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Abstract We consider a pursuit differential game described by an infinite system
of 1st-order differential equations with negative coefficients in Hilbert space. The
control functions of players are subject to integral constraints. The pursuer attempts
to bring the system from a given initial state to another state for a finite time and the
evader’s purpose is opposite. We obtain a condition of completion of pursuit when
the control resource of the pursuer is greater than that of the evader. We study a
control problem as well.

Keywords Pursuer · Evader · Infinite system of differential equations · Control
strategy

1 Introduction

Differential games in finite dimensional Euclidean spaces were studied by many
researchers and developed important methods (see, for instance, [10, 25, 28, 30, 36,
37].)
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There are mainly two constraints on control functions of players: geometric and
integral constraints. In-views of the amount of works been done in developing the
differential games, the integral constraints have been extensively discussed by many
researchers with various approaches (see, for example, [4, 5, 8, 11, 12, 18–21, 26,
27, 29, 31, 34, 35, 39, 42–44] ).

One of the powerful tools in studying the control and differential game problems
in systems with distributed parameters is the decomposition method. Using this
method the control or differential game problem is reduced to ones described by
infinite systems of differential equations (see, for example, [2, 6, 7, 9, 13, 32, 40,
41, 45, 46]). We demonstrate briefly the method for the following parabolic equation

∂z(x, t)

∂t
+ Az(x, t) = w(x, t), z(x, 0) = z0(x), (1)

where 0 ≤ t ≤ T , T is a given positive number, x = (x1, . . . , xn) ∈ Ω ⊂ Rn , n ≥ 1,
Ω is a bounded set with piecewise smooth boundary,

Az = −
n∑

i, j=1

∂

∂xi

(
ai j (x)

∂z

∂x j

)
.

ai j (x) = a ji (x), x ∈ Ω , and, for some c > 0 and for all

(ξ1, . . . , ξn) ∈ Rn, x ∈ Ω,

n∑

i, j=1

ai j (x)ξiξ j ≥ c
n∑

i=1

ξ 2
i .

The domain of the operator A is the space of twice continuously differentiable func-

tions with compact support in Ω , denoted by
◦
C2 (Ω). Define inner product

(z, y)A = (Az, y), z, y ∈
◦
C2 (Ω).

Then
◦
C2 (Ω) becomes incomplete Euclidean space. To obtain a complete Hilbert

space associated with the operator A, we complete the space
◦
C2 (Ω) with respect

to the norm ||z||A = √
(Az, z), z ∈

◦
C2 (Ω). We use the fact that the operator A has

countably many eigenvalues

λ1, λ2, . . . , 0 < λ1 ≤ λ2 ≤ . . . , lim
k→∞ λk = +∞,

and generalized eigenfunctions ϕ1, ϕ2, . . ., which is a complete orthonormal system
in L2(Ω) [33].

Next, let C(0, T ; Hr (Ω)) and L2(0, T ; Hr (Ω)) denote the spaces of continuous
and measurable functions defined on [0, T ] with the values in
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Hr (Ω) =
{
f ∈ L2(Ω) | f =

∞∑

i=1

αiϕi ,

∞∑

i=1

λr
i α

2
i < ∞

}
,

respectively, where r is a given number. The space Hr (Ω) is a Hilbert space with
inner product and norm defined as follows: if

f =
∞∑

i=1

αiϕi ∈ Hr (Ω), g =
∞∑

i=1

βiϕi ∈ Hr (Ω),

then

( f, g) =
∞∑

i=1

λr
i αiβi , || f || =

( ∞∑

i=1

λr
i α

2
i

)1/2

.

It was proved [2] that if w(·) ∈ L2(0, T ; Hr (Ω)), then the initial value problem (1)
has a unique solution z(·) ∈ C(0, T ; Hr+1(Ω)). Next, represent the functions z(x, t)
and w(x, t) as

z(x, t) =
∞∑

k=1

zk(t)ϕk(x), w(x, t) =
∞∑

k=1

wk(t)ϕk(x), zk(·),wk(·) ∈ L2(0, T ), k = 1, 2, . . . ,

and substitute them into the Eq. (1), and then equate the coefficients at ϕk(x) to obtain

żk + λk zk = wk, zk(0) = zk0, k = 1, 2, . . . ,

where wk, zk, zk0 ∈ R1, k = 1, 2, . . ., wk , are control parameters, zk0 = (z0, ϕk).
Thus, we have obtained an infinite system of differential equations. Usually, the
control function is subjected to geometric or integral constraint. The geometric and
integral constraints for the control function w ∈ H(0, T ; Hr (Ω)) of the form

||w(x, t)|| ≤ ρ,

T∫

0

||w(x, t)||2dt ≤ ρ2,

respectively, can be written as follows

( ∞∑

k=1

λr
kw

2
k (t)

)1/2

≤ ρ,

∞∑

k=1

λr
k

T∫

0

w2
k (t)dt ≤ ρ2,

respectively.
Hence, there is an important connections between control problems described by

PDE and those described by infinite system of differential equations. Control and dif-
ferential game problems described by infinite system of differential equations are of
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independent interest and can be investigated within one theoretical framework inde-
pendently of those described by PDE assuming that the coefficients λk , k = 1, 2, . . .,
are any real numbers. Of course, in the case where λk are any real numbers, we must
give adequate definitions of state space, solution of infinite system of differential
equations. Also, we have to prove the existence-uniqueness of solution in the state
space.

There are severalworks devoted to control or differential gameproblemsdescribed
by infinite systemof differential equations (see, for example, [1, 3, 14, 16, 17, 22–24,
38]).

In the paper [14] a differential game problem described by the following infinite
system of differential equations

żk + λk zk = −uk + vk, zk(0) = zk0, k = 1, 2, . . . , (2)

where zk, uk, vk ∈ R
1, and λk , k = 1, 2, . . ., are positive numbers, was studied when

integral constraints are subjected to control functions of the players.
In the present paper, we study a pursuit differential game problems described by

(2) in the case of negative coefficients λk , k = 1, 2, . . .. Pursuer tries to bring the
state of the system from an initial state z0 to another given one z1 for a finite time.
Previous studies of differential games described by infinite system of differential
equations have only dealt with the case z1 = 0. We obtain sufficient conditions of
completion of pursuit.

2 Statement of Problem

Consider the following Hilbert space

l2r =
{

α = (α1, α2, . . .)|
∞∑

k=1

|λk |rα2
k < ∞

}
,

where, r is a real number and λ1, λ2, . . ., is a bounded sequence of negative numbers,
with inner product and norm defined by

〈α, β〉r =
∞∑

k=1

|λk |rαkβk, α, β ∈ l2r , ||α|| =
( ∞∑

k=1

|λk |rα2
k

)1/2

.

Let

L2(0, T, l2r ) =
{
w(·) = (w1(·),w2(·), . . .)| ‖w(·)‖L2(0,T,l2r ) < ∞, wk(·) ∈ L2(0, T )

}
,

where T > 0 is a given sufficiently big number,
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‖w(·)‖L2(0,T,l2r ) =
( ∞∑

k=1

|λk |r
∫ T

0
w2
k (t)dt

)1/2

,

We examine control and pursuit differential game problems described by the
following infinite system of differential equations

żk + λk zk = −uk + vk, zk(0) = z0k , k = 1, 2, . . . , (3)

where zk, uk, vk ∈ R
1, k = 1, 2, . . . ; u = (u1, u2, . . . ) is the control parameter of

pursuer and v = (v1, v2, . . . ) is that of evader, z0 = (z01, z02, . . . ) ∈ l2r+1.
Let

S(ρ0) = {
w(·) ∈ L2(0, T, l2r )| ‖w(·)‖L2(0,T,l2r ) ≤ ρ0

}
,

where ρ0 is a given positive number.

Definition 1 Functions w(·) ∈ S(ρ0), u(·) ∈ S(ρ), and v(·) ∈ S(σ ) are called
admissible control, admissible control of pursuer, and admissible control of evader,
respectively, where ρ and σ are given positive numbers.

It’s assumed that ρ > σ .

Definition 2 Let w(·) ∈ S(ρ0). A function z(t) = (z1(t), z2(t), . . . ), 0 ≤ t ≤ T ,
with zk(0) = z0k , k = 1, 2, . . . , is called solution of the initial value problem

żk(t) + λk zk(t) = wk(t), zk(0) = z0k , k = 1, 2, . . . , (4)

if zk(t), k = 1, 2, . . ., are absolutely continuous and almost everywhere on [0, T ]
satisfy the Eq. (4).

Let C(0, T ; l2r+1) be the space of continuous functions z(t) = (z1(t), z2(t), . . .) ∈
l2r+1 defined on [0, T ]. We need the following proposition [15].

Proposition 1 If w(·) ∈ S(ρ), then infinite system of differential equations (4) has
the only solution z(t) = (z1(t), z2(t), . . .), 0 ≤ t ≤ T , in the space C(0, T ; l2r+1),
where

zk(t) = eβk t

(
z0k +

∫ t

0
wk(s)e

−βk sds

)
, k = 1, 2, . . . ,

with βk = −λk > 0.

Note that this existence-uniqueness theorem for the system (4) was proved for any
finite interval [0, T ]. Therefore, we investigate the system (3) and (4) on [0, T ].
Definition 3 A function

U (t, v) = (U1(t, v),U2(t, v), . . .), U : [0, T ] × l2r → l2r ,

with the components of the form
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Uk(t, v) = wk(t) + vk(t), k = 1, 2, . . . ,

is referred to as the strategy of pursuer, if, for any admissible control of evader
v(·) = (v1(·), v2(·), . . .), the system (3) has the only solution at u(t) = U (t, v), where
w(·) = (w1(·),w2(·), . . .) ∈ S(ρ − σ).

We are given another state z1 = (z11, z12, . . . ) ∈ l2r+1.

Definition 4 We say that the game (3) can be completed for the time θ (θ ≤ T ), if
there exists a strategy U of pursuer such that, for any admissible control of evader,
z(τ ) = z1 at some time τ , 0 ≤ τ ≤ θ .

Pursuer tries to bring the state of the system (3) from z0 to z1, and the purpose of
evader is opposite. Formulate the problems.

Problem 1 Find a condition on the states z0, z1 ∈ l2r+1 such that the state z(t) of the
system (4) can be transferred from the initial position z0 to the final position z1 for
a finite time.

Problem 2 Find a condition on the states z0, z1 ∈ l2r+1, for which pursuit can be
completed in the game (3) for a finite time.

3 Control Problem

In this section, we study a control problem for transferring the system z(t) from the
initial position z0 to the final position z1.

For the system (4), we study the control problem: find a time θ such that

z(0) = z0, z(θ) = z1. (5)

First, we analysis the following series

E(t) = E1(t) + E2(t), t > 0, (6)

where

E1(t) = 2
∞∑

k=1

βr
k |z0k |2φk(t), E2(t) = 2

∞∑

k=1

βr
k |z1k |2ψk(t), (7)

φk(t) = 2βk

1 − e−2βk t
, ψk(t) = 2βk

e2βk t − 1
, k = 1, 2, . . . .

Lemma 1 Let z0, z1 ∈ l2r+1. If, in addition, z
0, z1 ∈ l2r , then the series E(t) converges

at any t > 0.
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Proof Let z0, z1 ∈ l2r . To show that the series (6) converges, we show that the series
E1(t) and E2(t) converge. Since βk is a bounded sequence of positive numbers,
therefore β = sup

k
βk < ∞. Since βk ≤ β, then it is not difficult to show that

φk(t) = 2βk

1 − e−2βk t
≤ 2β

1 − e−2βt
,

which implies that

E1(t) ≤ 4β

1 − e−2βt

∞∑

k=1

βr
k |z0k |2.

The series on the right hand side of this inequality is convergent since z0 ∈ l2r . Thus,
the series E1(t) is convergent.

We can see that ψk(t) ≤ 1
t , t > 0, k = 1, 2, . . .. Then

E2(t) ≤ 2

t

∞∑

k=1

βr
k |z1k |2.

The series on the right hand side of this inequality is convergent since z1 ∈ l2r . Thus,
the series E2(t) is convergent. This completes the proof of Lemma 1.

We’ll need some properties of E(t).

Property 1 E(t) has the following properties:

(i) E(t) is decreasing on (0, +∞);
(ii) E(t) → +∞ as t → 0+;

(iii) E(t) → 4
∞∑
k=1

βr+1
k |z0k |2 as t → +∞.

Proof The first property follows from the fact thatψk(t) and φk(t), k = 1, 2, . . ., are
decreasing on (0, +∞).

The proof of the property (ii) follows from the observations that ψk(t) → +∞
and φk(t) → +∞, as t → 0+ for each k.

Finally, we prove the property (iii). According to Lemma 1, E(t) is convergent
for any t > 0. We fix t0 > 0. Since E(t0) is convergent, then for any ε > 0, there
exists a positive integer N such that

F(t0) =
∞∑

k=N+1

βr
k

(
2|z0k |2φk(t0) + 2|z1k |2ψk(t0)

)
<

ε

3
, (8)

and also ∞∑

k=N+1

4βr+1
k |z0k |2 <

ε

3
(9)
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since z0 ∈ l2r+1. Then, F(t) < ε
3 for all t ≥ t0 since the functions ψk(t) and φk(t) are

decreasing on (0,+∞) for each k.
On the other hand, there exists number T1 > 0 such that, for all t > T1,

∣∣∣∣∣2
N∑

k=1

βr
k

(|z0k |2φk(t) + |z1k |2ψk(t)
) − 4

N∑

k=1

βr+1
k |z0k |2

∣∣∣∣∣ <
ε

3
, (10)

since the sum consists of a finite number of summands and

lim
t→+∞ φk(t) = 2βk, lim

t→+∞ ψk(t) = 0, k = 1, 2, . . .

Thus, by (8)–(10)

∣∣∣∣∣E(t) − 4
∞∑

k=1

βr+1
k |z0k |2

∣∣∣∣∣ ≤
∣∣∣∣∣2

N∑

k=1

βr
k

(|z0k |2φk(t) + |z1k |2ψk(t)
) − 4

N∑

k=1

βr+1
k |z0k |2

∣∣∣∣∣

+ 2
∞∑

k=N+1

βr
k

(|z0k |2φk(t) + |z1k |2ψk(t)
) + 4

∞∑

k=N+1

βr+1
k |z0k |2

<
ε

3
+ ε

3
+ ε

3
= ε.

This proves property (iii).

Next since
4

1 − e−2βk t
> 4, t > 0, therefore we obtain from (i) and (i i i) that

E(t) > 4
∞∑

k=1

βr+1
k |z0k |2, t > 0. (11)

Property 1 and (11) imply that the equation

E(t) = ρ2
0 (12)

has a root t = θ if and only if

ρ2
0 > 4

∞∑

k=1

βr+1
k |z0k |2, (13)

and this root is unique. Without loss of generality, we can assume that θ < T since
T is sufficiently big number.

The following statement is a solution for the control problem (5).
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Theorem 1 Let inequality (13) be satisfied and z0, z1 ∈ l2r . Then the system (4) can
be transferred from the initial position z0 to the position z1 for the time θ .

Proof Define a control

wk(t) =
{− [

z0k − z1ke
−βkθ

]
φk(θ)e−βk t , 0 ≤ t ≤ θ

0, t > θ
, k = 1, 2, . . . . (14)

Show that this control is admissible. Using Eq. (12), control (14), and the obvious
inequality |x − y|2 ≤ 2|x |2 + 2|y|2, we proceed as follows:

∞∑

k=1

βr
k

∫ θ

0
|wk(s)|2ds =

∞∑

k=1

βr
k

∫ θ

0

∣∣− [
z0k − z1ke

−βkθ
]
φk(θ)e−βk s

∣∣2 ds

≤
∞∑

k=1

βr
k

(
2|z0k |2 + 2|z1k |2e−2βkθ

)
φ2
k (θ)

∫ θ

0
e−2βk sds

= 2
∞∑

k=1

βr
k

(|z0k |2φk(θ) + |z1k |2ψk(θ)
)

= E(θ) = ρ2
0 .

Show that the system can be transferred from z0 to z1 for the time θ . Indeed,

zk(θ) = eβkθ

(
z0k − [

z0k − z1ke
−βkθ

]
φk(θ)

∫ θ

0
e−2βk sds

)

= eβkθ (z1ke
−βkθ ) = z1k .

This completes the proof of Theorem 1.

4 Pursuit Differential Game Problem

In this section, we study pursuit differential game described by the Eq. (3). It is
assumed that control resources of pursuer is greater than that of evader, that is ρ > σ .

We obtain from (3) that

zk(t) = eβk t

(
z0k −

∫ t

0
uk(s)e

−βk sds +
∫ t

0
vk(s)e

−βk sds

)
. (15)
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In view of the previous section we can state that the equation

E(t) = 2
∞∑

k=1

βr
k

(|z0k |2φk(t) + |z1k |2ψk(t)
) = (ρ − σ)2 (16)

has a root t = θ1 if and only if

(ρ − σ)2 > 4
∞∑

k=1

βr+1
k |z0k |2, (17)

and this root is unique. We can assume, by selecting T if needed that θ1 < T .

Theorem 2 Let (17) be satisfied and z0, z1 ∈ l2r . Then pursuit can be completed in
the game (3) for the time θ1.

Proof Construct a strategy for the pursuer. Set

uk(t, v) =
{[

z0k − z1ke
−βkθ1

]
φk(θ1)e−βk s + vk(t), 0 ≤ t ≤ θ1

0, t > θ1
, k = 1, 2, . . . (18)

Show that strategy (18) is admissible. Applying the Minkowskii inequality, we have
( ∞∑

k=1

βr
k

∫ θ1

0
|uk(s)|2 ds

)1/2

=
( ∞∑

k=1

βr
k

∫ θ1

0

∣∣∣
(
z0k − z1ke

−βkθ1
)

φk(θ1)e
−βk s + vk(s)

∣∣∣
2
ds

)1/2

≤
( ∞∑

k=1

βr
k

∫ θ1

0

∣∣∣
(
z0k − z1ke

−βkθ1
)

φk(θ1)e
−βk s

∣∣∣
2
ds

)1/2

+
( ∞∑

k=1

βr
k

∫ θ1

0
|vk(s)|2 ds

)1/2

≤
( ∞∑

k=1

βr
k |z0k − z1ke

−βkθ1 |2φ2
k (θ1)

∫ θ1

0
e−2βk sds

)1/2

+ σ. (19)

Using the obvious inequality |x − y|2 ≤ 2|x |2 + 2|y|2 and Eq. (16), we obtain
form (19) that

( ∞∑

k=1

βr
k

∫ θ1

0
|uk(s)|2 ds

)1/2

≤
(
2

∞∑

k=1

βr
k

(|z0k |2φk(θ1) + |z1k |2ψk(θ1)
)
)1/2

+ σ

= E1/2(θ1) + σ

= ρ − σ + σ = ρ.

Thus the strategy (18) is admissible.
Next, we show that pursuit is completed at the time θ1. Indeed, using (15) and

strategy (18), we have



Pursuit Game for an Infinite System … 111

zk(θ1) = eβkθ1

(
z0k −

∫ θ1

0

((
z0k − z1ke

−βkθ1
)
φk(θ1)e

−βk s + vk(s)
)
e−βk sds +

∫ θ1

0
vk(s)e

−βk sds

)

= eβkθ1

(
z0k −

∫ θ1

0

(
z0k − z1ke

−βkθ1
)
φk(θ1)e

−2βk sds

)

= eβkθ1
(
z0k − z0k + z1ke

−βkθ1
) = z1k .

The proof of the theorem is completed.

5 Conclusion

We have studied a pursuit differential game problem described by infinite system
of 1st-order differential equations with negative coefficients in the space l2r+1. The
control functions of players are subjected to integral constraints.

We have obtained a condition for which a control problem is solvable, also we
have constructed a control that transfers the system from an initial state z0 to the final
state z1 for a finite time.

We have obtained a condition of completion of pursuit in the differential game.
Moreover, a pursuit strategy has been constructed.
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