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Technologies Facilitating Smart Pedagogy

Panagiotis Karkazis, Helen C. Leligou, Panagiotis Trakadas, Nicholas Vretos, 
Stylianos Asteriadis, Petros Daras, and Penny Standen

Abstract  This chapter analyses the learning principles governing the learning the-
ories of blended learning, personalized learning, adaptive learning, collaborative 
assisted learning and game-based learning towards capturing requirements of these 
theories that can be successfully met and aspects that can be significantly facilitated 
by technological solutions. We also present a generic learning process structure that 
can model the above learning theories along with a prototype implementation. The 
end goal is to showcase the beneficial use of technological solutions in pedagogy.
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1 � Introduction

The results of pedagogy, i.e. of the principles and practices of teaching, highly 
depend on the adopted learning approaches. While pedagogical principles change at 
a very slow pace mainly due to human nature, the available technologies do change 
very fast providing different tools to pedagogists. However, teachers do not neces-
sarily follow technological evolution, and computer scientists are not necessarily 
aware of the benefits that specific developments could bring in education. For our 
society to make the most out of technology for pedagogy, pedagogists and technol-
ogy experts have to be brought together. For example, for the learning process to be 
effective, in the direction from the teachers to the learners, the learning materials 
should be attractive and tailored to the needs and characteristics of the target student 
group; in the opposite direction, accelerating the reception of feedback in terms of 
performance and affect state would help teachers adapt the learning process 
accordingly.

Different classifications of learning approaches are possible depending on the 
selected classification factors such as the structure/environment (formal vs non-
formal and informal education) and the dominant learning material means (e.g. 
electronic books/tools/games vs traditional hardcopy books). In all cases, the aim of 
technology providers is to assist the process and help teachers easily design peda-
gogical processes, quickly develop learning materials that are attractive to the tar-
geted audience and offer an unprecedented experience as learning is nowadays a 
lifelong activity, and thus the relevant market is huge and growing.

In this chapter, we briefly discuss different learning approaches and explore the 
point where technology could bring an added value which ends up realizing that 
detecting the affect state of the learner is an important step in the learning process 
irrespective of the learning approach. A flexible learning experience model that can 
accelerate curricula building, learning material reuse and non-linearity implementa-
tion is then described followed by its implementation in a prototype which has been 
developed in the framework of the H2020 MaTHiSiS project (MaTHiSiS, 2018). 
The capability to detect affect using face recognition is showcased, and finally an 
example application use case is presented.

2 � Technological Requirements of Diverse Learning Models

Despite the fact that there is no one strict definition of blended learning, the term is 
commonly used in order to describe teaching methodologies combining the tradi-
tional face-to-face learning activities with online learning experiences (Garrisson & 
Heather, 2004). In many cases, terms like hybrid, mixed or integrative are used to 
describe the same trend. Blended Learning is commonly defined as a combination 
of instruction from two historically separate models of teaching: the traditional 
face-to-face and the distributed learning systems. In the past, these two learning 
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models have used different materials and methods, and they have focused on the 
needs of different target groups. On one hand, face-to-face learning uses teacher-
centred environments based on synchronous interactions between persons. On the 
other hand, distributed computer-based systems emphasize a self-paced distant 
learning model operated in an asynchronous way. The evolution of technological 
innovations during the last decades had a huge impact on the possibilities for learn-
ing in a distributed environment. Nowadays, the available communication technolo-
gies allow us to have real-time synchronous distributed interactions similar to 
face-to-face environments. So, a blended learning system supports human interac-
tion providing tools, such as real-time virtual collaboration software, self-paced 
web-based courses, electronic performance support systems (EPSS) embedded 
within job-task environment and knowledge management systems, but also aims to 
make machines and computers behave in a more human way. Consequently, the 
design of such a hybrid teaching activity is a highly challenging process, and it can’t 
be simply addressed by just adding computers in a classroom. In fact, the most dif-
ficult part of the above process is that it requires reconsidering the way of thinking 
from the teacher’s and also from the student’s side. Blended learning approach is 
based on the idea that learning is not a onetime process but a continuous process.

Personalized learning refers to educational programs which intend to address 
special educational needs of specific student groups. In the traditional teaching 
model, within a classroom, the educator may provide to all students the same lec-
ture, the same material, textbooks, assignments, etc. with little variation from stu-
dent to student. On the contrary, personalized learning follows a student-centred 
approach, since the main goal is to make the individual learning needs the primary 
consideration during the learning process. So, the personalized learning approach 
aims to provide an optimal learning path to academic success of each student first 
by determining the learning needs, interests, prior background and aspirations of 
individual students and then by providing learning experiences that are customized 
for each student. Personalized learning models started from web-based tutoring 
applications providing a great quantity of learning material (Berghel 1997; Borchers, 
Herlocker, & Riedl, 1998). Next, in order to increase the efficiency of the learning 
process, personalized guidance mechanisms based on mechanisms for adaptive 
content navigation/presentation and also student’s intelligent analysis have been 
proposed (Chen, Lee, & Chen, 2005; Tang & Mccalla, 2003; Weber & Specht, 
1997). In our days, modern personalized systems consider the learner’s preferences 
and interests and investigate the learner’s behaviour in order to create a continu-
ously adapting learning environment based on the interaction with each one of the 
learners (Lee, 2001; Papanikolaou & Grigoriadou, 2002; Tang & Mccalla, 2003). In 
general, a personalized learning environment can be considered to be any platform 
in which the learner expresses his/her learning requests and knowledge background, 
and the material is presented in a way that takes advantage of the learner’s learning 
preferences (Steed, 2002).

Adaptive learning is based on the idea of designing learning methodologies to 
address student’s specific learning preferences and needs. The concept is that an 
individualized method of teaching will help students to understand better and learn 

Technologies Facilitating Smart Pedagogy



436

faster (Jones & Jo, 2004). The first development attempts of adaptive learning envi-
ronments were targeting either small groups of learners or a very limited area of 
interest. This is due to the fact that these earlier implementations provided a very 
basic adaptivity model. In our days, adaptive learning platforms have evolved rap-
idly using innovative computer technologies, such as data mining, artificial intelli-
gence, etc., in order to deliver customized material per student. The platform profiles 
each learner by monitoring his/her behaviour, tracking the level of his engagement 
and identifying his requirements, preferences and background in order to adapt the 
learning process to provide specific knowledge as and when it is required (Paramythis 
& Loidl-Reisinger, 2004). A modern adaptive learning platform is able not only to 
identify each learner’s current knowledge level but also determines the activities, 
the sequence and the medium in order to maximize student’s academic success. In 
fact, in a modern learning platform, both personalized and adaptive approach can be 
complementarily combined. The personalized-based techniques can be used in 
order to determine the main learning milestones that each individual learner needs 
to accomplish in order to succeed. But the “learning path” (content, activity types, 
sequence, etc.) that each learner is going to follow from milestone to milestone is 
different, and it can be modified dynamically during the learning process based on 
the adaptive learning techniques.

Collaborative learning assumes that the knowledge does not exist somewhere 
waiting to be discovered, but it is socially produced when a group of two or more 
parties interact with each other in the learning process. In general, the term collab-
orative learning refers to learning activities specially designed to be executed from 
pairs or small interactive groups. But, just assigning learners to groups does not 
guarantee that they will collaborate with each other (Brush, 1998; Soller, Lesgold, 
Linton, & Goodman, 1999). In this context, the instructor’s responsibility is first to 
design the tasks of the learning activities in a way that promotes the interaction in 
the group and second to become a member of a team searching for the knowledge 
rather than the authority which provides it. This learning approach helps the learn-
ers to achieve a deeper level of learning as well as to develop their critical way of 
thinking (Garrison, Anderson, & Archer, 2001; Johnson & Johnson, 1999). 
Additionally, this approach provides an environment in which group members can 
improve their social and communication skills and build positive attitudes towards 
co-members and the learning process (Johnson & Johnson, 1989). However, param-
eters like group size, group composition, learning preferences, etc. have been identi-
fied as factors that have an impact on the effectiveness of collaborative learning, and 
they are summarized under the term of “social interaction” (Hooper & Hannafin, 
1991). Many researchers believe that social interaction plays a very critical role in 
collaborative learning because any kind of collaboration is based on it (Johnson, 
Johnson, & Stanne, 1985). Researchers (Kreijns, Kirschner, & Jochems, 2003) dis-
cuss three approaches to stimulate the collaboration within groups: the cognitive 
approach of promoting “epistemic fluency”, the direct approach of structuring task-
specific learning activities and the conceptual approach of applying a set of condi-
tions to stimulate/stress collaboration. Further discrimination of collaborative 
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learning cases with respect to the competence level of each learner is also discussed 
in the next section.

In many cases the usage of technology (e.g. web-based learning materials) in the 
learning process is not enough to motivate students, especially the younger ones and 
those who had lived in the midst of technology all their lives. One approach to 
enhance their engagement is to introduce computer games in education (Norman, 
1993; Martin & Reigeluth, 1999). A game-based learning application creates a vir-
tual environment that looks and feels familiar, within which learners can make mis-
takes at no risk, practise through experimentation on things and learn to do things in 
the right way. This approach keeps learners highly engaged in practising through 
tasks that can be easily transferred from a virtual to real life. However, in order to 
maximize the effectiveness of an educational game-based platform, both dimen-
sions of educational goals and gameplay experience must be carefully balanced. In 
Rollings and Adams (2003), authors discussed several types of challenges that can 
be applied to educational games. Designers of educational games should also pay 
attention to the appearance of the game, an engaging storyline and the appropriate 
game balance in order to involve players (Killi, 2005). There is no doubt that people 
do learn from games; the open issue is how to design games in a way that people 
learn what they need to learn. To achieve this goal, we need generally effective 
techniques, processes and procedures for designing games that reliably achieve the 
intended instructional objectives (Tobias, Fletcher, & Wind, 2014).

3 � Affect Detection for Effective Learning

Research has shown that maintaining high levels of student engagement during the 
learning procedure can significantly determine successful learning  (Iovannone 
et  al., 2003)  (Carpenter et  al., 2015; Hargreaves, 2006). Effective personalized 
learning was shown to encourage participation and engagement, not only in the 
classroom but also in extracurricular clubs and work-related learning (Sebba, 
Brown, Steward, Galton, & James, 2007). As the tutor forms a better understanding 
of their pupils’ strengths and challenges, they are in a better position to consciously 
plan their scaffolding objectives and choose the interaction media while preserving 
the pupils’ interest and engagement (Dolan & Hall, 2001). Classroom-related affec-
tive states are linked to the students’ goal structure and their adoption of specific 
achievement goal orientations. The goal to learn and understand is associated with 
an increase in positive emotions like enjoyment of learning as well as a decrease in 
negative emotions like boredom. The relation between goals and affect, however, is 
a reciprocal one as proposed in Linnenbrink and Pintrich’s bidirectional model 
(Linnenbrink & Pintrich, 2002). In 2002, Linnenbrink and Pintrich described a 
model of affect in which performance is reciprocally related to the learner’s mood 
(Pekrun & Linnenbrink-Garcia, 2014). In this model, the learners’ personal goals 
are highly influenced by their perception of challenge. This perception in turn has a 
direct influence on their affect state. Based on the larger literature, positive moods 
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like learner’s interest and their active engagement are thought to support greater 
performance, while negative moods lead to performance degradation.

This relationship dictates the quality of learning where positive moods encour-
age a greater result and negative moods encourage less learning or learning aban-
donment. This relationship has also been described in more detail in the Mihaly 
Csikszentmihalyi theory of flow (Shernoff, Csikszentmihalyi, Schneider, & 
Shernoff, 2014), where skill and task challenge perception can launch someone in a 
variety of emotions. Importantly, it has been argued that not all emotions are rele-
vant to educational context or when the learner requires scaffolding intervention. It 
was Sidney D’Mello and Rosalind Picard (D’Mello, Picard, & Graesser, 2007) who 
conducted a study on the relevance of emotions to learning in an e-learning tool and 
found that they could quantify the most relevant emotions to skill acquisition as 
“frustration”, “boredom” and “flow”. Only later in 2013, a study (Basawapatna, 
Repenning, Koh, & Nickerson, 2013) combined learner skill, independent learning 
limit and scaffolding in a state change diagram (Fig. 1). This diagram depicts the 
relationship between perception of challenge, the affect state of the learner and their 
performance. Greater performance happens where the task difficulty is just slightly 
above the learner’s skill level, and it is where optimal learning occurs. Critically, 
this work provided the first state change diagram that shows the relationship between 
the learner’s affect state and their learning potential and the relationship it has with 
the perception of difficulty or challenge.

The learner’s performance or skill level is displayed as the X-axis, and the task 
challenge is displayed as the Y-axis. This diagram can be used to track the learner’s 
progress in a learning activity. In this way, the diagram can represent any permuta-
tions of level of skill or task difficulty. Ideally, the optimal learning path must take 
the learner through what Vygotsky named the “zone of proximal development” 
(called hereafter ZPD) (Chaiklin, 2003). This is the optimal level of arousal and 
where learning challenge perception is just slightly more difficult than the learner’s 

Fig. 1  Zones of proximal flow
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current skill level. In this state the affective state would have the learner in an 
engaged and interested state of mind. In turn, this promotes greater learning oppor-
tunities and an affective state or mood that encourages higher aims and goals. It is 
important to note that the optimal learning experience would try to avoid both bore-
dom (challenges that are too easy) and frustration (challenges that are too difficult) 
to maximize engagement.

3.1 � Adaptive Learning

To achieve optimal learning, a dynamic learning approach must be adopted which 
considers both the learner’s affect state and their performance – then in return adjust 
the learning material challenge to maintain the positive mood of the learner where 
the learner’s ambitions for goal achievement and subsequently the learner’s perfor-
mance are maximized. The system will then lower or raise the difficulty of the 
learning material challenge to a level where the learner’s affect state is engaged (in 
the ZPD) and their performance is always improving. The system would continu-
ously monitor both affect state and performance to maintain this delicate balance. 
The learner state of affect must, however, be continuously monitored to avoid pro-
jecting the challenge too high and making the user “frustrated” or too low which 
would make the learner “bored” (as visualized in Fig. 1). Conclusively, the outcome 
of this process is the new concept of materialization in the learner’s mind and learn-
ing which has been achieved, adding to the learner’s skill base and progressing them 
on the graph higher and higher and further to the right.

3.2 � Collaborative Learning

In educational research and developmental psychology, there has been a move away 
from seeing the learner as a lone individual to recognizing the importance of social 
interaction and seeing learning as a distributed process (Luckin, 2010). One of the 
theoretical underpinnings of MaTHiSiS is the sociocultural learning models of 
Vygotsky and his concept of the ZPD. Collaboration is key to the ZPD, and it is 
often interpreted as between a teacher or more experienced learner and a less expe-
rienced learner. However, such collaboration would also be possible between two 
learners of similar experience. Authors (Ghou, Chan, & Lin, 2003) describe this as 
the companion to an educational agent. Luckin (2010) goes on to explain that par-
ticipants develop a shared understanding through the use of mediating tools. 
According to (Damon & Phelps, 1989), three types of peer-based instruction need 
to be distinguished: peer tutoring, cooperative learning and peer collaboration. A 
somewhat different categorization is described by Boyle, Arnedillo-Sanchez, and 
Zahid (2015) who designed a multi-user collaborative game using gestural interac-
tion to provide autistic children with a means to build, practise and consolidate their 
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joint attention skills. The authors describe three different collaboration patterns: 
passive sharing pattern, where users engage with their own objects; active sharing 
pattern, where users begin to select from shared resources; and active sharing and 
joint performance pattern where users must build on their turn-taking skills to assist 
each other. Similarly, collaborative learner approaches have been the focus of atten-
tion in many works, as well. Grasha-Reichmann has enumerated a learner’s role in 
a collaborative learning experience (Oray, 2010; Ford, Robinson, & Wise, 2016) as 
“avoidant”, “participant”, “competitive”, “collaborative”, “dependent” and “inde-
pendent”. These roles can be recognized and used to coordinate compatible learning 
groups or learning pairs that best nurture successful peer-to-peer scaffolding 
opportunities.

However, successful cooperation is not always guaranteed. Although the first 
consideration here is that learners will automatically become more involved, 
thoughtful, tolerant or responsible when working with others, there is considerable 
and disturbing evidence that students often do not behave prosocially. If not handled 
correctly, dysfunctional interactions can occur between learners such that low 
achievers can feel stigmatized and differences in status can be exacerbated 
(Beaumont, 1999; Blumenfeld, Marx, Soloway, & Krajcik, 1996; O’Connor & 
Jenkins, 1996). A second consideration is that giving help is not straightforward and 
conventionally is the responsibility of the teacher. It may not come easily to a peer. 
Collaborative learning involves both giving and seeking help, and it is believed that 
help-giving can benefit not only those receiving it but also those giving it. However, 
help givers can feel frustrated. They may not know how to help effectively and may 
require special training to learn how to elaborate their thinking such that it benefits 
their partner. Their partner may not be aware that they need help nor seek it when 
needed because they believe that needing help indicates incompetence. Finally, the 
success of collaboration depends on the nature of the task and what the learners 
think the task is about. Learners who believe that the task is to develop mastery are 
more likely to engage in meaningful collaboration than those who have been led to 
believe that the goal of the task was performance (Luckin, 2010).

4 � The Learning Graph Model

For the learning experience to automatically adapt to the personal preferences and 
skills of the learner as well as to their temporal affect state, a learning experience 
model capable of deciding the learning material (exercise or task) based on the 
learning goals, the context and the personal characteristics and temporal state of the 
learner has to be defined and adopted. Then, this learning model (decision mecha-
nism) has to be implemented together with the subcomponents that allow for iden-
tifying the affect state, the personal characteristics, the performance and the 
context.

With respect to the learning experience modelling, a novel framework is pre-
sented in Tsastou, Vretos, and Daras (2017). It has been developed, comprising of 
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(a) a graph-based representation of the learning objectives (i.e. what to learn) and 
(b) a knowledge-based schema of the learning activities (i.e. what to do to learn). 
The graph-based modelling scheme provides educators with the means and method 
to define reusable, self-sustained and interoperable learning objectives, discretised 
into smaller learning goals, which represent competences, skills or knowledge that 
they aim for their learners to acquire. Goals are interconnected in directed learning 
graphs, with differences in the degree to which they contribute (edge weights). 
Complex goals comprise the central-most nodes, and atomic goals comprise leaf 
nodes that contribute to one or more complex goals. These atoms are competencies 
that cannot be further reduced to more primitive notions.

Generic learning activities are attached to the atomic goals, while different mate-
rializations for each activity can be defined based on contextual conditions (device 
used, etc.). A learning actions ontology has been engineered and presented in the 
same work, based on educators’ and psychologists’ feedback, to represent under a 
holistic schema such abstract activities, but also parameters that affect their materi-
alization in the real world, such as the type of learner, the types of devices used 
during a learning session, the types of digital content, etc.

Based on this model, personalization and adaptation mechanisms can be sum-
marized as follows in our work: Firstly, the personalization method allows the pro-
posed platform to be initialized in order to maximize the knowledge acquisition of 
the learners. To that end, performance registered in previous interactions with the 
learning platform is utilized as the main parameter to establish the appropriate 
learning content to be deployed along with context information. “Context informa-
tion” describes whether the learner is in a classroom or at home or on a train, the 
device available at each environment to select the appropriate learning material to 
deliver for interacting with and other similar parameters. This process enables the 
selection of the learning content (and the level of difficulty associated with it) to be 
used as the first interaction with the learning platform. As a second step, MaTHiSiS 
focuses its effort on the achievement of optimal affective state of the learners in 
order to maximize the knowledge acquisition. To that end, the affective state inferred 
by the platform (through sensorial components (SC) information as well as interac-
tion parameters, e.g. score, time needed to accomplish a task) is utilized. By apply-
ing different methods, the values of the affective state, represented by using the 
theory of flow model, are taken into account for the proper update of the corre-
sponding competences. This update occurs several times during a regular learning 
experience, adapting the content of the platform (in terms of level of difficulty) 
according to the affective state registered in real time.

For example, the learning graph may consist of a single learning goal, namely, 
“understanding numbers”, which can be achieved through three distinct learning 
atoms: “counting”, “association of numbers to quantities” and “distinguish greater 
than from less than”, with different participation to the central goal and with “asso-
ciation of number to quantities” bearing the highest importance to the achievement 
of the goal. This means that mustering this atom will weigh more heavily towards 
the achievement of the ultimate objective, i.e. understanding numbers, than the 
achievement of counting, which will fulfil its purpose to this goal in a more 
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suboptimal achievement state. Each skill denoted through a smart learning atom can 
be trained by one or more learning actions. The adaptation process will always seek 
to train the atom with the lowest achievement score out of all the atoms in the graph. 
For instance, considering the smart learning atom “distinguish greater than from 
less than” having the lowest weight out of all three in the example above, the system 
will proceed to train this skill in the next iteration of the learning process, by actuat-
ing one of the learning actions attached to it. In this case, “distinguish greater than 
from less than” can be achieved through a single activity, i.e. exercising with the 
generic learning action constituting a game (playing action) where one puts num-
bers in order. This action can be manifested in many ways and, in the particular 
example, through two related learning action materializations, each of which can be 
suitable for execution either through the same or different applications (materials) 
and through the same or different devices (e.g. smartphones, tablets, robots, interac-
tive whiteboards). The system will proceed to present the appropriate materializa-
tion for this learning action, that being the materialization that matches the learner’s 
context at the moment. Therefore, if the user is training on a mobile device, the 
system will launch the corresponding mobile app, consisting of a game where the 
learner is asked to drag a series of numbers into slots, in ascending order. A level of 
difficulty for the materialization is also considered, depending on the competence 
level of the learner in the skill that they are training at the moment, discretized in 
three levels (easy, medium and hard). The lower the current score, the easier the 
materialization level. In the case of this example, given a weight of, for example, 0.5 
for the “distinguish greater than from less than”, the chosen level of difficulty would 
be medium.

For MaTHiSiS to construct a robust collaboration strategy, a new method of 
adaptation is followed, to maximize the learning experience. In contrast to the 
“solo” learning experience, the method must consider not only the profile of both 
learners involved in the activity such as initial level of knowledge about the current 
learning activity but also their affective state and the performance from previous 
interactions. This strategy will adapt the level of difficulty of specific social learning 
actions to maintain both learners in the proper affective state and improve the learn-
ing experience. There are obviously several challenges: Given the lack of social 
skills in learners with severe learning disabilities and autistic characteristics in this 
project, true collaboration in the sense used by Kerawalla, Pearce, Yuill, Luckin, and 
Harris (2008) may not be possible. The ambition may be limited to encouraging any 
prosocial behaviour. Scaffolding is essential. Following the micro-script approach 
of Dillenbourg and Hong (2008) is one of the most appropriate because MaTHiSiS 
provides specific options for collaborative actions.

In summary, the collaborative (synchronous) experience has been implemented 
as follows, following the pedagogical directives and challenges described above:

	1.	 The learners must clearly perceive that they are collaborating with other peers in 
order to reach positive objectives.

	2.	 They must be able to help or to be helped by other peers.
	3.	 The amount of help received and/or provided must be quantified.
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A prototype implementation of the previously described system that exploits and 
combines the latest information and communication technologies is illustrated in 
the following figure (Fig. 2). It consists of two interacting sets of components: (a) a 
set implemented in user devices which we call platform agents (PA) and (b) another 
set residing in a cloud infrastructure which we call cloud-based learner space (CLS). 
The users (tutors, learners, caregivers) interact with the PAs which can be desktop/
laptop computers, mobile devices, interactive whiteboards or robots, thus providing 
a broad application potential of the proposed system and warranting efficient ubiq-
uitous learning across a variety of educational contexts. In any given learning envi-
ronment, a subset of these PAs is considered to exist. Through the platform agents, 
the users have access to (a) authoring tools to create new learning graphs, smart 
learning atoms and learning action materializations, (b) a platform configuration 
component to define the users and devices that will be involved in each learning 
experience, (c) a learning experience execution environment and of course to (d) a 
simple user interface for account creation and personal detail insertion.

The CLS is the core framework of the system executing processes for data acqui-
sition and analysis (in the form of specialized learning models and educational 
rules) for predictive modelling and simulation (i.e. feedback analysis and response). 
These processes are described declaratively and stored in a process repository which 
executes educational rules and takes higher-level decisions that are streamed to the 
platform agents. The CLS consists of (a) the Experience Engine that materializes 
the learning experience by executing the learning graph and sending the relevant 
information and learning actions to connected agents and actuators. It is a 

Fig. 2  The architecture of MaTHiSiS with its core technological elements
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graph-based interactive storytelling engine that can generate transmedia interactive 
content, taking multiple forms (e.g. 3D, augmented reality, HTML based), accord-
ing to the graph-based structure of the scenario. This generated content is then sent 
to the relevant platform agents that will execute/render it: (b) the Learning Graph 
Engine that is in charge of adapting the executed learning graph and learner’s profile 
according to (i) her/his behaviour and interactions with the platform agents and (ii) 
the Decision Support System (DSS) recommendations. The Learning Graph Engine 
supervises the Experience Engine by adapting the executed learning graph to both 
the learner’s behaviour and profile; and (c) the DSS that provides and collects learn-
ing analytics as well as any high-level information to/from the Learning Graph 
Engine to personalize the learning experience. The DSS controls the synchronous 
and asynchronous collaboration between different components. The Learner’s 
Profile Repositories are required to store the collected data and the learning graphs 
for the user profiles. The PA include three major subparts: (1) interface and on-
board modules, (2) interunit collaboration modules enabling affect detection and 
collaborative learning and (3) PA, CLS information and action communication. The 
so-called SC extracts information from the PA or static sensors. The SC extracts 
information concerning the learner cognitive and/or physical state to assist the 
learning analytics module within the CLS.

5 � Affect Detection in Real-Life Settings

The sensorial component on the PAs and a subcomponent of the Learning Graph 
Engine component, in the back end, are the basis of the recognition of the learners’ 
affect states. Their goal is to gather (physical) behavioural cues of the learner and 
apply machine learning techniques in order to interpret them into comprehensive 
affective cues that tell the story of the learner’s uptake of the learning objective(s). 
This component can implement state-of-the-art technologies from various fields, 
spanning from computer vision to artificial intelligence, to extract and represent 
affect-related features stemming from the learner’s face, gaze, body posture, speech 
and inertia sensors embedded into devices she/he uses. All sensor readings are cap-
tured from the user’s interaction with devices. If the affect state is shown to tend to 
boredom, this is signalled to the logic component, and the challenge level is 
increased. In the case of frustration detection, the challenge is relaxed, so as to keep 
the learner in the flow state. In the MaTHiSiS system outlined above, a variety of 
algorithms for affect detection has been implemented and tested per modality. All 
adopted algorithms utilize machine learning techniques. Thus, appropriate training 
of the algorithms needs to take place prior to the normal operation of the system. 
Therefore, we opted for collecting data in the framework of our activities in schools 
engaging students without and with disabilities. In such cases, the teachers were 
asked to annotate the captured data with the affect state they believed that the stu-
dent experienced. At the following, we shall refer to students without disabilities as 
“mainstream” students. The availability of sensing devices changes per real-life 
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setting: when the user interacts with a mobile device, it is the gyroscope and inertia 
sensors that are used to detect the affect state; when the user interacts with an inter-
active whiteboard or a laptop or a robot, a camera is usually available and assists in 
affect detection through facial expression or gaze estimation.

The facial expressions are often considered as the strongest indicator of human 
emotions. They may expose people’s feelings and mood state, from simple sponta-
neous emotions like happiness and disgust to time-dependent affective expressions 
states like anxiety, boredom and engagement during a current task and/or a situa-
tion. This allows the person’s interaction counterpart to understand their affective 
state and adjust their behaviour according to the person’s underlying feelings. Facial 
images are one of the data cues that will be captured through the sensorial compo-
nent by means of different types of cameras across devices. Due to its high impact, 
facial images will play a central role along with other data channels to understand 
learner’s affective states.

For the extraction of facial expressions, a graph-based method (D4.2 MaTHiSiS, 
2017) has been adopted. More specifically, the face is represented as a graph, which 
is formed by points extracted from specific areas. The variation of muscle move-
ments on the face during the expression of different emotions leads to different 
positions of points on the image and may generate different graphs. The input of the 
algorithm is an image. Then, facial landmarks are detected using the Supervised 
Descent Method (Xiong & De la Torre, 2013). For instance, such landmarks may be 
the nose, the eyes, the brows, the mouth, etc. These points are tracked, so that the 
movement of the facial muscles is followed over time. Assuming that all landmarks 
are connected, they may be considered as a graph. We then make the hypothesis that 
the density of the graph differs in each facial expression. More specifically, we use 
spectral graph analysis, through which a feature vector is extracted. This vector 
depicts areas of density in the graph by using the graph’s Laplacian matrix and solv-
ing the eigendecomposition problem for the eigenvectors corresponding to the first 
and second greatest eigenvalues which capture information regarding different den-
sity areas of the initial graph. Such areas in the specific problem are those of the 
eyes, mouth and nose.

More specifically, the Laplacian matrix L of a graph G is defined as

	 L D A= – , 	 (1)

with D denoting the degree matrix and A the adjacency matrix of G. A(i, j) is com-
puted as

 
A ,

( )
i j e ,( ) = −1 (2)

x x

d

i j− −

 

where |•| denotes the Euclidean distance, xi, xj any two given landmark points and d 
a constant depicting the variance of the overall distance between the facial land-
marks. In order to normalize between different image scales and sizes (i.e. for 

Technologies Facilitating Smart Pedagogy



446

Table 1  Experimental results 
of facial analysis Emotion

Accuracy 
(%)

Anger 100.00
Disgust 86.37
Fear 60.00
Happiness 100.00
Sadness 75.00
Surprise 100.00

recognition “in the wild”), the symmetric Laplacian matrix is adopted as it is con-
sidered to be a more robust option:

	 L D LDsym = − −1 2 1 2/ /
	 (3)

Then, its eigendecomposition follows:

	 L v vi i i
sym = λ 	 (4)

For the classification, support vector machines (SVM) are used. The initial evalua-
tion of the algorithm is done using images from the well-known public available 
Cohn-Kanade (CK) database (Lucey et al., 2010) leading to very satisfying results. 
Although this dataset involves expressions of the six basic Ekmanian emotions 
(Ekman & Friesen, 1978) which are, namely, anger, disgust, fear, happiness, sad-
ness and surprise, a correlation of the aforementioned emotions with affective states 
was retrieved in Russell’s Core Affect Framework (Baker, D’Mello, Rodrigo, & 
Graesser, 2010). A direct mapping of the spontaneous emotions to affect states con-
veys this correlation. Using this mapping, sadness corresponds to boredom, happi-
ness to engagement and surprise and anger and fear to frustration. The performance 
of this algorithm using the CK dataset to predict affective stated reached a classifi-
cation score that rounds up close to 100% accuracy. Results per emotion are depicted 
in Table 1.

6 � Example Application in Real-Life Use Cases

The approach presented above was tested in real-life cases across Europe. In this 
section we present the case where the approach was applied to a high-school class 
and a course of computer science where the students were challenged to learn to use 
Publisher software. In this case a diverse body of students with a range of cognitive 
abilities and challenges was addressed. Inclusive mainstream education requires 
teachers to be competent in addressing particular challenges that some students 
might face and, at the same time, encourages the growth of already well-performing 
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students. However, of course, some children are disrupted and can discharge this 
discontent with uneducated attitudes. Some of them are involved in other cultural or 
artistic activities like playing music, drawing, etc. and can show great aptitude to 
subjects such as art design and theatre which allow them to express their feelings. 
Through this, we realize that in order for them to flourish in their experiences, they 
must not be ignored but valued in order to meet their full potential. The main issue 
is they often lack a stable and continuous relation with their parents who are usually 
busy at work and miss an everyday reference. For this reason, they can feel that it is 
difficult to interact with their peers or adults, often hiding themselves behind video 
games or smartphones.

The challenge in this case is to recognize if their learning abilities are improving 
or if it is time to consider a new method. As these technologies are familiar to the 
3–14-year-old age group, they are drawn to them. However, there is also the risk of 
boredom if the system does not compare well to the games with which they are 
familiar or if the games are not fast or engaging enough compared to familiar apps. 
Another purpose addressed in the trials was to make the children collaborate with 
special needs children to achieve the learning goal by using the same, or similar, 
learning materials and playing at the same time or collaborating with their peers.

In this scenario, it is the role of parent or caregiver to connect to the platform and 
start a learning experience for the learner, to select complementary resources from 
the provided list of resources and finally (optionally) to inspect the visualized per-
formance of the learner. Two different types of learners are supported by the plat-
form: (a) the supervised learner who will use the platform under supervision either 
because they will use the platform within the school educational path or they have 
special learning needs or they are minors without special needs and (b) independent 
learner for those who are advanced learners even when they use the platform within 
the school or educational path.

Once in action (e.g. in classroom), the tutor selects the graph (associated with a 
specific learning goal) and also defines the learners in the classroom and the devices 
each of them will use. The system automatically selects the learning action materi-
alization that will be offered to each learner and adapts its difficulty level in real 
time depending on the affect state detected. Students in the same classroom may 
exercise with different learning action materializations. An individual learner may 
act both as a tutor (selecting the learning goal and the device they will interact with) 
and as a learner (interacting with the learning action materializations). Caregivers 
can assist the people they care for by accessing the system through any device avail-
able and prompting them to interact with the learning materials available for them. 
At school, two laptops with webcams and an interactive (web-enabled) whiteboard 
were available, all centrally maintained. Students were learning to use Publisher. 
Learning graphs were created prior to the lesson for the quiz section of each lesson. 
Ethics permission was gained from each student’s parents prior to the lessons. One 
of the learning goals was “know about digital copyright”, the Smart Learning Atom 
in the learning graph terminology was “digital copyright”, and the “learning action” 
was “facts about digital copyright”. The different learning materials that were pre-
pared for the trials included three sets of multiple choice questions (with each set 
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corresponding to different difficulty levels) and three sets of single-question quiz. 
For the students that interacted with the learning materials either through the laptop 
or the interactive whiteboard, the performance and the affect state were monitored 
and used to change the difficulty level whenever boredom or frustration was 
detected. When the students are at home, they can continue the learning experience 
through their tablet assuming a suitable learning material is available in the system. 
In any case, the system will decide which learning material and difficulty level to 
provide to the learner based on the personal competence registered in the system.

After interviews with the teachers (D8.8 MaTHiSis, 2017), the overall approach 
and solution were found promising, even though the tools to build the learning 
materials were not ready and they had to deliver the learning content to the technical 
team to produce them. The vision is for the system to support blended, adaptive and 
collaborative learning.

7 � Conclusions

Pedagogy can become significantly smarter exploiting the technological evolution 
in multiple aspects of different values to the different user roles. It enables learning 
ubiquity in the sense that it can happen at school/university, at home or even on a 
train due to the multiplicity of agents that can be used for the learning material to 
reach us which expands from book to smartphones, tablets, robots, interactive 
whiteboards and any Internet-connected device. It even enables the creation of 
experiences through virtual or mixed reality to increase learning efficiency, so long 
as pedagogists advise developers on the specific design specifications for the aug-
mented reality/virtual reality applications. It enables easy and fast development 
(using computer-based tools for easy development of materials from presentation to 
quizzes and games) and reuse of learning materials through learning management 
systems. It supports fast feedback acquisitions both performance and affect related 
based on data analytics components. It enables fast and easy learning experience 
personalization (taking into account the learner profile and the material personaliza-
tion rules defined by the tutors) and adaptation to the real-time context (e.g. avail-
ability of devices) and affect status of the learner (employing sensors and artificial 
intelligence logic). For society at large to enjoy all these benefits, scientists and 
pedagogy and technology experts have to work closely together to establish mutual 
understanding and codesign learning tools whether they be systems, materials or 
applications.
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