

n∑

i=1

(
pJi (k) − p̃Ji

(
aJ(k), k

))2
) 1

2
. (4)
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(a)

(b)

Fig. 2. (a) The decision making process of jammer based on transmitter’s observed
actions, (b) The decision making process of transmitter based on jammer’s observed
actions.

5.2 Utility Functions

At each step of the game, the players need to make two decisions (i) the probabil-
ity distribution over the n channels, and (ii) the amount of adversarial distortions
to introduce. As Figs. 2a and b depict, the two players use different approaches
to address them. The transmitter obtains its undistorted probability distribu-
tion from the generator functions and uses the static game to decide the best
adversarial distortion severity to use. The jammer observes the channel usage of
the transmitter (i.e., p̂T ) and trains n prediction models (as there is a unique
generator function for each channel) to predict the next probability distribution
the transmitter may use. Subsequently, similar to the transmitter, it decides
on the severity of adversarial distortions based on the best response from the
proposed game.

Note that the observed probabilities, p̂T (k) and p̂J(k), are obtained by count-
ing the number of times each of the n channels is used by the other player
during the kth time interval, i.e. creating a histogram. The observed proba-
bility distributions estimate the actually played probability distributions i.e.,
p̃T (aT (k), k) and p̃J(aJ (k), k) closely as the length of the time interval increases.
Since the observed probabilities depend on the distorted probability distribu-
tions, we define the observation function l as p̂(k) = l(p(k), a(k), k), making
each p̂T (k) and p̂J(k) dependent on aT (k) and aJ (k) respectively.

Utility of the Transmitter: For the transmitter to evade jamming, the jam-
mer’s estimation of transmitter’s strategy p̂T (k) should be significantly different
from the actual generated strategy pT (k) during the kth interval. Since p̂T (k) is
merely the observation of p̃T (k), the transmitter can also calculate it. We use
the Kullback-Leibler divergence to calculate the statistical distance between two
probability distributions as:



394 S. Weerasinghe et al.

DKL(P ||Q) =
∑

i

P (i) log
P (i)
Q(i)

. (5)

The transmitter’s utility function is defined as:

UT (k) = DKL

(
p̂T (k)||pT (k)

) − φT
(
aT (k), k

)

= DKL

(
l(pT (k), aT (k), k)||pT (k)

) − φT
(
aT (k), k

)
.

(6)

Utility of the Jammer: Large adversarial distortions from the transmitter
would make the jammer’s learning algorithms learn incorrect representations
of the transmitter’s generator functions. Therefore, by adding adversarial dis-
tortions to its predicted values, the jammer expects to deceive the transmitter
into using less severe adversarial distortions. The jammer, hence, attempts to
make p̃J(k) diverge from p̂T (k) using its own adversarial distortions at a cost of
jamming efficiency. The jammer’s utility function is defined as:

UJ(k) = DKL

(
p̂T (k)||p̃J(

aT (k), k
)) − φJ

(
aJ(k), k

)
. (7)

In the above formulations φT and φJ are the adversarial deviations explained in
Sect. 5.1 that penalize large adversarial distortions.

5.3 Nash Equilibrium Solution of the Game

A bi-matrix game is represented by two (m × n) matrices, A = {ai,j} and
B = {bi,j} where each pair of entries (ai,j , bi,j) denotes the outcome of the game
corresponding to a particular pair of decisions made by the players. These entries
in the matrix are populated by the players’ utility functions, UJ and UT . A
pair of strategies (ai∗,j∗ , bi∗,j∗) is said to be a non-cooperative Nash equilibrium
outcome of the bi-matrix game if there is no incentive for any unilateral deviation
by any one of the players. While it is possible to have a scenario where there is
no Nash equilibrium solution in pure strategies, there would always be a Nash
equilibrium solution in mixed strategies [10].

A player is said to use a mixed strategy when it chooses to randomize over a
set of finite actions. Therefore, a mixed strategy can be defined as a probability
distribution that gives each of the available actions a likelihood of being selected.
At each step k of the game, the two players decide on their actions by computing
the Nash equilibrium solutions in mixed strategies using their corresponding
utility matrices. For example, Fig. 3 shows the combined utility matrix for the
two players when k = 60. In this particular step of the game, the best responses
of both players yield a pure strategy Nash equilibrium solution, which is aJ = 0.2
and aT = 0.1.

6 Simulation Results

In the simulations, three time series are used to generate the probabilities for
each of the channels from the transmitter’s perspective. We use three popular
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transmitter - a^T
0.1 0.2 0.3 0.4

Ja
m

m
er

 - 
a^

J 0 (0.050,0.017) (0.028,0.023) (0.082,0.022) (0.034,0.003)
0.1 (0.038,0.005) (0.019,0.001) (0.073,0.016) (0.009,0.011)
0.2 (0.096,0.049) (0.030,0.013) (0.041,0.006) (0.008,0.013)
0.3 (0.048,0.083) (0.091,0.012) (0.062,0.000) (0.004,0.005)
0.4 (0.013,0.015) (0.020,0.015) (0.042,0.006) (0.089,0.011)

Fig. 3. The utility matrix of the game depicting the outcomes. The jammer is the row
player and the transmitter is the column player and payoffs are displayed as (jammer
utility, transmitter utility).

chaotic time series, Rossler attractor, Lorenz attractor and Henon attractor as
the generator functions (i.e., gi(k), i ∈ [1, 2, 3]) for the three channels of the
transmitter. At the start of the game (i.e., k = 1 and k = 2), where there
are no prior observations, the jammer uses normalized probability distributions
sampled from U(0, 1) to use over the n channels. Subsequently, after the learners
commence the learning process, the predicted probability distributions pJ(k) are
used. During the initial stages of the game, where there are very few observa-
tions, the predictions of the online learning algorithms would not be accurate
as machine learning based prediction models need sufficient data to learn the
correct underlying patterns. After a certain threshold, the models are expected
to stabilize and provide accurate predictions.

We train a four neuron LSTM model for each channel ci using the observed
probability distributions p̂T as the training data. The performance of the LSTMs
is compared against a baseline persistence algorithm which predicts the obser-
vation of the previous time step as the prediction for the current time step
(i.e., pj(k) = p̂T (k − 1)). Figure 4 shows the probability distributions used by
the transmitter, the jammer and the baseline algorithm over the three channels
under two conditions. The top row shows the probability distributions when the
transmitter is not introducing distortions (aT (k) = 0,∀k ∈ Z≥0), and the bottom
row shows the distributions when aT (k) is fixed at 0.4 for all time steps. Com-
paring the undistorted probability distributions with the distorted probability
distributions show that by introducing adversarial distortions, the transmitter
can make each time series behave more abruptly, deviating from the patterns
governed by the underlying equations.

Figure 5 shows the root-mean-square error (RMSE) between the transmitter’s
distorted probability distribution (P̃T (k)) and the jammer’s predicted probabil-
ity distribution (pJ (k)), and the baseline persistence algorithm under different
adversarial distortion severities. As the LSTMs are trained online, during the
early stages of the game they will not be able to make accurate predictions due
to the lack of data. But as more data becomes available, the LSTMs are able
to learn the underlying patterns of the data make more accurate predictions.
Therefore, we show the RMSE values for the last 50% of the time series data
as they reflect the true prediction capabilities of the LSTMs. We observe that
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(a) undistorted (b) undistorted (c) undistorted

(d) aT (k) = 0.4 (e) aT (k) = 0.4 (f) aT (k) = 0.4

Fig. 4. The probability distributions used by the transmitter, jammer with the deep
learner and a jammer with the baseline algorithm on the three channels. The figures
on the bottom row show the probability values when aT (k) is set to 0.4.

(a) Prediction error on c1 (b) Prediction error on c2 (c) Prediction error on c3

Fig. 5. RMSE values of the LSTMs and the baseline algorithm for the probability
distributions used on channels 1 to 3. The RMSE is calculated for the last 50% of each
time series.

the performance of the LSTMs in predicting the time series are comparatively
higher than the baseline persistence algorithm. The performance differences are
quite significant on channels 2 and 3 where the two chaotic functions used appear
more random compared to that of channel 1.

7 Conclusions and Future Work

This paper models the interaction between a sophisticated jammer and a trans-
mitter in a search and rescue scenario as a stochastic game. The transmitter,
who has a pre-shared key with the rescuers, uses stochastic channel hopping
according to some pseudo-random generators as the anti-jamming mechanism.
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The jammer attempts to learn the above pseudo-random generators by using
online machine (deep) learning methods. In order to prevent the jammer from
learning the pseudo-random generators, the transmitter introduces adversarial
distortions. Similarly, to deceive the transmitter into thinking that the jammer
has not been able to learn the underlying patterns, the jammer also distorts its
jamming patterns on purpose. The empirical results suggest that transmitter
can in fact hinder the learning capabilities of the jammer by using adversarial
distortions.

Directions for future work include: comparing different (e.g. cryptographic)
random number generating algorithms for the transmitters, and formulating dif-
ferent games, e.g. over a finite horizon or with additional solution concepts.
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Abstract. A scientific incident analysis is one with a methodical, justifi-
able approach to the human decision-making process. Incident analysis is
a good target for additional rigor because it is the most human-intensive
part of incident response. Our goal is to provide the tools necessary
for specifying precisely the reasoning process in incident analysis. Such
tools are lacking, and are a necessary (though not sufficient) compo-
nent of a more scientific analysis process. To reach this goal, we adapt
tools from program verification that can capture and test abductive rea-
soning. As Charles Peirce coined the term in 1900, “Abduction is the
process of forming an explanatory hypothesis. It is the only logical oper-
ation which introduces any new idea.” We reference canonical examples
as paradigms of decision-making during analysis. With these examples
in mind, we design a logic capable of expressing decision-making during
incident analysis. The result is that we can express, in machine-readable
and precise language, the abductive hypotheses than an analyst makes,
and the results of evaluating them. This result is beneficial because it
opens up the opportunity of genuinely comparing analyst processes with-
out revealing sensitive system details, as well as opening an opportunity
towards improved decision-support via limited automation.

Keywords: Incident response · Digital forensics
Science of security · Mathematical modelling
Logical modelling · Intrusion analysis

1 Introduction and Motivation

Incident analysis is the central feature of incident response and digital forensics.
Incident response and digital forensics overlap largely in their modes of analysis.
Otherwise, they have different goals, and are done by different sorts of orga-
nizations. One might take a broad view of digital forensics and say it includes
incident response, but realistically the term “digital forensics” has too many
law-enforcement connotations for this broad usage to quite work. We focus on
incident analysis, which, as defined by [28], includes the evidence collection, anal-
ysis, and reporting phases of our topic, whether that topic is incident response
or digital forensic investigation.
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Incident analysis is part of the study of what has occurred on computers
and computer networks. An incident is an event that violates some security
policy [26]; that policy may be but is not necessarily a law. We treat incident
analysis as akin to scientific investigation. The analyst has a hypothetical model
about how the incident occurred, and tests it by gathering evidence and adjusting
the model based on the results. This is not the naive binary hypothesis testing
of a high-school science lab. Rather, it is building models for a purpose based
on empirical, structured observations of the world—the conception of science of
security argued for by [29].

We inform our logic development with examples as well as the incident
response standards review by [28]. For example, we draw inspiration from [30].
Since [30] is a description of an incident analyst tracking foreign spies through
computer networks, it is a rather obvious paradigmatic case. Another, less obvi-
ous, example of incident analysis is Assistant for Randomized Monitoring Over
Routes (ARMOR) [31]. ARMOR represents a kind of ongoing incident analysis,
though of physical security. One reason [31] is relevant is that it is deployed
decision-making. Although the form of our model is different, deployability is
a major consideration of our design choices. Our working definition of incident
analysis, adapting from that of ‘investigation’ in [6, p. 244], is:

Incident analysis: a process by an agent to build a model and explana-
tion of the phenomenon responsible for a security violation. The pro-
cess is forensic (as distinguished from engineering or design which are
forward-looking, though results should inform engineering). The process
will include collection of evidence; discovery of interrelated mechanisms;
investigative heuristics and methodology ; and reporting results. Different
incident analyses may have different goals, such as fixing the impacted
system, attributing the attack, or legal prosecution.

Italicized terms may need their own definitions in future work. However, we
are not seeking an ontology, and shall not elaborate them here.

Incident analysis is a key aspect of incident response. In turn, incident
response is a crucial aspect of information security broadly. One essential aspect
of infosec is feedback from incidents to ‘preparation’ and ‘protection’ [1].

The National Institute of Standards and Technology (NIST) guide on foren-
sics in incident response recommends analysts use “a methodical approach” [14,
p. 3-8]. However, nowhere does NIST provide such a methodical approach. This
is a general failing. A recent review of published incident response documents and
standards found that the literature lacked this middle-level of description [28].
Fine-grained, type-this-on-the-keyboard advice is available. And high-level, do-
these-management-practices advice is available. But published guidance on a
methodical approach to incident analysis is lacking, despite the central impor-
tance of the topic to cyber security.

We will contribute towards a methodical approach to incident analysis by
building a logical language for analysts to document their reasoning process
precisely. This contribution advances towards scientific incident analysis because
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it improves interpretation of evidence. A logic improves interpretation because
it enables communication and repetition of the interpretive process, allowing for
iterative improvement and collaboration.

To make use of our logic for improved decision-making, we also need to under-
stand human cognition and how we think about thinking. [11] makes progress
on this topic, applying the approach by [10] for reducing the impact of cognitive
biases in analysis to computer network incident analysis. Our goal is to combine
these aspects and provide logical tools such that steps of interpretation can be
made explicit and the gaps in our knowledge identified more easily.

The paper continues as follows. Section 2 develops a new logic as a tool to
express reasoning patterns within incident analysis. Section 3 demonstrates how
to apply the logic by an example construction to express and elaborate the kill
chain model from [12]. Section 4 lays out benefits to decision-making in security
and future work.

2 Logic Definitions

In this section, we build a logical system as a tool for expressing paradigmatic
features of incident analysis. These features include abductive hypothesis gen-
eration, evidence-based evaluation of hypothetical explanations, and reasoning
about technical events. Section 3 will use the tools we build here to further elab-
orate our logic through an example.

A necessary part of a logical system is its model. A model, in this logic sense,
is a mathematical structure with which we can interpret a proposition, and then
determine whether it is satisfied or not. This sense is quite far from a scientific
model. However, as [22] argues, a logic will be most effective when its logic
model aligns with the salient features of a scientific model of the represented
phenomenon. Therefore, we develop logical tools with the purpose of incident
analysis in mind at every step. The phenomena of interest are violations of
security policy; that is, a resultant state of a computer system. We will represent
these as histories, composed of series of states of the computer.

We make a variety of choices to adapt the logic to incident analysis. Some
are simple: incident analysis is largely about past events, so we include both
past-tense and future-tense temporal operators. Others are more subtle. For
example, we define a separation of network, storage, and processor resources
at a basic level because practitioners think about, monitor, and defend these
things quite differently. We wanted the logic to reflect this reality deeply. And
some of our choices have an eye towards pragmatics of usability and deployable
decision-making. As [18] describes, the road from formal logic to operational
implementation is long. However, we include the ‘and, separately’ operator in
our logic, which supports composable reasoning and an eye towards scalability.
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2.1 Expressions

Our definition of expressions is essentially the same as [13] and [4]. An expression
can be an integer, an atom, or a variable.

E ::= x Variable
| 37 Integer
| nil nil
| a atom
| . . .

The open-ended definition of expressions allows for additional expressions so
long as they can be interpreted in the semantic domain specified.

Our semantic domains are values, addresses, and content, analogous to and
slightly more general than the values, stacks, and heaps used in [4]:

V al = Int ∪ Atoms ∪ Loc A = V ar ⇀fin V al C = Loc ⇀fin V al × V al

where Loc = {�, . . . } is an infinite set of locations, the term V ar = {x, y, . . . } is
a set of variables, Atoms = {nil, a, . . . } is the set of atoms, and finite partial
functions are represented by ⇀fin. Elements of addresses and content are a ∈ A
and c ∈ C, respectively. As is customary for stack variables, we do not provide
an explicit operation for allocating address variables.

The domain of an element of addresses is dom (a) for a ∈ A. Similarly, dom (c)
is the domain for an element of contents. Note that English grammar here may
be confusing. An address a is a set of mappings from variables to values, not a
singleton. Likewise, c is a set of content mappings, not a singleton.

Interpretation is independent of the particular computer being represented,
analogous to heap-independent interpretations in [4]: �E� a ∈ V al, where dom (a)
includes the free variables of E.

2.2 Basics and Syntax

We will make use of some familiar classical propositional connectives, some per-
haps less-familiar temporal connectives, and a ‘spatial’ connective from a more
recent logic. The familiar classical connectives are ‘if, then’, ‘and’, ‘or’, and ‘not’
and the familiar first-order quantifiers are ‘there exists’ and ‘for all’.

Before marching on with definitions, we briefly describe the intention of the
less common operators which we use. The operators ‘until’ and ‘since’ are both
temporal, whose definition we take from [17]. ‘Until’ is about the future, and
‘since’ is about the past, but otherwise they are similar. We have ‘φ until ψ’
when the first formula φ is true now and into the future, for at least enough
time such that the second formula becomes true at some time later. It is what
one might expect when asking “Hold this cup until I get back.” Though in our
logic we will need to be explicit about the social assumption, in classical logic, of
“If I return, then give me the cup.” ‘Since’ is similar. We have ‘φ since ψ’ when
at some point in the past ψ occurred, and φ has been occurring from then up
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through to the present. Again, as one might expect from “I have been sad since
my cup broke.”

The final less-familiar connective we use is ∗ for ‘and, separately’. Usual, clas-
sical ‘and’ is collapsible. That is, “I have five coins and I have five coins” is, in
classical logic, the same as “I have five coins.” The connective ‘and, separately’
is not collapsible. We take this connective from O’Hearn and Pym’s logic of
bunched implications (BI) [8,19,23], a non-classical (‘substructural’) logic with
a semantics that can be interpreted in terms of the composition and comparison
of resources and which forms the basis for Separation Logic [13,24]. Separation
Logic is a specific theory of BI for handling memory allocation—our direct start-
ing point in this section. Readers may see [22] for an accessible introduction to
Separation Logic.

Computers, like coins, are resources. We use Separation Logic because we
want to be able to express “A computer is compromised and, separately, a com-
puter is compromised” to be reasoned with as two computers are compromised,
for example. The classical ‘and’ would lose this information that two computers
are compromised, because the formula would collapse.

Following these intuitions, logical formulae are constructed inductively:

φ, ψ ::= α Atomic formulae
| ⊥ Falsity
| φ ⇒ ψ Material implication
| emp Empty content
| ∃x.φ Existential quantification
| φUψ TemporalUntil
| φSψ Temporal Since
| φ ∗ ψ Spatial conjunction

Atomic formulae include equality and points-to relations, and predicates.

α ::= E = E′ Equality
| E �→ E1, E2 Points to
| P ((V al1, E1) , (V al2, E2)) Relational predicate
| . . .

In [13], points-to is defined as a three-place relation, E �→ E1, E2. [4] contains
both a simple points-to relation, E �→ E′ and a higher-order concept of lists that
treats the properties of lists as primary, rather than their contents. Our goal is
not to analyze details of doubly-linked lists or higher-order lists. Our syntax
does not treat lists directly. However, this three-place syntax provides a way
to separate a large data element into arbitrary chunks while preserving their
order. This works for memory, files on disk, and network packets. An example of
why this is useful: we can represent malware analysis techniques, such as segment
hashing, by representing properties of a connected series of expressions. However,
our intention is not to be exhaustively faithful to the file-system representation.
If the segments of a large file are not of interest, we may elide the details of the
file system block size and the linked list that actually composes the file contents.
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The usual classical and temporal symbols are defined from available formulae:

– negation; i.e., ‘not’, is ¬φ
def= φ ⇒ ⊥

– truth is simply not false; i.e., 
 def= ¬⊥
– disjunction; i.e., ‘or’ is customarily φ ∨ ψ

def= (¬φ) ⇒ ψ

– conjunction; i.e., ‘and’ is thus φ ∧ ψ
def= ¬ (¬φ ∨ ¬ψ)

– ‘for all’ is in terms of the existential, ∀x.φ
def= ¬∃x.¬φ

– ‘at least once in the future’ relates to until, φ
def= 
Uφ

– ‘henceforth’ is φ
def= ¬ ¬φ

– analogously, ‘at least once in the past’ is φ
def= 
Sφ

– and ‘has always been’ is φ
def= ¬ ¬φ.

We follow [15], in that we do not have a simple ‘next’ temporal operator.
For various reasons [15] lays out, and we feel a choice that is validated by how
incident analysts reason in our case studies, we primarily care about observable
changes, not the precise sequence that brings those changes about.

2.3 Model

Our model is designed to support incident response reasoning by embedding the
most important objects of analysis as the basis of the model. We keep the three
salient types of computing resources separate, and index by time. Each resource
is a partial monoid with composition operator and unit.

(RM , ·M , eM ) for processor and RAM (M for memory)
(RD, ·D, eD) for file storage (D for disk)
(RN , ·N , eN ) for network bandwidth (N for network)

where, for i ∈ {M,D,N}, Ri is a set of resource elements of the given type,
·i : Ri × Ri ⇀ Ri is a partial function operating on resources of the given type,
and ei is the unit element of ·i such that for all r ∈ Ri it is the case that
r ·i ei = r = ei ·i r.

More concretely, each RM , RD, RN is composed of (address, content) pairs
analogous to (stack, heap) pairs. We define m::=s, h for m ∈ RM , d::=δ, β for
d ∈ RD, and n::=κ, υ for n ∈ RN . These sub-parts of the resources are proper
subsets of the address and content defined above. The fact that s ∈ S with S ⊂ A
and h ∈ H with H ⊂ C makes the usual stack-heap model of separation logic
somehow contained in our address-content model. Further, we define δ ∈ N for
N ⊂ A and β ∈ B for B ⊂ C (for inodes and file blocks). For network host
addresses and data units (i.e., packets), κ ∈ K for K ⊂ A and υ ∈ U for U ⊂ C.

Formally, these three resource monoids could be considered as one monoid
R = (R, ·,E) where R = RM � RD � RN (the disjoint union of the resources),
composition ·, · : R × R → R such that

· (r1, r2) ::=

{
r1 ·i r2 if r1, r2 ∈ Ri

undefined otherwise
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and E = {eM , eD, eN}
where E · r::=

{⋃
e∈E r ·i e = {r} =

⋃
e∈E e ·i r if r ∈ Ri

undefined otherwise
The definitions of · and a set of units are adapted from [3, Definition 2.3].

These definitions will be used to describe the state of a computer or a computer
network at a given time as a composition of different programs, files, and network
activity.

Incident analysis needs a notion of time and changes. Therefore, we adopt a
linear time model composed of a sequence of states. Each state is represented
by an element r ∈ R. We define a history H ∈ H as a ordered finite set

H::=
{
r1, r2, . . . , rt, . . . , rT

}
,

with T ∈ N. (H, t) uniquely identifies the state rt ∈ R. The length of a history
is |H| = T . There is no notion of absolute time or a “wall clock.” The time T
indicates a sequence without any claims about the time between transitions.

History Monoid. We define a monoid, H = (H (R) , ◦, e) where H is the set
of histories H (defined above) that can be constructed using a given resource
monoid R; ◦ : H × H → H; unit e to be the empty history with |e| = 0. More
specifically, we define ◦ as:

(H1 ◦ H2, t) ::=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(rt1 · rt2, t) for rt1 ∈ H1 and rt2 ∈ H2 if |H1| = |H2|
(H2, t) if H1 ≺ H2

(H1, t) if H2 ≺ H1

undefined otherwise

Here H1 ≺ H2 indicates that one history is contained in the other. We define
four conditions that must all be met for this to hold. Specifically, H1 ≺ H2 iff

1. |H1| < |H2|, where |H1| = T , |H2| = T ′; and
2. for all rt1 ∈ H1, with t ∈ T , there exists some rt

′
2 ∈ H2 with t′ ∈ T ′ such that

rt1 = rt
′
2 and t ≤ t′; and

3. for all rt
′
2 ∈ H2 and given any rt1, r

x
1 in H1 with t, x ∈ T , it is the case that

rt
′
2 = rt1 and rt

′
2 = rx1 iff t = x; and

4. for all rt1, r
x
1 in H1 with t, x ∈ T such that t < x, it is the case that, for

rt
′
2 , rx

′
2 ∈ H2 with t′, x′ ∈ T ′, we have rt1 = rt

′
2 and rx1 = rx

′
2 iff t′ < x′.

The intuition for these requirements as expressing the concept of “contained in”
is as follows. A smaller history is contained in a larger one. All the events of the
smaller history appear in the larger one, in the same relative ordering. The only
change permitted is that new events are inserted into the larger history; such
inserted events can be interleaved in any way.

The unit e as the empty history behaves as expected.

H ◦ e = H = e ◦ H

Proof of identity by cases. We have|e| = 0, so either
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1. |H| = 0, that is H is e, thus we have to prove e ◦ e = e
(a) This is true. We follow rt::=rt1 · rt2. However, T = 0 so there are no

elements to compose. The result is the history of length 0, namely, e.
2. |H| ≥ 1

(a) Requirement 1 for ≺ holds (0 < 1).
(b) Requirement 2 holds vacuously (all rt1 ∈ e is ∅).
(c) Requirement 3 holds vacuously, without rt1, r

x
1 to compare.

(d) Requirement 4 holds vacuously, without rt1, r
x
1 to compare.

One might think the unit for ◦ could be the history containing just the unit
element E (recall E = {eM , eD, eN}). However, if defined thus, requirement 2
for ≺ might fail if there is no element of H in H ◦ e such that (H, t) = E. Then
H ◦e could be undefined for |H| > 1, in which case H ◦e = H = e◦H would not
hold as required. Every history could start with the unit element to make this
true by construction, but that seems unnatural. Therefore the unit of ◦ should
be the empty history |e| = 0.

A history will be used to represent a hypothesis for the series of events
and changes to the resources of a computer system during the course of the
incident. Combining histories can represent, for example, combining explanations
of simultaneous events on two different locations on the network.

2.4 Semantics

The semantics of the atomic expressions are many-sorted operations. To unfold
the truth value of an expression, recall (H, t) def= [(st, ht) , (δt, βt) , (κt, υt)].

[(st, ht) , (δt, βt) , (κt, υt)] |= E = E′ iff

⎧⎪⎨
⎪⎩

�E� st = �E′� st

�E� δt = �E′� δt

�E�κt = �E′�κt

We can abbreviate this as

H, t |= E = E′ iff �E� at = �E′� at

Because these three resources are disjoint (namely S ⊂ A;N ⊂ A;K ⊂ A and
S ∩ N = S ∩ K = N ∩ K = ∅), only one of the three interpretations will be valid.
Namely, only one of �E� s or �E� δ or �E�κ can hold for any E, or they are
equivalent. Only one exists because for �E� a to be interpretable, dom (a) must
include the free variables of E. The domains of s, δ, κ are disjoint by definition.
If there are no free variables in E, then �E� s = �E� δ = �E�κ.

Similarly, points-to can be defined over the three disjoint parts of the model
at a given time, and then abbreviated in terms of elements of A and C:

[(st, ht) , (δt, βt) , (κt, υt)] |= E �→ E1, E2

iff

⎧⎪⎨
⎪⎩

ht (�E� st) = 〈�E1� st, �E2� st〉 {�E� st} = dom (ht)
βt (�E� δt) = 〈�E1� δt, �E2� δt〉 {�E� δt} = dom (βt)
υt (�E�κt) = 〈�E1� κt, �E2�κt〉 {�E� κt} = dom (υt)
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which we abbreviate as

H, t |= E �→ E1, E2iff
{
�E� at

}
= dom

(
ct

)
and ct

(
�E� at

)
=

〈
�E1� at, �E2� at

〉
The element emp actually represents a set of three related elements:{

M
emp,

D
emp,

N
emp

}
. The semantics for emp is defined as

[(st, ht) , (δt, βt) , (κt, υt)] |= M
emp iff ht = []

[(st, ht) , (δt, βt) , (κt, υt)] |= D
emp iff βt = []

[(st, ht) , (δt, βt) , (κt, υt)] |= N
emp iff υt = []

H, t |= emp iff
M
emp and

D
emp and

N
emp

Here, ht = [], βt = [], and υt = [], represent the empty heap, empty file
system, and empty network, respectively.

The semantics for a relational predicate, P , is given by

H, t |= P ((V al1, E1) , (V al2, E2)) iff (H, t) ∈ V [P ((V al1, E1) , (V al2, E2))]

Here V : A → P (States) is the valuation function from the set A of atoms of
P ((V al1, E1) , (V al2, E2)) to the powerset of possible states of the form (H, t).

The other semantic clauses are as follows:

H, t |= φ ⇒ ψ iff if H, t |= φ then H, t |= ψ
H, t |= ∃x.φ iff for some v ∈ V al. [a|x �→ v] , c |= φ
H, t |= φUψ iff for some i ∈ T with i ≥ t and (H, i) |= ψ such that

for all j ∈ T with t ≤ j < i it is the case (H, j) |= φ
H, t |= φSψ iff for some i ∈ T with i ≤ t and (H, i) |= ψ such that

for all j ∈ T with i < j ≤ t it is the case (H, j) |= φ
H, t |= φ ∗ ψ iff for some H1,H2 such that H1#H2 and H1 ◦ H2 = H

where H1, t |= φ and H2, t |= ψ

Here H1#H2 indicates the histories are pointwise disjoint. H1#H2 is true if and
only if the following conditions hold:

1. |H1| = |H2| = T ; and
2. For all [(st1, h

t
1) , (δt1, β

t
1) , (κt

1, υ
t
1)] ∈ H1 and [(st2, h

t
2) , (δt2, β

t
2) , (κt

2, υ
t
2)] ∈ H2

it is the case that, for all t ∈ T :
(a) dom (ht

1) ∩ dom (ht
2) = ∅ and

(b) dom (βt
1) ∩ dom (βt

2) = ∅ and
(c) dom (υt

1) ∩ dom (υt
2) = ∅.

2.5 Abduction

These tools will allow us to capture abduction.Abduction would naturally be
grouped into a trio with deduction and induction. These terms have long, prob-
lematic histories of usage. Deduction requires a proof theory, and because one
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can justifiably define different proof theories for different purposes [21], ‘deduc-
tion’ is not just one thing. But generally ‘deduction’ captures the reasoning from
premises to conclusions following explicit rules. We discuss proof theory briefly
in Sect. 2.6. ‘Induction’ has received voluminous attention, since Hume in the
1740 s [9]. It roughly means concluding that because something has been the
case before, it will be again. A more fruitful discussion might be had under the
topic of how we generalize from what we know. Generalization methods will
generate the heuristics we need for the logic. However, we leave generalization
aside for now; there are other discussions of effective methods (see, e.g., [29]).

Abduction is neither deduction nor induction. Abduction is the generation
of an explanation, which can then be evaluated against available evidence [2,
CP 5.171]. More formally, abduction asks what (minimal) formula needs to be
added to a proposition such that it will be satisfied. As [4] demonstrates, abduc-
tion is automatable as long as the problem space is constrained, checking the
validity of hypothetical additions is scalable, and human heuristics for generat-
ing additions can be encoded in the logic. Attack ontologies will serve as these
heuristics for incident analysis. We will endeavor to represent one common attack
ontology—the intrusion kill chain [12]—in our logic. We will also demonstrate
that we can link existing knowledge bases, such as Snort rules, into this struc-
ture. Therefore, we are confident a system could be built that instrumented a
computer network, ingested security-relevant information, and, given a security
incident, used our logic to assist in the process of abducing explanations of how
an adversary penetrated the network. Given this decision support, we would then
imagine testing and improving different abduction rules in a scientific manner.

2.6 On the Metatheory of the Security Incident Analysis Logic

Generally, when setting up and explaining a system of logic, one gives a language
(of propositions) and a semantics specified by a class of models together with a
satisfaction relation which specifies which propositions are true in which parts of
an arbitrary model. Typically, one also gives a proof system—that is, a collection
of inference rules—which determines which propositions are provable. The first
meta-theoretic challenge is then to establish that the provable things are also
true in the models (soundness) and that there is model for which the notion of
truth specified in the semantics coincides with the notion of provability specified
by the inference rules (completeness). This, together with other metatheoretic
analyses, is what assures us that a logic makes good sense.

In this section, we have described a logic for analysing security incidents.
We have defined the logic by giving its propositional language together with a
semantics given by a specific model together with a satisfaction relation which
determines which propositions are true in which parts of the given model.

So, given that we haven’t done all the usual work, why are we confident
that the logic is a good one? Although the logic we have defined may look quite
exotic, it is, in fact, based on a combination of some quite well-understood con-
structions together with a specific concrete model. In this respect, its definition
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Fig. 1. The intrusion kill chain, as explained by [12]. We will add more detail to this
attack ontology by specifying certain aspects in our incident analysis logic.

somewhat resembles that of the logic from which it draws much inspiration,
namely Separation Logic [4,23].

In short, for general mathematical reasons about how logics are constructed,
we can be confident that the logic will work properly in the established senses.

3 A Worked Example

The “kill chain” was introduced by Lockheed Martin to explain an abstract
pattern they observed in attacks targeting their organization [12]. It is a useful
model of computer network attacks, because it helps inform the incident analyst
about expected sorts of activities, against what sorts of entities, and their orga-
nization. The abstract nature of the kill chain makes it a good example to be
expressed in our logic. It also models a useful unit of incident analysis – a single
attack. Multiple attacks are almost always sequenced to achieve an adversary’s
overall goal during a campaign. Also, most attacks do not succeed, so usually
many attacks occur in parallel. Therefore, modelling a single attack should be a
fruitful example because we can compositionally build on it to analyze security
incidents.

Figure 1 summarizes the steps in the kill chain. The mechanistic expression
of the kill chain elaborated in [27] also guides the expression in our logic.

Our example is to turn this conceptual model of the kill chain into a set
of logical statements of pre- and post-conditions that express useful abduction
heuristics. However, we need to realign the components of the model. Our logic
talks about observable computer activity, and as such the humans implicit in
the kill chain have no place in our logic. Their interests are represented in the
definition of our predicates. For example, the truth values of compromised ()
will depend on the security policy of the defender.

What counts as malware or an exploit is also dependent on the point of
view of the agents. In our logic, we model only software instructions, computer
systems, and bit-strings. These categories are intention-neutral. Malware is a
subclass of software. Strictly, we do not discuss software (as this implies a com-
plete product), but rather just instruction sets—a computation. But we shall not
dictate how malware is classified as such. One benefit of our logic is to express
precisely how an analyst determines how to differentiate malware from benign
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computations. Descriptions of what behaviors are indicative of malicious versions
of those elements will be contingent.

To define our representation of a computation (i.e., software, functions, etc.),
we adapt Hoare-Floyd logic. Hoare logic is a mainstay of program verification.
It is primarily concerned with statements of the form {φ} C {ψ}, where φ is pre-
conditions, ψ is post-conditions, and C is some specific computation. The goal
of Hoare logic is to verify that ψ can be guaranteed to be satisfied if C executes
in an environment that satisfies φ.

The construction of Hoare logic is about the details of C and whether we can
demonstrate post-conditions given pre-conditions. We are going to turn this on
its head. The incident responder knows a post-condition, usually some security
violation, and wants to understand more about the pre-conditions and software.

The computation C can be described in various levels of detail. This is an
important benefit. Our logic, so defined, permits description of programmatic
details. Malware reverse engineering tries to construct details of an unknown C.
Incident analysis is primarily involved in a higher level task, merely constraining
the observable traces in the system, not how some C made these changes. There-
fore, while knowing malware details is helpful, because it narrows the poten-
tial pre- and post-conditions, we leave discussion of how C works in malware
for future work. Practicing incident responders should reduce attention regards
malicious logic as simply the Hoare triple {φ} C {ψ} where φ and ψ are known.
This approach to knowledge is essentially the programming principle of encap-
sulation. If we know what goes in and what comes out, we do not need to know
how it works to reason about impacts on our system.1

We represent a computer system as σ, taken from the systems known to
the analyst. The full complement of systems is represented by S. At a given
time t, the system is σt. The system σt is shorthand for a cluster of resources
[(st, ht) , (δt, βt) , (κt, υt)]. Therefore, at any given time t, the state of the world
(H, t) might be decomposed into one or more systems σt

1·σt
2·...·σt

n. The concept of
system is therefore merely a shorthand for a cluster of resources that the incident
analyst is interested to treat as a unit of analysis.

Our third and final entity, bit-strings are a type of expression E. Usually
we represent strings in human-readable form. Human-readable strings can be
represented as integers, so the syntax for E remains unchanged. We elide the
details of local encodings (ASCII vs. unicode vs. hexadecimal, big- vs. little-
endian, etc.) that complicate mapping between strings and integers. Notating
strings as strings instead of expressions is merely a syntactic convenience.

Given computations and systems, we can define all the predicates we need:

– compromised (σt)
– hostile (σt)
– malicious (C)
– trusts

(
σt
1, σ

t′
2

)
(often with t = t′)

– match (string1, string2)

– vulnerable (σt, C)

– exploited (σt, C)

1 Any given {φ} C {ψ} for a program will be treated as a hypothesis, and one that
given sufficient evidence might be overturned and modified.
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Compromised, hostile, and malicious have the intuitive meanings. In our
current set of definitions, these have binary truth values. We recognize analysts
may be interested in intermediate values; however, we leave an extension of the
logical definitions to a many-valued logic as future work.

Note that our intention here is that the compromised system is internal, under
defender ownership, whereas a hostile system is on the Internet, not owned by
the defender. Therefore, a different reasonable definition would be to define an
ownership predicate, and define compromised () in terms of hostile and owned.
That is, there are multiple compatible ways to represent relevant concepts. We
select the above as a viable definition, not the only one.

The predicate trusts
(
σt
1, σ

t′
2

)
is a relationship between two systems.

Although it is an oversimplification, for the time being we reduce trust to the
ability to communicate. More specifically, receive information. That is, given an
address a1 ∈ A such that a1 ⊂ σt

1 and address a2 ∈ A such that a2 ⊂ σt
2 and any

expression E, we have trusts
(
σt
1, σ

t′
2

)
just in case that (a1 �→ E) ⇒ (a2 �→ E).

This is an abstract concept of communication. It just says that if some address
in system one points to an expression, somehow eventually an address in system
two comes to point to the same expression. The reason this is trust, and not
chance, is that this relationship holds for any expression. This definition abstracts
away from how that communication is executed. A real security policy may
restrict which expressions are permitted or disallowed. We leave such definitions
of a trust predicate as future work.

The predicate match () represents a common use case in incident analysis and
computer network defense: pattern matching. Tools such as intrusion detection
systems, firewall ACLs, and spam email detection all rely on matching incoming
communications to known patterns of interest. These patterns are signatures or
blacklists of malicious behavior.

We define the semantics of match (string1, string2) such that:[(
st, ht

)
,
(
δt, βt

)
,
(
κt, υt

)] |= match (string1, string2)

just in case

in
([(

st, ht
)
,
(
δt, βt

)
,
(
κt, υt

)]
, string2

) ∧ string1 = string2

The in () predicate holds just in case

�string2� ∈ dom (st) ∨ �string2� ∈ dom (ht) ∨
�string2� ∈ dom (δt) ∨ �string2� ∈ dom (βt) ∨
�string2� ∈ dom (κt) ∨ �string2� ∈ dom (νt)

We may abbreviate this as in (σt, string) or in ((H, t) , string). If we wish to
emphasize a certain type of string only occurs in the contents of files, for example,
we may elide the other variables and write in (βt, string).
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The equality operator is expression equality as defined in Sect. 2.4, since
strings are expressions. Specifically, if strings are understood as integers, the
expressions will have no free variables and so it becomes the usual integer
equality.

We write σt |= {φ} C {ψ} just in the case that there is some content c ∈ C
and σt |= match (C, c) ⇒ (φ ⇒ ψ). This assumes that the computation C
terminates. But we are primarily concerned with malware that has successfully
run, so this should not cause great trouble. Furthermore, we have defined time
as finite, so termination can always be defined as the state at (H, t) when t = T .

We then propose to define vulnerable (σt, C) to hold iff σt |= ({φ} C {ψ})∧φ∧
malicious (C). The real-world impact if vulnerable (σt, C) holds is a bad security
situation. Such a system can be exploited at the will of the adversary.

To differentiate from the less severe situation where a system is vulnerable
but exploit code is not present, we define σt |= vul (φ). This is a syntactic
convenience; it means only that σt |= φ and that φ is the precondition for the
execution of some malware.

Vulnerability is not the same as exploitation (in the traditional terminology
of computer security). Exploit also requires access, which we can define in terms
of trusting, execution, etc. However, simply the state of having been exploited,
exploited (σt, C), we can define as σt |= ({φ} C {ψ}) ∧ malicious (C) ∧ ψ.

3.1 A Logic of the Kill Chain

The kill chain provides the incident analyst with abduction heuristics for abduc-
ing the pre-conditions that lead to observed post-conditions. Thus, we can define
pre- and post-conditions that we expect from each of the seven steps of the kill
chain. If we observe the post-conditions of one, we can abduce its pre-conditions.
We will use the kill chain to provide the basic structure of a single attack. Once
this is complete, we will suggest how the logic can group attacks together into
campaigns. Thirdly, we can specify more specific conditions for kill chain steps
at a level of detail that is compatible with tools available to practicing incident
analysts.

The last step in the kill chain is the first that an incident analyst is likely
to observe. Thus our measure of time starts with t = T , the end of the history,
and works backwards to t = 0. Because we have no absolute notion of time, each
discrete phase moves back time one step. In this way, we will continue to step
backwards through the attack from the end to the beginning:

– Action on Objectives, the final state: the system is under adversary control
• Post-condition (observed): H, t |= Compromised (σt

1) for t = T .
• Pre-condition: C&C, defined as: there is some σ2 such that

H, t |= trusts (σt
1, σ

t
2) ∧ hostile (σt

2) for t = T − 1.

This does not tell the analyst much, but it importantly identifies that there
must be some hostile system that the defender’s system has come to trust.
Unwinding the next steps backwards would shed light on how.
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– Command and control
• Post-condition (observed): C&C, as defined above
• Pre-condition: Installation of malware, that is

σt
1 |=

({
φ̂C1

}
C1

{
ψ̂C1

}
∧ φ̂C1

)
, for t = T − 2. The indicates that the

malware will be able to execute indefinitely into the future, not just once.

Where
{

φ̂C1

}
C1

{
ψ̂C1

}
as follows:

ψ̂C1 is a post-condition for the adversary’s objectives, namely at minimum estab-
lishing a communication channel; i.e., H, t |= trusts (σt

1, σ
t
2) for t = T − 1.

Discovery of further unobserved objectives is likely one investigative goal.
φ̂C1 is the pre-conditions for the malware to run. These may simply be the post-

conditions of the installer (i.e., ψ̂C2 , defined below), but may include what
type of system the adversary can or wants to target.

A more flexible definition of the pre-conditions for command and control
would be

({
φ̂C1

}
C1

{
ψ̂C1

})
Uφ, for some φ, instead of

({
φ̂C1

}
C1

{
ψ̂C1

})
.

– Installation of C1 (the main malware) by C2 (a downloader, installer, etc.)
• Post-condition (observed): Installation, captured by

σt
1 |=

{
φ̂C1

}
C1

{
ψ̂C1

}
∧ φ̂C1 , for t = T − 2.

• Pre-condition: Exploitation; i.e., σt
1 |= exploited (σt

1, C2), for t = T − 3.

Note that the installation post-condition is weaker than the command and
control pre-condition. The post-condition is what can be observed, but the pre-
condition is abduced. In this context, the analyst should not assume the malware
will stop, but rather that it will continue running indefinitely. Of course, like all
abductions, this hypothesis might be changed by further observations.

Here
{

φ̂C2

}
C2

{
ψ̂C2

}
is as follows.

ψ̂C2 contains at least that σt
1 |=

({
φ̂C1

}
C1

{
ψ̂C1

})
∧ φ̂C1 , for t = T − 2. I.e.,

system one both stores the malware and is configured such that it can run.
φ̂C2 is a pre-condition containing at least the transfer of data necessary for the

installation; i.e., there is some σ3 such that H, t |= trusts (σt
1, σ

t
3), for t =

T − 4.

– Exploitation of system σ1 by an exploit C3.
• Post-condition (observed): σt

1 |=
{

φ̂C2

}
C2

{
ψ̂C2

}
∧ ψ̂C2 , for t = T − 3.

• Pre-condition: σt
1 |= vulnerable (σt

1, C3), for t = T − 5.

Here
{

φ̂C3

}
C3

{
ψ̂C3

}
is as follows:

ψ̂C3 contains at least σt
1 |=

({
φ̂C2

}
C2

{
ψ̂C2

})
∧ φ̂C2 , for t = T − 4. We say “at

least” here because the exploit may or may not delete itself, for example, so
in general additional traces on the system cannot be specified.
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φ̂C3 represents the exploited vulnerability and any targeting by the adversary.

– Delivery of an exploit
• Post-condition (observed): There exists content c, c′ ∈ C such that it is

the case σt
1 |= match (C2, c) ∗ match (C3, c

′), for t = T − 6.
• Pre-condition: There is σ4 such that (H, t) |= trusts (σt

1, σ
t
4), for t = T −7.

The delivery phase does not assume the exploit runs, just that it reaches the
defender’s system from somewhere. We abduced the existence that system, σ4.

– Weaponization against an observed vulnerability
• Post-condition (explicitly unobserved): This is the creation of the mal-

ware. It also might include all the work the adversary did to discover the
vulnerability, etc.

• Pre-condition: The reconnaissance was successful and the adversary learns
that the system σt

1 |= vul (φ) for some φ, for t = T − 8.

Weaponization is an abduced step. Because it occurs local to the adversary,
the defender almost never observes it, but knows that it must happen.

– Reconnaissance on target systems
• Post-condition: Observable communication between σ5 and σ1. That is,

(H, t) |= trusts (σt
1, σ

t
5)∧ψ, for t = T −9, where ψ represents the informa-

tion communicated. In some situations, it may be possible to learn what
vulnerability is likely communicated, that is ψ ⇒ vul (φ).

• Pre-condition: There exists σ5 such that (H, t) |= trusts (σt
1, σ

t
5), for t =

0. Depending on the communication, it may be possible to put constraints
on what cluster of resources represent σ5.

The adversary-controlled systems σ5, σ4, σ3, σ2 may or may not be the same
real-world system, sharing some combination of resources.

3.2 Composition of Attacks into a Campaign

To model a campaign of many attacks, we would join attacks together by ∗.
This is particularly important because the compromised system σ1 might be
used to conduct further attacks locally. The postconditions of one attack might
be preconditions for other attacks. It’s important that this is ∗ and not ∧, to
count compromised machines and attacks as individuals.

A logical description of botnet operations, such as Zeus, should be possible
by composing aspects and instances of the kill chain. Indeed, [5] accomplish
something similar by stitching together kill chain instances with Bayesian belief
statements. Incorporating existing tools such as MulVal [20], which helps with
vulnerability management by logical discovery of impactful attack graphs, are
promising areas for synergy with the logic presented here. We leave a worked
campaign example for future work.
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3.3 Using More Granular Knowledge

[27] use the kill chain as an example of mechanistic explanation and demonstrate
incorporating a lower (mechanistic) level of explanation via a type of exploita-
tion: drive-by download. In our logic, we can similarly refine our expressions.
For example, known exploits would put constraints on

{
φ̂C3

}
C3

{
ψ̂C3

}
. We will

demonstrate using a simpler example than drive-by downloads.
Integrating specific rules should enable automating the process of finding

likely explanations. The incident analyst might have many thousands of poten-
tial specifications of various phases of the kill chain, derived from anti-virus
signatures, blacklists, and so on. The logic mechanizes the inspection of which
details are more likely to be at play in a given incident based on observations.

We will demonstrate how existing knowledge bases can be leveraged in this
way via a Snort rule. An intrusion detection system (IDS) rule, such as Snort
rules, is a structured statement of suspicious network activity. We consider an
old, but representative, example rule from [25], which introduced Snort. Trans-
lations from anti-virus rules, etc., should be similarly easy.

alert tcp any any -> 192.168.1.0/24 143 (content:"|E8C0 FFFF
FF|/bin/sh"; msg:"IMAP Buffer Overflow detected!";)

This rule is a specification of the kill chain “Delivery” phase. Some parts
are responses, such as “alert”, which need not be represented in the logic. Sim-
ilarly, annotation such as the “msg” field is useful, but would be implemented
elsewhere.

This leaves essentially two elements of the rule. The header, which specifies
the matching rules for packet headers, and the payload detection options (here,
“content”). In this case, these aspects map to statements about the network,
namely κ, ν. Specifically, header rules are about κ and content rules are about
ν. This makes translation of such Snort rules relatively straightforward.

The network headers are simply communication between some external sys-
tem, σ4, and the defender’s system σ1. System σ4 remains unconstrained, repre-
sented by any any for IP and port matches. However, we have two constraints
on σ1. Firstly, the system is 255 IP addresses, namely 192.168.1.0/24. We
represent this as the claim that there exists some κ ∈ A such that

σt
1 |= dip (192.168.1.0, κ) ∨ ... ∨ dip (192.168.1.255, κ) ∧ dport (143, κ)

The predicates dip () and dport () use the match () predicate, defined to match
specific parts of an IP packet header (destination IP and port, respectively).

The content is a string-matching constraint on the communication between
σ4 and σ1. We change the notation for hexadecimal content from |FF |, as Snort
uses, to FF. Then this half of the Snort rule is easily translated; we assert there
exists some ν ∈ C such that

σt
1 |= match (E8C0FFFFFF/bin/sh, ν) .
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This matches with an exploit, represented as C3 in our formulation. The Snort
rule is the conjunction of these two statements.

Recall the broad statement of delivery in the kill chain. Transfer of data,
including C3, from some σ4 to σ1. We have demonstrated how one can specify
greater detail of these aspects. Specifying the specifics of all such attacks is a
huge undertaking. For that reason, we have chosen an example – Snort rules
– where much of this undertaking has already been collected and curated in
machine-readable form. Such existing data bases of attack patterns should be
readily leveraged by our incident analysis logic.

We should also propagate specifics forward in the kill chain. This example
finds an attack against email servers. Therefore, we know more accurate pre-
conditions for C3. Particularly, whether vulnerable (σ1, C3) holds. If σ1 is not
an email server, then it is not vulnerable. This sort of reasoning should allow
the analyst to reduce the number of systems that need to be investigated as to
whether the exploitation step was successful, for example.

4 Conclusions

One ambition for this logic is to represent the reasoning in [30]. This task requires
a large – but finite – collection of observations, reasoning heuristics, hypothetical
explanations, and deduced conclusions. We have not laid out these usage patterns
in detail, but we are confident our tools would work similarly to Separation Logic,
which has these features [4]. But the question may remain: why?

We envision three primary benefits to incident analysis (and perhaps cyber-
security broadly) from engaging with logical tools; namely, communication, clar-
ification, and decision-support potential.

A logic such as the one we have sketched aids communication between ana-
lysts. In general, logical tools aid communication by reducing ambiguity. If one
analyst describes their process in our logic, it will help other analysts understand
and reproduce that process. Furthermore, one challenge in security is a justified
secrecy among allies, which inhibits communication. A logic allows the analyst
to abstract away from some sensitive system details.

Clarification of an analyst’s own thinking is another benefit. Expressing one’s
reasoning in such a logical language forces an analyst to be precise. As [10] identi-
fies, human cognitive biases often subtly insert themselves into analytic thinking.
By specifying reasoning explicitly, we can examine the reasoning process for such
instances of bias and work to reduce it.

Decision-support is an ultimate aim. We believe logics are a better tool for
explanations than machine learning. And explanations are ultimately what sci-
entists seek to make the unknown intelligible [7]. The components of a scientific
explanation are outlined in [29]. Logical tools move us towards a scientific inci-
dent analysis in part because they can represent such explanations. The point of
going through the pain of specifying a logic, rather than remaining in the realm
of philosophy of science and natural language descriptions of incident analysis, is
that logics are automatable. Automation is a clear prerequisite for any decision-
support in a field like incident analysis, where data volumes are so large. At
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the same time, we have adapted logical tools that have demonstrated scalable
reasoning in other contexts [16,22]. The design of our logic is not just tailored to
incident analysis, but, insofar as is possible at this stage, tailored to a scalable
automation of support for incident analysis.

Based on analyst accounts and case studies, we have developed logical tools
for incident analysis. Our goal is both descriptive and prescriptive. We have
sought a useful and accurate description of what analysts do. At the same time,
analysts should emulate these descriptions and build on them, to express their
process methodically. Of course, this process will be gradual. Logical tools pro-
vide a new paradigm which helps enable this gradual advancement, alongside
existing incident management and forensics practices.

Our work begins an approach to decision support for incident analysts. What
we have provided so far also serves to highlight where additional formal defi-
nitions are appropriate (e.g., see Sect. 2.6). And of course, as with Separation
Logic, the devil will be in the details of implementing such formal definitions [18].
Although the core sense-making and goal-setting aspects likely will remain a
distinctly human endeavor, our developments provide hope that logical tools
tailored to incident analysis could reduce the analyst’s workload.

Acknowledgements. Spring is supported by University College London’s Overseas
Research Scholarship and Graduate Research Scholarship. Thanks to Simon Docherty
for discussion and constructive comments.

References

1. Alberts, C., Dorofee, A., Killcrece, G., Ruefle, R., Zajicek, M.: Defining inci-
dent management processes for CSIRTS: a work in progress. Technical report.
CMU/SEI-2004-TR-015, Software Engineering Institute, CMU 2004 (2004)

2. Bergman, M., Paavola, S.: ‘Abduction’: Term in The Commens Dictionary: Peirce’s
Terms in His Own Words. New Edition, 14 July 2016. http://www.commens.org/
dictionary/term/abduction

3. Brotherston, J., Villard, J.: Sub-classical Boolean bunched logics and the meaning
of par. In: Proceedings of CSL, vol. 24, pp. 325–342. LIPIcs (2015)

4. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26:1–26:66 (2011)

5. Caltagirone, S., Pendergast, A., Betz, C.: The diamond model of intrusion
analysis. Technical report, Center for Cyber Intelligence Analysis and Threat
Research (2013). http://www.threatconnect.com/methodology/diamond model
of intrusion analysis

6. Casey, E.: Digital Evidence and Computer Crime: Forensic Science, Computers,
and The Internet. Academic press, Cambridge (2000)

7. Dear, P.: The Intelligibility of Nature: How Science Makes Sense of the World.
University of Chicago Press, Chicago (2006)
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Abstract. Trust models are widely used in various computer science
disciplines. The primary purpose of a trust model is to continuously
measure the trustworthiness of a set of entities based on their behaviors.
In this article, the novel notion of rational trust modeling is introduced
by bridging trust management and game theory. Note that trust mod-
els/reputation systems have been used in game theory (e.g., repeated
games) for a long time, however, game theory has not been utilized in
the process of trust model construction; this is the novelty of our app-
roach. In our proposed setting, the designer of a trust model assumes that
the players who intend to utilize the model are rational/selfish, i.e., they
decide to become trustworthy or untrustworthy based on the utility that
they can gain. In other words, the players are incentivized (or penalized)
by the model itself to act properly. The problem of trust management
can be then approached by game theoretical analyses and solution con-
cepts such as Nash equilibrium. Although rationality might be built-in in
some existing trust models, we intend to formalize the notion of rational
trust modeling from the designer’s perspective. This approach will result
in two fascinating outcomes. First of all, the designer of a trust model
can incentivize trustworthiness in the first place by incorporating proper
parameters into the trust function, which can be later utilized among
selfish players in strategic trust-based interactions (e.g., e-commerce sce-
narios). Furthermore, using a rational trust model, we can prevent many
well-known attacks on trust models. These two prominent properties also
help us to predict the behavior of the players in subsequent steps by game
theoretical analyses.

Keywords: Trust management · Reputation system · Game theory
Rationality

1 Introduction

The primary purpose of a trust model is to continuously measure the trustwor-
thiness of a set of entities (e.g., servers, sellers, agents, nodes, robots, players,
etc.) based on their behaviors. Indeed, scientists across various disciplines have
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conducted research on trust over decades and produced fascinating discoveries,
however, there is not only a huge gap among findings in these research communi-
ties but also these discoveries have not been properly formalized to have a better
understanding of the notion of trust, and consequently, practical computational
models of trust. We therefore intend to look at the problem of trust modeling
from an interdisciplinary perspective that is more realistic and closer to human
comprehension of trust.

From a social science perspective, trust is the willingness of a person to
become vulnerable to the actions of another person irrespective of the ability to
control those actions [7]. However, in the computer science community, trust is
defined as a personal expectation that a player has with respect to the future
behavior of another party, i.e., a personal quantity measured to help the players
in their future dyadic encounters. On the other hand, reputation is the perception
that a player has with respect to another player’s intention, i.e., a social quantity
computed based on the actions of a given player and observations made by other
parties in an electronic community that consists of interacting parties such as
people or businesses [9].

From another perspective [1], trust is made up of underlying beliefs and it is
a function based on the values of these beliefs. Similarly, reputation is a social
notion of trust. In our lives, we each maintain a set of reputation values for peo-
ple we know. Furthermore, when we decide to establish an interaction with a new
person, we may ask other people to provide recommendations regarding the new
party. Based on the information we gather, we form an opinion about the repu-
tation of the new person. This decentralized method of reputation measurement
is called referral chain. Trust can be also created based on both local and/or
social evidence. In the former case, trust is built through direct observations of
a player whereas, in the latter case, it is built through information from other
parties. It is worth mentioning that a player can gain or lose her reputation not
only because of her cooperation/defection in a specific setting but also based on
the ability to produce accurate referrals.

Generally speaking, the goal of reputation systems is to collect, distribute and
aggregate feedback about participants’ past behavior. These systems address the
development of reputation by recording the behavior of the parties, e.g., in e-
commerce, the model of reputation is constructed from a buying agent’s positive
or negative past experiences with the goal of predicting how satisfied a buying
agent will be in future interactions with a selling agent. The ultimate goal is to
help the players decide whom to trust and to detect dishonest or compromised
parties in a system [17]. There exist many fascinating applications of trust models
and reputation systems in various engineering and computer science disciplines.

In fact, trust models are widely used in scientific and engineering disciplines
such as electronic commerce [4,12], computer security and rational cryptography
[10,13–16], multiagent systems [18–20], game theory and economics [6,8], to
name a few. To the best of our knowledge, there is no literature on rational trust
modeling, that is, using game theory during the construction of a trust model.
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Note that game theoretic models have been used for management and analyses
of trust-based systems [2,3].

1.1 Our Motivation and Contribution

As our motivation, we intend to provide a new mechanism for trust modeling by
which:

1. The trust model incentivizes trustworthiness in the first place, i.e., self-
enforcing.

2. The model is naturally resistant to attacks on trust models, i.e., resistant.

We therefore introduce the novel notion of rational trust modeling by bridging
trust management and game theory. We would like to emphasize that trust
models have been used in game theory for a long time, for instance, in repeated
games to incentivize the players to be cooperative and not to deviate from the
game’s protocol. However, game theory has not been utilized in the process of
trust model construction; in fact, this is the novelty of our proposed approach.

In our setting, the designer of a trust model assumes that the players who
intend to utilize the model are rational/selfish meaning that they cooperate to
become trustworthy or defect otherwise based on the utility (to be defined by the
trust model) that they can gain, which is a reasonable and standard assumption.
In other words, the players are incentivized (or penalized) by the model itself to
act properly. The problem of trust modeling can be then approached by strategic
games among the players using utility functions and solution concepts such as
Nash equilibrium.

Although rationality might be built-in in some existing trust models, we
formalize the notion of rational trust modeling from the model designer’s per-
spective. This approach results in two fascinating outcomes. First of all, the
designer of a trust model can incentivize trustworthiness in the first place by
incorporating proper parameters into the trust function, which can be later uti-
lized among selfish players in strategic trust-based interactions (e.g., e-commerce
scenarios between sellers and buyers). Furthermore, using a rational trust model,
we can prevent many well-known attacks on trust models, as we describe later.
These two prominent properties also help us to predict behavior of the players
in subsequent steps by game theoretical analyses.

1.2 Our Approach in Nutshell

Suppose there exist two sample trust functions: The first function f1(T
p−1

i , αi)
receives the previous trust value T p−1

i and the current action αi of a seller Si

(i.e., cooperation or defection) as two inputs to compute the updated trust value
T p

i for the next round. However, the second function f2(T
p−1

i , αi, �i) has an
extra input value known as the seller’s lifetime denoted by �i. Using the second
trust function, a seller with a longer lifetime will be rewarded (or penalized)
more (or less) than a seller with a shorter lifetime assuming that the other two
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inputs (i.e., current trust value and the action) are the same. In this scenario,
“reward” means gaining a higher trust value and becoming more trustworthy,
and “penalty” means otherwise. In other words, if two sellers Si and Sj both
cooperate αi = αj = C and their current trust values are equal T p−1

i = T p−1
j

but their lifetime parameters are different, for instance, �i > �j , the seller with
a higher lifetime parameter, gains a higher trust value for the next round, i.e.,
T p

i > T p
j . This may help Si to sell more items and accumulate more revenue

because buyers always prefer to buy from trustworthy sellers, i.e., sellers with a
higher trust value.

Now consider a situation in which the sellers can sell defective versions of
an item with more revenue or non-defective versions of the same item with less
revenue. If we utilize the first sample trust function f1, it might be tempting
for a seller to sell defective items because he can gain more utility. Furthermore,
the seller can return to the community with a new identity (a.k.a, re-entry
attack) after selling defective items and accumulating a large revenue. However,
if we use the second sample trust function f2, it’s no longer in a seller’s best
interest to sell defective items because if he returns to the community with a
new identity, his lifetime parameter becomes zero and he loses all the credits
that he has accumulated overtime. As a result, he loses his future customers and
a huge potential revenue, i.e., buyers may prefer a seller with a longer lifetime
over a seller who is a newcomer. The second trust function not only incentivizes
trustworthiness but also prevents the re-entry attack.

Note that this is just an example of rational trust modeling for the sake
of clarification. The second sample function here utilizes an extra parameter
�i in order to incentivize trustworthiness and prevent the re-entry attack. In
fact, different parameters can be incorporated into trust functions based on the
context (whether it’s a scenario in e-commerce or cybersecurity and so on), and
consequently, different attacks can be prevented, as discussed in Sect. 3.

2 Rational Trust Modeling

We stress that our goal here is not to design specific trust models or construct
certain utility functions. Our main objective is to illustrate the high-level idea
of rational trust modeling through examples/analyses without loss of generality.

2.1 Trust Modeling: Construction and Evaluation

To construct a quantifiable model of trust, a mathematical function or model
for trust measurement in a community of n players must be designed. First of
all, a basic trust function is defined as follows:

Definition 1. Let T p
i denote trust value of player Pi in period p where −1 ≤

T p
i ≤ +1 and T 0

i = 0 for newcomers. A trust function is a mapping from
R × N to R which is defined as follows: (T p−1

i , αi) �→ T p
i , where T p−1

i denote
the trust value of player Pi in period p − 1 and αi ∈ {0, 1} denote whether Pi

has cooperated, i.e., αi = 1, or defected, i.e., αi = 0, in period p.
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As an example, we can refer to the following mathematical model [11,12]. In
this model, T p

i = T p−1
i + μ(x) or T p

i = T p−1
i − μ′(x) for αi = 1 or αi = 0

respectively, shown in Fig. 1. Parameters η, θ and κ are used to reward or penalize
players based on their actions (for instance, as defined in [11], η = 0.01, θ = 0.05
and κ = 0.09). Note that in [1 − ε,+1] and [−1, ε − 1], μ(x) and μ′(x) both
converge to zero, as required by Definition 1, i.e., −1 ≤ T p

i ≤ +1.
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Fig. 1. Trust Adjustment by μ(x) and μ′(x)

After designing a mathematical function, it must be assessed and vali-
dated from different perspectives for further improvement. We provide high-level
descriptions of some validation procedures to be considered for evaluation of a
trust model, that is, behavioral, adversarial and operational methodologies.

1. Behavioral : how the model performs among a sufficient number of players by
running a number of standard tests, i.e., executing a sequence of “coopera-
tion” and “defection” (or no-participation) for each player. For instance, how
fast the model can detect defective behavior by creating a reasonable trust
margin between cooperative and non-cooperative parties.

2. Adversarial : how vulnerable the trust model is to different attacks or any
kinds of corruption by a player or a coalition of malicious parties. Seven well-
known attacks on trust models are listed below. The first five attacks are
known as single-agent attacks and the last two are known as multi-agent or
coalition attacks [5].
(a) Sybil: forging identities or creating multiple false accounts by one player.
(b) Lag: cooperating for some time to gain a high trust value and then cheat.
(c) Re-Entry: corrupted players return to the scheme using new identities.
(d) Imbalance: cooperating on cheap transactions; defecting on expensive

ones.
(e) Multi-Tactic: any combination of attacks mentioned above.
(f) Ballot-Stuffing: fake transactions among colluders to gain a high trust

value.
(g) Bad-Mouthing: submitting negative reviews to non-coalition members.

3. Operational : how well the future states of trust can be predicted with a rel-
atively accurate approximation based on possible action(s) of the players
(prediction can help us to prevent some well-known attacks), and how well
the model can incentivize cooperation in the first place.
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In the next section, we clarify what considerations should be taken into
account by the designer in order to construct a proper trust model that resists
against various attacks and also encourages trustworthiness in the first place.

2.2 Rational Trust Modeling Illustration: Seller’s Dilemma

We now illustrate a dilemma between two sellers by considering two different
trust functions. In this setting, each seller has defective and non-defective ver-
sions of an item for sale. We consider the following two possible actions:

1. Cooperation: selling the non-defective version of the item for $3 to different
buyers.

2. Defection: selling the defective version of the item for $2 to different buyers.

Assuming that the buyers are not aware of the existence of the defective
version of the item, they may prefer to buy from the seller who offers the low-
est price. This is a pretty natural and standard assumption. As a result, the
seller who offers the lowest price has the highest chance to sell the item, and
consequently, he can gain more utility.

An appropriate payoff function can be designed for this seller’s dilemma
based on the probability of being selected by a buyer since there is a correlation
between the offered price and this probability, as shown in Fig. 2. In other words,
if they offer the same price, $2 or $3, they have an equal chance of being selected
by a buyer, otherwise, the seller who offers a lower price ($2) will be selected by
the probability of 1.

Fig. 2. Seller’s Dilemma

Similar to the prisoner’s dilemma, defection is Nash equilibrium meaning
that it is in the best interest of each seller to maximize his utility by selling the
defective version of the item. For instance, suppose S1 cooperates by selling the
non-defective item for $3, S2 will then offer the defective item for $2 to have the
highest chance to sell the item, and consequently, he can gain more utility. On
the other hand, suppose S1 defects by selling the defective item for $2, S2 will
then offer the defective item for $2 to compete with S1. That is, regardless of
whether seller S1 cooperates or defects, seller S2 will always defect, and since
the payoff matrix is symmetric, defection (selling the defective item) is always
Nash equilibrium.
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Without loss of generality, we now show how a proper trust model can deal
with this dilemma; note that this is just an example for the sake of clarification.
We first consider two different trust functions, as we described earlier:

1. The first function f1 : (T p−1
i , αi) �→ T p

i , where T p−1
i denote the trust value

of seller Si in period p − 1 and αi ∈ {0, 1} denote whether seller Si has
cooperated or defected in the current period p.

2. The second function f2 : (T p−1
i , αi, �i) �→ T p

i , where T p−1
i and αi ∈ {0, 1}

denote the same notions as of the previous function and �i ≥ 0 denote the
lifetime of seller Si as a new input in the trust function. This parameter
defines how long a seller with a reasonable number of transactions has been
in the market.

For the sake of simplicity, we didn’t consider two different parameters for
the lifetime and the number of transactions, however, two separate parameters
can be simply incorporated into our trust function and we can still achieve the
same game theoretical result. The main reason is because we want to make sure
the sellers who have been in the market for a long time but have been inactive
or have had a limited number of transactions cannot obtain a high trust value,
which is a reasonable assumption.

Now considering the seller’s dilemma that we illustrated in Fig. 2, the first
function f1 is significantly vulnerable to re-entry attack. That is, a seller Si

may defect on a sequence of transactions in the middle of his lifetime to gain
substantial revenues (utility). He can then return to the market with a new
identity as a newcomer.

However, the lifetime �i is part of the second trust function f2 meaning that
a seller Si with a longer lifetime is more reliable/trustworthy from the buyers’
perspective. As a result, he has a higher chance to be selected by the buyers,
and consequently, he can gain more utility. This is a very realistic assumption in
the e-marketplace. Therefore, it’s not in the best interest of a seller to sacrifice
his lifetime indicator (and correspondingly his trustworthiness) for a short term
utility through defection and then re-entry attack.

It is not hard to show that, by using function f2 rather than function f1,
“defection” is no longer Nash equilibrium in the seller’s dilemma, as we illustrate
in Sect. 2.3. When we assume the sellers are rational/selfish and they decide
based on their utility functions, we can then design a proper trust function
similar to f2 to incentivize cooperation in the first place. Furthermore, we can
deal with a wide range of attacks, as we mentioned earlier. Finally, at any point,
the behavior of a seller can be predicted by estimation of his payoff through
trust and utility functions.

2.3 Rational Trust Modeling: Design and Analysis

In our setting, the utility function ui : A × Ti �→ R, which depends on the
seller’s action and his trust value. This function computes the utility that each Si

gains or loses by selecting a certain action. If we consider the 2nd trust function
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f2 : (T p−1
i , αi, �i) �→ T p

i , the trust value then depends on the seller’s lifetime �i

as well. As a result, the lifetime of the seller directly affects the utility that the
seller can gain or lose. Now consider the following simple utility function:

ui = Ω × g(T p
i ) where 0 ≤ g(T p

i ) ≤ 1, Ω is a constant (1)

As stated earlier, we first define the following parameters, where −1 ≤ T p
i ≤ +1

and αi ∈ {0, 1} denote whether Si has cooperated or defected in the previous
period:

τi = T p
i − T p−1

i where
|τi|
τi

=

{
+1 ifαi = 1
−1 ifαi = 0

(2)

In the following equations, the first function f1 does not depend on the
seller’s lifetime �i, however, the second function f2 has an extra factor that
is defined by lifetime �i and constants ρ. We can assume that ρ�i is in the same
range as of μ depending on the player’s lifetime; that is why �i is multiplied
by multiplicative factor ρ. Also, it’s always positive meaning that no matter if
a player cooperates or defects, he will always be rewarded by ρ�i. We stress
that parameter �i in function f2 is just an examples of how a rational trust
function can be designed. The designer can simply consider various parameters
(that denote different concepts) as additive or multiplicative factors based on
the context in which the trust model is supposed to be utilized. We discuss this
issue later in Sect. 3 in detail.

f1 : T p
i = T p−1

i +
|τi|
τi

μ (3)

f2 : T p
i = T p−1

i +
|τi|
τi

μ + ρ�i (4)

−1 ≤ T p
i ≤ +1, E.g.: 0 ≤ μ < 0.1 is a unified function in f1 and f2

The first function f1 rewards or penalizes the sellers based on their actions
and independent of their lifetimes. This makes function f1 vulnerable to different
attacks such as the re-entry attack because a malicious seller can always come
back to the scheme with a new identity, and then, starts re-building his reputa-
tion for another malicious activity. It is possible to make the sign-up procedure
costly but it is out of the scope of this paper.

On the other hand, the second trust function f2 has an extra term that is
defined by the seller’s lifetime �i. This term will be adjusted by ρ as an addi-
tional reward or punishment factor in the trust function. In other words, the
seller’s current lifetime �i in addition to a constant ±β (in the case of cooper-
ation/defection) determine the extra reward/punishment factor. As a result, it
is not in the best interest of a seller to reset his lifetime indicator �i to zero
because of a short-term utility. This lifetime indicator can increase the seller’s
trustworthiness, and consequently, his long-term utility overtime.

Let assume our sample utility function is further extended as follows, where
Ω is a constant, for instance, Ω can be $100:

ui = Ω

(
T p

i + 1
2

)
where 0 ≤ T p

i + 1
2

≤ 1,−1 ≤ T p
i ≤ +1 (5)
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The utility function simply indicates a seller with a higher trust value (which
depends on his lifetime indicator as well) can gain more utility because he has
a higher chance to be selected by the buyers. In other words, Eq. (5) maps the
current trust value T p

i to a value between zero and one, which can be also
interpreted as the probability of being selected by the buyers. For the sake of
simplicity, suppose T p−1

i is canceled out in both f1 and f2 as a common factor.
The overall utility Uf1

i is shown below when f1 is used. Note that ui computes
the utility of a seller in the case of cooperation or defection whereas Ui also takes
into account the external utility or future loss that a seller may gain or lose. For
instance, more savings through selling the defective version of an item instead
of its non-defective version.

Uf1
i = Ω ×

⎧⎪⎨
⎪⎩

+μ+1
2 using f1 when αi = 1

−μ+1
2 + β using f1 when αi = 0 plus β, β is the external utility

that the seller obtains by selling the defective item

As shown in Uf1
i , function f1 rewards/penalizes sellers in each period by

factor ±μ
2 . Accordingly, we can assume external utility β that the seller obtains

by selling the defective item is slightly more than (as much as σ) the utility that
the seller may lose because of defection; otherwise, the seller wouldn’t defect,
that is, β = μ

2 + | − μ
2 | + σ = μ + σ (note that the seller not only loses a

potential reward μ
2 but also he is penalized by factor −μ

2 when he defects.) In
other words, external utility β not only compensates for loss μ

2 + | − μ
2 | but also

provides additional gain σ.
As a result, −μ+1

2 + β = −μ+1
2 + (μ + σ) = μ+1

2 + σ. Therefore, Defection is
always Nash Equilibrium when f1 is used, as shown in Table 1. We can assume
the seller cheats on δ rounds until he is labeled as an untrustworthy seller. At
this point, he leaves and returns with a new identity with the same initial trust
value of newcomers, i.e., re-entry attack. Our analysis remains the same even if
cheating is repeated for δ rounds.

Table 1. Seller’s Dilemma: Defection is always Nash Equilibrium using f1.

Similarly, function f2 rewards/penalizes sellers through Uf2
i in each period by

factor ±μ
2 . Furthermore, this function also has a positive reward (or forgiveness)

factor ρ�i
2 for cooperative (or non-cooperative) sellers, which is defined by their

lifetime factors. Likewise, we can assume external utility β that the seller obtains
by selling the defective item is slightly more than the utility that the seller may
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lose by defection (β = μ+σ). The overall utility Uf2
i will be as follows when the

f2 is used:

Uf2
i =Ω×

⎧⎪⎨
⎪⎩

(+μ+ρ�i)+1
2 using f1 when αi = 1

(−μ+ρ�i)+1
2 + β − γ using f1 when αi = 0plus β as before,

where γ is the future loss due to the impact of �i

Without loss of generality, suppose the seller defects, leaves and then comes
back with a new identity. As a result the lifetime index �i becomes zero. Let
assume this index is increased by the following arithmetic progression to reach
to where it was: 0 , 1

5�i , 2
5�i , 3

5�i , 4
5�i , �i. In reality, it takes a while for a seller

to accumulate this credit based on our definition, i.e., years of existence and
number of transactions. Therefore,

γ ≈ ρ

2
(
(�i − 0) + (�i − 1

5
�i) + (�i − 2

5
�i) + (�i − 3

5
�i) + (�i − 4

5
�i) + (�i − �i)

)
=

ρ

2
(
�i +

4
5
�i +

3
5
�i +

2
5
�i +

1
5
�i + 0

)
=

3
2
ρ�i

E.g., (�i − 1
5�i) denote the lifetime could be �i, or even more, but it’s now 1

5�i

meaning that the seller is losing 4
5�i, and so on. We now simplify the Uf2

i when
αi = 0 as follows:

Uf2
i :

(−μ + ρ�i) + 1
2

+ β − γ

=
(−μ + ρ�i) + 1

2
+ μ + σ − 3

2
ρ�i =

Ψ︷ ︸︸ ︷
(+μ + ρ�i) + 1

2
+σ − 3

2
ρ�i

This is a simple but interesting result that shows, as long as 3
2ρ�i > σ,

C ooperation is always Nash Equilibrium when f2 is used, Table 2. In other words,
as long as future loss γ is greater than the short-term gain through defection, it’s
not in the best interest of the seller to cheat and commit to the re-entry attack,
that is, the seller may gain a small short-term utility by cheating, however, he
loses a larger long-term utility because it takes a while to reach to �i from 0.
The analysis will be the same if the seller cheats on δ rounds before committing
to the re-entry attack as long as the future loss is greater than the short-term
gain. In fact, the role of parameter �i is to make the future loss costly.

3 Technical Discussion: An Important Message
by the Authors

As stated earlier, we would like to emphasize that our intention here was not
to design specific trust models, construct utility functions (which is hard in
many cases), target a certain set of attacks, or focus on particular assump-
tions/games/dilemmas. Our main objective was to illustrate the high-level idea
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Table 2. Seller’s Dilemma: C ooperation is always Nash Equilibrium using f2 when
3
2
ρ�i > σ.

of rational trust modeling by some examples and analyses without loss of gen-
erality. The presented models, functions, dilemma scenarios, attack strategies,
assumptions and parameters can be modified as long as the model designers
utilize the technical approach and strategy of rational trust modeling.

Indeed, we are using game theory in the model construction from the per-
spective of the designer of the model. Our main objective is to emphasize that
the designer of a trust model can incorporate appropriate mathematical param-
eters into the trust models as long as the players who utilize these models intend
to maximize their utility regardless of where these models will be used and what
the other parameters are. In other words, our main contribution is not to pro-
pose a specific trust model for a certain attack scenario. The main goal is to
emphasize how the designers of trust models should think to construct a new
class of trust models in which there is a direct correlation between trust and
profit inside the model itself, i.e., self-rewarding or self-punishing.

As we illustrated, by designing a proper trust function and using a game-
theoretical analysis, not only trustworthiness can be incentivized but also well-
known attacks on trust functions can be prevented, such as re-entry attack in
our example. Furthermore, behavior of the players can be predicted by estimating
the utility that each player may gain. In this section, we further discuss on these
issues while focusing on other types of attacks against trust models. As shown
in Table 3, all single-agent attacks can be simply prevented if the designer of the
model incorporates one or more extra parameters (in addition to the previous
trust value T p−1

i and the current action αi) into the function.
For instance, to deal with the Sybil attack, we can consider a parameter that

only reflects the total number of past transactions. In that case, it’s not in the
best interest of a player to create multiple accounts and divides his total number
of transactions among different identities. For imbalance attack, we can consider
a parameter for transaction cost, i.e., if the player defects on an expensive trans-
action, his trust value declines with much faster ratio. For other attacks and
their corresponding parameters, see Table 3.

It is worth mentioning that when the trust value reaches to the saturated
region, e.g., very close to +1, a player may not have any interest to accumulate
more trust credits. However, in this situation, the high expectancy parameter
(as shown in Table 3) can be simply utilized in the trust function to warn the
fully trusted players that they can sustain this credibility as long as they remain
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Table 3. Sample Parameters: to deal with single-agent attacks during rational trust
modeling.

Attacks Parameter Description

Sybil Total number of
past transactions

Prevent the players to create
multiple false accounts

Lag High expectancy Prevent the players to cheat
after gaining a high trust value

Re-Entry Lifetime of the
player

Prevent the players to return
with a new identity

Imbalance Transaction cost Prevent the players to cheat
on expensive transactions

Multi tactic Combination of
parameters

Prevent the players to defect
in various circumstances

reliable, and if they commit to defections, they will be negatively and signifi-
cantly (more than others) affected due to high expectancy.

Similarly, we can consider more complicated parameters to incentivize the
players not to collude, and consequently, deal with multi-agent/coalition attacks.
It is also worth mentioning that consideration should be given to the context
in which the trust model is supposed to be used. Some of these parameters are
context-oriented and the designer of the model should take this fact into account
when designing a rational trust function.

4 Concluding Remarks

In this paper, the novel notion of rational trust modeling was introduced by bridg-
ing trust management and game theory. In our proposed setting, the designer
of a trust model assumes that the players who intend to utilize the model are
rational/selfish, i.e., they decide to become trustworthy or untrustworthy based
on the utility that they can gain. In other words, the players are incentivized
(or penalized) by the model itself to act properly. The problem of trust manage-
ment can be then approached by strategic games among the players using utility
functions and solution concepts such as NE.

Our approach resulted in two fascinating outcomes. First of all, the designer
of a trust model can incentivize trustworthiness in the first place by incorpo-
rating proper parameters into the trust function. Furthermore, using a rational
trust model, we can prevent many well-known attacks on trust models. These
prominent properties also help us to predict the behavior of the players in sub-
sequent steps by game theoretical analyses. As our final remark, we would like
to emphasize that our rational trust modeling approach can be extended to
any mathematical modeling where some sorts of utility and/or rationality are
involved.
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Abstract. Stackelberg Security Games (SSGs) have been adopted
widely for modeling adversarial interactions, wherein scalability of equi-
librium computation is an important research problem. While prior
research has made progress with regards to scalability, many real world
problems cannot be solved satisfactorily yet as per current requirements;
these include the deployed federal air marshals (FAMS) application and
the threat screening (TSG) problem at airports. We initiate a principled
study of approximations in zero-sum SSGs. Our contribution includes
the following: (1) a unified model of SSGs called adversarial randomized
allocation (ARA) games, (2) hardness of approximation for zero-sum
ARA, as well as for the FAMS and TSG sub-problems, (3) an approxi-
mation framework for zero-sum ARA with instantiations for FAMS and
TSG using intelligent heuristics, and (4) experiments demonstrating the
significant 1000x improvement in runtime with an acceptable loss.

1 Introduction

The Stackelberg Security Game (SSG) model has been widely adopted in lit-
erature and in practice to model the defender-adversary interaction in various
domains [6,11,20]. Over time SSGs have been used to model increasingly large
and complex real world problems, hence an important research area within SSG
research is the study of scalable Strong Stackelberg Equilibrium (SSE) compu-
tation algorithms, both theoretically and empirically. The scalability challenge
has led to the development of a number of novel algorithmic techniques that
compute the SSE of SSGs (see related work).

However, scalability continues to remain a pertinent challenge across many
SSG applications. There are real world problems that even the best known
approaches fail to scale up to, such as threat screening games (TSGs) and the
Federal Air Marshals (FAMS) domain. The TSG model is used to allocate screen-
ing resources to passengers at airports and solves the problem for every hour (24
times a day). Yet, recent state-of-the-art approach for airport threat screening [4]
scales only up to 110 flights per hour whereas 220 flights can depart per hour
from the Atlanta Airport [9]. The FAMS problem is to allocate federal air mar-
shals to US based flights in order to protect against hijacking attacks. Again,
c© Springer Nature Switzerland AG 2018
L. Bushnell et al. (Eds.): GameSec 2018, LNCS 11199, pp. 432–452, 2018.
https://doi.org/10.1007/978-3-030-01554-1_25
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the best optimal solver for FAMS in literature [13] solves problems up to 200
flights (FAMS is a deployed application since 2011) and in our experiments a
modified baseline approach scales up to 900 flights, whereas on average 3500
international flights depart from USA daily [22]. Further, the prior approaches
are fundamentally limited by the hardness of computing the exact solution [23].

To overcome the computational hardness, and provide practical scalability we
investigate approximation techniques for zero-sum SSGs. Towards that end, our
first contribution is a unified model of SSGs that we name adversarial randomized
allocation (ARA) games. ARA captures a large class of SSGs which we call
linearizable SSGs (defined later) which includes TSGs and FAMS.

Our second contribution is a set of hardness of approximation results. For
zero-sum ARAs, we show that the ARA equilibrium computation problem and
the defender best response problem in the given ARA game have the same hard-
ness of approximation property and in the worst case ARA is not approximable.
Further, we show that subclasses of ARA problems given by FAMS and TSGs
are hard to approximate to any sub-linear factor.

Our third contribution is a general approximation framework for finding the
SSE of zero-sum ARAs. The approximation framework combines techniques from
dependent sampling [21] with randomized rounding. However, the framework is
not an out-of-the-box approach and requires specific insights for a successful
application. As concrete instances, we instantiate the framework’s for FAMS
and TSGs family of problems by providing intelligent heuristics. We provide
theoretical approximation bounds for both FAMS and TSGs.

Finally, as our fourth contribution, we demonstrate via experiments that we
can solve FAMS problem up to 3500 flights and TSG problems up to 280 flights
with runtime improvements up to 1000x over the current state of the art. More-
over, the loss for FAMS problems is less than 5% for 900 flights and the loss
decreases with increasing flights. For TSGs, the loss is less than 1.5% across all
cases upto the 110 flights that the state of the art could scale upto. Hence, our
approach enables solving the real world FAMS and airport screening problem
satisfactorily for a US wide deployment. All missing proofs are in the appendix.

2 Related Work

Two major approaches to scale up in SSGs include incremental strategy gen-
eration (ISG) and use of marginals. ISG uses a master slave decomposition,
with the slave providing a defender or attacker best response [13]. All these
approaches are limited by the NP hardness of finding an exact solution [15,23].
Use of marginals and directly sampling from marginals while faster suffers from
the issue of non-implementable (invalid) marginal solutions [14,21]. Fixing the
non-implementability again runs into complexity barriers [4]. Combination of
marginals and ISG approaches has also been tried [3]. Our study stands in con-
trast to these approaches as we aim to approximate the SSE and not com-
pute it exactly, providing a viable alternative to ISG and bypassing the non-
implementability of marginals approach. Another line of work uses regret and
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endgame solving techniques [5,17] to approximately solve large scale sequential
zero sum games. Our game does not have a sequential structure to exploit and
the large action space precludes using a standard no-regret learning approach.

Our approximation is inspired by randomized rounding (RR) [18]. Previous
work on RR with equality constraints address only equality constraints [10]
or obtain an integral solution given an approximate fractional solution within a
polyhedron with integral vertices [8]. However, our initial fractional solution may
not lie within an integral polyhedron, and we have both equality and inequality
constraints. Thus, we provide an approach that exploits the disjoint structure
of equality constraints in TSGs and FAMS in order to use previous work on
comb sampling [21] and then alters the output [2] to handle both equality and
inequality constraints. Finally, our hardness of approximation results are the
first such results for the classic FAMS and recent TSG problem.

3 Model and Notation

We present a general abstract model of adversarial randomized allocation (ARA).
ARA captures all linearizable SSGs, which is defined as those in which the prob-
ability ct of defending a target t is linear in the defender mixed strategy; these
include TSGs and FAMS. The ARA game model is a Stackelberg game model
in which the defender moves first by committing to a randomized allocation and
the adversary best responds. We start by presenting the defender’s action space.
There are k defense assets that need to be allocated to n objects to be defended.
In this model, assets and objects are abstract entities and do not represent actual
resources and targets in a security games. We will instantiate this abstract model
with concrete examples of FAMS and TSG in the following sub-sections.

Defender’s Randomized Allocation of Resources: The allocation can be
represented as a k × n matrix with the (i, j)th entry xi,j denoting the allocation
of asset i to object j, and each xi,j ≥ 0. There is a set of assignment constraints
on the entries of the matrix. Each assignment constraint is characterized by a
set S ⊆ {1, . . . , k} × {1, . . . , n} of indexes of the matrix and the constraint is
given by ns ≤

∑
(i,j)∈S xi,j ≤ NS , where ns, NS are non-negative integers. We

will refer to each assignment constraint as S. Also for sake of brevity, we denote
the vector of all the entries in the matrix as x and

∑
(i,j)∈S xi,j as x[S].

Pure strategies of the defender are integral allocations that respect the assign-
ment constraints, i.e., integral x’s such that nS ≤ x[S] ≤ NS for all assignment
constraints S. See Fig. 1 for an illustrative example of the assignment constraints
and a valid pure strategy. Let the set of pure strategies be P and we will refer to
a single pure strategy as P. On the other hand, the space of marginal strategies
MgS are those x’s that satisfy the assignment constraints nS ≤ x[S] ≤ NS for
all S; note that marginal strategies need not be integral.

Mixed strategies are probability distributions over pure strategies, e.g., prob-
abilities a1, . . . , am (

∑
m am = 1) over pure strategies P1, . . . ,Pm. An expected

(marginal) representation of a mixed strategy is x =
∑

m amPm. Thus, the space
of mixed strategies is exactly the convex hull of P , denoted as conv(P ). Typically,
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S1 S2 S3 R1,F1 R2,F1 R3,F2

Fig. 1. Three illustrations: (a) ARA with assets A, B, C and objects O, P, Q with
3 example assignment constraints (shown as dashed lines) with upper bound 1 on
the columns. Shown also is an assignment that satisfies these constraints. (b) FAMS
problem with 2 flights, 3 schedules and 3 FAMS. S1 and S2 share one flight and so
do S2 and S3. The two assignment constraints (for the two flights) with upper bound
1 are represented by the two dashed lines. Additional constraints are present on each
row, shown on the right of the matrix. The attacker chooses a flight to attack, hence
the dashed lines also show the index set T of targets. A sample pure strategy fills the
matrix. (c) TSG with the two assignment constraints (resource capacity) with upper
bound 7 for XRay and 15 for Metal Detector (MD) represented by the two dashed lines.
Additional equality constraints denoting the number of passengers in each passenger
category (R, F) are present on each column, shown on the bottom of the matrix. A
passenger category (column) is made from risk and flight. An adversary of type R1 can
only choose the first column R1, F1 and R2 can choose from the other two columns.
Thus, the index set T for targets corresponds to columns. A sample pure strategy fills
the matrix.

the space of marginal strategies is larger than conv(P ), i.e., conv(P ) ⊂ MgS,
hence every marginal strategies is not implementable as a mixed strategy. The
conditions under which all marginal strategies are implementable (or not) has an
easy interpretation in our model (see the implementability results in appendix).

Adversary’s Action: The presence of an adversary sets our model (and SSGs)
apart from a randomized allocation problem [7] and makes ARA a game problem.
The attacker’s action is to choose a target to attack. In our abstract formulation a
target t is given by a set T ⊂ {1, . . . , k} × {1, . . . , n} of indexes of the allocation
matrix. In order to capture linearizable SSGs, the probability of successfully
defending an attack on target t is ct =

∑
i,j∈T wi,jxi,j , which is linear in xi,j ’s

as the wi,j ’s are constants such that wi,j ≤ 1/maxx∈conv(P )

∑
i,j∈T xi,j . The

constraint on wi,j ensures that ct ≤ 1. We assume that the total number of
targets is polynomial in the size of the allocation matrix. Then, as is standard
for SSGs, the defender expected utility given x and t is

Ud(x, t) = ctU
t
s + (1 − ct)U t

u
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where U t
s (resp. U t

u) is the defender’s utility when target t is successfully
(resp. unsuccessfully) defended. As we restrict ourselves to zero-sum games, the
attacker’s utility is negation of the above.1

The problem of Strong Stackelberg equilibrium computation can be stated
as: maxx,z,ai

z subject to z ≤ Ud(x, t) ∀t and x =
∑

i:Pi∈P aiPi, where the last
constraint represents x ∈ conv(P ). Note that the inputs to the SSE problem are
the assignment constraints, and the number of pure strategies can be exponential
in this input. Thus, even though the above optimization is a LP, its size can be
exponential in the input to the SSE computation problem. However, using the
marginal strategies MgS instead of the mixed strategies conv(P ) results in a
polynomial sized marginalLP :

max x,z,ct
z

subject to z ≤ U(x, t) ∀t and ns ≤ x[S] ≤ NS ∀S and xi,j ≥ 0 ∀i, j

But, as stated earlier conv(P ) ⊂ MgS, and hence the solution to the opti-
mization above may not be implementable as a valid mixed strategy. In our
approximation approach we will solve the above marginalLP as the first step
obtaining marginal solution xm.

Bayesian Extension2: We also consider the following simple extension where
we consider types of adversary θ ∈ Θ and each adversary type θ attacks a set of
targets Tθ such that Tθ ∩Tθ′ = φ for all θ, θ′ ∈ Θ. The adversary is of type θ with
probability pθ (

∑
θ pθ = 1). Then, the exact SSE optimization can be written

as: maxx,zθ,ai
pθzθ subject to zθ ≤ Ud(x, t) ∀θ ∀t ∈ Tθ and x =

∑
i:Pi∈P aiPi. A

corresponding marginalLP can be defined in the same way as for original ARA.

Implementability: Viewing the defender’s action space as a randomized alloca-
tion provides an easy way to characterize non-implementability of mixed strate-
gies across a wide range of SSGs, in contrast to prior work that have identified
non-implementability for specific cases [4,15,16]. The details of this interpreta-
tion can be found in the appendix.

3.1 FAMS

We model zero-sum FAMS in the ARA model. The FAMS problem is to allocate
federal air marshal (FAMS) to flights to and from US in order to prevent hijack-
ing attacks. The allocation is constrained by the number of FAMS available and
the fact that each FAMS must be scheduled on round trips that take them back
to their home airport. Thus, the main technical complication arises from the
presence of schedules. A schedule is a subset of flights that has to be defended
1 We remark that modeling-wise the extension to general-sum case, non-linearity in

probabilities or exponentially many targets is straightforward; here we restrict the
model as it suffices for the domains we consider.

2 Typically player types denotes different utilities but as Harsanyi [12] originally for-
mulated, types capture any incomplete information including, as for our case, lack
of information about adversary action space. The game is still zero-sum.
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together, e.g., flight f1 and f2 should be defended together as they form a round
trip for the air marshal. Air marshals are allocated to schedules, no flight can
have more than one air marshal and some schedules cannot be defended by some
air marshals. The adversary attacks a flight.

Then, we capture the FAMS domain in the above model by mapping sched-
ules in FAMS to objects (on columns) and air marshal in FAMS to assets (on
rows). See Fig. 1 for an illustrative example. The assignment constraints include
the constraint for each resource i:

∑
j xi,j ≤ 1, which states that every resource

can be assigned at most once. If an air marshal i cannot be assigned to schedule
j then add the constraint xi,j = 0. A target t in the abstract model maps to a
flight f in FAMS, and the set T are all the indexes for all schedules that include
this flight: {(i, j) | flight f is in schedule j}. The constraint that a flight can-
not have more than one air marshal is captured by adding the target allocation
constraint x[T ] ≤ 1. The probability of defending a target (flight) is ct = x[T ],
hence the weights wi,j ’s in ARA are all ones.

3.2 TSG

We model TSGs using the Bayesian formulation of ARA. The TSG problem is
how to allocate screening resources to screenees in order to screen optimally,
which we elaborate in the context of airline passenger screening. In TSGs, differ-
ent TSG resources such as X-Rays and Metal Detector act in teams to inspect an
airline passenger. The possible teams are given. Passengers are further grouped
into passenger categories with a given Nc number of passengers in each cate-
gory c. The allocation is of resource teams to passenger categories. There are
resource capacity constraints for each resource usage (not on teams but on each
resource). Further, all passengers need to be screened. Each resource team i has
an effectiveness Ei < 1 of catching the adversary. Observe that, unlike SSGs, the
allocation in TSGs is not just binary {0, 1} but any positive integer within the
constraints. The passenger category c is a tuple of risk level and flight (r, f); the
adversary’s action is to choose the flight f but he is probabilistically assigned
his risk level.

Then, we capture the TSG domain in the above abstract model by mapping
passenger categories in TSGs to objects (on columns) and resource teams in
TSGs to assets (on rows). See Fig. 1 for an illustrative example. The capacity
constraint for each resource r is captured by specifying the constraint x[S] ≤ NS

which contains all indexes of teams that are formed using the given resource r:
S = {(i, j) | team i is formed using resource r} with NS equal to the resource
capacity bound for resource r. For every passenger category j, the constraint∑

i xi,j = Nj enforces that all passengers are screened. A target t in TSG is
simply a passenger category j, thus, the set T is {(i, j) | j is given passenger
category}. The probability of detecting an adversary in category j is given by∑

(i,j)∈T Eixi,j/Nj , hence the weights wi,j are Ei/Nj ; since Ei < 1 it is easy to
check that

∑
(i,j)∈T wi,jxi,j ≤ 1 for any T . The adversary type is the risk level

r, and each type r of adversary can choose a flight f , thus, choosing a target
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which is the passenger category (r, f). The probability of the adversary having
a particular risk level is given.

4 Computation Complexity

In this section, we explore the hardness of approximation for ARAs, FAMS
and TSGs. In prior work on computation complexity of SSGs, researchers [23]
have focused on hardness of exact computation providing general results relat-
ing the hardness of defender best response (DBR) problem (defined below) to
the hardness of exact SSE computation. In contrast, we relate the hardness of
approximation of the DBR problem to hardness of approximation of ARAs. We
also prove that special cases of ARA such as FAMS and TSGs are also hard to
approximate.

First, we formally state the equilibrium computation problem in adversarial
randomized allocation: given the assets, objects and assignment constraints of an
adversarial randomized allocation problem as input, output the SSE utility and
a set of pure strategies P1, . . . , Pm and probabilities p1, . . . , pm that represents
the SSE mixed strategy. We restrict m to be polynomial in the input size. This is
natural, since a polynomial time algorithm cannot produce an exponential size
output. Also, it is well known [23] that the size of the support set of any mixed
strategy need not be more than kn + 1.

Next, as defined in prior literature [23], we state the DBR problem which
aids in understanding the results. The DBR problem can be interpreted as the
defender’s best response to a given mixed strategy of the adversary. The DBR
problem also shows up naturally as the slave problem in column generation based
approaches to SSGs.

Definition 1. The DBR problem is maxx∈P d ·x where d is a vector of positive
constants. DBR is a combinatorial problem that takes the assignment constraints
as inputs, and not the set of pure strategies P .

Next, we state the standard definition of approximation

Definition 2. An algorithm for a maximization problem is r-approximate if
it provides a feasible solution with value at least OPT/r, where OPT is the
maximum.

Note that lower r means better approximation. Depending on the best r possi-
ble, optimization problems are classified into various approximation complexity
classes with increasing hardness of approximation in the following order PTAS,
APX, log-APX, and poly-APX. We extensively use the well-known approxima-
tion preserving AP reduction between optimization problems for our results. AP
reduction is analogous to reductions used for NP hardness but must also account
for mapping of approximation ratios (and thus preserve hardness of approxi-
mation). AP reduction is among the strongest of all approximation preserving
reductions as it preserves membership in most of the known approximation com-
plexity classes. We do not delve into the formal definition of complexity classes
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or AP reduction here due to lack of space and these concepts being standard [1].
Our first result shows that the ARA’s approximation complexity is same as that
of the DBR problem and in the worst case cannot be approximated.

Theorem 1. The following hardness of approximation hold for ARA problems:
(1) ARA problems cannot be approximated by any bounded factor in poly time,
unless P = NP ; (2) if the DBR problem for given ARA problem lies in some
given approximation class (APX, log-APX, etc.), then so does the ARA problem.

Proof (Proof Sketch). The first result works by constructing a ARA from a NP
hard unweighted (d = 1) DBR problem such that the feasibility of the con-
structed ARA solves the DBR problem, thereby ruling out any approximation.
Such unweighted DBR problems exist (e.g., for FAMS). The second part of the
proof works by constructing an ARA problem with one target and showing that
the solution yields an approximate value for a relaxed DBR with x ∈ conv(P ).
Moreover, this solution is an expectation over integral points (pure strategies),
thus, at least one integral point in the support set output by ARA also provides
an approximation for the corresponding combinatorial DBR.

As the above complexity result is a worst case analysis, one may wonder
whether the above result holds for sub-classes of ARA problems. We show that
strong versions of inapproximatibility also holds for FAMS and TSGs.

Theorem 2. TSGs cannot be approximated to O(n1−ε) factor for any ε in poly
time, unless P=NP.

Proof (Proof Sketch). Using AP reduction from max independent set (MIS),
the proof for TSG follows from an observation that a special case of the TSG
problem is the MIS problem itself. MIS is known to be hard to approximate to
any factor better than n1−ε for any ε, unless P= NP.

Theorem 3. FAMS problems cannot be approximated to O(n1−ε) factor for any
ε in poly time, unless P=NP.

Proof. We provide an AP reduction from max independent set (MIS). Given
a MIS problem with vertices V and edges E construct the following FAMS
problems, one for each k. Use 2n − k resources. All resources can be assigned
to any schedule. Construct schedules s1, . . . , sn corresponding to the vertices
v1, . . . , vn. Construct target te corresponding to every edge e = (u, v) such that
te ∈ su and te ∈ sv. All te’s have the same value for being defended or undefended
and that value is n+2; thus, these targets do not need to covered but impose the
constraint that su and sv cannot be simultaneously defended. Thus, it is clear
that any allocation of resources to s1, . . . , sn corresponds to an independent set.
Next, consider additional 2n valuable targets and expand the set of targets of
the schedules such that ti, ti+1 ∈ si. Further, add 2n more singleton schedules
sn+1, . . . , s3n with ti ∈ sn+i. All additional targets t1, . . . , t2n provide value k
when defended and k − 2n otherwise. Thus, the expected utility of defending a
valuable target t given coverage ct is ct(k) + (1 − ct)(k − 2n) = 2n ∗ ct + k − 2n.
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For the given MIS problem, let the solution be k∗. Observe that for FAMS
problems with resources 2n−k where k ≤ k∗, all valuable (additional) targets can
be covered by covering k∗ schedules with 2k∗ targets in s1, . . . , sn and using the
remaining ≥ 2n−2k∗ resources to cover the remaining 2n−2k∗ valuable targets
(via singleton schedules). This provides utility of k for the SSE. In particular,
the utility with 2n − k∗ resources is k∗. Also note that for every problem, there
is always a trivial allocation of 2n − k resources to the 2n singleton schedules
such that coverage of each target is 1− k/2n. This is deducible as the allocation
to singleton schedules is unconstrained and can be implemented in poly time by
Birkhoff-von Neumann result as provided in [15]. This trivial allocation provides
an utility of 0.

Next, assume we have a poly time algorithm to approximately compute the
SSE with approx factor r (r > 1). We will run this poly time algorithm with
resources 2 to 2n − 1 which is again a poly time overall, and also the overall
output size is poly. We construct an approximation for the MIS problem.

Our construction relies on the following claim (proved in the next paragraph):
given approximation factor r for the case with 2n− k∗ resources then one of the
pure strategy output for this case will have at least k∗ − lmin schedules among
s1, . . . , sn covered where lmin = 
argminl

k∗
k∗−l ≥ r�. Note that by definition of

lmin, k∗
k∗−(lmin+1) > r and k∗

k∗−lmin
≤ r. As k∗ is the max size of independent sets

we obtain an approximation ratio r′ for the max independent set problem such
that r′ = k∗

k∗−lmin
≤ r. Thus, we obtain an approximation r′ for MIS as good as

r approximation for the SSE. Thus, we have an AP reduction.
To prove the claim in last paragraph consider the contra-positive: suppose

all pure strategies output cover at most k∗ − lmin−1 schedules among s1, . . . , sn,
then in every pure strategy at least lmin+1 valuable targets are not covered (since
2 valuable targets are covered for the k∗ − lmin−1 schedules and rest of resources
can cover only 1 valuable target). Then the coverage of the least covered target in
the mixed strategy formed using such pure strategies is ≤ 1− (lmin +1)/2n (this
can be seen as sum of coverage of valuable targets must be at least 2n− lmin −1,
since that is true for every pure strategy). The utility for this least covered target
is ≤ k∗ − lmin − 1. The overall utility has to be lower than utility for any target,
hence the utility is ≤ k∗ − lmin −1. The optimal utility is k∗. Thus, by definition
of approximation ratio r we must have k∗ − lmin − 1 ≥ k∗/r or re-arranging

k∗
k∗−lmin−1 ≤ r but by definition of lmin we must have k∗

k∗−lmin−1 > r hence a
contradiction.

5 Approximation Approach

Our approach to approximation first solves the marginalLP , which is quite fast
in practice (see experiments) and provides an upper bound to the true value
of the game. Then, we sample from the marginal solution, but unlike previous
work [21], we alter the sampled value to ensure that the final pure strategy
output is valid. We describe an abstract sampling and alteration approach for
ARA in this part, which we instantiate for FAMS and TSGs in the subsequent
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sub-sections. Recall that a constraint is given by an index set S and the constraint
is an equality if nS = NS . For our abstract approach we restrict our attention to
ARAs with partitioned equality assignment constraints, which means the index
set S for all equality constraints partitions the index set {1, . . . , k} × {1, . . . , n}
of the allocation matrix. Further, for inequality constraints we assume nS = 0.
Call these problems as PE0-ARA; this class still includes FAMS and TSGs. For
FAMS, which does not have equality constraints, we use dummy schedules si

to get partitioned equalities
∑

j xi,j + si = 1; si = 1 denotes that resource i is
unallocated. Our abstract approximation approach for PE0-ARA is presented in
Algorithm 1.

Algorithm 1. Abstract Approximation
Input: xm: the marginal solution

1 forall the S ∈ EqualityConstraints do
2 x ← CombSample(xm, S)

3 x ← FixV iolatedInequalityConstraints(x)
4 x ← FixEqualityConstraints(x)

The Algorithm takes as
input the marginal solu-
tion xm from marginalLP
and produces a pure strat-
egy. The first for loop
(lines 1–2) performs comb
sampling for each equal-
ity constraint S to produce

integral values for the variables involved in S. Comb sampling was introduced
in an earlier paper [21]; it provides the guarantee that xm

i,j is rounded up or
down for all (i, j) ∈ S, the sample xi,j has expected value E(xi,j) = xm

i,j for all
(i, j) ∈ S and equality S is still satisfied after the sampling. See Fig. 2 for an
example. Briefly, comb sampling works by creating Z buckets of length one each,
where Z =

∑
(i,j)∈S{xm

i,j}, where {.} denotes fractional part. Each of the {xm
i,j}

length fraction is packed into the bucket (in any order and some of the {xm
i,j}

fraction may have to be split into two buckets), then a number between [0, 1] is
sampled randomly, say z, and for each bucket a mark is put at length z. Finally,
the (i, j) whose {xm

i,j} fraction lies on the marker z for each bucket is chosen to
be rounded up, and all other xm

i,j are rounded down.
Observe that in expectation the output of comb sampling matches the

marginal solution, thus, providing the same expected utility as the marginal
solution. Recall that this expected utility is an upper bound on the optimal util-
ity. However, the samples from comb sampling may not be valid pure strategies.
Thus, in case the output of comb sampling is not already valid, the two abstract
methods in lines 3 and 4 modify the sample strategy by first decreasing the inte-
gral values to satisfy the violated inequalities and then increasing the integral
values to satisfy the equalities. Such modification of the sampled strategy to
obtain a valid strategy is guided by the principle that the change in defender
utility between the sampled and the resultant valid strategy should be small,
which ensures that change in expected utility from the marginal solution due
to the modification is small. As the expected utility of the marginal solution is
an upper bound on the optimal expected utility this marginal expected utility
guided modification leads the output expected utility to be close to the optimal
utility. Thus, the two methods on lines 3 and 4 need to be instantiated with
carefully designed heuristics that aim to implement the principle of marginal
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XRay
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+MD
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2 3 0
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0 2 0

2 3 0

0 0 9= 2 = 5 = 10

0 2 0

2 3 0

0 0 10= 2 = 5 = 10

CombSampling FixInequalities FixEqualities

Fig. 2. (Left to right) Sample execution for the TSG example from Fig. 1. Recall that
the resource capacity is 7 for XRay and 15 for MD. The marginal solution is the left
matrix which after CombSampling on each column becomes integral, e.g., 0.5 in the left
column is rounded down to 0 and 1.5 rounded up to 2. Note that the CombSampling
output satisfies all equalities, but exceeds the resource capacity 7 for X-ray. Next,
allocation values are lowered (shown as red circle) to satisfy the X-Ray capacity but
the equality constraint on third column is violated. Next, allocation values are increased
(again red circle) to fix the equality which produces a valid pure strategy. (Color figure
online)

expected utility guided modification. Below, we show the instantiation for the
TSG and FAMS family of problems. A sample execution for TSGs is shown in
Fig. 2.

5.1 TSG

The heuristics for TSG are guided by three observations: (1) more effective
resources are more constrained in their usage, (2) changing allocation for pas-
senger categories with higher number of passengers changes the probability of
detection of adversary by a smaller amount than changing allocation for cat-
egory with fewer passengers and (3) higher risk passenger categories typically
have lower number of passengers.

Algorithm 2 shows the heuristic for TSG. Recall that for TSGs the inequal-
ities are resource capacity constraints. Thus, for fixing violated inequalities we
need to decrease allocation which decreases utility; we wish to keep the utility
decrease small as that ensures that the expected utility does not move much
further away from the upper bound marginal expected utility. Our approach for
such decrease in allocation has the following steps: (a) [Line 1] prioritize fixing
inequality of most violated (negative slack) resources first and (b) [Lines 2–10]
for each such inequality we attempt to lower allocation for passenger category
with higher number of passengers. In light of the observations for TSG above
this approach aims to keep the change in expected utility small. Specifically,
observation 1 makes it likely that constraints for more effective resources are
fixed in step a above. Observation 3 suggests that the changes in step b happens
for lower risk passengers. Thus, step (a) aims to keep the allocation of effec-
tive resources for high risk passengers unchanged. This keeps the utility change
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Algorithm 2. TSG Pure Strategy Generation
Input: x from Comb Sampling

1 OrderedInequalityConstraints = Sort(InequalityConstraints,x) ascending
by slack

2 forall the R ∈ OrderedInequalityConstraints do
3 XR

j ← variables corresponding to passenger category j in R (thus, XR
j is a

set of variables)

4 XR ← Sort({XR
j }j=1,..) descending by no. of passengers in category j.

5 forall the XR
j in XR do

6 while any variable in XR
j is > 0 AND R is violated do

7 xi,j = Positive variable participating in the most inequality

constraints among XR
j

8 xi,j = xi,j − 1

9 if R is satisfied then
10 break

11 OrderedEqualityConstraints = Sort(EqualityConstraints,x) ascending by
no. of passengers in the category corresponding to each equality constraint

12 forall the C ∈ OrderedEqualityConstraints do
13 Xj ← variables in C (C corresponds to category j)

14 XC
j ← Sort(Xj) ascending by the min slack in the resource constraint of all

resources that can inspect xi,j ∈ Xj

15 forall the component xi,j in XC
j do

16 while xi,j �= 0 and C is violated do
17 xi,j = xi,j + 1

18 if C is satisfied then
19 break

small as changing allocation for high risk passengers can change utility by a
large amount. Next, by observation 2, step (b) aims to minimize the change in
probability of detecting the adversary by a low amount so that expected utility
change in small. For example in Fig. 2, the inequality fix reduces the allocation
for the third passenger category (column) which also has the highest number of
passengers (15). Also, observe that within each passenger category in step (b)
we reduce those variables that participate in most resource capacity inequality
constraints (Line 7) just to ensure that more constraints are fixed with fewer
changes.

Next, the equalities in TSGs are the constraints for every passenger category.
For fixing equalities we need to increase allocation which increases utility; we
wish to keep this utility increase high as it brings the expected utility closer to
the upper bound marginal expected utility. Here we aim to do so by (a) [Line
11] prioritizing increase of allocation for categories with fewer people and (b)
[Lines 12–19] increasing allocation of those resources that have least slack in
their resource capacity constraint (low slack means more utilized which could
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mean higher effectiveness). By Observation 1 low slack means that resource
could be more effective and by Observation 2 fewer people means higher risk
passengers. This ensures that higher risk passengers are screened more using
more effective resources thereby raising the utility maximally. For example in
Fig. 2, the equality for the third column is fixed by using the only available
resource MD.

Recall that, unlike FAMS, the allocation for TSGs are non-binary. This
offers an advantage for TSGs with respect to approximation, as small fractional
changes do not change the overall allocation by much (0.5 to 1 is a 50% change,
but 4.5 to 5 is less than 10%). Thus, we assume here that the changes due to
Algorithm 1 do not reduce the probability of detecting an adversary in any pas-
senger category (from the marginal solution) by more than 1/c factor, where
c > 1 is a constant. This restriction is realistic as it is very unlikely that any
passenger category will have few passengers and we aim to change the allocation
for passenger categories with a higher number of passengers. Hence we prove

Theorem 4. Assume that Algorithm2 successfully outputs a pure strategy and
the change in allocation from the marginal strategy does not change the probabil-
ity of detecting an adversary by more than 1/c factor. Then, the approximation
approach above with the heuristic provides a c-approximation for TSGs.

As a remark, the above result does not violate the inapproximatability of
TSGs since the above holds for a restricted set of TSG problems. Also, the
approximation for TSGs may sometimes fail to yield a valid pure strategy as
satisfying the equalities may become impossible after using certain sequences of
decreasing allocation. In our experiments we observe that the failure of obtaining
a pure strategy for TSG after Algorithm2 is rare and easily handled by repeating
the Algorithm 1 (sampling and adjusting runs in milli-secs).

5.2 FAMS

Recall that for FAMS the inequalities are the target allocation constraints:
x[T ] ≤ 1 and fixing violations for these involves decreasing allocation.
Algorithm 3 shows the heuristic for TSG. Our heuristic is simple: we fix the
most violated constraints first (Line 2), the variables xi,j are set to zero (i.e.,
decreased) starting from those schedules j that contain the most number of tar-
gets for which target allocation constraint is violated (Line 5) and do not contain
any target for which the target allocation constraint is satisfied (Line 8). We are
guaranteed to find a decrease in allocation that satisfies the constraint for T
without changing the allocation for targets that already satisfy constraints in
the cases when the target T with violated constraint (1) belongs to a schedule
j that exclusively contains that target T (xi,j can be decreased without affect-
ing any other constraint) or (2) T belongs to only one schedule (other targets
in this schedule will violate their constraints). This approach ensures that we
only work to fix the violated constraints and cause a minimal change in utility
by leaving the satisfied constraints undisturbed. However, if in fixing a violated
target allocation constraint for T it becomes necessary to reduce allocation for
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Algorithm 3. FAMS Pure Strategy Generation
Input: x from Comb Sampling

1 Xj ← variables corresponding to schedule j
2 OrderedInequalityConstraints = Sort(InequalityConstraints) ascending by

slack
3 forall the T ∈ OrderedInequalityConstraints do
4 J ← schedules that T belongs to
5 J ← Sort(J) descending by the number of violated target allocation

(inequality) constraints for schedule j
6 XJ ← ∪j∈JXj

7 while any variable in XJ is > 0 AND T is violated do
8 j ← 1stScheduleNoSatisifedTarget(J)
9 if j is -1 then

10 j ← choose j randomly from J

11 xi,j ← any variable from Xj

12 xi,j = xi,j − 1

another already satisfied target constraint, then sample uniformly from the ≥ 2
schedules that T belongs to in order to choose the xi,j allocation to reduce (Line
10) till all inequality constraints are satisfied.

Then, we do nothing to fix equality constraints since we have only decreased
xi,j and if any equality

∑
j xi,j + si = 1 is not satisfied we can always set the

dummy si to be one. Also, observe that since we only always decrease allocations,
we always find a pure strategy for any sample from Algorithm3 (unlike TSGs).
We prove:

Theorem 5. Let Ct be the number of targets that share a schedule with any
target t, and C = maxt Ct. The approximation approach above with the heuristic
provides a 2Ck-approximation for FAMS.

6 Experimental Results

Our experimental results reveal the average case loss of our approximation.
Baseline: Our set of experiments provide a comprehensive analysis of our
approximation approach, which we name RAND. We compare RAND to the
best know solver for zero sum TSGs called MGA; MGA [4] has been previously
shown to outperform column generation based approaches by a large margin.
A more recent work [19], called GATE, approximates general sum TSGs using
MGA in a branch and bound tree. However, this work suffers from loss of more
than 11% for problems that are zero-sum (Fig. 7 in that paper) with runtime in
1000s of seconds compared to our loss of less than 1.5%. Moreover, the potential
TSG application by Transport Security Administration (TSA) uses the zero-
sum game version with MGA as the solver, which we confirmed through private
communication with the authors of both these papers.
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Fig. 4. MGA and RAND comparison

For the FAMS problem the best known solver in literature for the general sum
case is ASPEN [13], which is a column generation based branch and price app-
roach. Through private communication with the company (Avata Intelligence)
managing the FAMS software, we know the FAMS problem is solved as a zero-
sum problem for scalability using column generation. Even then the approach
takes hours and is cut off without running to completion. On our end, for the
zero-sum case we implemented a column generation (CG) solver for FAMS, since
branch and price is an overkill for the zero sum case that we study.

All experimental results are averages over 30 randomly generated game
instances. All game instances fix U t

s to −1 and randomly select integral U t
u

between −2 and −10. The utility for RAND is computed by sampling 1000 pure
strategies and taking their average as an estimate of the defender mixed strategy.
All experiments were run with a Xeon 2.6 GHz processor and 4 GB RAM.

For FAMS, we vary the number of flights, keeping the number of resources
fixed at 10 and number of schedules fixed at 1000 and 5 targets/schedule. The
runtime in log scale is shown in Fig. 3. CG hits the 3600 s cut-off for 700 flights
and the run time for RAND is much lower at only a few seconds. Next, we
report the solution quality for RAND by comparing with the solution using CG.
It can be seen that the solution gets better with increasing flights starting from
19% loss at 300 flights to 5% loss at 900 flights. An important point to note is
that the approximation loss decreases with increasing number of flights, Thus,
at 3500 flights (the number desired) we expect the loss percentage to be much
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lower, which we are unable to compare with CG as CG does not scale up. The
numbers show that we obtain large speed-ups up to factor of 1000x and are still
able to extract 95% utility for 900 flights beyond which CG does not scale.

For TSGs, we used six passenger risk levels, eight screening resource types
and 20 screening team types. We vary the number of fights and we also randomly
sample the team structure (how teams are formed from resources) for each of
the 30 runs. The results in Fig. 4 show runtime (in log scale) and defender utility
values varying with number of flights (on x-axis). As can be seen, MGA only
scales up to 110 flights before hitting the cut-off of 3600 s, while RAND takes
only 10 s for 110 flights. Also, the solution quality loss for RAND has a maximum
averaged loss of 1.49%. Thus, we obtain at-least 360X speed-ups with very minor
loss. We performed an additional experiment to show that the choices made by
our heuristics are important. We change the heuristics in Algorithm 2 line 3 to
sort ascending instead of descending and the modified RAND suffered 35% more
loss over RAND for 110 flights. A figure showing the same with different number
of flights is in the appendix.

Next, we test the scalability of RAND for FAMS and TSG, shown in Fig. 5.
As can be seen, the runtime for RAND is low even with the highest number of
flights we tested: 280 for TSG and 3500 for FAMS. The maximum runtime for
FAMS was under 5 s; the maximum runtime for TSG was under 25 s.
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Fig. 5. Scalability of RAND

7 Conclusion

We studied approximations in zero-sum SSGs both theoretically and practically.
We provided approximation techniques to solve large scale zero-sum SSGs, which
enables the application of already deployed application (FAMS) or applications
under test (airport screening) at a national scale in USA. In fact, the number
of international flights from USA was 2000 in 2010 [13] which has increased to
3500 [22] revealing the ever increasing trend. Our approach not only provide an
avenue to solve the FAMS and airport screening problem for current problem
sizes but is capable of scaling up to larger numbers in future.
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Appendix

Implementability: Viewing SSGs as ARAs provides an easy way of deter-
mining implementability using results from randomized allocation [7]. First, we
define bi-hierarchical assignment constraints as those that can be partitioned
into two sets H1,H2 such that two constraints S, S′ in the same partition (H1 or
H2) it is the case that either S ⊆ S′ or S′ ⊆ S or S ∩S′ = φ. Further, as defined
in [7], canonical assignment constraints are those that impose constraints on all
rows and columns of the matrix. We obtain the following result

Proposition 1. All marginal strategies are implementable, or more formally
conv(P ) = MgS, if the assignment constraints are bi-hierarchical. Given canon-
ical assignment constraints, if all marginal strategies are implementable then the
assignment constraints are bi-hierarchical.

As Fig. 1 reveals, both FAMS and TSG have non-implementable marginals due
to overlapping constraints. The proof of the proposition is straightforward appli-
cations of Theorems 1 and 2 in Budish et al. [7].

-1.6
-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

0
10 30 50 70 90 110

De
fe

nd
er

 U
til

ity

Number of Flights

RAND RAND Modified

Fig. 6. RAND modified heuristic
comparison

Modified Heuristic is Bad: The modified
RAND approach is compared to RAND in
Fig. 6. It can be seen that the loss increases a
lot with almost 35% loss over RAND for 110
flights.

Proof of Theorem 1: First we define some
problems related to the DB problem.

– DBR is the problem maxx∈P d · x where d is a vector of positive constants.
DBR is a combinatorial problem.

– The continuous version of DBR is DBR-C: maxx∈conv(P ) d · x.
– The unweighted version of the DBR is DBR-U: maxx∈P 1 · x.

Proof. For the first part, given a NP hard DBR-U instance (for the decision
version of DBR-U), we construct an ARA instance such that the feasibility
problem for that ARA instance solves the hard DBR-U decision problem. Thus,
as the feasibility is NP Hard, there exists no approximation. First, since the
ARA problem is so general there exists DBR-U problems that are NP Hard. For
example, the DBR-U problem for FAMS has been shown to be NP Hard [23].
Given the hard DBR-U problem, form an ARA problem with by adding the
constraint 1 · x = k. Also, let there be only one target t in the problem, so that
the objective becomes U(x, t) instead of z and all constraints in the optimization
are just the marginal space constraints and 1 · x = k. Now, the existence of any
solution of the optimization gives a feasible point x =

∑
m amPm, where Pm ∈ P

is integral. Also, it must be that 1 · Pj ≥ 1 · x = k for some j. Then, Pj is a
solution to the decision version of the DBR-U problem, i.e., does there exist a
solution of the DBR-U optimization problem with value ≥ k? Thus, since finding
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the existence of any solution for ARA is NP Hard, thus, no approximation exists
in poly time.

For the second part, we present a AP approximation preserving reduction
(with problem mapping that does not depend on approximation ratio); such a
reduction preserves membership in PTAS, APX, log-APX, Poly-APX (see [1]).
Given any DBR problem, we construct the ARA problem with one target such
that T = {1, . . . , k} × {1, . . . , n}. Choose the weights wi,j ’s such that wi,j ∝ di,j

and wi,j ≤ 1/maxx∈MgS

∑
i,j xi,j . Observe that maxx∈MgS

∑
i,j xi,j is com-

putable efficiently and maxx∈MgS

∑
i,j xi,j ≥ maxx∈conv(P )

∑
i,j xi,j , thus, the

ARA is well-defined. Thus, due to just one target, the ARA optimization is same
as maxx∈conv(P ) w · x. Suppose we can solve this problem with r approximation
with the solution mixed strategy being xε =

∑m
i=1 aiPi for some pure strategies

Pi. Now, since wi,j ∝ di,j we also know that this solution also provides r approxi-
mation for DBR-C. Let the optimal solution for DBR-C be OPT ; note that OPT
is also the optimal solution for DBR. xε provides a solution value w·xε ≥ OPT/r.
Further, as the objective is linear in x and xε =

∑m
i=1 aiPi, it must be the case

that there exists a j ∈ {1, . . . , m} such that w · Pj ≥ w · xε ≥ OPT/r. Thus,
since Pj ∈ P , Pj provides r approximation for DBR. Since, m the number of the
pure strategies in support of xε is polynomial, Pj can be found in polynomial
time by a linear search.

Proof of Theorem 2.

Proof. Given an independent set problem with V vertices, we construct a TSG
with {1, . . . , V + 1} team types, where each team type in 1, . . . , V corresponds
to a vertex. The V + 1 team is special in the sense that it does not correspond
to any vertex and it is made up of just one resource with a very large resource
capacity 2V . Construct just one passenger category with passengers N = V +1.
Since, there is just one passenger category (and target) we will use xi as the
matrix entries instead of xi,j . Choose U t

s = V + 1 and U t
u = 0 and efficiencies

Ei = 1 for all teams, except EV +1 = 0. Then, the objective of the integer LP
is

∑V
i=1 xi = 1V · x where 1V is a vector with first V components as 1 and last

component as 0.
Next, have resources for every edge (i, k) ∈ E with resource capacity 1. This

provides the inequality
∑

(i,k)∈E xi + xj ≤ 1. Also, we have xV +1 ≤ 2V . Inspec-

tion of every passengers provides the constraints
∑V +1

i=1 xi = V +1. Treating xV +1

as a slack, we can see that the constraint xV +1 ≤ 2V and
∑V +1

i=1 xi = V + 1 are
redundant. For the left over constraints

∑
(i,k)∈E xi +xj ≤ 1, we can easily check

that any valid integral assignment (pure strategy) is an independent set. More-
over, the objective

∑V
i=1 xi tries to maximize the independent set. The optimal

value of this optimization over conv(P ) is an extreme point which is integral and
equal to the maximum independent set OPT. Thus, suppose a solution xε to the
SSE problem with value ≥ OPT/r. Further, as the objective is linear in x and
xε =

∑m
i=1 aiPi, it must be the case that there exists a j ∈ {1, . . . , m} such that

1V · Pj ≥ 1V · xε ≥ OPT/r. Thus, since Pj ∈ P , Pj provides r approximation
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for maximum independent set. Since, m the number of the pure strategies in
support of xε is polynomial, Pj can be found in poly time by a linear search.

Proof of Theorem 5.

Proof. Consider the event of a target t having an infeasible assignment after the
comb sampling. Call this event Et. Let Ct,i be the event that resource i covers
this target t. Then, P (Et) =

∑
i P (Et|Ct,i)P (Ct,i). From the guarantees of comb

sampling we know that P (Ct,i) =
∑

j:(i,j)∈T xm
i,j ≤ 1 and P (xi,j = 1) = xm

i,j .
Also, by comb sampling if xi,j = 1 then xi,j′ = 0 for any j′ �= j. Next, we know
that P (Et|Ct,i) is the probability that the any of the other xi′,j is assigned a
one, which is 1− the probability that all other xi′,j are assigned 0. Thus,

P (Et|Ct,i) = 1 −
∏

i′ �=i

(1 − P (Ct,i))

Let pt,i = P (Ct,i). Considering the fact that
∏

i(1 − pt,i) > 1 −
∑

i pt,i, we get

1 −
∏

i′ �=i

(1 − P (Ct,i)) ≤
∑

(i′,j):i′ �=i∧(i′,j)∈T

xm
i′,j ≤ 1 −

∑

j

xm
i,j

where the last inequality is due to the fact that
∑

(i,j)∈T xm
i,j ≤ 1.

Thus, P (Et) ≤
∑

i(1 − pt,i)pt,i ≤
∑

i pt,i −
∑

i(pt,i)2. Next, we know from
standard sum of squares inequality that

∑
i(pi)2 ≥ (

∑
i pi)2/k. Thus, we get

P (Et) ≤ (
∑

i pi)(1 −
∑

i pi/k) The RHS is maximized when
∑

i pi = 1, thus,
P (Et) ≤ 1 − 1/k. Also, then P (¬Et) ≥ 1/k

Now consider the coverage of target t: xm
t =

∑
(i,j)∈T xm

i,j . According to
our algorithm the allocation for target t continues to remain 1 with probability
(1/2)C if its allocation is already feasible after comb sampling (and we always
obtain a pure strategy). This is because this target shares schedules with C other
targets and thus in the worst case may be reduced with 1/2 probability for each
of the C targets. We do a worst case analysis and assume that no resource is
allocated to a target when the sampled allocation is infeasible for that target.
Thus, let yt denote the random variable denoting that target t is covered. Thus,
E(yt) = P (yt = 1) = P (yt = 1|Et)P (Et) + P (yt = 1|¬Et)P (¬Et). Now, P (yt =
1|¬Et) is same as xm

t /2C and we assumed the worst case of P (yt = 1|Et) = 0.
Thus, we have E(yt) ≥ xm

t /2Ck. As the utilities are linear in yt, we have the
utility for t as Ut ≥ Um

t /2Ck, where Um
t is the utility under the marginal xm.

Thus, if t∗ is the choice of adversary under the marginal xm we know that Um
t∗

is the lowest utility for the defender over all targets t. Hence, we can conclude
that the utility with the approximation is at least Um

t∗ /2Ck

Proof of Theorem 4.

Proof. The main assumption in the proof is that the steps after comb sampling
changes the probability of detecting an adversary in passenger category j by
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at most 1/c. Also, by assumption of the theorem since Algorithm 1 does not
fail ever, the change in utility for any passenger category j is at most a factor
of 1/c. By similar reasoning as for FAMS, we conclude that this provides a
c-approximation.
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Abstract. Deep Neural Networks (DNNs) have been shown to be vul-
nerable against adversarial examples, which are data points cleverly con-
structed to fool the classifier. In this paper, we introduce a new perspec-
tive on the problem. We do so by first defining robustness of a classifier
to adversarial exploitation. Further, we categorize attacks in literature
into high and low perturbation attacks. Next, we show that the defense
problem can be posed as a learning problem itself and find that this app-
roach effective against high perturbation attacks. For low perturbation
attacks, we present a classifier boundary masking method that uses noise
to randomly shift the classifier boundary at runtime. We also show that
both our learning and masking based defense can work simultaneously
to protect against multiple attacks. We demonstrate the efficacy of our
techniques by experimenting with the MNIST and CIFAR-10 datasets.

1 Introduction

Recent advances in deep learning have led to its wide adoption in various chal-
lenging tasks such as image classification. However, the current state of the art
has been shown to be vulnerable to adversarial examples, small perturbations of
the original inputs, often indistinguishable to a human, but carefully crafted to
misguide the learning models into producing incorrect outputs. Recent results
have shown that generating these adversarial examples are inexpensive [9]. Prior
work has yielded a lot of attack methods that generate adversarial examples,
and defense techniques that improve the accuracy on these examples (see related
work). However, attacks and defenses have followed the cat-and-mouse game that
is typical of many security settings. Further, traditional machine learning theory
assumes a fixed stochastic environment hence accuracy in the traditional sense
is not a meaningful measure of performance in the presence of an adversary.

In this paper, we pursue an approach informed by our first contribution: a
definition of robustness of classifiers in the presence of an adversary. Towards the
definition, we define an exploitable space by the adversary which includes data
points already mis-classified (errors) by any given classifier and any data points
that can be perturbed by the adversary to force mis-classifications. Robustness
is defined as the probability measure of the exploitable space. We also analyze
why accuracy fails to measure robustness. Using our formal set-up we categorize
c© Springer Nature Switzerland AG 2018
L. Bushnell et al. (Eds.): GameSec 2018, LNCS 11199, pp. 453–464, 2018.
https://doi.org/10.1007/978-3-030-01554-1_26
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known attacks into high and low perturbation attacks, and explain why defenses
against one type of attacks does not work against the other type.

Our second contribution is a defense technique: defense learning neural net-
work (DLN) against high perturbation attacks. A DLN D is a DNN that, given
any classifier C attacked by an attack technique A, takes in an adversarial exam-
ple A(x) and aims to generate benign example D(A(x)) that does not lie in the
mis-classified space of C. For non-adversarial inputs the DLN is encouraged to
reproduce the input as well as make the classifier predict correctly. The DLN
is prepended to the classifier C acting as a sanitizer for C. We show that DLN
allows for attack and defense to be set up as a repeated competition leading
to more robust classifiers. While DLN works efficiently for attacks that pro-
duces adversarial examples with high perturbation, such as fast gradient sign
method [9] (FGSM), it is not practical for low perturbation attacks (illustrated
in Fig. 3) such as Carlini-Wagner [5] (CW).

Our third contribution is a defense against low perturbation attacks that we
call noise augmented classifier (NAC) which randomly shifts the classifier sepa-
rator by injecting a very small noise at the last layer of the DNN classifier during
runtime. The small noise randomly shifts the separator on each invocation, but
not by much, thereby ensuring original accuracy is maintained, yet also fools
low perturbation attacks. NAC alone defends against the low perturbation CW
attack, but as expected fails against high perturbation FGSM attack.

Finally, we show that DLN and NAC can work together, thereby enabling
simultaneous defense against both high and low perturbation attacks. We tested
our approach on two datasets: MNIST and CIFAR-10, and the resultant classifier
was robust to both FGSM and CW. All missing proofs are in the full version.

2 Model and Approach

Attack Model: First, we use inference phase of a classifier to mean the stage
when the classifier is actually deployed as an application (after all training and
testing is done). The attacker attacks only in the inference phase and can channel
his attack only through the inputs. In particular, the attacker cannot change the
classifier weights or inject any noise in the hidden layers or access any internal
values when the DNN predicts in the inference phase. The attacker has access to
the classifier weights, so that it can compute gradients, if required. The attacker’s
goal is to produce adversarial data points that get mis-classified by the classifier,
and are not a garbage noisy image.

Notation: Let the function C : X → Y denote a classifier that takes input data
points with feature values in X and outputs a label among the possible k labels
Y = {1, . . . , k}. Further, for DNNs we define Cp : X → ΔY as the function
that takes in data and produces a probability distribution over labels. Thus,
C = max{Cp(x)}, where C is the maximum component of the vector Cp(x). Let
H(p, q) denote the cross entropy −∑

i pi log(qi). For this paper, we assume X
is the set of legitimate images (and not garbage images or ambiguous images).
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Given a label y, let Cat(y) denote the categorical probability distribution with
the component for y set to 1 and all else 0.

Robustness: We introduce some concepts from PAC learning [1], in order to
present the formal results in this section. It is assumed that data points arise from
a fixed but unknown distribution P over X. We denote the probability mass over
a set Z ⊂ X as P(Z). A loss function l(yx, C(x)) captures the loss of predicting
C(x) when the true label for x is yx. As we are focused on classification, we
restrict ourselves to the ideal 0/1 loss, that is, 1 for mis-classification and 0
otherwise. A classifier C is chosen that minimizes the empirical loss over the n
training data points

∑n
i=1 l(yxi

, xi). Given enough data, PAC learning theory
guarantees that C also minimizes the expected loss

∫
X

l(yx, C(x))P(x). Given,
0/1 loss this quantity is just P(MC(X)), where MC(X) ⊂ X denote the region
where the classifier C mis-classifies. Accuracy is then just 1 − P(MC(X)). In
this paper we assume that the amount of data is always enough to obtain low
expected loss. Observe that a classifier can achieve high accuracy (low expected
loss) even though its predictions in the low probability regions may be wrong [21].
All classifier families have a capacity that limits the complexity of separators
that they can model; the capacity value is known only for simple classifiers [1].
Previous work [9] has conjectured that adversarial examples abound due to the
low capacity of the classifier family used. See Fig. 2A.

Adversarial Exploitable Space: Define the adversarial exploitable space:

EC,ε(X) = MC(X) ∪ {x | sim(x,MC(X)) ≤ ε},

where sim is a dissimilarity measure that depends on the domain and
sim(x,MC(X)) denotes the lowest dissimilarity of x with any data point in
MC(X). For image classification sim can just be the l2 (Euclidean) distance:√∑

i(xi − x′
i)2 where i indexes the pixels. EC,ε(X) includes all points that are

either mis-classified or can be mis-classified by a minor ε-perturbation. Observe
that we posit that any already present mis-classifications of the classifier is
exploitable by the adversary, e.g., if a stop sign image in a dataset is mis-classified
then an adversary can simply use this image as is to fool a classifier.

Robustness Definition: Robustness is simply defined as 1 − P(EC,ε(X)). First,
observe that robustness is a strictly stronger concept than accuracy, i.e., accuracy
is always higher than robustness. We believe this property makes our definition
more natural than other current definitions. Another readily inferable property
is that a classifier C ′ with MC′(X) ⊂ MC(X) has higher robustness than C in
the same stochastic setting. We use this property later to justify our defense.
Next, we elaborate on a number of subtle aspects of the definition.

First, a 100% robust classifier can still have MC′(X) �= φ. This is because
robustness is still defined w.r.t. the data distribution P. For example, large com-
pact regions R of zero probability with small sub-region of erroneous prediction
far away from the boundary of R can still make robustness 100%. On the other
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hand, MC′(X) = φ provides 100% robustness for any P. Second, as shown
in Fig. 2, low capacity classifiers cannot model complex separators, thus, large
capacity is required to achieve robustness. A 100% robust classifier is practically
impossible due to large data requirement of high capacity classifier family. On
the other hand, large capacity but limited data causes over-fitting [1]. Thus,
there is a delicate balance between capacity and amount of data, which is not
well understood for DNNs. Third, robustness may appear to be computable by
calculating the accuracy for the test set and for the adversarially perturbed test
set, as done in all prior work. However, this relies on the assumption that the
attack discovers all perturb-able points. An analysis of computing robustness is
beyond the scope of this paper.

Lastly, compared to past work [8,24], our robustness has a clear relation to
accuracy and not orthogonal to it. Also, we use the ideal 0/1 loss function rather
than an approximate loss function l (often used in training due to smoothness) as
used in other definitions [7,12,17]. We posit that the 0/1 loss measures robustness
more precisely, as these other approaches specify the adversary goal as perturbing
in order to produce the maximum loss within an ε ball B(x, ε) of any given point
x, with the defender expected loss defined as

∫
X

maxz∈B(x,ε) l(yx, C(z))P(x),
where l is the loss function used to train the classifier. For ease of optimization,
typically, l is a smooth function approximation of the 0/1 loss. However, this
means that even if the class is same throughout the ε ball, with a varying l the
adversary still conducts a “supposed” attack and increases loss for the defender
without flipping labels. For example, the well-known hinge loss varies rapidly
within one of the classes and could overestimate the loss for defender and hence
underestimate robustness.

Fig. 1. Robustness vs Accuracy. (A)
shows a piecewise linear classifier (solid
line) is not able to exactly match the
non-linear boundary (dashed line). (B)
shows that the mis-classification space
(red/shaded area) is small, hence accu-
racy is high. (C) shows that adversarial
exploitable space (red/shaded area) is
large, hence robustness is low. (Color
figure online)

Robustness vs Accuracy: Finally, we ana-
lyze the relation between accuracy and
robustness. First, it is straightforward to
check from definition that 1−a robustness
implies 1 − a accuracy. However, the con-
verse is not true, and the example in Fig. 1
is a proof that the converse does not hold.
In this example, assume the data is dis-
tributed uniformly over the 2d space and
the true separator happens to be close to
a large fraction of points in the given 2d
space (an extreme example is where the
separator is within ε of every point in the
underlying space, in which case the sep-
arator is an ε-net). Then, the small mis-
classified parts (hence high accuracy) near
the learned separator expands to produce
a large adversarial exploitable space (low robustness). Some defenses in liter-
ature [12] have tried to guarantee that the learned classifier does not change
labels within an ε ball B(x, ε) of any (or most) given training data point x. This
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example (particularly, in the extreme case where the separator is an ε-net) shows
that it may be the case the label changes legitimately in an ε ball around any
data point x. Thus, the nature of the underlying ground truth is an important
factor for robustness and its relation with accuracy. In the analysis in the next
paragraph, we show that the data distribution is also another important factor.

Next, we analyze if accuracy is ever suitable to capture robustness. First, we
make a few mild technical assumptions that there exists a density p(x) for the
data distribution P over X, X is a metric space with metric d and vol(X) = 1.

Theorem 1. 1 − a accuracy implies at least 1 − a − (ν + Kε/T )P(EC,ε(X)\
MC(X)) robustness for any output C if (1) For all x ∈ X, sim(x, x′) ≥ Td(x, x′)
for some T > 0, (2) MC(X) lies in a low density region, that is, for all x ∈
MC(X) we have p(x) ≤ ν for some small ν, and (3) p(x) is K-Lipschitz, that
is, |p(x) − p(x′)| ≤ Kd(x, x′) for all x, x′ ∈ X.

The first two conditions above are quite natural. In simple words, these
two conditions state that dissimilarity increases with distance (high T ) and
the regions where the classifier predicts badly has low amount of data in the
data-set (low ν). However, the final condition may not be satisfied in many nat-
ural settings. This condition states that the data distribution must not change
abruptly (low K). This is required as the natural behavior of most classifiers is
to predict bad in a low data density region and if this region is near a high data
density region, the adversary can successfully modify the data points in the high
density region causing loss of robustness. But in high dimensional spaces, data
distribution is quite likely to be not distributed smoothly with many pockets
or sub-spaces of zero density as pointed out in a recent experimental work [22].
Thus, data distribution, especially in the region around the mis-classified space,
has a huge effect on robustness.

Intuition Behind Attacks: Any adversarial example generation A can be
seen as a distribution transformer FA such that acting on the data distribution
P the resultant distribution FA(P) has support mostly limited to MC(X). The
support may not completely limited to MC(X) as the attacks are never 100%
effective. Also, attacks typically aim to find points in MC(X) that are close to
given images in the original dataset. See Fig. 2B for an illustration. As an exam-
ple, a recent work [2] provides the adversarial transformation network (ATN)
technique, which trains a DNN to produce adversarial examples. ATN is essen-
tially a neural network representation of a distribution transformer function F .
For other attack techniques like FGSM and CW, the function F is evaluated for
each sample (data point) by solving an optimization problem, utilizing gradients
of the classifier in case of FGSM.

High vs Low Perturbation: Lastly, we show in our experiments that FGSM pro-
duces adversarial examples whose perturbations are at least an order of mag-
nitude higher than CW. We categorize FGSM as a high perturbation attack.
On the other hand, the attack CW produces adversarial perturbation with very
small perturbations; we call such attacks low perturbation attacks.
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Fig. 2. Intuition behind attacks and DLN. (A) shows a linear classifier (low capac-
ity) is not able to accurately model a non-linear boundary. (B) shows attacks as the
distribution mapping function F . (C) shows that DLN does the reverse mapping of
attacks.

DLN: Our first defense approach is to insert a neural network DLN D between
the input and classifier so that D sanitizes the input enabling the classifier to
correctly classify the input. Each data point for training DLN has three parts:
x′ is the image to sanitize (input), x is the expected output and yx is the correct
label of x. The x’s are always images from the provided dataset, and there are
two possibilities for x′: (1) x′ = x so that DLN attempts to satisfy C(D(x)) = yx,
even if C(x) �= yx, and (2) x′ = A(x) so that DLN undoes the attack and make
the classifier C correctly classify D(x′). Thus, for training DLN, the original
training set is attacked to produces A(x)’s and the training set for DLN is twice
the original training set, with one half having x′ = x and another half having x′ =
A(x). We formulate a loss function for DLN that has two terms: sim(x,D(x′))
aims to produce output D(x′) close to x and H(Cat(yx), Cp(D(x′))) aims to
make the classifier output on D(x′) be the same as yx. The loss function is

sim(x,D(x′)) + H(Cat(yx), Cp(D(x′))) .

Note that the attack A is used as a black box here to generate training data and
is not a part of the loss function. After training the DLN, our new classifier is C1

which is C prepended by the DLN D, represented as C1 = D→C . The working
of DLN can be interpreted as an inverse map F−1 for the mapping F induced by
the attack A. See Fig. 2C for an illustration. For the image classification problem
we use the l2 distance for sim.

Intuitively, as C1 correctly classifies the adversarial examples in addition to
correctly classifying more data points than C, it shrinks the mis-classification
space of C1 to within the mis-classifications of C. As argued when defining
robustness, this leads to an increase in robustness for C1 over C. See Fig. 3A for
an illustration of how the mis-classification space of C1 shrinks over that of C.
Fig. 3(A and B) also motivate the repeated DLN below.

Repeated DLN: While the robustness of C1 could be higher than C, unless
the attack used discovers all potential exploitable data points of C, there may
still be a lot of exploitable data points for C1. This is why attacks on C1 are still
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effective (see experiments). One approach to overcome this is to repeatedly attack
and discover more of the exploitable space. DLN allows for efficient modular
retraining (without retraining the classifier) of the DLN in rounds as follows:
starting from i = 0, (A) attack the classifier Ci = Di−1→C (C0 = C) at round
i generating adversarial training data TA from the original training data T ; (B)
(re)train the DLN with data Ti to get Di, where Ti is formed by augmenting all
the past data Ti−1 (T0 = φ) with TA and T . Then, repeat step A with i = i + 1.

Observe that we add copies of original training data at each step i in order to
prevent the adversarial data from swamping out the original training data. See
Fig. 3 for an illustration of how repeated DLN works. Intuitively, in each round
the exploitable space reduces providing less space for the attack to be successful.
This makes the high perturbation attacks less effective within a few rounds.

In this attack-defense competition, in every round the dataset used to train
the DLN grows. Practically, this requires DLN to have a large capacity in order
to be effective; also depending on the capacity and the size of dataset over or
under fitting problems could arise, which needs to be taken care of in practice.
Also, the training becomes more expensive over rounds with increasing data size.

Fig. 3. Intuition behind working of repeated DLN
against high and low perturbation attacks. (A), (B)
shows a high perturbation attack causes a faster
improvement in resultant classifier. Beyond some
rounds the attack does not work as it can only find
adversarial examples with high perturbation. (C),
(D) shows a low perturbation attack causes a slow
improvement in resultant classifier.

In particular, low perturba-
tion attacks are not defeated
within few rounds. We obser-
ved very small improve-
ments with the low per-
turbation CW attack over
rounds, as illustrated visu-
ally in Fig. 3 (C and D).
The main reason, as shown
in Fig. 3, is that low pertur-
bation attacks only expose
a very small volume of mis-
classified space, thus, fix-
ing only a small part of
the mis-classified space in
every round of repeated
DLN. Further, low pertur-
bation attacks only need
a small volume of mis-
classified space near the clas-
sifier boundary to be suc-
cessful. It would require a
huge number of rounds for
repeated DLN to reduce the
mis-classified space to such a
small volume that cannot be
attacked. This motivates our next approach of noise augmented classifier.
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NAC: Figure 3 provides a hint on how to overcome low perturbation attacks.
Such attacks rely a lot on the knowledge about the exact classifier boundary in
order to add a very small perturbation and yet change the label of input image.
Thus, randomly shifting the classifier boundary may help against low perturba-
tion attacks. We shift the boundary randomly by adding a small noise to the
logits of the DNN (the last layer of the DNN that yields the class probabili-
ties) C at inference time only calling the resultant classifier a noise augmented
classifier (NAC) CN . Through experimentation we chose a Gaussian noise with
mean 0 and standard deviation 1. This noise is small enough that it does not
affect the classification of original data points by much, but is able to mis-lead
the low perturbation attack. Also, following our explanation, NAC should not
provide any defense against high perturbation attacks, which we observe in our
experiments.

As NAC defense is a inference time (runtime) technique, hence, NAC can be
used in conjunction with any other training time defense, such as DLN. Further,
according to our attack model, the adversary does not have access to the noise
added to the logit layer. However, a natural idea to bypass the NAC defense is
to take the average of multiple logit outputs for the same input image (to cancel
the randomness) and then use the average logits for the CW attack. We show
experimentally that this improved attack does not work effectively.

3 Experiments

All our experiments were conducted using the Keras framework on a NVIDIA
K40 GPU. We consider two classifiers one for MNIST and one for CIFAR-10: we
call them CM and CC . These classifiers are variants of well-known architectures.
We show two attacks: FGSM and CW to show their categorization into high and
low perturbation attacks. Attacks were used with default parameters. CW, while
slow to run, has been referred to in the literature [25] as the best attack till date,

Table 1. Attacks on MNIST and CIFAR-10

Test data type Accuracy Distortion

FGSM(CM , OTD) 0.72 % 14.99

CW(CM , OTD) 0.03 % 1.51

FGSM(CC , OTD) 4.21 % 10.03

CW(CC , OTD) 0 % 0.18

while FGSM runs extremely fast.
Observe that all these attacks work
against a given classifier C, thus,
we use the notation A(C, .) to
denote the attack A acting on an
image x to produce the adversarial
example A(C, x) (A can be any of
the three attacks). A(C,Z) denotes
the set of adversarial examples {A(C, x) | x ∈ Z}. We report accuracies on var-
ious test sets: (A) original test dataset (OTD): this is the original test set from
the dataset under consideration, (B) A(C,OTD) is the adversarially perturbed
test data using attack A, for example, this could be FGSM(CM , OTD). We also
report distortion numbers as done in prior work [5]. Distortion is the average
over all test images of the l2 distance between the original and perturbed image.

Table 1 shows the result of attacks using FGSM and CW on MNIST and
CIFAR-10. It can be seen that FGSM produces higher distortion than CW. For
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defense, we denote the new classifier using the DLN with i rounds of training as
Ci

M (for MNIST) or Ci
C (for CIFAR); analogously for NAC we get CN

M or CN
C ,

and for both DLN and NAC we get Ci,N
M or Ci,N

C . Also, we test accuracies on
the adversarially perturbed test data against the newer classifiers, e.g., following
our convention one such dataset would be denoted as A(Ci

M , OTD).

DLN Defense Against Single Attack: Table 2 shows the results when DLN
is trained to defend against FGSM or CW using MNIST dataset to yield a new
classifier C1

M . As expected, the accuracy on OTD drops slightly for all the cases.
Moreover, when attacked again the new classifier C1

M is not resilient to attacks
as shown by the low accuracies for FGSM(C1

M , OTD) and CW(C1
M , OTD). One

Table 2. Performance of DLN prepended C1
M for MNIST

DLN Trained Test data type Accuracy Distortion

FGSM OTD 96.77% −
FGSM FGSM(CM , OTD) 88.5% 4.55

FGSM FGSM(C1
M , OTD) 13.75% 6.98

CW OTD 98.6% −
CW CW(CM , OTD) 95.42% 5.77

CW CW(C1
M , OTD) 0.14% 3.5

Table 3. DLN trained repeatedly against FGSM for
MNIST

Round Acc. OTD Acc. FGSM(Ci
M , OTD) Distortion

0 99.36% 0.72% 14.99

1 97.70% 13.70% 13.63

2 97.61% 24.86% 14.58

3 97.95% 43.39% 14.73

4 97.79% 52.88% 14.57

5 97.77% 56.57% 14.52

number that stands out
is the success of the
new classifier C1

M in
correctly classifying the
adversarial examples
CW(CM , OTD) gener-
ated by CW (row 5).
This supports our
hypothesis that CW is
sensitive to the exact
classifier boundary, and
a newer classifier C1

M

with a slightly differ-
ent boundary is able to
correctly classify prior
adversarial examples.
Of course, CW is able
to attack C1

M again
successfully. For FGSM,
we show next that the performance of the classifier greatly improves when DLN
is repeatedly trained against FGSM.

Table 4. Accuracy of NAC for MNIST and
CIFAR-10

Attack Test data type Accuracy Distortion

- OTD(MNIST) 99.36% -

CW CW(CN
M , OTD) 93.60% 1.49

FGSM FGSM(CN
M , OTD) 0.74% 14.99

- OTD(CIFAR) 84.67% -

CW CW(CN
C , OTD) 77.70% 0.17

FGSM FGSM(CN
C , OTD) 4.19% 10.04

Repeated DLN: Next, we run
DLN repeatedly as described ear-
lier. We cut off the experi-
ments when a single round took
more than 48 hours to solve.
We show the results for MNIST
in Table 3 showing a clearly
increasing trend in accuracy on
adversarial examples produced
by FGSM attacking the newer
classifier, revealing increasing robustness. For CIFAR, the approach becomes too
computationally expensive within two rounds. Further, as stated earlier, DLN
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does not show much improvement against low perturbation attacks like CW. We
tackle that next using the NAC defense.

Table 5. NAC classifier CN
M

against improved CW for MNIST

n Adv. accuracy Distortion

500 95.14 % 1.51

5000 82.07 % 1.51

NAC Defense: The NAC defense produces
a new classifier CN

M for MNIST and CN
C for

CIFAR. The second and fifth row in Table 4
shows that the NAC defense leads to a failure
of the CW attack. Further, the new classifier’s
accuracy on the original test data-set is nearly
unchanged. However, it can also be observed
that the new classifier is not resilient to attack by FGSM, as shown by the third
and sixth row, which follows from the intuition in Fig. 3.

As stated earlier, a natural idea to attack NAC would be to query an image
n times and then average the logits before using it for the CW attack. This
improved attack does make CW more effective but not by much. Table 5 shows
that the accuracy on the adversarial example generated for CN

M remains high.
Moreover, more queries make it more difficult to conduct attacks in practice
(e.g., query limited adversary), while also causing an increase (2% with 5000
samples) in the already high runtime of CW.

Table 6. Classifier trained repeatedly against FGSM
for MNIST and augmented with NAC in each round

Round Acc. OTD Acc. FGSM
(Ci,N

M , OTD)
Acc. CW
(Ci,N

C , OTD)

0 99.36 % 0.72 % 94.2

1 97.70 % 13.72 % 93.7

2 97.73 % 24.28 % 84.7

3 97.60 % 43.20 % 83.3

4 97.64 % 53.17 % 79

5 97.73 % 56.45 % 79.3

Defense Against Multi-
ple Attacks: Finally, we
show that DLN and NAC
can work together. We show
the accuracy on the adver-
sarial example generated in
each round of DLN repeti-
tion when the classifier Ci

after each round is aug-
mented with NAC Ci,N and
then attacked by FGSM and
CW both. See Table 6. One observation is that NAC’s performance decreases
slightly over rounds stabilizing at 79%, while the accuracy for original test set
and FGSM perturbed test set stays almost exactly same as Table 3.

4 Related Work and Summary

A thorough survey of security issues in machine learning, including types of
attacks, is present in surveys [3,20,23] and some of the first results appeared
in [16]. Here we discuss only the most closely related defense work.

Defense: Defense techniques can be roughly categorized into training time tech-
niques that do (1) adversarial (re)training, which is adding back adversarial
examples to the training data and retraining the classifier, often repeatedly [14],
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or modifying loss function to account for attacks [11,12]; (2) gradient masking,
which targets that gradient based attacks by trying to make the gradient less
informative [19]; (3) input modification, which are techniques that modify (typ-
ically lower the dimension) the feature space of the input data to make crafting
adversarial examples difficult [25]; (4) game-theoretic formulation, which modi-
fies the loss minimization to a constrained optimization with constraints provided
by adversarial utility in performing perturbations [13], and (5) filtering and de-
noising [6,10,15,18], which aims to filter or de-noise adversarial examples.

Our DLN approach differs from the first four kinds of defense as our approach
never modifies the classifier or its inputs but adds a sanitizer (DLN) before
the classifier. Our approach, while similar in spirit to adversarial re-training,
increases the capacity of the resultant classifier Ci, so that it can model more
complex separators which is not achieved when the classifier family stays the
same. Also, the re-training is not of the whole network but just the DLN module,
which is faster than re-training large classifiers. Next, unlike the fifth kind of
defense, our goal for DLN is targeted sanitization and not generic de-noising; we
aim to reduce mis-classifications which means correctly classifiying adversarial
examples as well as original mis-classifications. More significantly, attempts such
as MagNet [18] reach a wrong conclusion that they defend against CW [4]. In
contrast, we repeatedly attacked the new DLN classifier showing that a sanitizing
approach like DLN cannot defend against low perturbation attacks.

As far as we know, NAC being a runtime technique, is novel and entirely
different from training time approaches; moreover, NAC is compatible with any
other training time approach. Interestingly, the DLN and NAC approaches can
be used with any classifier that outputs class probabilities and not just DNNs.

Summary. We provided a new perspective of the adversarial examples defense
problem with a formal intuition of how our approach works, using which we were
able to defend simultaneously against multiple attacks including the potent CW
attack. We identified two classes of attacks: high and low perturbation, and
proposed the DLN technique to defend against high perturbation attacks and
NAC to defender against low perturbation attacks. Extensions of our theory and
tuning of the application framework provides rich content for future work.
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Abstract. One of the fundamental characteristics of blockchain tech-
nology is the consensus protocol. Most of the current consensus pro-
tocols are PoW (Proof of Work) based, or fixed-validators based. Nev-
ertheless, PoW requires massive computational effort, which results in
high energy and computing resources consumption. Alternatively, fixed-
validators protocols rely on fixed, static validators responsible for vali-
dating all newly proposed blocks, which opens the door for adversaries
to launch several attacks on these validators such as DDoS and eclipse
attacks. In this paper, we propose a truly decentralized consensus pro-
tocol that does not require PoW and randomly employs a different set
of different size of validators on each block’s proposal. Additionally, our
protocol utilizes a game theoretical model to enforce the honest valida-
tors’ behavior by rewarding honest validators and penalizing dishonest
ones. We have analyzed our protocol and shown that it mitigates various
attacks that current protocols suffer from.

Keywords: Blockchain · Consensus protocol · Game Theory
Randomness

1 Introduction

Over the last few years, blockchain technology has been an attractive solution
for many different industries. The reasoning behind this is the transparency,
security, quality assurance, global peer-to-peer transactions, and decentralization
that blockchain technology provides [17]. Despite its potential to elevate security,
as with all new technologies, security risks can be found beneath the hype [19].
Moreover, blockchain technology has introduced new kinds of attacks such as
block withholding and selfish mining attacks. Such attacks occur for various
incentives, mostly financial. To defend against such attacks and to strengthen
blockchain security, game theory stands out as a potentially powerful means.

Fundamentally, a blockchain is a public, distributed ledger that contains
chained blocks, each of which is made up of several transactions. These blocks are
validated globally and transparently to guarantee security. This validation has
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to be executed without the need for a central authority. Instead, the blocks are
validated, shared and synchronized across nodes via a peer-to-peer, distributed,
and decentralized consensus mechanism [15].

One of the fundamental characteristics of blockchain technology is the con-
sensus protocol. In a blockchain, a consensus protocol ensures that all nodes in
the blockchain network agree on the validity of a block to be included in the
public ledger. It also guarantees that all nodes have the same order of blocks in
their blockchains. This is of significance because blockchains are trustless dis-
tributed nodes which need a way to synchronize their copies of stored data. The
nodes responsible for executing consensus protocols are the validators (or min-
ers in some blockchains). There are a considerable number of existing consensus
protocols. Nonetheless, not all of them guarantee the true decentralization, in
which the blocks’ validation is executed by anonymous, variable sets of valida-
tors to strengthen the protocol’s robustness. Instead, they rely on fixed, known
validators selected at the genesis state. This opens the door for various risk
threats which will be discussed shortly. Besides, most of the current consensus
protocols do not take the number of validators or how to select them into consid-
eration, as will be discussed in Sect. 2. The number of validators in a blockchain
network influences its security and efficiency substantially, especially in a fully
decentralized blockchain, in which there are no special nodes, and all nodes are
trustless.

In this paper, we mainly address the problem of validators’ selection in terms
of how to select them and how many to select to achieve a satisfiable trade-off
between security and efficiency. Also, we study the incentives of malicious nodes
to deviate from the consensus protocols, and we apply a game theoretical model
to enforce honest behavior.

The first and most popular consensus protocol to secure and decentralize
blockchains is the Proof of Work (PoW). This protocol requires powerful
nodes known as miners to validate the blocks. This consensus approach, however,
demands massive computational effort from the miners, which ultimately results
in high consumption in energy and computing resources. Additionally, the PoW
protocol relies on a few mining pools (often just 2 or 3 mining pools), which
raises doubt on the decentralization of PoW-based blockchains [7]. Furthermore,
such blockchains frequently fork. As a result, the blockchain nodes are not able
to rely on a new block as soon as it appears. Alternatively, they must wait until
this block is deep enough in the chain, which results in very high latency [7].

An alternative approach that does not require the expensive PoW compu-
tation and, therefore, enhances efficiency is Fixed-Validators Decentraliza-
tion. In this approach, a small fixed number of nodes are chosen to be val-
idators. This approach ensures the integrity of the blockchain as long as the
majority of the validators are honest. The validators are selected at the genesis
state, and they are, usually, selected based on the stake they have. However, the
efficiency of such protocols is influenced by the number of selected validators.
This is because each validator performs some work to check the validity of a
block and communicates with each other validator in the committee to reach a
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consensus. This incurs computation and communication overhead proportional
to the committee size. The validators agree on a block to be included in the
chain if the block is digitally signed by a majority of them.

Although the fixed-validators approach is efficient, it has several limitations.
First, it relies on an extreme trust assumption that the majority of validators are
honest; nevertheless, it is possible for a powerful adversary to corrupt or bribe
most of them over time [6]. Second, a fixed committee of validators is vulnerable
to adversarial attacks, since they are known and fixed. For example, an adversary
can launch a DoS attack against the validators, preventing them from validating
new blocks or receiving messages from each other. Third, although this approach
is efficient, utilizing a relatively small number of validators in a large network
with a massive number of transactions or blocks can bottleneck the performance.

The second alternative approach is True Decentralization, in which every
node in the system can be chosen to be a member of the validators. In such an
approach, a set of validators are selected randomly from the set of “all nodes”
in each round of validation. In other words, it does not require a single set of
validators to execute all rounds. As a result, the true decentralization approach
distributes the validation work among all nodes and can withstand the powerful
adversaries. Note that the fixed-validators approach is defined on the same group
of validators and do not support validators’ replaceability. In response to this, we
propose a novel, truly decentralized consensus protocol that selects a different
set of random validators on every block proposal.

Despite the security provided by the true decentralization, it does not guar-
antee that the validators are always honest and do not deviate from the protocol.
For example, a dishonest validator might perform a block withholding attack (see
Sect. 4) in favor of a malicious proposing node (i.e., the node which creates and
proposes the new block). This attack can result in undermining the consensus
process. To overcome such vulnerability, we integrate a game theoretical model
into our consensus protocol to reward honest validators and to punish dishonest
or lazy validators that do not adhere to the protocol. Additionally, the always-
validation (i.e., validators always validate even if the risk likelihood of a block’s
proposer is low) is a performance shortcoming particularly found in blockchains
with low hostility. Thus, utilizing a game theoretical model that enables val-
idators to validate with some probability proportional to the proposers’ risk
likelihoods would significantly enhance the protocol efficiency.

The contribution of this paper is a new consensus protocol that deals with
the problem of selecting validators and has the following advantages:

1. It achieves the true decentralization by selecting a different set of validators
on every block proposal at random.

2. The number of the selected validators is dynamic and variable. Hence, instead
of selecting a fixed static number of validators, our protocol utilizes game
theory to select a different number of validators (on every block proposal)
proportional to the risk likelihood of the proposing node.

3. The game theoretical approach exploited by our protocol accomplishes the
following further benefits:
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(a) It enforces the honest validators behavior by rewarding honest validators
and penalizing dishonest ones.

(b) It enhances the efficiency by eliminating the always-validation mode.
Thus, the validators validate with probability proportional to the risk
likelihood of the proposing node.

2 Related Work

In this section, we will examine some related existing works. The related litera-
ture falls into two general camps: (1) current, widely-used consensus protocols,
and (2) works that integrate blockchain and game theory.

2.1 Consensus Protocols

In this section, we present only the BFT (Byzantine Fault Tolerance) protocols,
since they are more relevant to our proposed protocol.

Tendermint [3,12] is a consensus BFT protocol that can work even if up to
one-third of nodes in the network fail in arbitrary ways. It does not require the
PoW mining, which overcomes the energy and resources consumption issues.
Instead, it relies on a fixed, static set of validators (i.e., fixed-validators decen-
tralization) selected at the genesis state to validate the new block and vote on
them. In Tendermint, a proposer proposes a new block, then the validators pre-
vote on the block and only proceed to pre-commit if they receive more than 2/3
of pre-votes. Validators only accept the block if more than 2/3 of pre-commits
are received. Tendermint is notable for its simplicity, performance, and fork-
accountability [13]. Our protocol is based on Tendermint and inherits all the
features offered by Tendermint. However, it deals with the validators’ selection
issue by selecting a different random set of validators on each block proposal
(i.e., true decentralization).

Hyperledger Fabric is a BFT consensus algorithm [9], which can tolerate
up to one-third byzantine nodes in a blockchain network. In Fabric v0.6, there
exists a fixed number of validation peers responsible for executing the consensus
protocol. A proposer can submit a transaction to any of them. Then, the chosen
peer broadcasts this transaction to the other peers. One of the validation peers
is selected as a leader. When generating a block, the leader broadcasts it to all
peers. When a validation peer receives this block, it hashes it, broadcasts the
hash to all other peers, and begins counting their responses. If two-thirds of the
responses were received with the same hash, it commits the new block to its local
ledger. Hyperledger Fabric, like Tendermint, employs a fixed known number of
validation peers.

In our previous work [2], we presented a protocol based on Tendermint and,
hence, can tolerate up to one-third of Byzantine faulty nodes. This protocol
overcomes the fixed set of validators that Tendermint suffers from and utilizes
the randomness to select a different set of log n validators each time a new block
is proposed (where n is the number of nodes in the network). This protocol
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outperformed Tendermint and achieved a remarkable performance with a satis-
factory level of security. Nevertheless, this protocol is vulnerable to attacks such
as block withholding. This paper aims to overcome the limitations presented in
our previous work.

2.2 Blockchain and Game Theory

Although blockchain technology has gained considerable attention from the com-
puter science and economics communities, the use of game theory methods in
this technology is limited [16]. In this section, we present the most relevant and
recent works that utilize game theory in blockchain technology.

Xu et al. [20] proposed a game theoretical approach to suppress the attack
motivation on a blockchain that consists of mobile devices and edge servers. The
game is formulated between a mobile device and an edge server, where the mobile
device can send a request to the server to acquire a real-time service or launch
an attack. On the other hand, the server chooses to either provide the service or
to attack the mobile device. The authors introduced a punishment mechanism
according to the action record to mitigate the attacks on the blockchain. They
have concluded that both players tend to behave finely when the punishment
weight is significant. The proposed approach was designed to deal with attacks
like zero-day attack, DDOS attacks, and password-based attacks.

Johnson et al. [10] employed a game theoretical model to analyze the incen-
tives for a mining pool to launch a DDoS attack against another mining pool.
The players in the game are two competing mining pools, where each one may
utilize additional computing resources to increase the chance of winning the min-
ing race, or to trigger a DDoS attack to lower the expected success of the other
competing mining pool.

Luu et al. [14] studied the block withholding attack on mining pools using a
game theoretical approach by formulating the Bitcoin mining as a game. They
analyzed the block withholding attack and concluded that the attack is profitable
and well-incentivized in the long-term. The authors derived the game equilibrium
state, which is a mixed strategy where all clients are incentivized to attack
rather than participate honestly to maximize their payoffs. Finally, the authors
concluded that the PoW protocol is vulnerable to such an attack.

In a paper entitled ‘The Miner’s Dilemma’, Eyal [5] studies the scenario when
pools attack each other. Open pools (i.e., pools of miners that allow any miner
to join the mining work) are vulnerable to block withholding attacks performed
by infiltrated miners from competing pools. This paper defines a game where
pools recruit some of their participants to infiltrate other pools to diminish their
mining capabilities. This game is called the miner’s dilemma where players are
two pools, and their strategies are whether or not to attack each other. The
author observes that attacking is the dominant strategy for each player.

All the above works have introduced game theoretical approaches to the PoW
mining protocol. As previously discussed in Sect. 1, PoW is not an attractive app-
roach for blockchains that are efficient-sensitive due to its massive computation
demands. In a more relevant work presented by Kiayias et al. [11], Ouroboros
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consensus protocol was proposed. Similar to our protocol, Ouroboros eliminates
the need for an energy-hungry PoW protocol. Ouroboros is based on the Proof
of Stake (PoS) protocol. It works by dividing the time into rounds called slots
in which each slot is assigned to a leader. The leaders are picked based on the
stake they have. A chosen leader is responsible for producing a block for its
time slot. The authors utilized game theory to introduce a reward mechanism to
incentivize the participants in the blockchain. By means of the game theoretical
design, attacks such as selfish-mining and block withholding are mitigated. The
rewarding mechanism works by awarding a positive payoff for participants who
do not diverge from the protocol.

3 The Proposed Consensus Protocol

In this paper, we propose a new consensus protocol that exploits randomness and
game theory to achieve true decentralization security with respect to efficiency.
Our protocol is based on Tendermint and exploits its capability to overcome
up to one-third of Byzantine faults. Unlike other protocols that rely on a fixed,
static set of validators responsible for validating all proposed blocks, our pro-
tocol randomly selects a different set of different size of validators each time a
new block is proposed. Thus, it improves the security, since the validators are
not known before proposing the new block. Further, the number of validators
employed in the consensus process is also unknown. These two factors make the
job more difficult for an adversary to attack or bribe the set of validators. In
respect to efficiency, our protocol distributes the validation work among nodes
by selecting different sets of validators for different blocks instead of relying on
the same static fixed set of validators for all proposed blocks. This is of sig-
nificant concern, especially in a blockchain with a small number of validators
and a massive number of transactions, or blocks. Additionally, the efficiency is
enhanced, as not all selected validators upon proposing a new block will vali-
date that block. Instead, a validator validates with a probability based on the
outcomes of a game played between the proposing node and this validator. This
saves a substantial computational cost, particular, in a low hostility blockchain
environment.

Each node in the blockchain has a unique pair of keys (public pk and secret
sk) and is identified by its public key. Moreover, each node has a public trust
(reputation) value R where this value affect the selection of a node to be validator
over time. There are four types of nodes in our protocol:

1. Proposing (proposer): This is the node which creates, proposes, and broad-
casts to the network the new block.

2. Validation-leader: This is the node responsible for selecting the random set
of validators for the proposing node.

3. Validator: This node is responsible for validating the newly proposed block.
Moreover, validators communicate their votes on the block to reach consensus.
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4. Idle: This node does nothing except wait for the decision to be made by
validators on whether to accept or reject the block. All other nodes in the
network are idle.

Our protocol works in two phases: the initialization phase, and the verifica-
tion (validation) phase. The blockchain initiator executes the first phase at the
genesis state, in which it randomly maps each proposer to its validation-leaders.
In the second phase, each node becomes a proposer in a round-robin fashion.
When a node is a proposer, it proposes a block, broadcasts it to all nodes, and
its corresponding validation-leaders randomly select the validators to verify (val-
idate) this block. In this phase, a two-stage attacker-defender game is proposed,
where the proposer is the potential attacker (i.e., player x) in both stages. The
defenders (i.e, player y) in the first-stage are the validation-leaders. The defend-
ers in the second-stage are the validators (i.e., player z) that have been selected
by the validation-leaders from the first-stage. Next two subsections present an
in-depth description of how these two phases are executed.

3.1 Initialization Phase

This phase’s main task is mapping proposers to validation-leaders. At the genesis
state (i.e., when the genesis block is proposed), the blockchain initiator randomly
maps four validation-leaders to each proposer in the network. The reasoning
behind this choice is that four is the minimum number to provide tolerance to a
single Byzantine fault [3]. This is because our protocol is based on Tendermint,
and it is assumed that a Tendermint network has two-thirds of non-Byzantine
nodes. A simple approach is to employ only one validation-leader per a proposer,
however, to ensure safety and liveness of the consensus process, we need to utilize
more. It is worth noting that this number (i.e., four) can be changed based
on factors like the network’s size and hostility, or the blockchain application
that utilizes our protocol. Our approach works with any number of validation-
leaders per proposer other than four, but we utilizes the minimum in favor of
efficiency. Additionally, this number can be a random number to further increase
robustness.

The mapping is executed randomly according to the nodes weights (repu-
tations R). As shown in Algorithm 1, we use the Weighted Random Sampling
(WRS) algorithm [4]. The weights in our algorithm are the nodes’ reputation
values. Furthermore, this mapping is done blindly; that is, no proposer knows
its corresponding validation-leaders and no validation-leader knows its proposer
until executing the consensus protocol. This way, we prevent a malicious pro-
poser from corrupting or bribing its validation-leaders and vise versa.

To accomplish the anonymous mapping, the blockchain initiator, first,
includes a secret S1 in every node’s genesis block, so it uses this secret when
the node becomes a proposer. S1 is a hash that includes the proposer’s public
key pr.pk, all the four selected the validation-leaders’ public keys [vl1.pk−vl4.pk],
the blockchain ID blockchainID, and a random number Rand1 as flows:

S1 ← hash(pr.pk||vl1.pk||vl2.pk||vl3.pk||vl4.pk||blockcahinID||Rand1)
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Note that there is only one proposer secret S1. Each proposer in the network
has its own S1. This secret is checked by each of the four validation-leaders.

Second, blockchain initiator generates a validation-leader’s secret S2. S2 is
a hash that includes the proposer’s secret S1, and a random number Rand2 as
flows:

S2 ← hash(S1||Rand2)

Here, we use different Rand2 for each validation-leader to make S2 different for
each one of them. Note that Rand2 is private and is only known to its particular
validation-leader node.

To ensure that a validation-leader is legitimate, and that it has been elected
by the blockchain initiator, we need to utilize a verifiable proof π. This proof is a
digital signature signed by the initiator using its private key in.sk. The proof π
includes the proposer’s public key pr.pk, the validation-leader’s public key vl.pk,
and the blockchain ID blockchainID as below.

π ← Signin.sk(pr.pk||vli.pk||blockcahinID)

The validation-leader must submit this proof to its elected validators so that
each can verify π using the initiator’s public key in.pk prior to involving in the
validation and consensus process. This protects against malicious nodes claiming
that they are validation-leaders for a proposer.

As mentioned, for one proposer, there exists four leaders responsible for
selecting the validators for the block proposed by this particular proposer. This
arises a new problem of selection conflict, since each validation-leader selects
the validators blindly without knowing its peer leaders. Consequently, the four
leaders perform the validators’ selection from the same pool of nodes without
any communication or agreement between them. This can result in selecting a
validator more than once by different leaders. Our protocol overcomes this prob-
lem by dividing the pool of nodes into four pools, each of which is assigned to
a leader. Specifically, each validation-leader will have a range g to choose from
determined at the genesis state. Note, we assume that all the nodes in the net-
work have the same set of nodes in the same order. As shown in Algorithm 1, g
is predetermined by the blockchain initiator and is defined as below:

g ← [((i − 1).
n

4
) + 1, i.

n

4
]

where 1 ≤ i ≤ 4 and is the index of a validation-leader among its peers.
In Algorithm 1, there are three lists. The first one (A) is a population of n

nodes each of which has a reputation value R. The second list (B) is a temporary
list for a proposer to hold the public keys for the selected validation-leaders.
This list is flushed after selecting the validation-leaders and initializing their
secrets and proofs. The last list (C) is for a validation-leader. There exists four
corresponding proposers for each validation-leader. Thus, C stores four tuples,
and each of them corresponds to one proposer. Each tuple includes the secret S2,
the random number Rand2, the proof π, and the range g. By the end of executing
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Algorithm 1. Proposers to leaders Mapping
Input : A population A of n nodes having reputation values

1 foreach pr ∈ A do
2 for k ← 1 to 4 do
3 Try:

4 pi(k) ← Ri
Σsj∈A−BRj

5 Randomly select vli with probability pi(k) from A − B
6 if Ci.size > 4 then
7 Go to Try
8 else
9 B.add(vli.pk)

10 end

11 end
12 Randomly generate Rand1

13 S1 ← hash(pr.pk||vl1.pk||vl2.pk||vl3.pk||vl4.pk||blockcahinID||Rand1)
14 Append S1 to the pr’s genesis block
15 foreach vli ∈ B do
16 Randomly generate Rand2

17 S2 ← hash(S1||Rand2)
18 π ← Signin.sk(pr.pk||vli.pk||blockcahinID)
19 g ← [((i − 1).n

4
) + 1 , i.n

4
]

20 Ci.add(S2||Rand2||π||g)

21 end
22 Flush B

23 end

Algorithm 1, each node in the network will have exactly one proposer’s secret
S1 used when the node becomes a proposing node, and a list C used whenever
this node becomes a validation-leader for one of its four proposing nodes.

3.2 Verification (Validation) Phase

This phase is executed upon proposing a new block. It is carried out by three
parties (proposer, validation-leaders, and validators). The main purpose of this
phase to decide the validity of the newly proposed block and to reach a consensus
on this decision.

When a node becomes a proposer, it broadcasts its secret S1 to all nodes in
the network. Every other node checks if it is a validation-leader for this proposer
by looping through its list C and hashing the received S1 and each private
random number Rand2 it has. If the resulting hash matches its secret S2, then
this node is a validation-leader for this proposer as shown in Algorithm 2.

After a node decides that it is a leader for the proposer, this leader plays the
first-stage game with the proposer to decide how many validators (m) to select.

First-Stage Game. This game takes place between the proposer (i.e., player
x) and each of its validation-leaders (i.e., player y). The validation-leader deter-
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Algorithm 2. Validation-leader checking
Input : The node’s list C, and the received proposing node’s secret S1

Output: A decision of weather or not this node is a validation-leader
1 decision ← false
2 foreach tuplei ∈ C do
3 if Si

2 = hash(Si
1||Randi

2) then
4 decision ← True
5 end

6 end
7 Return decision

mines the number of validators based on the outcome of the game. There are
two strategies for the validation-leader from which to choose. The first one is to
UseMinimumValidators where the minimum is four validators. The second strat-
egy is to AddMoreValidators where the number of validators varies based on the
outcome of the game, which is proportional to the risk likelihood of the proposer.
The strategy profile for the second player (i.e., the proposer) is (a) Cheat, and
(b) NotCheat. A proposer could be of two types: malicious or regular. Our
game is considered to be a one-to-four game where each of the four leaders has
no cooperation with the other leaders, so, we consider each game between a
leader and the proposer as an independent event. Since the validation-leader do
not know the type of player x (i.e., regular or malicious), we model our game
as a Bayesian game. This is because the leader node (player y) in our model
has incomplete information about the game. Player x, however, has this private
information about its type known only to it.

Strategic Form of First-Stage Bayesian Game. First, we model our game
as a strategic form as shown in Tables 2 and 3. Table 1 shows the notation used
in our game theoretical approach. It is worth mentioning the importance of the
proposer (β), and how it is obtained is not discussed in this paper due to space
limitation. Table 2 shows the payoff matrix of the game when player x is of type
malicious. For each cell in the payoff matrix, the first payoff is for player x and
the second one is for player y. Table 3 shows the payoff matrix of the game when
player x is of type regular. The goal of both players x and y is to maximize their
payoffs. We assume that the players are rational.

Extensive Form of First-Stage Bayesian Game. The Bayesian game intro-
duces a third player called Nature (denoted by N ), which determines the type of
player x by assigning a probability (μ) to player x of being malicious. Figure 1
represents the the Bayesian game extensive form. μ can be assigned according
to the environment of the network, which can be learned dynamically by multi-
stage games. A higher value of μ is given when the environment is hostile.

Bayesian Nash Equilibrium (BNE) Analysis

A. Game Pure-Strategy BNE: In this section, we analyze BNE assuming
that player x knows player y ’s belief of μ. If player x plays his pure strategy
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Table 1. The first-stage game notation.

Symbol Definition

β Importance of the proposer. We assume that some proposing
nodes in the blockchain network have higher criticality than
others

γ A reward that player y can get if it maintains the
performance of the consensus process under a cretin
threshold by playing UseMinimumV alidators. However,
player y can loose γ (i.e. deducted from his gain gy) if it
plays AddMoreV alidators and the performance violates the
specified threshold. We assume that player y will not win γ
in case of a successful attack (i.e. player x plays Cheat and
player y plays UseMinimumV alidators)

wx Work done by the proposing node (player x ) to play Cheat

gx The gain for player x from a successful attack

cx The cost (risk) for player x if captured

wy Work done by the validation-leader (player y) to play
AddMoreV alidators

gy The gain for player y from capturing a cheater, in case the
validation-leader employed more validators

cy The cost (risk) for player y if fails to capture a cheater

μ The probability of player x being malicious

N The nature node, which determines the type of player x

Table 2. Strategic form of the first-stage Bayesian game (player x is malicious)

Game matrix Player y (validation-leader)

AddMoreValidators UseMinimumValidators

Player x Cheat (β.cx) − wx, [(β.gy) − γ] − wy (β.gx) − wx, β.cy

NotCheat 0, −wy − γ 0, γ

Table 3. Strategic form of of the first-stage Bayesian game (player x is regular)

Game matrix Player y (validation-leader)

AddMoreV alidators UseMinimumV alidators

Player x NotCheat 0, −wy − γ 0, γ

(Cheat if malicious, NotCheat if regular), then, the expected payoff of player y
playing his pure strategy AddMoreV alidators is:

Eμy(AddMoreV alidators) = {μ.[((β.gy) − γ) − wy]} + {(1 − μ).(−wy − γ)}
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Fig. 1. Extensive form of first-stage Bayesian game.

Similarly, the expected payoff of player y playing his pure strategy UseMini-
mumValidators is:

Eμy(UseMinimumV alidators) = [μ.(β.cy)] + [(1 − μ).γ]

So, if Eμy (AddMoreV alidators) > Eμy (UseMinimumV alidators) Or,

{μ.[((β.gy) − γ) − wy]} + {(1 − μ).(−wy − γ)} > [μ.(β.cy)] + [(1 − μ).γ]

Which can be simplified to:

μ >
wy + 2γ

β(gy − cy) + γ
(1)

Then, the best response of player y is to play AddMoreV alidators. Never-
theless, if player y chooses to play AddMoreV alidators, Cheat will no longer
is the best response for player x type malicious and, instead, will choose
to play NotCheat. As a result, ((Cheat if malicious, NotCheat if regular),
AddMoreValidators, μ) is not a Bayesian Nash Equilibrium (BNE). However, if
Eμy(AddMoreV alidators) < Eμy (UseMinimumV alidators) Or,

μ <
wy + 2γ

β(gy − cy) + γ
(2)

Then, the best response for player y is to play UseMinimumV alidators and
thus ((Cheat if malicious, NotCheat if regular), UseMinimumV alidators, μ)
is a pure-strategy BNE.
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If player x type malicious chooses to play the pure strategy NotCheat, player
y ’s dominant strategy is UseMinimumV alidators, regardless of μ. Nevertheless,
if player y plays UseMinimumV alidators, the best response for player x type
Malicious is Cheat, which reduces to the above case. Hence, ((NotCheat if
Malicious, NotCheat if Regular), UseMinimumV alidators) is not a BNE.

B. Game Mixed-Strategy BNE: We previously showed that when Eq. 1 is
true, there is no pure-strategy BNE exists. So, we have to find mixed-strategy
BNE. Let p be the probability with that player x plays Cheat. Let q be the
probability with player y plays AddMoreV alidators. The expected payoff of
player y playing AddMoreV alidators is:

Eμy(AddMoreV alidators) = {p.μ.[((β.gy) − γ) − wy]} + {(1 − p).μ.(−wy − γ)}
+{(1 − μ).(−wy − γ)}

The expected payoff of y playing UseMinimumV alidators is.

Eμy(UseMinimumV alidators) = {p.μ.(β.cy)} + {(1 − p).μ.γ} + {(1 − μ).γ}
So, player y plays AddMoreV alidators, if Eμy(AddMoreV alidators) >
Eμy(UseMinimumV alidators). Or,

p >
wy + 2γ

μβ(gy − cy) + μγ
(3)

Likewise, we calculate the expected payoffs player x. The expected payoff of x
playing Cheat is:

Eμx(Cheat) = {q.μ.[(β.cx) − wx]} + {(1 − q).μ.[(β.gx) − wx]}
The expected payoff of x playing NotCheat is:

Eμx(NotCheat) = 0

As a result, player x plays Cheat, if Eμx(Cheat) > Eμx(NotCheat), or:

q >
wx − (βgx)
μβ(gy − cy)

(4)

Now, we derive our game’s mixed-strategy BNE as: ((q if malicious, NotCheat
if regular), p, μ).

Thus far, we have obtained the above game’s mixed-strategy BNE. How-
ever, this game is molded for one player x and one player y, and we have four
defenders (validation-leaders) and player x knows this fact. Hence, ((q if mali-
cious, NotCheat if regular), p, μ) is no longer a valid mixed-strategy BNE.
Thus, we calculate a new mixed-strategy BNE. The events of validations are
independent. We have four validation-leaders. Therefore, the likelihood that the
four validators plays AddMoreV alidators is p̂ and is calculated as:

p̂ = (4.p) − p4 (5)
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where, p is the probability that one validation-leader plays AddMoreValidators.
Now, the attacker plays Cheat with probability q̂ defined as:

q̂ = q − (p̂ − p) (6)

So, our new mixed-strategy BNE is: ((q̂ if malicious, NotCheat if regular), p,
μ).

Deciding the Number of Validators (M). After executing the first-stage
game, each validation-leader decides its number of validators m, of which m < n
where n is the total number of nodes in the network. The m value can be: (a)
four validators if the validation-leader chooses to play UseMinimumV laidators,
or (b) a fraction of n proportional to p it it plays AddMoreV alidators.

p is the probability that the proposing node (player x) might attack (plays
Cheat). In response to this probability, a validation-leader (player y) chooses
the appropriate strategy that will maximize its payoff (i.e., whether or not to
AddMoreV alidators). Hence, we consider p as the “risk likelihood” of an attack.
p is computed with the assumption that the validation-leader is ‘risk-neutral,’
that is in a fair game each player aims to maximize its expected payoff. In case if a
validation-leader chooses to play AddMoreV alidators, the number of validators
(m) will be a random number bounded by the minimum number of validators
(i.e. four) and a fraction of n

4 proportional to p (we choose n
4 because we have four

validation-leaders). In other words, a validation-leader select a random number
between 5 (the minimum number of validators plus one) and p.(n−2)

4 (excluding
the proposing and the validation-leader nodes) as flows:

m = Random[5,
p.(n − 2)

4
]

After a validation-leader decides its m, it selects its validators, instructs them,
and broadcasts m to all nodes. When a node in the network receive all the ms
from the validation-leaders, it calculate the overall number of the validators
involving in the protocol (M) as flows:

M = Σ4
i=1mi

Note that our protocol inherits the Byzantine tolerance provided by Tender-
mint. In other words, the system can work with one faulty leader, of which M is
the aggregation of only three ms. In case if more than one leader is faulty, each
node in the network waits for a time period named “leader − time − out” and
then switches to “all − validate” mode. In this mode, every node in the network
votes on the received M to agree on it (details are not provided due to space
limitation). This mode is costly but preserves the consensus liveness.

Selecting Validators. Each validation-leader selects its set of m validators.
The four sets of selected validators will be responsible for validating the proposed
block. Our protocol is based on Tendermint which involves two steps of voting
(pre-vote and pre-commit). The validators are selected randomly, and each set
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Algorithm 3. Validators’ Selection
Input : A population V of n−2

4
nodes having reputation values, AND the risk

likelihood p
Output: A set of validators/pre-voters PV and a set of pre-committers PC of

size m
1 if AddMoreV alidators then

2 m = Random[5, p.(n−2)
4

]
3 else
4 m ← 4
5 end
6 for k ← 1 to m do

7 pi(k) ← Ri
Σvj∈V −PV Rj

8 Randomly select vi with probability pi(k) from V − PV
9 PV.add(vi)

10 end
11 for l ← 1 to mi do

12 pi(l) ← Ri
Σcj∈V −PCRj

13 Randomly select ci with probability pi(l) from V − PC
14 PC.add(ci)

15 end
16 Return PV AND PC

of selected validators is only known to their validation-leader. A validator is only
known, to the other nodes in the network, when it contributes to one of the voting
steps. Therefore, an adversary can observe the validators after revealing their
identities in executing the first stage of voting (i.e., pre-voting). As a result, a
powerful adversary might be able to attack or corrupt a sufficient number of them
which can result in not executing the second step of voting (i.e., pre-committing).
In response to this issue, our protocol requires each validation-leader to select
two sets of nodes of size m. The first set is the validators/pre-voters, and the
second one is the pre-committers. The pre-voters are responsible for executing
the first step of voting, and the pre-committers execute the second step. As
a result, the adversary discovers a participating node in the voting only after
giving its vote, which is an unuseful knowledge. Algorithm 3 shows the process
of selecting the validators/pre-voters and pre-committers.

After selecting the validators and pre-committers nodes, each validation-
leader needs to include a proof of eligibility τ for each selected node to prove
that a legitimate validation-leader has selected this node. τ is a digital signature
signed by the validation-leader’s private key vl.sk and includes the validation-
leader’s public key vl.pk, the selected node’s public key (pv.pk for a pre-voter
and pc.pk for a pre-committer), and the validation-leader’s proof π as flows:

τ ← Signvl.sk(vl.pk||pv.pk||π)
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A node which receives a vote accompanied by τ from a voting node (i.e,
pre-voter or pre-committer) needs to perform two verifications. First, it needs to
verify τ using the validation-leader’s public key vl.pk. Second, after successful
verification of τ , the node verifies π using the initiator’s public key in.pk.

Second-Stage Game. After selecting the validators by their leaders, and after
proposing and broadcasting the new block by the proposer, the second-stage
game takes place between the proposer (player x) and each of the valida-
tors (player z). The strategy profile for a validator is (a) V alidate, and (b)
NotV alidate. This game is modeled similarly to the first stage game. Tables 4
and 5 show the strategic form of the second-stage Bayesian game. The extensive
form of this game is similar to the one in the first-stage game which was illus-
trated previously in Fig. 1. We use the same notations presented in Table 1 with
following additional notations. wz is the work done by the validator (player z)
to play V alidate. gz is the gain for player z from capturing a cheater. cz is the
cost for player z if fails capturing a cheater.

Table 4. Strategic form of the second-stage Bayesian game (player x is malicious)

Game matrix Player z (validator)

V alidate NotV alidate

Player x Cheat (β.cx) − wx, (β.gz) − wz (β.gx) − wx, β.cz

NotCheat 0, −wz 0, 0

Table 5. Strategic form of of the second-stage Bayesian game (player x is regular)

Game matrix Player z (validator)

V alidate NotV alidate

Player x NotCheat 0, −wz 0, 0

A. Game Pure-Strategy BNE: We follow similar analysis that we presented
in the first-stage game. If player x plays his pure strategy (Cheat if malicious,
NotCheat if regular), then, the expected payoff of player z playing his pure
strategy V alidate is:

Eμz(V alidate) = {μ.[(β.gz) − wz]} + {(1 − μ). − wz}
The expected payoff of player z playing his pure strategy NotV alidate is:

Eμz(NotV alidate) = μ.(β.cz)

As a result if, Eμz(V alidate) > Eμz(NotV alidate) Or,

μ >
wz

β(gz − cz)
(7)
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Then, the best response of player z is to play V alidate. Therefore, ((Cheat if
malicious, NotCheat if regular), V alidate, μ) is not a (BNE). However, if Eμz

(V alidate) < Eμz (NotV alidate) Or,

μ <
wz

β(gz − cz)
(8)

Then, the best response for player z is to play NotV alidate and thus ((Cheat
if malicious, NotCheat if regular), NotV alidate, μ) is a pure-strategy BNE.
Nevertheless, similar to the first-stage game, ((NotCheat if Malicious, NotCheat
if Regular), NotV alidate) is not a BNE.

B. Game Mixed-Strategy BNE: Let p′ be the probability with which player
x plays Cheat. Let q′ be the probability with player z plays V alidate. The
expected payoff of z playing V alidate is:

Eμz(V alidate) = {p′.μ.[(β.gz) − wz]} + {(1 − p′).μ. − wz} + {(1 − μ). − wz}

The expected payoff of z playing NotV alidate is:

Eμy(NotV alidate) = p′.μ.(β.cz)

So, the defender (player z) plays V alidate when:

p′ >
wz

μβ(gz − cz)
(9)

Similarly, we acquire the expected payoffs the attacker (player x ). The expected
payoff of x playing Cheat is:

Eμx(Cheat) = {q′.μ.[(β.cx) − wx]} + {(1 − q′).μ.[(β.gx) − wx]}

The expected payoff of x playing NotCheat is:

Eμx(NotCheat) = 0

As a result, the attacker (player x ) plays Cheat when:

q′ >
wx − (βgx)
μβ(gz − cz)

(10)

As in the first-stage game, this game is 1-to-M game, where M is the number
of validators (player z). Hence, our new mixed-strategy BNE is: ((q′′ if malicious,
NotCheat if regular), p′, μ), where:

q′′ = q′ − (p′′ − p′) (11)

And:
p′′ = (M.p′) − p′M (12)
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Consensus Voting. We use Tendermint’s voting mechanism, where there exists
two steps of voting. The first one is ‘pre-vote’. In this step, the validators/pre-
voters validate the block and pre-vote on it. There are three types of pre-votes
according to the outcome of the validation process: (a) valid if the block is valid,
(b) invalid if it is not, and (c) timed-out if it is not received in a particular time
window. Each validator validates with the probability p′. If a validator chooses
to play V alidate, then it contributes to the validation process; otherwise, it
pre-votes nil and remains idle. The second step of voting is ‘pre-commit’. A pre-
committer advances to this step only if it receives more than two-thirds of M
pre-votes (i.e., > 2.M

3 ). The type of pre-commit (i.e., valid, invalid, or timed-out)
depends on the type of the received pre-votes. Likewise, the block is committed
or rejected if more than two-thirds of M pre-commits are received.

4 Security Analysis

In this section, we briefly present a threat model and demonstrate how our pro-
tocol protects against it. Utilizing the randomness and blind assignment protects
from various attacks. Besides, exploiting game theory motivates the defenders
in our protocol to adhere to the protocol, and disincentivizes malicious parties.

4.1 Randomness and Anonymity of Validators’ Selection

As mentioned in Sect. 3, each proposer is blindly and randomly mapped to four
leaders. Moreover, on each new block proposal, M number of validators are
selected at random. The M value is also generated randomly proportional to
the risk likelihood of the proposer. This selection approach protects against the
following attacks:

DDoS Attacks: The DDoS attack is more likely to happen if the set of valida-
tors is known in advance. Such an attack can happen to undermine the blockchain
and can be launched from inside or outside the network. Validators’ replaceabil-
ity and randomizing their selection can significantly mitigate this attack. This
is because of the set of validators changes randomly, and their identities remain
anonymous until they participate in the consensus voting. Besides, each step of
voting has a different set of voters. Thus, launching a DDoS attack is almost
impossible and require to attack all the nodes in the network to undermine
the system. Similarly, attacking the validation-leaders is hard too since leaders
are known only after completing their tasks (i.e., broadcasting the m value and
instructing their selected validators/pre-voters and pre-commiters). Note that
we only aim to protect the validation and consensus process form DDoS attacks.

Eclipse Attacks: This attack is presented by Heilman et al. [8] and allows
an attacker who controls an adequate number of IP addresses to manage all
connections to and from a victim node. As a result, the adversary can utilize
the victim nodes for attacks on block validation and consensus system. As in
the DDoS attack, an adversary mounting this attack needs to know the node
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participating in the validation and consensus process in advance. Introducing
variable random validators on each block’s proposal makes the adversary’s job
more difficult.

Validators’ or Leaders’ Bribing or Corruption: An example of this attack
is when a malicious proposer bribes and convinces other leaders or voters to
accept and vote for an invalid block. Performing such an attack requires knowing
the identities of the targeted nodes. Our protocol anonymizes the interaction
between the consensus and validation parties, which overcomes such an attack.

4.2 Game Theory

Utilizing game theory protects against several real attacks. We model the interac-
tion between a proposer and leaders or validators as an attacker-defender game.
This way the defenders will work hard to maximize the utility that each can gain
as a reward for excellent work and avoid the punishment (cost) that might incur
due to misbehaving or not obeying the protocol. Our theoretical game approach
can protect against the following attacks:

Faulty or Lazy Validation-Leader: This attack happens when a validation-
leader colludes with its corresponding malicious proposing node. It could result in
many problems such as utilizing the minimum number of validators or colluding
with other malicious nodes as validators. Another type of this attack is the lazy
validation-leading, in which the validation-leader does not execute the protocol
or does not obey its requirements. For example, it is possible for a validation-
leader node to produce an assignment that is not truly random. Utilizing the
reward and punishment payoffs provided by the proposed game mitigates the
incentives of such an attack.

Block Withholding Attack. Rosenfeld [18]: In this attack, a dishonest val-
idator does not participate in the validation process or does not reveal the result
of the verification in favor of a malicious proposing node. The reward and pun-
ishment provided by our game incentivize the validators to avoid this attack.

4.3 Randomness and Game Theory

The main attack that we are defending against is the adversary proposer
(malicious proposed block). This attack happens when a proposing node
maliciously proposes an invalid new block. This attack occurs for various incen-
tives; double spending is one of them. Integrating random and anonymous val-
idators’ selection with a game theoretical model contributes substantially in
mitigating this attack. This is because a malicious proposer does not know the
nodes that will validate its proposed block, which makes it hard to corrupt or
bribe them to agree on its invalid block. Additionally, the punishment enforced
by the game model could alleviate the attack motives.
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5 Conclusion and Future Work

We have proposed a new true decentralized consensus protocol utilizing game
theory and randomness. Our protocol randomly employs a different set of dif-
ferent size of validators each time a new block is proposed to protect against
several real attacks mounted by powerful adversaries. Additionally, our protocol
enjoys the feature offered by game theory to reward honest adhered parties and
punish malicious ones.

This work, however, is in progress and has a few open problems. First, the
probability μ that player x is of type malicious is static. To overcome this, μ
can be determined dynamically, where the defenders y and z update their beliefs
about μ at every stage of the game. Second, the proposers-leaders mapping guar-
antees the anonymous mapping only for one round of proposing. In other words,
when a proposer proposes a block for the second time, its leaders’ identities
are revealed. This protocol was originally designed for a products’ supply chain
[1] where each node authenticates the product and proposes a block for it only
once. Nevertheless, our protocol is suitable for many other blockchain applica-
tions, and we plan to make the proposers-leaders mapping dynamic in a way
that preserves the anonymity. Third, the detailed evaluation of the protocol’s
safety and liveness nor the efficiency compared with other consensus protocols
such as Ouroboros [11] are not presented in this paper.

References

1. Alzahrani, N., Bulusu, N.: Securing pharmaceutical and high-value products
against tag reapplication attacks using nfc tags. In: 2016 IEEE International Con-
ference on Smart Computing (SMARTCOMP). IEEE (2016)

2. Alzahrani, N., Bulusu, N.: Block-supply chain: a new anti-counterfeiting supply
chain using NFC and blockchain. In: Proceedings of the 1st Workshop on Cryp-
tocurrencies and Blockchains for Distributed Systems, pp. 30–35. ACM (2018)

3. Buchman, E.: Tendermint: byzantine fault tolerance in the age of blockchains.
Ph.D. thesis (2016)

4. Efraimidis, P.S., Spirakis, P.G.: Weighted random sampling with a reservoir. Inf.
Process. Lett. 97(5), 181–185 (2006)

5. Eyal, I.: The miner’s dilemma. In: 2015 IEEE Symposium on Security and Privacy
(SP), pp. 89–103. IEEE (2015)

6. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 51–68. ACM (2017)

7. Gorbunov, S.: Pure Proof-of-Stake Blockchains. https://medium.com/algorand
8. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s

peer-to-peer network. In: USENIX Security Symposium, pp. 129–144 (2015)
9. Hyperledger: hyperledger/fabric. https://github.com/hyperledger/fabric/tree/v0.

6
10. Johnson, B., Laszka, A., Grossklags, J., Vasek, M., Moore, T.: Game-theoretic

analysis of DDoS attacks against bitcoin mining pools. In: Böhme, R., Brenner,
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already been proposed to detect anomalous program behavior by com-
paring monitored activities with the predetermined expected behavior.
This had led to significant detection performance initially until advanced
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evaders and seek to maximize the complexity of undetectable attacks at
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1 Introduction

Recently, the arm race between defensive measures and adversaries for the secu-
rity of digital systems has gained significant pace in favor of adversaries. Digi-
talization of our personal information and financial assets has made them vul-
nerable to threats throughout the world. It is no longer surprising to see news
about data breach in world-wide organizations. Even though such organizations
are expected to be secure against cyber threats by deploying the state-of-the-art
defense mechanisms, attacks are becoming more and more sophisticated, more
stealthy, and with far wider attack surfaces. Signature based defense mecha-
nisms can no longer defend against such advanced threats effectively [20]. Unpre-
dictable adaptation of attacks against existing defense measures or brand new
attacks make it necessary to consider zero-day vulnerabilities in digital systems
and to take precautions beyond signature based defenses.

Program anomaly detection inspired from human immune systems has
achieved promising detection performance against any attack, whether it has ear-
lier been encountered or not [8]. Particularly, monitored program activities are
compared with its normal, i.e., benign, behavior. And deviation of the monitored
behavior from the norm, according to a certain metric, indicates how anomalous
the program activity is. Indeed, program anomaly detection mechanisms have
initially achieved significant detection performance until they could no longer
achieve it within the arm race between the defender and the attacker. As an
example, mimicry attacks were first introduced by [19] to undermine n-gram
based intrusion detection methods, e.g., [17]. Correspondingly, [7] has proposed
anomaly detection using call stack information to detect such mimicry attacks.
However, [12] has designed mimicry attacks that can undermine [7]. Therefore,
any such attack-specific counter-measure is very likely to be undermined after a
strategic modification. This leads to the Cohen impossibility result for cat-and-
mouse-game-like interaction since broad deployment of defense measures enables
attackers to inspect and study such (attack-specific) defenses before launching
new attacks that can bypass the existing defenses [20]. Therefore, here we specif-
ically focus on defenses against attacks that are strategically crafted to evade
detection, and within a game theoretical framework.

Program anomaly detection has been studied extensively over the past
decades. Interested reader can refer to [15] and [20] for detailed overviews of
these studies. However, there still exist significant yet unsolved challenges, espe-
cially in terms of

(i) a game theoretical analysis to avoid cat-and-mouse-game-like interaction,
(ii) assessment of all the program activities together in a cohesive way.

A game theoretical framework enables us to exploit the trade-off faced by
the attackers in terms of evasion and increased complexity of the attack, i.e.,
increased cost of complexity. Furthermore, cohesive consideration of all the pro-
gram activities is essential, especially against advanced attacks that deploy mod-
ular structure with multiple components that are specialized on certain tasks
[6]. Intuitively, strategic attackers would craft the attacks just until they can be
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assessed as benign, to keep the cost of complexity at minimum. However, if they
infect multiple programs, and their behaviors are observed to be on the edge of
classification as benign, that could imply the possibility of an advanced evasive
attack. Therefore, cohesive consideration of program behaviors across whole sys-
tem enables us to increase the complexity of undetectable attacks further and
further.

Recently, [13] and [5] have studied adversarial intervention detection across
all the system activities yet without considering evasive adaptability of strate-
gic attackers. In [13], the authors have proposed an online algorithm to learn
the structure of the interaction between programs across the system to detect
anomalous ones through a graph based approach. In [5], the authors have pro-
posed to use deep learning algorithms to compute the likelihood of current sys-
tem activities given the previous ones. We re-emphasize that these studies have
not considered inter-process adversarial intervention detection within a game
theoretical framework.

Note that a software designer is not involved in designing how operating sys-
tems should execute the source code or how hardware level operations should
take place in the physical world during that execution. This layered structure in
technological infrastructure and systems has resulted in substantial enhancement
within remarkable time by abstracting the complexity of lower levels from more
flexible and easier to interpret higher levels. Correspondingly, a layered structure
can facilitate analysis of complicated interaction between defense mechanisms
and adversaries. To this end, in this paper, we propose a two-level game theoret-
ical framework to detect advanced adversarial intervention across the processes.
Note that a program is a collection of instructions while a process is the actual
execution of these instructions in real time. We consider a defender seeking
to detect adversarial intervention by monitoring and assessing process activi-
ties, and an attacker having a modular malware consisting of multiple malicious
codes and seeking to inject them into the execution flow of benign processes after
crafting them strategically to evade the defender.

In the process-level game, the defender deploys intrusion detection systems
(IDSs) monitoring certain process activities and assigning scores indicating how
anomalous the activities are, and the defender sets a threshold to detect adversar-
ial intervention at the expense of false alarms, in which a benign process activ-
ity has been assessed adversarial. However, different from extensively studied
program anomaly detection approaches, here the defender anticipates advanced
evasive attackers’ reaction to the threshold and sets it based on the trade-off
between the complexity of an undetectable attack, i.e., a crafted attack that
leads to scores under the threshold, and false alarm rates. On the other side, the
attacker crafts his malicious code by adding redundant instructions such that the
IDSs assign scores under the threshold at the expense of increased code complex-
ity. In other words, the attacker seeks to keep the number of added instructions
at a minimum. In the system-level game, the defender collects all the scores
within certain time period from all the processes and assesses them together in
a cohesive way to detect adversarial interventions across the processes. On the
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other side, the attacker seeks to remain undetected also at the system-level by
setting virtual thresholds for the adversary induced scores.

We have analyzed the equilibria in both process and system level games, and
analyzed the coupling between the levels. We can list our main contributions as
follows:

– This is the first study to consider inter-process adversarial intervention detec-
tion within a game theoretical framework.

– We propose a two-level hierarchy for prompt response at the process-level with
a theoretically grounded thorough incentive analysis at the system-level.

– We analyze the coupling between the process and system level games.

The paper is organized as follows: In Sect. 2, we provide preliminary informa-
tion and motivating examples for the problem formulation. In Sect. 3, we provide
the defense and threat models. In Sect. 4, we formulate the process and system
level games between an attacker and a defender. In Sects. 5 and 6, we analyze
the process-level and system-level games, respectively. We conclude the paper in
Sect. 7 with several remarks and possible research directions.

The Notation Throughout the Paper: For a given set Σ, σ∗ = σ1σ2σ3 . . . denotes
a string consisting of the elements of Σ with indefinite length, and Σ∗ is the set
of all corresponding strings, i.e., σ∗ ∈ Σ∗. Further σ(n) = σ1σ2 . . . σn denotes
a string consisting of n elements of Σ, and Σ(n) is the set of all corresponding
strings, i.e., σ(n) ∈ Σ(n). For a given string σ∗, |σ∗| denotes the length of the
string. We denote random variables with bold lower case letters, e.g., σσσ.

2 Background

A computer system consists of various applications. An application (or program)
is a collection of instructions and the actual execution of these instructions in
real time is called a process [16]. A process can be considered consisting of a
finite-state machine, a stack, and a random-access register, and they evolve with
the temporal instructions, i.e., due to the execution of the source code by the
central-processing unit (CPU) [15]. CPU instructions include both inner process
activities related to the process’s own assigned address space and system-calls
directed to the kernel for hardware-related operations, e.g., reading a file in the
disk or sending information to an external server through the ethernet card [16].

Note that there can be malware in the system intended to perform malicious
behavior. Similar to other applications, malware also needs to conduct hardware
related tasks. As an example, while exfiltrating data from the system, malware
can read the files from the disk and send them to external servers by sending
queries to the operating system. Major interactions between malware and hard-
ware are conducted under the operating system’s supervision unless the malware
has root-access to the system [20]. This implies that interactions could leave a
trace that can help detect and analyze attacks, if all such interactions between
applications and OS are recorded [11,18,20].
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Fig. 1. A process is a system consisting of a finite-state machine, a random-access
register and a stack. The state of the inner finite-state machine evolves according to
the temporal CPU instructions, symbols in the stack, and the addresses in the registers.
IDSs can monitor the process activities and assign scores to these traces by comparing
with the norm. A seeks to inject his malicious code into the benign processes evasively
while D seeks to detect A’s attack based on all the collected scores across the processes.

Example 1. Consider a scenario where an attacker injects a malicious code into
an email application in order to add a backdoor to a password file [19]. The
infected system-call trace of the process could include a sub-trace as follows:

open,write,close,socket,bind (1)

This sub-trace would be viewed as anomalous, since “normally” the email appli-
cation would not open a file and then bind to a network socket in such immediate
succession [19].

However, attackers can strategically modify the malware to bypass such
defense mechanisms, e.g., by including redundant system-calls such that over-
all trace looks similar to the norm while fulfilling the malicious task. In the
literature, such type of evasive attacks are studied as mimicry attacks and com-
putation of the redundant calls with minimum length, i.e., complexity, is a com-
binatorial optimization problem [9,14,19]. Crafting long attack traces, including
a lot of system-calls, to mimic the norm is a challenging problem for the attack-
ers because of its combinatorial aspect. Furthermore, the length of the added
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redundancy, and correspondingly complexity, increases with the length of the
attack trace substantially.

To this end, advanced cyber attacks can exploit modular design, i.e., malware
with components that are specialized on certain tasks, to evade the detection
easily [6]. Modules have relatively shorter traces, and correspondingly, crafting
them to mimic the norm is easier than crafting the entire malware in a sin-
gle trace. While individual process activities mimic the norm easily and evade
detection, the combined activities of multiple processes will still be able to per-
form the malicious task. Hence, modularity enables the malware to evade the
state-of-the-art defense mechanisms that focus on detecting anomalous behavior
of individual processes [20]. Therefore, it is essential to consider the anomalous
activities across the processes in a cohesive way.

3 System Model

Consider two agents: an attacker (A) and a defender (D). A seeks to fulfill cer-
tain adversarial objective in the host without being detected by D. To this
end, A injects malicious codes into benign processes through various ways, e.g.,
dynamic-link library (DLL) injection, thread execution hijacking, etc. [2,6].
D deploys IDSs that can monitor process activities and assign scores by com-
paring them with the normal behaviors of the processes. She then uses these
scores to detect A as shown in Fig. 1.

3.1 Defense Model

Let Δ denote certain quantization of the interval [0, 1]. For process i, correspond-
ing IDS deploys a scoring metric fi : Σ(n) → Δ to assign scores to sub-traces
σ(n) ∈ Σ(n) representing the likelihood that the behavior is anomalous. Let Pi

denote the underlying distribution of the benign sub-traces of process i (with
n � 1).

Assumption 1. Smoothness of Scoring Metrics. Let dist : Σ(n)×Σ(n) →
[0, n] be a distance metric, e.g., edit distance, over Σ(n). Let σ

(n)
1 , σ

(n)
2 ∈ Σ(n)

and σ
(n)
1 �= σ

(n)
2 . We assume that there exists a constant L ∈ [0, 1] such that

|fi(σ
(n)
1 ) − fi(σ

(n)
2 )|

dist(σ(m)
1 , σ

(m)
2 )

≤ L, ∀i. (2)

D deploys two defense mechanisms at process-level and system-level. At
process-level, she selects a fixed threshold

λ ∈ Δ

for each application in the system and declares an anomaly if the scores of a
process exceeds the threshold of the associated application. This approach can
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provide a prompt response against anomalous process behaviors. At system-level,
she collects the normalized scores of all processes with respect to the associated
threshold (projected onto Δ) periodically in order to make an assessment about
whether there exists an adversarial intervention or not. Each period is called an
epoch and D selects a detection rule for certain subsets of the processes being
executed in an epoch since an advanced modular attacker can infect multiple
processes. Let K denote the index set of these subsets and nk ∈ N denote the
number of scores in the kth subset. Then, D’s detection rules are given by

dk : Δnk → {0, 1}, (3)

for k ∈ K , and dk(s) = 1 implies that there is an adversarial intervention. We
denote the set of all such detection rules by Dk, i.e., dk ∈ Dk.

Remark 1. Note that dk(·) can localize the infected processes within an epoch,
which can be used in order to trigger further detailed investigation through, e.g.,
dynamic information-flow tracking techniques [11].

We provide the evasive attack model and formulate its complexity in the
following subsection.

Fig. 2. One-direction arrows represent the execution flow of the processes over time,
figuratively. A can craft the models by adding redundant instructions and inject them
into benign processes to hide its presence while fulfilling the malicious objective.
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3.2 Threat Model

A has a modular malware (e.g., {a∗
i }i∈Γ , where Γ represents the index set of the

modules), which is designed without considering D. Therefore, A seeks to modify
the modules before injecting them to benign processes in order to evade D. To
this end, A could include redundant instructions r∗ = r1r2r3 . . . into the trace
of a module a∗ := a1a2a3 . . . such that the injected trace, e.g.,

ã∗ = a1r1r2a2r3a3 . . . (4)

looks alike with the norm of that process as seen in Fig. 2.
For a successful attack, the feasibility constraint is to satisfy the adversarial

objective, i.e., execution of all the modules, while evading D. A seeks to minimize
the complexity of the attack, in line with Occam’s razor. In other words, higher
complexity of the crafted attack yields higher cost for A. Correspondingly, higher
cost degrades the incentive to attack [3]. We can model the complexity of a given
crafted attack as: ∑

i∈Γ

c(|a∗
i |, |r∗

i |), (5)

where Γ denotes both the index set of the infected processes and that of the
modules without loss of generality, and a∗

i ∈ Σ∗ denotes the original attack
trace to be injected into process i while r∗

i ∈ Σ∗ denotes the corresponding trace
of the redundantly added instructions. The injection cost c : N

2 → [0,∞] is
increasing functions of |a∗

i | and |r∗
i |.

Next, we formulate the two-level detection-evasion game between A and D.

4 Game Formulation

The attacker and the defender are seeking to achieve conflicting objectives.
Therefore, their interaction can be analyzed within a game theoretical frame-
work. Also, due to the weak coupling between the process and system level
interaction between the players, and in order to reduce the complexity of the
formulation, we can decompose the problem as a two-level game at process and
system levels. In the following, we provide these game formulations.

4.1 Process-Level Game

At the process-level, A’s objective for process i is to find undetectable attack
trace with minimum complexity, which is given by1

L(a∗
i , γi) := inf

r∗
i ∈Σ∗

c(|a∗
i |, |r∗

i |) subject to fi(ã
(n)
i,t ) ≤ γi,tλi, ∀t, (6)

1 We have used infimum here since, the set of indefinite length strings, Σ∗, not being
compact, there is no immediate guarantee of existence of a minimum.
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where ã
(n)
i,t ∈ Σ(n) denotes the sub-traces of the crafted attack (4). A selects the

original attack trace a∗
i ∈ Σ∗, and the threshold multiplication factors γi :=

{γi,t ∈ [0, 1]}t (such that the virtual thresholds λv
i,t := γi,tλi ∈ Δ) according to

the system-level game as explained in Subsect. 4.2 in detail. Note that there may
not exist a solution to (6) for certain virtual thresholds.

While D does not know A’s objective, she knows that the attack trace must
be different from the normal behavior of the installed applications in the system.
Therefore, D considers scenarios where a∗

i is drawn from the probability space
(ΩA,F A,PA

i ), where ΩA denotes the outcome space, F A denotes the appropri-
ate σ-algebra on ΩA, and PA

i denotes the probability distribution over ΩA. D’s
objective is to maximize the complexity of evasive attacks on average (over ΩA

according to PA
i ) with an added constraint incurred due to false alarms. There-

fore, at the process-level, D’s objective for process i is given by2

max
λi∈Δ

Eaaa∗
i
{g(c(|aaa∗

i |, |r∗
i (aaa∗

i )|))} − cFA Pr(fi(σσσ(n)) > λi), (7)

where g : [0,∞] → [0, 1] is a non-decreasing wrapping function for the attacker
complexity and cFA ∈ [0,∞) denotes the cost of false alarms.

In the process-level, we consider the scenario where there is a hierarchy
between the players, i.e., a Stackelberg game, in which D leads the game by
announcing her strategies, and correspondingly A selects his attack strategies by
knowing her defense strategies [1]. In order to show this dependency explicitly,
henceforth, we denote A’s process-level reaction by r∗

i (a∗
i )(λi). If a solution exists

to (6) for a given threshold λi, we let Πi(a∗
i , γi)(λi) ⊂ Σ∗ denote the reaction

set of A, which is given by

Πi(a∗
i , {γi,t}t)(λ) := argmin

r∗∈Σ∗
c(|a∗

i |, |r∗(a∗
i )(λ)|) s.t. fi(ã

(n)
i,t ) ≤ γi,tλ ∀t,

which may not be a singleton; however, the following proposition shows that A’s
reaction is essentially unique.

Proposition 1. Let ∼ denote an equivalence relation on Σ∗ such that two traces
σ∗
1 and σ∗

2 are equal if, and only if, |σ∗
1 | = |σ∗

2 |. Then, for given a∗
i and γi, the

quotient set of the reaction set, i.e., Πi/∼, is a singleton.

Proof. The proof follows from (6) and since c(·) is an increasing function of the
length of added redundancy. Suppose r∗

1 , r
∗
2 ∈ Πi(a∗

i , {γi,t}t)(λ) while |r∗
1 | �=

|r∗
2 |. However, this would imply that c(|a∗

i |, |r∗
1 |) �= c(|a∗

i |, |r∗
2 |), which leads to a

contradiction. Therefore, if r∗
1 , r

∗
2 ∈ Πi(a∗

i , {γi,t}t)(λ), then r∗
1 ∼ r∗

2 even though
r∗
1 and r∗

2 may not be the same. �

To summarize the process-level interaction, we define the following game:

2 With abuse of notation, we denote r∗
i as a function of aaa∗

i in order to show the
dependence explicitly.
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Definition 1. Process-level Game G i
P : For process-i, the process-level game

G i
P :=

(
Δ,Σ∗,PA

i ,Pi, c(·), g(·), fi(·), a∗
i , cFA, {γi,t}t

)

is a Bayesian Stackelberg game between A and D, where D is the leader, who
announces her strategies beforehand. A’s type is drawn from PA

i and his strategy
space is Σ∗ while D has a single type and her strategy space is Δ. Objectives of
A and D are given by (6) and (7), respectively, with parameters:

– Pi: probability distribution of the benign sub-traces;
– c(·) : N

2 → [0,∞]: complexity of the evasive attacks;
– g(·) : [0,∞] → [0, 1]: complexity wrapping function;
– fi : Σ∗ → Δ: scoring function;
– a∗

i ∈ ΩA: type of A, i.e., original attack trace (private to A);
– cFA ∈ [0,∞): cost of false alarm;
– γi,t ∈ [0, 1]: multiplication factor set by A at the system-level game (private

to A) .

Furthermore, the pair of strategies: [λi; r∗
i (aaa∗

i ), aaa
∗
i ∼ PA

i ] attains the Bayesian
Stackelberg equilibrium provided that a solution exists for a∗

i and γi,tλ in (6),
and

λi = argmax
λ∈Δ

Eaaa∗
i
{g(c(|aaa∗

i |, |r∗
i (aaa∗

i )(λ)|))} − cFA Pr(fi(σσσ(n)) > λ), (8a)

r∗
i (a∗

i )(λ) = argmin
r∗∈Σ∗

c(|a∗
i |, |r∗(a∗

i )(λ)|) s.t. fi(ãi,t) ≤ γi,tλ ∀t. (8b)

If a solution does not exist for a∗
i and γi,tλ in (6), then A’s complexity c(·) = ∞

and correspondingly g(·) = 1.

4.2 System-Level Game

At the process-level, A’s objective (6) is to execute the original attack trace with
minimum complexity. Correspondingly, the following proposition shows that the
scores of the infected processes lie near the edge of the threshold if the multipli-
cation factor γi,t = 1 for all t.

Proposition 2. Let the multiplication factors γi,t = 1 ∀t. Suppose r∗
i ∈

Πi(a∗
i , {γi,t}t)(λi) and |r∗

i | > 0. Let {si,t}t denote the scores obtained by the
sub-traces of the crafted attack, i.e., ã∗

i = {ã
(n)
i,t }t. Then, we have λi − L <

maxt si,t ≤ λi.

Proof. Suppose that maxt si,t ≤ λi − L. Then, there exists an r∗ ∈ Σ∗ obtained
by removing a redundant instruction from r∗

i , i.e., |r∗| = |r∗
i | − 1. Let {s′

i,t}t

denote the scores for the modified attack trace. Then, we obtain maxt s′
i,t ≤

λi, which leads to a contradiction since r∗ yields lower complexity (since the
complexity c(·) is an increasing function of the length of the added redundancy)
while r∗

i is the best reaction. �
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Based on Proposition 2, the scores of the infected processes are expected to
be at the edge of the threshold. Therefore, too many scores just at the edge
of the thresholds (even though they might be coming from different processes)
could imply adversarial intervention. Therefore, at the system-level, D selects a
detection rule for the collected scores while A selects which process to infect and
threshold multiplication factors γi,t ∈ [0, 1] so that the scores due to adversar-
ial intervention always remain under the virtual threshold λv

i,t := γi,tλi at the
infected processes.

Remark 2. We emphasize that D does not simply design a heuristic detection
rule, e.g., setting a threshold over the (weighted) sum of scores, at the system-
level.

Remark 3. A’s modular malware, i.e., {a∗
i }i∈Γ , is private to D and this seemingly

disadvantageous uncertainty enables D to design the defense by handling A’s
ability to select infected processes, implicitly, within a stochastic framework.

To this end, for each k ∈ K , we consider the scenarios where there can
be an adversarial intervention at that subset with probability pk ∈ [0, 1] (i.e.,∑

k∈K pk = 1) and if there is an intervention, then A has a type drawn from the
type space Ω according to a distribution Pω and his type determines which mod-
ules are injected into which processes in that subset. Then, for type ω attacker,
in subset k, the complexity due to the threshold multiplication factors is given
by

Cω,k(γ) := g

(
∑

i

Li(a∗
i , γi)

)
, (9)

where Li(·) is defined in (6) and γ := {γi}i. Note that the range of Cω,k is
discrete since its domain Δnk is discrete.

Let Ps
k denote the joint distribution of the normalized scores (with respect to

the threshold selected at the process-level) collected within an epoch for subset
k ∈ K when there is no adversarial intervention, which may be computed based
on Pi’s and fi(·)’s, i.e., the collected scores sss ∼ Ps

k. Then, for each k ∈ K ,
A and D’s cost functions are given by

JA
ω,k(γω; dk) := Cω,k(γω) + CD1{dk(γω)=1}, (10)

JD
k(γωωω,ωωω ∼ Pω; dk) := −pkEωωω

{
JA

ωωω,k(γωωω; dk)
}

+ (1 − pk)CFA Pr(dk(sss) = 1) (11)

where CD ∈ [0,∞) denotes the cost of detection for A while CFA ∈ [0,∞) denotes
the cost for false alarms in the system-level.

To summarize the system-level interaction, we define the following game:

Definition 2. System-level Game G k
S : For k ∈ K , the system-level game

G k
S := (Dk,Δnk ,Pω,Ps

k, Cω,k(·), CD, CFA, pk)

is a Bayesian non-zero sum game between A and D. A’s type is drawn from Ω
according to Pω and his strategy space is Δnk while D has a single type and her
strategy space is Dk. Therefore, the players A and D seek to minimize their cost
functions (10) and (11), respectively, with parameters:
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– Ps
k: distribution of the collected scores when there is no adversarial interven-

tion;
– Cω,k : Δnk → [0, 1]: complexity due to the virtual thresholds;
– CD ∈ [0,∞): cost of detection for A;
– CFA ∈ [0,∞): cost of false alarms in the system-level;
– pk ∈ [0, 1]: probability that there can be an adversarial intervention at subset

k.

Furthermore, the pair of strategies: [dk; γωωω,ωωω ∼ Pω] attains the Bayesian Nash
equilibrium provided that

γω = argmin
γ∈Δnk

Cω,k(γ) + CD1{dk(γ)=1}, (12a)

dk = argmin
d∈Dk

−pkEωωω

{
JA

ωωω,k(γωωω; d)
}

+ (1 − pk)CFA Pr(d(sss) = 1). (12b)

Note that whether there will be an adversarial intervention at subset k or not
is A’s strategic decision; however, the detection rules that are selected accord-
ing to (11) depend on the probability pk. Correspondingly, D can consider the
scenarios where

{pk}k∈K = argmax
p′

k,k∈K

∑

k∈K

−p′
kEωωω

{
JA

ωωω,k(γωωω; dk)
}

+ (1 − p′
k)CFA Pr(dk(sss) = 1).

Remark 4. We re-emphasize that this two-level approach decouples the analysis
of program anomaly detection from information flow across the processes for
prompt response to an adversarial intervention. Furthermore, the inter-process
analysis can detect the adversaries that can bypass the individual IDSs via mod-
ularity. Therefore, the attacker needs to increase the complexity further and
further in order to bypass the detection at both levels.

This could also have been considered within a single big-game formulation.
However, we seek to provide a neat solution through a hierarchical approach
instead of complicating the analysis of this complex problem with a big-game
formulation. Note that there is a coupling between the games, e.g., due to the
virtual thresholds, which could imply that there can be room for D to increase
the process-level thresholds to reduce the expected false alarm rate in the joint
consideration of the game. In Sect. 6, we will analyze the couplings between the
games in detail.

Remark 5. Note that, here we have only considered a single-stage game formu-
lation, where the defender seeks to optimize the expected objective with fixed
defense strategies without any adaptation. A multi-stage dynamic game for-
mulation, where the defender selects dynamic defense strategies, could be an
interesting future research direction.

5 Process-Level Game: Optimal Threshold for IDSs
Against Evasive Attacks

We consider the scenarios where all the threshold multiplication factors are 1 as
if there is no system-level defense across the processes due to the decomposition
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of the process and system level interaction between the players. Then, for given
original attack trace a∗

i and threshold λ, A’s objective is given by

inf
r∗

i ∈Σ∗
c(|a∗

i |, |r∗
i |) s.t. fi(ã

(n)
i,t ) ≤ λ. (13)

Following the same lines as in [19], let Bλ denote all the acceptable traces for
threshold λ, and Aa∗

i
denote all the possible crafted attack traces for original

attack trace a∗
i . Then, A can compute the optimal redundancy through a breath-

first search over the product automaton Bλ ×Aa∗
i

starting from a∗
i as the initial

state.
In order to anticipate A’s reaction to any selected threshold, D can compute

the expected minimum complexity for a given threshold λ through a Monte Carlo
approach. To this end, D can randomly draw sample original attack traces from
ΩA according to PA

i and compute the optimal redundancy, which leads to a col-
lection of minimum complexity. Therefore, for given threshold λ, D can learn the
distribution for the minimum complexity c(|a∗

i |, |r∗
i (a∗

i )|) based on this collec-
tion and furthermore can compute the expected minimum complexity wrapped
by g(·). The following lemma characterizes the relation between threshold and
the corresponding expected minimum complexity.

Lemma 1. Expected minimum complexity

c̄i(λ) := Eaaa∗
i

{
min

ã∗
i ∈Bλ∩Aaaa∗

i

g(c(|aaa∗
i |, |r∗

i (aaa∗
i )|))

}
(14)

is a non-increasing function of the threshold.

Proof. The proof follows from the assumptions that the wrapping function g(·)
is non-decreasing, and the complexity c(·) is an increasing function of the length
of the redundancy for given original attack trace a∗

i and threshold λ. Suppose
c̄i(λ1) < c̄i(λ2) while λ1 < λ2, which implies

Eaaa∗
i

{
min

ã∗
i ∈Bλ1∩Aaaa∗

i

g(c(|aaa∗
i |, |r∗

i (aaa∗
i )|))

}
< Eaaa∗

i

{
min

ã∗
i ∈Bλ2∩Aaaa∗

i

g(c(|aaa∗
i |, |r∗

i (aaa∗
i )|))

}
.

(15)
However, since λ1 < λ2, we have Bλ1 ⊂ Bλ2 . And we obtain

Eaaa∗
i

{
min

ã∗
i ∈Bλ2∩Aaaa∗

i

g(c(|aaa∗
i |, |r∗

i (aaa∗
i )|))

}
≤ Eaaa∗

i

{
min

ã∗
i ∈Bλ1∩Aaaa∗

i

g(c(|aaa∗
i |, |r∗

i (aaa∗
i )|))

}

(16)
which constradicts with (15). �

Furthermore, the second term in D’s objective function (7), i.e.,
−cFA Pr(fi(σσσ(n)) > λi), is a non-decreasing function of threshold since

{
σ(n) ∈ Σ(n) | fi(σ(n)) > λ1

}
⊂

{
σ(n) ∈ Σ(n) | fi(σ(n)) > λ2

}
(17)
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when λ1 > λ2. Therefore, D’s objective function (7) is a linear combination
of non-increasing and non-decreasing functions of the threshold while D seeks
to maximize this objective function through the threshold λ ∈ Δ. However, this
yields that the objective function could be a non-convex function of the threshold
and there can be many local minima. Correspondingly, gradient-based iterative
approaches are likely to get stuck at such local minima. Hence, D can compute the
optimal threshold through exhaustive, e.g., linear, search over Δ as in [10]. Note
that we can also prune out the search based on the monotonic characterization
of the terms in the objective function. Let λmin, λmax ∈ Δ denote, respectively,
the smallest and largest scores in Δ. Then, we have

c̄i(λo) − cFA Pr(fi(σσσ(n)) > λmax) ≥ c̄i(λ) − cFA Pr(fi(σσσ(n)) > λ) ∀λ > λo, (18)

c̄i(λmin) − cFA Pr(fi(σσσ(n)) > λo) ≥ c̄i(λ) − cFA Pr(fi(σσσ(n)) > λ) ∀λ < λo. (19)

This implies that in linear search over Δ from λmin to λmax, D can prune out
λ > λo if

max
λ<λo

{
c̄i(λ) − cFA Pr(fi(σσσ(n)) > λ)

}
≥ c̄i(λo) − cFA Pr(fi(σσσ(n)) > λmax). (20)

A detailed description of the proposed algorithm is provided in Table 1.

Table 1. A description to compute equilibrium achieving defense policies for process
i at process-level.
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Remark 6. Computing the optimal threshold can be demanding because of the
breath-first search, Monte Carlo simulation, and exhaustive search steps. We
note, however, the optimal threshold is computed off-line before deploying the
defense mechanism.

6 System-Level Game: Optimal Inter-process Adversarial
Intervention Detection

At the system-level, the players A and D can select mixed strategies over their
strategy spaces Γk := Δnk and Dk, respectively. Let αω := {αγ

ω}γ∈Γk
denote

type-ω A’s mixed strategy3 over Γk and βk := {βd
k}d∈Dk

denote D’s mixed strat-
egy over Dk. Then, the objectives of the players can be written as

JA
ω,k(αω;βk) =

∑
γ∈Γk

(
αγ

ωCω,k(γ) + αγ
ωCD

∑
d∈Dk

βd
k1{d(γ)=1}

)

JD
k(αωωω,ωωω ∼ Pω;βk)=−pkEωωω{JA

ωωω,k(αωωω, βk)}+(1−pk)CFAEsss

{
∑

d∈Dk

βd
k1{d(sss)=1}

}
.

Note that cost functions of the players depend on D’s mixed strategy βk only
through the probability of detection function πβk

D : Δnk → [0, 1], defined as
follows:

πβk
D (s) :=

∑

d∈Dk

βd
k1{d(s)=1}. (21)

Therefore, the objectives of the players can also be written as

JA
ω,k(αω;βk) =

∑

γ∈Γk

(
αγ

ωCω,k(γ) + αγ
ωCDπβk

D (γ)
)

(22)

JD
k(αωωω,ωωω ∼ Pω;βk) = −pkEωωω{JA

ωωω,k(αωωω, βk)} + (1 − pk)CFAEsss

{
πβk
D (sss)

}
. (23)

Assumption 2. Uniformly Favorable Infection. For all ω, ω′ ∈ Ω, we have

Cω,k(γ) ≥ Cω,k(γ′) ⇒ Cω′,k(γ) ≥ Cω′,k(γ′). (24)

In other words, any infected process is not exclusively favorable for a specific
type of attacker among his infected processes, since all types of attackers select
which processes to infect strategically.

The following lemma shows that at mixed strategy equilibria of the game
G k

S if all types of attackers assign zero probability to γ ∈ Γk in their mixed
strategies, then D must have always classified it as benign if it is in the support
of benign score distribution Ps

k.

3 For notational simplicity, we do not represent αω’s dependence on subset k explicitly.
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Lemma 2. Let the pair [βk;αωωω,ωωω ∼ Pω] attain mixed strategy equilibrium for
the game G k

S . If αγ
ω = 0 for all ω ∈ Ω for some γ ∈ Γk, Ps

k(γ) > 0 and pk > 0,
then we have πβk

D (γ) = 0.

Proof. Suppose there exists γo ∈ Γk such that αγo
ω = 0 for all ω ∈ Ω yet

πβk
D (γo) > 0 while Ps

k(γo) > 0. Let β̂ be a mixed strategy over Dk such that

πβ̂
D (γo) = 0 and πβ̂

D (γ) = πβk
D (γ) for all γ �= γo. Note that there exists such a

mixed strategy β̂ since any function, e.g., μ : Δnk → [0, 1], can be expressed by
a mixed strategy β over Dk such that μ(s) = πβ

D (s) for all s ∈ Δnk as shown in
Lemma 2 of [4]. Then, we obtain

JD
k(αωωω,ωωω ∼ Pω; β̂) = JD

k(αωωω,ωωω ∼ Pω;βk) − (1 − pk)CFAPs
k(γo)π

βk
D (γo)

< JD
k(αωωω,ωωω ∼ Pω;βk), (25)

which leads to a contradiction to the definition of equilibrium (12). �
Based on Lemma 2 and Assumption 2, the following lemma shows that the

probability of detection (21) is a non-decreasing function of the attacker com-
plexities.

Lemma 3. If Cω,k(γ) ≤ Cω,k(γ′) for ω ∈ Ω and any γ, γ′ ∈ Γk in the support
of Ps

k, then at a mixed strategy Nash equilibrium, D’s mixed strategy βk satisfies
πβk
D (γ) ≥ πβk

D (γ′).

Proof. The proof follows from Assumption 2 and [4]. Let the pair [βk;αωωω,ωωω ∼
Pω] attain mixed strategy equilibrium for the game G k

S . Suppose there exist
γ1, γ2 ∈ Γk such that Cω,k(γ1) ≤ Cω,k(γ2) for some ω ∈ Ω, yet πβk

D (γ1) <

πβk
D (γ2). Then, for any γ1, γ2 ∈ Γk, we have the following cases:

Case 1. A selects γ2 with non-zero probability in αω, i.e., αγ1
ω ≥ 0 and αγ2

ω > 0.
Then we have

Cω,k(γ1) + CDπβk
D (γ1) ≥ Cω,k(γ2) + CDπβk

D (γ2), (26)

while Cω,k(γ1) ≤ Cω,k(γ2), which leads to a contradiction to πβk
D (γ1) ≥

πβk
D (γ2).

Case 2. A does not select γ2 with non-zero probability in αω, i.e., αγ1
ω ≥ 0 and

αγ2
ω = 0. Then we have

Cω,k(γ1) + CDπβk
D (γ1) ≤ Cω,k(γ2) + CDπβk

D (γ2), (27)

which does not lead to any contradiction. However, πβk
D (γ2) > πβk

D (γ1) ≥ 0
implies πβk

D (γ2) > 0 and Lemma 2 yields that there exists ω′ ∈ Ω such that
αγ2

ω′ > 0. Then, by the definition of equilibrium (12), we obtain

Cω′,k(γ1) + CDπβk
D (γ1) ≥ Cω′,k(γ2) + CDπβk

D (γ2) (28)

while Cω′,k(γ1) ≤ Cω′,k(γ2) by Assumption 2 and condition Cω,k(γ1) ≤
Cω,k(γ2). This leads to a contradiction to πβk

D (γ1) ≥ πβk
D (γ2).

This concludes the proof. �
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Complexity

Detection Probability 

False Alarm Rate 

High complexity is desirable 

Low false alarm rate 
is desirable 

Low complexity is desirable 

Low detection 
probability is desirable 

A 

D 

Fig. 3. At any mixed-Nash equilibria, A selects a mixed strategy over the multiplication
factors leading to discrete complexities while D selects a mixed strategy over all the
detection rules setting a threshold on A’s complexity. Therefore, A can be detected with
some probability based on the selected mixed strategies, and the players A and D select
the mixed strategies with respect to the trade-off between low detection probability
versus high complexity, and high false alarm rate versus high complexity, respectively.

Recall that there exists a mixed strategy Nash equilibrium because of the
finiteness of the strategy spaces [1]. Based on Lemma 3 and [4], the following
theorem characterizes the equilibrium achieving strategy pairs.

Theorem 1. For system-level game G k
S , D can attain any mixed strategy equi-

librium via mixed strategies over the detection rules that set threshold for the
attacker complexity. Correspondingly, A can attain any mixed strategy equilib-
rium via mixed strategies over quotient space of the multiplication factors, where
the equivalence relation is defined with respect to the associated complexity, i.e.,
γ ∼ γ′ if, and only if, Cω,k(γ) = Cω,k(γ′).

Proof. The proof follows directly from Theorem 1 in [4] and Lemma 3 since
probability of detection is non-decreasing function of the attacker complexity
for all γ ∈ Γk, i.e., in or out of Ps

k’s support. We emphasize that if A selects a
pure strategy γo ∈ Γk that is out of Ps

k’s support, then D’s detection rule must
have detected it with probability 1, i.e., πβk

D (γo) = 1, since there is no trade-off
due to an associated false alarm. Therefore, A could select a pure strategy γo

that is out of Ps
k’s support with a non-zero probability if, and only if, γo attains

the minimum possible complexity, i.e., Cω,k(γo) = minγ∈Γk
Cω,k(γ), and

Cω,k(γo) + CD ≤ Cω,k(γ′) + CDπβk
D (γ′) ∀γ′. (29)

We obtain Cω,k(γo) ≤ Cω,k(γ′) and πβk
D (γo) = 1 ≥ πβk

D (γ′). Therefore, πβk
D (·)

is a non-increasing function of the complexity function Cω(γ) over all Γk. This
concludes the proof. �
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Theorem 1 reduces the system-level game into one-dimension, where A mixes
over the complexities while D mixes over the thresholds for these complexities
as seen in Fig. 3. Note also that a pure strategy is also a degenerate mixed
strategy. However, there may not exist a pure strategy equilibrium in general
[1]. Furthermore, Theorem 1 does not imply that if a pure strategy equilibrium
exists, then D can attain the pure strategy equilibrium via a detection rule setting
threshold for the attacker complexity. In the following, we characterize pure
strategy equilibria when D restricts herself only to such threshold based detection
rules and A selects the complexity through the multiplication factors.

Let Ξk ⊂ [0,∞) denote the finite range of Cω,k while Cmin and Cmax denote
the minimum and maximum complexities, respectively. As an example, Cmin ∈
Ξk could be obtained when γ = 1 while Cmax ∈ Ξk could be obtained when
γ = 0. Furthermore, by Assumption 2, if D selects a threshold ξω ∈ Ξk for Cω,k

then for any ω′ ∈ Ω, there exists certain ξω′ ∈ Ξk such that for all γ ∈ Γk, we
have

Cω,k(γ) ≤ ξω ⇔ Cω′,k(γ) ≤ ξω′ . (30)

Therefore, D indeed only selects a single threshold. Let

Λk := {{ξω ∈ Ξk}ω|ξω and ξω′ satisfy (30) ∀ω, ω′ ∈ Ω}
denote all such thresholds for different type attacker complexities. Note that Λk

is a totally ordered set. Correspondingly, let FA : Λk → [0, 1] denote the false
alarm rate for the threshold ξ ∈ Λk. Then, FA(·) is a non-decreasing function
of the threshold ξ.

The following theorem characterizes the pure strategy equilibrium for the
scenarios where the strategy spaces of the players are restricted as such.

Theorem 2. Suppose type ω attacker selects4 Cω ∈ Ξ while D selects ξ ∈ Λ
such that the attacker is detected if ξω ≥ Cω. Suppose also that cost of detection
for A is sufficiently large, i.e., CD is larger than any unit decrease in complexity
cost. Let E ⊂ Ω denote the type indices of the evasive attackers, i.e., E := {ω ∈
Ω|Cω ≤ ξω}. Then, a pure strategy equilibrium [ξ;Cωωω,ωωω ∼ Pω] satisfies

Cω =
{

Cmin if ω ∈ Ω\E
ξ+ω else and

i) FA(ξ) = FAmin

ii) ξ+ω ≥ Cmin + CD for ω ∈ Ω\E
iii) pk Pr(ωωω ∈ E ) ≤ (1−pk)CFA

CD
(FA(ξ+) − FA(ξ))

(31)
where FAmin ∈ [0, 1] denotes the minimum possible false alarm rate, e.g.,
FAmin = 0, and ξ+ denotes the element next to ξ in the totally ordered set
Λ.

Proof. Given [ξ;Cωωω,ωωω ∼ Pω], suppose we have

ω1 := argmax{ω ∈ Ω|Cω ≤ ξω} (32)
ω2 := argmin{ω ∈ Ω|Cω > ξω} (33)

4 For notational simplicity, we have dropped the subset index k.
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and ξ1 ∈ Λ leads to Cω1 = ξ1,ω1 while ξ2 ∈ Λ leads to Cω2 = ξ2,ω2 .
Type ω1 attacker, which is detected by D, has incentive to decrease the com-

plexity unless Cω1 = Cmin since he will still be detected yet at least with mini-
mum complexity. He has incentive to increase the complexity if he can be evasive
with a cost that is less than the current one, i.e., if Cω1 + CD > ξ+ω1

. On the
other side, D would have incentive to decrease the threshold unless a decrease in
threshold does not lead to a decrease in false alarm rate, i.e., if FA(ξ) = FAmin,
or a change the decrease in threshold leads to a change in the detection of an
attacker.

Type ω2 attacker, which is not detected by D, has incentive to decrease the
complexity as long as Cω2 ≥ ξ+ω2

, i.e., as long as he remains undetectable. On the
other side, D can have incentive to decrease the threshold in order to decrease
the false alarm rate. Or D can have incentive to increase the threshold unless
the increase in the false alarm rate is less than the benefit of detecting type ω2

attacker, i.e., if

pkCD Pr(ωωω = ω2) > (1 − pk)CFA(FA(ξ2) − FA(ξ)). (34)

Therefore, a pure strategy equilibrium exists if, and only if, (31) is satisfied. �

Remark 7. Due to the restrictive conditions in (31), Theorem 2 yields that pure
strategy equilibrium may not exist in general.

The following lemma shows that an increase in the multiplication factor
leads to a decrease in the complexity, and correspondingly, leads to an increase
in probability of detection.

Lemma 4. Let “≺” denote a partial order over Γk such that for γ := {γi}i, γ
′ :=

{γ′
i}i ∈ Γk, we say γ ≺ γ′ if γi < γ′

i for all i. Then, at any mixed-strategy Nash
equilibrium of G k

S , i.e., [βk;αωωω,ωωω ∼ Pω], if γ ≺ γ′, then we have Cω,k(γ) ≥
Cω,k(γ′)∀ω ∈ Ω, and correspondingly πβk

D (γ) ≤ πβk
D (γ′).

Proof. By Lemma 3 and (29), whether γ and γ′ are in the support of Ps
i or

not, we have πβk
D (γ) ≤ πβk

D (γ′) if Cω,k(γ) ≥ Cω,k(γ′). Suppose γ ≺ γ′ yet
Cω,k(γ) < Cω,k(γ′). Then, by (6) and (9), Cω,k(γ) < Cω,k(γ′) can be written as

g

(
∑

i

inf
r∗

i ∈W i

c(|a∗
i |, |r∗

i |)
)

< g

(
∑

i

inf
r∗

i ∈W ′
i

c(|a∗
i |, |r∗

i |)
)

, (35)

where the constraint sets on the redundant instructions are defined by Wi :=
{r∗

i ∈ Σ∗|fi(ã
(n)
i,t ) ≤ γi,tλi} and W ′

i := {r∗
i ∈ Σ∗|fi(ã

(n)
i,t ) ≤ γ′

i,tλi}. Since
γ ≺ γ′, we obtain γi,t < γ′

i,t for all i and t, which implies Wi ⊂ W ′
i for all i.

However, this relation between the constraint sets leads to a contradiction to
Cω,k(γ) ≥ Cω,k(γ′). �

Based on Lemma 4, the following lemma analyzes the coupling between pro-
cess and system level games. The lemma implies that at any mixed strategy
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equilibrium, A assigns non-zero probabilities to the multiplication factors close
to 1. Therefore, if D increases the threshold at the process level, then A would
also give non-zero probabilities to the multiplication factors leading to larger
scores, and correspondingly, lower complexities.

Lemma 5. Suppose [βk;αωωω,ωωω ∼ Pω] has attained a mixed strategy equilibrium
in subset k. If there exists γo ∈ Δ such that αγ

ω = 0 for γo ≺ γ for all ω ∈ Ω,
then γo = 1 unless πβk

D (γ) = 0 for all γ ∈ Γk, i.e., if D assesses every score as
benign.

Proof. Suppose there exists γo ∈ Δ such that αγ
ω = 0 for γo ≺ γ for all ω ∈ Ω

and γo �= 1. Then, Lemma 2 implies that πβk
D (γ) = 0 for γo ≺ γ. However, we

have γo ≺ 1 and this yields that πβk
D (1) = 0. Correspondingly, Lemma 4 implies

that πβk
D (γ) ≤ πβk

D (1) = 0 for all γ ≺ 1, i.e., πβk
D (γ) = 0 for all γ ∈ Γk. Note that

if γo = 1, we have {1 ≺ γ} = ∅. This concludes the proof. �

7 Concluding Remarks

We have provided a two-level game theoretical framework for inter-process
advanced and evasive adversarial intervention detection. This two-level frame-
work has facilitated abstraction of the complicated process-level interaction
between IDSs and evasively crafted malicious codes from more flexible and easier
to interpret system-level interaction across the processes. Within a game theo-
retical framework, we have analyzed the incentives of the players while selecting
their strategies. We have also highlighted the significance of anticipating the
reaction of the advanced evasive adversaries to the selected defense mechanisms.
Finally, we have analyzed the coupling between process and system level games.

Some future directions of research on this topic include:

– A provenance graph P = (V ,E ) is a directed graph, where V denotes the set
of vertices representing the objects, i.e., processes or files or external hosts,
and E denotes the set of edges representing the information-flow among the
objects, e.g., due to system-calls [11]. Inter-process information flow can be
captured via a provenance graph. Incorporating the provenance graph into
the system-level game can enable more effective defense measures.

– Emprical evalution of the proposed defense measures in real life cyber attack
scenarios is left as a future work.

– Here, we have only considered single-shot games. This formulation can also
be extended to multi-stage games in dynamic environments as in [21].

– We haved considered here the scenarios where IDSs provide discrete scores
for the sub-traces while its extension to continuum is left as a future work.
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1. Başar, T., Olsder, G.: Dynamic Noncooperative Game Theory. Society for Indus-
trial Mathematics (SIAM) Series in Classics, Applied Mathematics (1999)

2. Barabosch, T., Gerhards-Padilla, E.: Host-based code injection attacks: a popular
technique used by malware. In: The 9th International Conference on Malicious and
Unwanted Software: The Americas (MALWARE) (2014)

3. Brangetto, P., Aubyn, M.K.-S.: Economic aspects of national cyber security strate-
gies. Technical report, NATO Cooperative Cyber Defense Centre of Excellence
Tallinn, Estonia (2015)

4. Dritsoula, L., Loiseau, P., Musacchio, J.: A game-theoretic analysis of adversarial
classification. IEEE Trans. Inf. Forensics Secur. 12(12), 3094–3109 (2017)

5. Du, M., Li, F., Zheng, G., Srikumar, V.: DeepLog: anomaly detection and diag-
nosis from system logs through deep learning. In: Proceedings of the 24th ACM
Conference on Computer and Communications Security (2017)

6. Elisan, C.C.: Malware, Rootkits and Botnets: A Beginner’s Guide. McGraw-Hill,
New York (2013)

7. Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly detection
using call stack information. In: Proceedings of the IEEE Security and Privacy
(2003)

8. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for Unix
processes. In: Proceedings of IEEE Symposium on Security and Privacy (1996)

9. Gao, D., Reiter, M.K., Song, D.: On gray-box program tracking for anomaly detec-
tion. In: Proceedings of the 13th Conference on USENIX Security Symposium
(2004)

10. Ghafouri, A., Abbas, W., Laszka, A., Vorobeychik, Y., Koutsoukos, X.: Optimal
thresholds for anomaly-based intrusion detection in dynamical environments. In:
Zhu, Q., Alpcan, T., Panaousis, E., Tambe, M., Casey, W. (eds.) GameSec 2016.
LNCS, vol. 9996, pp. 415–434. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47413-7 24

11. Ji, Y., et al.: RAIN: refinable attack investigation with on-demand inter-process
information flow tracking. In: Proceedings of the 24th ACM Conference on Com-
puter and Communications Security (2017)

12. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Automating mimicry
attacks using static binary analysis. In: Proceedings of the 14th USENIX Security
Symposium (2005)

13. Manzoor, E., Milajerdi, S.M., Akoglu, L.: Fast memory-efficient anomaly detection
in streaming heterogeneous graphs. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (2016)

14. Parampalli, C., Sekar, R., Johanson, R.: A practical mimicry attack against pow-
erful system-call monitors. In: Proceedings of the 2008 ACM Symposium on Infor-
mation, Computer and Communications Security (2008)

15. Shu, X., Yao, D.D., Ryder, B.G.: A formal framework for program anomaly detec-
tion. In: Bos, H., Monrose, F., Blanc, G. (eds.) RAID 2015. LNCS, vol. 9404, pp.
270–292. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26362-5 13

16. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts. Wiley,
Hoboken (2013)

17. Somayaji, A., Forest, S.: Automated response using system-call delays. In: Pro-
ceedings of the 9th USENIX Security Symposium (2000)

https://doi.org/10.1007/978-3-319-47413-7_24
https://doi.org/10.1007/978-3-319-47413-7_24
https://doi.org/10.1007/978-3-319-26362-5_13


Inter-process Adversarial Intervention Detection 507

18. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proceedings of
the Symposium on Security and Privacy (2001)

19. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.
In: Proceedings of the 9th ACM Conference on Computer and Communications
Security (2002)

20. Yao, D., Shu, X., Cheng, L., Stolfo, S.J.: Anomaly Detection as a Service: Chal-
lenges, Advances, and Opportunities. Synthesis Lectures on Information Security,
Privacy, and Thrust #22, Morgan & Claypool Publishers (2017)
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Abstract. An insurer has to know the risks faced by a potential client
to accurately determine an insurance premium offer. However, while the
potential client might have a good understanding of its own security
practices, it may also have an incentive not to disclose them honestly
since the resulting information asymmetry could work in its favor. This
information asymmetry engenders adverse selection, which can result in
unfair premiums and reduced adoption of cyber-insurance. To overcome
information asymmetry, insurers often require potential clients to self-
report their risks. Still, clients do not have any incentive to perform
thorough self-audits or to provide comprehensive reports. As a result,
insurers have to complement self-reporting with external security audits
to verify the clients’ reports. Since these audits can be very expensive, a
key problem faced by insurers is to devise an auditing strategy that deters
clients from dishonest reporting using a minimal number of audits. To
solve this problem, we model the interactions between a potential client
and an insurer as a two-player signaling game. One player represents the
client, who knows its actual security-investment level, but may report any
level to the insurer. The other player represents the insurer, who knows
only the random distribution from which the security level was drawn,
but may discover the actual level using an expensive audit. We study the
players’ equilibrium strategies and provide numerical illustrations.

1 Introduction

Technological innovations, such as artificial intelligence and ubiquitous comput-
ing, are becoming integral parts of our lives, and providing us with many benefits.
But these developments also bring new threats, and the insurance industry is
playing catch-up to keep pace with the rapid rise of cyber-risks. Cyber-threat
remains one of the most significant—and growing—risks facing businesses. For
example, a UK government survey estimated that in 2014, 81% of large corpo-
rations and 60% of small businesses have suffered a security breach. The average
cost of breaches, in the UK, was between £600,000 and £1.15 million for large
businesses and between £65,000 and £115,000 for small businesses [1]. Further,
c© Springer Nature Switzerland AG 2018
L. Bushnell et al. (Eds.): GameSec 2018, LNCS 11199, pp. 508–520, 2018.
https://doi.org/10.1007/978-3-030-01554-1_29
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in 2016, more than 1.1 billion identities were stolen in data breaches, almost dou-
ble the number stolen in 2015 [23]. In aggregate, Forbes reports that cyber-crime
losses will be more than US$2.1 trillion by 2019 [9].

Unfortunately, even with the strongest cyber-security controls purchased and
implemented, an organization is at risk of being compromised. As such, apart
from security measures, responses to cyber-security risk include outsourcing it by
purchasing cyber-insurance coverage. However, 60% of Fortune 500 companies
still lack any insurance against cyber-incidents, primarily due to a lack of cover
currently available for many types of cyber-risk [14].

Cyber-insurance, as any other field of insurance, faces a number of chal-
lenges [6,15,16]. In particular, asymmetry of information and the resulting
adverse selection caused by organizations being reluctant to share their actual
levels of cyber-risk may present significant premium pricing obstacles to insurers.
It is, therefore, perhaps unsurprising that insurers tend to offer a pricing struc-
ture that charges companies similar rates regardless of the underlying actual
risks [18]. However, if a cyber-insurer cannot differentiate between clients based
on their security level and therefore cannot offer differentiated premiums, the
insurer will not be able to sustain a profitable business [3].

Typically, insurers require organizations to self-report on their security level
in order to determine premiums. Prior to setting the premium, the insurer must
then decide whether the security level reported by the client must be confirmed
by undertaking some audit (e.g., penetration testing). Although it is beneficial
for the insurer to know the exact security level of its potential client so that
it can ask for a fair premium, there is a cost associated with conducting an
audit.1 The insurer has two options: (i) to trust that the security level the client
reported is true and compute the premium based on this level, thereby saving
audit costs; or (ii) not to trust the reported security level and perform an audit
to reveal the real security level despite having to pay for an audit to take place.

After the insurer offers a premium, the client must decide whether it will
accept the offer and be underwritten, or whether it will not use cyber-insurance
at all. This is an important decision to be made, and it has been noticed that
many organizations, especially small-to-medium enterprises, decide not to pur-
chase cyber-insurance due to the incurred financial costs [11].

Contributions: The aim of this research is to introduce a new model to study
optimal strategies for self-reporting security levels (for organizations) and under-
taking audits (for insurers). The insurers’ strategy aims to ensure that the actual
security levels of their clients have been elicited and therefore “fair” contracts
(coverage, premium) are put in place.

More concretely, we model the interactions between a potential client and an
insurer as a two-player signaling game, where the organization plays the role of
the sender, while the insurer plays the role of the receiver. We assess our game
model using numeric simulations to derive the probability of reporting each type,

1 In fact, the cost of penetration testing, cyber-security risk assessment and related
services is non-trivial and quickly increases with the size of an organization. See, for
example, the pricing examples at: https://www.trustnetinc.com/pricing/.

https://www.trustnetinc.com/pricing/
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the audit probabilities, and the insurance premiums for various audit cost values.
The proposed game-theoretic model can form the basis of a framework that can
further accelerate the adoption of cyber-insurance.

2 Model

We model the interactions between an insurer and a potential client, whom we
will call the organization, as a two-player single-shot game. For a list of symbols
that are used in our model, see Table 1. We assume that the organization has a
type t ∈ S, where S is a finite set of types. Type t models the level of security
investments and the combination of security measures that the organization
implements. For simplicity, we let type t be equal to the estimated probability
of the organization not suffering a cyber-incident.

Table 1. List of symbols

Symbol Description

S Set of organization types (i.e., security levels)

Pt Probability of the organization’s type being t

t, T Organization’s real type (realization, random variable)

r,R Organization’s reported type (realization, random variable)

p Cyber-insurance premium

ρt Reporting strategy of organization with real type t

a Insurer’s strategy for auditing the organization

pA Insurer’s strategy for premium selection after auditing

pN Insurer’s strategy for premium selection without auditing

W Organization’s initial wealth

L Organization’s loss in case of a cyber-incident

U Organization’s utility function

C Insurer’s cost for auditing the organization

The organization applies for insurance coverage and the insurer determines
the premium as follows (Fig. 1):

– First, the organization’s type t is drawn randomly from the set of types S
according to a known distribution2. We let T denote the random variable tak-
ing the value of the organization’s type, and we let Pt denote the probability
that the organization’s type is t (i.e., Pt = Pr[T = t]).

2 Randomness models the insurer’s a priori uncertainty regarding what type of orga-
nization it faces.
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– Second, the organization chooses a type r ∈ S that it reports to the insurer.
The organization’s choice may be randomized based on a mixed strategy. We
let R denote the random variable taking the value of the reported type.

– Based on the reported type r, the insurer decides whether to audit the orga-
nization or not. If the insurer chooses to audit the organization, then the true
type t is revealed, but the insurer incurs a constant auditing cost C.

– Finally, based on the type t or r (depending on whether the organization
has been audited), the insurer chooses a premium p that is asked from the
organization in exchange for insurance coverage. The organization rejects the
coverage if doing so increases its utility; otherwise, it accepts the coverage
and pays the premium.

2.1 Strategies

An organization’s strategic choice is to select what type to report to the
insurer. We let ρt denote the mixed strategy of an organization with real
type t, where ρtr is the probability that the organization reports type r (i.e.,
ρtr = Pr[R = r |T = t]). Note that we assume that the organization’s strategic
choice does not include coverage acceptance or rejection (i.e., we assume that
coverage is rejected if and only if it is not worth purchasing). This is similar
to assuming that the organization makes coverage decisions but restricting the
solutions to subgame perfect equilibria (i.e., prohibiting non-credible threats of
not purchasing insurance).

Nature

Organization

Insurer

Insurer

Equations (1), (2), (3)

pAt

audit

Insurer

Equations (1), (2), (4)

pNr

not audit

r ∈ S

t ∈ S

Fig. 1. Tree representation of the game. The players’ payoffs are given by Eqs. (1), (2),
(3), and (4).

The insurer’s first strategic choice is to decide whether to audit the orga-
nization or not. Before auditing, the insurer does not know the organization’s
real type t, but it does know the exogenous parameter values of the model3,
which include the distribution from which the type was drawn (i.e., it knows the
3 These may be learned from statistics that are available to the insurer.
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probabilities Pt), as well as the organization’s reporting strategies ρ. We let a
denote the insurer’s strategy, where ar is the probability that the insurer audits
an organization with reported type r. The insurer’s second strategic choice is to
choose a premium p. First, we let pN denote the insurer’s strategy given that
it has not performed an audit, where pNr is the premium asked from an orga-
nization with reported type r. Second, we let pA denote the insurer’s strategy
given that it has performed an audit, where pAt is the premium asked from an
organization with real type t.

2.2 Payoffs

Now, we define the players’ payoffs in the various outcomes of our game. As it is
standard in the cyber-insurance literature, we capture the risk aversion of clients
using a concave utility function, initial wealth, and potential losses. First, the
organization’s payoff (i.e., utility), if it accepts coverage is

Uorg,acc
t (p) = U(W − p), (1)

where W is the organization’s initial wealth, and U is its utility function, which
we assume to be continuous, monotonically increasing, and concave.

Second, the organization’s payoff if it rejects coverage is

Uorg,rej
t = (1 − t) · U(W − L) + t · U(W ), (2)

where L is its loss in case of a cyber-incident. The two terms correspond to the
cases of suffering a cyber-incident and not suffering one, respectively.

If the insurer audits the organization, its payoff (i.e., profit) is

U ins,aud(t, p) = (p − (1 − t) · L) · 1{insurance accepted} − C, (3)

where 1{insurance accepted} is equal to 1 if the organization purchases insurance,
and 0 otherwise. If the insurer does not audit, then its payoff is

U ins,noaud(t, p) = (p − (1 − t) · L) · 1{insurance accepted}. (4)

Note that the insurer does not learn the true value of t if it does not audit the
organization; however, its payoff still depends on t.

Given mixed-strategy profile (ρ, (a,pN ,pA)), the expected utility of an orga-
nization with type t is

E [Uorg
t ]

(
ρ,a,pN ,pA

)
=

∑

r∈S
ρtr

[

ar · max
{

Uorg,acc
t (pAt ), Uorg,rej

t

}

+ (1 − ar) · max
{

Uorg,acc
t (pNr ), Uorg,rej

t

}
]

,

while the insurer’s expected utility is

E
[U ins

] (
ρ,a,pN ,pA

)
=

∑

t∈S
Pt

∑

r∈S
ρtr

[

ar · U ins,aud(t, pAt ) + (1 − ar) · U ins,noaud(t, pNr )

]

.
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2.3 Solution Concept

We are interested in finding an equilibrium of our game, which can capture the
long-term insurance market equilibrium. Since our model is essentially a sig-
nalling game, we use perfect Bayesian Nash equilibrium as the solution concept.

After receiving the reported level r, the insurer’s belief regarding the potential
client’s real type can be expressed using Bayes’ rule as

Pr [T = t | R = r] =
Pr [T = t, R = r]

Pr [R = r]
=

Pt · ρtr∑
t′∈S Pt′ · ρt′

r

.

A mixed-strategy profile (ρ∗, (a∗,pN ∗
,pA∗)) is an equilibrium if

– for each security level t ∈ S, the strategy ρt∗ maximizes the expected utility
of an organization with level t given the insurer’s strategy (a∗,pN ∗

,pA∗):

ρt∗ ∈ argmaxρtE [Uorg
t ]

(
ρt,a,pN ,pA

)
;

– for each reported security level r ∈ S, the strategy (a∗,pN ∗
,pA∗) maximizes

the expected utility of the insurer given its belief regarding the potential
client’s real type t:

(a∗,pN ∗
,pA∗

) ∈ argmax(a,pN ,pA)

∑

t∈S
Pr[T = t | R = r]

[
ar · U ins,aud(t, pAt )

+ (1 − ar) · U ins,noaud(t, pNr )
]
.

3 Preliminary Analysis

Next, we provide some necessary conditions on the players’ best responses.

Lemma 1. An organization of type t accepts insurance coverage for premium p
if and only if p ≤ p̂t, where

p̂t = W − U−1 ((1 − t) · U(W − L) + t · U(W )) . (5)

Proof. By definition, an organization with type t accepts coverage for premium p
if and only if

Uorg,acc
t (p) ≥ Uorg,rej

t

U(W − p) ≥ (1 − t) · U(W − L) + t · U(W )

W − p ≥ U−1 ((1 − t) · U(W − L) + t · U(W ))

p ≤ W − U−1 ((1 − t) · U(W − L) + t · U(W )) := p̂t.

��
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Lemma 2. In an equilibrium, the premium pAt
∗ that an insurer requests from an

organization with type t after an audit is pAt
∗ = p̂t if p̂t ≥ (1 − t) · L. Otherwise,

the insurer asks for some premium pAt
∗

> p∗
t , which will always be rejected by

the organization.

Proof. If the insurer has audited an organization and found its type to be t, then
its payoff for premium p will be

U ins,aud(t, p) = (p − (1 − t) · L) · 1{insurance accepted} − C (6)
= (p − (1 − t) · L) · 1{p≤p̂t} − C. (7)

When p ≤ p̂t, the first derivative of the payoff U ins,aud(t, p) is

∂U ins,aud(t, p)
∂p

= 1; (8)

hence, the maximum on interval (−∞, p̂t] is attained at p̂t, and the maximum
payoff is p̂t − (1 − t) · L − C. When p > p̂t, the payoff is always −C since the
organization rejects coverage. Hence, p̂t is an optimal premium pAt

∗ if and only if

p̂t − (1 − t) · L − C ≥ −C (9)
p̂t ≥ (1 − t) · L; (10)

otherwise, premiums greater than p̂t are optimal, which will be rejected. ��
Lemma 3. In an equilibrium, the premium pNr

∗ that an insurer requests without
an audit from an organization with reported type r is either pNr

∗ ∈ {p̂t | t ∈ S},
which may be accepted by some organizations, or pNr

∗
> max {p̂t | t ∈ S}, which

will be rejected by any organization.

Proof. If the insurer has not audited an organization that reported type r, then
its payoff for premium p will be

∑

t∈S
Pr[T = t|R = r]U ins,noaud(t, p) (11)

=
∑

t∈S
Pr[T = t|R = r] (p − (1 − t) · L) · 1{insurance accepted} (12)

=
∑

t∈S
Pr[T = t|R = r] (p − (1 − t) · L) · 1{p≤p̂t}. (13)

The values {p̂t | t ∈ S} divide the set of possible premium values [0,∞) into
|S|+1 contiguous intervals, the last one being (max {p̂t | t ∈ S} ,∞). The payoff
is strictly increasing on each interval, except for the last one. On the last interval,
(max {p̂t | t ∈ S} ,∞), the payoff is always zero. Therefore, the optimal premium
pNr

∗ is either one of the values {p̂t | t ∈ S} or any value pNr
∗

> max {p̂t | t ∈ S},
which will be rejected by any organization. ��
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4 Numerical Illustrations

In this section, we present numerical illustrations of our model. We let S =
{0.5, 0.65, 0.8, 0.95}, W = 10, L = 5, the utility function U be the natural
logarithm function, and the organization’s type t be drawn according to P0.5 =
0.125, P0.65 = 0.375, P0.8 = 0.375, and P0.95 = 0.125; we used numerical search
to find equilibria for various audit costs C.

0.16 0.18 0.2 0.22 0.24
0

1

2

C

E[U ins]
E[Uorg

0.5 ]
E[Uorg

0.65]
E[Uorg

0.8 ]
E[Uorg

0.95]

Fig. 2. Players’ payoffs in equilibrium with various audit cost values.

Figure 2 shows the organization’s and the insurer’s expected payoffs in equi-
librium as functions of the audit cost C. The organization’s expected payoff
remains steady if it is secure and has little incentive to misreport. But in the case
of an organization with security level 0.5, the payoff increases when the auditing
cost reaches the value of 0.22. On the other hand, the insurer’s expected payoff
decreases with the auditing cost, but the rate of reduction is fairly small.

Figure 3 shows the probabilities Pr[T = t] of reporting various types as
functions of the audit cost C. We observe rampant misreporting since the
organization’s security level is either t = 0.5 or t = 0.65 with probability
0.5 = P0.5+P0.65, but it never reports these low levels (i.e., Pr[R = 0.5] = 0 and
Pr[R = 0.65] = 0). We also see that the probability Pr[R = 0.95] of misreporting
a higher, “more suspicious” level increases as audits become more expensive.

Figure 4 shows the equilibrium auditing probabilities a∗ as functions of the
audit cost C. Interestingly, the results show that in an equilibrium, the insurer
does not conduct audits for reported security levels equal to or less than 0.8.
For reported level 0.95, we observe a sharp threshold: the insurer always audits
if the cost of the audit is less than 0.22, but never audits if it is greater.

Figure 5 shows the equilibrium premiums without audit pN ∗ as functions of
the audit cost C. We notice that for the lowest security level assessed, 0.5, the
premium is the highest one and remains steady for the entire range of audit
costs. Such a security level means having a 50% chance of getting compromised
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Fig. 3. Probability of reporting each type in equilibrium with various audit cost values.
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Fig. 4. Audit probabilities in equilibrium with various audit cost values.
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Fig. 5. Premiums (without audit) in equilibrium with various audit cost values.
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and therefore the insurer must ask for a sizable premium. For security levels 0.8
and 0.95, when audit costs are higher than 0.2, the equilibrium premiums are
identical and lower than for the other two security levels, 0.5 and 0.65. In future
work, we will conduct further experiments to understand the behaviour of the
insurer’s strategy in terms of premiums in the equilibrium, considering both the
audited and non-audited cases.

5 Related Work

We discuss two classes of related work: literature on cyber-insurance—more
specifically on adverse selection, moral hazard, and information asymmetries—
and literature on security audits.

Cyber-Insurance and Information Asymmetry: Some of the main factors
that hinder cyber-risk management via cyber-insurance are risk correlations,
interdependence, and information asymmetries [8]. Among these, we focus on
information asymmetries, which are taken into account by many articles in the
field of security economics and cyber-insurance [4,12,17,20].

Shetty et al. [21,22] prove a proposition providing a condition, which when
satisfied, states that any insurance contract with security levels unobservable
by the insurers strictly decreases the utility of the users, leading to a missing
insurance market. Yet, with insurers present, and security levels contractible, in
any equilibrium, full client coverage is offered.

Schwartz et al. [19] investigate the occurrence of a “lemon market” [2] when
insurers cannot differentiate between different risk behaviors of clients. Lack of
rich information about user choices and activities, leads to information asym-
metry, which worsens the usual insurers’ problems of moral hazard and adverse
selection. They prove that no matter how small the fraction of malicious users
is, an equilibrium does not exist, and therefore the cyber-insurance market is
missing. In addition, they claim that due to adverse selection, cyber-insurers
would not underwrite contracts conditioning user premiums on their security.

Bandyopadhyay et al. [5] build an economic model describing an optimal
cyber-insurance contract and the optimal claim strategy for the insured firm.
They show that insured firms optimally transfer more risk through insurance
contracts under information symmetry than otherwise. They also present a circle
of steps going from information symmetry for the cyber-insurance market to
information asymmetry when the client first realizes the effect of IT risks, to
end up back in information symmetry when the insurer finds out about the
altered claiming and buying behavior as well as the underlying reasons.

Security Audits for Cyber-Insurance Underwriting: In [3], Baer and
Parkinson suggest that both insurers and clients are sophisticated in dealing
with security assessments regarding cyber-insurance coverage decisions. Cyber-
insurers demand audits by independent consultants on a case-by-case basis,
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depending on the risks to be insured and the client requirements with regards to
policy limits [10]. For example, the largest cyber-insurance underwriter, called
AIG, asks prospective clients to complete an “Information Security Self Assess-
ment” online. The results of such self-assessments determine whether the insurer
will undertake a security audit on client’s premises to bind coverage.

Böhme [7] argues that security audits can generate positive utility overcoming
information asymmetries in a scenario focused on “solving coordination prob-
lems.” According to this, the players themselves decide about their own security
investment and whether or not to give away information about the resulting
security level. Security audits are a tangible way to derive such security levels.
The author states that it is difficult to measure the security level of products
due to: (i) the difficulty of specifying all security requirements; and (ii) attacks
neither occur deterministically nor is their occurrence observable in real time.
The hardness of measurement implies significant effort to undertake a meaning-
ful audit and requires special knowledge and experience. The difficulty of the
audit increases disproportionately to the complexity of the system due to the
non-linear growth of interdependencies among different assets.

Khalili et al. [13] suggest that recent advances in Internet measurement com-
bined with machine learning techniques enable accurate quantitative assessments
of security posture at a firm level. They claim that this can be used as a tool
to perform an initial security audit, or pre-screening, of a prospective client to
better enable premium discrimination and the design of customized policies.

6 Conclusions

Cyber-insurers face the challenge of devising a policy that is “reasonable” for
the client to purchase but profitable for the insurer as well. To elicit risk levels
for premium calculations, the insurer either asks the organization to conduct
some self-assessment and report it, or it undertakes an audit to identify the real
security level with certainty. Further, the possibility of being audited by the
insurer may incentivize the organization to report truthfully. However, such an
audit introduces costs for the insurer, which may be relatively high.

We introduced a new model to study optimal strategies for self-reporting
security levels (for organizations) and undertaking expensive audits (for insur-
ers). The insurers’ strategy aims to ensure that the actual security levels of their
clients have been elicited and therefore “fair” contracts (coverage, premium) are
put in place. More concretely, we modeled the interactions between a potential
client and an insurer as a two-player signaling game, where the organization
plays the role of the sender, while the insurer plays the role of the receiver. To
the best of our knowledge, this paper is the first to attempt studying incentives
for auditing potential clients before cyber-insurance premium calculations. The
proposed model may form the basis of a framework that can further accelerate
the adoption of cyber-insurance.

Our model and analyses do have certain limitations, which we intend to
improve upon in future work. First, future work may allow the insurer to offer
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multiple levels of coverage (for different premiums) to an organization; i.e., when
the insurer computes premiums, it also associates these premiums with certain
degrees of loss recovery. Secondly, future work may allow the insurer to perform
cyber-forensics when a claim is filed in order to reveal whether the organiza-
tion was honest when reporting its security level. In this case, the insurer avoids
auditing costs, but may still be able to deter clients from misreporting. We shall
investigate the trade-offs between forensics and auditing costs. Furthermore, we
will consider penalties for untruthful organizations. Punishment of such behavior
may be realized in the form of increased premiums or reduction of some reputa-
tion metric that affects any future cyber-insurance contract of the organization.
More ambitiously, our plan is to work with cyber-insurers to acquire realistic
data as part of a recently funded research project.
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Abstract. We consider the problem of identifying the set of users in
an organization’s network that are most susceptible to falling victim
to social engineering attacks. To achieve this goal, we propose a test-
ing strategy, based on the theory of multi-armed bandits, that involves
a system administrator sending fake malicious messages to users in a
sequence of unannounced tests and recording their responses. To accu-
rately model the administrator’s testing problem, we propose a new
bandit setting, termed the structured combinatorial multi-bandit model,
that allows one to impose combinatorial constraints on the space of allow-
able queries. The model captures the diversity in attack types and user
responses by considering multiple multi-armed bandits, where each ban-
dit problem represents an attack (message) type and each arm represents
a user. Users respond to test messages according to a response model
with unknown statistics. The response model associates a Bernoulli dis-
tribution with an unknown mean with each message-user pair, dictating
the likelihood that a user will respond to a given message. The admin-
istrator’s problem of identifying the most susceptible users can then
be expressed as identifying the set of message-user pairs with means
that exceed a given threshold. We adopt a Bayesian approach to solving
the problem, associating a (beta) prior distribution with each unknown
mean. In a given trial, the system administrator queries a selection of
users with test messages, generating query responses which are then used
to update posterior distributions on the means. By defining a state as
the parameters of the posteriors, we show that the optimal testing strat-
egy can be characterized as the solution of a Markov decision process
(MDP). Unfortunately, solving the MDP is computationally intractable.
As a result, we propose a heuristic testing strategy, based on Thompson
sampling, that focuses queries on message-user pairs that are estimated
to have means close to the threshold. The heuristic testing strategy is
shown to yield accurate identifications.
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1 Introduction

Social engineering attacks represent an emerging threat that involve the per-
suasion of a user into unknowingly aiding the attacker, whether it be through
divulging sensitive information or opening a backdoor to the system. Such
attacks (also referred to as semantic attacks [30]) involve adversaries sending
malicious messages to users with the intent of making them believe that the mes-
sage is actually legitimate. Some prominent types of social engineering attacks
include email and voice phishing, in which a user is presented with seemingly
legitimate emails or phone calls asking them to provide information, access a
website, or open an attachment, file/application masquerading, where a user is
presented with a malware-infected document or program, and malvertisement,
where an adversary injects malicious advertisements into websites in the hope
that a user will click [15,27]. While successful social engineering attacks can have
damaging consequences for an individual user, such as revealing one’s login cre-
dentials or personal information, the consequences of a successful attack can be
dire if the targeted user resides within an organization’s enterprise network. For
example, preliminary investigations into the Target breach of 2013 revealed that
the initial intrusion into its network was facilitated by theft of credentials, via
phishing emails, from one of its contractor companies [20]. The resulting breach
exposed more than 40 million credit and debit card accounts. More recently, the
Ukrainian power grid hack of 2015 involved attackers sending operators phishing
emails that contained a malicious Word document [33]. Upon opening the file,
malware was installed on their computers allowing a backdoor to be opened.
The attackers later used this backdoor to gather workers’ credentials and subse-
quently access the system, carrying out actions that left nearly a quarter million
people without power.

Social engineering attacks highlight the fact that no matter how secure we
make our systems, an unaware user can inadvertently render advanced defenses
completely ineffective. Making our systems more robust to these human vul-
nerabilities involves first understanding how social engineering attacks succeed.
Doing so is complicated by the fact that such attacks target users, rather than
the system directly, making them very difficult to detect [15]. Furthermore, the
diversity of social engineering attacks, coupled with an even more diverse range
of user behavior, presents significant difficulties in modeling how users respond
to attacks. As a result, quantification of the security of the system will require
the development of accurate behavioral models for how humans respond to such
adversarial attacks.

In this paper, we propose a formal testing procedure, based on the theory
of multi-armed bandits [28], for identifying the set of users in an organization
that are most susceptible to social engineering attacks. The testing procedure
involves a system administrator carrying out a sequence of unannounced tests
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where users are queried with fake malicious messages, designed to mimic true
social engineering attacks, with the goal of identifying the set of users that pose
the highest security risk, i.e. the users that are most likely to respond to a true
attack. Given a limited amount of testing resources (specifically a fixed number
of testing trials), the system administrator must determine which users to query
with which messages, in each trial, in order to obtain the best possible estimate
of the high-risk users at the end of the testing horizon. To accurately model
the testing environment, we propose a new bandit setting, termed the structured
combinatorial multi-bandit model. By categorizing various attack messages into
a finite set of message types and associating each message type with its own
distinct multi-armed bandit (with arms representing users), querying a specific
user with a message of a given type corresponds to pulling a bandit-arm pair.
In each testing trial, the system administrator selects a collection of users to
query with various message types (a collection of bandit-arm pairs), in what is
termed a query set, where the space of allowable query sets is constrained by
practical considerations, e.g. in each trial, no user should be tested more than
once and no more than a fixed proportion of the users should be tested. The
selected query set generates responses from the corresponding users according
to a response model with unknown statistics. Specifically, each user’s response to
each message type is characterized by a Bernoulli distribution with an unknown
mean. Under this setting, the administrator’s problem of identifying the high-
risk users corresponds to identifying the set of message-user pairs with means
above a given threshold, termed a thresholding criterion in the bandit literature.
The administrator’s goal is to determine an optimal testing strategy, defined by a
sequence of query sets, selected as a function of user feedback, and a prescription
of an identification set of the means exceeding the threshold, in order to ensure
that the terminal estimate is as accurate as possible.

To solve for an optimal testing strategy, we adopt a Bayesian approach
involving maintaining probability distributions over the unknown means of the
response model. By assuming a structured prior, specifically a beta distribution,
the Bernoulli responses of the users to the test messages ensures that the updated
posterior distributions are also beta-distributed [13]. Through appropriate def-
inition of an information state, specifically the parameters of the posteriors,
the optimal testing strategy can be characterized as the solution to a type of
sequential decision process termed a Markov decision process (MDP) [26]. Unfor-
tunately, due to the scale of the resulting MDP, we cannot solve it exactly. As
a result, we propose a heuristic strategy, based on the top-two Thompson sam-
pling algorithm of [29], that involves selecting queries in such a way as to focus
samples on message-user pairs with means that are believed to be close to the
threshold. As shown through numerical experiments in a variety of settings, the
heuristic testing strategy yields accurate identifications, performing especially
well in domains with a large number of users and message types.
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1.1 Relevant Literature

The nature of our modern information systems – specifically, the increased use
of social networks, cloud storage, and digital communications – has made them
especially vulnerable to social engineering attacks. In response, researchers have
studied the wide-range of possible attacks, classifying them into taxonomies
[15,21] and aiding our understanding of how they unfold. Since social engineering
attacks inherently involve the user, much of the research in the security liter-
ature draws from ideas introduced in behavioral psychology. In particular, the
emerging field of behavioral information security [9] addresses how the behavior
of the user impacts the security of the system, helping to describe security pol-
icy compliance, employee behavior, and even attack motives. Additional research
has investigated how the principles of persuasion [8] influence a user’s likelihood
of falling victim to social engineering attacks [6]. While education and train-
ing for social engineering attacks has been shown to be an effective method for
improving security awareness [22], there has been limited work in regard to eval-
uating how these testing resources should be allocated. One of the few examples
is the work of Dodge et al. [10] in which a survey is developed where users are
sent phishing emails in order to evaluate their likelihood of responding. While
interesting, the approach is empirical and does not leverage any formal theory.

Multi-armed bandits offer a principled approach for the design of experi-
ments, and form the basis of our testing problem. First introduced in the 1930s
by Thompson [31] for the design of medical trials, and later formalized by Rob-
bins [28], multi-armed bandits have found applications in a wide variety of areas,
most recently in sequential decision-making [19] and recommendation systems
[24]. The classical bandit setting is a sequential decision problem where, in each
trial, an agent samples (termed a pull) one of a finite set of unknown reward dis-
tributions (termed arms), in order to minimize the difference between the sum of
sampled rewards and the highest possible reward (termed the cumulative regret).
Inherent to the problem is the trade-off between exploitation, pulling arms that
are believed to give a high reward, and exploration, pulling other arms in order
to rule out better alternatives. The problem has been well-studied, generating
results under both frequentist [3,23] and Bayesian [13] viewpoints.

Departing from the traditional exploration-exploitation setting, Bubeck et
al. [4] introduced a new paradigm, termed pure exploration. Unlike in the clas-
sical bandit setting where exploration and exploitation are interleaved, the pure
exploration setting instead concerns how one can make best use of a limited
amount of resources (for example, the total number of trial periods) in order to
ensure that some terminal estimate is as accurate as possible. The problem has
primarily been investigated under the frequentist setting, where a wide-variety
of criteria have been considered, including top arm identification [2,4], top m
arm identification [5], top subset identification [7], and thresholding set identifi-
cation [25]. Other work [12] has considered more general settings that consist of
a collection of multi-armed bandits, termed a multi-bandit, with the motivating
context of designing clinical trials for multiple subpopulations of patients. More
recently, others have explored more general action spaces, where the agent can
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pull more than a single arm in each trial, e.g. batch pulls [32] and combinatorial
(probe) pulls [17]. Compared to frequentist approaches, investigation into pure
exploration problems from a Bayesian perspective have received less attention
in the literature. We are aware of two approaches in the bandit literature, both
that aim to solve the top arm identification problem. In the first approach [16],
the authors study a top arm identification problem (under a finite query budget)
where the reward distributions of arms are assumed to be correlated. The second
approach [29] proposes three heuristic algorithms for the top arm identification
problem and presents theoretical guarantees on their performance. A similar
problem has also been investigated outside of the bandit literature, termed the
ranking and selection problem [11].

1.2 Contribution

While social engineering attacks have received much attention in the security
literature in recent years, our paper is the first to present a formal approach for
evaluating users’ likelihoods of responding to attacks. Our paper has a similar
objective as that of [10], namely of aiming to identify high-risk users; however,
the approach of [10] is strictly empirical. As outlined in [9], one of the key
difficulties in the security of sociotechnical systems is the challenge in “observing
and collecting actual user behavior data.” Our proposed testing strategy provides
a principled framework for extracting data from users and formally describes how
it can be used to learn how they may respond to real-world attacks. Knowledge of
the users’ behavioral model is a critical first step in ensuring system robustness
to social engineering attacks, e.g. by allowing for more targeted educational and
training resources.

To place our work within the bandit literature, our paper lies at the inter-
section of pure exploration and Bayesian analysis. Other Bayesian approaches
to pure exploration problems, namely [11,16], and [29], aim to identify the best
alternative (top arm). Our paper is the first to investigate the thresholding cri-
terion from a Bayesian pure exploration viewpoint. Due to the practical require-
ments imposed by our problem, we develop a new bandit setting, termed the
structured combinatorial bandit model, that allows one to impose constraints on
the form of allowable queries (pulls), generalizing existing models, e.g. [17]. Our
proposed algorithm, based on the top-two Thompson sampling algorithm of [29],
is able to take into account these constrained queries and accurately identify all
means that are above a given threshold.

2 The Testing Environment

The testing environment consists of an organization, operated by a single system
administrator, and a collection of K users that are subject to social engineering
attacks from the external network. The various attack types are categorized into
a finite set of M message types. Diversity in individual user responses to different
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attacks is achieved by defining a response model that is a function of message-
user pairs, allowing for a given user to have different response characteristics
across message types. In a given testing trial, the system administrator selects
a subset of users to query with a collection of message types, as seen in Fig. 1,
where the query sets available to the administrator are constrained by practical
considerations (per-trial limits are imposed on the number of times a user can
be tested, as well as on the number of tested users). The users’ responses are
received by the system administrator and used to compute a new query set.

Fig. 1. The testing model. The system administrator sends test messages to a subset of
the users according to a testing strategy. Queried users respond according to a response
model whose statistics are unknown to the system administrator. Responses to the test
messages are recorded and used by the testing strategy to determine the next set of
queries.

The requirements of our problem necessitate a richer bandit model than can
be found in the literature. As a result, we introduce a new setting, termed the
structured combinatorial multi-bandit model, which consists of a set of multi-
armed bandits where pulls take the form of constrained collections of bandit-
arm pairs. After we present the general model, we explain how it can be used to
formulate the testing problem.

2.1 The Structured Combinatorial Multi-bandit Model

The general model consists of M multi-armed bandits, denoted by the set M,
with each bandit m ∈ M consisting of Km arms, denoted by the set Km. For a
given bandit m, each arm k is characterized by an unknown distribution νmk.
In a given trial, samples are drawn from the distributions by selecting a query
set from the space of feasible queries Q, defined as

Q =
{

Q ⊆ P
∣∣∣∣ ci ≤ ∣∣Q ∩ Ci

∣∣ ≤ c̄i, i = 1, . . . , R

}
(1)
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where P = {(m, k) : m ∈ M, k ∈ Km} represents the set of all bandit-arm pairs.
Each feasible query Q ∈ Q takes the form of a set of bandit-arm pairs (m, k) ∈
M×Km that must satisfy R (per-trial) constraints described by the sets Ci ⊆ P
and corresponding cardinality bounds ci, c̄i ∈ N. Each Ci, termed a constraint
set, is a collection of bandit-arm indices that allows one to impose a structure
on the form of query sets. Through appropriate definition of each Ci and ci, c̄i,
i = 1, . . . , R, the set Q can describe a wide range of action spaces. For example,
the single-play multi-bandit setting of [12] can be described by considering a
single constraint set (R = 1) of the form C = M×K with cardinality bounds c =
c̄ = 1. The single-bandit, multiple-play setting of [1] is captured by considering
a singleton M and defining C = K and c = c̄ = b such that |Q ∩ K| = b (all
subsets of K of size b).

In a given trial t, a feasible query set Qt ∈ Q is selected, generating
samples X(t) = (Xmk(t))(m,k)∈Qt

from the corresponding distributions. It is
assumed that each sample, Xmk ∼ νmk, is independent of all other samples,
{Xmk}(m,k)∈P . The samples collected from a given query are used to update
the empirical estimates of the means of each of the sampled bandit-arm pairs,
denoted by μ̂mk(t) = 1

Tmk(t)

∑Tmk(t)
s=1 Xmk(s), (m, k) ∈ Qt, where Tmk(t) denotes

the number of times that bandit-arm pair (m, k) has been sampled by trial t.
In the subsequent trials, query sets are sequentially selected and samples are
received until a predetermined stopping condition is satisfied. The algorithm
dictating the query selection strategy, termed the testing strategy, is determined
based on the intended goal, which is in turn dictated by the specific application
at hand.

2.2 Statement of the Testing Problem

The structured combinatorial multi-bandit model provides a natural setting for
the testing problem. In particular, associating each bandit m with a message
type and each arm k with a user (as seen in Fig. 2), the selection of a query set
corresponds to the system administrator sending a collection of test messages to
a set of users, termed message-user queries. Since feedback for a given message-
user query is binary (a user either responds or does not respond to a message),
each νmk is modeled as a Bernoulli distribution characterized by an unknown
mean θmk, that is νmk = Bern(θmk), where each θmk specifies the probability
that user k will respond to message type m.

Practical considerations in our problem, such as constraints on the number
of times a user can be queried in each trial, as well as the number of users
queried in each trial, are captured by appropriate selection of constraint sets
and cardinality bounds. In particular, we impose the following restrictions: (i)
each user k can be queried at most once per trial, and (ii) exactly b users are
queried in each trial. In the context of the general model of Sect. 2.1, the first
restriction is captured by defining constraint sets Ck = {(1, k), . . . , (M,k)} and
cardinality bounds ck = 0 and c̄k = 1 for all k ∈ K, whereas the second restriction
is described by C ′ = M × K with bound c′ = c̄′ = b. In summary, the system
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Fig. 2. The interpretation of bandit-arm pairs in the testing problem. Each bandit m
corresponds to a message type and consists of the complete set of K arms (users), that
is, Km = K. A given user is assigned the same index across bandits, that is, for distinct
bandits m, m′ index k always corresponds to user k.

administrator is restricted to selecting its message-user queries from query space
Qsa, defined as

Qsa =
{

Q ⊆ P
∣∣∣∣
∣∣Q ∩ {(1, k), . . . , (M,k)}∣∣ ≤ 1 for all k ∈ K,

∣∣Q ∩ (M × K)
∣∣ = b

}
(2)

where P simplifies to P = M × K in the testing problem.
The goal of the system administrator is to identify the users that pose the

highest risk to the security of the system. In particular, given a threshold prob-
ability τ , the system administrator wishes to identify, as accurately as possible,
all users that will (on average) respond to a message with probability of at least
τ , for each of the M message types. Formally, the administrator’s objective is to
identify the set of users with means above the threshold, given by the set

K∗
m,τ = {k ∈ K | θmk ≥ τ} (3)

for each message type m.1 It is assumed that the system administrator must
perform this identification after a fixed number of testing trials n (referred to as
a fixed budget in the bandit literature). Through sequential selection of query sets
Qt ∈ Qsa, and recording of user responses, Xmk(t) ∼ Bern(θmk), (m, k) ∈ Qt,
the administrator constructs empirical estimates over time, eventually obtaining
terminal estimates θ̂mk(n) = 1

Tmk(n)

∑Tmk(n)
s=1 Xmk(s), (m, k) ∈ P, after n trials.

From this, the administrator provides the estimates

Km,τ (n) = {k ∈ K | θ̂mk(n) ≥ τ} (4)

1 Note that thresholds can depend on the specific message-user pair (m, k); however,
for ease of presentation, we assume identical thresholds τ across all (m, k).
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of the sets K∗
m,τ for each m. The quality of the resulting estimates crucially

depends on the samples that are collected and, in turn, on the querying procedure
of the system administrator. The focus of the following section is to determine
this querying procedure, termed a testing strategy, in order to obtain the best
possible estimates.

3 The Testing Strategy

Formally, a testing strategy is a sequence of n + 1 functions, π =
{π0, . . . , πn−1, πn}, where {π0, . . . , πn−1} map estimates of the message-user
means into a prescription of query sets and πn maps estimates into an iden-
tification of the set of message-user means above the threshold probability. The
goal of the system administrator is to find a testing strategy π that results in an
identification set P ⊆ P that maximizes

J(θ, P ; τ) = 1

( ⋂
(m,k)∈P

{θmk > τ}
)

· 1
( ⋂

(m,k)∈P̄

{θmk ≤ τ}
)

(5)

where P̄ = P \ P . Notice that the reward function J(θ, P ; τ) is equal to one
only for the subset of message-user pairs P ∗ ⊆ P that have means above the
threshold τ . The sets K∗

m,τ in Eq. (3) are recovered from P ∗ via K∗
m,τ =

{
k ∈

K ∣∣ (m, k) ∈ P ∗} for each m.
Similar to an argument from the identification problem addressed in [11],

if we knew the true means, then the expected reward under testing strategy
π would simply be E

π[J(Θ,P ; τ) | Θ = θ]. While we do not know the true
means, by assuming a prior f0 we can write E

[
E

π[J(Θ,P ; τ) | Θ = θ] | Θ ∼
f0

]
= E

π[J(Θ,P ; τ) | Θ ∼ f0] =: E
π
0 [J(Θ,P ; τ)]. In each trial t = 0, . . . , n − 1,

the selection of a query set Qt ∈ Qsa results in responses from users that are
distributed according to Bernoulli distributions with unknown means (recall
the response model of Sect. 2.2). Given that likelihoods are Bernoulli, a nat-
ural choice for a prior on the unknown means is the beta distribution. Such
a choice ensures that the posterior at any given time is also beta-distributed
[13]. Explicitly, we assume a beta prior Θmk ∼ f0(θmk) = Beta(αmk,0, βmk,0),
where parameters αmk,0 and βmk,0 represent initial counts of responses and
non-responses, respectively, for each (m, k) ∈ P (each initialized to one for the
testing problem). The posterior of mean Θmk at any trial t can then be written
as ft(θmk) = Beta(αmk,t, βmk,t), where αmk,t = αmk,0+

∑
s≤t 1Qs

(
(m, k)

)
xmk,s,

βmk,t = βmk,0 +
∑

s≤t 1Qs

(
(m, k)

)
(1 − xmk,s), and xmk,s denotes the realized

sample of Xmk,s. In particular, at trial n, each mean Θmk is distributed accord-
ing to posterior fn(θmk). Consequently, the system administrator’s objective can
be represented in terms of the parameters of this posterior, as characterized by
Lemma 1.
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Lemma 1. The system administrator’s objective can be written as E
π
0 [Jπ(P ; τ)],

where

Jπ(P ; τ) =
∏

(m,k)∈P π

I1−τ (βmk,n, αmk,n)
∏

(m,k)∈P̄ π

Iτ (αmk,n, βmk,n) (6)

and Iτ (α, β) is the normalized incomplete beta function.

Proof. See AppendixA.

In summary, the system administrator wishes to find a testing strategy π =
{π0, . . . , πn−1, πn} that solves the following problem

sup
π∈Π

E
π
0

[
Jπ(P ; τ)

]
(7)

where Π represents the space of admissible testing strategies. A testing strat-
egy π that solves (7) is termed an optimal testing strategy and is denoted by
π∗ = {π∗

0 , . . . , π
∗
n−1, π

∗
n}. The problem of determining π∗ can be cast as a type

of sequential decision problem, termed a Markov decision process (MDP), as
outlined in the following section.

3.1 An Optimal Testing Strategy

Through appropriate definition of a state process and decision variables, the
problem of determining an optimal testing strategy can be cast as an MDP. In
particular, we define the state in testing trial t, denoted by st, as the current
trial index and the collection of current counts of responses and non-responses
across all message-user pairs, that is,

st = (t, αt, βt) ∈ S
where αt = {αmk,t}(m,k)∈P and βt = {βmk,t}(m,k)∈P . Note that the set of all
feasible states, S, depends on the structure of the query space Qsa and the num-
ber of testing trials n. The evolution of the state is dictated by the information
that the system administrator gathers over time. In particular, in a given state
st = (t, αt, βt), selection of a query set Qt = Q generates a collection of samples
from the queried message-user pairs that results in the update

st+1 = (t + 1, αt+1, βt+1) =
(
t + 1, f(αt, x), g(βt, x)

)
where x represents the realized query feedback under Q, that is, x ∈ Ω(Q), where
Ω(Q) represents all possible (binary) realizations of query responses under query
set Q. Update functions f and g are defined element-wise as

αmk,t+1 = fmk(αmk,t, xmk) = xmk + αmk,t

βmk,t+1 = gmk(βmk,t, xmk) = 1 − xmk + βmk,t

for all (m, k) ∈ P.
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Considering query sets Qt ∈ Qsa, for each trial t = 0, . . . , n − 1, and an
identification set P ⊆ P, for the final trial n, as the decision variables of the
problem, an optimal testing strategy can be characterized recursively via the
following dynamic programming equations. From the reward function defined in
Eq. (6), the value function at the final trial, t = n, is defined as

Vn(sn) = max
P⊆P

∏
(m,k)∈P

I1−τ (βmk,n, αmk,n)
∏

(m,k)∈P̄

Iτ (αmk,n, βmk,n). (8)

The value functions at all previous trials t = 0, . . . , n − 1 are defined as

Vt

(
st

)
= max

Q∈Qsa

{
E

[
Vt+1

(
st+1

) ∣∣ Q∗
t = Q, st = (t, αt, βt)

] }

= max
Q∈Qsa

{ ∑
x∈Ω(Q)

σ(st, x)Vt+1

(
(t + 1, f(αt, x), g(βt, x))

)}
(9)

where σ(st, x) =
∏

{xmk : xmk=1} θ̃mk(st)
∏

{xmk : xmk=0}
(
1 − θ̃mk(st)

)
, θ̃mk(st) =

αmk,t

αmk,t+βmk,t
. The maximizer of Eq. (8) is the optimal identification set, denoted

by P ∗ = π∗
n(sn), whereas the maximizers of each of the functions in Eq. (9) are

the optimal query sets, denoted by Q∗
t = π∗

t (st).
In principle, Eqs. (8) and (9) could be solved via backward induction to yield

an optimal testing strategy π∗ = {π∗
0 , . . . , π

∗
n−1, π

∗
n}. Unfortunately due to the

scale of the state space S, one cannot possibly enumerate over all possible states
to obtain a solution, even for a moderate testing horizon n and query space
dimension |Qsa|. In the following section, we develop a heuristic that yields an
approximation to the optimal testing strategy π∗.

3.2 A Heuristic Testing Strategy

To avoid solving the dynamic programming equations, we propose a simple
heuristic algorithm that yields a heuristic testing strategy. The proposed algo-
rithm, based on the top-two Thompson sampling algorithm developed in [29]
for the top-arm identification problem, is an online algorithm that adapts its
selection of query sets based on user feedback from previous queries. By encour-
aging exploration of means that are estimated to be close to the threshold, the
proposed algorithm allows for efficient estimation of the identification set.

The general idea of the heuristic testing strategy is as follows. In each test-
ing trial t, samples are drawn from each of the ft(θmk), (m, k) ∈ P, posterior
distributions. The resulting samples are then used to define a subset Pτ ⊆ P
of the message-user pairs with sampled means that exceed the threshold τ . A
resampling step is then performed where a second set of samples are drawn from
the posteriors, with corresponding set P ′

τ . Resampling is performed until P ′
τ dif-

fers from Pτ by at least one element. To enforce exploration of message-user
pairs with means closer to the threshold, the symmetric difference of Pτ and P ′

τ ,
denoted by Pτ �P ′

τ , is computed. Since the elements of Pτ �P ′
τ represent the
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set of message-user pairs with samples that exceed the threshold in either Pτ or
P ′

τ , but not both, message-user pairs with posterior distributions far above the
threshold are more likely to appear in both sets. Based on the message-user pairs
present in Pτ �P ′

τ , a feasible query set Q ∈ Qsa is selected. Since the query set
is drawn from the symmetric difference, message-user pairs that are closer to
the threshold are explored more frequently. Posteriors are updated based on the
query responses, the trial index is incremented, and the process repeats. The
pseudo-code of the proposed algorithm is presented in Algorithm 1.

Algorithm 1. The Heuristic Testing Strategy

function EstimateThresholdSet(Q, P, α0, β0, n, τ)
f0(θmk) = Beta(αmk,0, βmk,0), (m, k) ∈ P
for t = 0, . . . , n − 1 do

P ← SampleSecondarySet(ft, P, τ)
Q ∈ O(Q, P )
xmk,t ∼ ft(θmk), (m, k) ∈ Q
αmk,t+1 ← αmk,t + 1Q

(
(m, k)

)
xmk,t, (m, k) ∈ P

βmk,t+1 ← βmk,t + 1Q

(
(m, k)

)
(1 − xmk,t), (m, k) ∈ P

ft+1(θmk) ← Beta(αmk,t+1, βmk,t+1)
end for
ϑmk ∼ fn(θmk)
return argmax

P⊆P
J(ϑ, P ; τ)

end function

function SampleSecondarySet(f, P, τ)
Pτ ← SampleSet(f, P, τ)
P ′

τ ← Pτ

while Pτ � P ′
τ = ∅ do

P ′
τ ← SampleSet(f, P, τ)

end while
return Pτ � P ′

τ

end function

function SampleSet(f, P, τ)
for (m, k) ∈ P do

ϑmk ∼ f(θmk)
end for
return argmax

P⊆P
J(ϑ, P ; τ)

end function

The oracle function O : Q × P → Q selects a feasible query set from the
symmetric difference set Pτ �P ′

τ . If Pτ �P ′
τ contains enough elements to satisfy

the constraints in Q, then a feasible query set Q is simply drawn from the set
at random. If there are not enough elements to satisfy the constraints, then the
query set is constructed to contain as many elements of Pτ �P ′

τ as possible
without violating feasibility, with the remaining elements selected uniformly at
random to ensure the resulting set remains feasible. In the context of our testing
problem, since we have a constraint that no user is to be queried more than once
per trial, the oracle simply searches Pτ �P ′

τ for the number of message-user
pairs with distinct users. If the number of distinct users exceeds b (the bound on
the number of distinct users queried per trial), then a random feasible query set
is selected from the elements of Pτ �P ′

τ . If Pτ �P ′
τ does not contain at least b
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distinct users, then the remaining message-user pairs are drawn at random until
b distinct users are sampled.

4 Numerical Experiments

A collection of experiments are studied to illustrate the behavior and accuracy
of the heuristic testing strategy. In particular, we consider the following four
settings:

Experiment 1: M = 2, K = 4, b = 2, τ = 0.5, and true means

θ1 := (θ11, θ12, θ13, θ14) = (0.80, 0.60, 0.40, 0.35)
θ2 := (θ21, θ22, θ23, θ24) = (0.55, 0.45, 0.30, 0.20)

Experiment 2: M = 2, K = 4, b = 2, τ = 0.5, and

θ1 = (0.60, 0.55, 0.45, 0.50)
θ2 = (0.50, 0.48, 0.45, 0.55)

Experiment 3: M = 5, K = 12, b = 4, τ = 0.5, and

θ1 = (0.22, 0.10, 0.34, 0.45, 0.55, 0.23, 0.05, 0.21, 0.74, 0.60, 0.09, 0.65)
θ2 = (0.41, 0.65, 0.12, 0.76, 0.53, 0.79, 0.23, 0.35, 0.67, 0.69, 0.03, 0.34)
θ3 = (0.05, 0.21, 0.67, 0.12, 0.13, 0.25, 0.43, 0.63, 0.32, 0.54, 0.11, 0.27)
θ4 = (0.32, 0.35, 0.46, 0.41, 0.24, 0.30, 0.11, 0.12, 0.15, 0.10, 0.18, 0.29)
θ5 = (0.10, 0.75, 0.12, 0.57, 0.86, 0.26, 0.28, 0.89, 0.85, 0.23, 0.45, 0.41)

Experiment 4: M = 8, K = 50, b = 10, τ = 0.5, with each θmk randomly
initialized in [0, 1].

We first illustrate the behavior of the heuristic testing strategy, in the context
of experiment 1, by studying how query sets are selected as a function of the
posterior distributions. As shown in Fig. 3, the distributions are initially uncer-
tain. As dictated by the testing strategy, successive query sets are selected in
order to sufficiently explore all message-user pairs. This explorative nature of
the testing strategy is evident from the plots in Fig. 3 – in trial t = 300, the
testing strategy queries message-user pairs that have estimated means close to
the threshold whereas in trial t = 400, queries are allocated to message-user
pairs with estimated means far from the threshold. As seen in later testing trials
(t = 600), posterior distributions that have means closer to the threshold are
the most certain, illustrating that the heuristic testing strategy allocates more
samples to message-user pairs that are more difficult to identify.

The estimation error of the heuristic testing strategy as a function of the
number of testing trials is now investigated. To quantify the accuracy, we define
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Fig. 3. The evolution of posterior distributions for a given sample path of queries in
experiment 1. For each trial, each plot represents the posterior distributions of the
means of given user for the two message types (users 1 through 4, from top to bottom).
The red (bold) distributions in each trial represent the queried distributions.

a multi-bandit generalization of the single-bandit loss function of [25] as lε(n) =
maxm∈M lm,ε(n), where

lm,ε(n) = P

({K∗
m,τ+ε ∩ K̄m,τ (n) 
= ∅} ∪ {K̄∗

m,τ−ε ∩ Km,τ (n) 
= ∅}) . (10)

The term {K∗
m,τ+ε ∩ K̄m,τ (n) 
= ∅} represents an underestimation error (incor-

rectly designating that at least one user had a mean below the threshold) whereas
{K̄∗

m,τ−ε∩Km,τ (n) 
= ∅} represents an overestimation error. The additive ε term
allows for one to specify a reasonable margin of error – if the distance between
the true mean and the threshold is less than ε, then no loss should be incurred
for a misidentification. For each experiment, the accuracy of the heuristic test-
ing strategy is compared to a uniform strategy that involves uniformly drawing
a query set from the query space Qsa in each testing trial. Figure 4 shows the
accuracy of both the heuristic testing strategy and the uniform strategy, as a
function of n, for each experiment.

As evidenced by the plots in Fig. 4, the heuristic testing strategy results in
more accurate estimates than the uniform strategy for any testing horizon n. The
gain in accuracy over the uniform strategy is especially evident in larger domains,
as shown in Figs. 4c and d. The reason for the increased gap in accuracy is due
to the fact that, in larger domains, the uniform strategy spreads queries out over
a larger query space Qsa, resulting in slow convergence of individual estimates.
The heuristic testing strategy, on the other hand, takes into account the query
feedback received so far to allocate more queries to message-user pairs that are
estimated to be closer to the threshold. Indeed, as shown in Fig. 5, this intuition
is reinforced by analyzing the frequency of queries across message-user pairs for
a given testing horizon. Figure 4 provides an additional observation, namely that
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Fig. 4. Averaged loss curves for each experiment. The red curves (circular markers)
represent the average loss of the uniform sampling strategy, whereas the blue curves
(square markers) represent the average loss of the heuristic testing strategy. All simu-
lations are averaged over 1000 runs.

Fig. 5. Averaged relative frequency of queries for experiments 1 and 2. Under the heuris-
tic testing strategy, means that are closer to the threshold are allocated more pulls, as
evidenced by the heatmaps in (a) and (b) above. Frequencies are averaged over 1000
runs.

the accuracy of the heuristic testing strategy also depends on the spread of the
means across message-user pairs. By observing the difference in the true means
in experiments 1 and 2, we can see that some means in experiment 1 are closer to
the threshold, namely θ21 and θ22, than others, θ11 and θ24. In experiment 2, all
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means are within 0.1 of the threshold, resulting in all message-user pairs being
(approximately) equally difficult to distinguish from the threshold, yielding a
performance that is closer to that of the uniform strategy. However, when there
is separation between the means (as is the case with experiments 1,3, and 4),
the heuristic testing strategy easily outperforms uniform sampling.

5 Concluding Remarks and Future Directions

We have developed a formal testing strategy for identifying which users in an
organization are most vulnerable to social engineering attacks. The strategy
involves querying users with fake malicious messages in order to construct esti-
mates of which users are most susceptible to responding to certain types of
attacks. By leveraging tools from Bayesian analysis, we have characterized the
optimal testing strategy as the solution to an MDP. Unfortunately, obtaining
the solution to this MDP is intractable, motivating the development of a heuris-
tic testing strategy. The proposed heuristic strategy uses ideas from Thompson
sampling to efficiently estimate the set of high-risk users. Numerical experiments
have demonstrated that the proposed testing strategy is intuitive and performs
well, even in large domains.

There are many potential research directions to pursue. First, it would be
interesting to investigate if it is possible to obtain a closed-form solution for the
optimal testing strategy. Doing so would involve analyzing structural properties
of the dynamic programming equations (recently discovered properties of the
normalized incomplete beta function may be useful [18]). Second, the proposed
heuristic testing strategy hints at the form of a general purpose algorithm for
identifying thresholding sets under constrained queries. Development of such
an algorithm, with performance guarantees, would be useful for a wide variety
of practical problems. Beyond theoretical questions, there are multiple possi-
ble research directions that would need to be addressed before deploying the
heuristic testing strategy to real-world settings. Some practical considerations
include:

Delayed Feedback – In general, there will be a delay between querying users with
test messages and receiving a response. In such settings, the system administra-
tor cannot immediately distinguish between a negative response and a delayed
response. Modifying the testing strategy such that it can be robust to these
delays is necessary for deployment in real-world systems.

Correlated Responses – The proposed model assumes independence of the means;
this can be relaxed in two directions. First, a given user’s responses could be
correlated across message types, modeling the fact that if a user is likely to fall
victim to one type of attack, they may also be likely to fall victim to another
type. Second, users’ responses may be correlated with other users due to the
possibility of side communication/verification with other users. In either case,
one could learn the correlation in order to improve the efficiency of the algorithm
(the result of one query can be informative for another query).
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Construction of Message Database – One obstacle to deployment in real-world
settings is the need for a large collection of carefully constructed and believable
test messages. We believe that modern machine learning techniques can be useful
in building such a database, e.g. via generative adversarial networks (GANs) [14].

A Proof of Lemma1

Denoting E
π
n[J(Θ,P ; τ)] := EΘ∼fn(θmk)[J(Θ,P ; τ) | P = Pπ] as the expectation

of the reward with respect to the posteriors fn(θmk), application of the law of
iterated expectations allows one to write the expected reward as E

π
0 [J(Θ,P ; τ)] =

E
π
0 [Eπ

n[J(Θ,P ; τ)]], where

E
π
n

[
J(Θ,P ; τ)

]
= Pn

( ⋂
(m,k)∈P π

{Θmk > τ} ∩
⋂

(m,k)∈P̄ π

{Θmk ≤ τ}
)

=
∏

(m,k)∈P π

Pn({Θmk > τ})
∏

(m,k)∈P̄ π

Pn({Θmk ≤ τ})

=
∏

(m,k)∈P π

I1−τ (βmk,n, αmk,n)
∏

(m,k)∈P̄ π

Iτ (αmk,n, βmk,n) =: Jπ(P ; τ)

where Iτ (α, β) is the normalized incomplete beta function (we have used the
identity 1 − Iτ (α, β) ≡ I1−τ (β, α)). The dependency of the identification set P
on the testing strategy π is made explicit by writing Pπ.
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Abstract. Deception is a technique to mislead human or computer sys-
tems by manipulating beliefs and information. Successful deception is
characterized by the information-asymmetric, dynamic, and strategic
behaviors of the deceiver and the deceivee. This paper proposes a game-
theoretic framework to capture these features of deception in which the
deceiver sends the strategically manipulated information to the deceivee
while the deceivee makes the best-effort decisions based on the infor-
mation received and his belief. In particular, we consider the case when
the deceivee adopts hypothesis testing to make binary decisions and the
asymmetric information is modeled using a signaling game where the
deceiver is a privately-informed player called sender and the deceivee is
an uninformed player called receiver. We characterize perfect Bayesian
Nash equilibrium (PBNE) solution of the game and study the deceivabil-
ity of the game. Our results show that the hypothesis testing game admits
pooling and partially-separating-pooling equilibria. In pooling equilibria,
the deceivability depends on the true types, while in partially-separating-
pooling equilibria, the deceivability depends on the cost of the deceiver.
We introduce the receiver operating characteristic curve to visualize the
equilibrium behavior of the deceiver and the performance of the decision
making, thereby characterizing the deceivability of the hypothesis testing
game.

Keywords: Game theory · Cyber deception · Signaling game
Hypothesis testing · Cybersecurity

1 Introduction

Deception is a technique used to cause animals [3], human [7,16] or computer
systems [1] to have false beliefs. The purpose of deception is to mislead the
deceivees to behave in a way that is favorable to the deceiver, while keeping
the true intensions of the deceiver undetected. This is often accomplished by
instilling deceptive information into the target deceivee. As information carried
in cyber systems can be easily crafted, the proliferation of information technology
creates particular opportunities for deception on cyber domain, making it more

c© Springer Nature Switzerland AG 2018
L. Bushnell et al. (Eds.): GameSec 2018, LNCS 11199, pp. 540–555, 2018.
https://doi.org/10.1007/978-3-030-01554-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01554-1_31&domain=pdf


Hypothesis Testing Game 541

difficult to infer the intention and gauge the reliability of information sources.
Moreover, the challenge of identifying participants in the cyber domain also
makes the accountability difficult in the cyber domain [10]. Deceivers can take
advantage of such features to launch cyber deceptive activities.

Cyber deceptions can be viewed as an approach for attacks as well as defense.
For example, honeyfile is a common deception tool for defense that creates a
fake file directory that behaves like a normal file system of an active user to
detect intrusions or malicious insiders. Attacks can hide their activities by imi-
tating normal users in the lateral movement during an advanced persistent threat
(APT) attack. Similarly, defenders can place a piece of software in a honeypot
to allure attackers to download, which can report the attackers’ identity infor-
mation to authorities when escaping from the system. Attackers could create a
website with fake promotions to attract target deceivees to reveal their personal
data such as credit card information and social security number.

Successful deception fundamentally depends on the information asymmetry
between the deceiver and the deceivee. Deceivees need to obtain information that
is indirect and difficult to verify for decision-making. Deceivers can take advan-
tage of this by pretending to be a trustworthy information provider. Successful
deceptions require the deceivers to have the ability to acquire information and
accurately understand the goals of the deceivees. The process of deceptions can
be one-shot static or sequentially dynamic. The dynamic deception can engage
the target in long term, create a chain of uncertainties, and achieve a higher
level of believability compared to its static counterpart [9]. The deceivers strate-
gically manipulate the private information to suit their own self-interests. The
manipulated information is then revealed to the deceivees.

The deceivees, on the other hand, make decisions about the information
received. This paper focuses on the case when decisions are made based on obser-
vations and beliefs. Hypothesis testing provides a fundamental framework for
such decision makers who observe a signal or measurement and make decisions.
Hypothesis testing is based on the statistical inference that evaluates mutually
exclusive hypothesis about the nature to determine which hypothesis is best
supported by realizations or samples of the nature. Decision-maker using the
classical hypothesis testing approach can be easily deceived because the model
presumes that the decision making completely trust the received information and
hence their decisions can be manipulated by a tampered source of information.
Therefore, it is important for the deceivee to form correct beliefs based on past
observations, take into account the potential damage caused by deception, and
strategically use the observed signal for decision-making.

Holistic quantitative frameworks are pivotal to model such strategic behav-
iors of the attacker and the defender and construct strategies for both attacks
and defenses. Non-cooperative game theory provides befitting tools to model
the competitive interactions between the deceiver and the deceivee. In particu-
lar, signaling games is a class of games that naturally capture the information-
asymmetric, dynamic, and strategic behaviors of deceptions by modeling the
deceiver as a privately-informed player called sender and the deceivee as an
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uninformed player called receiver. The sender strategically sends a message to
the receiver, who takes an action upon receiving the message. Based on the
private information of the sender and strategies of both players, they obtain
rewards or suffer costs, which characterize the conflicting goals and preferences
of the sender and the receiver.

In this paper, we study the deception game in which the receiver adopts
hypothesis testing [12] to determine the binary nature of the system while the
sender can strategically manipulate the signal or message that is sent to the
receiver. In particular, we study the impact of deceiver’s manipulation of the
decision maker’s beliefs on the information received. We characterize the perfect
Bayesian Nash equilibrium (PBNE) to our game and analyze the deceivability
of the game. Our results show that the deception game admits pooling and
partially-separating-pooling equilibria. In pooling equilibria, the deceivability
depends on the true types, while in partially-separating-pooling equilibria, the
deceivability depends on the cost of the deceiver.

We characterize the receiver operating characteristic (ROC) for the decision
making using hypothesis testing. By introducing the true positive rate (TPR)
and the false positive rate (FPR), the performance of the decision function of the
deceivee is determined by the strategy of the deceiver. The ROC curve graphi-
cally illustrates the equilibrium behavior of the deceiver and the performance of
the decision making of the deceivee, thereby characterizing the deceivability of
the hypothesis testing game.

1.1 Related Work

The proposed hypothesis testing game is established based on the cheap-talk
signaling game model presented in Crawford and Sobel [4]. In cheap-talk games,
lying of private information is as inexpensive as truthfully revealing it. Kar-
tik has studied a signaling game model with lying cost where the sender suf-
fers cost for misrepresenting the private information in [11]. Cost lying allows
more information to be transmitted in equilibria. Other game models (e.g., [13])
have explored the truthful partial-disclosure of the private information instead
of lying. For example, in the work of Grossman [8], the privately-informed agent
truthfully discloses information to the uninformed agent.

Our model is also related to a class of security games of incomplete informa-
tion. For example, Powell in [15] has considered a game between an attacker and
a defender, where the defender has private information about the vulnerabil-
ity of their targets under protection. Powell models the information asymmetric
interactions between players by a signaling game, and finds a pooling equilib-
rium where the defender chooses to pool, i.e., allocate resources in the same way
for all targets of different vulnerabilities, and the attacker cannot know the true
level of vulnerability of all targets. Brown et al. [2] have studied a zero-sum game
between an attacker and a defender in the scenario of ballistic missile position-
ing. They have introduced the incomplete information to investigate the value
of secrecy by restricting the players’ access to information.
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Previous literature has also considered deception in a variety of scenarios.
Pawlick et al., [14] have considered a class of deception for network security and
extended the formulation of signaling game [4] by including a detector that pro-
vides probabilistic evidence of deception. They have analyzed the deceivability
in pooling and partially-separating equilibria of the game. Zhang et al., [17] have
proposed an equilibrium approach to analyze the GPS spoofing in a model of sig-
naling game with continuous type space. They have found a PBNE with pooling
in low types and separating in high types, and provided an equilibrium analysis
of spoofing. The model proposed in Ettinger et al. [5] have used an equilibrium
approach to belief deception in bargaining problems when the agents only have
coarse information about their opponent’s strategy.

This work presents a hypothesis testing game that bridges the frameworks
of hypothesis testing and a cheap-talk signaling game framework to model the
deception. It yields a fundamental framework to understand the strategic behav-
iors of the players and their outcomes.

1.2 Organization

This rest of the paper is organized as follows. Section 2 presents the problem
statement and describes the hypothesis-testing-based decision making process.
Section 3 develops the hypothesis testing game model and defines the PBNE.
In Sect. 4, we provide the equilibrium analysis of the game, and analyze the
performance of decision making under deception in equilibria through ROC.
Finally, Sect. 5 concludes the paper.

Notations and Conventions. Any function defined on a measurable set is
assumed to be measurable. The tilde symbol distinguishes between a random

Table 1. Summary of notation

Notation Meaning

S, R Deceiver and deceivee

Hi ∈ H = {Hi}1
i=0 Type/hypothesis

πi = p(Hi), ∀i ∈ {0, 1} Prior probability of Hi

θ ∈ Θ, m ∈ M Signal, message

δ(·) = 0, 1 Decision function of hypothesis testing

a ∈ A = {0, 1} Action of R

cij , i, j ∈ {0, 1} Cost of deciding Hi when Hj holds

σS(m|Hi), ∀i ∈ {0, 1} Mixed strategy of S

σR(a|m), ∀i ∈ {0, 1} Pure strategy of R

CX(·) Cost function of player X ∈ {S, R}
C̄X(·) Expected cost function of player X ∈ {S, R}
μ(Hi|m), ∀i ∈ {0, 1} (Posterior) belief of R that S is of type Hi
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Fig. 1. Decision making based on binary hypothesis testing for hypothesis Hj , obser-
vation θ ∈ Θ, ∀j ∈ {0, 1}.

variable from its realizations, for example, if θ̃ is a random variable, then θ ∈ Θ
denotes a realization of θ̃, where Θ is the support of θ̃. Table 1 summarizes the
notation.

2 Problem Formulation

With reference to Fig. 1, consider that there exists an information generator
(IG) that provides observations of the true state of nature (e.g., diagnosis of a
disease, decision of increasing interest rate). We consider a case when there are
two states of nature, denoted by H0 and H1. The observations (e.g., symptom,
inflation level) can be used to determine the occurrence of the state. Let the
discrete random vector θ̃ denote the observation of the event. Assume the states
H0 and H1 admit a-prior probabilities

π0 = P (H0), π1 = P (H1), (1)

with π0+π1 = 1, and the observation θ̃ admits the probability mass distribution
functions P (θ̃ = θ|Hi) condition on the state Hi, ∀i ∈ {0, 1}. Let p(·) be the
short hand notation of P (·).

Suppose the information generator provides an observation θ ∈ Θ. A decision
maker (DM) uses (binary) hypothesis testing to decide the occurrence of H0 or
H1. In the context of hypothesis testing, H0 and H1 act as two hypotheses
described as follows:

H0 : θ̃ ∈ Θ0, with p(θ|H0) = P (θ̃ = θ|H0),

H1 : θ̃ ∈ Θ1, with p(θ|H1) = P (θ̃ = θ|H1),

where Θi = {θ : p(θ|Hi) > 0}, ∀i ∈ {0, 1} with Θ0∪Θ1 = Θ and Θ = Θ0∩Θ1 = ∅.
The goal of the DM is to decide between H0 and H1 based on the observation
θ by choosing a decision function δ(·) : Θ → {0, 1} such that i = δ(θ) indicates
the decision that Hi holds, ∀i ∈ {0, 1}. Therefore, δ partitions the observation
space Θ into two disjoint sets Θ̄0 and Θ̄1, where Θ̄i = {θ ∈ Θ : δ(θ) = i}.

Now we consider the scenario when the information transmission from the
IG to the DM is not directly established but through an intermediary (e.g.,
medical instrument, government agency). As shown in Fig. 2, the intermediary
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Fig. 2. Decision making based on binary hypothesis through communication with an
intermediary.

privately possesses the observation θ and generates a message m ∈ Θ to the DM.
The message m is chosen from the observation space Θ and we assume each m
is a realization of a random vector m̃. Suppose nature chooses Hi, i ∈ {0, 1}.
We say that the intermediary is trustworthy if δ(m) = Hi. After observing a
message m, the DM applies hypothesis testing based on the message m and the
corresponding conditional probability mass distribution functions

q(m|Hi) = Q(m̃ = m|Hi), ∀i ∈ {0, 1}, (2)

which is determined by the intermediary.
The DM selects the decision function δ by solving an optimization problem

based on a Bayesian formulation [12]. Let cij ≥ 0 denote the cost with i, j ∈
{0, 1} such that cij represents the cost of deciding that Hi is true when Hj holds.
When i 	= j, cij represents the cost of incorrect decision making. For example, in
cyber domain, wrong decision may allow a malicious user into the system, and
cij may include the cost of recovering the damage caused by malicious activities.
We have the following assumptions about the cost cij .

Assumption 1: c01 > c11 = 0 and c10 > c00 = 0.

Lemma 1 is based on [12].

Lemma 1. Under Assumption 1, the optimal decision function can be written
as

δ∗(m) =

{
1, if q(m|H1)

q(m|H0)
≥ c10

c01
π0
π1

,

0, if otherwise.
(3)

Proof. The result directly follows from the proof of Lemma 2.

In this paper, we focus on the case when the intermediary is a deceiver, who
aims to deceive the DM by sending the strategically selected message m. We
model the strategically deceptive interaction between the DM and the interme-
diary by a signaling game framework.

3 Hypothesis Testing Game Model

Our game has two players: a deceiver (sender, he, S) and a decision maker
(receiver, she, R). In our hypothesis model, the private information (i.e., type)
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is the true hypotheses H0 and H1 with prior probabilities shown in Eq. (1). As
shown in Fig. 3 S privately observes θ and knows the true hypothesis Hi : θ ∈
Θi. Based on Hi, S chooses a message m ∈ M = Θ according to a strategy
σS ∈ ΩS . He may use mixed strategies by selecting message m from each set
Θi, ∀i ∈ {0, 1}, with some probability such that σS(m|Hi) gives the probability
of sending message m given the type Hi. Therefore, the strategy space satisfies

ΩS =
{
σS : ∀i ∈ {0, 1},

∑
m∈M

σS(m|Hi) = 1;∀i ∈ {0, 1},m, σS(m|Hi) ≥ 0
}
.

Fig. 3. The hypothesis testing game with strategic interaction between the deceiver
and the deceivee.

After receiving the message m, R chooses an action a ∈ A = {0, 1} according
to a decision function δ based on hypothesis testing. In our game model, the
decision function δ is the pure strategy of R, i.e., σR ≡ δ. Based on m, R forms
a posterior belief about the true type Hi. Define the belief as μ : H → [0, 1] such
that for all i ∈ {0, 1} and m, μ(Hi|m) shows the probability with which R infers
that the true type is Hi. The belief μ is used to find the optimal strategy for R.

The optimal strategy of R depends on her belief μ(Hi|m) about the type Hi,
∀i ∈ {0, 1}, such that μ(Hi|m) gives the probability with which R believes that
the type is Hi given the message m. The action a is determined based on the
belief μ.

3.1 Cost Functions

Let CR(Hi,m, a) : H × M × A → R be the cost that R suffers when she takes
action a, the message is m, and the type is Hi. Basically, CR(Hi,m, a) coincides
with the costs in hypothesis testing, i.e.,

CR(Hi,m, a) = cai, (4)

which satisfies Assumption 1. As mentioned in Sect. 2, the hypothesis testing
requires the knowledge of the conditional probability mass distribution function,
i.e., q(m|Hi) shown in Eq. (2). Clearly, q(m|Hi) can be taken as σS(m|Hi) in
our signaling game. However, R does not directly observe the σS(m|Hi) but
the message m chosen by σS(m|Hi); therefore, we can assume that she has a
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conjecture σ̂S(·|Hi), ∀i ∈ {0, 1}, about the strategy of S. R attempts to make
inference using σ̂S(·|Hi). In the equilibrium, the conjecture σ̂S coincides with
the actual strategy σS of S. In this paper, we focus on the equilibrium behaviors
of the players, and analyze the strategic interactions between R and S when σS

is common knowledge, but the state of the truth is unknown to R.
Similarly, let CS : H × Θ × A → R denote the cost function of R so that

CS(Hi,m, a), ∀i ∈ {0, 1} gives the cost that S suffers when type is Hi, he sends
message m, and R takes action a. We have the following assumption about CS

that reflects the deceptive nature of S. Specifically, S always suffers more cost if
R infers the true type than otherwise.

Assumption 2: CS(0,m, 0) > C(0,m, 1) and CS(1,m, 1) > CS(1,m, 0).

Together, Assumptions 1–2 show that our hypothesis testing game is a cheap-
talk signaling game. Given the strategy σS , we can define the expected cost
functions for both S and R. Let C̄S : ΩR × ΩS denote the expected cost for S
defined as

C̄S(Hi, σ
S , σR) =

∑
a∈A

∑
m′∈Θ

σS(m′|Hi)CS(Hi,m
′, a), (5)

such that C̄S(Hi, σ
S , σR) gives the expected cost when S plays σS , and the type

is Hi.
The decision function δ of R partitions the message space M into two disjoint

sets M0 and M1 with M0 ∪ M1. The Bayes risk of R choosing δ when the type
is Hj and S plays σS is defined as

λ(δ|Hj , σ
S) =

1∑
i=0

∑
m′∈Mi

cijσ
S(m′|Hj). (6)

Given a message m, R uses the belief μ(Hj |m) to formulate the total Bayes risk
for δ is defined as

C̄R(δ|m,σS , μ) =
1∑

j=0

λ(δ|Hj , σ
S)μ(Hj |m), (7)

such that C̄R(δ|m) gives the Bayes risk when R plays σR = δ, S sends message
m.

3.2 Equilibrium

We consider the perfect bayesian Nash equilibrium (PBNE) [6] as the solution
concept of our hypothesis testing game. PBNE captures the information asym-
metry between two players and asynchronous optimizations of two players. Also,
PBNE characterizes the Bayesian belief for our hypothesis testing model. Defi-
nition 1 modifies the PBNE for the hypothesis testing game model.
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Definition 1 (Perfect Bayesian Nash Equilibrium). A PBNE of the hypothesis
testing game is a strategy profile (σS∗, σR∗) and posterior beliefs μ(Hi|m) that
satisfies the following conditions:

1. (Deceiver’s Sequential rationality) S minimizes his expected cost given R’s
strategy σR: For i = 0, 1:

σS∗ ∈ arg min
σS∈ΩS

C̄S(Hi, σ
S , σR). (8)

2. (Deceivee’s Sequential rationality) R minimizes the total Bayes risk for the
pure strategy σR ≡ δ given the sender’s strategy σS∗, the message m, and the
system of beliefs μ, i.e.,

σR ≡ δ∗ = arg min
δ

C̄R(δ|m,σS∗, μ) (9)

The optimal action is obtained as

a∗ = δ∗(m). (10)

3. (Consistent belief) ∀m ∈ M , i = 0, 1:

μ(Hi|m) =

{
σS∗(m|Hi)πi∑1

j=0 σS∗(m|Hj)πj
, if

∑1
j=0 σS∗(m|Hj)πj > 0,

any distribution, otherwise.
(11)

Fig. 4. Illustration of hypothesis testing game based on a signaling game model. The
deceiver privately observes the observation θ and knows the type Hj . Then, S sends
a message m to the deceivee according to the strategy σS(m|Hj). After receiving m,
R updates her conjecture about σS and then updates the posterior belief μ(Hj |m).
R takes an action a based on the outcome of the decision function δ from hypothesis
testing. The action a influence the cost of the deceiver. At PBNE, the conjecture σ̂S

coincides with σS .

Figure 4 illustrates the procedures of the hypothesis testing based on a signal-
ing game model. Lemma 2 shows the optimum decision function for R in PBNE.
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Lemma 2. Under Assumption 1, the optimum decision function at PBNE can
be written as

δ∗(m) =

{
1, if σS∗(m|H1)

σS∗(m|H0)
≥ c10

c01

μ(H0|m)
μ(H1|m) ,

0, otherwise.
(12)

Proof. See AppendixA.

Based on the strategy of S, PBNE can be categorized into three classes: sep-
arating, pooling, and partially-separating-pooling. In separating PBNE, S selects
message m from opposite message spaces for two types, i.e., choosing m ∈ Θi and
m ∈ Θj respectively for Hk and H�, for i 	= j ∈ {0, 1} and k 	= 	 ∈ {0, 1}. Sep-
arating PBNE is also called revealing PBNE because R is able to infer the true
type. In pooling PBNE, however, S selects message m from either message space
with equal probability, i.e., ∀m ∈ Θk, σS(m|Hi) = σS(m|Hj), ∀i 	= j ∈ {0, 1}.
From Eqs. (2) and (11), the optimum decision δ∗ depends only on the prior belief
πi and cost cij , ∀i, j ∈ {0, 1}, i.e.,

δ∗(m) =

{
1, if 1 ≥ c10

c01
π0
π1

,

0, otherwise.
(13)

In partially-separating-pooling, however, S selects message m for type H0 and H1

respectively according to σS(m|H0) and σS(m|H1), with σS(m|H0) 	= σS(m|H1)
and σS(m|H0) 	= 1 − σS(m|H1).

4 Equilibrium Results

In this section, we determine the PBNE of the hypothesis testing game. First,
we summarize in Lemma 3 that our model does not support (pure) separating
PBNE.

Lemma 3. Under Assumptions 1 and 2, the hypothesis testing game admits no
separating PBNE.

Remark 1. Lemma 3 results from the opposite incentives of S and R, i.e., S
wants to deceive R and R wants to make the accurate decision. This is reflected
in the costs of S and R as shown in Assumptions 1 and 2. As a result, there is
no incentive for S to choose a separating strategy to reveal the true type. �

Lemma 4 states the pooling PBNE.

Lemma 4. In pooling PBNE, S uses the strategies satisfying σS∗(m|H0) =
σS∗(m|H0), ∀m ∈ Θ. The optimal decision function (optimum strategy σR∗)
of R is shown in Eq. (13).

Remark 2. In pooling PBNE, the optimum action taken by R only depends on
the deterministic value of c10

c01
π0
π1

. Suppose c10
c01

π0
π1

≤ 1, then R always infers the
type as H1 no matter what message m is sent. �
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Theorem 1 shows the deceivability of the pooling strategies of S.

Theorem 1. The deceivability of σS in pooling PBNE is shown as follows.

1: If c10
c01

π0
π1

≤ 1, then R always chooses δ∗(m) = 1, ∀m ∈ Θ. Then the probability
of successful deception is π0.

2: If c10
c01

π0
π1

> 1, then R always chooses δ∗(m) = 0, ∀m ∈ Θ. Then the probability
of successful deception is π1.

Remark 3. If R always infers δ∗(m) = i, ∀m ∈ Θ, i = 0 or 1, then S is successful
if the true type is Hj , i 	= j ∈ {0, 1}. In other words, the successful deception of S
using pooling strategies only depends on the true type Hj . Then the probability
of the occurrence of Hj is the probability of successful deception. �

Next, we look for partially-separating-pooling PBNE. In our game model,
R always chooses pure strategy, i.e., the optimum decision function shown in
Eq. (2). In other words, R is a passive decision maker in our game. In these
PBNE, S plays mixed strategy σS . Theorem 2 gives the results.

Theorem 2. In partially-separating-pooling PBNE, there are three cases as fol-
lows.

1. CS(H0,m, 1) < CS(H1,m, 0):
S chooses σS∗(m|H0) and σS∗(m|H1) satisfying

σS∗(m|H0) ≤ σS∗(m|H1)
√

c01
c10

π1

π0
.

R chooses a = δ∗(m) = 1, ∀m ∈ Θ. The rate of successful deception is π0.
2. CS(H0,m, 1) > CS(H1,m, 0):

S chooses σS∗(m|H0) and σS∗(m|H1) satisfying

σS∗(m|H1) < σS(m|H0)
√

c10
c01

π0

π1
.

R chooses a = δ∗(m) = 0, ∀m ∈ Θ. The rate of successful deception is π1.
3. CS(H0,m, 1) = CS(H1,m, 0):

S uses pooling strategy as in Theorem1.

Proof. See AppendixB.

4.1 Performance Analysis

In this section, we characterize the receiver operating characteristic (ROC) for
the equilibria of the hypothesis testing game.

As mentioned earlier, the decision function δ partitions the space Θ into two
disjoint sets M0 and M1 over which R decides that H0 and H1 hold, respectively.
Without loss of generality, suppose H0 is the null hypothesis for the decision
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Fig. 5. ROC for pooling PBNE. Since PTP (δ) = PFP (δ) for all possible δ, the ROC
curve is the blue diagonal line. (Color figure online)

Fig. 6. ROC for partially-separating-pooling PBNE. The upper-left half (includ-
ing the solid diagonal line) is the region formed by all possible ROC curves when
CS(H0, m, 1) < CS(H1, m, 0). The lower-right half is the region formed by all possible
ROC curves when CS(H0, m, 1) > CS(H1, m, 0). The solid and dashed lines are the
examples of the case PTP ≥ PFP and the case PTP < PFP , respectively.
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making of R. The performance of δ is measured in terms of two quantities. The
first one is true positive rate defined as

PTP (δ|σS) =
∑

m∈M1

σS(m|H1). (14)

PTP is the probability that the type H1 is correctly inferred. The second is the
false positive rate defined as

PFP (δ|σS) =
∑

m∈M1

σS(m|H0). (15)

PFP is the probability of falsely rejecting the H0. Except for some numerical
coincidences, PTP 	= 1−PFP . As can be seen, the PTP and PFP are characterized
entirely by the strategy σS of S and the strategy δ of R. From [12], we can
parameterize the cost in Eq. (7) by PTP and PFP as

C̄R(δ|m,σS , μ) =c00μ(H0|m) + c01μ(H1|m) + (c10 − c00)PFP (δ|σS)μ(H0|m)
+ (c11 − c01)PTP μ(H1|m).

(16)
Therefore, the performance of δ can be characterized by the strategy σS . The
receiver operating characteristic (ROC) provides tools to analyze all possible
PTP and PFP , and characterize the achievable test pair (PTP , PFP ) given the
strategy σS of S. To simplify the analysis, let c10

c01
π0
π1

= 1. When S chooses
the pooling strategy σS(m|H0) = σS(m|H1), PTP (δ) = PFP (δ). As shown in
Fig. 5, the ROC of poolin PBNE is a diagonal line connecting the point (PTP =
0, PFP = 0) and (PTP = 1, PFP = 1). From Theorem 1, R always chooses
δ∗(m) = 1 for all m ∈ Θ. Since c10

c01
π0
π1

= 1, the probability of successful deception
using the pooling strategy is π0.

For the partially-separating-pooling PBNE, if CS(H0,m, 1) < CS(H1,m, 0),
S chooses strategy σS such that σS(m|H0) ≤ σS(m|H1) for all m ∈ Θ. Then,
PTP (δ) ≥ PFP (δ) for all δ. In this case, R chooses δ∗(m) = 1 for all m ∈ Θ.
Similarly, if CS(H0,m, 1) > CS(H1,m, 0), PTP (δ) < PFP (δ) for all δ, and R
chooses δ∗(m) = 0 for all m ∈ Θ. As shown in Fig. 6, all the ROC curves for
CS(H0,m, 1) ≤ CS(H1,m, 0) forms the upper-left half region including the blue
diagonal line (pooling PBNE), and all the ROC for CS(H0,m, 1) > CS(H1,m, 0)
forms the lower-right half region.

5 Conclusion

In this paper, we have modeled the cyber deception as a signaling game in which
the deceivee uses hypothesis testing to make his best-effort decision while the
deceiver strategically manipulates the message or observation to mislead the
deceivee. We have studied the solution concept of perfect Bayesian Nash equilib-
rium (PBNE) to analyze the outcome of the deception game and characterize the
deceivability of the game. We have shown that the hypothesis testing game does
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not admit separating equilibria and have obtained all the pure equilibria. Our
results have shown that in the pooling equilibria the deceivability depends on the
deceivee’s cost and the prior belief of the type, and in the partially-separating-
pooling equilibria, the deceivability depends on the cost of the deceiver. Future
works would extend the proposed framework by considering an additional decep-
tion cost induced by the distance between the message and the observation.
This scenario leads to a class of non-cheap-talk signaling games. Another possi-
ble direction would be to consider the leaky deception. Specifically, side-channel
information can be used as additional evidence for the decision maker to improve
the accuracy of decision functions.

A Appendix A: Proof of Lemma2

Expand the total Bayes risk in Eq. 7 as follow,

C̄R(δ|m,σS , μ) =
1∑

j=0

λ(δ|Hj , σ
S)μ(Hj |m)

=
1∑

j=0

1∑
i=0

∑
m′∈Mi

cijσ
S(m′|Hj)μ(Hj |m).

(17)

Let Ξ(Mi|Hj) be defined as

Ξ(Mi|Hj) =
∑

m∈Mi

p(m|Hj).

Then, we have Ξ(Mi|H0) + Ξ(Mi|H1) = 1 ∀j ∈ {0, 1}. Thus, Eq. 17 can be
written as

C̄R(δ|m,σS , μ) =
1∑

j=0

cojμ(Hj |m) +
1∑

j=0

(c1j − c0j)Ξ(M1|Hj)μ(Hj |m)

=
1∑

j=0

cojμ(Hj |m) +
∑

m′∈M1

( 1∑
j=0

(c1j − c0j)σS(m′|Hj)μ(Hj |m)
)
.

(18)
Therefore, a decision function δ∗ is optimum if it can partition Θ into M0 and
M1 such that M1 satisfies

M1 = {m ∈ θ :
1∑

j=0

(c1j − c0j)σS(m′|Hj)μ(Hj |m) ≤ 0}.

Under Assumption 1, we have

c10σ
S(m|H0)μ(H0|m) − c01σ

S(m|H1)μ(H1|m) ≤ 0.
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Therefore, H1 is selected, i.e., δ∗(m) = 1 if the following inequality holds,

σS(m|H1)
σS(m|H0)

≥ c10
c01

μ(H0|m)
μ(H1|m)

.

Similarly, we can find the condition for H0. �

B Appendix B: Proof of Theorem2

Suppose the true type is H0. S wants R to believe the type is H1, i.e., δ∗(m) = 1.
This requires the strategy σS∗ of S to satisfy

σS∗(m|H1)
σS∗(m|H0)

≥ c10
c01

μ(H0|m)
μ(H1|m)

. (19)

Given R’s action a, the corresponding costs are CS(H0,m, a = 0) and
CS(H0,m, a = 1).

Similarly, if the true type is H1, the successful deception requires σS∗ to
satisfy

σS∗(m|H1)
σS∗(m|H0)

<
c10
c01

μ(H0|m)
μ(H1|m)

. (20)

Given R’s action a, the corresponding costs are CS(H1,m, a = 0) and
CS(H1,m, a = 1).

Clearly, (19) and (20) cannot hold at the same time. Therefore, S has to
decide between (19) and (20) such that the cost is minimized given the true
type Hj , ∀j ∈ {0, 1}. Therefore, if CS(H0,m, 1) < CS(H1,m, 0), S chooses the
strategy σS∗ that satisfies (19); if CS(H0,m, 1) > CS(H1,m, 0)

S chooses the strategy σS∗ that satisfies (19) if CS(H0,m, 1) < CS(H1,m, 0).
In this case, R is deceivable if H0 holds and is not deceivable if H1 holds. The
corresponding rate of successful deception is the probability of occurrence of H0,
i.e., π0. If CS(H0,m, 1) > CS(H1,m, 0), S chooses σS∗ satisfying (19). In this
case, S can deceive R if H1 holds and cannot deceive her if H0 holds. The rate
of successful deception is π1. If CS(H0,m, 1) = CS(H1,m, 0), and chooses σS∗,
S is indifferent between (19) and (20), and he can choose either strategy. �
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Abstract. It is typically infeasible to use automated intrusion detec-
tion systems to scan every single host in a network with high sensitivity
and frequency due to high costs and large network sizes. We present
a game-theoretic model between a network administrator and a worm
using normal form games with a particular structure where the net-
work admin wants to maximize the security of the network using limited
resources, and the attacker wants to infect the network without getting
caught. However, a large number of hosts in a network can result in a
massive game, making it problematic to compute standard solutions like
Nash equilibrium. We propose an abstraction approach for solving large
games that have a subgame structure and show that it can be used to
solve much larger instances of this cybersecurity scenario than standard
algorithms.

Keywords: Cybersecurity · Game theory · Abstraction
Nash Equilibrium · Solution quality

1 Introduction

Most real-world networks are divided into subnets to increase performance
and security, but there are limited resources to inspect/harden devices against
attacks. Automated Intrusion Detection Systems (IDS) [13,17] are an essential
defense, but it may not be possible to use a costly IDS on every network host [1].
In a network, botnets often spread easily within a subnet using worms that
exploit open ports and unpatched vulnerabilities. However, spreading between
subnets requires moving through more secure and highly monitored routers that
limit connectivity. This locality leads a game model with a particular structure
in a Normal Form Game (NFG). We present a game-theoretic model based on
this cyberdefense scenario using an NFG for stopping the spread of an attacker
(e.g., a botnet) through a network that has a subnet architecture. In this game
model, the network administrator acts as the defender and a worm acts as the
attacker. The network administrator wants to use his defense mechanism to stop
the spread of a botnet by hardening the security in one or more hosts.

While NFG is a very general representation, it is often problematic to solve an
NFG for real-world scenarios because enumerating all possible strategies results
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in an extremely large game. For example, in an enterprise network the large num-
ber of hosts and interconnections can lead to intractable NFG models. Solving
an NFG is known to be a computationally hard problem [6], and most existing
algorithms (e.g., implemented in Gambit [14]) do not scale well in practice. An
increasingly common approach is to apply some form of automated abstraction
to simplify the game. The simplified game is then analyzed using an available
solver, and the solution is mapped back into the original game. If the reduced
game can retain the vital strategic features of the original game, then in princi-
ple the solution of the simpler game may be a reasonable approximation of the
solution to the original game.

This general approach has been successful in developing computer poker
agents (e.g., [8–11,18]). Brown et al. used CFR [18] and imperfect recall abstrac-
tion with earth mover’s distance [7] for a hierarchical abstraction [4] technique.
Another widespread approach to handle massive games is Double Oracle (DO)
Algorithm [3,15] which relies on the concept of column/constraint generation
techniques.

Two works very closely related to an NFG reduction are one by Conitzer
et al. [5] and another one by Bard et al. [2]. In the former paper, the authors
gave an abstraction technique which can be used in a class of NFGs called Any
Lower Action Gives Identical Utility (ALAGIU). The authors show that their
technique can be applied recursively in ALAGIU games to abstract the game and
find approximate Nash equilibrium. Motivated by the approach, we introduce
an abstraction technique we call Iterative Subgame Abstraction and Solution
Concept (ISASC). To evaluate this technique, we use a class of NFGs where
some actions give identical utility that we call Approximately Identical Outside
Subgames (AIOS). We also introduce a Pure Strategy Nash Equilibrium solution
concept called Minimum Epsilon Bound (MEB).

Our main contributions are as follows: (1) we model a cyberdefense sce-
nario using NFG that naturally leads to games with AIOS structure, (2) we
offer sophisticated non-iterative and iterative algorithms for solving games using
abstraction with both exact and noisy AIOS structure, (3) we present exper-
imental evaluation of our algorithms on both generic games and games based
on a cyberdefense scenario, showing that our algorithms substantially improve
scalability over baseline equilibrium solution algorithms.

2 Games with AIOS Structure

A Normal Form Game (NFG) is a standard representation in game theory in
which the outcomes of all possible combinations of strategies are represented
using a payoff matrix. The tuple (N,A, u) represents a finite N -player NFG [16],
where each player is indexed by i. The set of actions (pure strategies) is given
by A = A1 × ...×AN , where Ai is the set of actions for player i. Each vector a =
(a1, ..., aN ) ∈ A is an action profile. An action (kth) for player i is represented by
ai,k. We extend to mixed strategies si ∈ Si, and use the notation πi(ai) to refer
to the probability of playing action ai for player i. Each player has a real-valued
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utility (payoff) function u = (u1, ..., uN ) where ui : AN → R, extended to mixed
strategies as usual by using expected utility.

We will consider abstracted games represented as (simpler) NFGs. For these
games, we use the same notation but with a hat to denote that it is an
abstracted game, (N̂ , Â, û). We also use Ai(O) to refer to the set of available
actions for player i in NFG O. The set of clusters for player i is denoted using
ci = {ci,1, ..., ci,m}, where ci,m ⊂ Ai and ci,m is the mth cluster for player
i, and ci,m = {ai,1, ..., ai,k}. Every action belongs to exactly one cluster, so
ci,1 ∩ ci,2 ∩ ... ∩ ci,k = ∅.

Fig. 1. AIOS Structure in an NFG

We now introduce
a game structure based
on the idea of forming
subgames with strong
interactions within a
subgame, but weak inter-
actions outside of the
subgame. We call this
Approximately Identi-
cal Outside Subgames
(AIOS), as shown in
Fig. 1. The fundamen-
tal idea is to create
clusters of strategies
for both players that
form subgames. Within
a subgame, the strate-
gies and payoffs can vary arbitrarily. However, outside of the subgame, the
strategies for each player should have payoffs as similar as possible for play-
ing against any opponent strategy, not in the subgame. Games with exact AIOS
have identical payoffs outside the subgame, while games with noisy AIOS weaken
this to allow some variation in the payoffs outside the subgames.

In Fig. 1, suppose the row player is player 1 and column player is player 2.
If player 1 decides to play any strategy from {1 − 10} ∈ c1,1, he needs to worry
only about the probabilities assigned by player 2 to strategies {1 − 10} ∈ c2,1.
Intuitively this is because if player 2 plays from strategies outside of c2,1 the
payoff is the same for the row player no matter which action he chooses among
{1 − 10} ∈ c1,1. The subgame G1 is formed by considering only actions in c1,1

and c2,1.

3 A Cyber Defense Game with AIOS

We now present a cybersecurity scenario for a botnet attack where the AIOS
(Sect. 2) structure arises naturally. Figure 2 shows an example with 2 subnets
containing 3 nodes each. A network is a collection of nodes that belong to exactly
1 subnet ηk. Every host has a value vi. ti,j represents the intra-transmission prob-
ability for the botnet to propagate from node i to j within the same subnetwork
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Fig. 2. Example network with ti,j = 1 and T (ηk, ηl) = 0

ηk. The inter-transmission probabilities, represented by T (ηk, ηl), is for the bot-
net propagating from subnet ηk to ηl. The botnet spreads on a new subnet ηl

from current subnet ηk and infects the nodes of subnet ηl like a worm maintain-
ing the intra-transmission probabilities. We model a one-shot game where the
Defender selects a node i to defend (e.g., closing ports, patching vulnerabilities,
increasing monitoring). The defend action reduces the transmission probabili-
ties for all edges connected to i and stops any attack that spreads to node i.
The attacker selects an initial node to attack, which spreads according to the
transmission probabilities (which can be estimated using simulation).

If the botnet spreads to a defended node and is detected, the Defender pays
a cost equal to the total value of the infected nodes (to clean up the attack),
but the attacker receives a payoff of zero. If the attack does not interact with
a defended node, the attacker receives the sum of the values of all the infected
nodes. We estimate the payoff matrix for a particular game using Monte Carlo
simulation to estimate the spread of the infection for each pair of strategies.

Fig. 3. (a) Game for Fig. 2 with ti,j = 1 and T (ηk, ηl) = 0. (b) Game for Fig. 2 with
ti,j = [0.85, 1.0] and T (ηk, ηl) = 0.10

Figure 3(a) shows the NFG representation for the example in Fig. 2 assum-
ing ti,j = 1 and no edges exist between subnets. In this case, the game has an
exact AIOS structure. When the two players play on the same subnet, there
is a strategically interesting game. However, when the two players play out-
side of the same subnets, there is no interaction. Intuitively, this is because the
Defender will never be able to detect the Attacker’s botnet because no connec-
tion exists between subnets. Figure 3(b) shows the network seen in Fig. 2 with a
low inter-transmission probability between subnets where T (ηk, ηl) = 0.10 and
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transmission probabilities within the subnets in the range ti,j = [0.85, 1.0]. When
we add these weak interactions between subnets (i.e., relatively low transmission
probabilities), we have a game with an noisy AIOS structure where actions in
different subnets have only limited effects on the payoffs.

4 Hierarchical Solution Method

We now describe a solution approach that constructs subgames based on strat-
egy clusters and uses the solutions to these subgames to create a more accurate
abstracted game. When games have exact AIOS structure, this will result in
finding an exact solution to the original game by composing the results of the
subgame solutions. In cases where games have noisy AIOS structure, we pro-
pose an iterative solution method that improves solution quality by taking into
account error from outside of the subgames.

4.1 Subgames

Fig. 4. Abstracted (hierar-
chical) Game R

Consider the AIOS example shown in Fig. 1. Ten sub-
games correspond to ten pairs of clusters of actions
for the players. For example, G1 is played using
clusters c1,1 and c2,1. Now we consider building an
abstracted game by first solving each of the sub-
games G1 to G10 utilizing any solution concept to
get a mixed strategy for each player in each game.
The abstracted game will have one action for each
player corresponding to each cluster (10 in the example). To fill in the payoffs
for each pair of clusters (a 10× 10 matrix), we compute the expected payoffs
using the mixed strategies for the corresponding clusters (for the subgames, this
is the expected payoff from the solution to the game). Figure 4 shows the result-
ing abstracted game R. Next, we solve R using any solution concepts mentioned
in Sect. 4.3. To get the reverse mapping here we must distribute the probabilities
of c1,1, c1,2, ..., c1,10 over all the actions in c1,1, c1,2, ..., c1,10 for player 1 to get the
strategy for the original game (resp. for player 2). Equation 1 gives this reverse
mapping, where i ∈ N,∀ai,k ∈ ci,m. In Eq. 1 the probabilities πi(ai,k) on the
right-hand side are the mixed strategies for the subgames. We call this approach
Subgame Abstraction and Solution Concept (SASC).

πi(ai,k) = πi(ci,m) × πi(ai,k) (1)

4.2 Noisy AIOS Games

The AIOS structure is strict if we require identical payoffs outside of the sub-
games. However, it is much more plausible to find approximate forms of this
structure. For example, in Sect. 3 we saw how low transmission probabilities
between subnets lead to an noisy AIOS game. For a noisy version of AIOS, we
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define the delta (δ) parameter to specify how much variation in the payoffs is
allowed outside of the subgames. Let δi,k be the maximum payoff difference for
any pair of actions in cluster k for player i for any strategy of the of the oppo-
nent that is not in the same subgame. δi is the maximum of δi,k for player i,
where k can be from 1 to a number of clusters. Equation 2 picks the maximum
δ considering all of the clusters and players. Equation 3, where (i, j) ∈ N, i �= j,
calculates δ for one cluster ci,k for a player i.

δ = maxi∈N (max(δi,k)), k = 1, ..., |Âi(R)| (2)

δi,k = max(ui(ai,m, aj,t) − ui(ai,n, aj,t)) (3)

4.3 Solving Games

We consider several solution methods for solving games. We consider both pure
and mixed-strategy Nash equilibrium, as well as a different concept that directly
minimizes the bound on the approximation quality in the original game.

Approximate Pure Strategy Nash Equilibrium. In a Pure-Strategy Nash
Equilibrium (PSNE) all players play pure strategies that are mutual best-
responses. However, PSNE is not guaranteed to exist. Therefore, we instead
look for the pure-strategy outcome that is the best approximate equilibrium.
We first calculate the values of deviations for each action ai and then select the
action profile that minimizes the maximum benefit to deviating.

Mixed Strategy Nash Equilibrium. We also calculate a version of mixed-
strategy Nash equilibrium using the software package Gambit [14]. There are
several different solvers for finding Nash equilibria in this toolkit. We used one
based on Quantal response equilibrium (QRE) [12].

Minimum Epsilon Bounded Equilibrium. When solving an abstracted
game, the best analysis may not be finding a Nash Equilibrium, since this may
not be an equilibrium of the original game. As an alternative, we introduce Mini-
mum Epsilon ( ε) Bounded equilibrium (MEB). Instead of considering deviations
to clusters of actions (and the average payoff of the cluster), we use the maxi-
mum expected payoff for any of the actions in the original game. This heuristic
allows for a better estimate of how close the outcome will be to an equilibrium in
the original game. The difference in comparison with PSNE is in the calculation
of ε(a∗

i ). Equation 4 is used to compute the ε for MEB.

ε(â∗
i ) = max∀âi∈Âi,âj∈Âj

[ui(âi, âj) − ûi(â∗
i , âj)] (4)

In the above equation ui(âi, âj) returns a payoff from an upper bound game
R. Payoffs for the upper-bounded game R are computed using Eq. 5. Equation 5
calculates the maximum expected payoff for an abstracted action by reverse
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mapping to the original actions and calculating the expected payoff for every
original action, selecting the maximum one. Next, where ∀âi ∈ Âi(R),∀âj ∈
Âj(R), (i, j) ∈ N, i �= j, the equation iterates over all the actions for every player
and calculates the payoffs for the upper-bounded game R. Equation 4 cannot be
used in the original game because we need an upper-bounded game where we
use reverse mapping. Unless we have an abstracted game, it is not possible to
compute an upper-bounded game.

ui(âi, âj) = max∀ai,k∈g(âi)

∑
∀aj,l∈g(âj)

ui(ai,k, aj,l)

|g(âj)| (5)

Double Oracle Algorithm. The Double Oracle (DO) is not a solution concept.
It is a technique used to handle massive games. Double Oracle Algorithms [3,15]
utilize the method of column/constraint generation. The idea is to restrict the
strategies of all the players and solve the restricted game exactly using the LP [16]
for solving an NFG. We used the QRE [12,14] to solve the restricted general-sum
NFG. The QRE gives an approximate Nash Equilibrium.

Counter Factual Regret. Counterfactual Regret Minimization (CFR) [18] is
an iterative algorithm to find approximate Nash Equilibrium. In every iteration,
it updates the strategies of the players to minimize a weighted sum of regret at
each decision. The average strategies then approach NE.

4.4 Iterative Solution Algorithm

For games with noisy AIOS structure, simply composing (as above) the solutions
of the subgames may not be an equilibrium of the original game. The solution
may occasionally play in quadrants of the game that are not one of the subgames
solved explicitly, which results in an error when the payoffs do not match identi-
cally. We now introduce an iterative solution technique that (partially) accounts
for this error. After solving the subgames and abstracted game as previously, we
now calculate the expected payoff for each strategy outside its subgame. Then,
we modify the subgames using this error term added to the payoffs in the sub-
game and solve them again, and then recalculate the abstracted game and solve
it again. This process results in a sequence of modified solutions that account for
the differences in payoffs outside of the subgames from the previous iteration.
We call this algorithm the Iterative Subgame Abstraction and Solution Concept
(ISASC).

Consider the subgame G1 in Fig. 1. We want to internalize the noise outside
of the subgame into the payoffs of the subgame. So, before solving G1, we update
the payoffs for both player 1 and player 2. For action {1−10} ∈ c1,1, we calculate
the expected utility when player 2 does not play the actions in the subgame.
That means that when player 1 plays {1− 10}, we calculate the expected utility
of {1 − 10}, denoted Ωi, by considering the probabilities of player 2 playing
{11 − 100} from the strategy on the previous iteration. Then we update the
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payoffs of G1 for player 1 for action {1 − 10} ∈ c1,1 for every {1 − 10} ∈ c2,1 by
adding the Ωi. This process repeats for all strategies in the game.

Pseudocode for updating the subgames is shown in Algorithm1. Subgames
are updated using [ui(ai, aj) = ui(ai, aj) + Ωi(ai)], where ∀ai ∈ Ai(G),∀aj ∈
Aj(G),∀(i, j) ∈ N, i �= j, line 4–12. Lines 5–7 are used to compute the expected
payoff Ωi, for an action of player i, when player j plays outside of the subgame
G. The action set for player i in game G is Ai(G). The probability of action aj

from the mixed strategy for iteration T − 1 is πT−1(aj).

5 Experiments

In the experiment section, we used two criteria to measure the performance of
our proposed algorithm: (a) runtime (b) epsilon (ε). ε measures whether there is
an incentive for a player to switch to another pure strategy from the current Nash
Equilibrium strategy (which can be either a mixed strategy Nash Equilibrium
using QRE or a pure strategy Nash Equilibrium using PSNE, MEB). To compute
ε of an approximate Nash Equilibrium strategy for player i first we calculate the
expected payoff of player i given the approximate Nash Equilibrium strategy of
the players. Next, we check whether there is an incentive for player i to switch to
a pure strategy from the current approximate Nash Equilibrium strategy (which
can be either pure or a mixed strategy Nash Equilibrium). Finally, we take the
maximum of all the players’ ε which gives us the ε for an approximate Nash
Equilibrium. In a Nash Equilibrium, there is no incentive to switch to a pure
strategy for all the participating players (ε = 0).

For our first experiment we considered 2-player games of different sizes
(#Actions = 25, 36, 64, 81, 100) with a fixed δ = 10. For each size, we created
20 different games. For each size, the strategies for each player are partitioned
into 5, 6, 8, 9, 10 clusters with 5, 6, 8, 9, 10 actions respectively. The subgames are
completely random games with payoffs generated uniformly between 0 and 100.
The payoffs outside of the subgames are generated randomly with the constraint

Algorithm 1. Update Subgame Algorithm
Input: Subgame G’, original game G, player i

1: Subgame actions o’ = Actions(G’, i)

2: Opponent actions in G’, p = Actions(G, G’, iop)

3: Opponent actions outside G’, p’ = OutActions(G, G’, iop)

4: for j ← 1, o′ do � for every action of player i in G’

5: for k ← 1, p′ do � for every action of opponent �∈ G’

6: ω = ω + PayOff(j,k,G) ×π(k)
7: end for
8: for l ← 1, p do � for every action of opponent in G’

9: Outcome o = [ j, l ]

10: G’(o,i) = PayOff(G, o) + ω � update the payoff in G’

11: end for
12: end for
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(a) Measuring performance against QRE, CFR
and DO which are applied in the original game (b) Decreasing ε for different δ

Fig. 5. Measuring performance of ISASC-QRE

that in every cluster the maximum payoff difference between the payoffs for the
actions is δ for all actions of the opponent that are not part of the subgame (i.e.,
for every action outside the subgames we add noise).

We begin by showing that ISASC has benefits when there are limited
resources available since ISASC can solve a large game using fewer resources
and much more quickly. We compare the runtime performance of ISASC-QRE
(ISASC-QRE means we used the ISASC algorithm to solve games where QRE is
used to solve the subgames and the hierarchical games) against different solution
methods: QRE, CFR and DO, when these different methods are applied to the
original game without the use of any abstraction as shown in Fig. 5a. The results
clearly show that ISASC-QRE was able to solve games faster than QRE, CFR
and DO by considerable margins.

Our next experiment focuses on showing that the iteration scheme in ISASC-
QRE is effective at improving solution quality. For this experiment we created
20 2-player games for each δ = {5, 15, 20, 30} where 100 actions were available
for each player. In Fig. 5b we show the error (quantified by the ε in the original
game) for different levels of δ as we increase the number of iterations. We can
see a clear improvement in solution quality with increasing iterations. We also
note that the biggest improvements come in the cases with the largest values
of δ.

The next experiment compares the solution quality of iterative (ISASC)
and non-iterative (SASC) subgame abstraction techniques: ISASC-QRE, SASC-
PSNE, SASC-QRE, SASC-MEB. For each algorithm, we explicitly mentioned
which solution concept is used to solve the subgames and hierarchical games.
For example, in SASC-QRE, we used the QRE to solve the subgames and
the hierarchical games. The only exception is SASC-MEB, where we used
QRE to solve the subgames since MEB can only be used to solve a hierarchi-
cal/abstract game. For this experiment, we created 20 2-player games for each
δ = {0, 1, 2, 3, 5, 7, 10, 15, 20, 30} where 100 actions were available for each player.
The strategies for each player are partitioned into 10 clusters with 10 actions for
each: |c1|= |c2|= 10, |c1,m|= 10, m = 1, 2, ..., 10. For this experiment, we assumed
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(a) Comparison of solution quality (b) Comparison of runtime

Fig. 6. Performance comparisons for ISASC and SASC algorithms

that the subgames are known to ISASC and SASC algorithms. Figure 6a and b
shows the results. ISASC-QRE and SASC-QRE does very well in cases with
low δ, as expected. However, ISASC-QRE continues to perform better when the
values of δ are much more significant. Figure 6a and b also show that there is a
tradeoff between solution quality and runtime. ISASC-QRE produces the better
results but requires more time than SASC-QRE.

Table 1. Network settings

Parameter Value range

ti,j = tj,i [70, 100]

T (ηi, ηj) [10, 30]

vi [6, 10]

cd(vi) [1, 3]

ca(vi) [1, 3]

|eηk , eηl | 1

|eηk | |emin, emax|

We now consider the more realistic cyber defense games described in Sect. 3.
We compared our ISASC and SASC algorithms. We generated 20 games using
the parameter settings shown in Table 1. Each parameter is drawn uniformly
from the given range. The number of edges in subnet ηl is |eηl

| in the range
|emin, emax| where emin and emax are the minimum and maximum number of
edges respectively. All networks are connected, and the parameters T (ηk, ηl)
and ti,j , where ti,j 	 T (ηk, ηl) control worm propagation. We use Monte Carlo
simulation for 10, 000 iterations to estimate the payoffs based on the propagation
of the attack. Each subnet forms a cluster of actions for our solution methods.
Since we already know the subnets for this cyber defense scenario, and thus the
subgames, we assumed that the subgames are already known.
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Fig. 7. Effect of transmission parameters on δ

Our first experiment shows how δ varies as we vary the inter and intra-
transmission probability in Fig. 7a, b. We used games with 50 nodes and 5 subnets
with the same number of nodes. We can see in Fig. 7a that when ti,j = [100, 100]
and T (ηk, ηl) = 0 so the subnets are totally disconnected from each other δ = 0.
In this case, we can find an exact equilibrium by composing subgame solutions.
However, when T (ηk, ηl) starts to increase δ increases. In both Fig. 7a and b, we
see that δ reaches a maximum when T (ηk, ηl) ≈ ti,j as the spreading of botnet
becomes random across the entire network, losing the AIOS structure.

Fig. 8. Performance of ISASC-QRE

Next, we show how δ and ε change when we vary both network size and subnet
size. In Fig. 8a we can see that ISASC-QRE performs favorably compared to the
other solution algorithms. Next, we increase subnet size but keep the number
of subnets fixed. Figure 8b shows that as the subnet size increases δ increases.
However, the ISASC algorithm continues to provide better solution quality with
very low ε for higher δ. In all of the experiments, ISASC gives very high solution
quality compared to other algorithms.

6 Conclusion

Defending a network against malicious worm requires sophisticated defense
mechanism. However, due to large network size and limited resources, it’s difficult
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for a network administrator to harden the security in every host of the network.
Solving the game becomes harder due to large action space of the game model.
We propose a new class of abstraction methods for NFG based on the AIOS
structure. We show that there exist several abstraction-based solution meth-
ods that can take advantage of this structure to quickly find solutions to huge
games by decomposing them into subgames. For games with only noisy AIOS
structure, we show that iterative solution methods can give us very high-quality
approximations to the solution of the original game.
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Abstract. Computer network is always under the threat of adversaries.
Before launching any real attacks, adversaries may scan and probe the
systems to gain some key information. In this paper, we build a two-
stage deception game to determine how to answer attackers’ scan and
probe queries to minimize defender’s expected loss. To achieve optimal
defense strategy, a sophisticated mixed integer program is formulated. To
support fast computation in reality, a two-stage heuristic method is also
developed based on the problem’s structural properties. Computational
experiment shows that after scanning the whole network, adversary’s
probe against some hosts and how such probe is responded have signifi-
cant influences on defender’s expected loss. Our heuristic method is able
to produce high quality solutions with a drastically improved computa-
tional performance.

Keywords: Two-stage security game · Game theory · Cyber security
Network security · Deception

1 Introduction

During the past decades, the development of computer and network technology
has profoundly changed our society. On one hand, by penetrating to almost every
area of our modern world with strong computing and communication powers, it
provides us with great convenience. On the other hand, the drastically intensified
dependence on information science and network technology raises many security
challenges and concerns. It has been well recognized that adversaries may launch
malicious attacks in the cyber layer to disrupt systems’ regular services or steal
classified information, which has become a critical threat that every enterprise
and organization must deal with. In particular, as more and more people are
heavily involved in various online activities, such attacks can be launched with
little difficulties but cause much deeper negative influences. For example, in 2016,
a large amount of leaked confidential documents from a law firm in Panama
exposed “how some of the world’s most powerful people may have used offshore
bank accounts and shell companies to conceal their wealth or avoid taxes” [23]. In
the same year, Yahoo! reported that more than 500 million of its users’ account
information were stolen [19]. Later in 2017, Yahoo! affirmed that the number of
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influenced users is actually 3 billion [18]. Another case happened in 2017 is the
Equifax data breach, which caused the leakage of 143 million people’s personal
data, almost half the population of the United States, including their names,
dates of birth, social security numbers and addresses [17]. Cyber security has
become one of the most significant issues in the world.

Deception has been widely used in two player games. Among sending false
signals about their real situations and plans [12], hiding some private information
[5], and making credible and not credible retaliation threats [22], we note that the
key idea is to take advantage of asymmetric information to influence opponent’s
behavior.

Before launching any real attack, adversaries need to collect sufficient infor-
mation to build a sound understanding on the target network, such as the types
of the hosts, the operating systems and their versions. Equipped with these infor-
mation, adversaries can not only maximize the probability of success attacks, but
also increase their gains, after their more intelligent attacks. During this stage,
scan tools, like NMap [16] and SinFP [3], might be used. If such scan queries are
all honestly answered, attackers are able to identify the vulnerability of the sys-
tems and prepare appropriate hacking methods easily, and the defender loses her
asymmetric information advantage. On the contrary, if the responses to adver-
saries’ scan queries are intensionally controlled, then either adversaries have to
devote more efforts during reconnaissance stage or their attack cannot achieve
intended goals.

Given that, many studies have been focused on dealing with attackers’ scan
queries. One type of techniques is to dynamically change some aspects of systems’
configuration [13]. By doing this, even if adversaries have collected enough infor-
mation about the systems, it probably has already changed when they launch
attacks. Since changing the systems’ configuration is quite resource consuming,
this method may significantly increase the defender’s cost. Another approach
is to manipulate the outgoing traffic without actually changing systems’ config-
uration [1,2]. Then, based on inaccurate scan results, the attackers may make
incorrect inferences about the systems, especially the flaws that can be used.
In addition, if such deceptive scan responses are elaborately designed, adver-
saries might be misled to concentrate on low value hosts, which can significantly
decrease damages caused by attackers or help defenders earn additional time for
defense [14,21].

In network defense, honeypots are also widely used. Honeypots are fake hosts
camouflaged with high values to attract attackers’ attention. Once attacked, they
not only consume adversaries’ time and resources, but also record attackers’
behavior for further analysis and system’s security improvement [15,25]. Honey-
pots are very powerful but expensive defense resources. Therefore they should
be delicately designed in order to increase the chance they are attacked [10].
What makes the situation subtle is that the utilization of honeypots is not a
secret. On one hand, since adversaries know honeypots may be deployed, high
value real hosts can avoid being attacked by disguising as honeypots [7]. On the
other hand, attackers may implement advanced methods to detect and disable
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honeypots [8]. Hence, both the protection of honeypots [6,24] and influence of
being probed [20] should be considered when designing defense strategies.

In this paper, we consider a two-stage deception game for network protection.
In the first stage, the adversary scans the whole network and the defender decides
how to answer such queries to distract the attacker from high value hosts. In the
second stage, the adversary can probe some specific hosts that he is interested
in getting more information before launching any real attacks and the defender
decides how to respond to such probes.

The remainder of this paper is organized as follow. In Sect. 2, we give a
detailed description of the game, notations we used and a mixed integer pro-
gramming formulation. To solve this problem efficiently, heuristic algorithms
are developed in Sect. 3. Computational experiments are presented in Sect. 4.
Finally, Sect. 5 concludes the paper.

2 Two-Stage Deception Game for Cyber Security

Our two-stage deception game (TSDG) contains two players, i.e., a defender
who maintains a network system and an adversary who tries to cause damage
to the system or to acquire secretary data. Before launching any real attacks,
the adversary can first scan the whole network and then probe some specific
hosts to gather information. The defender decides how to answer such scan and
probe queries, which is predetermined. She is allowed to lie at some cost. The
TSDG is not a zero-sum game. On the contrary, each host has a specific value
to the defender and the attacker has a preference over them based on his scan
and probe results, i.e., how such scan and probes are answered.

2.1 Game Description and Notation

Let N = {1, 2, · · · , n} be the set of all hosts in the network that need to be
protected. Each of them has value ui for i ∈ N to the defender, representing the
loss of her if host i is attacked. If host i is a honeypot, ui will be a negative value
representing a profit if it is attacked. By scanning the network, the adversary
gains some information about the hosts, based on which he can divide them into
several types. Each type could be a specific configuration, like a database running
Red Hat Linux 7 or just a rough class as the attacker may not be able to collect
enough detailed information. The set of all possible types is T = {1, 2, · · · ,m}.
If the attacker cannot tell the difference between two hosts, then he views them
as the same type. Scan result, i.e., the categorization that assigns hosts to types,
is determined by both the hosts’ own nature and the defender. The defender can
honestly answer scan queries or lie at some cost.

According to the adversary’s preference on all types, he will choose one for
further reconnaissance. For the selected type, he can probe one or more hosts to
gather more information about them. With more knowledge about the probed
hosts, he is able to tell whether they are more or less valuable to him. If some
of the probed hosts are more valuable, he randomly picks hosts from them to
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attack. If all probed hosts are less valuable, he randomly picks hosts from the
rest of this type to attack. We assume the attacker will concentrate on one type
once he probes it, as he has no reason to give up the information he acquired
through probing. Again, the probe result is determined by both the hosts’ own
nature and the defender. The defender can honestly answer probes or lie at some
cost.

As scan queries and probes are responded in real time, the defender’s defense
strategy, including the answers to both scans and probes, should be determined
before the adversary’s reconnaissance starts. Because the defender knows what
information the attacker will acquire, she can infer how hosts will be classified
and which one or some types are more attractive to the adversary. Therefore,
she is able to calculate her expected loss if some hosts of type j ∈ T are probed
and then attacked. What she needs to do is to find a defense strategy such that
her expected loss is minimized.

Let X be all possible defense decisions that the defender can make and Nj(x)
be the set of all hosts of type j ∈ T under defense strategy x ∈ X. Let Rj(x,m, n)
represent the expected loss to the defender if the adversary picks type j ∈ T ,
probes m and then attacks n hosts. When T̂ ⊆ T is the set of all possible selected
types by the attacker, the highest expected loss is R̂ = max{Rj(x,m, n)|j ∈ T̂}.
What the defender needs to do is to choose a defense strategy x ∈ X such that
R̂ is minimized.

2.2 Mixed Integer Programming Formulation

We give a mixed integer programming(MIP) formulation for m = 1 and n = 1,
i.e., the adversary will probe one host and attack one according to his scan and
probe result, to show how our game model works. For simplicity, in the rest of
this section, we use Rj to represent Rj(x, 1, 1).

Let xij+ be binary variables that equal 1 when host i is classified into type j
after adversary’s scanning and will be viewed more valuable if probed. Similarly,
xij− are binary variables that equal 1 when host i is classified into type j after
adversary’s scanning and will be viewed less valuable if probed. Constants cij+
and cij− are corresponding costs, respectively. Therefore, for defense decision x,
the attacker will find

∑
i∈N (xij+ + xij−) hosts of type j after his scanning.

Let j ∈ T̂ be a type that the adversary chooses to probe and attack. Then for
any host k ∈ N , the probability that it is probed is (xkj+ +xkj−)/

∑
i∈N (xij+ +

xij−). If xkj+ = 1, after probing host k, the adversary will attack this host and
the defender’s expected loss is uk. If xkj− = 1, after probing host k, he will not
attack it. As in this example we only allow him to probe one host, he will attack
any rest hosts of type j with equal probability and the defender’s expected loss
is (

∑
i∈N (uixij+ +uixij−)−uk)/(

∑
i∈N (xij+ +xij−)− 1). Therefore, for type j,

the total expected loss is
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Rj =
∑

k∈N

xkj−

∑
i∈N (uixij+ + uixij−) − uk
∑

i∈N (xij+ + xij−) − 1
· 1
∑

i∈N (xij+ + xij−)

+
∑

k∈N

xkj+

uk∑
i∈N (xij+ + xij−)

(1)

Let M = max{|ui||i ∈ N} and η be the highest expected loss over all types
in T̂ that may be probed and then attacked. When the defender has a total
budget D, our TSDG for network security with m = n = 1 can be modeled as
the following optimization problem

TG min η (2)

s.t.

(
∑

i∈N

(xij+ + xij−) − 1

)
∑

i∈N

(xij+ + xij−)η

≥
∑

k∈N

[

xkj−

(
∑

i∈N

(uixij+ + uixij−) − uk

)]

+
∑

k∈N

ukxkj+

(
∑

i∈N

(xij+ + xij−) − 1

)

∀j ∈ T̂ (3)

∑

i∈N

(xij+ + xij−)η ≥
∑

i∈N

(xij+ + xij−)

(

1 −
∑

i∈N

(xij+ + xij−)

)

M

+ (xkj+ + xkj−)uk ∀k ∈ N, j ∈ T̂ (4)
∑

j∈T

(xij+ + xij−) = 1 ∀i ∈ N (5)

∑

i∈N

∑

j∈T

(cij+xij+ + cij−xij−) ≤ D (6)

(xij+ , xij−) ∈ X ⊆ {0, 1}2mn.

In this model, we are trying to minimize the highest expected loss η. Con-
straint (3) is a reformulation of η ≥ Rj ∀j ∈ T̂ in case there is no or only one host
in type j, making the denominators in Eq. (1) zero. When

∑
i∈N (xij+ +xij−) = 0

or 1, both sides of constraint (3) are zeros and η is not restricted. A special case
is

∑
i∈N (xij+ + xij−) = 1, i.e., there is only one host belonging to type j. In

this situation, we assume the adversary will attack this host regardless his probe
result (or he may even not need any probe). Then constraint (4) guarantees
η is at least the value of this host. When

∑
i∈N (xij+ + xij−) = 0 or ≥ 2, con-

straint (4) is relaxed. Constraint (5) guarantees each host can only belong to one
type and have one probe result. Defender’s total cost is limited under budget by
constraint (6). At last, variable x should represent a feasible defense decision.

Note that there are products of continuous and binary variables in the model,
which can be linearized by widely adopted methods. This problem can be con-
verted to an MIP problem and solved by solvers like CPLEX and Gurobi directly.
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3 Heuristic Algorithms

Even though the MIP problem TG in Sect. 2.2 can be solved by solvers directly,
it may be quite time consuming when the network consist a large number of
hosts. Under such situations, suboptimal but fast obtained heuristic solutions
could be a better option than time consuming optimal solutions. Considering
the two-stage frame of our model, a natural way is to divide the problem into
two distinct sequential problems, each of which determines one stage decision
making.

3.1 Deceiving Adversary’s Scan Queries

The first decision the defender needs to make is how to answer the adver-
sary’s scan queries, i.e., which type should each host to be without consider-
ing attacker’s probe. This part is similar to the research in [21]. The powerful
and naive adversaries in [21] can be viewed as two special cases with T̂ = T
and |T̂ | = 1 in our problem, respectively. It has been shown in [21] that these
two cases could be NP-hard problems. However, thank to today’s powerful MIP
solvers, the MIP formulation of this problem is not very hard to solve, especially
compared to the MIP formulation of our original two-stage problem TG.

Let cij = min{cij+ , cij−} and D1 be the defender’s first stage budget, i.e.,
the budget for deceiving adversary’s scan queries. The first stage problem is
formulated as below

ST1 min η (7)

s.t.
∑

i∈N

xijη ≥
∑

i∈N

uixij ∀j ∈ T̂ (8)

∑

j∈T

xij = 1 ∀i ∈ N (9)

∑

i∈N

∑

j∈T

cijxij ≤ D1 (10)

x ∈ X ∩ {0, 1}mn

Here, the decision variable xij takes one if host i is covered by type j. The
objective function and constraints are similar to problem TG.

3.2 Deceiving Adversary’s Probe

By scanning defender’s network, the adversary will have a brief understanding
about the systems in it. According to his scan result, the hosts will be divided
into several types and one or more may be attractive to him. If he picks one
type and attacks one host randomly, the defender’s expected loss is the average
value of all hosts in this type. By probing the hosts, the adversary can gain more
information therefore possibly cause larger damage to the network. However, if
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the defender can lie to the attacker’s probe queries, incorrect information can
lower the loss the defender will suffer.

Let j ∈ T̂ be a type that the adversary may pick to probe and attack.
Then Rj =

∑
i∈N (uixij+ + uixij−)/

∑
i∈N (xij+ + xij−) is the average value

of all hosts of this type and R+
j =

∑
i∈N uixij+/

∑
i∈N xij+ and R−

j =∑
i∈N uixij−/

∑
i∈N xij− are average values of the hosts that are more and less

attractive to the attacker after his probe, respectively. When m = n = 1, we
have the following insightful proposition.

Proposition 1. When
∑

i∈N xij+ ≥ 1 and
∑

i∈N xij− ≥ 1, we have Rj < Rj if
and only if R+

j < R−
j .

Proof. It is easy to check that they have the following relationship and the result
holds.

Rj − Rj =
1

∑
i∈N (xij+ + xij−)

· 1
∑

i∈N (xij+ + xij− − 1)

· 1
∑

i∈N xij+

∑
i∈N xij−

(R+
j − R−

j )
(11)

�	
If the adversary can always receive correct information through probing, he

must have R+
j > R−

j as high value hosts are more attractive to him. Then the
expected damage he can make will be larger than that of random attack. On the
contrary, by lying to his probe queries, the defender can make R+

j < R−
j , then

her expected loss will be decreased. Given a first stage decision xij for i ∈ N ,
j ∈ T , based on Proposition 1, we develop Algorithm 1 to decide the answers for
attacker’s probe queries when the defender’s budget is sufficiently large.

The algorithm starts by sorting the hosts descendingly according to their
values ui. In line 2, x∗ and x̂ are initialized to all zero |N | × |T | matrices used
for storing final and temporal defense strategies, respectively and U∗ is a |T |
dimensional vector initialized with very large values used for storing expected
loss if corresponding type is selected by the attacker. For each possible selected
type j ∈ T̂ , the number of hosts of this type, i.e., Q, is first calculated in line 4.
When Q = 0 or 1, it is trivial (line 5 to 15). When Q ≥ 2, we divide the hosts
into two groups, one has q hosts with the highest values and another has Q − q
with the lowest values. A temporal strategy is to deceive the adversary that the
Q − q hosts with low values are important (line 20 to 22) but the q hosts in
another group are not important (line 23 to 26). Then the expected loss under
this strategy if type j is picked is calculated (line 27). Iterating over all possible
ways for dividing the hosts (line 17) and picking the one with lowest expected
loss (line 28 to 30) gives the best deceiving strategy. At last, as types not in T̂
are not attractive to the attacker, it does not matter how those hosts look like.
We can assign them scan and probe results with the lowest cost (line 36).

Proposition 2. For m = n = 1, Algorithm 1 derives an optimal second stage
defense strategy in O(|T ||N |2) iterations when the defender has a sufficiently
large budget.
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Algorithm 1. Unlimited Budget Probe Deception
1: relabel the hosts in N descendingly by ui

2: initialize x∗, x̂, U∗

3: for j = 1 to |T̂ | do
4: Q ← ∑

i∈N xij

5: if Q==0 then
6: U∗

j ← 0
7: end if
8: if Q==1 then
9: for i = 1 to |N | do

10: if xij == 1 then
11: x∗

ij+ ← 1 or x∗
ij− ← 1

12: U∗
j ← ui

13: end if
14: end for
15: end if
16: if Q > 1 then
17: for q = 0 to Q do
18: p ← q
19: for i = 1 to |N | do
20: if xij == 1&p == 0 then
21: x̂ij+ ← 1
22: end if
23: if xij == 1&p > 0 then
24: x̂ij− ← 1
25: p ← p − 1
26: end if
27: calculate Rj according to x̂·j
28: if U∗

j > Rj then
29: U∗

j ← Rj , x
∗
·j ← x̂·j

30: end if
31: end for
32: end for
33: end if
34: end for
35: for j = |T̂ | + 1 to |T | do
36: assign x∗

·j according to their cost
37: end for

Proof. For a given first stage strategy, Rj is a constant, therefore minimum Rj

can be achieved by minimizing the right hand side of Eq. (11). For fixed numbers
of attractive and unattractive hosts, we only need to assign high value hosts as
unattractive ones and make low value hosts attractive ones. Since all possible
ways for dividing hosts into two groups are enumerated, the result is guaranteed
to be optimal. The complexity of this algorithm follows easily. �	

In real situations, defenders always need to balance the tradeoff between
the resources they devote and the benefit they can derive. Usually their budget
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should be limited, which will make the decision more difficult to make. For such
problems, we give Algorithm 2 to derive heuristic solutions.

Algorithm 2. Limited Budget Probe Deception
1: for i = 1 to |N | do
2: for j = 1 to |T | do
3: if xij == 1&cij+ > cij− then
4: x∗

ij− ← 1
5: end if
6: if xij == 1&cij+ ≤ cij− then
7: x∗

ij+ ← 1
8: end if
9: end for

10: end for
11: update x̂, U∗, D2

12: j∗ ← arg maxj∈T̂ {U∗
j }

13: for i = 1 to |N | do
14: if x̂ij∗

+
== 1&cij∗

− − cij∗
+

≤ D2 then
15: x̂ij∗

+
← 0, x̂ij∗

− ← 1
16: calculate Rj∗ according to x̂·j∗

17: if Rj∗ < U∗
j∗ then

18: x∗
ij∗

+
← 0, x∗

ij∗
−

← 1, go to line 11

19: else
20: x̂ij∗

+
← 1, x̂ij∗

− ← 0
21: end if
22: end if
23: if x̂ij∗

− == 1&cij∗
+

− cij∗
− ≤ D2 then

24: x̂ij∗
− ← 0, x̂ij∗

+
← 1

25: calculate Rj∗ according to x̂·j∗

26: if Rj∗ < U∗
j∗ then

27: x∗
ij∗

−
← 0, x∗

ij∗
+

← 1, go to line 11

28: else
29: x̂ij∗

− ← 1, x̂ij∗
+

← 0
30: end if
31: end if
32: end for

Given a first stage defense strategy, the algorithm starts by building a defense
strategy with the lowest cost (line 1 to 10). This is always feasible if the first
stage decision is made by solving problem ST1 in Sect. 3.1. In line 11, temporal
strategy x̂ is set to the same as current strategy x∗. Expected loss of each type
U∗ and available budget D2 are calculated. Then the type with the highest
expected loss is picked in line 12. In the following loop, if the expected loss can
be decreased by changing a host’s probe answer, then do it. Otherwise, we are
done.

When we are considering two stages together, we can first solve the problem
ST1 with all or part budget, then run Algorithm2 with what remains. Network
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Table 1. Host’s value and camouflage cost

Host Value 1+ 1− 2+ 2− 3+ 3− 4+ 4− 5+ 5−
1 100 0 60 NA NA NA NA NA NA NA NA

2 80 0 40 60 80 80 100 NA NA NA NA

3 80 0 40 60 80 80 100 NA NA NA NA

4 70 30 20 0 40 30 60 60 80 NA NA

5 70 30 20 0 40 30 60 60 80 NA NA

6 70 30 20 0 40 30 60 60 80 NA NA

7 50 60 40 50 20 0 30 20 40 NA NA

8 50 60 40 50 20 0 30 20 40 NA NA

9 50 60 40 50 20 0 30 20 40 NA NA

10 30 90 70 60 50 40 20 0 20 10 30

11 30 90 70 60 50 40 20 0 20 10 30

12 30 90 70 60 50 40 20 0 20 10 30

13 20 100 80 70 60 50 40 20 0 0 20

14 20 100 80 70 60 50 40 20 0 0 20

15 20 100 80 70 60 50 40 20 0 0 20

16 5 NA NA NA NA 80 60 40 30 20 0

17 5 NA NA NA NA 80 60 40 30 20 0

18 5 NA NA NA NA 80 60 40 30 20 0

19 5 NA NA NA NA 80 60 40 30 20 0

20 5 NA NA NA NA 80 60 40 30 20 0

operators can try several approaches to partition their budget for each stage
then pick the one with the lowest expected loss.

4 Computation Results

To evaluate our model and solution methods, we build an experimental instance
for computational test. We use programming language Julia [4] to run our
algorithms. All optimization problems are modeled by the package JuMP [9] and
then solved by calling Gurobi 7.5 [11].

The instance we generate has 20 hosts and 5 possible types. The value of
each host and the cost to camouflage them are shown in Table 1. In the first
row, the number means which type will the host be classified after the attacker’s
scanning. The signs + and − represent whether the host will appear more or
less attractive to the adversary after his probe. In the cost values, “NA” means
the host cannot be camouflaged to that type no matter how much resources
are devoted. We assume the adversary can probe and attack one host after his
scanning.
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4.1 Unlimited Budget

We first consider the case when the defender has an unlimited defense budget.
Defender’s worst expected loss with different adversary’s interesting set T̂ is
shown in Table 2. The column MIP is derived by directly solving problem TG.
In the other columns, problem ST1 is first solved. In column NoDeNoPb, the
adversary picks one type in the set T̂ then randomly attacks one host without
any probe. In column NoDePb, the adversary probes but the defender answers
his probe queries honestly. In the last column DePb, the adversary probes and
the defender can manipulate his probe result.

Table 2. Defender’s loss under unlimited defense budgets

MIP NoDeNoPb NoDePb DePb

T̂ = {1} 20 35.7 46.4 25

T̂ = {1, 2} 20 35.7 46.4 25

T̂ = {1, 2, 3} 20 35.7 57.5 25

T̂ = {1, 2, 3, 4} 20 40 58.7 32.5

From the result we can see, by considering the two stages together, our MIP
model TG gives the best defense strategy. Without probing, the adversary can
only attack a host randomly, so the defender’s expected loss is the average value
of the hosts in the picked type. If the adversary can derive correct probe result,
he can increase his profit significantly. On the contrary, with incorrect probe
result, the attacker’s profit is even lower than random attack. This is consistent
with our analysis of Proposition 1.

However, this may cause a new problem. Table 3 shows the optimal defense
strategy achieved by solving the MIP model TG when T̂ = {1, 2, 3, 4}. Each row
shows which hosts are assigned to that type and how to answer attacker’s probe.
For example, in the row type 1, 1− means host 1 will be classified into this type
after adversary’s scanning and become less attractive after his probe (similarly, +
means more attractive after probe). As attacker’s probe queries are not honestly
answered, defender’s expected loss are the values in the column Rj if correspond-
ing type is selected. But, if the attacker realizes his probe is cheated, he may
ignore all probe results and attack randomly. Then the defender’s expected loss
would be the column Rj , which is much higher than the previous one. The worst
case loss is even greater than answering attacker’s probe honestly, making the
defender at very high risk.

Two approaches can be adopted to deal with this situation. One is to use the
two-stage method, since problem ST1 gives optimal solution against random
attack, then for given first stage decision, Algorithm 1 gives optimal solution
against adversary’s probe queries. This results in the column DePd in Table 2,
which is not guaranteed to be optimal but can be calculated easily. The other
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method is adding additional constraint
∑

i∈N (xij+ + xij−)η ≥ ∑
i∈N ui(xij+ +

xij−) to the MIP formulation. By adding this constraint, defender’s loss through
adversary’s random attack is also considered in this optimization problem. The
solution is guaranteed to be optimal but the resulting problem might be difficult
to solve.

Table 3. Optimal defense strategy and expected loss of each type

Hosts Rj Rj

Type 1 1−, 14+ 20 60

Type 2 3−, 15+ 20 50

Type 3 2−, 13+ 20 50

Type 4 4−, 5−, 6−, 7−, 8−, 9−, 16+, 17+, 18+, 19+, 20+ 20 35

Type 5 10+, 11+, 12+ 30 30

Table 4. Worst expected loss under different methods with limited budgets

1000 900 800 700 600 500

MIP 38 40 45 46.7 50 53.3

Heu100 48 57.5 60 63 73.3 65

Heu80 40 43.8 47.5 48 58 58

Heu60 46.7 48.3 50 52 53.3 59.5

Table 5. Calculation time (in seconds) of different methods with limited budgets

1000 900 800 700 600 500

MIP 18 25 93 78 119 104

Heu100 0.6 0.1 0.04 0.1 0.1 0.1

Heu80 0.5 0.1 0.1 0.1 0.2 0.1

Heu60 0.6 0.1 0.2 0.1 0.1 0.1

4.2 Limited Budget

We also test our model and heuristic algorithms with a limited defense budget.
Table 4 shows the worst expected loss of the defender under different methods
with limit budgets. Table 5 shows the corresponding calculation time (in sec-
onds). We set T̂ = {1, 2, 3} and the budget ranges from 1000 to 500. The row
MIP solves the problem TG. For more reliable results, the additional constraint
we mentioned in Sect. 4.1 is added. Therefore both adversaries with or without
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probe are considered. The other three rows use two-stage heuristic to solve the
problem. First, problem ST1 is solved with 100%, 80% and 60% of the total
budget, respectively. By doing this, the answers to the adversary’s scan queries
are determined. Then we run Algorithm 2 with the remaining budget to decide
how to reply to his probe. We take the worst result of these two stages as we
want to defend attackers with or without probe at the same time.

Unsurprisingly, the row MIP gives the best, which is also the optimal, defense
strategy since both stages are considered together. However, the MIP model
may take up to two minutes to solve. On the contrary, all heuristics are finished
within only one second. Indeed, the row Heu80 gives results quite close to the
optimal solutions of MIP formulation. Overall, our two-stage heuristic method
can achieve high quality defense strategy within reasonable time.

5 Conclusion

In this paper, we consider a network security problem where the adversary will
scan then probe the systems before launching any real attacks. We build a two-
stage game model to determine how such scan and probe queries should be
answered to minimize the defender’s expected loss. The game is formulated as
a mixed integer program, by solving which the optimal defense strategy can be
derived. Based on the problem’s structural properties, a fast two-stage heuristic
method is also developed to support real applications. Computational experi-
ment shows that after scanning the whole network, adversary’s probe against
some hosts and how such probe is responded have significant influences on
defender’s expected loss. Our heuristic method is also able to produce high qual-
ity solutions with a drastically improved computational performance.
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Abstract. Colluding adversaries is a crucial challenge for defenders in
many real-world applications. Previous literature has provided Collu-
sive Security Games (COSG) to model colluding adversaries, and pro-
vided models and algorithms to generate defender strategies to counter
colluding adversaries, often by devising strategies that inhibit collusion
[6]. Unfortunately, this previous work focused exclusively on situations
with perfectly matched adversaries, i.e., where their rewards were sym-
metrically distributed. In the real world, however, defenders often face
adversaries where their rewards are asymmetrically distributed. Such
inherent asymmetry raises a question as to whether human adversaries
would attempt to collude in such situations, and whether defender strate-
gies to counter such collusion should focus on inhibiting collusion. To
address these open questions, this paper: (i) explores and theoretically
analyzes Imbalanced Collusive Security Games (ICOSG) where defenders
face adversaries with asymmetrically distributed rewards; (ii) conducts
extensive experiments of three different adversary models involving 1800
real human subjects and (iii) derives novel analysis of the reason behind
why bounded rational attackers models outperform perfectly rational
attackers models. The key principle discovered as the result of our exper-
iments is that: careful modeling of human bounded rationality reveals a
key difference (when compared to a model using perfect rationality) in
defender strategies for handling colluding adversaries which face sym-
metric vs asymmetric rewards. Whereas a model based on perfect ratio-
nality always attempts to break collusion among adversaries, a bounded
rationality model acknowledges the inherent difficulty of breaking such
collusion in symmetric situations and focuses only on breaking collusion
in asymmetric situation, and only on damage control from collusion in
the symmetric situation.

Keywords: Stackelberg security game · Collusion
Human behavior model · Amazon mechanical turk

1 Introduction

Motivated by threats on human and cyber-physical systems, game theoretic
approaches have been devised to help solve real-life security problems in many
domains. [1,13,19] In these applications, Stackelberg security game based models
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have proved to be both practical and effective in many scenarios, e.g., to protect
airports [17,19], train stations [22], and even wildlife [4,5,21].

In order to advance these applications, collusion among adversaries in secu-
rity games is a vital issue that needs to be addressed. Instead of working alone,
adversaries colluding with one another often attack targets more effectively. For
example, smugglers in Colombia have developed from small criminal groups to
huge drug cartels by working closely since the 1950s [18]. Terrorists received
material support from criminal groups and carried out more severe violent
actions in the US [8]. These examples show that if we do not break the col-
lusion in an early stage, the attackers might collude to become a stronger threat
to defenders.

Previous literature has provided Collusive Security Games (COSG) to model
colluding adversaries [6]. It has provided algorithms to generate defender strate-
gies to counter the colluding adversaries in such a model. However, this previous
work focused exclusively on situations with perfectly matched adversaries, i.e.,
where their rewards were symmetrically distributed. In the real world, however,
defenders often face adversaries where rewards are asymmetrically distributed
[3].

Such inherent asymmetry raises a question as to whether human adversaries
would attempt to collude in such situations, and whether defender strategies
to counter such collusion should focus on inhibiting such collusion. To address
these open questions, this paper: (i) explores and theoretically analyzes Imbal-
anced Collusive Security Games (ICOSG) expand from COSG where defenders
face adversaries with asymmetrically distributed rewards; (ii) conducts exten-
sive experiments involving 1800 real human subjects of three different adversary
models and (iii) derives novel analysis of the reason behind why bounded ratio-
nal attackers models outperform perfectly rational attackers models. The key
principle discovered as the result of our experiments is that: Careful modeling of
human bounded rationality reveals a key difference (when compared to a model
using perfect rationality) in defender strategies for handling colluding adversaries
which face symmetric vs asymmetric rewards. Whereas a model based on per-
fect rationality always attempts to break collusion among adversaries, a bounded
rationality model acknowledges the inherent difficulty of breaking such collusion
in symmetric situations and focuses only on breaking collusion in asymmetric
situation, and only on damage control from collusion in the symmetric situation.

2 Imbalanced Collusive Security Games

The Stackelberg Security Game model is widely used in both literature and
security applications. [2,11,15,19] Models based on it usually consist of two
stages, the defender decides her strategy in the first stage. After observing the
defender strategy, the attacker chooses a strategy as the best response to it in
the second stage. The objective of the defender is to use a limited number m of
resources to protect several targets in a set T , with each target having a different
value. The attacker on the other hand seeks to attack the target that gives him
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the highest utility while avoiding being caught by the defender. Knowing the
attacker will observe her strategy1, the best choice for the defender is to deploy
a mixed strategy that defends each target stochastically (rather than using pure
strategies to always defend the same set of targets). This mixed strategy can be
viewed as a probability distribution over pure strategies. We can equivalently
represent such strategy with a vector c with elements ct ∈ [0, 1] (

∑
t ct = 1)

[11] denoting the probability of target t being covered. As for the attacker, after
observing the defender strategy, his strategy consists of choosing a particular
target to attack. We express the attacker’s choice using a vector α with element
αt ∈ {0, 1}, t ∈ T , equal to 1 iff target t is chosen.

For each target, we denote the utility that the defender receives when she
successfully defends the target by US

Θ(t). The defender commits to a strategy
and the adversary observes this strategy and each select a target to attack;
accordingly, if she fails to protect the target, she receives the utility UF

Θ (t).
We also denote the utility of the attacker when he successfully attacks a target
(without being caught) as US

Ψ (t); accordingly, if he gets caught attacking a target,
he receives the utility UF

Ψ (t).
The expected utilities of the defender and the attacker for a given defense

strategy c and attack vector α can be respectively expressed as

UΘ(c, α) =
∑

t∈T

αt

(
ctU

S
Θ(t) + (1 − ct)UF

Θ (t)
)

(1)

UΨ (c, α) =
∑

t∈T

αt

(
ctU

F
Ψ (t) + (1 − ct)US

Ψ (t)
)
. (2)

The solution concept, known as Strong Stackelberg Equilibrium (SSE), assumes
that the attackers maximize their own expected utility and break ties in favor of
the defender [10,19]. In such equilibrium, the defender plays the strategy that
is the best response to the attacker’s strategy c(α) and the attacker plays the
strategy that is best response the the defender strategy α(c) such that UΘ(c, α) ≥
UΘ(c, α) ∀ c and UΨ (c, α) ≥ UΨ (c, α) ∀ α.

Numerous security problems from the real world have been cast in the Stack-
elberg Security Game framework. For example, [12,23] provide a model where
the attacker has the ability to attack multiple targets, [7] models the coopera-
tion methods between multiple attackers and finally, [6] models the possibility
of collusion between identical individual attackers. In this paper, we exploit and
expand the work from [6].

In [6], the authors defined a model called Collusive Security Games (COSG)
in which each attacker needs to make an extra decision of whether or not to
collude with each other besides choosing which target to attack. They have
introduced a new solution for COSG, termed Collusive Security Equilibrium
(CSE), which generalizes the SSE. This solution concept eliminates weak equi-
libria while preserving properties of SSE. In CSE, the defender and attackers

1 By convention in the security game literature, we refer to the defender as a “she”
and the adversary as a“he”.
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form a Nash equilibrium that the attackers will both choose to collude if and
only if they both receive strictly higher expected utility. In addition, the attacker
breaks ties between equilibria of the colluding decision in favor of the defender.
Next, we expand this concept to the Imbalanced Collusive Security Games model
(ICOSG), which captures the imbalance in wealth of the attackers in COSG.

2.1 Problem Formulation

In this paper, we consider a problem similar to the classic Stackelberg Security
Games [19], where the defender plays as the leader of the two-stage game and
needs to deploy a defense strategy before knowing the action of the attacker.

In contrast to most works in this setting, our game consist of 1 defender Θ and
N attackers Ψ1 . . . ΨN . Given a set of target T = {t1, t2, ...tn} that consist of N
disjoint sets T1,...,TN , each attacker Ψi is restricted to choosing one target within
his own set Ti. By choosing and successfully attacking target t without being
captured, the attacker Ψi will receive utility US

Ψi
(t), and penalty of being capture

UF
Ψi

(t) otherwise. Similarly for the defender Θ, if attacker Ψi choose to attack
target t, she receives certain utility when successfully capturing the attacker
of US

Θ(t) and otherwise UF
Θ (t) as the penalty of failure to protect it. Both the

defender and the attacker receive zero utilities from non-attacked targets.
We introduce the notion of a wealth index, which captures the relative wealth

of each attacker mentioned above by evaluating the portion of total utility he
could earn. The wealth index of attacker i is defined as

λi :=

∑
t∈Ti

US
Ψi

(t)
∑N

k=1

∑
t∈Tk

US
Ψk

(t)
(3)

For the following paper, to streamline the presentation, we henceforth focus
on ICOGS with a single defender and two attackers with zero-sum game struc-
tures. Without loss of generality we also assume λ1 ∈ [0.5, 1] and λ2 =
1 − λ1 ∈ [0, 0.5] so that the first attacker is more “powerful” (has higher rel-
ative wealth). We define the utility that the defender will receive in each case as
UF

Θ (t) = −US
Ψi

(t) := −R(t) ≤ 0 and US
Θ(t) = −UF

Ψi
(t) := −P ≥ 0 of constant P

for all targets t.
After deciding which target to attack, each attacker can choose if he wants

to offer collusion or not. The collusion (which can be thought of as an alliance)
will only be established if both attackers agree to collude. If the collusion is
established, they will receive some collusion bonus δ for each successful attack,
which captures the extra benefit they gain through collusion. However, they will
split their total reward based on their relative wealth.

Given that the collusion between attackers may result in a higher loss, the
defender’s strategy is no longer simply to defend the high-risk target with more
resources. For example, the defender may benefit by allocating resources in a
way that breaks the willingness of the adversaries to collude by allowing them
to have a higher utility from working alone while still maintaining some level of
defense against these attackers.
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For defender strategy, due to the same reasons as SSG, we consider only
mixed defender strategies and define them as coverage vectors c. As for attacker
strategies, there is always an equilibrium in which all of them play only pure
strategies after observing the defender’s mixed strategy [10]. We represent the
attack decision over the N target sets T1 . . . TN of the N attackers as N vectors
α1, . . . , αN of different length |Ti|, where αi ∈ {0, 1}|Ti| with its tth element
equal to 1 iff attacker i chooses to attack target t. We also encapsulate their
decision about offering collusion as β, of which βi = 1 if Ψi offers collude and
0 otherwise. Finally, we can represent the strategy of each attacker Ψi as the
Cartesian product of the two decision vector gi = αi × βi ∈ {0, 1}|Ti| × {0, 1} or
G = α×β ∈ {0, 1}|T | ×{0, 1}N that encapsulate strategies of all the attackers as
α =

[
αT
1 , αT

2 . . . αT
N

]T and β = [β1, β2 . . . βN ]T. For the sake of easier expression,
we represent US

Θ and UF
Θ as vectors of length |T | with their tth element as US

Θ(t)
and UF

Θ (t) respectively. Given the strategies of the defender and attackers, the
expected utility of defender can be expressed as:

UΘ(c,G) =αT(c ◦ US
Θ + (1|T | − c) ◦ UF

Θ ) − (N − αTc)δ
N∏

i=1

βi (4)

where ◦ denotes element wise product (Hadamard product) of same length vec-
tors and 1|T | is the element vector of length |T |.

As for attacker reward calculation, if any of the players refuse to collude
with others, the expected utilities they received, defined as UΨ1 , UΨ2 . . . UΨN

, are
expressed as

UΨi
(c, gi) =

∑

t∈Ti

αi(t)
(
(1 − ct)US

Ψi
(t) + ctU

F
Ψi

(t)
)

(5)

If all the players choose to collude (βi = 1 ∀i), the total reward they receive is
calculated as

U∗
Ψ (c,G) =

N∑

i=1

∑

t∈Ti

αi(t)
(
(1 − ct)U∗S

Ψt
(t) + ctU

∗F
Ψi

(t)
)

(6)

where U∗S
Ψi

(t) = US
Ψi

(t) + δ and U∗F
Ψi

(t) = UF
Ψi

(t). The final reward each attacker
receives depends on their wealth index.

U∗
Ψi

= λiU
∗
Ψ (7)

Also noted that in zero-sum reward structure settings, the above equation
yields to UΘ = −U∗

Ψ for
∏

βi = 1 and UΘ = −UΨ for
∏

βi = 0 in the respective
colluding and non-colluding cases.

The goal is to find the optimal strategy c to maximize the expected defender
utility UΘ by breaking the collusion of the attackers while maintaining good
defense. However, such strategy diverges for different attacker behavior assump-
tions, which will be elaborated in the following section.
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2.2 Defender Strategies

Perfectly Rational Model (PRM). By assuming each attacker to be per-
fectly rational, we assume each of them selects the strategy to maximize their
expected utility UΨi

. We applied the solution concept of Collusive Security Equi-
librium (CSE) used in [6]. CSE requires that (i) the defender’s strategy is a
best response to each attacker’s strategy, (ii) the attacker strategies form a Nash
Equilibrium in their game, (iii) both attackers play collude if they obtain strictly
greater utility in a (collude, collude) equilibrium than (not collude, not collude)
equilibrium, and (iv) the attackers break ties between equilibria which satisfy
(i)-(iii) in favor of the defender.

In addition, the CSE of our problem can also be calculated by modifying
the mixed integer linear program (MILP) in [6]. The MILP set is based on
the ERASER formulation introduced by Kiekintveld et al. [10] that solves the
equilibrium of traditional SSGs. More details can be found in [6].

This algorithm can return the CSE of any reward structure and gives us
the equilibrium strategies of the defender c(g1, g2) and attackers g1(c, g2) and
g2(c, g1). If the attackers select their strategies in a perfectly rational way, this
method generates the optimal strategy for the defender.

Bounded Rational Model (BRM). In contrast to perfectly rational model,
BRM assumes players perceive the utility in a bounded rational way. Instead of
strictly maximizing their expected utility, it is often more effective to assume
human adversaries choose strategies (i) which grid to attack (ii) collude with
another player or not stochastically based on their perceived utility [14]. The
features we applied to model the bounded rationality of human subjects, which
were used and proven to be effective in [6] are:

1. SUQR model [16]
2. Prospect Theory [9,20].

For the first feature, SUQR is an extension of Quantal Response (QR).
Instead of expected utility, SUQR assumes humans make decisions stochastically
based on their perceived utility, which is a weighted function of different factors.
In addition, the bounded rationality of how people perceive probabilities is also
considered using Prospect Theory (PT). PT proposes that individuals perceive
the probability of success and failure in a non-linear way. Such nonlinearity can
be captured by various functional forms [9,20].

What follows are the details of how we construct and learn our BRM model.
Given the defender strategy (c), reward (US

Ψi
) and penalty (UF

Ψi
) for each target

t ∈ Ti, the perceived utility of attacking it for attacker Ψi is defined as

Ûα
Ψi

(t, c) =ωα
c · ĉt(c) + ωα

R · US
Ψi

(t) + ωα
P · UF

Ψi
(t) (8)
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where ĉtj
is the Prospect Theory modified perceived probability of the original

probability ctj
, defined as

ĉt =
ηcγ

t

ηcγ
t + (1 − ct)γ

(9)

From the SUQR model, the probability of that the adversary Ψi will attack
target t ∈ Ti is given by:

α̂i(t, c) =
eÛα

Ψi
(t,ĉ)

∑

t∈Ti

eÛα
Ψi

(t,ĉ)
(10)

Another decision of the bounded rational attacker we need to model is the
probability of collusion. Similar to attack probability, we define the perceived
utility of colluding and not colluding as

Û∗β
Ψi

(c) =λi

N∑

j=1

ωβ
c · ∑

t∈Tj
ct + ωβ

R · ∑
t∈Tj

U∗S
Ψj

(t) + ωβ
P · ∑

t∈Tj
U∗F

Ψj
(t)

|Tj | (11)

Ûβ
Ψi

(c) =
ωβ

c · ∑
t∈Ti

ct + ωβ
R · ∑

t∈Ti
US

Ψi
(t) + ωβ

P · ∑
t∈Ti

UF
Ψi

(t)
|Ti| (12)

Again, from the SUQR model, the probability adversary Ψi will offer collusion
is given by

β̂i(c) =
e
Û∗β

Ψi
(tj ,c)

e
Û∗β

Ψi
(tj ,c) + e

Ûβ
Ψi

(tj ,c)
(13)

There are a total of 5 parameters for attack probability and 3 parame-
ters for collusion probability to be determined, which are (ωα

c , ωα
R, ωα

P , η, γ) and
(ωβ

c , ωβ
R, ωβ

P ) respectively. These parameters are estimated via Maximum Like-
lihood Estimation (MLE) using data collected from the human subject experi-
ments of PRM strategy.

Note that in the bounded rational model applied for identical powerful adver-
saries in the previous work [6], it is assumed the grid attacking probabilities of
an attacker are conditional probabilities of given his decision to collude or not
and given which attacker he is. Thus it has a total number of 4 × 5 (4 condition
of 5 parameters to model attack probabilities)+3 (parameters to model collu-
sion probabilities)= 23 parameters to learn for each game. By assuming the α̂

and β̂ to be independent, the modified model is able to reduce the number of
parameters and still be applicable when either type of decision making data is
missing for certain data points.

Given a learned parameter set and a defender strategy as input, BRM can
generate the response “strategy” of a bounded rational attacker for each attacker
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Ψi, which can be expressed as the Cartesian product of the two decision prob-
ability vector of length |Ti| and 1 as ĝi = α̂i × βi or Ĝ = α̂ × β̂ that encap-
sulate probabilities of all the attackers decisions as α̂ =

[
α̂T
1 , α̂T

2 . . . α̂T
N

]T and

β̂ =
[
β̂1, β̂2 . . . β̂N

]T
. Given C as the feasible solution space of defender’s cover-

age vector c, by replacing G with Ĝ, we want to find c = arg max
c∈C

(
UΘ(c, Ĝ(c))

)

in Eq. 4, which we approximate by multiple runs of fmincon optimizer.

Simulations. Figure 1 shows the simulation of the probabilities that collusion
between two attackers is actually established. The number of defender resources
is set to be m = 3. Along the rows are different wealth index combinations; along
the columns are different values of delta, which gives the collusion bonus.

Fig. 1. Simulation of actual collusion probability (attacker 1 collusion offering proba-
bility × attacker 2 collusion offering probability) with different collusion bonuses (δ)
and wealth indexes (λ1 and λ2) of the two attackers. Larger bonuses and closer wealth
indexes yield higher probabilities of collusion.

One interesting observation is that it is easier to break the collusion for higher
wealth imbalance in both PRM and BRM simulations. In fact in PRM, there is
a transition λ that determines if the collusion is breakable or not in the CSE for
some given structure, which we will elaborate on the next section.

Another interesting observation is that in the simulations, PRM always
breaks the collusion between perfectly rational attackers when the collusion
bonus is low, whereas BRM predicts that even with low collusion bonuses, the
bounded rational attackers are still going to collude with high probability.

Our experiment focused on the first column of the simulation, which is col-
lusion bonus δ = 1 for different wealth imbalance. The bonus value is far from
the value that PRM starts to give up on breaking the collusion (δ ≥ 5). If the
human subjects are perfectly rational, PRM strategy should be able to break
the collusion completely.

3 Effect of Imbalance

In this section, we provide an analysis of the effect of imbalance, and use the
perfectly rational model for simplicity. For N player ICOSGs, the expected utility
of the defender and each attacker can be expressed as Eqs. 4–7. By using a MILP,
we can solve the equilibrium strategy of the defender. However, it is complicated
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to analyze the effect of the parameters due to the complexity of reward structure,
as the general structure does not have a closed form of utility gain.

To analyze the effect of imbalance degree λ, we start with a more straight-
forward case. We denote the total value of targets as

∑
t UF

Θ (t) = −RΘ and∑
i

∑
t US

Ψi
(t) = RΨ , the reward/penalty of catching/being caught as US

Θ(t) =
PΘ and UF

Ψi
(t) = −PΨ ∀t ∈ T for the defender and attackers respectively. All of

the parameters above (RΘ, RΨ , PΘ and PΨ ) are non-negative number to avoid
confusion. For zero-sum game, RΘ = RΨ and PΘ = PΨ . The total number of
defender resources is set to be m.

3.1 Uniform Distribution Reward Structure

Assume we have a uniform distribution of value allocated on each target set Ti

with density US
Ψ1

(t) = λRΨ ∀t ∈ T1 and US
Ψ2

(t) = (1−λ)RΨ ∀t ∈ T2. We simplify
each field to a single target as they all have the same utility.

Since the structure is simplified, the only decision that the attackers have
to make is to collude or not. The only decision the defender has to make is
how many resources to allocate to each attacker, denote as mi. We separate the
colluding (U∗

Θ and U∗
Ψi

) and non-colluding (UΘ and UΨi
) case and rewrite the

expected utility in Eqs. 4–7 as:

U∗
Θ(c) = −

N∑

i=1

(1 − mi)λiRΘ + mPΘ − (N − m)δ (14)

UΘ(c) = −
N∑

i=1

(1 − mi)λiRΘ + mPΘ (15)

U∗
Ψi

(c) =λi

⎛

⎝
N∑

j=1

(1 − mj)λjRΨ − mPΨ + (N − m)δ

⎞

⎠ (16)

UΨi
(c) =(1 − mi)λiRΨ − miPΨ (17)

Proposition 1. In two attackers imbalanced COSGs with uniform reward dis-
tribution and negligibly small penalties of failing the attack, the best defender
strategy is to allocate all its resources to the attacker with the largest wealth
index λ, regardless of other parameters.

Proof. Suppose the optimal defender strategy is c∗ in the CSE and the defender
resources it deployed on Ψ1 and Ψ2 are m∗

1 and m∗
2 respectively. Without loss of

generality, assume λ1 > 0.5 > λ2. We prove the proposition by showing m∗
1 ≥ m∗

2

first. Then we show that if m∗
1 ≥ m∗

2, allocating more resources to m∗
1 always

results in higher defender utility until Ψ1 is fully covered.
First, we prove that m∗

1 ≥ m∗
2. Suppose m∗

1 < m∗
2, consider another defender

strategy c such that m1 = m∗
2 and m2 = m∗

1. We prove that this alternate
defender strategy returns higher defender utility thus m∗

1 < m∗
2 can not be
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optimal. To be clear, attacker strategy collude means both attackers choose to
collude (β1β2 = 1) and attacker strategy not collude means at least one of the
attackers refuse to collude (β1β2 = 0). If the attacker strategies against the two
defender strategies (c∗ and c) are both collude, both not collude or collude against
c∗ and not collude against c, the new strategy c returns higher defender utility
in all three cases thus c∗ can not be the optimal strategy. Since U∗

Θ(c∗) < U∗
Θ(c),

U∗
Θ(c∗) < UΘ(c) and UΘ(c∗) < UΘ(c) for λ1 > λ2 and −(N − m)δ < 0 in

Eqs. (14) and (15).
As for the last case, the attackers playing not collude against c∗ and collude

against c, we prove that such a scenario is not possible. The condition of breaking
the collusion is UΨi

≥ U∗
Ψi

for any i. In the two attackers case, since PΨ is
negligibly small, it can be derived from Eqs. 16 and 17 that the condition of
breaking the collusion is to satisfy one of the following two inequalities:

m2 ≤ mλ1λ2RΨ + mλ2PΨ − (2 − m)λ2δ

2λ1λ2RΨ + PΨ
∼ m

2
− (2 − m)δ

2λ1RΨ
(18)

m1 ≤ mλ1λ2RΨ + mλ1PΨ − (2 − m)λ1δ

2λ1λ2RΨ + PΨ
∼ m

2
− (2 − m)δ

2λ2RΨ
(19)

Note that these two equations cannot be satisfied simultaneously since m1+m2 =
m and only one of them can be less than m/2. This suggests that at least one
of the attackers is willing to offer the collusion when the penalties are negligibly
small. If m∗

1 < m∗
2 in c∗ and the two attackers are not colluding, c∗ must satisfy

Eq. 19. However, since m2 = m∗
1 and λ1 > λ2, we have

m2 = m∗
1 ≤ m

2
− (2 − m)δ

λ2RΨ
<

m

2
− (2 − m)δ

λ1RΨ

thus for defender strategy c satisfy Eq. 18 and the collusion will be break as well.
Second, we prove that for m1 ≥ m2, allocating more resources on attacker 1

before it is fully covered will result in higher defender utility. Similar to the first
part of proof, suppose the optimal defender strategy is c∗ and 1 > m∗

1 ≥ m∗
2 > 0,

consider another defender strategy c such that m1 = m∗
1 + ε and m2 = m∗

2 − ε.
If c∗ breaks the collusion, c∗ must satisfy Eq. 18 as m∗

1 > m∗
2 in the optimal

strategy. Since m2 < m∗
2, the new strategy c must break the collusion as well.

Again, from Eqs. 14 and 15, c always returns higher defender utility in the other
three possible cases. Thus we have proven the proposition.

Proposition 2. Define the transition threshold λ∗ as the two attackers will not
collude in the equilibrium if and only if λ ≥ max(λ∗, 0.5) for fixed total RΨ . In
two attackers ICOSGs with uniform distribution, assuming none of the attackers
is fully covered, the transition threshold is

λ∗ =
(2 − m)δ

mRΨ
− PΨ

RΨ
(20)
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Proof. By Proposition 1, we can replace m2 with 0 and m1 with m for m ≤ 1 in
Eq. 18 and derive the above transition threshold.

This equation indicates whether the collusion is breakable or not in the uni-
form distribution game for a specific parameter set. The collusion becomes harder
to break when collusion bonus δ is higher and easier to break when defender
resource m, penalty PΨ and the wealth index of stronger attacker λ is higher.
In other words, when other conditions are the same, higher wealth imbalance
makes the collusion easier to break.

Unfortunately, the transition threshold λ∗ does not have a closed form in
general structure game. However, it is still obtainable using numerical approach.

3.2 Uniform Scale Affine Transformation Reward Structure

It is difficult to derive closed-form analysis for the reward structure of the general
distribution. However, one class of distribution; which is what we used in the
latter experiments as the example Fig. 3 shows, have some nice properties to be
explored.

Definition 1. Uniform Scale Affine Transformation Reward Structure
Given a base reward structure with |T |/N targets t1...t|T |/N of a general dis-

tribution define as US
Ψ such that

∑
t US

Ψ (t) = RΨ . Each attacker has the same
number of targets to choose from (|Ti| = |T |/N | ∀i). The reward structure of each
attacker is the uniform scale affine transformation of the base reward structure,
in which the scale is given by US

Ψi
(tj) = λiU

S
Ψ (tj) for j = 1 · · · |Ti| and the penalty

UF
Ψi

(tj) = P is an ignorable small constant for all targets.

Define Λ = (λ1, λ2, ...λN ) as a set of wealth indexes. For the same base
reward structure, we define U(Θ,Λ)(c,G) as the defender utility in game with
wealth index set Λ. We decompose the first term of the right hand side
in Eq. 4 and rewrite the equation as U(Θ,Λ)(cΛ, G) =

∑N
i=1 EΘ(Ψi, λi, cΛ) −

(N − αTcΛ)δ
∏N

i=1 βi. The term EΘ(Ψi, λi, cΛ) represents the expected utility
of defender gain from defending attacker Ψi and cΛ represent the best response
of the defender for game with wealth index set Λ. This term has the following
three properties

1. EΘ(Ψi,
1
N , cΛ) ≥ EΘ(Ψj ,

1
N , cΛ) for mi ≥ mj

2. EΘ(Ψi, λ̂, cΛ) = λ̂
λEΘ(Ψi, λ, cΛ) for any λ̂, λ > 0

3. mi ≥ mj in cΛ for λi ≥ λj

The proof of the first property is straightforward. In game with identical wealth
index attackers, the more resources the defender allocate to the attacker, the
more expected utility she will gain from him. As for the second term, since we
have the same reward distribution and same strategy, the reward on every target
is proportional to λ and yields to the expected reward proportional to λ. Finally,
term 3 can be proved using the same method in the first part of Proposition 1.
Based on the above properties, we are now able to prove Proposition 3.
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Proposition 3. In two attackers ICOSGs with uniform or zero-sum uniform
scale affine transformation reward structure, a larger wealth imbalance results in
a smaller defender loss.

Proof. The uniform distribution part is straightforward, as it can be inferred that
the defender in the game with larger wealth imbalance could always break the
collusion if the defender in the game with lower wealth could break the collusion
from Proposition 2 thus its utility is higher from Eqs. 14, 15 and Proposition 1.

As for zero-sum uniform scale affine transformation reward structure, assume
Λ = (λ, (1 − λ)) and λ ≥ 0.5, we want to prove that U(Θ,Λ̂) > U(Θ,Λ) for any

Λ̂ = (λ̂, (1 − λ̂)), λ̂ > λ. From above properties and the fact that the defender
gain higher utilities when playing the best response, assume β1β2 = 0 in both
games, we have:

U(Θ,Λ) =EΘ(Ψ1, λ, cΛ) + EΘ(Ψ2, (1 − λ), cΛ)

=2λEΘ(Ψ1,
1
2
, cΛ) + 2(1 − λ)EΘ(Ψ2,

1
2
, cΛ)

<2λ̂EΘ(Ψ1,
1
2
, cΛ) + 2(1 − λ̂)EΘ(Ψ2,

1
2
, cΛ)

=EΘ(Ψ1, λ̂, cΛ) + EΘ(Ψ2, (1 − λ̂), cΛ)

≤EΘ(Ψ1, λ̂, cΛ̂) + EΘ(Ψ2, (1 − λ̂), cΛ̂)
=U(Θ,Λ̂)

Since λ < λ̂, for some transition threshold λ∗, the only possible relations of the
three parameters are either λ ≤ λ̂ ≤ λ∗ (β1β2 = 1 for both game), (λ ≤ λ∗ ≤
λ̂)(β1β2 = 1 for Λ and β1β2 = 0 for Λ̂) or (λ∗ ≤ λ ≤ λ̂)(β1β2 = 0 for both
game). Similar inequalities can be derived for remaining two cases by adding the
collusion bonus term. Thus we have proved Proposition 3.

4 Empirical Investigation Using Human Subjects

4.1 Imbalanced Wildlife Poaching Game

To investigate imbalance in COSG, we developed the imbalanced wildlife poach-
ing game and asked human subjects to play the role of poachers in a national
park of Africa. We recruited 1800 unique participants from Amazon Mechanical
Turk (AMT) and offered them bonus rewards as an incentive for them to per-
form well. Figure 2 shows the interface of the game used in our human subject
experiments. We will elaborate the detail of experiment design in the following
section.
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Fig. 2. Imbalanced wildlife poaching game: the human subject is assigned to the left
side of the park. His partner attacker is assigned to the right side. The probabilities of
being caught can be observed by human subject through interacting with the game.

4.2 Human Subject Experiments

Our wildlife poaching game is a three-player security game with |T1| = |T2| = 9
targets available to each adversary. There are a total of |T | = 18 grids that
contains some fixed number of animals. Each attacker is able to attack 9 targets
in a 3×3 reward distribution. A total of two reward structures of three different
wealth imbalance has been deployed on AMT as Fig. 3 shows. The penalty of
the attacker getting caught is set to be P = −1. The total number of rangers is
set to be m = 3, and the collusion bonus is set to be δ = 1.

Fig. 3. Reward (animal density) structures of different wealth imbalance (λ1-λ2)
deployed on AMT.

For each wave of the experiment, we deployed different defender mixed strate-
gies against human adversaries played as each side of Game 1, Game 2 and Game
3 of both reward structures. Note that although we have a symmetric reward
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structure in Game 3, the defender will still deploy the defender resources asym-
metrically to break the collusion.

Each participant was asked to play three rounds of carefully designed games,
which are the trial game, test game, and the main game. The score that partic-
ipants gain from the test game and main game (displayed as round 1 and round
2 for the participants) were accumulated as the bonus payment to the partici-
pants to incentivize the players to perform well. The bonus of each participant
was calculated as 0.5 + 0.05 × (points earned in the test game and main game),
the points earned could be negative if the participant got caught in both games.

Before playing the trial game, participants were provided with a background
story and detailed instructions about the game. After reading the instructions,
the participants next played the trial game that has an obvious choice of the
grid to attack and collusion decision to make sure they comprehended the game.
When they finished the trial game, the participants could either choose to reread
the instructions or begin to play the round 1 game (test game) and earn points.
The test game, acts as a validation game, having an apparent yet opposite choice
for the collusion decision to the test game to avoid any bias.

The test game serves two purposes. The first purpose is for us to validate if
the participants understand the game or not. The data of the participant was
excluded if it does not meet certain criteria in the test game. The second purpose
is to balance the total reward payment of different settings in the main game.
For example, the participant played as 0.2 side of game 3 has a limit potential
to earn points in round 2 (the main game). Thus he/she will be assigned to a
higher potential reward in round 1 (test game) to be fair and avoid bias as much
as possible.

Finally, the second round game that participants played was the main game
that we used to collect data of their decision making. After the game, the par-
ticipants were asked to take a survey about their experience of the game and
their personalities.

In each individual game, the human player is given a set amount of time to
make decisions about: (i) whether to collude with the other player or not and
(ii) which region of the park to place their snare. To make the first decision, a
question appears on the screen which asks whether the human player is inclined
to collude or not. After answering this question, a message appears on the screen
that indicates whether collusion was preferred by both players or not. Collusion
occurs only if it is preferred by both players. It is worth noting that the human
participant has no opportunity to communicate with or learn about the other
player. Next, players are asked to choose a target in their own region to attack.
As before, players cannot communicate about which target to attack.

Note that whereas the human player plays as one of the adversaries, we
designed a computer agent with rational behavior to play as the second adver-
sary; thus there is an algorithm generating defender strategies, and two adver-
saries (one a human and one a computer agent). Choosing a computer agent
as a second player let us to avoid requiring coordination between two human
players in the experiments. While the other player is a computer, it is suggested
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to the human player that they are actually another human. The computer agent
rationally chooses its decision to collude. To simplify the analysis, we assume
that the second stage of decision making (where each adversary chooses a target
to attack) depends on his own inclination for collusion and does not depend on
the attitude of the other adversary.

There are total of 50 participants for each game set. For each strategy, 12
sets of games ({Game Structure| RS1, RS2}×{λ1|0.2, 0.4, 0.5A, 0.5DA, 0.6, 0.8})
were deployed, in which RS1 represent reward structure 1, RS2 represent reward
structure 2, 0.5A represents human player playing the side with less coverage
in the symmetric game (λ1 = λ2 = 0.5) and 0.5DA represents otherwise for
the sake of distinguishing. Thus, a total of 600 human players participated in
the experiments for each strategy, and we deployed three strategies in total. We
show and analyze our results in the following section.

4.3 Numerical Results

Three waves of experiments have been conducted. In the first wave, we deployed
the optimal strategy acquired from PRM and asked human subjects to play the
security poaching game described above. We collected the human decision data
of the attacking decision α and the collusion decision β on these 12 sets of games.

Two models that assume the attackers are bounded rational have been
learned using the data collected in the first wave. For the first BRM strategy, we
used maximum likelihood estimation on all the data collected and learned the
8 parameters required to generate the strategy, which are (ωα

C , ωα
R, ωα

P , η, γ) and
(ωβ

C , ωβ
R, ωβ

P ). The model is named “BRM” in the figure below.
As for the second BRM strategy (called BRM05), we only used data col-

lected from symmetric case in the first wave ({Game Structure| RS1, RS2} ×
{λ1|0.5A, 0.5DA}) and learned the 8 parameters that generate the third strategy.

Next, two waves of experiments were deployed, one using BRM strategy and
one using BRM05 strategy. Each wave involved another 600 human subjects
playing the 12 sets of games. To analyze which model is the more effective one,
we looked at two perspective accuracy and performance.

Accuracy. The human decision data from the wave 1 experiment acts as the
training data for the BRM and BRM05 models. To be fair, we compare the
prediction accuracy of the three models on wave 2 human decision data, which
has not been used for the training of any of the models. In Fig. 4, we vary
the wealth imbalance(λ1 − λ2) along the x-axis and shows the prediction of
each model versus the actual defender loss along y-axis in the wave 2 games we
conducted. The loss here refers to the total reward the defender faces due to
collusion and target choices of the attackers. Note that in this game, the penalty
is constant and low; and hence the defender usually faces a loss and must reduce
it as much as possible. This is intentionally designed to be consistent with real
world situation involving poaching in national parks.
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Fig. 4. Prediction of the defender loss by each model and the actual defender loss in
wave 2 experiments. The error bars of the actual defender loss are small due to large
sample size.

In terms of accuracy, both BRM models outperforms the PRM model. The
inaccuracy of PRM model comes from two reasons, overestimating the defender
loss from the attacker target choice α and underestimating the defender loss
from collusion offering probability β. While the latter factor sometimes helps in
reducing the error, overall its performance suffers compared to the BRM models.

The reason PRM overestimates the defender loss from the attacker target
choice is because it assumed the attackers to be perfectly rational and always
choose the grid with highest expected value to attack. However, in the experi-
ments, we observe that human subjects avoids high-risk high-reward grid cells
and choose some safer yet lower expected reward grid with high probability. The
two BRM models are able to capture and exploit this along with other bounded
rational behavior as explained in Sect. 2.2 and thus leads to a relatively more
accurate prediction on α.

The two BRM models also perform better than PRM in predicting the prob-
ability of collusion. In Fig. 5, we vary the wealth index of the attacker along the
x-axis and show the prediction of collusion offering probabilities of players versus
actual collusion offering probability in the wave 2 experiments along the y-axis.

In RS1, PRM predicts the strategy applied in wave 2 can always break the
collusion (for situations shown in Fig. 5(a)) by making the weaker attacker col-
lude with probability 0. In the real experiments, however, human subjects still
offer collusion with high probability, even if collusion results in a lower expected
utility.

Given the prediction toward wave 2 experiments as an example, BRM are
better than PRM at predicting attacker strategy. We now look into the perfor-
mance of the strategy they generated in the actual experiments.

Performance. In each wave, games with two reward structures of three wealth
imbalance with multiple human subjects playing as both the weaker and stronger
sides have been conducted with the three strategies. Figure 6 shows the perfor-
mance of the three strategies in the experiments against real human attackers.
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Fig. 5. Prediction of the collusion offering probabilities by each model and the actual
collusion offering probabilities. PRM predicts 0 collusion offering probability of adver-
saries with wealth index 0.2, 0.4 and 0.5A in RS1 hence no bar is shown. Same for
adversaries with wealth index 0.2 in RS2.

Fig. 6. Average defender loss from experiments with 100 participants (50 on each side)
in each game per strategy (each bar). Error bars are small due to large sample size.

The BRM strategy outperforms PRM strategy in every game with different
wealth imbalance of both reward structures. The error bars shown in the graph
are small due to large sample size. The BRM05 however, is more unstable. It
outperforms the other two strategies in some games with lower wealth imbalance.
However, it performs poorly for high wealth imbalance and even lost to PRM
in RS2. This fact suggests that it could not capture some properties about the
attacker behavior of the high imbalance game.

Another phenomenon worth noticing is that the defender loss did decrease
as the wealth imbalance increases as Proposition 3 suggested for both PRM and
BRM in asymmetric games. Interestingly, BRM deployed some surprisingly dif-
ferent strategies when dealing with symmetrically powerful adversaries, which
will be analyzed in the next section.

Strategy Difference. Other than better prediction and the exploitation of
bounded rational behavior when choosing grids to attack, there is another
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Fig. 7. Comparison of the actual collusion probabilities between the PRM and BRM
defender strategies.

Fig. 8. Strategies of PRM and BRM for symmetric adversaries (Game 3(0.5–0.5)).

Fig. 9. Strategies of PRM and BRM for asymmetric adversaries.

crucial reason for the BRM to perform well. Figure 7 shows the actual collu-
sion probability of PRM and BRM strategy in real experiment.

In asymmetric games, BRM is able to break the collusion with higher proba-
bilities than PRM. Surprisingly, in the symmetric game(game 3), BRM did not
break more collusion than PRM. To investigate this, we compare the strategy
deployed in PRM and BRM for such game in Fig. 8. It can be observed that
BRM did not try to break the collusion at all by defending both side symmet-
rically. By accepting the fact that human adversaries are still going to collude
and the resources it has are too little to spare, BRM is able to keep the collusion
probability within an acceptable amount without sacrificing one side too much.

As for asymmetric adversaries, Fig. 9 shows the difference between the strate-
gies PRM and BRM deployed. The first thing to notice is that although the
reward structure is not uniformly distributed on each side, both PRM and BRM
agrees that more defender resources should be deployed on the attacker with
more wealth as Proposition 1. In these games, BRM tries to break the collusion
harder than PRM by deploying more defender resources on stronger attacker
than PRM.
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5 Conclusions

This paper modeled and addressed a security game problem that focused on
breaking the collusion between asymmetric adversaries, which is often the case
in the real world. Questions as to whether human adversaries would attempt to
collude in such situations, and whether defender strategy to counter such collu-
sion should focus on inhibiting such collusion were addressed in this paper by:
(i) theoretically analyzing Imbalanced Collusive Security Games (ICOSG) where
defenders face adversaries with asymmetrically distributed rewards; (ii) conduct-
ing extensive experiments of three different adversary models involving 1800
real human subjects and (iii) deriving novel analysis of the reason behind why
bounded rational attacker models outperform perfectly rational attacker models.
(iv) analyze the essential difference between balanced and imbalanced adversaries
game. The key principle we found is that: Careful modeling of human bounded
rationality reveals a key difference (when compared to a model using perfect
rationality) in defender strategies for handling colluding adversaries which face
symmetric vs asymmetric rewards. Whereas a model based on perfect rational-
ity always attempts to break collusion among adversaries, a bounded rationality
model acknowledges the inherent difficulty of breaking such collusion in symmet-
ric situations and focuses only on breaking collusion in asymmetric situation, and
only on damage control from collusion in the symmetric situation.
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Abstract. We consider the problem of monitoring a set of targets, using
scarce monitoring resources (e.g., sensors) that are subject to adversarial
attacks. In particular, we propose a constant-sum Stackelberg game in
which a defender (leader) chooses among possible monitoring locations,
each covering a subset of targets, while taking into account the monitor
failures induced by a resource-constrained attacker (follower). In con-
trast to the previous Stackelberg security models in which the defender
uses mixed strategies, here, the defender must commit to pure strate-
gies. This problem is highly intractable as both players’ strategy sets
are exponentially large. Thus, we propose a solution methodology that
automatically partitions the set of adversary’s strategies and maps each
subset to a coverage policy. These policies are such that they do not over-
estimate the defender’s payoff. We show that the partitioning problem
can be reformulated exactly as a mixed-integer linear program (MILP) of
moderate size which can be solved with off-the-shelf solvers. We demon-
strate the effectiveness of our proposed approach in various settings. In
particular, we illustrate that even with few policies, we are able to closely
approximate the optimal solution and outperform the heuristic solutions.

1 Introduction

Protection1 of important targets is a critical security problem with a wide range
of applications including environmental surveillance, and infrastructure security.
One of the strategies is to monitor the targets by allocating resources, such as
inspection posts, sensor devices, etc. However, this allocation task can become
extremely challenging if one considers the possibility of malicious attacks [9].
Such adversarial actions will increase the vulnerability of targets; therefore, more
strategic monitoring policies should be implemented in order to ensure a high
level of robustness against potential adversarial attacks.

Game theory, and in particular, Stackelberg games have been used to model
complex security problems, in which a defender first commits to a strategy and an
attacker who can surveil the defender’s strategy acts next to maximize the harm.
1 Throughout the paper, we will use the terms “cover”, “monitor”, “protect” inter-

changeably.
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Some of the important applications of these models can be found in [15,16]. In
Stackelberg security games, it is often assumed that the defender commits to a
randomized strategy. While in many applications, the randomness is advanta-
geous to the defender by making the action less predictable, there are also many
security domains for which a randomized solution is not feasible, e.g., static sen-
sor placement for monitoring. Also, most of the previous work has focused on
models in which the targets are subject to attacks, whereas it is also possible for
an adversary to attack the defender’s resources.

In this paper, we introduce the “strategic monitoring problem”, in which a
defender aims to maximize the total value of the targets it protects by placing
a limited number of monitors. An adversary who aims to make the targets vul-
nerable, attacks some of the monitors such that the value of the unprotected
targets is maximized. We view this problem as a two-player Stackelberg game.

In our model, we assume that all of the targets are at risk and important to
be protected; therefore, the defender obtains a positive payoff equal to the total
value of protected targets, whereas the attacker’s reward is evaluated based on
the accumulative value of the targets that are unprotected. As a result, the sum
of both players’ payoff is equal to the total value of the targets. Our goal is to
find a minimax pure strategy for the defender, that is, a strategy that maximizes
the minimum payoff that the defender can obtain.

In terms of modeling, our model extends the existing literature of Stackelberg
security games by considering a more general attack model, which allows the
adversary to attack the resources. In addition, we solve for pure strategies for
the defender. Our commitment to pure strategies is due to the assumption that
the monitors are fixed and as a result randomized solutions are not applicable.
Furthermore, our model is general as it can accommodate for heterogeneous
targets (with arbitrary values) and monitors (with different monitoring powers).
We will elaborate on this in the formal problem description.

In terms of technical contributions, the strategic monitoring problem that we
study is highly intractable as both players’ strategy set is exponentially large.
In order to tackle this problem, we propose a novel max-min-max binary opti-
mization model, which allows us to leverage techniques from robust optimiza-
tion literature. In particular, we extend the K-adaptability idea from two-stage
robust optimization literature, based on which first the desired set of monitors
together with K candidate coverage policies are selected. This is equivalent to
partitioning adversary actions into K subsets, such that each subset is mapped to
a particular coverage policy. The coverage policies are such that the value of the
covered targets is not overestimated, but as high as possible. We extend the work
of Hanasusanto et al. [11] by generalizing their approach to the case of discrete
adversary actions by exploiting the specific structure of our problem. We show
that, in contrast to their formulation, we can reformulate the K-adaptability
problem as an MILP that is exact. The significance of the MILP formulation is
that it is polynomial in all problem inputs; thus, it circumvents the exponential-
ity of the attacker’s action. Furthermore, our approach bridges the gap between
the suboptimal heuristic solutions and the fully optimal, yet intractable exact
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approach, where the trade-off between complexity and optimality can be tuned
using a single design parameter K.

In the remainder of this paper, we first give an overview of the related
work. Next, in Sect. 3 we formally define the strategic monitoring problem as
a constant-sum Stackelberg game and we show that it can be equivalently mod-
eled as a two-stage robust optimization problem. Following that, we introduce
the K-adaptability counterpart problem and we prove it can be reformulated
exactly as a single optimization problem of moderate size. Finally, in Sect. 4 we
present results that demonstrate how the presented approach performs across
different criteria. The paper concludes with a summary of contributions.

2 Related Work

The strategic monitoring problem falls under the category of large scale constant-
sum games with exponential strategy space. Mainly, there are two approaches to
tackle large scale games: One approach is based on iterative strategy generations
used by double-oracle algorithms [8,12] for which there is no guaranteed polyno-
mial run-time. The other approach focuses on using compact representations of
the games, where a common approach is based on clustering strategies to solve
simpler games. In this regard, Bard et al. [1] propose a greedy-based clustering
approach. Also, in [2] authors use k-means clustering to construct the abstract
games. What we propose in this work can be viewed as an automatic genera-
tion of a partition of adversary’s strategy set, which is not reliant on any metric
such as the ones used in the clustering algorithms. In fact, the partitioning is
performed implicitly by choosing limited number of coverage policies.

This problem is also related to robust sub-modular optimization. In this
regard, Krause et al. [13] formalized a general max-min problem, and they pro-
posed an approximation algorithm to maximize the worst-case performance of a
sub-modular function against a set of possible failure scenarios but their algo-
rithm is only efficient for moderately-sized set of scenarios. Later, Orlin et al. [14]
studied a problem, in which one chooses a set of up to I items, and nature coun-
teracts by eliminating at most J of the selected items. The objective to maximize
a monotone sub-modular set function. The authors propose a greedy-based algo-
rithm with a constant (0.387) factor approximation result, valid for J = o(

√
I).

This work was followed by [7], in which they show the same approximation fac-
tor for J = o(I). In [17], the authors propose another greedy-based algorithm
and provide a bound using the curvature of the sub-modular function. Although
these greedy algorithms are computationally efficient, the approximation guar-
antees are quite loose, whereas in some applications, such as monitoring, it is
more desirable to spend more time in the decision making phase, since once the
monitoring locations are chosen, they will be in use for a long duration.

Finally, our solution approach draws from robust optimization (RO) liter-
ature. RO models concern decision making problems affected by uncertainty,
in which the uncertainty is modeled as a set, also referred to as uncertainty
set. This class of problems are modeled as max-min optimization problems and
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can also be considered as a zero-sum game against “nature” which acts as an
adversary by choosing the worst setting of the uncertain parameters. For further
reading one can refer to [3,5]. Two-stage robust optimization is an extension of
the single-stage RO problems in which the decision maker chooses a secondary
action upon observing nature’s choice.

This class of problems are intractable in general [4], specially if the second-
stage actions are binary. However, there exists efficient approximation schemes
which have been proven to perform well in practice. In particular, finite adapt-
ability has been proposed [6], in which the nature’s action set, is partitioned
and a second-stage decision is determined for each partition. These partitions
can be either fixed by the modeler [18] or decided in the optimization [6,11]
process. In the present work, we propose a novel two-stage optimization model
for the strategic monitoring problem and we build on the work of [11] which pro-
poses a methodology for obtaining K partitions, also known as K-adaptability.
In [11], the authors show that for polyhedron (convex) uncertainty sets, a two-
stage robust optimization can be approximately reformulated as an MILP. We
generalize their result to the case of discrete sets, and we provide an MILP
reformulation that is exact.

3 Strategic Monitoring Problem

We are given a set of monitoring locations N := {1, . . . , N}, and a set of targets
T := {1, . . . , T}. Each target n has a (normalized) value Un ∈ [0, 1] which
indicates the importance of that target. Further, each monitor n′ ∈ N can cover
a subset of the targets. We represent the target coverage via a bipartite graph
G = (N , T , E), where E is the set of edges between N and T . An edge from
n′ ∈ N to n ∈ T , denoted by (n′, n), exists if n can be monitored by n′ (e.g., n
is within the observable range of n′). For each target n, we define δ(n) := {n′ ∈
N : (n′, n) ∈ E} which is the set of nodes that can monitor n. Fig. 1 depicts
an example graph, in which the circles are the monitoring locations, and the
squares are the targets that need to be protected. We consider a constant-sum
Stackelberg game as:

1

2

3

4 5

Fig. 1. An example input of the strategic monitoring problem. In this figure the circles
represent targets, and squares are the monitoring locations.
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max
X⊆N
|X|≤I

min
Z⊆X
|Z|≤J

F (X\Z), (1)

in which a defender aims to select a set of nodes X ⊆ N of cardinality at
most I as monitors such that it maximizes the coverage of the targets after an
adversary eliminates subset Z ⊆ X of the chosen monitors. The payoff function
F (·) evaluates the targets that are covered, given the defender and attacker’s
strategies, and it is defined precisely as follows:

F (Y) :=
∑

n∈T
UnI (∃n′ ∈ Y : n′ ∈ δ(n)) , (2)

where I(·) is the indicator function defined as:

I(P ) =

{
0 if P ≡ FALSE
1 if P ≡ TRUE

. (3)

According to this definition, a target is covered iff at least one its neighbors is
chosen as a monitor and has not been attacked by the adversary.

In the following proposition, we show the importance of modeling the adver-
sary. We prove that the optimal solution of the problem that ignores the existence
of an adversary can be quite sub-optimal in the presence of adversary.

Observation 1. The optimal solution of a problem that ignores the possibility
of adversarial attacks can be sub-optimal in Problem (1) with optimality gap in
the order O(T ).

Proof. We prove this by means of an example. Consider an instance of Prob-
lem (1) on the network depicted in Fig. 1, with input given as N = 5, T = 6,
I = 2, J = 1. We also assume that all of the targets have a value equal to 1. In
the absence of an adversary, (or if we ignore the adversary), an optimal solution
is to choose nodes 1 and 2 which will cover all of the targets. If an adversary
exists, however, this decision can be highly sub-optimal as in this case if node 1
is attacked, only 2 targets will be covered. By optimizing against an adversary,
the optimal decision is to select nodes 1, and 3. This solution obtains a coverage
of 4.

In this particular example, we observed an optimality gap of 2 (= 4− 2).
Now, consider the same network structure with T targets, in which nodes 1, and
3 are connected to T − 2 targets and node 2 covers the remaining 2 targets. The
optimality gap in this case is T − 4 which increases linearly with the number of
targets. Therefore, we can conclude that in the worst-case this gap is O(T ). ��

In the description of Problem (1), the adversary’s choice is dependent on the
decision maker’s choice X . We propose an alternative formulation in which the
dependence on X is removed, and the adversary can choose from the ground set
N (instead of X ). We show that the two problems are equivalent.
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Proposition 1. Stackelberg game model (1) is equivalent to:

max
X⊆N
|X|≤I

min
Z⊆N
|Z|≤J

F (X\Z), (4)

in which the adversary can choose among the set N .

Proof. This proof is based on the intuition that a rational adversary will always
choose among the selected monitors by the defender, even if it is given the option
to attack other nodes. The formal proof is given below.

Fix an arbitrary X ⊆ N and let z and w denote the optimal objective values
of the inner minimization problems in (1) and (4), respectively. We will show
that w = z, which given the choice of X is arbitrary, results in the equivalence
of the two problems. Since X ⊆ N , it follows that w ≤ z. We show that the
converse is also true. Let Z� be optimal decision for the inner minimization
problem in (4). We show that one can construct a solution Z ⊆ X feasible in
the inner minimization problem of (1) such that F (X\Z) = F (X\Z�), implying
that z ≤ w. If Z� ⊆ X , we can define Z = Z� and the claim follows. Else,
let z ∈ Z�\X and define Z := Z�\{z}. Then X\Z = X\{Z�\{z}} = X\Z�

and thus F (X\Z) = F (X\Z�). As the choice of X was arbitrary, the proof is
complete. ��

3.1 Reformulation as a Two-Stage Robust Binary Program

In this section, we show that the strategic monitoring problem can be reformu-
lated as a two-stage binary program. Since the two Problems (1) and (4) are
equivalent, we will focus on the latter. Indeed, as it will become apparent later
on, this simplification will enable us to reformulate Problem (1) exactly as an
MILP. The two-stage binary program is as follows:

max
x∈U

min
ξ∈Ξ

max
y∈{0,1}T

⎧
⎨

⎩
∑

n∈T
Unyn :

∑

n′∈δ(n)

ξn′xn′ ≥ yn, ∀n ∈ T

⎫
⎬

⎭ . (5)

In this formulation, x is a binary vector and xn = 1 iff node n is chosen to
place a monitor. Binary vector ξ encodes whether a node is not attacked, where
ξn = 0 iff node n is attacked by the adversary. Also, binary vector y indicates
which targets are monitored. Note that the value of y can be determined after
the adversary’s action is revealed, which forces the introduction of the second-
stage counting stage. Set U = {x :

∑
n∈N xn ≤ I} is the set of all feasible

monitor selections. Also, Ξ is the set of feasible actions of the adversary and it
is defined as:

Ξ :=

{
ξ ∈ {0, 1}|N | :

∑

n∈N
(1 − ξn) ≤ J

}
. (6)

This set expresses that at most J nodes can be attacked by the adversary,
which is equivalent to the definition used in Problem (4). The first maximization
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problem determines the value of x, i.e., the set of monitoring locations. In the
inner minimization problem, the adversary chooses which monitors to attack.
Finally, the innermost maximization problem determines the covered targets
i.e., the problem maxy∈{0,1}T

{∑
n∈T Unyn :

∑
n′∈δ(n) ξn′xn′ ≥ yn, n ∈ T

}
mod-

els the payoff function F (·) introduced in Problem (1). The constraints of this
problem stipulate that a target node is monitored if there is at least a monitor
among its neighbors, which is not attacked.
Remark 1. In Problem (5), set U can be defined by any arbitrary linear con-
straints, and our solution approach remains valid. However, we are only consid-
ering cardinality constraints in the definition of U .

Proposition 2. Problem (4) is equivalent to the two-stage robust monitoring
Problem (5).

Proof. Problem (4) is equivalent to:

max
X⊆N
|X|≤I

min
Z⊆N
|Z|≤J

F (X\Z) = max
x∈U

min
ξ∈Ξ

F ({n ∈ N : xn = 1}\{ξ ∈ Ξ : ξn = 0}),

thus, it suffices to show that for any x, and ξ:

F ({n ∈ N : xn = 1}\{ξ ∈ Ξ : ξn = 0}) =

max
y∈{0,1}T

⎧
⎨

⎩
∑

n∈T
Unyn :

∑

n′∈δ(n)

ξn′xn′ ≥ yn, ∀n ∈ T

⎫
⎬

⎭ .
(7)

Let y� be the optimal solution of the maximization problem:

∀n ∈ T : y�
n = 1 ⇒

∑

n′∈δ(n)

ξn′xn′ ≥ 1.

Also, we note that the opposite direction holds true, meaning that:
∑

n′∈δ(n)

ξn′xn′ ≥ 1 ⇒ y�
n = 1,

otherwise, we can construct a new solution ỹ with higher objective which con-
tradicts the optimality of y�. As a result,

y�
n = 1 ⇔ ∃n′ ∈ δ(n) : ξn′ = 1, xn′ = 1,

or equivalently:
y�

n = I(∃n′ ∈ δ(n) : ξn′ = 1, xn′ = 1).
By summing over all n ∈ T :

∑

n∈T
Uny�

n =
∑

n∈T
UnI(∃n′ ∈ δ(n) : ξn′ = 1, xn′ = 1)

= F ({n ∈ N : xn = 1}\{ξ ∈ Ξ : ξn = 0}),
(8)

where the last equality follows by the definition of the coverage function F (·). ��
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3.2 K-Adaptability

K-Adaptability has been proposed to approximate the solution to the two-stage
robust optimization problems with integer recourse decisions. In K-adaptability,
K non-adjustable second-stage policies yk, k ∈ {1, · · · ,K} are chosen in the first
stage, that is before the adversary takes an action. Upon observing the adver-
sary’s action, the best policy among the feasible ones will be output as the solu-
tion. This is equivalent to automatically partitioning the adversary actions into
K subsets, such that each subset is mapped to particular covering policy. The
covering policies are such that the number of covered nodes is not overestimated,
but is as high as possible. In the strategic monitoring game, the second-stage
variables are in fact indicator functions that indicate, for each node, whether it is
covered or not. In K-adaptability, we approximate this indicator function, where
we limit ourselves to a small number (K) of counting policies. The payoff will
be then evaluated based on the indicator function, thus, K-adaptability serves
as an approximation scheme of the payoff function.

K-Adaptability in Strategic Monitoring Problem

The K-adaptability counterpart of Problem (5) can be expressed as:

max
x∈U

yk∈{0,1}T

min
ξ∈Ξ

max
k∈K

{ ∑

n∈N
Unyk

n : yk
n ≤

∑

n′∈δ(n)

ξn′xn′ ,∀n ∈ T
}
.

(9)

In Formulation (9), x encodes which nodes are chosen as monitors. Variables yk

are the K covering policies, where each policy yk indicates which target nodes
are covered. In other words, yk

n = 1 means that according to the kth policy, node
n is monitored. These policies are chosen in the first stage, before observing the
adversary’s action. In addition, ξ denotes the adversary’s action which lies in
the set of adversary’s pure strategies Ξ. This set is defined in Eq. (6). Also, set
K := {1, · · · ,K}.

In the first maximization problem, the defender chooses both the monitoring
nodes, and K covering policies. If yk

n = 1, it means that according to policy k,
node n is monitored. In the minimization problem, the adversary counteracts
by choosing which nodes to attack. After observing which monitoring nodes are
not attacked, the best feasible policy is chosen in the inner-most maximization
problem. Policy k is feasible if it satisfies the constraints in the innermost maxi-
mization problem. The chosen policy is an approximation to the true payoff that
the defender receives.

These policies approximate the true coverage, meaning that instead of enu-
merating all defender-attacker pairs of actions and evaluating the corresponding
payoffs, one approximates the payoff, using K covering policies. This function is
determined simultaneously with the defender’s optimal strategy, in the formula-
tion presented. We will illustrate the K-adaptability via an example.

Example 1. Consider an instance of the problem on a graph depicted in Fig. 2,
where all of the targets have equal values. We consider a setting with I = 3, and
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1

23

54

Fig. 2. Companion figure to Example 1. An example to illustrate the K-adaptability

J = 1. For K = 1, an optimal solution to the 1-adaptability problem is x =
[1, 1, 0, 0, 1], with the policy y1 = [0, 0, 1, 1, 1, 1, 0, 0]. According to this solution,
the defender chooses nodes 1, 2, and 5 as monitors. In this case, the adversary’s
best response is to attack node 5 which results in the coverage of only 4 target
nodes (those covered by 1, and 2) and this is captured by policy y1. Note that
the policy y1 is feasible under any other attacker’s response. This means that
even if the adversary chooses nodes 1 or 2 to attack, the same 4 targets would be
covered. In fact, under these scenarios more targets are covered, but the policy
under-counts those covered targets by setting their coverage value to 0 in order
to ensure feasibility for the case that node 5 is attacked. As a result, we obtain
a conservative approximation of the problem.

Now, let us compare this solution to the solution to the 2-adaptability problem.
With K = 2, the payoff function is described approximately via two policies. In
this case, the optimal defender strategy is x = [1, 0, 1, 0, 1] and the two policies
are equal to: y1 = [1, 0, 1, 1, 1, 1, 0, 0], and y2 = [0, 0, 1, 1, 0, 1, 1, 1]. If the attacker
chooses to attack either node 1 or 3, policy y2 will be feasible, which indicates that
5 nodes will be always covered (in either of the scenarios). If the attacker chooses
node 5, policy y1 is feasible which covers another set of 5 nodes. Comparing to
the K = 1 case, the coverage is increased by 1.

This example also gives insights on how our approach allows an adjustable
approximation to the true optimal solution with a single parameter K. In fact, in
this example, the solution of K = 1 is the same as the greedy algorithms proposed
in [7,10,14]. By increasing K, the optimal objective value of the K-adaptability
problem approaches the optimal solution of the original problem. Also, in this
example, the solution of the 2-adaptability problem is optimal as it yields the
optimal coverage of 5.

Proposition 3. Value of K in order to recover an optimal solution to Prob-
lem (5) is upper-bounded by

(
I
J

)
. Moreover, there are instances of Problem (5)

for which this bound is tight, in the sense that exactly K =
(

I
J

)
policies are

needed in order to obtain the optimal coverage.
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Proof. We note that Problem (5) is always solvable since given any fixed value
of K, x = 0 and yk = 0, ∀k ∈ {1, · · · ,K} is always a feasible solution.
Also, observe that the cardinality of the set of feasible second stage actions is
|{0, 1}T | = 2T . Thus, there exists an optimal solution with 2T policies. Given an
optimal solution (x�,y1�

, . . . ,yK�), we show that we can construct an optimal
solution with the same objective value and with only K ′ =

(
I
J

)
policies.

Since (x�,y1�
, . . . ,yK�) is optimal, there exists a partition of Ξ into K

disjoint subsets {E(k)}K
k=1 such that yk is feasible and optimal, for all ξ ∈ Ξ(k).

Specifically, we can define:

Ξ(k) =⎧
⎨

⎩ξ∈Ξ : k=min

⎧
⎨

⎩k′ : k′ ∈ arg max
k∈{1,··· ,K}

{
∑

n∈T
Unyk�

n :
∑

n′∈δ(n)

ξk
n′x�

n′ ≥ yk�

n,∀n

⎫
⎬

⎭

⎫
⎬

⎭ .

Also, it follows directly from the definition of {Ξ(k)}K
k=1 that:

ξ ∈ Ξ(k) ⇒ ξ′ ∈ Ξ(k) : ξ′ ◦ x = ξ ◦ x,

where (◦) indicates the Hadamard product. This implies that for any K such
that Ξ(k) is non-empty, ξ′ ◦ x has a unique value for the ξ ∈ Ξ(k). Finally, we
note that, for any x, there are only

(
I
J

)
uniques values for ξ ∈ Ξ(k), it follows

that the maximal number of subsets that are non-empty is at most
(

I
J

)
. Since

at most
(

I
J

)
subsets are non-empty, we can eliminate all policies associated with

empty subsets, and maintain an optimal solution.
Now we prove, via an example, that there exist instances where exactly K =(

I
J

)
is needed in order to obtain the optimal solution. Consider the example

network in Fig. 3. Let us assume the values I = N , and J = 1. For simplicity,
we assume all targets have equal values. Here, the defender will choose all the
monitoring nodes and the optimal coverage value is N − 1.

In the K-adaptability problem, an example policy (feasible for the case that
node 1 is attacked) will be equal to [0, 1, · · · , 1], which gives the N − 1 coverage.
However, this policy is not feasible under other attack scenarios. In general if
node n is attacked, a feasible policy would be a vector whose entries are equal
to 1, except for the nth entry, which is equal to 0. Since the total number of
scenarios is N , we can only obtain the optimal coverage of N − 1 with K =

(
N
1

)

policies. ��

Remark 2. This result is stronger than what authors in [11] propose. Their upper
bound on the number of policies needed in order to obtain an optimal solution
to the Problem (5) is K = 2T (remember T is the number of targets). Here, we
showed that this bound can be improved to K =

(
I
J

)
.

The following proposition provides the lower bound on the value of K in
order to ensure that the K-adaptability problem yields a non-zero solution.
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1 2 3 N

Fig. 3. Companion figure of Propositions 3 and 4.

Proposition 4. Let Δ(t) be the tth highest degree in the network (e.g. Δ(1)

is the maximum degree and Δ(N) is the minimum degree). For any K ≥
min {T : min(I,

∑T
t=1 Δ(t)) ≥ J + 1}, at least one node will be covered. More-

over, this bound is tight in the sense that there are instances for which exactly
K = min {T : min(I,

∑T
t=1 Δ(t)) ≥ J+1} is needed to have a non-zero coverage.

Proof. We first show a way to construct a solution x to the Problem (9), which
requires the minimum number of policies (value of K) and obtains a non-zero
coverage.

The intuition is that if we require that at least one node is covered, that node
had better have the maximum number of neighbors, because this will increase
the likelihood that the node will be covered. As a result, we rank and rename all
the nodes in descending order of their degree. Let us use Δ(t) to denote the tth

highest degree node in the network, meaning that Δ(1) ≥ Δ(2) ≥ · · · ≥ Δ(N).
We start from the first node in this order, and we select all of its neighbors.

We continue until either we exceed the budget I, or we have chosen all the
neighbors. Next, we check whether min(I,

∑T
t=1 Δ(t)) ≤ J , in which T is the

current node’s index, i.e., T th highest-degree node. This condition determines
if the number of chosen nodes is less than the number of nodes that can be
attacked. If this condition holds, we move to the next highest-degree node and
repeat the steps.

At termination, there are T � nodes which have neighbor nodes that are cho-
sen. The condition J < min(I,

∑T �

t=1 Δ(t)) also suggest that at least one of these
T � nodes will be covered since the total number of chosen nodes exceeds the
number of nodes that are unavailable. We do not know a priori which of these
T � node will be covered. Therefore, we define T � policies, where policy yk := ek

(ek is a all-zeros vector with 1 in kth entry), ∀k ∈ {1, · · · , T �}. These policies
are feasible in Problem (9), as for each possible adversary’s action, one of the
above policies will be a feasible coverage. Also, the worst-case coverage is 1.

So far, we have constructed a solution which ensures a worst-case coverage
of 1. In other words, T � is an upper bound on K. Next, we prove that there are
network structures for which this bound is tight, meaning that exactly K = T �

is needed in order to obtain a non-zero objective. Consider a network structure
such as the one depicted in Fig. 3. For I = 2 and J = 1, a solution is to choose
nodes 1, and 2 and T � = 2. We can observe that with fewer policies, i.e., K = 1,
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the covering policy is all zeros, as this is the only feasible policy for all adversarial
actions. This means that exactly 2 policies are needed in order to obtain a non-
zero coverage which is equal to 1, and indeed it is optimal.

Finally, note that, for the sake of this proof, the values of the targets are
not important as we are only interested in a non-zero solution and this will be
achieved by making sure that there are enough covering policies. ��

3.3 Reformulation as an MILP

In this section, we derive an exact formulation for the K-adaptability counter-
part of the strategic monitoring problem. Our approach is inspired by work of
Hanasusanto et al. [11] who show that the K-adaptability problem of a two-stage
robust optimization problem with binary second-stage actions can be approxi-
mately reformulated, as an MILP, for Ξ defined as a non-empty polyhedron. In
this section, we show a stronger result by proving that we can provide an MILP
formulation that is exact, and it extends to the discrete set Ξ.

The constraints in the inner maximization problem make Problem (9) less
well-behaved. An alternative formulation is:

max
x∈U

yk∈{0,1}T

min
l∈L

min
ξ∈Ξ(x,yK,l)

max
k∈K, lk=0

∑

n∈T
Unyk

n,
(10)

in which, L = {0, . . . , T}K . Also, set Ξ(x,yK, l) is a subset of the set Ξ, depen-
dent on x, yK := {y1, · · · ,yK}, and l and is defined as:

Ξ(x,yK, l) =

⎧
⎪⎪⎨

⎪⎪⎩
ξ ∈ Ξ :

yk
lk

>
∑

n′∈δ(lk)

ξn′xn′ , if ∀k ∈ K : lk > 0

yk
n ≤

∑

n′∈δ(n)

ξn′xn′ , ∀n ∈ T , if ∀k ∈ K : lk = 0

⎫
⎪⎪⎬

⎪⎪⎭
,

(11)

In the above definition, vector l encodes which of the K second-stage policies are
feasible. If lk = 0, it means that policy k is feasible; therefore, all the constraints
must be satisfied, i.e., all the coverage constraints for all of the targets. Note that
the inner-most maximization problem chooses the best feasible policy (lk = 0).
On the other hand, if lk > 0, it indicates that there is at least one constraint
that is violated by policy k, and the value of lk indicates which constraint. In
this definition, and according to the first constraint for lk > 0, policy k violates
the constraint corresponding to node lk, whereas if lk = 0, it means that policy
k must satisfy all the constraints, thus the constraints are imposed for all n ∈ T .
As a result, by introducing l, the constraints of the inner maximization problem
are absorbed by decision l, and parameterized sets Ξ(x,yK, l).

Remark 3. In the above definition of vector l, it is sufficient to find at least one
constraint violation in order for policy k to be infeasible, and lk records the index
of that constraint (equivalently, the node for which the coverage constraint is
violated).
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While the discrete nature of set Ξ prohibits any attempts to use duality
theory in the reformulation as an MILP, in the following proposition, we show
that using certain structure of sets defined by Eq. (11), we can disregard the
intergality constraints and obtain a convex set.

Proposition 5. Problem (10) remains unchanged if we replace the set Ξ with
the following:

Ξ :=

{
ξ ∈ [0, 1]|N | :

∑

n∈N
(1 − ξn) ≤ J

}
. (12)

in which the integrality constraint on ξ is relaxed.

Proof. Throughout this proof we use Ξconvex and Ξ to refer to the convex, and
discrete sets, respectively. In order to show that the optimal objective value of
Problem (10) does not change under the set Ξconvex, first, note that the payoff
function is only dependent on the

∑
n∈T yk

n,∀k ∈ K and not the values of ξ. As
a result, we only need to prove, for any arbitrary (x,yK, l):

if Ξconvex(x,yK, l) �= ∅ ⇒ Ξ(x,yK, l) �= ∅.

This follows since for cases when both sets are non-empty, for any fix
(x,yK, l), the objective values of both problems are equal. Let us choose an
arbitrary (x,yK, l). For the sake of conciseness, we drop the dependence on x,
and yK.

Now, suppose ξ̃ ∈ Ξconvex(l):

yk
lk

>
∑

n′∈δ(lk)

ξ̃n′xn′ , if ∀k ∈ K : lk > 0, (13)

yk
n ≤

∑

n′∈δ(n)

ξ̃n′xn′ , ∀n ∈ T , if ∀k ∈ K : lk = 0, (14)

According to Eq. (13), and since x ≥ 0, ξ̃ ≥ 0 and y ≤ 1:

lk > 0 ⇒ ylk = 1, ξn′xn′ = 0, ∀n′ ∈ δ(lk) ⇒
ξn′ = 0, ∀n′ ∈ δ(lk) : xn′ = 1.

Now, we define ξ̂n := �ξ̃n�, ∀n ∈ N , and we show that ξ̂n ∈ Ξ(l). In order for
ξ̂n to be in Ξ(l), it must satisfy the constraints that define the set Ξ(l).

∀k : lk > 0
∑

n′∈δ(lk)

ξ̂n′xn′ =
∑

n′∈δ(lk):xn′=1

ξ̂n′xn′ =
∑

n′∈δ(lk):xn′=1

�ξ̃n�xn′ = 0 ≤ yk
lk

.

(15)

Also,

∀k : lk = 0
∑

n′∈δ(n)

ξ̂n′xn′ ≥
∑

n′∈δ(n)

ξ̃n′xn′ ≥ yk
n, ∀n ∈ T . (16)

The proof is complete, as we showed ξ̂ ∈ Ξ(l). ��
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Before reformulating the problem as an MILP, we note that the set described
by Eq. (11) is not closed. We propose to substitute this set with the following
set:

Ξc(x,yK, l)=

⎧
⎪⎪⎨

⎪⎪⎩
ξ ∈ Ξ :

yk
lk

≥
∑

n′∈δ(lk)

ξn′xn′ +1, if lk > 0, ∀k∈K

yk
n ≤

∑

n′∈δ(n)

ξn′xn′ , ∀n ∈ T , if lk =0, ∀k ∈ K

⎫
⎪⎪⎬

⎪⎪⎭
. (17)

Proposition 6. Sets Ξc(x,y, l) and Ξ(x,y, l) are equal.

Proof. It suffices to show that if lk > 0:

yk
lk

>
∑

n′∈δ(lk)

ξn′xn′ ⇔ yk
lk

≥
∑

n′∈δ(lk)

ξn′xn′ + 1.

For a given (x,y, l), ξ satisfies the constraint
(
yk

lk
>

∑
n′∈δ(lk)

ξn′xn′

)
only if

(∑
n′∈δ(lk)

ξn′xn′ = 0
)
.

The same is true for ξ satisfying the constraint
(
yk

lk
≥

∑
n′∈δ(lk)

ξn′xn′ + 1
)
.

Therefore, the two sets are equal. ��
Remark 4. This result is stronger than [11] as we are able to obtain an exact
reformulation rather than an approximate formulation.

Next, we present the MILP reformulation of Problem (9).

Theorem 1. Problem (9) can be exactly reformulated as the following MILP:
max τ

s.t. x ∈ U, y k ∈ {0, 1}N , k ∈ K, τ ∈ R

λ (l) ∈ ΔK(l), α (l) ∈ R
N+2
+ , β

k
(l) ∈ R

N
+ , ∀k ∈ K, ν (l) ∈ R

K
+

τ ≤
∑

n∈N
−αn(l) + (N − J)αN+1(l) −

∑

k∈K
lk �=0

(y
k
lk

− 1)νk(l) + . . .

. . .
∑

k∈K
lk=0

∑

n∈T
y

k
nβ

k
n(l) +

∑

k∈K
λk(l)

∑

n∈T
Uny

k
n,

− αn(l) + αN+1(l) −
∑

k∈K
lk �=0

∑

n′∈δ(lk)

xn′ νk(l) +
∑

k∈K
lk=0

∑

n′∈δ(n)

xn′ β
k
n(l) ≤ 0, ∀n ∈ N ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, ∀l ∈ ∂L

α (l) ∈ R
N+1
+ , ν (l) ∈ R

K
+

∑

n∈N
−αn(l) + (N − J)αN+1(l) −

∑

k∈K
lk �=0

(y
k
lk

− 1)νk(l) ≥ 1

− αn(l) + αN+1(l) −
∑

k∈K
lk �=0

∑

n′∈δ(lk)

xn′ νk(l) = 0, ∀n ∈ N

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, ∀l ∈ L+

.(18)

Proof. This result follows from Propositions 5 and 6 and derivation in [11]. In
order to make the paper self-contained, we will provide the full derivation in
AppendixB. ��
Remark 5. For a fixed K, the size of the above MILP is polynomial in all problem
inputs, thus, it circumvents the exponentiality of the attacker’s action set.
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4 Results

In this section, we present different numerical results that demonstrate the per-
formance of K-adaptability, in terms of both computation effort and approxi-
mation quality. We use randomly generated graphs, where an edge between a
monitor and a target exists with probability P = 0.2. Our results are averaged
over 20 sample networks. In all experiments, there is a time limit of 60 min. Also,
all the targets are assumed to have equal value. This assumption is to facilitate
the interpretation of the results.

In our experiments, we compare our approach against an exact scenario-
based MILP solution, which explicitly enumerates the adversary’s actions and
solves for the best defender strategy against the worst-case attacker action. The
formulation for the scenario-based problem is presented in AppendixA. We also
compare our approach to the greedy-based algorithm by Tzoumas et.al [17].

Optimal Coverage vs. K [N=20, T=5, I= 8, J=5]: The first experiment
compares the optimal solution of the K-adaptability problem, for various values
of K, with the exact solution. Both problems use greedy solution as warm-
start. In Fig. 4, the vertical axis shows the normalized coverage (optimal coverage
divided by the total number of targets). The first three bars in this plot are the
optimal coverage results from 1-, 2-, and 3-adaptability problems, and the last
bar corresponds to the exact solution. Here, we can observe that by increasing K
from 1 to 2 and 3, the optimality gap monotonically decreases, where for K = 3,
this gap is less that 10%.

Coverage/Solver Time vs. Number of Attacks [N=30, T=8, I= 12,
K=2]: We now investigate how our approach performs, both in terms of solver-
time and solution quality, compared to the exact approach. Figure 5(a) shows the
normalized coverage, plotted versus different numbers of adversarial attacks (J).
The blue and yellow bars are the results of the 2-adaptability and exact problems,
respectively. We observe that as J increases, the coverage decreases, until J = 8
for which the exact formulation could not find a feasible solution within the time-
budget. This is because, going beyond J = 7, the number of attack scenarios,
i.e., the number of constraints, becomes very large. For example, for (J = 8),
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there were
(
30
8

)
≈ 6 × 106 constraints and the solver did not obtain a feasible

solution within the 1-h time budget. However, we observe that the 2-adaptability
solution does not suffer from this issue, as it is able to solve for such cases. Also,
for (J < 8), it closely approximates the exact solution.
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Fig. 5. Comparing solver time and coverage for exact and 2-adaptability problems

Figure 5(b) compares the solver time of the 2-adaptability and exact solution.
We observe that the exact solution quickly becomes intractable as J increases.
For larger J , both problems reach the time limit, however, as Fig. 5(a) suggests,
for (J > 7) the exact approach fails to provide a solution within the time limit,
whereas the 2-adaptability problem yields a high quality solution.

K-Adaptability vs. Greedy [N=20, T=5, I= 8, J=4, K=2]: In this
experiment, we test our approach on harder graph instances, graphs with solu-
tions that are hard for heuristic algorithms to find, and we average over 10 such
graphs. For instance, see Fig. 2. In our comparison, we use the greedy algorithm
proposed in [17] as the baseline. There are several works on greedy solutions,
however, most of them are limited in terms of allowable ranges for J [7,14].
Thus, we compare our solution to the work of [17], since it applies to all regimes

Fig. 6. Comparing greedy solution with 1- and 2-adaptability problems
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of J . Figure 6 shows the normalized coverage, for greedy, 1- and 2-adaptability
problems. This result indicates that by K as low as 1, on average we are able to
recover the greedy solution, where the 2-adaptability significantly outperforms
the greedy solution. As a result, this experiment illustrates that on hard graph
instances that greedy does not perform well, K-adaptability can outperform,
using only small values of K.

5 Conclusion

This work studies a Stackelberg game model for the strategic monitoring prob-
lem. This problem is highly intractable. Thus, we provide a tractable approxi-
mation scheme based on K-adaptability formulation. Our solution methodology
automatically partitions the set of adversary’s strategies and maps each subset
to a coverage policy. These policies are such that they do not overestimate the
defender’s payoff. We show that there exists an exact MILP reformulation of the
K-adaptability problem whose size grows polynomially in the description of the
problem input. We empirically show, the shortcomings of both the heuristic and
exact approaches and that K-adaptability can remedy those issues. In partic-
ular, our experiments indicate that with even with small values of K, ranging
from 1, to 3, K-adaptability recovers both the greedy and exact solutions.

Acknowledgement. This work was supported by the Army Research Office
(W911NF-17-1-0370, W911NF-15-1-0515, W911NF-16-1-0069), National Science Foun-
dation (CNS-1640624, IIS-1649972, and IIS-1526860), Office of Naval Research
(N00014-15-1-2621), and the USC Office of the Provost and USC Viterbi School of
Engineering.

A Exact Scenario-Based MILP

In Problem (5), the optimal pure strategy for the defender can be obtained from
the solution of the following deterministic MILP problem which enumerates all
the attacker pure strategies. This reformulation is exact, however, it requires a
number of variables and constraints which is exponential in N . In this formu-
lation yξ,n is a binary variable and it is equal to 1 iff under attack scenario ξ,
target n is covered.

max
x∈U

y∈{0,1}|Ξ|×N

τ

s.t. yξ,n ≤
∑

n′∈δ(n)

ξn′xn′ , ∀n ∈ N , ∀ξ ∈ Ξ

τ ≤
∑

n∈N
yξ,n, ∀ξ ∈ Ξ

(19)
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B Exact MILP Formulation of the K-Adaptability

The following reformulation is based on [11]. The objective function of the Prob-
lem (10) is identical to:

min
l∈L

min
ξ∈Ξc(x,y ,l)

[
max

λ∈ΔK(l)

∑

k∈K
λk

∑

n∈T
Unyk

n

]
, (20)

where ΔK(l) = {λ ∈ R+ : e�λ = 1, λk = 0,∀k ∈ K : lk �= 0}. We define
∂L := {l ∈ L : l >| 0}, and L+ := {l ∈ L > 0}. Note that ΔK(l) = ∅ if and only
if l > 0. If Ξc(x,y, l) = ∅ for all l ∈ L+, then the problem is equivalent to:

min
l∈∂L

min
ξ∈Ξc(x,y ,l)

[
max

λ∈ΔK(l)

∑

k∈K
λk

∑

n∈T
Unyk

n

]
. (21)

By applying the classical min-max theorem:

min
l∈∂L

max
λ∈ΔK(l)

l∈∂L

min
ξ∈Ξc(x,y ,l)

∑

k∈K
λk

∑

n∈T
Unyk

n. (22)

This problem is also equivalent to:

max
λ(l)∈ΔK(l)

l∈∂L

min
l∈∂L

min
ξ∈Ξc(x,y ,l)

∑

k∈K
λk(l)

∑

n∈T
Unyk

n. (23)

We note that if Ξc(x,y, l) �= ∅, for some l ∈ L+ the objective of Problem (10)
evaluates to −∞. Using the epigraph form, Problem (10) is equivalent to:

max τ
s.t. x ∈ U ,yk ∈ {0, 1}N , k ∈ K

τ ∈ R, λ(l) ∈ ΔK(l), l ∈ ∂L
τ ≤

∑

k∈K
λk(l)

∑

n∈T
Unyk

n, ∀l ∈ ∂L, ξ ∈ Ξc(x,y, l)

Ξc(x,y, l) = ∅, ∀l ∈ L+.

(24)

The semi-infinite constraint associated with l ∈ ∂L is satisfied if and only if:

min
∑

k∈K
λk(l)

∑

n∈T
Unyk

n

s.t. 0 ≤ ξn′ ≤ 1, ∀n′ ∈ N∑

n′∈N
ξn′ ≥ N − J

yk
lk

≥
∑

n′∈δ(lk)

ξn′xn′ + 1, if lk > 0, ∀k ∈ K

yk
n ≤

∑

n′∈δ(n)

ξn′xn′ , ∀n ∈ T , if lk = 0, ∀k ∈ K

(25)

is greater than τ .
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In order to obtain the dual formulation, we introduce an auxiliary variable
ξT+1 = 1, and we rewrite the objective as: (

∑
k∈K λk(l)

∑
n∈T Unyk

n) ξT+1. Using
strong linear programming duality:

max
∑

n∈N
−αn(l) + (N − J)αN+1(l) −

∑

k∈K
lk �=0

(yk
lk

− 1)νk(l) +
∑

k∈K
lk=0

∑

n∈T
yk

nβk
n(l) + αN+2(l)

s.t. αn(l) ≥ 0, n ∈ {1, . . . , N + 1}, βk(l) ∈ R
N
+ , ∀k ∈ K, ν(l) ∈ R

K
+

−αn(l) + αN+1(l) −
∑

k∈K
lk �=0

∑

n′∈δ(lk)

xn′νk(l) +
∑

k∈K
lk=0

∑

n′∈δ(n)

xn′βk
n(l) ≤ 0, ∀n ∈ T ,

αN+2(l) =
∑

k∈K
λk(l)

∑

n∈T
Unyk

n.

(26)

Also, the last constraint in formulation (24) is satisfied if the following linear
program is infeasible:

min 0
s.t. 0 ≤ ξn ≤ 1, ∀n ∈ N∑

n∈N
ξn ≥ N − J

yk
lk

≥
∑

n′∈δ(lk)

ξn′xn′ + 1, ∀k ∈ K, lk �= 0.

(27)

Using strong duality, this occurs if the dual problem is unbounded. Since the
feasible region of the dual problem constitutes a cone, the dual problem is
unbounded if and only if there is a feasible solution with an objective value
of 1 or more. The dual problem is as below:

max
∑

n∈N
−αn(l) + (N − J)αN+1(l) −

∑

k∈K
lk �=0

(yk
lk

− 1)νk(l)

s.t. α(l) ∈ R
N+1
+ , ν(l) ∈ R

K
+

−αn(l) + αN+1(l) −
∑

k∈K
lk �=0

∑

n′∈δ(lk)

xn′νk(l) = 0, ∀n ∈ N
(28)
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Abstract. Game theory typically assumes rational behavior for solu-
tion concepts such as Nash equilibrium. However, this assumption is
often violated when human agents are interacting in real-world scenar-
ios, such as cybersecurity. There are different human factors that drive
human decision making, and these also vary significantly across individ-
uals leading to substantial individual differences in behavior. Predicting
these differences in behavior can help a defender to predict actions of dif-
ferent attacker types to provide better defender strategy tailored towards
different attacker types. We conducted an initial study of this idea using
a behavioral version of the FlipIt game. We show that there are iden-
tifiable differences in behavior among different groups (e.g., individuals
with different Dark Triad personality scores), but our initial attempts at
capturing these differences using simple known behavioral models does
not lead to significantly improved defender strategies. This suggests that
richer behavioral models are needed to effectively predict and target
strategies in these more complex cybersecurity game.

Keywords: Game theory · Cybersecurity · Extensive-form game
Agent Quantal Response Equilibrium · Dark Triad personality

1 Introduction

Game theory has a growing number of uses in cybersecurity, such as the strategic
allocation of honeypots [12,20] to learn more about the attacker or to slow the
progress of the attacker. There are other examples [5,22] where the game is
dynamic (stochastic or in the extensive form). A common assumption in standard
game models is that players are rational and the goal is to seek an optimal
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strategy in a form of a Nash Equilibrium [16]. However, in many cases, we
deploy game strategies against humans or other types of opponents with limited
rationality. The literature on behavioral game theory has started to address the
question of developing more predictive models of human behavior, but much
of the work to date focuses on very simple games, and it typically ignores the
substantial individual differences among humans. In addition, most of this work
is not in the context of cybersecurity.

We take a first step towards developing targeted behavioral models that make
specific predictions for different groups of human players. This is motivated in
part by a long history of work in personality psychology that identifies different
dimensions of personality in humans that lead to different behavioral predic-
tions, such as the “Dark Triad” [19] that focuses on malicious behavior types.
However, the general idea of developing targeted behavior models can extend
beyond personality factors to many other aspects that might influence behavior.
We investigate this idea in the context of cybersecurity, conducting a behavioral
study for a variant of the FlipIt game.

There are some previous works that consider behavioral modeling of
attackers. An initial study on the FlipIt game was done by Nochenson and
Grossklags [18] to analyze the impact of participants’ age and gender on perfor-
mance. The authors built a regression model to predict the behavior of the users.
Another work by Reitter et al. [21] did analysis on risk propensity and perfor-
mance of the participants in the FlipIt game and found that high risk affects
decision making. The authors also built a cognitive model based on ACT-R [2]
which models an individual’s risk propensity and decision making strategy.

Another approach is to use Instance Based Learning (IBL) [1] to model the
attacker or to support the network administrator by modeling the defender.
Another notable line of work is in Stackelberg Security Games (SSGs) where dif-
ferent behavioral models including Prospect Theory (PT) [10], Quantal Response
(QR) [15] and Subjective Utility Quantal Response (SUQR) model [17], are used
to model the attacker [17,24,25]. However, in these works, the game model is
a repeated Stackelberg game where the dynamic nature of the real world inter-
action between an attacker and a defender is not represented in full generality.
The attacker model parameters are estimated by considering repeated games
where the defender is committed to a mixed strategy in a round rather than
committing to a pure strategy. A Bayesian SUQR model has also been proposed
where the parameters were fitted for every attack [24]. Kar et al. considered the
attacker’s attack history to improve the attacker model [11]. The main difference
in our work is that we consider consider targeted models for different groups of
attackers with distinctive behavior patterns.

We consider Extensive Form Games (EFG), a richer representation of the
multi-agent interaction than repeated Stackelberg games. The defender and
attacker mixed strategy can change in every round depending on previous
actions of the players and, as a result, the dynamic nature of the attacker and
defender interactions are fully represented. We introduce a variant of an EFG
we call a Type-revealing game and a standard Bayesian Game to model dynamic
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interactions with bounded rational players in cybersecurity settings. Using this
model, we evaluated the quality of defender strategies depending on different
attacker groups based on different grouping techniques.

We created an online game called StrataFlip [3]. We recruited users from
Amazon Mechanical Turk (AMT) to play the game as the attacker against the
defender, including an equlibrium “strategic” defender. We used the QR behav-
ioral model to fit parameters to the attackers’ behavior using Maximum Likeli-
hood Estimation (MLE), and then we used this model in a variant of an EFG and
in a Bayesian Game. To differentiate between different attacker types we used
the gameplay of the AMT participants in the StrataFlip game. We also con-
sidered the personality of the AMT participants. We studied three personality
traits that have been linked to deception and interpersonal harm (Machiavel-
lianism, and subclinical versions of psychopathy and narcissism), which is called
the “Dark Triad” [19]. Our initial results show that while there are behavioral
differences between the groups, the simple one-parameter QR model appears not
to capture them well enough for the defender to effectively target the different
groups, so we will need to consider richer behavioral models (such as SUQR) in
future work.

2 Background

First, we describe a model of EFGs, a representation of sequential interactions
between players. EFGs is a rich representation that is able to represent partial
knowledge of the players. Formally, a two-player EFG is defined as a tuple G =
(N ,H,Z,A, u, I): N = {d, a} is a set of players, the defender and the attacker.
We use i to refer to one of the players, and −i to refer to his opponent. H denotes
a finite set of nodes in the game tree. Each node corresponds to a unique history
of actions taken by all players and chance from the root of the game; hence, we
use the term history and node interchangeably. A denotes the set of all actions.
Z ⊆ H is the set of all terminal nodes of the game. For each z ∈ Z we define
a utility function for each player i (ui : Z → R). In this work we consider only
zero-sum EFGs, for which ud = −ua.

The imperfect observation of player i is modeled via information sets Ii that
form a partition over h ∈ H where i chooses an action. We use A(Ii) to denote
possible actions available in each node from an information set Ii ∈ Ii. We
assume perfect recall, which means that players remember the history of their
own. As a consequence, all nodes in any information set Ii have the same history
of actions for player i.

Pure strategies Πi assign one action for each I ∈ Ii. A mixed strategy δi ∈ Δi

is a probability distribution over Πi. A best response of player i to the oppo-
nent’s strategy δ−i is a strategy δBR

i ∈ BRi(δ−i), such that δBR
i is optimal

against δ−i according to a given criterion (see Sect. 3). Strategies in EFGs with
perfect recall can be compactly represented by using the sequence form [13]. A
sequence σi ∈ Σi is an ordered list of actions taken by a single player i in history
h. We use seqi(Ii) and seqi(h) to denote the sequence of i leading to Ii and h,
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respectively. A mixed strategy of a player can now be represented as a realization
plan (ri : Σi → R). A realization plan for a sequence σi is the probability that
player i will play σi under the assumption that the opponent plays to allow the
actions specified in σi to be played.

Solution Concepts in EFGs. We provide a formal definition of Nash Equi-
librium (NE) and its extension into games with subrational players. We say that
a strategy profile δNE = (δ1, ..., δn) ∈ Δ is a Nash equilibrium if and only if for
each player i it holds that δi is a best response to δ−i. NE assumes that the
structure of the game is always common knowledge among the players. Now we
explain a concept introducing uncertainty in the game being played. The uncer-
tainty is expressed as a probability distribution over the set of possible opponents
the player can face. We consider a simplified scenario in which the defender is of
a given type, but there might be several types of the attackers: a Type-revealing
game based on EFG G is a tuple BG = (G,n, p,BR, u, ), such that pk is the
probability that a defender plays a modified game G with the attacker’s utility
function uk and best-response function BRk : Δd → Δa, k ∈ {1, . . . , n}.

In the Type-revealing game, the type of the attacker is revealed to the
defender after the game begins. In contrast, in a standard Bayesian game [7]
the type of the attacker is not revealed. An example of a Bayesian game is
depicted in Fig. 1. The attacker is one of the two possible types: the defender
faces the first type with probability 0.7 and the second type with probability
0.3. Since he cannot distinguish the individual types, the former singleton game
states are now grouped into information sets. Both types of attackers are purely
rational utility maximizing players, but with different utilities. For example, in
case the defender decides to play action b3, the best response of the first type is
to play b8, while the best-response of the second types is b7.

chance

d

d
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(4,−4)

b7

(0, 0)

b8

b3

a

(−1, 1)

b9

(−3, 3)
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(0, 0)
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b12
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Fig. 1. A Bayesian extension game. Each internal node is labeled by a player who acts
in this node. Under every terminal node is a tuple of utilities obtained by the defender
and the attacker, respectively. Nodes in the same information set are connected by a
dashed line.

Computing Solution Concepts. The baseline approach for computing an
exact NE in zero-sum games with imperfect information is via mathematical
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programming [4,13]. For computing strategies in large EFGs we use a state-of-
the-art algorithm for approximating NE called Counterfactual Regret Minimiza-
tion (CFR) [26]. CFR is an iterative algorithm, which in every iteration updates
the strategies of the players in order to minimize a weighted sum of regret at
each decision. The average strategies then approach NE. Because the individual
attackers choose their strategies according to a specific best-response method, we
use a variant of CFR called CFR-BR [8]. In this algorithm, one player updates
his strategy using CFR (the defender), while the second player (the attacker)
computes his best response against this strategy. The algorithm can be modified
for a Type-revealing or Bayesian game by considering a game tree as in Fig. 1.
It can consider several methods for computing response functions, so that each
attacker type can behave according to a different behavioral model.

3 Game Model

The domain we use in this work is a variant of the “FlipIt” game [23]. This
game is motivated by a cybersecurity scenario where an attacker can perform
a stealthy attack to gain control of a resource (e.g., install malware on a host
or steal a password) that may not be immediately detected by the defender.
However, the defender can take actions to restore control to the defender (e.g.,
performing a virus scan or resetting a password).

A two-player FlipIt game is defined as a tuple F = (V, t, ρ, γ). The game is
played by a defender and an attacker on an empty graph with nodes V for a finite
number of simultaneous rounds t. There is a positive reward ρ : V → R

+ and a
positive cost γ : V → R

+associated with each node v ∈ V . At the beginning of
the game, the defender controls all nodes. In each round, each player selects one
node to flip, i.e. to attempt to gain control of. The flipping action is successful
when the current owner of the node does not also flip it. For every flipping
action, the players pay the cost assigned to the node. At the end of every round
the players collect the total rewards from all nodes they control. After t rounds
the game ends and the final utilities are the sum of the rewards collected in
the individual rounds. We consider the version of the game when after every
round the players are provided with the action of the other player. To represent
the FlipIt game, we use the EFG formalism. For example, a representation of a
FlipIt game with 2 nodes: N0 and N1, played for 1 round is depicted in Fig. 2.

d

a

(3,−3)

N0

(1,−1)

N1

(0, 0)

P

N0

a

(1,−1)

N0

(4,−4)

N1

(0, 0)

P

N1

a

(1,−1)

N0

(1,−1)

N1

(0, 0)

P

P

Fig. 2. An example of EFG representation of a FlipIt game with 2 nodes (N0 and N1)
played for 1 round. The game also contains a pass action (P ). The figure follows a
standard denotation of an extensive-form game.
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We assume ρ(N0) = 2, γ(N0) = 3, ρ(N1) = 3 and γ(N1) = 4. Then we define
both a Type-revealing and a Bayesian game based on this game with multiple
attacker types. Each types is described by its behavioral model (see the next
section). A NE in these games are computed using CFR-BR.

4 Models for Attacker Behavior Prediction

The existing attacker models (QR, SUQR, PT) for SSGs consider only one-shot
or repeated SSGs with only one generic type of attacker or as many attackers as
the number of attacks. However, these assumptions may cause the defender to
adopt a suboptimal strategy if the correct model is not used for the attacker. In
this work, we model the interaction between a defender and an attacker using
a Type-revealing game and a Bayesian game models. We solve the game with
CFR-BR where the BR is provided by the attacker. Next, we present a behavioral
game theoretic model for modeling attacker behavior to provide best responses
(BR) against defender strategy using CFR in our behavioral game based on the
EFG model where the defender knows which type of attacker he is facing.

Agent Quantal Response Model. In this work we consider the Agent Quan-
tal Response Equilibrium (AQRE) [15] which is compatible with the behav-
ioral strategy representation to support the sequential interaction between the
attacker and the defender. Agent Quantal Response (AQR) model in an EFG
assumes that different information sets of a player are played by different agents.
Each agent of each player has an additive payoff disturbance that is added to
the continuation payoff for each possible action at that agent’s information set.
All the agents share the same payoff function. In the model each agent, i simply
chooses the maximum of ûa,I at information set I ∈ Ia and acts independently
of the other agents of the same player.

For the AQR model there is only one parameter, λ, which has a value from 0
to ∞. When λ = 0 the model behaves like a pure random agent, and when λ = ∞
the AQR model converges to the rational best response model. A logit-AQRE is
any solution to the set of k equations: one equation for each action in each infor-
mation set of each agent. In Eq. 1, Agent Quantal Best Response AQBR(rd, a)
gives the probability for playing action a for the attacker in information set
I ∈ Ia. Equations 2, 3, and 4 define how to compute attacker’s expected utility
ua using defender’s realization plan rd in case h is an inner node. Otherwise, the
leaf utility is used.

AQBR(λ|a, I, rd) =
eλû(rd,a)

∑
a′∈A(I) eλû(rd,a′) ∀I ∈ Ia,∀a ∈ A(I) (1)

û(rd, a) =
∑

h∈I rd(seqd(h))ua(h, a)
∑

h∈I rd(seqd(h))
∀I ∈ Ia,∀a ∈ A(I) (2)
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ua(h, a) =
∑

I′∈Ia,h′∈I′

seqa(h
′)=seqa(h)a

ua(h′)rd(seqd(h′))
rd(seqd(h))

∀I ∈ Ia,∀h ∈ I,∀a ∈ A(I) (3)

ua(h) =
∑

a∈A(h)

ui(h, a)AQBR(rd, a) ∀I ∈ Ia,∀h ∈ I (4)

5 Parameter Estimation

We now describe how we collected data from the AMT participants using the
StrataFlip game so that we can analyze different attacker behavior and fit the
parameters of the QR model according to different attacker groups.

StrataFlip Game. The StrataFlip game is based on the description provided
in Sect. 3. In this game, two players compete over a network with multiple nodes.
A node can be any machine in the network. In our experiment we used six nodes:
Node A(10/8), Node B(10/2), Node C(4/2), Node D(4/8), Node E(10/5), Node
F(0/0). Each node has a reward (ρ) and a cost (γ). For example, Node A has
reward 10 and cost 8. The defender/attacker has to pay the cost each time
he wants to defend/capture a node. Each node can be either captured by the
attacker (red) or not (blue) as shown in Fig. 3.

Fig. 3. Game interface of the StrataFlip game

The game has five rounds. Initially, the defender has control over all of the
nodes. The purpose of the attacker/participant is to take over control from the
defender by attacking nodes. In each round, the defender defends a node and
the attacker attacks a node. If the attacker or defender chooses to attack/defend
a node he/she has to pay the cost associated with that node. If the defender
and attacker do not make the same move then the attacker takes control of the
node and receives the reward associated with that node and pays the cost. If
both players make the same move then the previous controller of the resource
retains the control and attacker and defender both pay the cost. In each round,
the user interface shows the following information: total points, current round,
time, action history (log), and who currently controls each node. After each
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round the attacker receives points for all the nodes he controls. Red and blue
mean the attacker or the defender controls a node, respectively. The attacker is
able to observe the effect of the defender action in the next round. Each player
tries to maximize their utility by controlling the nodes. The defender uses a
pre-computed Nash Equilibrium strategy by formulating the StrataFlip game as
a zero-sum EFG (strategic defender) and a random strategy where the actions
played by the defender were completely random (random defender). The attack-
ers are the AMT participants. In the next section, we describe how we collected
data from AMT using the StrataFlip game to analyze attacker behavior.

AMT Experiment. We recruited 155 participants using AMT. After agreeing
to participate the participants filled out the Short Dark Triad (SD3) [9,14] scale.
The participants were given instructions on how to play the StrataFlip game.
Next, they answered some comprehension check questions. The participants were
not allowed to go ahead until they answered correctly. If they answered incor-
rectly, proper instructions were given on why the answer is wrong. Then they
played a practice game where the participants could make themselves familiar
with the StrataFlip game.

Each participant played six StrataFlip games: three against the strategic
defender and three against the random defender. Fifty percent of all the partic-
ipants played against the strategic defender first and later against the random
defender and the other fifty percent played the random defender first and then
the strategic defender. We collected all the participant’s gameplay in each round
including temporal data.

Parameter Estimation for AQR Model. We now describe how we estimate
the λ parameter of the AQR model which represents the degree of rationality of
a player in a certain sense. As λ reaches ∞ the response of the player approaches
perfectly rational behavior. We use Maximum Likelihood Estimation (MLE) [6]
to estimate the parameter of the AQR model. The idea behind MLE is to find
parameter estimates that maximize the probability of seeing what is observed in
the data.

Given the defender’s realization plan rd and M samples of the players’
choices, the following equation defines the log-likelihood function for a given
λ:

log(L(λ|rd)) =
∑

I∈Ia

∑

a∈A(Ik)

Ma(I) log(AQBR(λ|a, I, rd)), (5)

where AQBR(τj , I, rd) is the probability of playing action τj in sample j in
information set I ∈ Ia for attacker, and Ma(I) is the number of samples taking
action a in information set I. An optimal λ̂ is then selected as λ maximizing the
loglikelihood function. For the computation we used a modified binary search.
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5.1 Attacker Grouping

The AQR model described above is used to model different attacker types
depending on the parameter values that can be fitted to different attacker
types. For example the parameter λP in the AQR model can either be fit-
ted to one generic group with the full attacker population P , or we can have
{λp1 , λp2 , ..., λpq

} fitted to different subgroups where P = {p1, p2, ...pq}. Detect-
ing the attacker groups can be done in many ways. Next we present how we
detect different attacker groups {p1, p2, ...pq} among the attacker population P .

Clustering Using Attacker Behaviors ( cbhv). Clustering using attacker
behaviors (cbhv) is based on the actions played by the AMT participants in the
online StrataFlip experiment. For features we used the node value, node cost,
and points received for the node attacked in each round. We used k-means and
density based clustering to detect the best groupings of attackers {p1, p2, ...pq}.
The best number of possible groups we could find is three (k = 3).

Clustering Using DT Scores ( cDT ). Clustering using DT scores (cDT ) is
based on the three personality scores, Machiavellian score (sm), Narcissist score
(sn) and Psychopath score (sp), computed from the Dark Triad survey given
to the AMT participants at the beginning of the AMT experiment. There is
no straightforward way to differentiate these three personalities since there is
no pure Machiavellian or no pure Narcissist or no pure Psychopath. We tried
density-based clustering and k-means clustering with k = 2, 3 using the three
personalities scores as features. We found the best clustering when k = 3.

Grouping Using DT Maximum Score ( cDTM). Another way we can find
different groups inside a generic group is to use the individual maximum DT
score among the three scores: sm, sn, sp. So, we can have three groupings where
each group represent each personality. An individual is assigned to a group for
which he has the maximum DT score.

6 Experiments

We now show that differences in opponent models and differences in the ways in
which these models are integrated into the game model can significantly impact
the quality of the strategy of the defender. We consider three cases: a generic
subrational attacker population P in an EFG model, different attacker groups
(p1, p2, p3) in a Type-revealing game model and also in a Bayesian game model.
We also show the rationality and strategic differences between different attacker
groups after separating them using different grouping techniques.

Game Values. In our first experiment, we show defender game values consid-
ering different variations of attacker groups using different game models. Game
value is the expected utility of a player when following an optimal strategy.
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The left and the middle graphs in the Fig. 4 show the results. In the first col-
umn the defender considers a rational attacker, but actually, he faces a subra-
tional attacker (r-sr scenario). We assumed λP for population P for the actual
attacker. In the second column, we show the game value when the defender
knows the actual attacker with λP for population P (sr-sr scenario). The next
three columns show game values when the defender considers different groups of
attacker (p1, p2, p3) in the variant of EFG model (where he knows the attacker
types) and in the Bayesian Game model. We consider three different grouping
techniques: cbhv, cDT and cDTM . In Fig. 4 (ignore the legends for the first two
graphs) we see that the game value is noticeably higher when the defender mod-
els a subrational attacker than when he models a rational attacker. That means
the defender was able to exploit the attacker strategies rather than being too
conservative.
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Fig. 4. Apply legends to the rightmost graph only. Defender’s expected utility when
attacker faced (Left) a strategic defender and (Middle) a random defender in the for-
mer EFG (first two columns), in the Type-revealing game (last three results in lime)
and in the Bayesian game (last three results in cyan). (Right) Defender’s expected util-
ity against different attacker’s empirical strategy including the generic attacker (AU)
against a strategic defender.

To be sure that different attacker groups have significant strategical differ-
ences, we computed the defender’s utility against the empirical strategies of
different attacker groups. In Fig. 4 (rightmost graph), where the defender consid-
ered the attackers separately in separate EFGs, we can see that there are signif-
icant differences between the defender’s expected utilities. That means that the
defender can potentially exploit the strategical differences of different attacker
groups by using tailored strategies targeted towards specific attacker subgroups.
Overall, the results confirm that the defender can explicitly exploit a single sub-
rational opponent. However, such a strategy can be exploitable by the attacker
if the model is not precise. When facing a group of several types of the attackers,
the strategy of the defender is more conservative since there is a more rational
attacker present in the group. The overall quality of the strategy (in terms the
expected utility of the defender) in the settings with groups of models of the
attackers, however, is comparable to the setting with just a single model of the
attacker. This may present a way of exploiting weak attackers while still being
able to defend against more rational ones.
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Fig. 5. (Up) Log-likelihood values and (Down) λ parameter values for different group-
ing techniques compared to one generic group (AU) when attacker faced (Left) a strate-
gic defender and (Right) a random defender.

The MLE technique fits parameters when the Log-Likelihood Value (LLV)
is maximized or the negative of the LLV is minimized. In our experiment, we
fit the parameter by maximizing the LLV. As we can see in Fig. 5, for each of
the game instances Log-likelihood value is almost same when we used different
grouping techniques instead of considering only one generic group P .

Targeted λ Value. In our next experiment, we show more targeted values
of the the AQR model parameter considering different grouping techniques.
Figure 5 shows the λ value we found for all the users against the strategic and
random defender. The results show that dividing the users into different sub-
groups highlight differences between their level of rationality (different values of
their λ). We found that the error percentage of the MLE to estimate λ is about
6.7%. However, this may vary depending on the number of data points available.
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Fig. 6. Attack pattern by different groups of attackers on different targets for cbhv.

Attack Pattern. Next, we present Fig. 6, which shows the percentage of attacks
on different targets by different groups of attackers against a strategic defender
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when we used cbhv clustering. To put this into perspective we also added the
attack percentages of an attacker with λ = 3.0, which is very close to rational.
We can clearly see that the more rational group (λ = .2275), not the simulated
one, made more rational choices by attacking targets with higher rewards and
lower costs and avoiding targets with higher costs.

7 Conclusion

Game theory assumes rational agents when computing Nash Equilibrium. How-
ever, in a real-world scenario like cybersecurity where humans are involved, this
assumption can have consequences if we do not consider human factors into
the game model. Our goal is to find different types of attacker based on their
personality so that we can incorporate those human factors to identify differ-
ent attack types and predict their actions to provide better defender strategy
against different types of attackers. We show that there are strategic differences
between different groups of attackers and the defender can benefit by model-
ing sub-rational attackers. In our initial analysis we have considered only the
quantal-response model, which is well established in the behavioral game theory
literature. While this model does capture at least some of the limited rationality
of the human players, it appears to be too simple with a single parameter to
allow the defender to effectively target different groups of attackers. In future
work we plan to investigate other models that allow for more fine-grained pre-
dictions such as SUQR. In addition, we plan to investigate ways that a defender
can safely exploit (uncertain) knowledge of the type of opponent he is facing
when using such behavioral models.
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12. Kiekintveld, C., Lisý, V., Ṕıbil, R.: Game-theoretic foundations for the strategic
use of honeypots in network security. In: Jajodia, S., Shakarian, P., Subrahma-
nian, V.S., Swarup, V., Wang, C. (eds.) Cyber Warfare. AIS, vol. 56, pp. 81–101.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14039-1 5

13. Koller, D., Megiddo, N., von Stengel, B.: Efficient computation of equilibria for
extensive two-person games. Games Econ. Behav. 14, 247–259 (1996)

14. Maples, J.L., Lamkin, J., Miller, J.D.: A test of two brief measures of the dark
triad: the dirty dozen and short dark triad. Psychol. Assess. 26(1), 326 (2014)

15. McKelvey, R.D., Palfrey, T.R.: Quantal response equilibria for extensive form
games. Exp. Econ. 1(1), 9–41 (1998)

16. Nash, J.: Non-cooperative games. Ann. Math., 286–295 (1951)
17. Nguyen, T.H., Yang, R., Azaria, A., Kraus, S., Tambe, M.: Analyzing the effec-

tiveness of adversary modeling in security games. In: AAAI (2013)
18. Nochenson, A., Grossklags, J., et al.: A behavioral investigation of the Flipit game.

In: Proceedings of the 12th Workshop on the Economics of Information Security
(WEIS) (2013)

19. Paulhus, D.L., Williams, K.M.: The dark triad of personality: narcissism, machi-
avellianism, and psychopathy. J. Res. Pers. 36(6), 556–563 (2002)
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