
Global Snapshot File Tracker

Carlos E. Gómez1,2(B) , Jaime Chavarriaga1 , David C. Bonilla1 ,
and Harold E. Castro1

1 Universidad de Los Andes, Bogotá, Colombia
{ce.gomez10,ja.chavarriaga908,dc.bonilla10,hcastro}@uniandes.edu.co

2 Universidad del Quind́ıo, Armenia, Colombia

Abstract. Desktop clouds offer cloud computing services on desktops,
simultaneously with users in interactive sessions. Users can affect the
virtual machines execution for several reasons. For example, a user can
turn-off or reboot the physical machine, or a user can execute demand-
ing applications. A global snapshot of a distributed system is a fault
tolerance strategy. In a previous work, we developed the Desktop Cloud
Global Snapshot, which obtains the state of the whole system. In case of
failure, it is possible to go back to the stored state and resume execution
from that point. To recover the system from a global snapshot, we can
use the same physical machines or others, if necessary. For this solution
it is essential to have a file management system. As global snapshots are
created, the number of files that must be handled grows making their
management more complex. This article presents the Global Snapshot
File Tracker, a software tool that is responsible for maintaining the record
of the files that form the state of each virtual machine from its snapshots,
and determining what files are required to replicate the state of the vir-
tual machine if it is necessary to resume its execution on another host.
The paper includes the background, the problem statement, the proposed
solution, the developed solution, and the functionality and evaluation.

Keywords: Global snapshot · Checkpointing · Virtualbox snapshot
Dependability · Reliability · Fault tolerance

1 Introduction

Desktop clouds such as CernVM [5] and UnaCloud [18] run virtual machines
on desktop computers distributed along the private campuses. Using these plat-
forms, researchers may execute scientific workflows where computations are per-
formed on virtual machines (VMs) that run at the same time that programs
started by the desktop users. Although these platforms take advantage of the
idle resources in these desktops, they are susceptible to service failures derived
from the presence of the users. Desktop users, for example, can turn-off or dis-
connect the computers. Therefore, these platform may result not reliable for
scientists trying to perform large processing tasks.

c© Springer Nature Switzerland AG 2018
H. Florez et al. (Eds.): ICAI 2018, CCIS 942, pp. 90–104, 2018.
https://doi.org/10.1007/978-3-030-01535-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01535-0_7&domain=pdf
http://orcid.org/0000-0002-5202-1167
http://orcid.org/0000-0002-8372-667X
http://orcid.org/0000-0002-3834-4736
http://orcid.org/0000-0002-7586-9419


Global Snapshot File Tracker 91

Recent researchers have been focused on supporting fault-tolerance strate-
gies in these platforms. Alwabel et al. [3] proposed resource allocation algorithms
that consider node failures, Blomer et al. [4] proposed a Global Filesystem for
software and data delivery and Gómez et al. [8] have proposed global snap-
shots and virtual machine migrations as strategies for fault tolerance in desktop
clouds. These solutions require a distributed tracking of the states of the virtual
machines and of their snapshots. Regretfully, hypervisor software such as Oracle
VirtualBox [16] do not support a distributed management of these information.

This paper introduces Global Snapshot File Tracker (GSFT), our tool to
manage the snapshot files of a set of VirtualBox machines. Basically, our solu-
tion is able to collect information from the virtual machine control files in each
desktop, including both machine metadata (e.g., their name, their unique UUID
identifier, and the machine configuration) as snapshot definitions. It analyzes
and processes the .vbox definition file in order to gather in a single data struc-
ture the names of all the files that comprise the state of a VM, that is the .vdi
virtual disk files and .sav files with the state of the memory at the snapshot time.
The GSFT can be used, for instance, to create a .csv file with that information,
to facilitate the execution of basic management operations on the snapshot files.

Rest of this paper is organized as follows: First, Sect. 2 includes a background
for our work and Sect. 3 describes the problem statement and the research ques-
tions for this paper. Then, Sect. 4 explains our proposed solution, including the
overview of the VirtualBox snapshots, the answers of the research questions
and the motivation for the Global Snapshot File Tracker. After that. Section 5
describes the implementation and Sect. 6 reports the evaluation of our applica-
tion. Finally, Sect. 7 concludes the paper and suggest the future work.

2 Background

Our solution aims to support desktop clouds that use VirtualBox to perform
computations in the desktop computers by tracking the snapshots produced in
these machines. This section introduced some concepts relevant to our work,
namely, Desktop Clouds, Checkpointing and Global Snapshot Algorithms.

2.1 Desktop Clouds

Desktop Cloud (DC) is a form of cloud computing based on desktop comput-
ers [2,17]. It takes advantage of the idle computational resources on these desk-
tops to manage the execution of fully functional VMs with their operating system
and applications at the same time that the applications of users of these com-
puters. DCs are designed to run the VMs without the users perceiving a decrease
in computer performance or compromising their security [17].

Figure 1 shows a diagram of a DC. It is possible to observe that each desktop
has a capacity occupied by the users and an idle capacity that can be used for
the execution of VMs, which can be grouped into clusters forming the desktop
cloud.



92 C. E. Gómez et al.

Fig. 1. Overview of a desktop cloud

Although, in a typical campus, the aggregate capacity of the idle resources
in the desktops is significant [9], the use of not specialized and dedicated data
centers turns desktop clouds more susceptible to failure in the service. Moreover,
unlike cloud computing service providers, user presence using physical machines
establishes different challenges to overcome: Users of desktops have priority in the
use of resources, so their applications can affect the execution of the VMs running
on the hosts. In addition, they can even shutdown or reboot the computers
interrupting the execution of the VMs. As a consequence, desktop clouds are
subject to service failures that do not exist in other platforms.

Recently, many authors have proposed strategies to implement fault-
tolerance in desktop clouds: For instance, Alwabel et al. [3] proposed resource
allocation algorithms that consider node failures, Blomer et al. [4] proposed a
Global Filesystem for software and data delivery and Gómez et al. [8] have
proposed global snapshots and virtual machine migrations as strategies for fault
tolerance in desktop clouds. These solutions require mechanisms based on check-
points or snapshots, to store the state of a VM, to restore its execution in the
same or another desktop nodes.

2.2 Checkpointing

Checkpointing saves the state (a snapshot) of a system to resume it from that
state when a fail occurs without having to start again from the very beginning.
Naturally, if the system is resumed from a checkpoint, nothing performed on the
system after the checkpoint was taken is included, so those modifications will
be lost. Checkpointing can be full or incremental [1]. The first is the procedure
through which every time it is invoked, it saves the complete state of the system.
The second saves the system state from modifications after the last checkpoint
instead of saving the entire checkpoint. So, it is necessary to keep the files of all
previous checkpoints to be possible to resume the execution.

Virtualization-level checkpointing is a functionality (called snapshot) pro-
vided by all hypervisors, in which the entire state of a VM is stored in a storage



Global Snapshot File Tracker 93

Fig. 2. Sample snapshot tree

medium to form a checkpoint with the possibility of using it later at any time
to resume its execution from that state. A VM checkpoint stores the state of
all disks attached to the VM, the memory state (if the VM is running when
the snapshot is taken), and the metadata needed to configure the VM at the
moment of resuming its execution [14].

Hypervisors such as Oracle VirtualBox, VMware Workstation and Microsoft
HyperV stores each checkpoint in a snapshot tree. In these trees, there is a root
snapshot with the initial state of the virtual. The other snapshots are stored
with a relationship to their parent snapshot. Each snapshot may be the parent
(the base) of one or more other snapshots. The Fig. 2 shows a sample snapshot
tree. There root snapshot s1 has the state when the OS was installed. The
s2 snapshot, based on the s1, has the state when a database was installed.
Other s3, s4 and s5 snapshots are based on s2 and represents the state when
different applications was installed. Finally, s6 keeps the state when one of the
applications was reconfigured. When a virtual machine is running, its current
state must be based on any of the snapshots in the tree.

Each hypervisor keeps track of snapshots and their dependencies in their
own way. For example, Oracle VirtualBox stores the information corresponding
to each snapshot in different sections of the .vbox file while the VMware Work-
Station products do it in separate files. Although these hypervisors such can store
snapshots of a single VM, they cannot save the state of a system distributed on
multiple VMs.

2.3 Global Snapshot Algorithms

A Global snapshot is a copy of the state of a distributed system. In desktop
clouds, it means a copy of the states of a set of VMs running on different desktops
and of the communications among these machines. Creating one of these global
snapshots is not a trivial task because it is not possible to assure that all the local
snapshots are recorded at the same time [11] and the network communications
not necessarily go through a central node [8]. Therefore, to obtain a global state,
some coordination among the participants is required [12].



94 C. E. Gómez et al.

There are many algorithms and techniques used to implement it. For instance,
Chandy and Lamport [6] proposed an algorithm to determining global states of
distributed systems with FIFO communication channels. Afterward [12], based
on Chandy and Lamport algorithm, presented his algorithm for distributed snap-
shots with non-FIFO channels that, later, Kangarlou et al. [10] simplified it and
implemented it using VMs. However, that solution requires customized virtual
switches that are not common in desktop clouds settings. More recently, Gómez
et al. [8] proposed a global snapshot protocol for distributed systems running on
VMs without virtual switches that can be applied to desktops clouds.

Both mentioned solutions, from Kangarlou et al. [10] and Gómez et al. [8],
rely on VM snapshots. Any implementation of these solutions in desktop clouds
requires to keep a track of the VM snapshots in different physical machines.

3 Problem Statement

In a distributed system, the global state (GS) comprises the set of the local
states (LS) of each node or process in the system, along with the channel states
(CS) of the communications among these nodes [6].

Global Snapshot. In a distributed system with n processes, the global
snapshot GS comprises the local state LS of each process and the channel
state CS of each pair of processes: GS = 〈⋃n

i=1 LSi,
⋃n

i,j=1 CSi,j〉

In a desktop cloud, the local states (LS) may be obtained by requesting to
the hypervisor take an snapshot.

3.1 Local State (snapshot) in VirtualBox

As mentioned in the Sect. 2.2, the state of a VM at any given time is represented
as a set of files. In VirtualBox, two files are used to create a VM with a single
disk: a .vbox file with the configuration of the VM and a .vdi file with the virtual
hard disk. An additional .vdi file is required for each additional disk Each time
a snapshot of a VM is taken, the files are created: additional .vdi files are used
to represent incremental changes on the disks and a .sav file is used to store the
state of the machine. These files are stored with filenames that do not correspond
to the name given to the snapshots.

As an example, Fig. 3, shows the files for a VM when six snapshots. It is not
possible to determine which .vdi or .sav file correspond to each snapshot using
only the snapshots. In addition the filenames cannot be used to determine the
parent of each snapshot neither. Considering that we are interested on deter-
mining the minimal set of files that correspond to an specific snapshot, the file
structure do not give use enough information.



Global Snapshot File Tracker 95

Fig. 3. Files of a virtual machine after six snapshots

3.2 Research Questions

To create tools that support global snapshots on desktop clouds using Virtual-
Box, we posed the following research questions:

RQ1 How to determine and classify the files that make up a virtual machine
when multiple snapshots have been obtained?

RQ2 Of all the files that make up a virtual machine when multiple snapshots
have been obtained, which of them are needed to resume the execution of
the virtual machine from a specific snapshot?

4 Proposed Solution

The analysis of the .vbox file is essential to answer the research questions. This
file stores, not only the hardware specifications of the VM, but also the infor-
mation corresponding to all its snapshots. This section describes the files that
are created by VirtualBox when the snapshots are taken and shows the answer
to our research questions: how to classify the files of a virtual machine and how
to determine the files regarding an specific snapshot.

4.1 Overview of the VirtualBox Snapshots

Oracle VirtualBox offers functionality to obtain snapshots. Figure 4 shows an
example of the VM file structure. When creating a VM with a single hard disk
(called vm in this case), this is represented by two files, which are stored in the



96 C. E. Gómez et al.

Fig. 4. Evolution of the virtual machine file structure as snapshots are taken

main folder: (1) a VM configuration file, a vm.vbox file, and (2) a virtual disk
file, vm.vdi, as shown in Fig. 4(a).

Figure 4(b) shows what happens when a first snapshot is created. This snap-
shot consists of the vm.vdi file (the initial state of the disk) and a 2018-08-
15T23-17-22-033674200Z.sav file with the memory state. After the snapshot
is taken, the disk file is not modified anymore. When the VM runs, an addi-
tional file is created to store any change to the hard disk. In our example, the
{4ebc5f10-3100-4cf2-94db-3c786a0a9570}.vdi keeps the state of the disk. Each
.vdi file stores the changes regarding the disk of their parent snapshot. Each of
these files has information of its parent.

Figure 4(c) shows the files that represent the state of a VM after having
obtained the second snapshot. Note that it is not easy to identify which are the
two files (.vdi and .sav) correspond to each snapshot. In addition, in order to
use or move one of the snapshots, it is necessary to determine not only the .vdi
file of that snapshot but also all their parent disk files too. It is not possible to
determine the files required to restore an snapshot by using only the filenames.

4.2 RQ1: How to Determine and Classify the Files that Make
up a Virtual Machine When Multiple Snapshots Have Been
Obtained?

As shown in Figs. 3 and 4, it is not possible to determine which files belong to
each snapshot using the filenames. That information can be gathered from the
.vbox file of the VM. This is an XML file conforming to a XSD schema definition
provided by Oracle [15]. There are 112 different elements (tags) that may be
used in that XML.

Listing 1 shows excerpts of the .vbox file for the VM described in Fig. 3. The
.vbox file root is a VirtualBox tag. The first child element is a Machine tag that
describes the virtual machine and shows the files with its current state. Among
the descendent elements, there is a HardDisks tag that describes all the .vdi
files. Each HardDisk can be a children of another HardDisk. That hierarchy of
HardDisk elements shows, for each disk, which other disk is the parent.



Global Snapshot File Tracker 97

Listing 1. Excerpts of the sample vdi.box file

<?xml version=”1.0”?>
<VirtualBox xmlns=”http://www.virtualbox.org/” version=”1.14−windows”>
<Machine uuid=”{0909f6e6−5527−4782−9f34−ce3e6988ebfd}” name=”vm”

OSType=”Debian 64” currentSnapshot=”{1020e46e−14bf−4a86−8ea4−d2d093224d3d}”
snapshotFolder=”Snapshots”
lastStateChange=”2018−08−15T23:32:02Z”>
<MediaRegistry>
<HardDisks>
<HardDisk uuid=”{4a0e0fa2−1cde−4025−8549−dddedb5ce127}”

location=”vm.vdi” format=”VDI” type=”Normal”>
<HardDisk uuid=”{4ebc5f10−3100−4cf2−94db−3c786a0a9570}”

location=”Snapshots/{4ebc5f10−3100−4cf2−94db−3c786a0a9570}.vdi”
format=”VDI”>

:
</HardDisks>

</MediaRegistry>
:

<Snapshot uuid=”{2a0e6ffb−74bf−4402−9bbb−0fc32ca0f911}” name=”snapshot1”
timeStamp=”2018−08−15T23:17:22Z”
stateFile=”Snapshots/2018−08−15T23−17−22−033674200Z.sav”>

<StorageControllers>
<StorageController name=”IDE” type=”PIIX4” PortCount=”2”

useHostIOCache=”true” Bootable=”true”>
:

<AttachedDevice type=”HardDisk” hotpluggable=”false” port=”0”
device=”0”>
<Image uuid=”{4a0e0fa2−1cde−4025−8549−dddedb5ce127}”/>

</AttachedDevice>
</StorageController>

</StorageControllers>
</Snapshot>
:
<Hardware>
</Hardware>
<StorageControllers>

:
<AttachedDevice type=”HardDisk” hotpluggable=”false” port=”0”

device=”0”>
<Image uuid=”{2dfa6c84−a18a−4b8c−a29f−ff095e6ec727}”/>

</AttachedDevice>
:

</StorageControllers>
</Machine>

</VirtualBox>

Below in the .vbox file, there are many Snapshot tags describing each snap-
shot. Among all their children elements there is a StorageControllers tag,
where each StorageController can be attached to some media. The controllers
uses the UUID (unique id) of the disks to determine which disk is attached. As
the HardDisk elements, the Snapshot elements can be nested to describe the
snapshot tree.



98 C. E. Gómez et al.

Fig. 5. Meaning of files of a virtual machine after six snapshots

Figure 5 shows the meaning of the files for the sample VM. Although that
information cannot be obtained from the filenames, it can be gathered from the
.vbox file.

4.3 RQ2: Which Files that Make up a Virtual Machine Are
Needed to Resume the Execution of the Virtual Machine
from a Specific Snapshot?

Not all the files that are part of a VM are needed to resume its execution from
the last snapshot:

.vbox file: The .vbox file maintains the configuration of the hardware for all
the snapshots and the current state of the VM. This file is required to resume
from any snapshot.

.vdi files: Since the .vdi files with the disks are differential with respect to
its parent, it is necessary to determine all the ancestors in the hierarchy.
This applies also for the last snapshot. Considering that the virtual machine
may have a snapshot tree with multiple branches, it is possible that many
.vdi files were not required to restore the last snapshot. Note that the .vdi
corresponding to the current state of the disk is not required because it stores
the changes that occur after the last snapshot.



Global Snapshot File Tracker 99

.sav files: Regarding the state of the memory, the .sav file that correspond to
the snapshot is the only required. All the other .sav files can be discarded or
ignored.

Initial state of a VM. The initial state of a VM comprises the .vbox file
and the .vdi files with the main disks: S0 = 〈.vbox, .vdi〉

State of a specific snapshot. The state of a specific snapshot comprises
the .vbox file, the corresponding .vdi files, their ancestors .vdi files and the
corresponding .sav file: Si = 〈.vbox, .vdii, ancestors(.vdii), .savi〉

5 Implementation

A prototype of the Global Snapshot File Tracker has been developed, which
can be found in our repository [7]. It is a stand-alone application, and it is
part of the storage system required for the global snapshot solution as a fault
tolerance mechanism of a DC. GSFT is responsible for obtaining the necessary
information to maintain the record of the names of the files that form the state
of a distributed system that runs in a DC. This software can gather all the files
required to resume the execution of any snapshots in a VM.

Our solution relies on the Simple API for XML (SAX) in the Java API for
XML (JAX) [13] to process the virtual machine definition files. We traverse the
structure in the .vbox files to obtain relevant and build an object structure with
the information of the virtual machines, their snapshots and the correspond-
ing files.

Fig. 6. Excerpt of the class diagram

Figure 6 shows an excerpt of the class diagram. The VirtualMachine rep-
resents each VM. It has a collection of Disk and Snapshot. The Image class



100 C. E. Gómez et al.

represents each .vdi file. It has relationships that describes which Disk and
Snapshot it belongs. In addition, it has a relationship to their parent Image.

We implemented a set of functional tests by processing multiple .vbox files.
These tests cover multiple scenarios using VMs with different types of snapshot
tress and diverse numbers of hard disks.

6 Functionality and Evaluation

This section shows a functionality test and reports the results of our prelimi-
nary evaluation. First of all we want to show the functionality of the developed
software tool and then we will briefly talk about the time it takes to execute it.

6.1 Functionality

Experiment Design. Given a VM running on host A, we get six snapshots
called SnapshotN, where N is the number corresponding to each snapshot. We
want to migrate this VM to two different hosts. In host B, we want to recover
the execution of the VM in the last obtained snapshot, while, in host C, we will
resume the VM in a specific snapshot, the Snapshot4. Figure 7 illustrates the
functional test of our system.

Fig. 7. Functional test of the GSFT System

To correctly resume the execution of the VMs from the mentioned snapshots,
we need to know which are the files that should be migrated to the respective
host. For this, we are going to use the GSFT system that we have developed.



Global Snapshot File Tracker 101

Fig. 8. GSFT command to obtain the file structure of a VM

Execution of the Experiment. The GSFT was executed on the vm.vbox file,
which contains all the information of the VM. To obtain the file structure that
make up the virtual machine, we use the command shown in the Fig. 8.

When executing the command, the file output01.csv is created with the file
structure. In this file we can easily identify the meaning of each file within the
composition of the VM, grouping each snapshot into a line. The Fig. 9 shows the
result obtained.

Fig. 9. File structure of a VM

To resume the execution of the VM starting from the last snapshot, in host
B, we need to know the list of files that must be migrated to be efficient in the
use of the network. The software allows us to obtain it by means of the command
of the Fig. 10.

Fig. 10. GSFT command to obtain the list of files to migrate a VM in the last snapshot

Figure 11 shows the list of files needed to resume execution from the last
snapshot. The result of the execution is stored in the file output02.csv.

Finally, for the migration to Host C and later resumption in the specific
“Snapshot4” snapshot, we can use the command in the Fig. 12.

Again, the result is stored in a .csv file, which stores the list of files needed
to be able to resume the execution of the VM in the specified snapshot (Fig. 13).

This test allows us to show the service provided by the developed software
tool, answering the three research questions mentioned in the Sect. 3.



102 C. E. Gómez et al.

Fig. 11. List of files to migrate a VM in the last snapshot

Fig. 12. GSFT command to obtain the list of files to migrate a VM in a specific
snapshot

Fig. 13. List of files to migrate a VM in a specific snapshot

6.2 Preliminary Evaluation

The evaluation was carried out in order to determine the performance of the
tool. The experiment was performed on a host that is usually used by a DC to
run VMs. The experiment consisted of processing 10 .vbox files with one to ten
snapshots, respectively. We measure the time it took for the system to generate
the .csv file with the information of each snapshot, as shown in the Fig. 14

Figure 14 shows the analysis time of .vbox files, which had from one to ten
snapshots. The average time for the analysis varies between 15 and 35 ms, with
a linear behavior.

7 Conclusions and Future Work

In this tool paper we have presented the Global Snapshot File Tracker, a software
tool developed to facilitate the management of the files that correspond to all the
virtual machines running in all the computers in a desktop cloud. This software
determines and classify the files that make up a virtual machine when multiple
snapshots have been obtained. This facilitates the recovery of the execution of
the virtual machines in the last snapshot or in a specific one. It can be used to



Global Snapshot File Tracker 103

Fig. 14. Average time of analysis of .vbox files

migrate virtual machines by copying the minimal set of files required for a specific
snapshot and implement other fault tolerance solutions for desktop clouds.

This paper reports a few functional tests for this application. Here we present
the migration of the execution of a VM with six snapshots to other hosts resum-
ing from the last snapshot and from a particular one. In addition, it reports some
performance tests. Our public repository [7] has a larger set of functional tests.

As future work we intend to use the global snapshot file tracker within the
system for managing files in our global snapshot solution. In addition, we are
developing a solution to consolidate snapshots and reduce the number of files that
must be copied and move to other machines, Finally, we are using our experience
with VirtualBox to support other hypervisors used in desktop clouds, namely
VMware Workstation and Microsoft HyperV.

References

1. Agarwal, H., Sharma, A.: A comprehensive survey of fault tolerance techniques in
cloud computing. In: 2015 International Conference on Computing and Network
Communications (CoCoNet), pp. 408–413. IEEE (2015)

2. Alwabel, A., Walters, R., Wills, G.: A view at desktop clouds. In: International
Workshop on Emerging Software as a Service and Analytics (ESaaSA 2014), pp.
55–61 (2014)

3. Alwabel, A., Walters, R.J., Wills, G.B.: A resource allocation model for desktop
clouds. In: Web-Based Services: Concepts, Methodologies, Tools, and Applications,
pp. 356–376. IGI Global (2016)

4. Blomer, J., Buncic, P., Charalampidis, I., Harutyunyan, A., Larsen, D., Meusel,
R.: Status and future perspectives of CERNVM-FS. J. Phys. Conf. Ser. 396(5)
(2012)



104 C. E. Gómez et al.

5. CernVM: cernVM software appliance (2018). https://cernvm.cern.ch/. Accessed
20 Apr 2018

6. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of
distributed systems. ACM Trans. Comput. Syst. (TOCS) 3(1), 63–75 (1985)

7. Gomez, C., Chavarriaga, J., Bonilla, D., Castro, H.: Desktop cloud global snapshot
(2018). https://github.com/dc-gs/gsft

8. Gómez, C.E., Castro, H.E., Varela, C.A.: Global snapshot of a distributed sys-
tem running on virtual machines. In: 29th International Symposium on Computer
Architecture and High Performance Computing, SBAC-PAD 2017, pp. 169–176.
IEEE Computer Society (2017)

9. Gómez, C.E., Dı́az, C.O., Forero, C.A., Rosales, E., Castro, H.: Determining the
real capacity of a desktop cloud. In: Osthoff, C., Navaux, P.O.A., Barrios Hernan-
dez, C.J., Silva Dias, P.L. (eds.) CARLA 2015. CCIS, vol. 565, pp. 62–72. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-26928-3 5

10. Kangarlou-Haghighi, A.: Improving the reliability and performance of virtual cloud
infrastructures. Ph.D. thesis, Purdue University (2011)

11. Kshemkalyani, A.D., Singhal, M.: Distributed Computing: Principles, Algorithms,
and Systems. Cambridge University Press, Cambridge (2011)

12. Mattern, F.: Efficient algorithms for distributed snapshots and global virtual time
approximation. J. Parallel Distrib. Comput. 18(4), 423–434 (1993)

13. Oracle: JAXP-SAX API documentation. https://docs.oracle.com/javase/tutorial/
jaxp/sax/parsing.html. Accessed 20 Apr 2018

14. Oracle: Oracle VM VirtualBox: User Manual Version 5.0.20. Oracle Corporation
(2016)

15. Oracle: VirtualBox XSD schema definition (2017). https://www.virtualbox.org/
browser/vbox/trunk/src/VBox/Main/xml/VirtualBox-settings.xsd. Accessed 20
Apr 2018

16. Oracle: Oracle virtualbox (2018). https://www.virtualbox.org/. Accessed 20 Apr
2018

17. Rosales, E., Castro, H., Villamizar, M.: Unacloud: opportunistic cloud computing
infrastructure as a service. In: Cloud Computing, pp. 187–194 (2011)

18. UnaCloud: Unacloud: Opportunistic cloud computing platform (2018). https://
sistemasproyectos.uniandes.edu.co/iniciativas/unacloud/. Accessed 20 Apr 2018

https://cernvm.cern.ch/
https://github.com/dc-gs/gsft
https://doi.org/10.1007/978-3-319-26928-3_5
https://docs.oracle.com/javase/tutorial/jaxp/sax/parsing.html
https://docs.oracle.com/javase/tutorial/jaxp/sax/parsing.html
https://www.virtualbox.org/browser/vbox/trunk/src/VBox/Main/xml/VirtualBox-settings.xsd
https://www.virtualbox.org/browser/vbox/trunk/src/VBox/Main/xml/VirtualBox-settings.xsd
https://www.virtualbox.org/
https://sistemasproyectos.uniandes.edu.co/iniciativas/unacloud/
https://sistemasproyectos.uniandes.edu.co/iniciativas/unacloud/

	Global Snapshot File Tracker
	1 Introduction
	2 Background
	2.1 Desktop Clouds
	2.2 Checkpointing
	2.3 Global Snapshot Algorithms

	3 Problem Statement
	3.1 Local State (snapshot) in VirtualBox
	3.2 Research Questions

	4 Proposed Solution
	4.1 Overview of the VirtualBox Snapshots
	4.2 RQ1: How to Determine and Classify the Files that Make up a Virtual Machine When Multiple Snapshots Have Been Obtained?
	4.3 RQ2: Which Files that Make up a Virtual Machine Are Needed to Resume the Execution of the Virtual Machine from a Specific Snapshot?

	5 Implementation
	6 Functionality and Evaluation
	6.1 Functionality
	6.2 Preliminary Evaluation

	7 Conclusions and Future Work
	References




