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On Linearization of Circle
Diffeomorphisms

Akhadkulov Habibulla, Dzhalilov Akhtam and Konstantin Khanin

Abstract Let f be a circle diffeomorphism with irrational rotation number of
bounded type and satisfying a certain Zygmund-type condition depending on a
parameter γ > 1.We prove that f is C1+ωγ —smoothly conjugate to a rigid rotation,
where ωγ (x) = A| log x |−γ+1 and A > 0. The result completes our resent results
in [1].

Keywords Circle diffeomorphisms · Rotation number · Denjoy’s inequality ·
Conjugating map

1 Introduction

The first properties of circle homeomorphisms were studied in a classical work of
Poincaré [10]. For an orientation-preserving homeomorphism f of the unit circle
S1 = R/Z the limit limi→∞ Li

f (x)/ i = ρ f exists and does not depend on x ∈ R,

where L f is a lift of f from S1 onto R. Here and below Li
f denotes the i th iter-

ation of L f . The number ρ := ρ f mod 1 is called the rotation number of f. It is
well know that the rotation number is irrational if and only if f has no periodic
orbits. Denjoy [3] proved that if f is an orientation-preserving diffeomorphism of
the circle with irrational rotation number ρ and log f ′ has bounded variation then f
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is topological conjugate to the linear rotation fρ : x → x + ρ; that is, there exists
a homeomorphism h the circle such that h ◦ f ◦ h−1 = fρ. In the end of 70’s the
problem of smoothness of the conjugacy of smooth diffeomorphisms was one of the
fundamental problems of this direction. The first significant results on smoothness
of conjugacy were obtained by Herman in [4]. It was shown that if f ∈ Ck (k ≥ 3),
its rotation number is irrational and satisfies a certain Diophantine condition then h
is in fact k − 1 − ε times differentiable for any ε > 0, and is analytic if f is ana-
lytic. Later Yoccoz [11] extended his results for all Diophantine numbers. In the
end of the 80’s two different approaches to the Herman’s theory were developed by
Katznelson and Ornstein [5, 6] and Khanin and Sinai [7, 8]. These approaches gave
sharp results on the smoothness of the conjugacy in the case of diffeomorphisms
with low smoothness. In 2009, Khanin and Teplinsky [9] developed a conceptually
new approach which is entirely based on the idea of cross-ratio distortion estimates.
Recently, in [1] we have extended the results of [5–9] for a class of circle diffeo-
morphisms satisfying a certain Zygmund-type condition as follows. Consider the
following one-parameter family of functions: Φγ : [0, 1) → [0,+∞), Φγ (0) = 0
and

Φγ (x) = x

(log 1
x )

γ
, where 0 < x < 1 and γ > 0.

Denote by Δ2 f ′(x, τ ) the second symmetric difference of f ′ i.e.,

Δ2 f ′(x, τ ) = f ′(x + τ) + f ′(x − τ) − 2 f ′(x)

where x ∈ S1 and τ ∈ [0, 1
2 ]. Suppose that there exists a constant C > 0 such that

the following inequality holds:

‖Δ2 f ′(·, τ )‖L∞(S1) ≤ CΦγ (τ). (1)

Denote by Zγ the class of circle diffeomorphisms f, whose derivatives f ′ satisfy
(1). The main result of [1] is the following

Theorem 1 Let f ∈ Zγ be a circle diffeomorphism with irrational rotation number
ρ.

(a) If γ ∈ ( 12 , 1] and the partial quotients of ρ satisfies an ≤ Cnα for some α ∈
(0, γ − 1

2 ) and C > 0. Then the conjugating map h between f and fρ and its
inverse h−1 are absolute continuous and h′, (h−1)′ ∈ L2.

(b) If γ > 1 and the partial quotients of ρ satisfies an ≤ Cnα for some α ∈
(0, γ − 1) and C > 0. Then the conjugating map h between f and fρ and
its inverse h−1 are C1 diffeomorphisms.

In this paper we show that the conjugacy is better than C1 smooth in the case of
γ > 1 and the rotation number is irrational of bounded type i.e., the partial quotients
are bounded. Let ωγ (x) = | log x |−γ+1. Our main result is the following
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Theorem 2 Let f ∈ Zγ for some γ > 1. If the rotation number of f is irrational
of bounded type then there exists a constant A > 0 such that the conjugating map h
between f and fρ and its inverse h−1 are C1 diffeomorphisms and

|h′(x) − h′(y)| ≤ Aωγ (|x − y|), |(h−1(x))′ − (h−1(y))′| ≤ Aωγ (|x − y|)

for any x, y ∈ S1, such that x 
= y.

2 Preliminaries and Notation

Consider an orientation-preserving circle homeomorphism f with irrational rotation
number ρ := ρ f .We shall use the the continued fraction expansion for the irrational
number ρ = [a1, a2, . . . , an, . . .] which is understood as a limit of the sequence of
rational convergents pn/qn = [a1, a2, . . . , an]. The positive integers an, n ≥ 1, are
called partial quotients. The mutually prime positive integers pn and qn satisfy the
recurrent relation pn = an pn−1 + pn−2, qn = anqn−1 + qn−2 for n ≥ 1, where it is
convenient to define p0 = 0, q0 = 1 and p−1 = 1, q−1 = 0. We take an arbitrary
point x0 ∈ S1 and fix. Define Δ

(n)
0 := Δ

(n)
0 (x0) as the closed interval in S1 with

endpoints x0 and xqn = f qn (x0), such that, for n odd, xqn is to the left of x0, and for
n even, it is to its right with respect to the orientation induced from the real line.
Denote by Δ

(n)
i := f i (Δ(n)

0 ), i ≥ 1, the iterates of the interval Δ
(n)
0 under f. It is

well known that the set Pn := Pn(x0, f ) of intervals with mutually disjoint interiors
defined as

Pn = {Δ(n−1)
i , 0 ≤ i < qn} ∪ {Δ(n)

j , 0 ≤ j < qn}.

determines a partition of the circle for any n. The partition Pn is called the nth
dynamical partition of S1.Obviously, the partitionPn+1 is a refinement of the partition
Pn : indeed, the intervals of order n belong to Pn+1 and each interval Δ

(n−1)
i 0 ≤ i <

qn is partitioned into an+1 + 1 intervals belonging to Pn such that

Δ
(n−1)
i = Δ

(n+1)
i ∪

an+1−1⋃

s=0

Δ
(n)
i+qn−1+sqn

. (2)

DefineKn := Kn( f ) = maxξ | log( f qn (ξ))′| = ‖ log( f qn )′‖0. It is well know that if
f satisfies the conditions of Denjoy theorem then Kn ≤ v where v = VarS1 log f ′
(see [8]). This inequality is know as Denjoy’s inequality and it has very important
applications in the theory of circle homeomorphisms. Using this, it can be shown that
the intervals of the dynamical partition Pn have exponentially small length. Indeed,
one finds the following

Theorem 3 Let f be an orientation-preserving diffeomorphism of the circle with
irrational rotation number and log f has bounded variation. There exist constants
C0 > 1 and 0 < μ < λ < 1 depending only on f such that
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(i) For any Δ(n) ∈ Pn we have |Δ(n)| ≤ C0λ
n;

(ii) If the rotation number of f is of bounded type then for any two adjacent intervals
Δ(n) and Δ̃(n) of Pn we have C−1|Δ̃(n)| < |Δ(n)| < C |Δ̃(n)|;

(iii) If the rotation number of f is of bounded type then for any Δ(n) ∈ Pn we have
|Δ(n)| ≥ C−1

0 μn.

The proof of the item (i) of this can be found in [1] and the proofs of the items
(i i) and (i i i) can be found [2].

3 Some Supporting Lemmas

Denote Δ̂
(n)
0 = Δ

(n)
0 ∪ Δ

(n−1)
0 . Let in : S1 → N0 be the first entrance time of x in

Δ̂
(n)
0 ; that is, in(x) = min{i ≥ 0 : f i (x) ∈ Δ̂

(n)
0 }. Define ζn : S1 → R as follows

ζn(x) =
in(x)−1∑

s=0

log f ′( f s(x)).

The following lemmas are needed to derive our main result.

Lemma 1 Let f satisfies the conditions of Theorem2. Then ζn is aCauchy sequence.

Proof By the definition of in :

in(x) =

⎧
⎪⎨

⎪⎩

0, if x ∈ Δ̂
(n)
0

qn−1 − j, if x ∈ Δ
(n)
j

qn − i, if x ∈ Δ
(n−1)
i

where 0 < j < qn−1 and 0 < i < qn. This and by (2) we get

in+1(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if x ∈ Δ̂
(n+1)
0

qn+1 − j, if x ∈ Δ
(n)
j

qn+1 − (i + qn−1 + sqn), if x ∈ Δ
(n)
i+qn−1+sqn

qn − i, if x ∈ Δ
(n+1)
i

where 0 < j < qn−1, 0 < i < qn and 0 ≤ s < an+1. Therefore

in+1(x) − in(x) =

⎧
⎪⎨

⎪⎩

0, if x ∈ Δ̂
(n)
0 ∪ Δ

(n+1)
i

an+1qn, if x ∈ Δ
(n)
j

(an+1 − s − 1)qn, if x ∈ Δ
(n)
i+qn−1+sqn

where 0 < j < qn−1, 0 < i < qn and 0 ≤ s < an+1. Using the last relation we get
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‖ζn+1(x) − ζn(x)‖∞ ≤ an+1Kn. (3)

By Theorem 7.1 and Lemma 8.2 in [1] we have Kn ≤ Cn−γ . Since the rotation
number is bounded type we get

‖ζn+p(x) − ζn(x)‖∞ ≤ C
n+p−1∑

m=n

1

mγ
. (4)

We conclude from (4) that ζn is a Cauchy sequence.

Let ζ(x) = limn→∞ ζn(x).

Lemma 2 Let f satisfies the conditions of Theorem 2. Then ζ : S1 → R is contin-
uous and satisfies the relation

ζ( f (x)) = ζ(x) − log f ′(x). (5)

Proof It is easy to see that for any x ∈ S1 there exists n0 := n0(x) such that
in( f (x)) = in(x) − 1 for all n ≥ n0. This and by the definition of ζn we get

ζn( f (x)) = ζn(x) − log f ′(x)

for all n ≥ n0. Taking the limit as n → ∞ we get (5). Next we show ζ is continuous
at x = x0. One can see ζn(x0) = 0 for all n ≥ 1, so ζ(x0) = 0. Take any z ∈ Δ̂

(n)
0 . It

is obvious that i j (z) = 0 for every j ≤ n, so ζ j (z) = 0 for every j ≤ n. In particular

ζn+p(z) =
p−1∑

m=0

ζn+m+1(z) − ζn+m(z).

This and the relation (4) imply

|ζn+p(z)| ≤ C
n+p−1∑

m=n

1

mγ
.

Consequently
lim
n→∞ sup

z∈Δ̂
(n)
0

|ζ(z)| = 0.

Hence ζ is continuous at x = x0. Denote by Ξ = {xi := f i (x); i ∈ N} the tra-
jectory of x0. Since ζ is continuous at x = x0 and log f ′ is continuous on S1, by
(5) it implies that ζ is continuous on Ξ. Note that in : S1 → R is continuous in the
interior of each element of the partition Pn for every n ≥ 1. As a consequence ζn is
continuous in the interior of each element of the partition Pn for every n ≥ 1. Thus
the limit function ζ is continuous on x ∈ S1 \ Ξ.
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Lemma 3 Let f satisfies the conditions of Theorem 2. There exists C > 0 such that

|ζ(x) − ζ(y)| ≤ Cωγ (|x − y|) (6)

for any x, y ∈ S1, such that x 
= y.

Proof Consider the points xi and xi+qn−1+sqn where 1 ≤ s ≤ an+1. It is clear that
xi , xi+qn−1+sqn ∈ Δ

(n−1)
i . The relation (5) implies

|ζ(xi+qn−1+sqn ) − ζ(xi )| ≤ an+1Kn.

Consequently, for any x j ∈ Ξ ∩ (Δ
(n−1)
i \ Δ

(n+1)
i ) we have

|ζ(x j ) − ζ(xi )| ≤
∞∑

m=n

am+1Km .

Since am+1 is bounded we get

|ζ(x j ) − ζ(xi )| ≤ C
∞∑

m=n

1

mγ
≤ C

nγ−1
. (7)

It is obvious that
|Δ(n+1)

i | ≤ |x j − xi | ≤ |Δ(n−1)
i |.

This and Theorem 3 imply

n = O
( 1∣∣ log |x j − xi |

∣∣
)
. (8)

Combining (7) with (8) we can assert that

|ζ(x j ) − ζ(xi )| ≤ C
∣∣ log |x j − xi |

∣∣γ−1 . (9)

Since Ξ is dense in S1, the function ζ can be continuously extended to the whole
of S1 verifying the inequality (9).
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4 Proof of Theorem 2

Consider the function ϕ : S1 → R defined as

ϕ(x) = eζ(x)
( ∫

S1
eζ(t)dt

)−1
.

It is clear ϕ is continuous and positive on S1. We claim that ϕ satisfies the homo-
logical equation

ϕ( f (x)) = 1

f ′(x)
ϕ(x), x ∈ S1. (10)

Indeed, by the inequality (5) we get

ϕ( f (x)) = eζ( f (x))
( ∫

S1
eζ(t)dt

)−1 = eζ(x)−log f ′(x)
( ∫

S1
eζ(t)dt

)−1 = 1

f ′(x)
ϕ(x).

Next we show that the C1—smooth diffeomorphism

h(x) =
∫ x

x0

ϕ(t)dt, x ∈ S1

conjugates f and fρ. Using the relation (10) we get

h( f (x)) = h(x) +
∫ f (x0)

x0

ϕ(t)dt. (11)

Denote by H and F the lift functions of h and f respectively. From the relation
(11) it follows that

H(Fn(x)) = H(x) + n
∫ f (x0)

x0

ϕ(t)dt, x ∈ R (12)

for all n ≥ 1. It is well known (see for instance [4]) that there exists a one periodic
functions H̃ such that H = H̃ + Id. Therefore, by (12) we get

Fn(x) − x

n
= H̃(x) − H̃(Fn(x))

n
+

∫ f (x0)

x0

ϕ(t)dt. (13)

Taking the limit as n → ∞ we get

ρ =
∫ f (x0)

x0

ϕ(t)dt.



8 A. Habibulla et al.

Hence h ◦ f = fρ ◦ h. From Lemma 3 it follows that

|ϕ(x) − ϕ(y)| ≤ Cωγ (|x − y|)

and consequently
|h′(x) − h′(y)| ≤ Cωγ (|x − y|)

for any x, y ∈ S1, such that x 
= y. Since h and h−1 are diffeomorphisms we can
easily show that

|(h−1(x))′ − (h−1(y))′| ≤ Cωγ (|x − y|)

for any x, y ∈ S1, such that x 
= y. Thus, Theorem 2 is completely proved.

References

1. Akhadkulov, H., Dzhalilov, A., Khanin, K.: Notes on a theorem of Katznelson and Ornstein.
Dis. Con. Dyn. Sys. 37(9), 4587–4609 (2017)

2. Akhadkulov, H., Dzhalilov, A., Noorani, M.S.: On conjugacies between piecewise-smooth
circle maps. Nonlinear Anal. Theory Methods Appl. 99, 1–15 (2014)

3. Denjoy, A.: Sur les courbes définies par les équations différentielles à la surface du tore. J.
Math. Pures Appl. 11, 333–375 (1932)

4. Herman, M.: Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations.
Inst. Hautes Etudes Sci. Publ. Math. 49, 5–234 (1979)

5. Katznelson,Y.,Ornstein,D.: The differentiability of the conjugation of certain diffeomorphisms
of the circle. Ergod. Theor. Dyn. Syst. 9, 643–680 (1989)

6. Katznelson, Y., Ornstein, D.: The absolute continuity of the conjugation of certain diffeomor-
phisms of the circle. Ergod. Theor. Dyn. Syst. 9, 681–690 (1989)

7. Khanin, K.M., Sinai, Y.G.: A new proof of M. Herman’s theorem. Commun. Math. Phys. 112,
89–101 (1987)

8. Khanin, K.M., Sinai, Y.G.: Smoothness of conjugacies of diffeomorphisms of the circle with
rotations. Russ. Math. Surv. 44, 69–99 (1989); Trans. Usp. Mat. Nauk. 44, 57–82 (1989)

9. Khanin, K.M., Teplinsky, AYu.: Herman’s theory revisited. Invent. Math. 178, 333–344 (2009)
10. Poincaré, H.: Mémoire sur les courbes définies par une équation différentielle (I). J. Math.

Pures Appl. 7, 375–422 (1881)
11. Yoccoz, J.C.: Conjugaison différentiable des difféomorphismes du cercle dont le nombre de

rotation vérifie une condition diophantienne. Ann. Sci. École Norm. Sup. (4) 17(3), 333–359
(1984)



The Fujita and Secondary Type Critical
Exponents in Nonlinear Parabolic
Equations and Systems

Aripov Mersaid

Abstract In this work, demonstrated the possibilities of the self-similar approach
to the studying of qualitative properties of nonlinear reaction diffusion equation and
system such as finite speed of a perturbation, Fujita and secondary type critical expo-
nents of a global solvability. Asymptotic of the self-similar solutions in a secondary
critical case is established. Based on the computer modeling of nonlinear processes
described by nonlinear degenerate parabolic equation and cross system discussed.
The problem choosing an initial approximation for numerical solution depending on
a value of numerical parameters is solved.

Keywords Parabolic · Degenerate · Equation · System · Self-similar · Fujita

1 Introduction

This paper devoted to a various extensions of a result of Fujita [1] and secondary
critical exponent for the initial value problem to the reaction-diffusion equation

∂u

∂t
= ∇(um−1

∣
∣∇uk

∣
∣
p−2∇u) + div(c(t)u) + γ (t)uβ, (1)

u (0, x) = u0 (x) � 0, x ∈ RN , (2)

in Q = (t > 0, x ∈ RN ) with m, β, k � 1, p � 2, ∇(·) = gradx(·), 0 < c(t),
γ (t) ∈ C(0,∞).
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Also to the nonlinear degenerate parabolic cross system (see [2–17])

A(u, v) = −∂u

∂t
+ div

(

vm1−1
∣
∣∇uk

∣
∣
p−2∇u

)

− div(c(t)u) + γ (t)uβ1 = 0,

B(u, v) = −∂v

∂t
+ div

(

um2−1
∣
∣∇vk

∣
∣
p−2∇v

)

− div(c(t)v) + γ (t)vβ2 = 0, (3)

u (0, x) = u0 (x) � 0, v (0, x) = v0(x) � 0, x ∈ RN , (4)

where mi , βi ∈ R, i = 1, 2, p � 2, k � 1 are the given numerical parameters,
∇(·) = gradx(·).

The problem (1), (2) describes many nonlinear processes, for instance the pro-
cesses of nonlinear filtration in liquid and gas, the thermal conductivity, nonlinear
reaction diffusion, when the thermal conductivity coefficient is a power function of
the derivative in the presence of a convective transfer with speed c(t) and source
[2, 3, 18–23]. The Eq. (1) is a base for modeling of the many physical processes too
[1, 17–22, 24–26].

Notice that the class of Eq. (1) contains the linear diffusion equation, (p =
2, m = 1), commonly known as the heat equation, ∂t u = Δu; the nonlinear diffu-
sion equation ∂t u = Δuk, known as the porous medium equation (p = 2, m > 1),
or the fast diffusion equation (p = 2, m < 1), and the gradient-dependent diffu-
sion equation, ∂t u = div(|∇u|p−2∇u) := Δpu, that is, the p−Laplacian equation
(p �= 2, m = 1). When p �= 2 and m �= 1, Eq. (1) is called the doubly nonlinear
diffusion equation, due to the fact that its diffusion term depends nonlinearly on
both the unknown density u, and its gradient∇u. Such gradient-dependent diffusion
equations appear in several models in non-Newtonian fluids [16], in glaciology [13,
23], and in turbulent flows in porous media [17]. For more details on these models,
we refer to the work [2–10, 22–24], and the references therein.

Equation (1) is good combination for of slowly diffusion (k(p − 2) + m −
1 > 0), fast diffusion k(p − 2) + m − 1 < 0 and other diffusion cases too. One
of the particular features of problem (1) is that the equation is degenerate at points
where u = 0 or ∇u = 0. Hence, there is no classical solution in general. Therefore,
we consider weak solution with property

0 � u(t, x), um−1
∣
∣∇uk

∣
∣
p−2∇u ∈ C(Q),

satisfying to Eq. (1) in tense of distribution [24].
System (3) describes the processes of reaction—diffusion, heat conductivity, poly-

trophic filtration of gas and liquid (k = 1, p = 2), biological population and etc. in
the two componential nonlinear medium with source, and convective transfer speed
of which c(t) depends on time. A specifically properties of this equation and system
is its degenerating. Therefore, we need to investigate the weak solution, because in
this case solutions of problem (3), (4) may do not exist in the classical tense.
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For system (3) in general we will study a class of weak solutions with properties

0 � u(t, x), (um1−1(t, x)|∇uk |p−2∇u) ∈ C(Q),

0 � v(t, x), (vm2−1(t, x)|∇vk |p−2∇v) ∈ C(Q),

and satisfying to (1) in the sense of a distribution [24].
Analytical solving of the considered nonlinear problem is very complicated.

Therefore, now computing experiment becomes almost unique means for solving
of the nonlinear problems. But, before a numerical computing are required inves-
tigation of qualitative properties of different type solutions arising on depended of
value of numerical parameters of the considered problem necessary to study the
qualitative properties of solutions.

One of effective method for investigation qualitative properties of considered
problem is self-similar, approximately self-similar approach [1, 18–20, 24]. For this
goal, we usemethod of nonlinear splitting algorithm [20], which allowed constricting
the system of self-similar equation for (1) and system (2). This approach intensively
used by many authors [18–20, 24] for investigation of the new properties of solution
such as finite speed of perturbation, blow up properties, localization of solutions and
so on [24].

2 Fujita Type Global Solvability

2.1 Case of Single Equation

Consider a global solvability of the problem (1), (2). Different qualitative properties
of solution for the particular value of numerical parameters of the Cauchy and bound-
ary value problem to the Eq. (1) intensively studied by many authors [1–8, 18–24].
First Fujita [1] for the problem (1) showed that if γ (t) = 1, c(t) = 0, m = 1, p = 2,
1 < β � 1 + 2/N , all solutions are blow up in time [1], while if β > 1 + 2/N the
problem has a global solution for small initial data. Value of numerical parameter
when β = 1 + 2/N is called the Fujita type critical exponent.

Samarskii A.A. and etc. [24] showed that condition of the global solvability when
γ (t) = 1, c(t) = 0, p = 2 is β > m + 1 + 2/N . After V. Galaktionov establish
the following condition of the global solvability β > p − 1 + p/N (see [24]) when
in (1) γ (t) = 1, c(t) = 0, m = 1, k = 1 (p−Laplacian equation). More general
condition of a global solvabilitywhen c(t) = 0, k = 1were established in [19],when
γ (t) = 1, c(t) = 0, k = 1 the variable density case of theEq. (1) considered inworks
[2–5, 20–23]. The condition of the global solvability in the case c(t) = 0, k = 1
obtained in the work [20] The role of the Fujita and secondary critical exponents
type intensively discussed in literature [1–6, 18–24].
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Usually for establishing blow up properties solution applied the. In [5] authors
to show the blow up phenomena not use technique the Zel’dovich–Kompaneets–
Barenblatt solutions [24], since the construction of such type of function is more
complicated for considered problem. Therefore, authors obtain a result by multiply-
ing on a special factor, which has convenient properties. In particular, by choosing
the parameters of the factor and using the properties of the solution, obtained the
inequality, which allows proving blow up property. Considering semi linear case of
the system (3) when in k = m = 1, p = 2 first Escobedo-Herero [11] establish the
Fujita type global solvability. Notice that the Fujita type global solvability of the
problem (3), (4) is not studied yet.

This paper discusses problem the Fujita type global solvability and secondary
critical exponents for double nonlinear degenerate equation (1) and system (3) using
self-similar approach [20]. The algorithm establishing both critical exponents using
self-similar analysis of solutions is suggested. Based on an invariant group (self-
similar) analysis the method of establishing of a value of the Fujita type critical
exponents for single degenerate type parabolic equation and system (3) is given. The
Fujita type condition of a global solvability to the problem (1), (2) are established. It is
shown that formally a value of the second critical exponent for degenerate type double
nonlinear parabolic equation and they system is the roots of the linear algebraic
system equations. The estimate of weak solutions to the problem (3), (4) is obtained.
Depending on value of numerical parameters, the problem of an appropriate initial
approximation solution for an iterative process, leading to the quick convergence
with necessary accuracy is solved.

In recent years, as mentioned above many authors [2–10, 18, 19, 21–23] have
studied the different qualitative properties of solutions to the Cauchy problem (1)
and their variants (see ([2–10, 23] and the references therein)). Zheng et al. [22]
investigate the blow-up properties of the positive solution of the Cauchy problem (1)
in the case c(t) = 0, γ (t) = 1, and established a secondary critical exponent for the
decay initial value at infinity. They notice in this case the problem of the existence
and nonexistence of global solutions of the Cauchy problem not considered.

Under some suitable assumptions, the existence, uniqueness and regularity of a
weak solution to the Cauchy problem (1) and their variants have been extensively
investigated by many authors (see [2–11, 20–23] and the references therein).

The first goal of this paper is to study the blow-up behavior of solution u(x, t)
of (1) when the initial data u0(x) has slow decay near x = ∞. For instance, in the
following case

u0(x) ∼= M |x |−a, M > 0, a ≥ 0, (5)

In recent years, many authors have studied the properties of solutions to the
Cauchy problem (1), (2) and their variants [2–10, 23] and the references therein). In
particular, J.-S. Guo and Y. Y. Guo (see [22] and references) obtained the secondary
critical exponent for the case k = 1, p = 2 and shows there exists a secondary critical
exponent a∗ = 2/(p − m) such that the solution u(x, t) of (1) blows up in finite time
for the initial data u0(x),which behaves like |x |−a at x = ∞ if a ∈ (0, a∗), and there
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exists a global solution for the initial data u0(x), which behaves like |x |−a at x = ∞
if a ∈ (a∗, N ).

Mu et al. [22] studied the secondary critical exponent for the p−Laplacian equa-
tion (m = 1) with slow decay initial values and shows that there exists a secondary
critical exponent a∗

c = (p/(q + 1 − p)) such that the solution u(x, t) of (1) blows
up in finite time for the initial data u0(x) which behaves like |x |−a at x = ∞ if
a ∈ (a∗

c , N ), and there exists a global solution for the initial data u0(x), which
behaves like |x |−a at x → ∞ if a ∈ (a∗

c , N ).

Recently, Zheng and Mu [9] also investigated the secondary critical exponent for
the doubly degenerate parabolic equation with slow decay initial values and obtained
similar results. Introduce the function

z+(t, x) = u(t) f (ξ), u(t) = [T + (β − 1)

t∫

0

γ (y)dy]− 1
β−1 ,

f (ξ) = (a − bξγ )γ1 , a > 0. (6)

b = (k(p − 2) + m − 1)p−p/(p−1), γ = p

p − 1
, γ1 = p − 1

k(p − 2) + m − 1
.

Below considering the problem Cauchy (1), (2); (3), (4) the algorithm for con-
struction of the Fujita type a critical exponent is suggested and has establish the Fujita
type for critical exponent. Applying this algorithm, condition of a global solvability
Cauchy problem (1), (2) and (3), (4) are obtained.

3 Main Results

3.1 Fujita Type Critical Exponent to the Problem (1)

Theorem 1 Assume k(p − 2) + m − 1 > 0,

γ (t)τ (t)[u(t)]β−[k(p−2)+m−1] < N/p, t > 0, u0(x) ≤ z+(0, x), x ∈ RN , (7)

then u(t, x) ≤ z+(t, x) in Q.

For the problem (1) the Fujita type critical exponent is

γ (t)τ (t)[ū(t)]β−[k(p−2)+m−1] = N/p, t > 0.

This result consist all early known results other authors (Fujita, Samarskii A.A.,
Kurdyumov S.P., Galaktionov V.A., Mikhaylov A.P. and others) on a global solv-
ability problem Cauchy (1), (2). In the case c(t) = 0, γ (t) = 1 we obtain all early
known Fujita type condition of a global solvability [1, 18–22, 24]
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β > k(p − 2) + m + p/N .

Value of the Fujita type critical exponent is β = β∗ = k(p − 2) + m + p/N .

Corollary 1 In the critical case the Eq. (1) always is a self-similar

ξ 1−N d

dξ

(

ξ N−1 f m−1

∣
∣
∣
∣

d f k

dξ

∣
∣
∣
∣

p−2
d f

dξ

)

+ ξ

p

d f

dξ
+ (N/p)( f β + f ) = 0.

Theorem 2 Let us 1 < β ≤ k(p − 2) + m + p/N. Then all solutions of the prob-
lem (1), (2) are blow up in time for u0(x) �= 0, x ∈ RN .

3.2 The Fujita Type Global Solvability for the System (3)

Consider the functions

u+(t, x) = ū(t) f̄ (ξ), v+(t, x) = v̄(t) ψ̄(ξ),

ξ = |η| /[τ(t)]1/p, τ (t) = a1(T + t)1/a1 , η =
t∫

0

c(y)dy − x, x ∈ RN

a1 =(β1 − 1)(β2 − 1)/(β1 − 1)(β2 − 1) − (m1 − 1)(β1 − 1) − (β2 − 1)(p − 2),

f̄ (ξ) = (a − ξγ )
q1+ , ψ̄(ξ) = (a − ξγ )

q2+ , a > 0 , γ = p/(p − 1)

q1 = (p − 1)(k(p − 2) − (m1 − 1))

q
, q2 = (p − 1)(k(p − 2) − (m2 − 1))

q
,

q = [k(p − 2)]2 − (m1 − 1)(m2 − 1)

Theorem 3 Assume

(β1 − 1)(β2 − 1) − (m1 − 1)(β1 − 1) − (β2 − 1)k(p − 2) > 0,

β2 − 1

(β1 − 1)(β2 − 1) − (m2 − 1)(β2 − 1) − k(p − 2)(β1 − 1)
< N/p,

β1 − 1

(β1 − 1)(β2 − 1) − (m1 − 1)(β1 − 1) − k(p − 2)(β2 − 1)
< N/p,

u0(x) � u+(0, x), v0(x) � v+(0, x), x ∈ RN .
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Then for the solution of the problem (1), (2) in Q the estimate

u(t, x) � u+(t, x), v(t, x) � v+(t, x). (8)

is hold.

Proof of the Theorem 1. Consider the following self-similar solution of the
Eq. (1)

u(t, x) = u(t) f (ξ), ξ = |η|τ−1/p, η =
t∫

0

c(y)dy − x,

τ (t) = uβ−[k(p−2)+m]/[β − (k(p − 2) + m)],

where the function

u(t) = [T + (β − 1)

t∫

0

γ (y)dy]− 1
β−1

is solution of the equation
dū

dt
= −γ (t)ūβ,

f (ξ) satisfy to an approximately self-similar equation

ξ 1−N d

dξ

(

ξ N−1 f m−1

∣
∣
∣
∣

d f k

dξ

∣
∣
∣
∣

p−2
d f

dξ

)

+ ξ

p

d f

dξ
+ s(t)( f β + f ) = 0, (9)

where s(t) = γ (t)τ (t)[u(t)]β−[k(p−2)+m].
In particular when γ (t) = 1 from (7) we have a self-similar equation

A( f ) ≡ ξ 1−N d

dξ

(

ξ N−1 f m−1

∣
∣
∣
∣

d f k

dξ

∣
∣
∣
∣

p−2
d f

dξ

)

+ ξ

p

d f

dξ
+ d( f β + f ) = 0, (10)

where d = 1
β−[k(p−2)+m] .

Easy to check that for the function f (ξ) after simple calculation we have

ξ 1−N d

dξ

⎛

⎝ξ N−1 f
m−1

∣
∣
∣
∣
∣

d f
k

dξ

∣
∣
∣
∣
∣

p−2
d f

dξ

⎞

⎠ + ξ

p

d f

dξ
= −(N/p) f (ξ).

Therefore from (8) we have

A( f ) = [[−(N/p) + γ (t)τ (t)ū(t)]β−[k(p−2)+m] + γ (t)τ (t)[ū(t)]β−[k(p−2)+m] f β−1] f .
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According condition of the theorem for small value of a we have

A( f ) ≤ 0 in ξ < a(p−1)/p.

Therefore, according the comparison principle conclude

f ≤ f in ξ < a(p−1)/p.

It means that
u(t, x) ≤ u+(t, x) = u(t) f (ξ), in Q.

Proof of the Theorem 1 completed.

4 The Second Critical Exponent Case

Recently Zheng, Chunlai Mu, Dengming Liu, Xianzhong Yao, and Shouming Zhou
for the decaying initial data establish a secondary critical exponent to the problem (1),
(2) when γ (t) = 1. They for the case c(t) = 0, γ (t) = 1 established that if u0(x) ≈
M |x |−a, M > 0 then value a = a∗ = p/(β − k(p − 2) + m) is secondary critical
exponent for the problem Cauchy. The cases k = 1, γ (t) = 1, c(t) = 0, γ (t) =
1, c(t) = 0, k = 1, p = 2 considered in works [1] In particular, J.S. Guo and Y.Y.
Guo (see [22]) when c(t) = 0, γ (t) = 1, k = 1, p = 2 obtained the secondary
critical exponent for the porousmedium type equation in high dimensions and proved
existing a secondary critical exponent a = a∗ = 2/(β − m) such that if u0(x) ≈
|x |−a the solution of (1) blows up in finite time for the initial data, which behaves
like |x |−a at ∞ if a belongs to (0, a∗), and there exists a global solution if a belongs
to (a∗, N ).

Below we establish asymptotic behavior of the solutions in the secondary critical
exponent case.

Introduce the function

f (ξ) = (a + ξγ )
γ1 , γ = p

p − 1
, γ1 = − p − 1

β − (k (p − 2) + m)
.

Theorem 4 Let us β > max (k (p − 2) + m) , [(k (p − 2) + m) N ]/(N − p),
p < N, then the regular vanishes at infinity solutions of the equation (1) has an
asymptotic representation

f (ξ) = c(m, l, p, k, N , β)(a + ξ
p

p−1 )
− p−1

β−(k(p−2)+m) (1 + o(1)), (11)
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where

c(m, p, k, N , β) =
(

|kγ1|p−2(p − 1)
(N − p)β − (k (p − 2) + m) N

β − (k (p − 2) + m)

)

.

In the work [24] in the case p = 2, k = l = 1, γ (t) = 1, c(t) = 0 the following
formal asymptotic of solution is given

f (ξ) ≈ cξ− 2
β−m

which used for numerical solution. But, value of constants c is not known. We notice
according the Theorem1 value of constants c is

c =
[
(N − 2)β − Nm

β − m

] 1
β−m

, β > N/N − 2, N � 3.

Mentioned authors using this asymptotic of solution solves numerically. But with-
out proving of the Theorem 1 and finding value of constant c. Consider particular
case of the Eq. (1) when γ (t) = 1, c(t) = 0.

Then notice that from (9) in the case m = 1, p = 2, k = l = 1 we have

c(1, 1, 2, 1, N , β) =
[
(N − 2)β − N

β − 1

] 1
β−1

.

In particular when p = 2, k = m = 1. For L p(uk)−Laplacian equation (in (1)
k = m), see [26])

c(m, k, p, k, N , β) =
(

|kγ1|p−2k(p − 1)
(N − p)β − (k(p − 1) − 1)N

β − (k(p − 1) − 1)

)

,

where k(p − 1) − 1 > 0.
For p−Laplacian equation (k = m = 1)

c(1, l, p, 1, N , β) =
(

|kγ1|p−2(p − 1)
(N − p)β − pN

β − p

)

.

Notice these results are given in [26] and they are very important for computational
aims.

The proofs of Theorems 2 are based on the transformation of Eq. (1) as follows:

f (ξ) = f (ξ)y(η), η = ln
(

a + ξ
p

p−1

)

Then with respect to the function y(η) we obtain a new nonlinear equation whose
solution for η → ∞ tends to the constant c indicated in the statement of the theorem.
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These results extended to the following equation with variable density

ρ1(x)
∂u

∂t
= div

(

ρ2(x)u
m−1

∣
∣
∣∇uk

∣
∣
∣

p−2 ∇u

)

+ ρ1(x)γ (t)uβ, u(0, x) = u0(x) � 0, x ∈ RN ,

(12)
where ρ1(x) = |x |n1 , ρ2(x) = |x |n2 , ni ∈ R, ∇(·) − grad

x
(·).

Consider the functions defined in Q

z1(t, x) = ū(t)y(ξ), y(ξ) = (a − ξ p/(p−1))
(p−1)/(k(p−2)+m−1)
+ ,

ξ = ϕ(x)[τ(t)]−1/p, ϕ(x) = p − (n1 + n2)

p
|x |p/(p−(n1+n2)), s = p

N − n1
p − (n1 + n2)

.

Theorem 5 Assume k (p − 2) + m − 1 > 0, n1 < N , n1 + n2 < p,

γ (t)τ (t)[ū(t)]β−[k(p−2)+m−1] < s/p, t > 0, u0(x) � z1(0, x), x ∈ RN , (13)

then the problem (8) is global solvable in Q.

Corollary 2 Let γ (t) = 1, k(p − 2) + m − 1 > 0. Then condition of the Fujita
type solvability of the problem (10) is

β > k(p − 2) + m + N − n1
p − (n1 + n2)

.

Corollary 3 Let γ (t) = tσ , k(p − 2) + m − 1 > 0. Then condition of the Fujita
type solvability of the problem (10), (2) is

β > β∗ = (1 + σ)[k(p − 2) + m] + N − n1
p − (n1 + n2)

,

value of the critical exponent is equal to

β = β∗ = (1 + σ)[k(p − 2) + m] + N − n1
p − (n1 + n2)

.

This result consist all early known results authors [1–6, 18–24] about global
solvability problem Cauchy to the degenerate type Eq. (10)

c(m, k, p, σ, S) =
(

−|kγ1|p−2l(p − 1)
(S − p)β − (1 + σ) (k (p − 2) + m) S

β − (1 + σ) (k(p − 2))

) 1
β−(k(p−2)+m)

S = p
N − n1

p − (n1 + n2)
p − (n1 + n2) > 0, n1 < N .
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For the Eq. (10) value of the critical exponent β∗ is following

β = β∗ = k (p − 2) + m + N − n1
p − (n1 + n2)

The many works are devoted to the Fujita type critical exponents for semi-linear
system of equation

∂u

∂ t
= Δu + vβ1 ,

∂u

∂ t
= Δv + uβ2

Escobedo–Herrero [11] proved the following condition of the critical exponents

βi + 1

β1β2 − 1
< N/2, i = 1, 2

Below on example cross system we give an algorithm for establishing value of
a critical exponent for the system (3) it is find condition of a global solvability
using comparison principle, the condition of a finite speed of perturbation which is
in particular extension of results of the works for the cross system (3) based on a
self-similar approach.

We construct an approximately self-similar system for (3) by following way

u(t, x)= ū(t)w(τ (t), η), v(t, x)= v̄(t) z(τ (t), η), η =
t∫

0

c(y)dy − x, x ∈ RN

(14)
w(τ (t), x) = f (ξ), z(τ (t), x) = ψ(ξ), ξ = |η| [τ(t)]−1/p,

where ū(t) = (T + t)−1/(β1−1), v̄(t) = (T + t)−1/(β2−1), τ (t) = ∫ [ū(t)](p−2)

[v̄(t)](m1−1)dt = ∫

ū(m2−1)v̄(p−2)dt ,

ξ 1−N d

dξ

(

ξ N−1ψm1−1

∣
∣
∣
∣

d f

dξ

∣
∣
∣
∣

p−2 d f

dξ

)

+ ξ

p

d f

dξ
+ b1(

1

β1 − 1
f + f β1) = 0

ξ 1−N d

dξ

(

ξ N−1 f m2−1

∣
∣
∣
∣

dψ

dξ

∣
∣
∣
∣

p−2 dψ

dξ

)

+ ξ

p

dψ

dξ
+ b2(

1

β2 − 1
ψ + ψβ2) = 0, (15)

b1 = (β1 − 1)(β2 − 1)/[(β1 − 1)(β2 − 1) − (m1 − 1)(β1 − 1) − (β2 − 1)(p − 2)],
b2 = (β1 − 1)(β2 − 1)/[(β1 − 1)(β2 − 1) − (m2 − 1)(β2 − 1) − (β1 − 1)(p − 2)].
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If
(β1 − 1)(k(p − 2) + m1 − 1) = (β2 − 1)(k(p − 2) + m1 − 1)

Now consider the functions
From this estimate for the weak solution of the considered problem we have the

property of FVPD, i.e.

u(t, x) ≡ 0, v(t, x) ≡ 0 |x | � l(t) = a[τ(t)]1/p,

τ (t) = (T + t)1−(m1−1)α2−(p−2)α1

1 − (m1 − 1)α2 − (p − 2)α1
, 1 − (m1 − 1)α2 − (p − 2)α1 > 0

Since the functions u+(t, x), v+(t, x) has the property

u+(t, x) ≡ 0, v+(t, x) ≡ 0 |x | � l(t) = a(p−1)/p[τ(t)]1/p.

Proof of theTheorem3based on comparison principle of solution. For comparison
function, we will construct the following Zeldovich–Barenblatt type solution to the
main member of the system (3)

u+(t, x) = u(t)(T + t)−α1 f (ξ), v+(t, x) = v(t)(T + t)−α2 ψ̄(ξ),

ξ = |x | /[τ(t)]1/p, τ (t) = a1(T + t)1/a1 a1 = 1 − (m1 − 1)α2 − k(p − 2)α1, T > 0,

where α1 = n1
n2

α2, n1 = k(p − 2) − (m1 − 1), n2 = k(p − 2) − (m2 − 1), α2

= n2N
pn2+[n1(m2−1))+k(p−2)n2]N ,

f̄ (ξ) = A1 (a − ξγ )
γ1+ , ψ̄(ξ) = A2 (a − ξγ )

γ2+ , A1 > 0, i = 1, 2, a > 0

γ = p

p − 1
, γi = (p − 1)[k(p − 2) − (mi − 1)]

q
, i = 1, 2,

q = [k(p − 2)]2 − (m1 − 1)(m2 − 1),

where constants A1, A2 are solution of the system

Ap−2
1 Am1−1

2 = 1/p(kγ γ1)
p−1,

Am2−1
1 Ap−2

2 = 1/p(kγ γ2)
p−1.
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5 Results of Numerical Experiments and Visualization

At the numerical solution of the considered problems, the equationwas approximated
on a grid under the implicit circuit of variable directions (for amultidimensional case)
in a combination to the method of balance [24]. It is knownmain problem for numer-
ical solution of considered problem is choice appropriate an initial approximation
of solutions depending on value of the numerical parameters. Iterative process were
constructed based on the method Picard, Newton and a special method.

Results of computational experiments shows, that all listed iterative methods are
effective for the solution of nonlinear problems and leads to the nonlinear effects if we
will use as initial approximation the solutions of self-similar equations constructed
by the method of nonlinear splitting and by the method of standard equation [21–23].
As it was expected, results of the numerical experiments shows that for achievement
of necessary accuracy the method of Newton demands smaller quantity of iterations,
than methods of Picard and special method due to a successful choice of an initial
approximation. We observe that in each considered cases Newton’s method has the
best convergence due to good choosing of an initial approximation. The results of
all numerical experiments are presented in visual form with animation.

Below are listed typical numerical results the property phenomena a finite velocity
of perturbation distribution, and space localization for the solution of the problem
(3), (4).

In fast diffusion case k(p − 2) + mi − 1 < 0 for computation as an initial approx-
imation were take the function

u0(x, t) = (T + t)−α1 (a + ξγ )γ1 , v0(x, t) = (T + t)−α2 (a + ξγ )γ2 , k(p − 2) + mi − 1 < 0,

m1 = 1.1 , m2 = 1.2 , p = 1.2, k = 1, n = 0.1, q = 0.2, eps = 10−3.

With property u0(x, t) = (T + t)−α1(a + ξγ )γ1

In the slowly diffusion case k(p − 2) + mi − 1 > 0 as initial approximation were
take the function

u0(x, t) = (T + t)−α1 (a − ξγ )
γ1+ , v0(x, t) = (T + t)−α2 (a − ξγ )+γ2 , k(p − 2) + mi − 1 > 0,

m1 = 5.5 m2 = 3.2, p = 4.5, k = 2, n = 1.2, q = 1.1, eps = 10−3.
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6 Conclusion

Method establishing Fujita type global solvability of the problem Cauchy for one
class degenerate type parabolic equation and cross system proved. The algorithm
of finding a critical exponent for one degenerate type parabolic equations and cross
system is suggested.

The role of a critical exponent for one degenerate type parabolic equations and
system is shown.

FVPD properties of solutions diffusion systems with double nonlinearity, with
source based on self-similar analysis established

Experimentally showed, that due to base on self-similar analysis of solution some
results of numerical experiments keeping nonlinear property of solution as FVPD
and space localization.
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A Language of Terms of Taylor’s
Formula for Quadratic Dynamical
Systems and Its Fractality

Abdulla Azamov

Abstract It is discussing one-step methods of numerical solving of a Cauchy prob-
lem for systems of ordinary differential equations. It is constructed an algorithm of
numerical solving with arbitrary high precision for quadratic systems based on a
context-free grammar of N. Chomsky, that generates a special language of terms of
Taylor’s formula. The estimation for remainder term is obtained in explicit form. It
is studied some combinatorial problems for the language � and described its fractal
structure. A geometric representation of the fractal is also given in the space l2.

Keywords Quadratic system · Cauchy problem · Taylor’s formula · Chomsky
grammar · Fractal · Hilbertian space

1 Introduction

Essential part of results ondynamical systems relies to numerical solutionof aCauchy
problem

dx/dt = f (x), x(0) = x0, (1)

where x ∈ R
d ([19–21, 27], see also [5]). If a linear case is left aside, quadratic

systems with right-side vector-function f given in the form

fi =
∑

j,k

a j,k
i x j xk+

∑

j

b j
i x j + ci , i, j, k = 1, 2, . . . d (2)

A. Azamov (B)
Institute of Mathematics of the Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
e-mail: abdulla.azamov@gmail.com

© Springer Nature Switzerland AG 2018
A. Azamov et al. (eds.), Differential Equations and Dynamical Systems,
Springer Proceedings in Mathematics & Statistics 268,
https://doi.org/10.1007/978-3-030-01476-6_3

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01476-6_3&domain=pdf
mailto:abdulla.azamov@gmail.com
https://doi.org/10.1007/978-3-030-01476-6_3


26 A. Azamov

make up extraordinary important class in the modern Theory of Dynamical Systems
[4, 13, 28]. It contains such famous samples as Lotka–Volterramodel [1] and Lorentz
and Rössler systems [22, 25–27, 31]. Interest to quadratic systems is also stipulated
by the 16th problem of D. Hilbert [24, 30].

For d ≥ 2 the system (2) is unsolvable in general case. Very rather its properties
used being declared basing on numerical solution and computer modeling. (It should
be noticed that a picture in a computer’s monitor may sensitively depend on quantity
of length of a quantization step h. For example if a system has a circle born due
to doubled period bifurcation from simple circle then for some values of h there
may be observed chaotic trajectory fulfilling Mobius surface with the circle as a
boundary while for decreasing h the trajectory may become regular with the circle
as its limit set ([6], Chap. 4.).) In any way degree of precision of numerical solution
is an important factor for Computational Dynamics.

In most cases variants of Runge–Kutta method are used for numerical solving
with order of precision hs, s = 2÷5 [6, 8, 32].

Here a new approach to numerical solving of Cauchy problem based on Taylor’s
formula

x(t + h) =
n∑

k=0

x (k)(t)

k! hk + Rn+1(t, h) (3)

will be exposed.
Generally speaking the scheme (3) was not used in practice as an expression for

x (n) across the function f and its derivations even more cumbersome. Nevertheless
it turns out that the situation becomes essentially simple for quadratic systems. This
circumstance allows to give an explicit estimation formula for the remainder term
Rn+1(t, h) and to construct a simple algorithm for numerical solving with arbitrary
high order of precision. The last is based on an interpretation of terms of Taylor’s
formula as a special language with the context-free grammar of Chomsky [10, 11].
One combinatorial problem of the language will be studied as well. Noteworthy that
a tree representing this language has fractal structure. It is suggested a geometrization
of this fractal in the Hilbertian space l2.

2 Estimation of the Remainder Term of Taylor’s Formula

Let’s begin considerations from the case d = 1. Here the equation (1) can be inte-
grated explicitly but arguments will be suitable for high dimensional case. Thus now
values of f (x(t)), f ′(x(t)) and f ′′(x(t)) are numbers and in addition f ′′(x) = const .
Further these quantities will be called multiplicators and used shortened denotations
f, f ′, f ′′ for them. Monomials composed by multiplicators and taking part in Tay-
lor’s formulae will be called Taylorian terms. Essentially the mentioned names will
be used with respect to cases d ≥ 2 as well when f, f ′, f ′′ a not number-valued.
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(Keeping in mind just this circumstance the term ‘multiplicator’ was preferred to
‘factor’ or ‘multiplier’; see below).

Let numbers Dk
n , n ≥ 1, k = 0, 1, 2, . . . ,

[
n−1
2

]
, be defined by recurrent rela-

tions
D0

n = 1, Dk
n+1 = (n − 2k + 1)Dk−1

n + (k + 1)Dk
n (4)

([·] denotes the integer part of a number; it is assumed Dk
n = 0 for k < 0 and k >

[(n − 1)/2]). Note D1
n = 2n−1 − n somaxkDk

n increases very quicklywhen n → ∞.

Statement 1. The following equality holds

x (n)(t) =
∑

k

Dk
n f

′′k f ′n−2k−1

f
k+1

. (5)

Proof is similar to one for Newton’s binomial formula i.e. the method of induction
on the parameter n can be provided using (4). It is easier to realize induction step
separately for n odd and even as in the first case the number of terms in (5) doesn’t
change while in the second case it increases to unit. For several beginning values of
n the expression (5) looks

ẋ = f, ẍ = f ′ f, x I I I = f ′′ f 2 + f ′2 f, x IV = f ′3 f + 4 f ′′ f ′ f 2,

xV = f ′4 f + 11 f ′′ f ′2 f 2 + 4 f ′′2 f 3, . . . (6)

It is useful to note that in each term a power of the multiplicators f, f ′ will be
univalently determined by a value of n and a power of f ′′.

Now let us consider the case d ≥ 2. This time values of the multiplicator f is a
vector and f ′ is Jacobi matrix (in other words a tensor ∂ fi (x)

∂x j
of the rank (1,1)) and

f ′′ is a vector with components consisting of bilinear forms (i.e. a tensor ∂2 fi (x)
∂x j ∂xk of

the rank (2, 1); [9]). Here f ′′ = const as well but the formula (4) not necessarily true.
For example the expression for x IV looks

x IV = f ′3 f + 2 f ′′ f ′ f f + f ′′ f f ′ f + f ′ f ′′ f f, (7)

and if take into account symmetry of the form f ′′ with respect to contravariant indices
i.e. the property f ′′(u, v) = f ′′(v, u) then

x IV = f ′3 f + 3 f ′′ f ′ f f + f ′ f ′′ f f. (8)

The right side will be written in expanded form as

[ f ′(x)]3 f (x) + 3 f ′′(x)[ f ′(x) f (x), f (x)] + f ′(x) f ′′(x)[ f (x), f (x)].

Now unlike to the case d = 1 values of the terms f ′′ f ′ f f and f ′ f ′′ f f may
differ. For example if f = (−y2, x2) then f ′′ f ′ f f = −4(x3y2, x2y3), f ′ f ′′ f f =
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−4(y5, x5).That iswhyTaylorian terms in the expression containing the samepower
f ′′k of the multiplicator f ′′ won’t be assembled to a monomial with the coefficient
Dk

n . Nevertheless an essential part of the statement will be saved.

Theorem 1 The expression for a derivative x (n) of the solution of the Cauchy prob-
lem (1) is a sum of collections �k

n of Taylorian terms such that the group �k
n consists

of Dk
n monomials from multiplicators f ′′, f ′, f in the quantity k, n − 2k − 1 and

k + 1 respectively (k = 0, 1, . . . , [(n − 1)/2]).
Now suppose that the solution x(t) of the problem (1) exists on a interval [0, T ]

and satisfies there the condition x(t) ∈ K , where T is some given positive number
and K is a given compact (and usually convex) subset of the space R

d .
Let

M0 = max
x∈K

| f (x)| , M1 = max
x∈K

∥∥ f ′(x)
∥∥ , M2 = ∥∥ f ′′(x)

∥∥ = const.

(Here all the norms are Euclidean [9]:
∥∥ f ′(x)

∥∥ = max|u|≤1

∣∣ f ′(x)u
∣∣ ,

∥∥ f ′′(x)
∥∥ =

max|u|≤1, |v|≤1

∣∣ f ′′(x)[u, v]∣∣). Thus we have
∣∣ f ′u

∣∣ ≤ M1 |u| , ∣∣ f ′′[u, v]∣∣ ≤ M2 |u| |v| .

These inequalities imply that all Taylorian terms from the group �k
n admit due

to Theorem 1 the same upper estimation by norm in the form M2
kM1

n−2k−1M0
k+1.

Hence it is true the following

Theorem 2

|Rn+1| ≤ hn+1

(n + 1)!
∑

k

Dk
n+1M

k
0M

n−2k
1 Mk

2 , k = 0, 1, . . . , [(n − 1)/2].

Open problem 1. Find expressions for the coefficients Dk
n (similar to the identity

for binomial ones (nk ) = n!
k!(n−k)! ) and

∑
k
Dk

n .

3 The Language of Taylorian Terms and an Algorithm for
Numerical Solving of a Cauchy Problem with High
Precision

As it was noted above if d ≥ 2 a compact formulae for a derivative x (n) as (5) is dif-
ficult to be derived. In order to overcome such an obstacle we apply to Mathematical
Linguistics [2]. For that let multiplicators f, f ′ and f ′′ redenote by digits 0, 1, 2
respectively. Then each Taylorian term will be inverted to a word over the alphabet
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{0, 1, 2}. In order to differ such words from arbitrary words from symbols 0, 1,
2, the first ones will be called d-words. The family of all d-words makes a special
language �. If σ = ε1ε2 . . . εn is a d-word, then its length is |σ | = n and any part of
a form εmεm+1 . . . εl (1 ≤ m ≤ l ≤ n) is called a subword.

Usually languages are considered containing an empty word Λ of length 0 that is
a subword for any d-word.

The language � possesses simple generative grammar ([2], Chap. 4). Indeed the
rules d

dt f (x) = f ′(x) f (x) (production of a matrix with a vector as a convolution of
corresponding tensors of the ranks (1, 1) and (0, 1)) and d

dt f
′(x)u = f ′′(x)[ f (x), u]

(a vector that equals to the value of a vector-valued linear form on vectors f (x) and
u ∈ R

d that may be considered as a convolution of tensors as well) will be rewritten
as generating rules

0 → 10, 1 → 20, (9)

for the language �. The generation may be begun from the word 0 or from the rule
Λ → 0. The rules (9) mean that if in a d-word σ 10 and 20 are substituted for pairs
0 and 1 respectively then the result will be a d-word of the length |σ | + 1. The
described generation introduces to � a structure of a tree with the beginning

(The last line consists of d-words corresponding to the Taylorian terms from the
formula (7)).

Theorem 3 � belongs to the type of context-free languages of N Chomsky.

Indeed, if 0, 1, 2 are taken as terminal symbols and 0̃, 1̃, 2̃ are taken as unterminal
ones then context-free grammar [10]

0̃ → 1̃0̃, 1̃ → 2̃0̃, 0̃ → 0, 1̃ → 1, 2̃ → 2

with initial symbol 0̃ generates just d-words and only.
One of the main questions of Mathematical Linguistics concerns a criteria, allow-

ing to define if a given word belongs to the considering language ([2], Sect. 1). For
� the question has simple answer.

Theorem 4 (on solvability of the �) A word σ over the alphabet {0, 1, 2} belongs
to the language � if and only if

(a) it ends by the symbol 0;
(b) a number of symbols 0 is greater than a number of symbols 2 more on 1;
(c) if symbols 2 are numerated in the order from right to left (as in the manner

of Arabian writing), then behind j th symbol 2 it should follow exactly j + 1
symbols 0.
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Proof The rules (9) imply immediately that every d-word possesses properties (a)–
(c). To set sufficiency take a word σ on the alphabet {0, 1, 2}with properties (a)–(c).
If |σ | = 1 or 2 then it is obvious that σ is a d-word. Let σ be a word of the length
n, n ≥ 3. Due to property (a) it has a form σ = ρε0k, where 0k denotes a word
consisting of k symbols 0 while ε = 1 or ε = 2 and ρ is some subword of the length
n − k − 1, k ≥ 1.

Now if ε = 1 then σ is ended by a subword of the form 10k (k zeroes following 1).
Substituting 0k for 10k we get a new word which will still possess properties (a)–(c).
Moving back we get σ by the first of rules (9) and so σ belongs �. Similar reasoning
hold for the case ε = 2 as well (now necessarily k ≥ 2).

The language � allows to construct an algorithm (called QS-algorithm below)
for solving Cauchy problem of quadratic systems [3]. Let Extract (n, σ ; x) be a
procedure calculating the value of the Taylorian term corresponding to a d-word σ

of the length n at a point x ∈ K (the parameter n is added to the data for convenience
only). Thus

Extract (1, 0; x) = f (x), Extract (2, 10; x) = f ′(x) f (x),

Extract (7, 1202010; x) = f ′(x) f ′′(x){ f (x), f ′′(x)[ f (x), f ′(x) f (x)]}

Suppose we are to calculate x(t + h) basing on x(t) with precision hN . Introduce
a transformation D over lists (arrays) from elements of T : if L is any list (array) of
d-words then DL is the sequence of lists Dσ, σ ∈ L , defining as following: Dσ is a
list of d-words each of them of the length |σ | + 1 obtained by applying sequentially
the rules (9) to all symbols 0 and 1 (in order from left to right). For example

D〈200〉 = 〈2100, 2010〉, D〈110〉 = 〈2010, 1200, 1110〉

and
D〈200; 110〉 = 〈2100, 2010; 2010, 1200, 1110〉.

(In order to highlight lists of d-words, angular parenthesis will be used as above.)
Note that the transformation D can be easily realized as procedure in programming
languages.
QS-Algorithm. Let the order of precision on a step N be given (N ≥ 2). Take
n = 0, L = 〈0〉 , H = h, S = x(t), and put (*) n = n + 1. Calculate � = ∑

σ∈L
Extract (n, σ ; x(t)), S = S + H�. If n ≥ N , then end process by the value x(t +
h) = S else make the new list L := DL and put H := Hh/n, then return to the step
(*).

One may notice that QS-algorithm itself derives Taylor’s formula during calcu-
lations due to the language T .
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4 A Language of Roots and Combinatorial Analysis
of Their Affixes

Let σ be a d-word. Crossing out all symbols 1 in the word σ and the last 0 as well
we obtain a word over the alphabet {0, 2}. It will be called a 2,0-root at that time
deleted symbols 1 will be called affixes. We denote � the language of all 2,0-roots
yielded from d-words.

The notion of a 2,0-root can be linked with Taylor’s formula in the following
way. Consider some Taylorian term. Since f ′ is a linear form it should predict a
vector-valued quantity. Thus an action of f ′ (i.e. its convolution with a following
tensor of appropriate rank) gives a tensor of the same rank again. Repeating such
kind of reductions in the end we get an expression consisting of vectors and bilinear
forms only. Its scheme will be expressed by the 2,0-root. This allows to divide the
procedure Extract (n, σ ; x) into two steps: firstly to extract all multiplicators f ′ by
means of convolutions and in parallel find corresponding 2,0-root σ̂ and then apply
Extract (2k + 1, σ̂0, x) (where k is a number of symbols 2 in the d-word σ ). Such
a division may make calculation of Extract (n, σ ; x) faster than the direct process.

The language � is solvable as Theorem 2 implies
Statement 2. A word over the alphabet {0, 2} will be a 2,0-root iff
(a) ends with the symbol 0;
(b) the number of symbols 0 is equal the number of symbols 2;
(c) if symbols 2 are numerated in the order from right to left, then on the right of

the j th symbol 2 follows at least j symbols 0.

Obviously if one inserts the subword 20 into any place (including the beginning
and the end) of a 2,0-root he receives a 2,0-root again and conversely any 2,0-root
can be obtained in such way beginning from the empty word. The corresponding
grammar consists of the following rules:

Λ → 20 0 → 200, 0 → 020, 2 → 200, 2 → 202 (10)

and so � has context-free grammar.
One can easily see that the rules (10) may generate concrete 2,0-root in several

way (such a property is called ambiguity, [2], Sect. 7). It turns out the language �
can be built by means of other rules producing all 2,0-roots with unique prehistory
and allowing to present � as a rooted tree ([16], Sect. 1.5).

Due to Statement 2 every 2,0-root has a form ρ0k where a subword ρ ends by the
symbol 2. Now define a transformation 	 that conforms to ρ0k the following list of
k + 1 words

〈ρ0k20, ρ0k−1200, . . . , ρ200k〉, (11)

belonging to� because of Statement 2.	 transforms a list of 2,0-roots as well acting
to each its element in the same order. Therefore 	 can be iterated.
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Theorem 5 1o. 	k(Λ) contains only and all 2,0-roots of the length 2k.
2o. All 2,0-roots in the infinite list 	1(Λ), 	2(Λ), . . . , 	k(Λ), . . . are different.

Proof It is clear that 	k(Λ) consists of 2,0-roots of the length 2k. Let us confirm
converse i.e. every 2,0-root σ with the length 2k presents in the list	k(Λ). If |σ | = 2,
then σ ∈ 	1. Let k ≥ 2 and σ have a form σ120m, m ≥ 1. Consider a word σ10m−1

of the length 2(k − 1), obtained from σ erasing the most right pair of symbols 20.
The properties (a)–(c) of the Statement 2 still hold. Thus the supposition σ10m−1 ⊂
	k−1(20) implies σ ∈ 	k(20).

The assertion 2o can be also checked easily.
Naturally the following question arises: is it possible to regenerate the list of d-

words starting from the list of 2,0-roots? Here partial answer will be given only – we
are able to account the collection of d-words of the fixed length with a given 2,0-root
but can’t restore the whole list of corresponding d-words.

Thus let ρ be a 2,0-root of a length 2k and suppose we are to rebuilt a d-word σ

such that |σ | = n. For that N = n − 2k − 1 affixes (i.e. symbols 1) should be added.
In principle they can be inserted, being distributed someway, in any place in the word
ρ i.e. in left side and right side and in the middle between symbols of ρ. A number
of such places (will be called boxes) equals 2k + 1.

Each way of distribution of affixes among boxes will generate a partition of the
number N into 2k + 1 nonnegative addends. In the book [29] such partitions were
called compositions. There was also cited that the number of compositions of integer
N into K addends equals CK−1

N+K−1 ([29], Sect. 5.3.1). In our case N = n − 2k − 1,
K = 2k + 1, so that each 2,0-root generates

C2k
n−2k−1+2k+1−1 = C2k

n−1,

many d-words (k = 0, 1, . . . ,
[
n−1
2

]
). Note that to complete obtaining d-words 0

should be imputed to the end. For example 2200 generates 15 d-words of the length 7:

11� 2� 2� 0� 0 → 112200(0), 121200(0), 122100(0), 122010(0),

122001(0), 2112000, 212100(0), 212010(0), 212001(0), 221100(0),

221010(0), 221001(0), 220110(0), 220101(0), 220011(0)

(for the first composition boxes are shown, imputed 0 is taken into parenthesis in
each composition).
Statement 3. All compositions obtained from 2,0-roots by distribution affixes
and considering as words over the alphabet {0, 1, 2} different and belongs to the
language �.

Proof can be provided using induction by a number of imputing affixes.
Note that the algorithm of G.Ehrlich for generation of the list of compositions in

lexicographical order is also cited in [29] (Sect. 5.4).
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Let αk denote a number of different 2,0-roots of a length 2k. Due to Statement
3 there are αk · C2k

n−1 different d-words. Remembering that d-words (of course in
the form of Taylorian terms) may repeat in the expression for x (n) we get the rough
estimation αk · C2k

n−1 ≤ Dk
n .

Open problem 2. Is it possible to find explicit formulae for αk?
Open problem 3. Find a rule of counting how many times a given d-word σ of the
length n is repeated in the expression for x (n) (with or without regard of symmetry
of the bilinear form f ′′).

5 A Fractal of Suffixes

Continuing analysis the language of d-words let us reduce them once more. Every
2,0-root ends with one or more symbols 0 and so it has the form ρ0k with a subword
ρ ending by the symbol 2. In such situation the subword 0k will be called a suffix (of
the 2,0-root and the corresponding d-word as well). As a result the infinite tree of
2,0-roots turns into a tree of suffixes. The beginning of the reduction looks 20 → 0;
2020 → 0, 2200 → 00; 202020 → 0, 202200 → 00, 220020 → 0, 220200 →
00, 222000 → 000.

The transformation 	 defined for generating of 2,0-roots, successfully acts to
affixes too and we keep the notation. Thus 	(0k) is the list 〈0, 02, 03, . . . , 0k+1〉.

It should be noticed some difference between the trees of 2,0-roots and suffixes. In
the first case all vertices are different (Theorem 5 ) but in the second one each suffix
0k repeats infinitely many times. Moreover we are not able to distinguish them even
inside of every list	m(0k)with a fixedm as it may also contain the same suffixmany
times. Therefore the tree-structure is essential for the language of suffixes generated
by the transformation	. This tree will be denoted�. In Fig. 1 its beginning is drawn.

It is clear that � possesses fractal structure. Indeed first if an iteration number k
increases quantity of suffixes 0m for each k grows rapidly exceeding the geometric
progression 2m . Secondly the whole tree � repeats beginning from every vertex,
corresponding to the suffix 0 (that follows from acting way of the transformation	).
More commonly let 0̂k with a fixed k be a concrete suffix met in the list 	m(0) with
minimal m. Let �(̂0k) be the subtree growing from the root 0̂k . Then every subtree
with a root in a vertex, corresponding to a suffix 0k with the same k is isomorphic to
�(̂0k) (in the sense of Graph theory, [16]).

We get more compact form of the fractal of suffixes if we consider lists Tk =
〈0, 02, 03, . . . , 0k〉 instead of suffixes themselves. Here we have a transformation
converting each list Tk to the list of lists 〈T2, T3, . . . , Tk+1〉. The obtained tree �

begins with the list T1 that will not be met any more in �. Figure 2 demonstrates this
fractal where every list 〈T2, T3, . . . , Tk, Tk+1〉 is substituted by k i.e. by the quantity
of its elements.

The common number of symbols 0 in the list Tk is a triangular number k(k+1)
2

therefore the tree in Fig. 3 can be considered as a special fractal of triangular numbers.
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Fig. 1 Fractal of suffixes of Taylorian terms

Fig. 2 Arithmatic fractal of suffixes

Fig. 3 Geometrization of
the fractal, n = 2, λ = 0.5

Statement 4. (1) If all subtrees of � growing from vertexes 0 are removed (with
exception of the root of � that should be removed with a unique edge only) then
the remainder subgraph will be isomorphic to the fractal �. (2) If one moves off all
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vertexes 0 with outgoing edges then � will be decomposed into a forest of trees each
of them isomorphic to �.

Above the fractal � was represented as an object of Graph Theory and the frac-
tal � was done as one of Number Theory. Nowadays number-theoretical fractals
becoming usual. Those connected with Pascal’s triangle are well studied [7]. Last
period searching of fractal properties of prime numbers and zeroes of Riemannian
ζ -function and other theoretical fractals becomes more and more intensive [12, 14,
18]. In other hand one of commonwise received types of fractals are thosewhose self-
similarity can be expressed by means of affine contracting transformations [17, 23].
A representation of a fractal using geometric notions can be called ‘geometrization’.
Here we are going to describe a geometric representation for the fractal �.

As a space for that we are to choose infinite dimensional space l2. (Its points
will be distinguished by bold letters.) Let e1, e2, . . . be a standard basis so that
ei = (δi1, δi2, . . .) where δi j is Kronecker’s symbol.

Now we fix a value of a parameter λ from the interval (0, 1) and put

s0 = 0; sm = λ + λ2 + · · · + λm, m = 1, 2, 3, . . . ; s∞ = λ

1 − λ
.

Then we construct an injective map (immersion) Φ : � → l2 by induction on m.
First

Φ(0) = 0 = (0, 0, 0, . . .) for the 0 that will play a role of the root of Φ(�);

Φ(0) = λe1 = (λ, 0, 0, . . .) and Φ(00) = λe2 = (0, λ, 0, . . .) for the suffixes 0
and 00 respectivly from the list 	(0) = 〈0, 00〉;

Φ maps suffixes from 	2(0) = 〈0, 00; 0, 00, 000〉 to the points of l2
(λ + λ2, 0, 0, . . .), (λ, λ2, 0, . . .), (λ2, λ, 0, . . .), (0, λ + λ2, 0, . . .), (0, λ, λ2, 0, . . .)

respectively.
Suppose that the mapΦ is already defined on each suffix 0̆k ∈ 	m(0), converting

it to a point x that the following conditions are held:

(1) xn = 0 for n > m + 1;

(2) xn = ∑
i∈Jn

λi for n = 1, 2, . . . , m + 1 where J1, J2, . . . , Jm+1 is a partition of

the set {1, 2, . . . ,m};
(3) m ∈ Jk . (As usual

∑
i∈J

λi = 0 for J = ∅).

Now we continue Φ for affixes from the list 	m+1
(
0̆k

)
= 〈0, 02, . . . 0k+1〉

taking as their images of corresponding suffixes the points x + λm+1e1, x +
λm+1e2, . . . , x + λm+1ek+2.

One can easily check that the conditions (1)–(3) holds for newly defined values
of Φ.
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Let us denote � the image Φ(�) ⊂ l2 with induced structure of a tree.

Theorem 6 If 0 < λ ≤ 1
2 then the map Φ is injective: different vertexes of � will

be mapped to different points.

Proof is follows of the next inequality: if J, K ⊂ {1, 2, . . . ,m} and
∑

i∈J

λi >
∑

i∈K
λi ,

then ∑

i∈J

λi > λm+1 +
∑

i∈K
λi .

This is consequence of a simple inequality λm >
∑
i∈K

λi being true for arbitrary

finite subset K ⊂ {m + 1,m + 2, . . .}.
Remark 1 Theorem 6 obviously holds in the case of transcendental λ as well.

In according to construction every point x ∈ � (i.e. a vertex of the tree �) has
only finite number of coordinates not equal 0 so that the integer

ρ(x) = min{n | xk = 0 for all k > n}

is correctly defined. It will be called rank of the point x .
In order to get imagine about construction of the l2-fractal it is useful to study

its finite dimensional sections (briefly “crowns”) �d = {x ∈ � | ρ(x) ≤ d}, d =
1, 2, . . .. Ignoring zero coordinates xn = 0, n = d + 1, d + 2, . . . , of points from
�d allows us to consider the crowns as finite dimensional objects (“trees”) growing
in the correspondent space R

d ).
The crown �1 consists of points of the real axis making decreasing geometric

progression with the denominator λ. (�1 may be called “the main trunk” of the
l2-fractal, that stays after cutting all “lateral brunches”. �1 respects to sequence of
leftside 0’s of the lists 	m(0). It can be considered as the simplest fractal.

The crown �2 consists of the trunk �1 and lateral brunches growing from its
vertexes in the direction of the axis x2 so that all its vertexes have a degree 3 besides
the origin (0,0) having degree 2. Behavior of the sequence of layers Hm = �2 ∩
Φ (	m(0)) is more interesting. Its limit in Hausdorff metrics under m → ∞ will be
a compact subset K2(λ) of the segment I1 (one-dimensional simplex) joining points
(λ + s∞, 0) and (0, λ + s∞). In the case λ = 1

2 the set K2(λ) coincides with I1
(Fig. 3; here and further x1-axis is drawn vertically in order to let the tree of l2-fractal
to grow upwards). In the case λ = 1

3 the set K2(λ) is similar to Cantor’s fractal,
moreover its projections to both coordinate axis coincide with classical Cantor’s
compact (Fig. 4). If λ less than 1

3 then the set K2(λ) will be more rare “Cantor’s
dust” [14, 23].
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Fig. 4 Fractal of the crown
K3(λ), λ = 1/3

Fig. 5 Fractal of the crown
K3(λ)

The crown �3 has more complicated structure but that is typical for higher odd
dimensions as well. It has lateral branches growing in the directions of x1 and x2
axis only from vertexes of the trunk and of branches which are parallel to the trunk.
But now there lateral branches growing in the direction of the axis x3 from all other
vertexes (Fig. 5).

We note that a picture for even-dimensional crowns differs from one for odd
dimensional crowns. In the last case projections of coordinate axes can be drawn
equiangular (as in Fig. 6 for d = 5) while in the first case if d > 2 equiangular
projections of axes may coincide in pairs. Taking account this circumstance in Fig. 7
the crown �4 illustrated in nonequiangular projection.

Vertexes belonging to the layer Hm
d = �d ∩ Φ (	m(0)) lay in the simplex sm�d−1

homothetic to the standard one

�d−1 = {y ∈ Rd |
∑

yi = 1, yi ≥ 0, i = 1, 2, . . . , d}

with the coefficient sm . At m → ∞ the sequence Hm
d approaches to some compact

subset Kd(λ) of the limit simplex s∞�d−1. If λ = 1
3 then Kd(λ) will be a subset of
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Fig. 6 Fractal of the crown
K5(λ)

Fig. 7 Fractal of the crown
K4(λ)

“Sierpinski pyramid” that is a generalization of the two-dimensional case known as
“Sierpinski napkin”.

Now let us return to the l2-fractal �. It has a rich semigroup of contracting affine
maps 	 : � → � such that the image 	(�) is similar to � itself. We will constraint
ourselves highlighting only one family of self-similarities.
Statement 5. Let An be a transformation acting in the space l2 and compounded
from homothety with the coefficient λn and shift to the vector sne1 (n = 1, 2, . . .).
Then An maps � into itself such that the image An(�) is a subtree with the root in
the vertex sne1.

Proof Noting that both A1 and 	 are affine maps let us consider their acts on the
layer Hm . As A1 and 	 commutes we have “a commutative diagram”

x
A1−→ λx + λe1

	 ↓ 	 ↓
x + λme j

A1−→ λx + λm+1e j + λe1
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that means A1 is affine contracting. To end the proof it is sufficient to note that An is
an iteration of A1.

Problem 4. Calculate the Hausdorff dimension of the set Kd(λ) [15]. Give some
characteristics similar to Hausdorff dimension for a fractal K∞(λ) = lim

d→∞Kd(λ)

that is a compact subset of the Hilbertian simplex {x ∈ l2| ‖x‖ ≤ 1}.

Acknowledgements Author express his gratitude to A.Sh.Kuchkarov for useful discussions and
to O. S. Akhmedov, M. A. Bekimov and A. I. Sotvoldiev for help.
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Discrete-Numerical Tracking Method
for Constructing a Poincaré Map

Abdulla Azamov, Akhmedov Odiljon and Tilavov Asliddin

Abstract In this paper the effectiveness and applicability of theDN-trackingmethod
for constructing Poincaré maps are investigated. The DN-tracking method is demon-
strated by samples of dynamical systems having closed trajectories, bifurcations of
homoclinical loop of a saddle and period doubling.

Keywords Dynamical system · DN-tracking method · Closed trajectory ·
Poincaré map · Numerical methods · Bifucation

1 Introduction

The task of the qualitative theory of differential equations, as generally accepted, is
to study the properties of individual solutions or their families in those cases when
they are either can’t be integrated in an explicit form or reduced to an equation of
lower orders by means of the first integrals. Therefore, according to the approach
of A. Poincaré who founded the Theory of Dynamical Systems, the main goal of
the Qualitative Theory is to establish certain properties by some methods. To solve
such kind of problems various analytical [1–4], as well as topological (geometric)
methods have been developed [5].
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When the nonlocal properties of a particular solution or the system in general
are considered as an object of study, then analytical methods become ineffective.
What concerns to topological methods they require the conditions as usual difficult to
check. In this regard, as the capabilities of computing technology increase,methods of
numerical integration and computer visualization are beingmore andmore employed
[6–11]. This approach even has been called “Computational Dynamics” [12], similar
to “Topological Dynamics” [13].

In the general case, the use of numerical methods and computer experiments can
only play an auxiliary role as heuristic means, at least from the point of view of
generally accepted methodology of Mathematics. Namely, each statement, formu-
lated on the basis of an approximate solution or based on the results of a computer
experiment, a posteriori should perfectly be proven. This is the main defect of many
existing numerical methods. Since, in practice it is very difficult to justify the results
of computations rigorously. Ideally, one wants to obtain a rigorously result direct
from the computations rather than using them as just heuristic.

Themethod of discrete-numerical tracking (further brieflyDN-tracking), suggest-
ed by the first author of this work, is intended for this purpose [14]. The essence of
the method is to draw concrete conclusions about the behavior of exact trajectories
or their beam on the basis of real and finite amount of information computable by
the computer and storable in its memory.

In this article, the possibilities and limitations of the applicability of the DN-
tracking method will be discussed and will be surveyed results of research obtained
at the department of “Dynamical Systems” of the V.I. Romanovskii Institute of
Mathematics of the Academy Sciences of the Republic of Uzbekistan.

2 Discussion

We consider a Cauchy problem

ż = f (z), z(0) = ξ, (1)

where z ∈ R
d is a polynomial vector-valued function. Further, it will be assumed

that d ≥ 2 and f (ξ) �= 0. The problem (1) has a unique solution z(t) that is called a
positive semi-trajectory, defined on some interval [0, τ ), τ > 0.

In the Qualitative Theory of Dynamical Systems arise a number of questions
related to the properties of the solution z(t). Let us list some of them for which the
DN-tracking method presents its effectiveness.

1o. If an interval [0, T ] is given, is it possible to claim that z(t) exists on [0, T ]
(that is T < τ)?

2o. Suppose that an answer of the question 1 is positive, and a compact subset K
of Rd is given. Does the inclusion z(t) ∈ K hold on the interval [0, T ]?

3o. Do the trajectories starting from some neighbourhood of the point ξ return to
its neighbourhood? In other words, does the Poincaré map Φ : U → Γ exist? (Here
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Γ is a hyperplane with normal f ′(ξ) passing through the point ξ and U is some
neighbourhood of ξ in Γ .)

4o. Suppose that an answer of the question 3 is also positive. Is there a closed
trajectory passing near the point ξ? (More generally, does the map Φ have periodic
points?).

5o. Let an answer of the question 4 be positive as well, i.e. the system has a closed
trajectory. Will it be a limit cycle? More generally, what kind of properties does the
map Φ possess?

Of course, this list can be continued. For example, questions about the existence
of a homoclinic loop, a heteroclinic cycle, an invariant torus, various kinds of bifur-
cations may take place. All the above issues are related to the global properties of
dynamical systems for which analytical methods are not always effective.

This circumference causes broad application of numerical methods and computer
visualization. For example, one of the coryphaeuses of the theory of dynamical
systems D.V. Anosov wrote [15] that an enormous amount of research devoted to
the Lorentz system [16] might be divided into two groups:

• Researchers of the first group have been assuming a priori the existence of a
Poincaré map and based on such supposition derived one or another property of
the system (see, for example, [17]).

• Researchers of the second group conclude about the property of the system using
numerical solution, mainly from the results of computer experiments (see, for
example, [18]).

Obviously, every statement formulated on the basis of a numerical solution must
be strictly proven [19]. In some cases, such a justification can be obtained, ignoring
the fact that they have been formulated by means of approximate methods. In the
method of DN-tracking both formulations and proofs of such statements are carried
out based on a numerical solution combining with deductive argument. Efficiency
and justification of the method essentially depend on the estimates between exact
and numerical solutions. This circumstance limits the possibilities of approximate
methods and soDN-trackingmethod. It iswell-known that themost explicit estimates
exist for one-step methods, so further we will deal only with them, mainly with
different schemes of the Runge–Kutta method [10].

In one-step methods the problem (1) is replaced by the recurrent scheme

zn+1 = zn + h F (h, zn) , z0 = ξ (2)

where h is the parameter of discretization, F is the operator expressing the scheme of
the concrete formof themethod, for example, F(h, z) = z + 1

6 (k1 + 4k2 + k3), k1 =
h f (z), k2 = h f (z + 0.5k1), k3 = h f (z + 2k2 − k1), for the schemeofRunge–Kutta
method of the 3rd order.

For a scheme of form (2) one has an estimation [10]

|z (nh) − zn| ≤ CeLT hs = ε1, (3)
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where zn is defined by (2), L = max
z∈K

‖∂ f /∂z‖ is the Lipschitz constant, h = T/N

and s is the order of accuracy of the method (usually s = 2 ÷ 5), C is a constant
depending on f, F, s, K and T . Further the sequence zn will be called a discrete
trajectory.

It should be specially emphasized that estimations of type (3) are correct only in
the case of positive answers to questions 1o and 2o, which are formulated above.

If system (1) is nonlinear, then it is also impossible to calculate the sequence zn
precisely. For example, even in the case zn+1 = zn + hz2n, z0 = 1, h = 0.01 one is not
able to find exact value of z1000. Therefore, we deal with the final sequence {ζn} , n =
0, 1, 2, . . . , N , obtained by approximate calculations by means of a computer and
the results of the calculations are stored in its memory with a certain precision.

Now let us discuss the relation between zn and ζn . It is well-known [10, 11]

|zn − ζn| ≤ eLT − 1

Lh
	 = ε2, (4)

where 	 is the rounding error in one step and depends on the function f and the
configuration of a used computer. It is very important that the estimation (4) not only
forbids h → 0, but prevents the excessive decrease of h [20].

The estimates (3) and (4) imply an inequality

ε1ε
s
2 ≥ C̃ ( f, T,	) , (5)

that can be interpreted as a kind of uncertainty principle in the computational dy-
namics.

The categorical conclusion follows from inequality (5): even if the answers of the
questions 1o and 2o are positive, there may be no guaranteed connection between the
exact trajectory z(t) and the sequence ζn .

3 The Paradigma of the DN-Tracking Method

There are may be such a combination of circumstances allowing to choose a method
F and an interval of [0, T ] and a length of step h and a positive number ε such that

(1) it is possible to establish the existence of a solution z (t) on the interval [0, T ];
(2) to prove that the relations z (t) ∈ K , zn ∈ K , ζn ∈ K hold for t ∈ [0, T ] and

n ∈ {0, 1, . . . , N }, n = [t/h] for given T and K ;
(3) to prove the existence of a Poincaré map;
(4) to derive some of its properties, for example, the existence of periodic points.

The paradigma of the method is expressed in the following way.
Let K0 = {

z ∈ R
2| |zi − ai | ≤ αi , i = 1, 2

}
be a fixed parallelepiped.

K1, K2, K3 are other parallelepipeds such that K j ⊂ K j+1 and dist(
K j , ∂K j+1

) = ε
3 , j = 0, 1, 2, ε > 0.
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Assumption A. ζn ∈ K0 for n = 0, 1, 2, . . . , N (since K0 is a parallelepiped, this
inclusion can be checked by a computer).

Theorem 1 Suppose that the following estimations are established.
1. |ζn − zn| < ε

3 , as long as zn ∈ K1;
2. |z(nh) − zn| < ε

3 , as long as z(nh) ∈ K2;
3. |z(t) − z(nh)| < ε

3 , as long as z(t) ∈ K3, (n = [t/h]).
Then assumption A implies that all inequalities are true for all n = 1, 2, . . . , N

and t ∈ [0, T ].
The theorem easily can be proved “by contradiction method”.

Corollary 1 z(t) ∈ IntK3 and |z(t) − ζn| < ε for all t ∈ [0, T ]
Under Assumption A in two-dimensional systems it is enough to track one positive

semi-trajectory in order to construct a “Bendixson’s bag” [2] instead of Poincaré
map.

In order to construct a Poincaré map in multidimensional systems in contrast to
two-dimensional systems, it is necessary to track a definite beam of trajectories.

If U ⊂ Γ , (Γ was defined above), we take a uniform rectangular grid Mδ = δ Iδ ,
where Iδ = {

(i1, i2, . . . , id) ∈ Z
d | (δi1, δi2, . . . , δid) ∈ U

}
. Set ζ (n)

v , z(n)
v and zv(t)

denote the numerical, discrete and exact trajectories starting from a point v ∈ Mδ ,
respectively. Further the trajectory starting from a point u ∈ U is denoted by zu(t).
It is clear that for an arbitrary point u one can choose v such that |u − v| < δ.

Consider a net of parallelepipeds K j , j = 0, 4 such that K j+1 = K j
�+ ε

4D, where
K0 = {

z ∈ R
d | |zi − ai | ≤ αi , i = 1, 2 . . . d

}
is a fixed parallelepiped, D is the u-

nit parallelepiped in R
d ,

�+ is Minkowskii sum [21]. Note that dist(K j , ∂K j+1) =
ε
4 , K j ⊂ K j+1, j = 0, 1, 2, 3.
Assumption B. ζ (n)

v ∈ K0 for all n = 0, 1, 2, . . . , N and v ∈ Mδ .
In every concrete case this assumption can be checked by a computer executing

limited number of arithmetic operations and comparisions.

Theorem 2 Suppose that
1. |z(n)

v − ζ (n)
v | < ε

4 as long as z(n)
v ∈ K1;

2. |zv(nh) − z(n)
v | < ε

4 as long as zv(nh) ∈ K2;
3. |zv(t) − zv(nh)| < ε

4 as long as zv(t) ∈ K3, (n = [t/h]);
4. |zu(t) − zv(t)| < ε

4 as long as zu(t) ∈ K4.
Then assumption B implies that all these inequalities are true for all n =

1, 2, . . . , N , t ∈ [0, T ].
Particularly

zu(t) ∈ IntK4

and zu(t) exists on the interval [0, T ]. Moreover

|zu(t) − ζ (n)
v | < ε

for all t ∈ [0, T ].
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Thus, by means of a finite sequence of numerical d-vectors ζ0, ζ1, . . . , ζN stored
in the memory of a particular computer, one can trace from an exact trajectory
z(t), 0 ≤ t ≤ T with an accuracy of ε. If the relations and the conditions of the
theorem are satisfied, then there is a chance to establish the existence of a Poincaré
map.

Below some examples of application of the DN-tracking method will be given. In
all of them, a special technique is used additionally, allowing significantly to increase
the range of applicability of DN-tracking.

As one can see from the inequalities (3), (4) the efficiency of the numerical so-
lution depends essentially on a value of the factor eLT , which can bring to naught
the smallness of the quantities hs and Δ. For example, if we consider Lorentz sys-
tem with parameters σ = 10, β = 8/3, ρ = 28 and take only T = 1.1 and paral-
lelepiped K = {(x, y, z) | − 9.5 ≤ x ≤ 20;−10 ≤ y ≤ 27.7; 0 ≤ z ≤ 48.4} that a
priori containing the attractor, then it turns out eLT ≈ 5.8 · 1015 [22]. But T = 1.1
is too small to draw a conclusion about chaos and a strange attractor in the Lorentz
system.

This circumstance has been met when the DN-tracking method was used for the
first time. It was observed that if one divides the interval [0, T ] into several parts
if that the estimation (3) becomes more effective [23]. This effect can be explained
relying on the fact that if one divides [0, T ] into two parts, the factor eLT decreases
with the rate of a geometric progression, while the computational errors for reduced
segments add up only. In all the examples being considered below, this technique
showed its usefulness for constructing a Poincaré map.

3.1 Existence of a Closed Trajectory

Consider a dynamical system simulating the chemical reaction of I. Prigogine, known
as “Brusselator” [24]

ẋ1 = a + x21 x2 − (b + 1)x1
ẋ2 = bx1 − x21 x2

(6)

where a and b are positive parameters.
Shifting the origin of Cartesian system Ox1x2 to the fixed point P = (a, b/a) by

the formula z1 = x1 − a, z2 = x2 − b/a we get

ż1 = (b − 1)z1 + a2z2 + b
a z

2
1 + 2az21z2 + z21z2

ż2 = bz1 − a2z2 − b
a z

2
1 − 2z21z2 − z21z2.

(7)

The computer experiment provides a basis for the heuristic assertion that the sys-
tem (7) with a = 1 and b = 2.01 has a closed trajectory of the period T ≈ 6.28 in
the domain K = {(z1, z2)| − 0.33 ≤ z1 ≤ 0.53;−0.62 ≤ z2 ≤ 0.53}. In this exam-
ple M0 < 4.08, 11.52 < M1 = L < 11.54, M2 < 14.37 and eLT ≈ 1031.
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Fig. 1 Consruction of the
Poincaré map for (6)

Thedivisionof the interval [0, T ] into 6 equal parts yields the estimates |zn − ζn| ≤
1.5 · 10−7, |z(nh) − ζn| ≤ 4.2 · 10−5, |z(t) − z(nh)| ≤ 4.2 · 10−6, allowing us to
construct the Poincaré map Φ : (0, 0.32] → (0, 0.32] as a composition of six mon-
odromy mappings (see Fig.1; for details [25]).

In this case, the DN-tracking method guarantees that the Poincaré map has the
property: Φ(0.32) < 0.32. Thus, a positive semitrajectory started from the point
0.32 forms a “Bendixson’s bag”. Since for a = 1 and b = 2.01 the point (0, 0) is the
only singular point inside the “bag” that is an unstable focus, Poincaré-Bendixson
theorem implies the following

Theorem 3 For a = 1 and b = 2.01, the system (7) in the domain

K = {(z1, z2)| − 0.33 ≤ z1 ≤ 0.53;−0.62 ≤ z2 ≤ 0.53}

has a closed trajectory with period T, 6.27 < T < 6.29.

Note that the DN-tracking method does not allow one to prove the uniqueness of a
closed trajectory. This can be proven, for example, by the L.A. Cherkassmethod [26].

3.2 Existence of the Bifurcation of Homoclinic Loop

Consider the following two-dimensional nonlinear system with one nonlinear term
[27]

ẋ = ax + y + x2,
ẏ = bx + y,

(8)

that is can be considered as a model for bifurcations.



48 A. Azamov et al.

Fig. 2 A cycle of (6) close to the homoclinic loop

Fig. 3 Homoclinic loop of a
saddle in (6)

TheDN-trackingmethod allows to construct a “Bendixon’s bag” from a = −0.72
till a = −0.74, when the cycle period increases to 16.72 (Fig. 2). Computer calcu-
lations lead us to the heuristic conclusion that if a increases further then the closed
trajectory gets destroyed and as a result the bifurcation of homoclinical loop of
separatrices of a saddle occurs (Fig. 3).

It is easy to verify thatwhen the parameter a passes from the domain a < −1 to the
domain a > −1 for b ∈ (−∞,−1), the Poincaré–Andronov–Hopf bifurcation takes
place in the system (8). Thus, for a greater than −1, but close to it, system (8) has
a closed trajectory. The Poincaré–Andronov–Hopf bifurcation technique guarantees
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Fig. 4 Bifurcation diagram
for (6)

the existence of a such bifurcation for a narrow range of values a near the line a = −1
only.

DN-tracking method allows to prove the following non-local result.

Theorem 4 Set b = −2.005. Then there exists values ã ∈ (−0.74,−0.72) and
a, a > ã for that the following properties are hold:

(a) if −1 < a < ã system (8) has a closed trajectory;
(b) if ã < a < a then (8) does not have a closed trajectory.

Hence, on the basis of the fact that the DN-tracking method has a “assurance
factor” in constructing the Poincaré map (in this example “Bendixon’s bag”), it
is obvious that the bifurcation of homoclinic loop takes place for values close to
b = −2.005. Covering the interval −3.5 < b < −1 with a sufficiently fine grid of
such intervals one may construct a bifurcation curve of the homoclinic loop of a
saddle for system (8).

On the whole, it can be shown there are three types of bifurcations of codimension
1 in system (8), namely Poincaré–Andronov–Hopf, saddle-nodes and homoclinic
loops bifurcations (Fig. 4) [28].

3.3 Existence of a Closed Trajectory of Multidimensional
Systems

The DN-tracking method allows to proof existence of a closed trajectory for multidi-
mensional systems as well. As noted above, unlike two-dimensional systems of the
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Fig. 5 Consruction of the
Poincaré map for (9)

type (7), (8), in multidimensional systems it is necessary to track some beam of tra-
jectories. In [29] this was realized for the three-dimensional model of the brusselator
[30], given by the system

ż1 = z21z2 − z1(z3 + 1) + 1
ż2 = z1z3 − z21z2
ż3 = −z1z3 + α

(9)

Taking K = {(z1, z2, z3) |0.7 ≤ z1 ≤ 1.5; 0.7 ≤ z2 ≤ 1.9; 0.9 ≤ z3 ≤ 1.7}, α =
1.25, ξ = (0.7679, 1.3730, 1.4226), T = 8.6 and dividing [0, T ] into 15 parts, it is
possible to establish the existence of a Poincaré mapΦ : S → Γ such thatΦ(S) ⊂ S
and dist[∂S, Φ(S)] > 10−5, where S is a disk with radius 5 · 10−4 in the plane Γ

(Fig. 5).
A more interesting example is given by the system [31]

ẋ1 = −x2 − x3 + x21 − x22 − x23
ẋ2 = x1 − x3 − x21
ẋ3 = x2.

(10)

DN-tracking method following computer calculations allows establishing that in
the region

K = {(x1, x2, x3) | − 0.7 ≤ x1 ≤ 0.4;−0.8 ≤ x2 ≤ 0.8;−0.9 ≤ x3 ≤ 0.3}
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Fig. 6 Consruction of the
Poincaré map for (10)

system (10) has a closed trajectory of period T ≈ 8.18.
Here the segment [0, T ] divides into 8 parts. The scheme of construction of the

Poincaré map Φ : S → Γ is demonstrated in the Fig. 6.

3.4 Existence of the Period Doubling Bifurcation

The appearance of a closed trajectory of the the system (10) remembering a boundary
ofMobius sheetmake us to suggest that it should be a result of a period doubling bifur-
cation from a simple closed trajectory. It is obvious that if we perturb the coefficient

Fig. 7 Simple closed
trajectory
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Fig. 8 Period doubling
bifurcations for (11)

at the term x3 in the second equation, in other words, take it as ẋ2 = x1 − 1.25x3 − x21
then there exists a simple closed trajectory of the period ≈3.9 (Fig. 7).

Therefore, homotopy joining the last and the initial systems

ẋ1 = −x2 − x3 + x21 − x22 − x23
ẋ2 = x1 − αx3 − x21
ẋ3 = x2

(11)

should contain demanded bifurcation.

Theorem 5 In system (11) the period doubling bifurcation takes place for some
α ∈ (1, 1.2) (Fig. 8.)

References

1. Poincaré, H.: Sur les courbes définies par les équations différentielles (III). Journal de mathé-
matiques pures et appliquées 4e série, tome 1, 167–244 (1885)

2. Andronov, A.A., Leontovich, E.A., Gordon, I.I., Maier, A.G.: Qualitative Theory of Second-
Order Dynamic Systems. Nauka, Moscow (1966). Wiley, New York (1973)

3. Arnold, V.I., Ilyashenko, Y.S.: Ordinary differential equations. In: Advances in Science and
Technology: Modern Problems in Mathematics: Fundamental Directions,vol. 1, pp. 7–149.
VINITI, Moscow (1985). (in Russian)

4. Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V., Chua, L.O.: Methods of Qualitative Theory in
Nonlinear Dynamics, Part I, p. 419. Ijevsk, Moscow (2004). (in Russian)

5. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer,
Berlin (1988)

6. Griffiths,D.F., Higham,D.J.: NumericalMethods forOrdinaryDifferential Equations. Springer
Undergraduate Mathematics Series (2010)

7. Holmes, M.H.: Introduction to Numerical Methods in Differential Equations, vol. 52, p. 239.
Springer, New York (2007)



Discrete-Numerical Tracking Method for Constructing a Poincaré Map 53

8. Boldo, S., Faissole, F., Chapoutot, A.: Round-off Error Analysis of Explicit One-Step Numer-
ical Integration Methods. https://hal.archives-ouvertes.fr/hal-01581794. Submitted on 5 Sep
2017

9. Kehlet, B., Logg, A.: A posteriori error analysis of round-off errors in the numerical solution of
ordinary differential equation. The article is publishedwith the open access at Springerlink.com
(2016)

10. Bakhvalov, N.S.: Numerical Methods. M: Nauka (1973). (in Russian)
11. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, p. 463. Wiley, Chich-

ester (2008)
12. Guckenheimer, J.: Computational Tools for Dynamical Systems: An Overview (2008)
13. Sibirrskii, K.S.: Introduction to Topological Dynamics.Monograph, p. 143 (1970). (in Russian)
14. Azamov. A.A.: DN-tracking method for proving the existence of limit cycles. In: Abstracts of

Papers of the International Conference on Differential Equations and Topology dedicated to
L.S. Pontryagin on the occasion of his 100th birthday, pp. 87–88. Moscow (2008). (in Russian)

15. Anosov, D.V.: Encyclopedia of mathematics. M.: Soviet encyclopedia I.M.Vinogradov (1977–
1985). (in Russian)

16. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)
17. Klinshpont, N.E.: On the topological classification of Lorenz-type attractors. Sbornik: Math.

107(4), 547–594 (2006)
18. Ghys, É.: Knots and dynamics. In: Proceedings of the International Congress of Mathemati-

cians, Madrid, , vol. 1, pp. 247–277. 22–30 August (2006)
19. Tucker, Warwick: A rigorous ODE Solver and Smale’s 14th problem. Found. Comput. Math.

2, 53–117 (2002)
20. Heisenberg, W.: Úber den anschaulichen Inhalt der quantentheoretischen Kinematik und

Mechanik. Zeitschrift fúr Physik (in German) 43(3–4), 172–198 (1927)
21. Nikolskii,M.S.: Thefirst directmethodofL.S. Pontryagin in differential games.MGU,Moscow

(1984). (in Russian)
22. Kehlet, B., Logg,A.: Quantifying theComputability of the Lonenz System. arXiv:1306.2782v1

[math.NA] 12 Jun 2013
23. Azamov, A.A., Tilavov, A.M.: A simplest nonlinear system having limit cycle. Uzbek Math.

J. No. 2, pp. 35–41 (2009)
24. Glandsdorff, P., Prigogine, I.: Thermodynamic Theory of Structure, Stability and Fluctuations.

Wiley, New York (1971)
25. Azamov, A.A., Ibragimov, G., Akhmedov, O.S., Ismail, F.: On the proof of existence of a limit

cycle for the Prigogine brusselator model. J. Math. Res. 3(4), 983–989 (2011)
26. Cherkas, L.A.: The method of support functions in the problem of estimating the number of

limit cycles of autonomous systems in the plane. In: Abstracts of Papers of the Internation-
al Conference on Differential Equations and Topology dedicated to L.S. Pontryagin on the
occasion of his 100th birthday, pp. 207–208. Moscow, (2008). (in Russian)

27. Tilavov, A.M.: On a limit cycle of model nonlinear system near saddle homoclinical loop
bifurcation. Uzbek mat. J. No. 3, pp. 131–137 (2010)

28. Tilavov, A.M.: On a simple quadratic dynamical system with three classical types of bifurca-
tions. In: Doklady of the Academy of Science of Uzbekistan, no. 5, pp. 3–5 (2011)

29. Azamov, A.A., Akhmedov, O.S.: Existence of a closed trjectory in a three dimensional model
of brusselator. In: Applied Mathematics and Mechanics (2018) [in print]

30. Hairer E., Nõrsett S.,Wanner G.: SolvingOrdinaryDifferential Equations I, Nonstiff Problems,
p. 528. Springer, Berlin (2003)

31. Azamov, A.A., Akhmedov, O.S.: Existence of a complex closed trajectory in a three-
dimensional Dynamical System. Comput. Math. Math. Phys. 51(8), 1353–1359 (2011)

https://hal.archives-ouvertes.fr/hal-01581794
http://arxiv.org/abs/1306.2782v1


A Discrete Mathematical Model for Heat
Transfer Process in Rotating
Regenerative Air Preheater

Bekimov Mansur and Fathalla A. Rihan

Abstract In this paper we propose a discrete mathematical model for heat transfer
process in two-layer rotating regenerative air preheaters of a thermal power plant.
The model is formulated by discretizing the process as a result of averaging both
temporal and spatial variables. We take into account partial mixing of gas and air.
Some conditions that ensure the asymptotic stability of the discrete system have also
been deduced.

Keywords Regenerative air preheater · Heat transfer · Discrete system
Mathematical model · Stability

1 Introduction

An air preheater (APH) is a general term to describe any device designed to heat
air before another process (for example, combustion in a boiler) with the primary
objective of increasing the thermal efficiency of the process. They may be used alone
or to replace a recuperative heat system or to replace a steam coil. The purpose of
the air preheater is to recover the heat from the boiler flue gas which increases the
thermal efficiency of the boiler by reducing the useful heat lost in the flue gas. As a
consequence, the flue gases are also sent to the flue gas stack (or chimney) at a lower
temperature, allowing simplified design of the ducting and the flue gas stack. It also
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allows control over the temperature of gases leaving the stack (to meet emissions
regulations, for example).

There are two types of regenerative air preheaters: the rotating-plate regenera-
tive air preheaters (RRAP) and the stationary-plate regenerative air preheaters. The
rotating-plate design (RRAP) consists of a central rotating-plate element installed
within a casing that is divided into two (bi-sector type), three (tri-sector type) or four
(quad-sector type) sectors containing seals around the element. The seals allow the
element to rotate through all the sectors, but keep gas leakage between sectors to a
minimumwhile providing separate gas air and flue gas paths through each sector. It is
usually attached to a thermal power plant (TPP) in order to increase the efficiency of
the station bymeans of preheating of air blasting into stations boiler. Heating method
is carried out due to the heat of combustion products of the fuel, i.e. a hot mixture
of smoke and gas (hereinafter simply called gas). Also, using of RRAP allows us to
reduce impact of the thermal pollution of the atmosphere [1].

In this work, we consider the case of a unit with the main block of cylindrical
shape which consists of a rotor rammed by corrugated thin steel and flat sheets on the
surface where the heat exchange occurs. The rotor is divided into sections, separated
by plane sheets slowly rotates in a stationary casing. The rotor space is divided into
two halves, hot and cold, throughout an imaginary plane passing through the axe of
the cylinder. The gas is fed across the hot half in one direction while air flows across
the cold half in the opposite direction. During continuous rotation of the rotor, its
metal running alternately passes through the gas and air flows and as a result, the
heat of the gases is then transferred into the air.

Observation and control of both temperature of the plates, and air and gas emerg-
ing from RRAP are effective operations of RRAP [1–3]. Direct measurement of the
temperature of incoming and outgoing air and gas is easily carried out;whilemonitor-
ing and controlling the temperature of the plates requires a sophisticated measuring
technique. It is worth mentioning that the temperature regime of the plates plays an
important role in the prevention of corrosion. That is why, in practice, mathematical
modeling of the heat transfer process in RRAP is essential and widely utilized.

Over the last decades, various mathematical models have been proposed to model
heat transfer process in the RRAP [1–6]. Generally, mathematical equations of ther-
mal conductivity and mass transfer can be used to model the operations of RRAP
[2]. However, several challenges and difficulties arise which affect the efficiency of
the model. One challenge is the configuration of the plates which have a complicated
geometry, that practically makes it impossible to formulate the boundary conditions.
The second difficulty is that the air and gas flows passing through the RRAP rotor are
considered turbulent [3]. The need to record the rotation of the rotor is an additional
complication. Due to these and other features, all mathematical models of RRAP are
constructed under some simplifying assumptions and ignoring some realities.

Some new approaches have been proposed in [7, 8] to model the thermodynamic
process in RRAP. These models are based on the discretization of both the rotor
volume and its rotation, followed by averaging over the space and time variables
characterizing the heat exchange process between the plates on one side and air
and gas on the other side. In [7], the authors used a simple discrete model, and
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demonstrated the possibility of finding the values of the parameters characterizing
the entire heat exchange process, based on the results of measuring temperature of
incoming and outgoing gas and air. In [8], more adequate multi-sectional rotor model
has been investigated and studied, particularly, the solvability of the inverse problem
was established.

We should mention here that in the real conditions of RRAP operation, there is
a small amount of mixing of gas with air and air with gas at the interface between
the gas and air parts of the rotor. However, single-layer models, considered in [7, 8],
did not take into account this feature. Herein, in this work, we propose a two-layer
mathematical model of the heat transfer process in RRAP, which allows this useful
feature.

2 Mathematical Model

The formulation of the model is based on discretization process of both temporal
and spatial variables. We assume that the inner space of the rotor is divided into
two layers (lower layer and upper layer) by a plane perpendicular to the drum axis.
Further, we divide the same space conditionally into 4m equal sectors by flat surfaces
passing through the drum axis, so that each layer contains 2m sectors. We define the
average temperature metal ramming of the lower layer as xi , and of the upper layer
as yi , i = 1, 2, . . . , 2m. The values i = 1, 2, . . . , m relate to sectors located
on the “cold” half of the rotor through which the air flow passes and the values
i = m + 1, m + 2, . . . , 2m—relate to the “hot” half through which the gas flow
passes in the opposite direction. We also denote the average temperature of the of the
i-th section of the lower layer as ui , and the upper layer as—vi , i = 1, 2, . . . , 2m.

The process of heat exchange between air and gas flows through the metal ram-
ming of RRAP is extremely complicated, which is difficult to properly formulate it
as an initial boundary value problem of a system of differential equations. In order
to overcome this difficulty/complexity, we discretize the problem toward time [8].
With this aim, we select a discretizing subinterval h (h > 0), so that at time h drum
turns to angle π

m . At this time, the sections will be swapped in a cyclic order.
We assume the fowling process of heat exchange in the RRAP: At time t = nh,

n = 0, 1, 2, . . . , the values of the parameters, introduced above, equal
xi (n), yi (n), ui (n), vi (n). We assume that the drum, and gas and air flows remain
stationary during time interval [nh, (n + 1)h), and heat exchange takes place in
each section, which connects the values of xi (n) and ui (n), and of yi (n) and vi (n),
i = 1, 2, . . . , 2m. Hereafter, at time t = (n + 1)h the drum rotates abruptly to the
angle π

m , in the section of the lower layer with the numbers i = 1, 2, . . . , m
air enters, displacing the previously filled heat carrier with the temperature ui (n)

to the corresponding upper layer, and in the upper section with the numbers
i = m + 1, m + 2, . . . , 2m the gas flows in, displacing the portion of the heat
carrier in the bottom layer. At the same time, the heat carrier occupying the sections
of the upper layer with numbers i = 1, 2, . . . , m (i = m + 1,m + 2, . . . , 2m i.e.,
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warmed up air with a gas admixture) is fed into the boiler of the TPP, and the coolant
occupying the sections of the lower layer with numbers (i.e., a cooling gas with a
small fraction of air) flows out to atmosphere through the furnace tube.

Let us discuss the process of mixing gas and air in the proposed model: The gas
fill the section of the lower layer with the number 2m, in accordance with the above
assumptions goes to the section with the number of i = 1 the lower layer, then it is
forced into the top layer section with the same number, then in the next step, mixing
with heated air in sections of the upper layer with numbers i = 2, 3, . . . ,m, blown
in boiler. Similarly, the portion of air that occupies the section with the numbers
i = m of the upper layer feeds into the (m + 1) section of the lower layer and in the
next step flows into the tube, mixing with the gas of the sections with the numbers
i = m + 2, . . . , 2m of the lower layer.

To make it easy, we consider the following assumptions:

Assumption 1 The heat exchange at each interval [nh, (n + 1)h) occurs in accor-
dance with Newton’s linear law.

Assumption 2 For sections of number m + 1 of the lower layer, and of number 1
of the upper layer, where air and gas are mixed, heat exchange between the nozzles
and local heat carriers does not take place.

Under these assumptions, we arrive at the following equations describing our
model:

x1(n + 1) = β̄x2m(n) + β̃u2m(n),

xi (n + 1) = ᾱxi−1(n) + α̃ p(n), i = 2, . . . , m + 2,
xm+2(n + 1) = ᾱxm+1(n) + α̃um+1(n),

xi (n + 1) = β̄xi−1(n) + β̃ui−1(n), i = n + 3, . . . , 2m,

y1(n + 1) = β̄ y2m(n) + β̃q(n),

y2(n + 1) = β̄ y1(n) + β̃v1(n),

yi (n + 1) = ᾱyi−1(n) + α̃vi−1(n), i = 3, . . . , m + 1,
yi (n + 1) = β̄ yi−1(n) + β̃q(n), i = m + 2, . . . , 2m.

(1)

for the temperature of metal part of the sectors and

um+1(n + 1) = γ̃ ym(n) + γ̄ vm(n),

ui (n + 1) = δ̃yi−1(n) + δ̄q(n), i = m + 2, . . . , 2m,

v1(n + 1) = δ̃x2m(n) + δ̄u2m(n),

vi (n + 1) = γ̃ xi−1(n) + γ̄ p(n), i = 2, . . . ,m + 1

(2)

for the temperature of the heat carriers. Here α̃ = αh, ᾱ = 1 − α̃, β̃ = βh, β̄ =
1 − β̃, γ̃ = γ h, γ̄ = 1 − γ̃ h, δ̃ = δh, δ̄ = 1 − δ̃ andα, β, γ, δ are the parameters
characterizing the heat exchange process in RRAP (geometry and heat capacity of
the ramming and rotor casing, composition, density and humidity of air and gas, heat
capacity and thermal conductivity coefficients e.c.), p(n) is the average temperature
of the air entering the RRAP, and q(n) is the average temperature of the incoming
gas.
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In the meantime, the average temperature of the air entering the boiler of the TPP
from the RRAP is given by the formula

V (n) = 1

m

m∑

i=1

vi (n),

and the average temperature of the gas leaving for the atmosphere is provided by

U (n) = 1

m

2m∑

i=m+1

ui (n).

In the systems (1)–(2) the parameters α, β, γ, δ carry characteristics of heat
exchange on the contact surfaces of nozzles with heat carriers. It must be noted
that their value can vary during the process, for example, due to nozzle wear, soot
deposits, deviation of heat transfer from linear law, and do on. They can be influ-
enced by heat exchange on the outer case of RRAP. Here it well be assumed that the
values α, β, γ, δ remain unchanged. Under this assumption, relations (1) represent
a closed system of linear discrete equations [9]. It must be specially emphasized that
the derived system does not belong to the type of difference equations obtained from
differential equations as a result of replacing the derivatives by the incremental ratio,
since for h → 0 equality (1)–(2) don’t go over to a system of differential equations.
This circumstance is associated with the rotation of the RRAP rotor and therefore is
considered a mathematical expression of this feature [8].

Equations (1) and (2) represent a discrete linear system of inhomogeneous differ-
ence equations, of order 6m referred to unknown

x1(n), . . . , x2m(n), y1(n), . . . , y2m(n), um+1(n) . . . , u2m(n), v1(n), . . . , vm(n).

We can put this system in a matrix form

z(n + 1) = Az(n) + r(n), (3)

with

r(n) =
(
α̃ p(n)I, α̃ p(n)J, β̃q(n)J, β̃q(n)I, δ̄q(n)I, γ̄ p(n)I

)T
,

where I = (0, 1, . . . , 1)T , J = (1, 0, . . . , 0)T (T is a transposition sign, turning a
row-vector into a column-vector).

We arrive at the following Theorem.

Theorem 1 If h < min
(

1
α
, 1

β
, 2α

α2+γ 2 ,
2β

β2+δ2

)
then the system (3) is asymptotically

stable.
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Proof The assertion is equivalent to the fact that all eigenvalues of the matrix A lay
inside the unit circle, which in its turn is equivalent to the estimation ‖A‖ < 1 (for
Euclidean norm of the matrix). We denote (Ax)k the component of number k of the
vector Ax . Then, using Cauchy inequality we have

(Ax)21 =
(
β̄x2m + β̃u2m

)2 ≤
(
β̄2 + β̃2

) (
x22m + u22m

)
,

(Ax)2k+1 = ᾱ2x2k , k = 1, . . . , m,

(Ax)2m+2 = (ᾱxm+1 + α̃um+1)
2 ≤ (

ᾱ2 + α̃2
) (
x2m+1 + u2m+1

)
,

(Ax)2k+1 =
(
β̄xk + β̃uk

)2 ≤
(
β̄2 + β̃2

) (
x2k + u2k

)
, k = m + 2, . . . , 2m − 1,

(Ax)22m+1 = β̄2y22m,

(Ax)22m+2 =
(
β̄ y1 + β̃v1

)2 ≤
(
β̄2 + β̃2

) (
y21 + v21

)
,

(Ax)22m+k+1 = (
ᾱ2yk + α̃vk

)2 ≤ (
ᾱ2 + α̃2

) (
y2k + v2k

)
, k = 2, . . . ,m,

(Ax)22m+k+1 = β̄2y2k , k = m + 1, . . . , 2m − 1,
(Ax)23m+k+1 = δ̃2y2k , k = m + 1, . . . , 2m − 1,
(Ax)25m+k+1 = γ̃ 2x2k , k = 1, . . . ,m − 1.

(4)

If we set C = max
{
ᾱ2 + α̃2, β̄2 + β̃2, ᾱ2 + γ̃ 2, β̄2 + δ̃2

}
the system of inequal-

ities (4) yields
|Ax |2 ≤ C |x |2 .

Under the condition of the theorem αh < 1, therefore

ᾱ2 + α̃2 = (1 − αh)2 + (αh)2 = 1 − 2αh(1 − αh) < 1.

Similarly β̄2 + β̃2 < 1. Further, (α2 + γ 2)h < 2α, so

ᾱ2 + γ̃ 2 = (1 − αh)2 + (γ h)2 = 1 − h[2α − (α2 + γ 2)h] < 1.

Also β̄2 + δ̃2 < 1. Consequently C < 1. The proof is complete.

As a consequence of the above Theorem, we also arrive at the following facts:

Corollary 1 If r(n) is a bounded sequence, then each solution of equation (4) is
also bounded.

Corollary 2 E − A is reversible.

Corollary 3 Let lim
n→∞ r(n) = l. Then each solution z(n) approaches the limit

(E − A)−1l as n → ∞ independently of z(0).

For the proof, we refer to similar ones given in [7].

Acknowledgements This work is funded by Ministry of Innovation Development of the Republic
of Uzbekistan (research project OT-F4-84). The authors are most grateful to Professor A. Azamov
for his valuable comments and numerous suggestions concerning the content of the paper.



A Discrete Mathematical Model … 61

References

1. Kirsanov, Yu.A.: Cyclic Thermal Processes and the Theory of Thermal Conductivity in Regen-
erative Air Heaters. Fizmatlit, Moscow (2007). (in Russian)

2. Kovalevskii, V.P.: Simulation of heat and aerodynamic processes in regenerators of continuous
and periodic operation. I. Nonlinear mathematical model and numerical algorithm. J. Eng. Phys.
Thermophys. 77(6), 1110–1118 (2004)

3. Chi-Liang, L.: Regenerative air preheaters with four channels in a power plant system. J. Chin.
Inst. Eng. 32(5), 703–710 (2009)

4. Alagic, S., Kovacevic, A., Buljubasic, I.: A numerical analysis of heat transfer and fluid flow in
rotary regenerative air pre-heaters. Strojnivski Vestnik 51(7–8), 411–417 (2005)

5. Heidari-Kaydan, E.H.: Three-dimensional simulation of rotary air preheater in steam power
plant. Appl. Therm. Eng. 73, 397–405 (2014)

6. Drobnic, B., Oman, J., Tuma, M.: A numerical model for the analysis of heat transfer and
leakages in a rotary air preheater. Int. J. Heat Mass Transf. 49, 5001–5009 (2006)

7. Azamov, A.A., Bekimov, M.A.: Simplified model of the heat exchange process in rotary regen-
erative air pre-heater. Ural Math. J. 2, 27–36 (2017)

8. Azamov, A.A., Bekimov, M.A.: Discrete model of the heat exchange process in rotating regen-
erative air preheaters. Prooc. Steklov Inst. Math. 23, 12–19 (2017)

9. Lakshmikantham, L., Trigiante, D.: Theory of Difference Equations: Numerical Methods and
Applications. Basel, New York (1988)



On Attractors of Isospectral
Compressions of Networks

Leonid Bunimovich and Longmei Shu

Abstract In the recently developed theory of isospectral transformations of
networks isospectral compressions are performed with respect to some chosen char-
acteristics (attributes) of the network’s nodes (edges). Each isospectral compression
(when a certain characteristic is fixed) defines a dynamical system on the space of all
networks. It is shown that any orbit of such dynamical systemwhich starts at any finite
network (as the initial point of this orbit) converges to an attractor. This attractor is a
smaller network where the chosen characteristic has the same value for all nodes (or
edges). We demonstrate that isospectral compressions of one and the same network
defined by different characteristics of nodes (or edges) may converge to the same as
well as to different attractors. It is also shown that a collection of networks may be
spectrally equivalent with respect to some network characteristic but nonequivalent
with respect to another. These results suggest a new constructive approach which
allows us to analyze and compare the topologies of different networks.

Keywords Isospectral transformations · Spectral equivalence · Attractors

1 Introduction

Arguably the major scientific buzzword of our time is a “Big Data”. When talking
about Big Data people usually refer to (huge) natural networks in communications,
bioinformatics, social sciences, etc, etc, etc. In all cases the first idea and hope is
to somehow reduce these enormously large networks to some smaller objects while
keeping, as much as possible, information about the original huge network.

In practice almost all the information about real-world networks is contained in
their adjacency matrices [1, 2]. An adjacency matrix of a network with N elements
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is the N × N matrix with zero or one elements. The (i, j) element equals one if there
is direct interaction between the elements number i and number j of a network. In
the graph representation of a network this corresponds to the existence of an edge
(arrow) connecting node i to node j . Otherwise an (i, j) element of the adjacency
matrix of a network equals zero. It is very rare [1, 2] that the strength of interaction of
the element (node) i with the element (node) j is also known. In such cases a network
is represented by a weighted adjacency matrix where the (i, j) entry corresponds to
the strength of this interaction instead of to 1.

Therefore the problem of compressing a network is essentially a problem of
compressing its weighted adjacency matrix. It is a basic fact of linear algebra that
all the information about a matrix is contained in its spectrum (collection of all
eigenvalues of a matrix) and in its eigenvectors and generalized eigenvectors.

Recently a constructive rigorousmathematical theorywas developedwhich allows
us to compress (reduce) matrices and networks while keeping ALL the information
regarding their spectrum and eigenvalues. This approach was successfully applied to
various theoretical and applied problems [3]. The corresponding transformations of
networks were called Isospectral Transformations. This approach is not only limited
to the compression of networks. It also allows one to grow (enlarge) networks while
keeping stability of their evolution (dynamics), etc (see [3, 4]).

In the present paper we further develop this approach by demonstrating that
isospectral compressions generate a dynamical system on the space of all networks.
We prove that such a dynamical system converges to an attractor which is a smaller
network than the network which was an initial point (network) of this orbit. To create
this dynamical system we need to first select some characteristic of the network’s
nodes (or edges). Then we pick a subset of nodes (edges) based on this characteristic.
We then reduce the network onto the subset we just picked. We repeat this procedure
and get a dynamical system. It is important to mention that the current graph theory
is lacking classification of all graphs which have the same characteristic of the all
nodes even for such basic and simplest characteristics as inner and outer degrees.
Clearly any complete graph where any two nodes are connected by an edge (in case
of undirected graphs) or by two opposite edges (in case of directed graphs) has
the same value of any characteristic at any node. Therefore all complete graphs are
attractors of any isospectral contraction. However, there are other attractors as well
for any characteristic and there is no general classification or description of these
attractors. However one can find such attractors when dealing with a concrete net-
work. Therefore, this procedure is a natural tool for analysis of real-world networks.
We demonstrate that by choosing different characteristics of either nodes or edges
of a network one typically gets different attractors. The structure of such networks
gives us new important information about a given network.

We also discuss the notions of weak and strong spectral equivalences of networks
and show that classes of equivalence with respect to a weak spectral equivalence
consists of a countable number of classes of strongly spectrally equivalent networks.
Our results could be readily applicable to analysis of any (directed or undirected,
weighted or unweighted) networks.
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2 Isospectral Graph Reductions and Spectral Equivalence

In this section we recall definitions of the isospectral transformations of graphs and
networks.

Let W be the set of rational functions of the form w(λ) = p(λ)/q(λ), where
p(λ), q(λ) ∈ C[λ] are polynomials having no common linear factors, i.e., no com-
mon roots, and where q(λ) is not identically zero. W is a field under addition and
multiplication [3].

Let G be the class of all weighted directed graphs with edge weights in W. More
precisely, a graphG ∈ G is an ordered tripleG = (V, E,w)whereV = {1, 2, . . . , n}
is the vertex set, E ⊂ V × V is the set of directed edges, and w : E → W is the
weight function. Denote by MG = (w(i, j))i, j∈V the weighted adjacency matrix of
G, with the convention that w(i, j) = 0 whenever (i, j) /∈ E . We will alternatively
refer to graphs as networks because weighted adjacency matrices define all static
(i.e. non evolving) real-world networks. Also we will be using “vertex” and “node”
interchangeably.

Observe that the entries of MG are rational functions. Let’s write MG(λ) instead
of MG here to emphasize the role of λ as a variable. For MG(λ) ∈ W

n×n , we define
the spectrum, or multiset of eigenvalues to be

σ(MG(λ)) = {λ ∈ C : det(MG(λ) − λI ) = 0}.

Notice that we count the multiplicities of the eigenvalues, i.e. the set σ(MG(λ))

can have more than n elements, some of which can be equal to each other.
A path γ = (i0, . . . , i p) in the graph G = (V, E,w) is an ordered sequence of

distinct vertices i0, . . . , i p ∈ V such that (il , il+1) ∈ E for 0 ≤ l ≤ p − 1. The ver-
tices i1, . . . , i p−1 ∈ V of γ are called interior vertices. If i0 = i p then γ is a cycle. A
cycle is called a loop if p = 1 and i0 = i1. The length of a path γ = (i0, . . . , i p) is
the integer p. Note that there are no paths of length 0 and that every edge (i, j) ∈ E
is a path of length 1.

If S ⊂ V is a subset of all the vertices, we will write S = V \ S and denote by |S|
the cardinality of the set S.

Definition 1 (structural set) LetG = (V, E,w) ∈ G. A nonempty vertex set S ⊂ V
is a structural set of G if

• each cycle of G, that is not a loop, contains a vertex in S;
• w(i, i) �= λ for each i ∈ S.

In particular, if a structural set S also satisfies w(i, i) �= λ0,∀i ∈ S for some
λ0 ∈ C, then S is called a λ0-structural set.

Definition 2 Given a structural set S, a branch of (G, S) is a path β = (i0, i1, . . . ,
i p−1, i p) such that i0, i p ∈ V and all i1, . . . , i p−1 ∈ S.

We denote by B = BG,S the set of all branches of (G, S). Given vertices i, j ∈ V ,
we denote by Bi, j the set of all branches in B that start in i and end in j . For each
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branch β = (i0, i1, . . . , i p−1, i p) we define the weight of β as follows:

w(β, λ) := w(i0, i1)
p−1∏

l=1

w(il, il+1)

λ − w(il, il)
. (1)

Given i, j ∈ V set
Ri, j (G, S, λ) :=

∑

β∈Bi, j

w(β, λ). (2)

Definition 3 (Isospectral Reduction(Compression)) Given G ∈ G and a structural
set S, the reduced adjacency matrix RS(G, λ) is the |S| × |S|-matrix with the entries
Ri, j (G, S, λ), i, j ∈ S. This adjacency matrix RS(G, λ) on S defines the reduced
graph which is the isospectral reduction of the original graph G.

Remark 1 We will use the terms “reduction” and “compression” interchangeably.
One can check that for a graph with complex number weights, the complement of
any single node is a structural set. For any subset A of nodes of this network G, it is
always possible to isospectrally compress the network G to a network whose nodes
belong to A by removing the nodes in the complement of A one after another.

Now we recall the notion of spectral equivalence of networks (graphs).
Let Wπ ⊂ W be the set of rational functions p(λ)/q(λ) such that deg(p) ≤

deg(q), where deg(p) is the degree of the polynomial p(λ). And let Gπ ⊂ G be
the set of graphs G = (V, E,w) such that w : E → Wπ . Every graph in Gπ can be
isospectrally reduced over any nonempty subset of its vertex set [3].

Two weighted directed graphs G1 = (V1, E1,w1) and G2 = (V2, E2,w2) are iso-
morphic if there is a bijection b : V1 → V2 such that there is an edge ei j in G1

from vi to v j if and only if there is an edge ẽi j between b(vi ) and b(v j ) in G2 with
w2(ẽi j ) = w1(ei j ). If the map b exists, it is called an isomorphism, and we write
G1 � G2.

An isomorphism is essentially a relabeling of the vertices of a graph. Therefore,
if two graphs are isomorphic, then their spectra are identical. The relation of being
isomorphic is reflexive, symmetric, and transitive; in other words, it’s an equivalence
relation.

The notion of spectral equivalence of graphs was introduced in [3]. This is the idea
that two networks G and H are spectrally equivalent if they reduce to isomorphic
graphs in one step, over subsets of vertices selected by a rule τ (e.g. nodeswhose inner
degrees are less than 2). Then in [5] a less restrictive notion of generalized spectral
equivalence of graphs (networks) was introduced. Namely, two networks are weakly
spectrally equivalent if they reduce to isomorphic graphs in a finite number of steps
(not necessarily the same number of steps) under the same rule for subset selection.

A proof of the following theorem can be found in [5].

Theorem 1 (Generalized Spectral Equivalence of Graphs) Suppose that for each
graph G = (V, E,w) in Gπ , τ is a rule that selects a unique nonempty subset
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τ(G) ⊂ V . Let Rτ be the isospectral reduction of G onto τ(G). Then Rτ induces an
equivalence relation ∼ on the set Gπ , where G ∼ H if Rm

τ (G) � Rk
τ (H) for some

m, k ∈ N.

Remark 2 Observe that we do not require τ(G) to be a structural subset of G.
However there is a unique isospectral reduction [3] (possibly via a sequence of
isospectral reductions to structural sets if τ(G) is not a structural subset of G) of G
onto τ(G).

The notion of generalized spectral equivalence of networks (graphs) is weaker
than the one considered in [3], where it was required that m = k = 1. Therefore
the classes of weakly spectrally equivalent networks are larger than the classes of
spectrally equivalent networks considered in [3]. Namely each class of equivalence in
the weak sense consists of a countable number of equivalence classes in the (strong)
sense of [3]. In what follows we will refer to the spectral equivalence in the form
introduced in [3] as strong spectral equivalence, and the notion of spectral equivalence
introduced in [5] as weak spectral equivalence. Both of the strong and weak notions
of spectral equivalence could be of use for analysis of real-world networks many of
which have a hierarchical structure [6, 7].

3 Attractors of Isospectral Reductions

Isospectral reductions of networks (graphs) define a dynamical system on the space
of all networks. This dynamical system arises by picking any node (edge) of a net-
work and isospectrally reducing this network to a network where the set of nodes
is a complement to a chosen node. The fact that such isospectral reductions form
a dynamical system follows from the Commutativity theorem proved in [3] which
states that a sequence of isospectral compressions over a set of nodes A and then
over the set of nodes B gives the same result as isospectral reduction over B followed
by the one over A. Therefore to one and the same network (graph) G correspond
different orbits depending on the order in which we pick nodes of G for reductions.

By repeatedly compressing a graph in this manner it is possible to isospectrally
reduce any network to a trivial network which has just one node, which can be any
nodeofG. It is clearly a senseless operation.Howeverwecan choose a reasonable rule
which will help us to understand some intrinsic feature(s) of the structure (topology)
of the network G. Generally a network can have many different structural sets. To
make the isospectral contraction focused on specific properties of networks, we can
add some specific rules to the selection of structural sets.

Before we do that, let us recall a few characteristics of nodes in a graph. (There
are about ten-fifteen such characteristics of nodes and edges of networks which are
all borrowed from the graph theory).

For a graph G = (V, E,w), the indegree for a node v ∈ V , d−(v), is the number
of edges that end in v. The outdegree d+(v) is the number of edges that start at v.
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Let’s define d(v) = d−(v) + d+(v) to be the sum of the indegree and outdegree for
any node.

Let σst be the total number of shortest paths from node s to node t , and let σst (v)
be the number of those paths that pass through v. Note that σst (v) = 0 if v ∈ {s, t}
or if v does not lie on any shortest path from s to t . We call

g(v) =
∑

s �=v

∑

t �=v,s

σst (v)

the centrality/betweenness of node v.

Theorem 2 For any network G and a subset selecting rule τ based on some charac-
teristic of its nodes (edges) (τ(G) �= ∅), the orbit of the dynamical system generated
by isospectral reductions with respect to τ converges to an attractor which is a
network in which τ selects all the nodes (edges).

Proof If the network is already an attractor, then the reduction doesn’t change this
network and the orbit is a fixed point.

Otherwise, each reduction removes at least one vertex (edge). Thus an orbit of a
network under consecutive isospectral reductions becomes an attractor in no more
than N steps, where N := |V | (or N := |E |). Therefore an orbit of a finite network
G approaches an attractor in a finite number of steps which does not exceed the
number of nodes (edges) in G. Such attractor always exists because any network
can be isospectrally reduced to a graph with just one node. A process of consecutive
isospectral reductions (i.e. an orbit of the corresponding dynamical system) will
terminate at one node, if no one of the networks along this orbit was an attractor
for τ . Clearly in case of a “network” with only one node (edge) the values of all
characteristics of all nodes (edges) are the same because there is only one node
(edge). If G is an infinite network then the corresponding orbit could be finite or
infinite.

Theorem 3 The attractors of isospectral reductions with respect to different char-
acteristics of one and the same network are generally different.

Proof (i) In the example shown in the Fig. 1, all nodes have degree 4. This graph
cannot be further reduced based on the degree of its nodes. However, the centrality of
the nodes are different. If we count the number of shortest paths through each node,
we can see c(1) = c(2) = c(3) = c(8) = c(9) = c(10) = 1, c(4) = c(6) = c(7) =
c(11) = 27, c(5) = 66. This graph can be further reduced based on centrality. There-
fore for this network (graph) attractors with respect to degree and to centrality are
different.

(ii) The complete graph, where each and every node and edge have the same
properties, can not be further reduced based on degree or other characteristics of a
network. It is always an attractor. If we consider isospectral expansion (see [4]) of a
complete graphwith respect to two different characteristics, thenwe get two different
graphs (networks) with the same attractor with respect to these two characteristics.
Clearly this attractor will be the initial complete graph.
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Fig. 1 A network which is
an attractor with respect to
degree but not with respect
to centrality

The result of Theorem3 is not surprising because different characteristics of nodes
(or edges) define different dynamical systems on the space of all networks, and orbits
of these different dynamical systems are also different.

The following statement establishes that weakly as well as strongly spectrally
equivalent networks have the same attractor if isospectral contractions are generated
by the very same characteristic with respect to which these networks are spectrally
equivalent.

Theorem 4 Strongly as well as weakly spectrally equivalent graphs with respect to
some characteristic have the same attractor under the dynamical system generated
by isospectral compressions according to this characteristic.

Proof Suppose the graph G is strongly spectrally equivalent to H with respect to
rule τ , i.e. Rτ (G) � Rτ (H) = R, and G is weakly spectrally equivalent to K w.r.t
τ , i.e. Rl

τ (G) � Rm
τ (K ) = S.

If R is an attractor under τ , then the attractor for G as well as for H is R. So G
and H have the same attractor R. Otherwise G and H have the same attractor, the
attractor for R. Similarly G and K have the same attractor. Therefore the attractors
for all three graphs,G, H, K are the same under rule τ . So all three networks (graphs)
have the same attractor with respect to the rule τ .

A very important fact is that networks can be spectrally equivalent with respect
to one characteristic of nodes (edges) but not spectrally equivalent with respect to
another characteristic. Therefore spectral equivalences built on different character-
istics of nodes and edges allow us to uncover various intrinsic (hidden) features of
networks’ topology.

We now present an example where networks are isomorphic for one characteristic
but not for another.

Consider the graphs G and H in Fig. 2.
Their adjacency matrices are

MG =

⎛

⎜⎜⎜⎜⎜⎜⎝

1/λ 1 1 1 0 0
0 1/λ 1 0 1 0
0 0 1/λ 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, MH =

⎛

⎜⎜⎜⎜⎝

2/λ 1 1 0 0
0 1/λ 1 1 0
0 0 1/λ 0 1
0 1 0 0 0
0 0 1 0 0

⎞

⎟⎟⎟⎟⎠
.
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Fig. 2 Original networks: spectrally equivalent or not?

We can always remove one node in an isospectral reduction. Let us remove node
4 from graph G. The weights of the edges after reduction become

R(i, j) = w(i, j) + w(i, 4)
w(4, j)

λ
, i, j = 1, 2, 3, 5, 6.

But w(i, 4) = 0 for all i = 2, 3, 5, 6, and w(4, j) = 0 for j = 2, 3, 5, 6. The only
weight that actually changes after the reduction is R(1, 1) = w(1, 1) +
w(1, 4)w(4, 1)/λ = 2/λ. All the other weights satisfy R(i, j) = w(i, j), i �= 1 or
j �= 1. The reduced graph after removing node 4 is identical to graph H . There-
fore H is an isospectral reduction of G. The networks H and G will have the same
reduction as long as we pick the same subset of vertices to reduce on.

We introduce now a few useful notations. For any graph G = (V, E,w), denote
the maximum indegree by m− = max{d−(v) : v ∈ V }, the maximum outdegree by
m+ = max{d+(v) : v ∈ V }, and the maximum sum of indegree and outdegree as
m = max{d(v) : v ∈ V }. We define a few different rules for picking a subset of the
vertices of a graph.

τ1(G) = {v ∈ V : d(v) > m/2};

τ2(G) = {v ∈ V : d−(v) ≥ m−/2};

τ3(G) = {v ∈ V : d−(v) > m−/4}.

The rule τ1 picks the nodes whose sum of indegree and outdegree is greater than
half of the maximum. The rule τ2 picks the nodes whose indegree is greater than or
equal to half of the maximum. And τ3 picks the nodes whose indegree is greater than
a quarter of the maximum.

Nowwe apply these rules toG and H and see what happens. Consider the degrees
of all the nodes in the two graphs. We list them in the following Table 1.
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Table 1 The degrees of each node in G and H

Graph G H

Node 1 2 3 4 5 6 1 2 3 5 6

Indegree 2 3 4 1 1 1 1 3 4 1 1

Outdegree 4 3 2 1 1 1 3 3 2 1 1

Sum of indegree
and outdegree

6 6 6 2 2 2 4 6 6 2 2

Fig. 3 Isospectral reductions using the rule τ1

Let us consider τ1 first. Both G and H have a maximum sum of indegree and
outdegree of 6. τ1(G) = τ1(H) = {1, 2, 3}. G and H reduce to the same graph in
one step under rule τ1, as shown in Fig. 3. SoG and H are spectrally equivalent under
the rule τ1 with respect to both the 1-step definition in [3] and themulti-step definition
we have here. Also the reduced graph A1 is an attractor for the rule τ1 since the 3
nodes have the same sum of indegree and outdegree, which is 4. To be more precise,
if we write down the indegree, outdegree and the sum of the two, (d−, d+, d) as an
ordered triple for each node, all the triples for the nodes in A1 are node 1with (1, 3, 4),
node 2 with (2, 2, 4) and node 3 with (3, 1, 4), so d(1) = d(2) = d(3) = m(A1).

Similarly, for the rule τ2, we have τ2(G) = {1, 2, 3} �= τ2(H) = {2, 3}. However,
τ2(τ2(G)) = {2, 3} = τ(H). Under the rule τ2, the graph G takes 2 reductions to
reach the attractor A2 while the graph H takes only one step (see Fig. 4). So G
and H are spectrally equivalent with our generalized definition but not with respect
to the strong definition of spectral equivalence found in [3]. In the graph A2, the
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Fig. 4 Isospectral reductions under the rule τ2

Fig. 5 Isospectral reductions under the rule τ3

degree triplets for each node are node 2 with (1, 2, 3) and node 3 with (2, 1, 3). Here
d−(2) = 1 = 1/2m−(A2) = 1/2d−(3). One can see A1 is an attractor of the rule τ1
but not of the rule τ2 since d−(1) = 1 < 1/2d−(3) = 3/2.

Lastly, for τ3, τ3(G) = {1, 2, 3} = τ3(τ3(G)), τ3(H) = {2, 3} = τ3(τ3(H)). Here
G and H both reach an attractor in one step. But the attractors they reach are different.
Under the rule τ3 the graphs G and H are not isospectrally equivalent by either
definition (see Fig. 5).

Here A1 and A2 are both attractors for the rule τ3. For A1, d−(1) = 1, d−(2) =
2, d−(3) = 3. For A2 we have d−(2) = 1, d−(3) = 2. So A1 is an attractor under
the rules τ1 and τ3 but not under τ2. A2 is an attractor for all 3 rules we used in this
sequence of examples.

Theorem 5 Let G = (V, E,w) with w : E → C. If S is a structural and S ⊆ S′ ⊆
V , then S is a structural set of the isospectral reduction RS′(G).
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Proof Suppose S � S′
� V . Now we will show that S is also a structural set for the

reduced graph RS′(G).
(i) Any cycle (not a loop) in RS′(G) comes from a cycle in G. It has to contain a

vertex in S.
(ii) For any i ∈ S′ \ S, the new weight in RS′(G) is given by

w̃(i, i) = w(i, i) +
∑

j∈V/S′
w(i, j)

w( j, i)

λ − w( j, j)

+
∑

j �=k, j,k∈V/S′
w(i, j)

w( j, k)

λ − w( j, j)

w(k, i)

λ − w(k, k)
+ . . . .

Since w(i, i),w( j, j),w(k, k) ∈ C, the expression above shows that w̃(i, i) �= λ.
This implies that S is a structural set of RS′(G).

Remark 3 If we allow the original graph to take weights in W, the above proof still
holds as long as w̃(i, i) �= λ,∀i ∈ S′ \ S. Since it’s a zero measure set among all the
possible values w̃(i, i)’s can take, we can say generally, the theorem is true for any
graph with weights in W except for unusual cases.
By the uniqueness of sequential graph reductions, we can see isospectral reduction
is a dynamical system.
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On Herman’s Theorem for Piecewise
Smooth Circle Maps with Two Breaks

Akhtam Dzhalilov, Alisher Jalilov and Dieter Mayer

Abstract In this paper we consider general orientation preserving circle homeo-
morphisms f ∈ C2+ε(S1 \ {a(0), c(0)}) , ε > 0, with an irrational rotation number
ρ f and two break points a(0), c(0). Denote by σ f (xb) := Df−(xb)

Df+(xb)
, xb = a(0), c(0), the

jump ratios of f at the two break points and by σ f := σ f (a(0)) · σ f (c(0)) its total
jump ratio. Let h be a piecewise-linear (PL) circle homeomorphism with two break
points a0, c0, irrational rotation number ρh and total jump ratio σh = 1. Denote by
Bn(h) the partition determined by the break points of hqn and by μh the unique
h-invariant probability measure. It is shown that the derivative Dhqn is constant on
every element of Bn(h) and takes either two or three values. Furthermore we prove,
that log Dhqn can be expressed in terms of theμh−measures of some intervals of the
partition Bn(h) multiplied by the logarithm of the jump ratio σh(a0) of h at the break
point a0. M. Herman showed, that the invariant measure μh is absolutely continuous
iff the two break points belong to the same orbit. We complement Herman’s result
for the above class of piecewise C2+ε-circle maps f with irrational rotation number
ρ f and two break points a(0), c(0) not lying on the same orbit with total jump ratio
σ f = 1 as follows: ifμ f denotes the invariant measure of the P-homeomorphism f ,
then for almost all values of μ f ([a(0), c(0)]) the measure μ f is singular with respect
to Lebesgue measure.
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Keywords Circle homeomorphism · Rotation number · Break point · Invariant
measure

1 Introduction

Let f be an orientation preserving homeomorphism of the circle S1 ≡ R/Z with
lift F : R → R, which is continuous, strictly increasing and fulfills F(x̂ + 1) =
F(x̂) + 1, x̂ ∈ R. The circle homeomorphism g is then defined by f (x) = F(x̂)
mod 1 with x̂ ∈ R a lift of x ∈ S1. The rotation number ρ f is defined by ρ f :=
lim
n→∞

Fn(x̂)−x̂
n mod 1. Here and below, Fi denotes the i th iteration of the map F . It is

well known, that the rotation number ρ f does not depend on the starting point x̂ ∈ R

and is irrational if and only if f has no periodic points (see [5]). The rotation number
ρ f is invariant under topological conjugations.

Denjoy’s classical theorem states, that a circle diffeomorphism f with irrational
rotation number ρ = ρ f and log Df of bounded variation can be conjugated to the
linear rotation Rρ with lift R̂ρ(x̂) = x̂ + ρ, that is, there exists a homeomorphism
ϕ : S1 → S1 with f = ϕ ◦ Rρ ◦ ϕ−1 [7].

It is well known that a circle homeomorphisms f with irrational rotation num-
ber ρ f is uniquely ergodic, i.e. it has a unique invariant probability measure μ f . A
remarkable fact then is, that the conjugacy ϕ can be defined by ϕ(x) = μ f ([0, x])
(see [5]), which shows, that the smoothness properties of the conjugacy ϕ imply cor-
responding properties of the density of the absolutely continuous invariant measure
μ f for sufficiently smooth circle diffeomorphism with a typical irrational rotation
number (see [15, 16]). The problem of smoothness of the conjugacy for smooth
diffeomorphisms is by now very well understood (see for instance [3, 14–16, 27]).

A natural generalization of circle diffeomorphisms are piecewise smooth home-
omorphisms with break points (see [14]).

The class of P-homeomorphisms consists of orientation preserving circle home-
omorphisms f which are differentiable except at a finite or countable number of
break points, denoted by BP( f ) = {xb ∈ S1}, at which the one-sided positive deriva-
tives Df− and Df+ exist, but do not coincide, and for which there exist constants
0 < c1 < c2 < ∞, such that

• c1 < Df−(xb) < c2 and c1 < Df+(xb) < c2;
• c1 < Df (x) < c2 for all x ∈ S1\BP( f );
• log Df has finite total variation v in S1.

Piecewise linear (PL) orientation preserving circle homeomorphisms are simplest
examples of P-homeomorphisms. They occur in many other areas of mathematics
such as group theory, homotopy theory and logic via the Thompson groups. A family
of PL-homeomorphisms were first studied by M. Herman [14] to give examples
of circle homeomorphisms of arbitrary irrational rotation number which admit no
invariant σ -finite measure absolutely continuous with respect to Lebesque measure.
Herman’s family of maps has been studied later by several authors (see for instance
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[4, 17, 25]) in the context of interval exchange transformations. Special cases are
affine 2-interval exchange transformations, to which Herman’s examples with break
points a(0) = 0 and c(0) = c belong.

In [14] Herman proved that the invariant measure of PL-circle homeomorphism
with two break points and irrational rotation number is absolutely continuous with
respect to Lebesque measure if and only if these break points belong to the same
orbit. Invariant measures of more general P-homeomorphisms with one break point
have been studied by Dzhalilov and Khanin [9]. In [9] they proved

Theorem 1 Let f ∈ C2+ε(S1 \ {a(0)}), ε > 0, be a P-homeomorphism with one
break point a(0) and irrational rotation number. Then its invariant probability mea-
sure μ f is singular with respect to the Lebesque measure l.

The invariantmeasures of P-homeomorphisms f with a finite number of break points
have been studied by several authors (see for instance [1, 4, 8–11, 13, 16, 26]). For
such a homeomorphism the character of the invariant measure strongly depends on
its total jump ratio σ f being trivial or nontrivial, i.e. σ f = 1 or σ f �= 1. A recent
result of [13] in the case σ f �= 1 is

Theorem 2 Let f ∈ C2+ε(S1 \ {a(1), a(2), ..., a(m)}), ε > 0 be a P-homeo-
morphism with irrational rotation number and a finite number of break points
a(1), a(2), ..., a(m) . Suppose its total jump ratio σ f = σ(a1) · σ(a(2)) · ...σ (a(m)) �=
1. Then its invariant probability measure μ f is singular with respect to Lebesque
measure l.

More difficult to investigate are piecewise smooth P− homeomorphisms f with a
finite number of break points and trivial total jump ratio σ f = 1. In the special case
of piecewise C2+ε P-homeomorphisms f , whose break points all lie on the same
orbit, the invariant measure μ f is absolutely continuous w.r.t. to Lebesque measure
for typical irrational rotation numbers (see [8]). Rather complicated is the case , when
the break points of such a homeomorphism f are not on the same orbit. In this caseA.
Teplinsky constructed in [26] examples of PL-homeomorphisms f with four break
points and trivial total jump ratio σ f = 1, whose irrational rotation numbers ρ f are
of unbounded type and whose invariant measuresμ f are absolutely continuous w.r.t.
Lebesque measure l. In the present paper we studyC2+ε P-homeomorphisms f with
arbitrary irrational rotation number ρ f and two break points not on the same orbit,
whose total jump ratio σ f = 1. Our main result for these homeomorphisms is

Theorem 3 Let f ∈ C2+ε(S1 \ {b(1), b(2)}) be a P-homeomorphism with irrational
rotation numberρ := ρ f and two break points b(1), b(2) on different orbits with trivial
total jump ratio σ f = σ f (b(1)) · σ f (b(2)) = 1. Denote its invariant measure by μ f .
Then there exists a subset Mρ ⊂ [0, 1] of full Lebesque measure, such that μ f is
singular w.r.t. Lebesgue measure if μ f ([b(1), b(2)]) ∈ Mρ .

Notice that ifμ f ([b(1), b(2)]) = qρ + p, p, q ∈ Z1 then the twobreakpointsb(1), b(2)

lie on the same orbit and the invariant measure μ f is absolutely continuous w.r.t.
Lebesgue measure (see [8]).
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2 Notations, Terminology, Background

Let f be an orientation preserving circle homeomorphism with irrational rotation
number ρ f . Then ρ f can be uniquely represented as a continued fraction i.e. ρ f =
1/(k1 + 1/(k2 + ...)) := [k1, k2, ..., kn, ...). Denote by pn/qn = [k1, k2, ..., kn], n ≥
1, its n-th- convergent. The numbers qn, n ≥ 1 are also called the first return times
of f and satisfy the recurrence relations qn+1 = kn+1qn + qn−1 n ≥ 1,where q0 = 1
and q1 = k1.Fix an arbitrary x0 ∈ S1. Its forward orbit O+

f (x0) = {xi = f i (x0), i =
0, 1, 2...} defines a sequence of natural partitions of the circle. Namely, denote by
I (n)
0 (x0) the closed interval in S1 with endpoints x0 and xqn = f qn (x0). In the clock-
wise orientation of the circle the point xqn is then for n odd to the left of x0, and for n
even to its right. If I (n)

i (x0) = f i (I (n)
0 (x0)), i ≥ 1, denote the iterates of the interval

I (n)
0 (x0) under f , it is well known, that the set ξn(x0) of intervals with mutually
disjoint interiors, defined as

ξn(x0) = {I (n−1)
i (x0), 0 ≤ i < qn} ∪ {I (n)

j (x0), 0 ≤ j < qn−1}

determines a partition of the circle for any n. The partition ξn(x0) is called the n-th
dynamical partition of S1 determined by the point x0 and the map f . Later we
will use also the so called renormalization intervals J (n)

i (x0) = f i (J (n)
0 (x0)) =

J (n)
0 (xi ), i = 0, 1, 2, . . . , where J (n)

0 (x0) = I (n)
0 (x0) ∪ I (n−1)

0 (x0) and xi = f i (x0) .

xi+qn−1 xi+qn−1+qn xi+qn−1+2qn

· · ·
xi+qn−1+sqn xi+qn−1+(s+1)qn xi+qn+1 xi xi+qn

I (n)
i+qn−1

I (n)
i+qn−1+qn · · · I(n)

i+qn−1+sqn

xi+qn−1+(kn−1)qn

I (n+1)
i I (n)

i
I (n)

qn−1+(kn+1−1)qn

I (n−1)
i

Proceeding from ξn(x0) to ξn+1(x0) all the intervals I
(n)
j (x0), 0 ≤ j ≤ qn−1 − 1,

are preserved, whereas each of the intervals I (n−1)
i (x0), 0 ≤ i ≤ qn − 1, is parti-

tioned into kn+1 + 1 subintervals belonging to ξn+1(x0), such that

I (n−1)
i (x0) = I (n+1)

i (x0) ∪
kn+1−1⋃

s=0

I (n)
i+qn−1+sqn

(x0).

Obviously one has ξ1(x0) ≤ ξ2(x0) ≤ ... ≤ ξn(x0) ≤ ....

Definition 1 Let K > 1 be a constant. We call two intervals I1 and I2 of S1 K -
comparable, if the inequality K−1�(I2) ≤ �(I1) ≤ K�(I2) holds.

Following [15] we recall

Definition 2 An interval I = [τ, t] ⊂ S1 is said to be qn-small, and its endpoints qn-
close, if the intervals f i (I ), 0 ≤ i ≤ qn − 1, are, except for the endpoints, pairwise
disjoint.

It follows from the structure of the dynamical partition, that an interval I = [τ, t] is
qn-small if and only if either τ ≺ t  f qn−1(τ ) or f qn−1(t)  τ ≺ t .
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Lemma 1 Let f be a P-homeomorphism with irrational rotation number ρ f and
|BP( f )| < ∞. If the interval I = (x, y) ⊂ S1 is qn− small and f s(x), f s(y) /∈
BP( f ) for all 0 ≤ s < qn, then for any k ∈ [0, qn) Finzi’s inequality

e−v ≤ Df k(x)

Df k(y)
≤ ev, (1)

holds, where v is the total variation of log Df on S1.

Proof of Lemma 1. Take any two qn-close points x, y ∈ S1 and 0 ≤ k ≤ qn − 1.
Denote by I the open interval with endpoints x and y. Because the intervals
f i (I ), 0 ≤ i ≤ qn − 1 are disjoint, we obtain

| log Df k(x) − log Df k(y)| ≤
k−1∑

j=0

| log Df ( f j (x)) − log Df ( f j (y))| ≤ v,

from which inequality (1) follows immediately.
Using Lemma 1 the following lemma can be proven, which plays a key role in

the study of the metrical properties of homeomorphisms.

Lemma 2 Suppose the circle homeomorphism f satisfies the conditions of Lemma
1. Then for any y0 with ys := f s(y0) /∈ BP( f ) for all 0 ≤ s < qn, the inequality

e−v ≤
qn−1∏

s=0

Df (ys) ≤ ev. (2)

holds.

Inequality (2) is called Denjoy’s inequality. It follows from Lemma 2, that the
intervals of the dynamical partition ξn(x0) have exponentially small lengths. Indeed
one finds

Corollary 1 Let I (n) be an arbitrary element of the dynamical partition ξn(x0). Then

�(I (n)) ≤ const λn (3)

where λ = (1 + e−v)− 1
2 < 1.

Definition 3 Two homeomorphisms f1 and f2 of the circle are said to be topologi-
cally equivalent, if there exists a homeomorphism ϕ : S1 → S1 such that ϕ( f1(x)) =
f2(ϕ(x)) for any x ∈ S1.

The homeomorphism ϕ is called a conjugacy. Corollary 1 implies the following
generalization of the classical Denjoy theorem:

Theorem 4 Suppose that a homeomorphism f satisfies the conditions of Lemma 1.
Then the homeomorphism f is topologically conjugate to the linear rotation fρ .



80 A. Dzhalilov et al.

Fig. 1 Herman’s
PL-homeomorphism

c

The following fact plays a key role in the proof of Theorems 9–11.

Theorem 5 (see [14], p. 71) Let f be a P-homeomorphism with irrational rotation
number ρ = ρ f and invariant probability measure μ f . Then

∫

S1

log Df (x)dμ f (x) = 0. (4)

3 Herman’s Family of PL-Homeomorphisms with Two
Break Points

In [14] (Sect. 7 of Chap.VI)M.Herman introduced a family of PL-homeomorphisms
with two break points, for which he studied their invariant measures and the regular-
ity of the maps conjugating them to linear rotations: given two real numbers λ > 1
and β > 0 he defines for x̂ ∈ [0, 1] the piecewise linear map Fβ,λ : [0, 1] → [0, 1]
as

Fβ,λ(x̂) =
{

λx̂, if 0 ≤ x̂ ≤ c,
λ−β(x̂ − 1) + 1, if c ≤ x̂ ≤ 1,

such that λc = λ−β(c − 1) + 1 (see Fig. 1).
Then Herman considers for 0 ≤ θ ≤ 1 the one-parameter family of PL-maps

Fβ,λ,θ of the unit interval with

Fβ,λ,θ (x̂) = Fβ,λ(x̂) + θ mod 1,

and the induced piecewise linear homeomorphisms of the circle

fβ,λ,θ = Fβ,λ,θ (x̂) mod 1. (5)

Obviously a(0) = 0 and c(0) = c are break points of all these fβ,λ,θ . Denote their
rotation number for fixed λ > 1 and β > 0 by ρθ . Continuity and monotonicity of
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ρθ as function of θ imply that for arbitrary irrational number α ∈ [0, 1] there exists
an unique θ = θ(α) ∈ [0, 1] with ρθ = α. Herman then proved in [14]

Theorem 6 The following properties are equivalent:
(i) fβ,λ,θ is conjugate to the linear rotation fα through an absolutely continuous
homeomorphism;
(ii) fβ,λ,θ is conjugate to fα through a Lipschitz homeomorphism;
(iii) fβ,λ,θ can be conjugated to fα by a piecewise C∞ homeomorphism, which is
not PL;
(iv) β

β+1 ∈ Z α mod 1;

(v) the break points a(0) and c(0) belong to the same orbit under fβ,λ,θ .

It can be easily checked (see [14]) that up to two points

log Dfβ,λ,θ (x)

(1 + β) log λ
= χ[a(0),c(0)](x) − β

1 + β
, (6)

where χ[a(0),c(0)] is the characteristic function of the interval [a(0), c(0)]. Obviously

σ = σ(a(0)) = Df−(0)

Df +(0)
= λ−1−β

for f = fβ,λ,θ , and hence log σ = −(1 + β) log λ. Then we can rewrite (6) as

log Dfβ,λ,θ (x)

log σ
= β

1 + β
− χ[a(0),c(0)](x), (7)

and hence also for any n ≥ 1

log Df nβ,λ,θ (x)

log σ
= n β

1 + β
−

n−1∑

k=0

χ[a(0),c(0)]( f kβ,λ,θ (x)). (8)

Therefore
1

log σ
log Df nβ,λ,θ (x) = n

β

1 + β
mod 1, (9)

and the following useful Lemma holds for Herman’s homeomorphism fβ,λ,θ

Lemma 3 For every n ≥ 1

e
2π i
log σ

log Df nβ,λ,θ (x) = e2π i n β

1+β . (10)

Furthermore one has

Lemma 4 Letμθ be the invariant measure of Herman’smap fβ,λ,θ with break points
a(0), c(0) and irrational rotation number ρθ . Then
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μθ([a(0), c(0)]) = β

1 + β
. (11)

Proof ByEq. (4) one has
∫

S1

log Dfβ,λ,θ (x)
log σ

dμθ(x) = 0. Inserting for log Dfβ,λ,θ (x)
log σ

the right

side of (7) we get

∫

S1

{
β

1 + β
− χ[a(0),c(0)0](x)

}
dμθ(x) = β

1 + β
− μθ([a(0), c(0)]) = 0,

and hence the lemma is proved.

Remark In (11) the right hand side does not depend on parameter θ .
The uniform distribution of sequences is one of the classical problems of ergodic
theory (see for instance [21]). Indeed one has

Theorem 7 (see [21])For [a, b] ⊂ R let un : [a, b] → R, n = 1, 2, ..bea sequence
of continuously differentiable real valued functions. Suppose, for arbitrary m, n ∈
N, n �= m, the function Dun(x) − Dum(x) is monotone with respect to x and that
furthermore | Dun(x) − Dum(x) |≥ K > 0 for some constant K not depending on
x,m and n. Then the sequence un(x), n = 1, 2, ... is uniformly distributed mod 1
for almost all x in [a, b].
This theorem implies that the sequence qn ·β

1+β
mod 1 is uniformly distributed for

almost allβ in the sense of Lebesquemeasure. Clearly, this sequence is not uniformly
distributed for all β, since for β

1+β
= mρ fβ,λ,θ

mod 1 for some integer m, lim
n→∞ ‖

qn ·β
1+β

‖= 0, where ‖ x ‖ denotes the distance of x to the nearest integer. In the case
of rotation numbers of bounded type one has the following result.

Theorem 8 (see [22]) Let α be an irrational number of bounded type with partial
quotients pn

qn
. Then

lim
n→∞ ‖ qnx ‖= 0

if and only if x ∈ Z α mod 1.

4 On the Location of Break Points

Consider now an arbitrary P-homeomorphism f with irrational rotation number ρ f

and two break points a0 and c0, which are not on the same orbit. Denote by pn
qn

the
partial convergents of ρ f . We will next determine the location of the break points of
f qn and the derivative Df qn on S1. Obviously the map f qn has 2 qn break points
denoted by BPn

f := BPn
f (a0) ∪ BPn

f (c0) with BPn
f (a0) := {a∗

0 , a
∗−1, ..., a

∗−qn+1},
respectively BPn

f (c0) := {c∗
0, c

∗−1, ..., c
∗−qn+1}, where a∗

−i = f −i (a0), respectively
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Fig. 2 The position of the break points of f qn in Lemma 5

c∗
−i = f −i (c0), 0 ≤ i ≤ qn − 1. It is clear, that these break points of the map f qn

define a partition Bn( f ) of the circle S1 into 2 qn intervals with pairwise non-
intersecting interior.

Let ξn(a∗
0) be the n-th dynamical partition determined by the break point a∗

0 = a0
with respect to the map f . Then one has for the second break point c∗

0 either
c∗
0 ∈ I (n)

i0
(a0) for some 0 ≤ i0 < qn−1, or c∗

0 ∈ I (n−1)
j0

(a0) = f j0((a0, a−qn ]) ∪ f j0

((a−qn , aqn−1)) for some 0 ≤ j0 < qn , i.e. c∗
0 ∈ f j0((a0, a−qn ]) or c∗

0 ∈ f j0((a−qn ,

aqn−1)). The two last cases we have to be treated separately. The following three
lemmas describe the location of the break points of f qn in intervals of certain n-th
dynamical partitions.

Lemma 5 Assume c∗
0 ∈ I (n)

i0
(a∗

0) for some i0 with 0 ≤ i0 < qn−1. Then the break
points a∗

−i , c
∗
−i , 0 ≤ i ≤ qn − 1} of f qn belong to the following elements of the

dynamical partition ξn(a∗
0) (see Fig. 2):

• a∗
0 ∈ I (n)

0 (a∗
0);• c∗

−i0+s = f s(c∗
−i0

) ∈ I (n)
s (a∗

0), 0 ≤ s ≤ i0;
• a∗−qn+s = f s(a−qn ) ∈ f s(a∗

0 , a−qn ]) ⊂ I (n−1)
s (a∗

0), 1 ≤ s ≤ i0;
• a∗−qn+s, c

∗
−qn−i0+s = f s(c−qn−i0) ∈ f s((a∗

0 , a−qn ]) ⊂ I (n−1)
s (a∗

0), i0 + 1 ≤
s ≤ qn − 1.

Proof of Lemma 5. Remember, that for arbitrary x ∈ S1 the points xqn = f qn (x)
and x−qn = f −qn (x) lie on opposite sides of x . Assume c∗

0 = c0 ∈ I ni0(a
∗
0) for some

0 ≤ i0 < qn−1 and hence c∗
−i0

∈ I n0 (a∗
0) (see Fig. 2). Suppose n to be odd. Then we

have in the clockwise order on S1:

aqn ≺ c∗
−i0 ≺ a∗

0 ≺ c−i0−qn ≺ a−qn ≺ aqn−1 .
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Fig. 3 The position of the break points of f qn in Lemma 6

Since f is orientation preserving we get also

f s(aqn ) ≺ f s(c∗
−i0) ≺ f s(a∗

0) ≺ f s(c−i0−qn ) ≺ f s(a−qn ) ≺ f s(aqn−1)

for all 0 ≤ s ≤ i0, which proves the first three assertions of Lemma 5.
It is also obvious, that

f s(a∗
0) ≺ f s(c−i0−qn ) ≺ f s(a−qn ) ≺ f s(aqn−1)

for all i0 + 1 ≤ s ≤ qn − i0, which proves the last assertion of Lemma 5.

Lemma 6 Assume c∗
0 ∈ f i0((a∗

0 , a−qn ]) for some 0 ≤ i0 < qn. Then the break points
of f qn belong to the following elements of the dynamical partition ξn(c∗

−i0
) of the

break point c∗
−i0

(see Fig. 3):

• c∗
−i0

, a∗
0 ∈ I (n)

0 (c∗
−i0

)

• c∗
−i0+s = f s(c∗

−i0
), a∗−qn+s = f s(a−qn ) ∈ f s([c∗

−i0
, a−qn ]) ⊂ I (n−1)

s (c∗
−i0

), 1 ≤
s ≤ i0;

• c∗
−qn−i0+s = f s(c∗

−qn−i0
), a∗−qn+s = f s(a−qn ) ∈ f s([c−i0 , c−qn ]) ⊂ I (n−1)

s (c∗
−i0

),
i0 + 1 ≤ s ≤ qn − 1.

Proof of Lemma 6. The interval J n
0 (c∗

−i0
) = [c−i0+qn , c−i0+qn−1 ] contains only the

two break points a∗
0 , c

∗
−i0

of f qn . More precisely, we have (see Fig 3)

c−i0+qn ≺ a∗
0 ≺ c∗

−i0 ≺ a−qn ≺ c−i0−qn ≺ c−i0+qn−1

which implies the first assertion of Lemma 6.
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Next, the renormalization interval J n
1 (c∗

0) = [c−i0+qn+1, c−i0+qn−1+1] contains also
two break points of f qn , namely a∗−qn+1 and c

∗
−i0+1. The last two break points belong

to the interval I n−1
1 (c∗

−i0
). We have (see Fig. 3)

c∗
−i0+1 ≺ a∗

−qn+1 ≺ c−i0−qn+1 ≺ c−i0+qn−1+1.

Applying the map f s for 0 ≤ s ≤ i0 − 1 leads to

f s(c∗
−i0+1) ≺ f s(a∗

−qn+1) ≺ f s(c−i0−qn+1) ≺ f s(c−i0+qn−1+1)

which implies the second assertion of Lemma 6.
It is also clear, that

c1 ≺ a∗
−qn+i0+1 ≺ c∗

−qn+1 ≺ cqn−1+1

Hence for 1 ≤ s ≤ qn − i0 − 2

f s(c1) ≺ f s(a∗
−qn+i0+1) ≺ f s(c∗

−qn+1) ≺ f s(cqn−1+1).

which implies the third assertion of Lemma 6.

Lemma 7 If c∗
0 ∈ f i0((a−qn , aqn−1 ]) for some i0 with 0 ≤ i0 < qn, the break points

of f qn are located in the following elements of the dynamical partition ξn(a∗−qn+1) of
the break point a∗−qn+1 (see also Fig. 4):

• a∗−qn+1+s = f s(a∗−qn+1), c∗
−i0+1+s = f s(c∗

−i0+1) ∈ I (n−1)
s (a∗−qn+1), 0 ≤ s ≤

i0 − 1;
• a∗

−qn+i0+1+s = f s(a∗
−qn+i0+1), c∗−qn+1+s = f s(c∗−qn+1) ∈ I (n−1)

i0+s (a∗−qn+1), 0 ≤
s ≤ qn − i0 − 1.

Proof of Lemma 7. Consider the n-th dynamical partition ξn(a∗−qn+1) of the break
point a∗−qn+1. To determine the location of the break points of f qn in the intervals of
ξn(a∗−qn+1) under the assumption of Lemma 7, we use the structure of this dynamical
partition and the monotonicity of f to arrive for 0 ≤ s ≤ qn − 1 at

f s(a1) ≺ f s(a∗−qn+1) ≺ f s(c∗−i0+1) ≺ f s(aqn−1+1) ≺ f s(c−i0−qn+1) ≺ f s(a−qn+qn−1+1).

It is easy to see that the first i0 of these relations imply the first i0 claims of Lemma 7
and the last qn − i0 the remaining ones.

Next we consider a P-homeomorphism f with irrational rotation number ρ f and
two break points a∗

0 := a0, a∗
i0

:= f i0(a0), i0 > 0, on the same orbit. Put ni0 :=
min{n : qn ≥ i0}. Assume that n > ni0 . If the total jump ratio σ f = 1, the map f qn

has 2i0 break points

a∗
−qn+1 := a−qn+1, a

∗
−qn+2 := a−qn+2, ... , a∗

−qn+i0 := a−qn+i0
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Fig. 4 The position of the break points of f qn in Lemma 7

Fig. 5 The position of the break points of f qn in Lemma 8

and
a∗
1 := a1, a

∗
2 := a2, ..., a

∗
i0 := ai0 .

If σ f �= 1 the map f qn has qn + i0 break points

a∗
−qn+1 := a−qn+1, a

∗
−qn+2 := a−qn+2, ... , a∗

0 := a0, ... , a∗
i0 := ai0 .

One has the following

Lemma 8 Assume f is a P-homeomorphism with irrational rotation number ρ f

and two break points a∗
0 := a0, a∗

i0
:= f i0(a0), i0 > 0, on the same orbit. Choose

n > ni0 .
(1) If σ f = 1, then one finds for the break points a∗−qn+s+1, a∗

s+1 of f
qn

• a∗−qn+s+1, a∗
s+1 ∈ f s([a∗

1 , a
∗−qn+1]) ⊂ I (n−1)

s+1 (a∗
0) ∈ ξn(a∗

0), 0 ≤ s ≤ i0 − 1 ;

(see Fig. 5)
(2) if σ f �= 1, we have

• a∗
0 ⊂ I (n−1)

0 (a∗
0);

• a∗−qn+1+s, a∗
1+s ∈ f s([ai0+1, a∗

−qn+i0+1]) ⊂ I (n−1)
i0+1+s(a

∗
0), 0 ≤ s ≤ qn − i0 − 2.

• a∗
s+1 ∈ f s([a∗

1 , a
∗−qn+1]) ⊂ I (n−1)

1+s (a∗
0), i0 ≤ s ≤ qn − i0 − 1.

Proof of Lemma 8. We will prove the first assertion only. The second one can be
proved similarly. It is clear that (see Fig. 5)
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f s(aqn+1) ≺ f s(a∗
1) ≺ f s(a∗

−qn+1) ≺ f s(aqn−1 + 1)

for all 0 ≤ s ≤ i0 − 1. Consequently, f s(a∗
1), f s(a∗−qn+1) ∈ I (n−1)

s ((a∗
1)), 0 ≤ s ≤

i0 − 1, which proves the assertion of Lemma 8.
Lemmas 5–8 show the location of the break points of f qn on elements of different

n-th dynamical partitions determined by themap f , respectively their order along the
circle. Indeed these lemmas hold true also for any pure rotation fρ with ρ f irrational
and any two points a0, c0 ∈ S1, whose preimages under f qnρ correspond to the break
points of the P-homeomorphism f qn .

5 Denjoe Inequality for Piecewise-Linear Circle
Homeomorphisms with Two Break Points

Our main goal in this section is to express for a piecewise-linear (PL) homeomor-
phism h with two break points a0 and c0 and total jump ratio σh = 1 the derivative
Dhqn of hqn by the jump ratio σh(a0) and theμh-measures of intervals of the partition
Bn(h) of S1 determined by the break points of hqn .

We apply Lemmas 5–8 to a PL circle homeomorphism h with irrational rotation
number ρh , with two break points a∗

0 = 0, c∗
0 = c0, not on the same orbit and total

jump ratio σh = 1.
In case of Lemmas 5 and 7 the break points PBn(a∗

0) of h
qn associatedwith a∗

0 = 0
and PBn(c∗

0) associated with c
∗
0 = c0 alternate in their order along the circle S1. Let

n be odd. Obviously these break points define a system of disjoint subintervals of
the circle, given in case of the assumption in Lemma 5 by (see Fig. 2)

[c∗
−i0+s, a

∗
−qn+s], 1 ≤ s ≤ i0, (12)

respectively
[c∗

−i0−qn+s, a
∗
−qn+s], i0 + 1 ≤ s ≤ qn . (13)

We combine these subintervals to the subsets

An(i0) :=
i0⋃

s=1

[c∗
−i0+s, a

∗
−qn+s], Bn(i0) :=

qn⋃

s=i0+1

[c∗
−i0−qn+s, a

∗
−qn+s].

In case of the assumption in Lemma 7 the subintervals are given by (see Fig. 4)

[a∗
−qn+s, c

∗
−i0+s], 1 ≤ s ≤ i0, (14)

respectively
[a∗

−qn+s, c
∗
−i0−qn+s], i0 + 1 ≤ s ≤ qn, (15)
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which we combine to the subsets

An(i0) :=
i0⋃

s=1

[a∗
−qn+s, c

∗
−i0+s], Bn(i0) :=

qn⋃

s=i0+1

[a∗
−qn+s, c

∗
−i0−qn+s],

For n even, the orientation of the above intervals has to be reversed. Therefore in
case of Lemma 5 we have the following system of disjoint intervals

[a∗
−qn+s, c

∗
−i0+s], 1 ≤ s ≤ i0, (16)

respectively
[a∗

−qn+s, c
∗
−i0−qn+s], i0 + 1 ≤ s ≤ qn . (17)

In case of Lemma 7 one finds

[c∗
−i0+s, a

∗
−qn+s], 1 ≤ s ≤ i0, (18)

respectively
[c∗

−i0−qn+s, a
∗
−qn+s], i0 + 1 ≤ s ≤ qn . (19)

In case of Lemma 5 and n even, respectively in case of Lemma 7 and n odd, the
subsets An and Bn can be defined as before. The above constructions show, that the
boundaries of every interval in the subsets An and Bn consist of break points from
PBn(a∗

0) respectively PBn(c∗
0). In the following we abbreviate the jump ratio of h

at the break point a∗
0 by

σ := σh(a
∗
0) = Dh−(0)

Dh+(0)
.

We can then formulate our first main result.

Theorem 9 Let h be a PL circle homeomorphismwith irrational rotation numberρh

and two break points a∗
0 = 0 and c∗

0 := c0, whose total jump ratio σh = 1, and which
lie on different orbits. Assume c∗

0 fulfills the assumptions of Lemma 5 respectively
Lemma 7 for some i0 with 0 ≤ i0 < qn−1. Then in case of Lemma 5

(Dhqn (x))(−1)n =
{

σμh(An∪Bn)−1, if x ∈ An ∪ Bn

σμh(An∪Bn), if x ∈ S1 \ (An ∪ Bn); (20)

respectively in case of Lemma 7 ,

(Dhqn (x))(−1)n+1 =
{

σμh(An∪Bn)−1, if x ∈ An ∪ Bn

σμh(An∪Bn), if x ∈ S1 \ (An ∪ Bn).
(21)
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Theorem 9 shows that Dhqn is constant on every element of Bn(h) and takes only
two values under the assumptions of Lemmas 5 and 7. Moreover, the values of Dhqn

are determined by the jump ratio σ = σh(a∗
0) and the μh-measure of An ∪ Bn .

In case of the assumption on c�
0 in Lemma 6 we can define again a system of

disjoint subintervals determined by the elements in Bn(h). Let n be odd. Then these
subintervals are as follows (see Fig. 3):

[c∗
−i0+s, a

∗
−qn+s], 1 ≤ s ≤ i0, (22)

respectively
[a∗

−qn+s, c
∗
−i0−qn+s], i0 + 1 ≤ s ≤ qn . (23)

For n even the orientation of the above intervals has to be reversed. To determine in
the case of Lemma 6 the values of Df qn we define

An(i0) :=
i0⋃

s=1

[c∗
−i0+s, a

∗
−qn+s], Bn(i0) :=

qn⋃

s=i0+1

[a∗
−qn+s, c

∗
−i0−qn+s]. (24)

Then the following theorem holds.

Theorem 10 Let h be a PL circle homeomorphism with two break points a∗
0 =

a0 and c∗
0 = c0 with σh = 1, which lie on different orbits. Assume c∗

0 fulfills the
assumption of Lemma 6 for some i0 with 0 ≤ i0 < qn. Then for all n ≥ 1

(Dhqn (x))(−1)n =
⎧
⎨

⎩

σμh(An)−μh(Bn)−1, if x ∈ An,

σμh(An)−μh(Bn)+1, if x ∈ Bn,

σμh(An)−μh(Bn), if x /∈ An ∪ Bn.

(25)

It remains to discuss the case of a PL-homeomorphism h with irrational rotation
number ρh and two break points a∗

0 = 0 and a∗
i0

= hi0(a∗
0), i0 > 0, on the same orbit.

In this case the break points of hqn alternate in their order along the circle S1.Denote
byUn(a∗

s ), 1 ≤ s ≤ i0, the closed intervals with endpoints a∗
s and a

∗−qn+s . Obviously
these subintervals are disjoint. Lemma 8 implies, that Un(a∗

s ) ⊂ I (n−1)
s (a∗

0), 1 ≤
s ≤ i0. Next we define for every n ≥ 1

Un =
i0⋃

s=1

Un(a
∗
s ). (26)

Then one has

Theorem 11 Let h be a PL circle homeomorphismwith twobreak points a∗
0 = 0 and

a∗
i0

= hi0(a0), i0 > 0, with σh = 1, which lie on the same orbit. Put ni0 := min{n :
qn ≥ i0}. For n > ni0 one finds
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(Dhqn (x))(−1)n+1 =
{

σμh(Un), if x ∈ Un

σμh(Un)−1, if x ∈ S1 \Un,
(27)

6 Proof of Theorems 9, 10 and 11

Proof of Theorem 9. We prove only the case where c∗
0 fulfills the assumptions of

Lemma 5. The case with the assumptions of Lemma 7 can be proved analogously.We
furthermore restrict ourselves to the casewhen n is odd. The even case can be handled
similarly. Denote the n-th dynamical partition determined by the break point c0 = c∗

0
under the map h by ηn = ηn(c∗

0). In case c∗
0 fulfills the assumption of Lemma 5, we

have aqn ≺ c∗
−i0

≺ a∗
0 ≺ c−i0−qn ≺ a−qn ≺ aqn−1 . Obviously the function Dhqn on the

circle S1 is constant on every interval of the partition Bn(h) determined by all break
points of hqn . It makes jumps determined by the jump ratio σ = σh(a∗

0) at the break
points BPn(a∗

0) and by the jump ratio σ−1 at the break points BPn(c∗
0). By Lemma 5

and taking into account the structure of dynamical partitions it follows that the points
of BPn(a∗

0) and BPn(c∗
0) alternate in their order around S

1.We“renumerate” all break
points of hqnas follows: a(1) := a∗

0 and c
(1) := c∗

−i0
. The other points of BPn(a∗

0) and
BPn(c∗

0) we denote by a
(2), a(3), ..., a(qn) and c(2), c(3), ..., c(qn) in the counterclock

direction. Then we have

a(1) ≺ c(qn) ≺ a(qn) ≺ ... ≺ c(2) ≺ a(2) ≺ c(1) ≺ a(1)

It is clear that

An(i0)
⋃

Bn(i0) =
qn⋃
s=1

[c(s), a(s)], and

S1 \ (An(i0)
⋃

Bn(i0)) =
qn⋃
s=1

(a(s+1), c(s))
⋃

(a(1)), c(qn)).

Now we can determine the values of hqn . For s > 1, we have

Dhqn ([c(s), a(s)]) = Dhqn− (a(s)) = σDhqn+ (a(s)) = σDhqn ([a(s), c(s−1)])

= σDhqn− (c(s−1)) = σσ−1Dhqn+ (c(s−1)) = Dhqn+ (c(s−1)) = Dhqn ([c(s−1), a(s−1)])

So we get
Dhqn ([c(s), a(s)]) = Dhqn ([c(s−1), a(s−1)])

Iterating the last relation we obtain

Dhqn ([c(s), a(s)]) = Dhqn ([c(1), a(1)]) ≡ Dhqn− (a(1)) = σDhqn+ (a(1)) = σDhqn+ (a∗
0)

Hence Dhqn takes the constant value σDhqn+ (a∗
0) on An(i0)

⋃
Bn(i0).
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Nextwe show thatDhqn takes the constant valueDhqn+ (a∗
0)on S

1 \ (An(i0)
⋃

Bn(i0)).
First we determine Dhqn on the interval [a(1), c(qn)] :

Dhqn ([a(1), c(qn)]) = Dhqn+ (a(1)).

On the other hand

Dhqn ([a(s+1), c(s)]) = Dhqn− (c(s−1)) = σ−1Dhqn+ (c(s−1)) = σ−1Dhqn ([c(s−1), a(s−1)]).

This together with
Dhqn ([c(s−1), a(s−1)]) = σDhqn+ (a∗

0)

implies that for every s > 1

Dhqn ([a(s+1), c(s)]) = Dhqn+ (a∗
0).

For the proof of (20) it is enough to prove under the assumption of n being odd
and therefore aqn ≺ c∗

−i0
≺ a∗

0 ≺ c−i0−qn ≺ a−qn ≺ aqn−1 , that

Dhqn+ (a∗
0) = σ (−1)n+1μh(Un)−δ1,(−1)n+1 , (28)

where δ1,(−1)n+1 = 1 for n odd, respectively δ1,(−1)n+1 = 0 for n even. Notice that
the last equation is true also for n even . Since hqn is an orientation preserving
homeomorphism with irrational rotation number and the same invariant measure μh

as the map h, we get from Theorem 5.

∫

S1

log Dhqn (x)dμh(x) = 0. (29)

As mentioned above, the function Dhqn is constant on the subsets Un := An(i0) ∪
Bn(i0) and Un = S1 \Un . Therefore

∫

S1

log Dhqn (x)dμh(x) =
∫

Un

log Dhqn (x)dμh(x) +
∫

Un

log Dhqn (x)dμh(x) = 0

Inserting the constant values of Dhqn on the sets Un respectively Un one finds

∫

Un

log Dhqn (x)dμh = μh(Un) log(σDhqn+ (a∗
0)),

∫

Un

log Dhqn (x)dμh = μh(Un) log Dhqn+ (a∗
0) = [1 − μ f (Un)] log Dhqn+ (a∗

0),
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and therefore

μh(Un) log(σDhqn+ (a∗
0)) + [1 − μh(Un)] log Dhqn+ (a∗

0) = 0.

This shows that μh(Un) log σ = − log Dhqn+ (a∗
0) respectively Dhqn+ (a∗

0) = σ−μh(Un),
and hence formula (28) holds for n odd. For n even, the proof of formula (28) proceeds
similarly. Theorem 9 is therefore completely proved.

Proof of Theorem 10. We will prove only the following equation

Dhqn+ (a∗
0) = σ (−1)n(μh(An(i0))−μh(Bn(i0))−δ1,(−1)n−1 (30)

for n odd. Since the rotation number ρh of h is irrational and its break points a∗
0

and c∗
0 are on different orbits, all the intervals in An and Bn are pairwise disjoint.

For all x ∈ Bn one has obviously Dhqn (x) = Dhqn+ (a∗
0). But at the break point c∗

i0
the function Dhqn (x)makes the jump Dhqn+ (c∗

i0
)/Dhqn− (c∗

i0
) = Dh+(c∗

i0
)/Dh−(c∗

i0
) =

σ , and therefore it takes the constant value Dhqn (x) = σ Dhqn+ (a∗
0) in this interval

containing no break point of hqn . Indeed, this holds true for all intervals without break
points, i.e. for x /∈ An ∪ Bn . The left boundary point of any interval in An belongs
to the set BP(c∗

0) and hence the function Dhqn (x) makes at these break points the
jump Dh+(c∗

i0
)/Dh−(c∗

i0
) = σ and therefore takes the constant value Dhqn (x) =

σ 2 Dhqn+ (a∗
0) for any x ∈ An . This proves assertion (25).

To prove assertion (30) we use again

∫

S1

log Dhqn (x)dμh(x) = 0,

and the possible values of the function Dhqn discussed above. Then

log(σ 2 Dhqn+ (a∗
0))μ f h(An) + log(Dhqn+ (a∗

0))μ(Bn) + log(σ Dhqn+ (a∗
0))μ(U

∗
n) = 0,

where U
∗
n = S1 \ (An ∪ Bn). Hence

(log σ){μh(An) − μh(Bn)} + log Dhqn+ (a∗
0)) + log σ = 0

This provesEq. (30) for n odd. The proof of the theorem for n even is similar. Theorem
10 is therefore completely proved.

Proof of Theorem 11. Let h be a PL circle homeomorphism with two break points
a∗
0 and a∗

i0
= f i0(a0), i0 > 0, and irrational rotation number ρh . Assume n > n0.

Then h has 2i0 break points. Put BPn
h := BPn

h (a∗
1) ∪ BPn

h (a∗−qn+1) with

BPn
h (a∗

1) = {a∗
1 , a

∗
2 , ..., a

∗
i0},

respectively
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BPn
h (a∗

−qn+1) = {a∗
−qn+1, a

∗
−qn+2, ..., a

∗
−qn+i0},

where a∗
s = f s(a0), a∗−qn+s = f s(a−qn ), 1 ≤ s ≤ i0. For the proof of Theorem 11

it is sufficient to prove the following formula

Dhqn+ (a∗
0) = σ (−1)n+1μh(Un)−δ1,(−1)n+1 (31)

The partition Bn(h) determined by all break points of hqn has 2i0 closed intervals
with disjoint interior. The map Dhqn is piecewise constant with constant values on
the element of Bn(h). The first assertion of Lemma 8 implies that the intervals in
Un = {[a∗

s , a
∗−qn+s], 1 ≤ s ≤ i0} are pairwise disjoint. Hence the intervals of Un =

S1 \Un are also pairwise disjoint. Next we conclude that
• the break points of BPn

h (a∗
1) and BPn

h (a∗−qn+1) alternate in their order on S1;

• the intervals in Un and Un alternate in their order on S1; Denote by Un(a∗
s ) the

closed interval inUn with right endpoint a∗
s , 1 ≤ s ≤ i0. It is easy to see that at each

point a∗
s of BPn

h (a∗
1)

Dhqn+ (a∗
s ) = Dhqn+ (a∗

0), Dhqn− (a∗
s ) = Dhqn− (a∗

0), 1 ≤ s ≤ i0. (32)

It is clear that the intervalsUn(a∗
s ) andUn(a∗

s ) are neighbours with common endpoint
a∗
s . It is obvious that

Dhqn− (a∗
s )

Dhqn+ (a∗
s )

= σh(a
�
0) = σ, 1 ≤ s ≤ i0.

The last relation together with (32) implies Dhqn (x) = σDhqn+ (a∗
0) if x ∈ Un respec-

tively Dhqn (x) = Dhqn+ (a∗
0) if x ∈ S1 \Un . Remains to determine the value of

Dhqn+ (a∗
0). From Theorem 2.8 we obtain

∫

S1

log Dhqn (x)dμh =
∫

Un

log Dhqn (x)dμh +
∫

Un

log Dhqn (x)dμh = 0.

Hence μh(Un) log Dhqn+ (a∗
0) + μh(Un) log Dhqn− (a∗

0) = 0.
Inserting μh(Un) = 1 − μh(Un) respectively Dhqn− (a∗

0) = σh Dhqn+ (a∗
0) we get

relation (31). Theorem 11 hence is proved.

7 Proof of Theorem 3

Let f ∈ C2+ε(S1 \ {b(1), b(2)}) be a P-homeomorphism of the circle with irrational
rotation number ρ f and two break points b(1) and b(2) not on the same orbit, whose
total jump σ f = σ f (b(1)) · σ f (b(2)) = 1. Denote by μ f its unique invariant proba-
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bility measure. Define the parameters β and λ through

μ f ([b(1), b(2)]) =: β

1 + β
, σ f (b

(1)) =: λ−1−β. (33)

Let h = hβ,λ,θ be Herman’s PL-homeomorphism of S1 with break points a(0) = 0
and c(0) = c such that λc = λ−β(c − 1) + 1. Since the rotation number ρ f is irra-
tional, we can find an unique θ such that the rotation number ρθ of hθ = hβ,λ,θ

coincides with ρ f . Denote by μθ the invariant measure of hθ . By Lemma 4
μθ([a(0), c(0)]) = β

1+β
. Since ρ f = ρθ the homeomorphisms f and hθ are topo-

logically conjugate via some homeomorphism ϕ. We can choose ϕ such that
a(0) = ϕ(b(1)) and c(0) = ϕ(b(2)),because μ f [b(1), b(2)] = μθ([a(0), c(0)]). Then one
has also (ϕ∗μθ)([b(1), b(2)]) = μ f [b(1), b(2)] = μθ([a(0), c(0)], since the invariant
probability measure of f is unique. Hence we proved the following fact, which
will play a key role in our proof of the main Theorem.

Theorem 12 The P-homeomorphism f : S1 → S1 with irrational rotation num-
ber ρ f and two break points b(1), b(2) with total jump ratio σ f (b(1)) · σ f (b(2)) = 1.
Let hβ,λ,θ be Herman’s PL-homeomorphism with rotation number ρθ = ρ f and
two break points a(0), c(0), such that σh(a(0)) = σ f (b(1)) and μθ([a(0), c(0)]) =
μ f ([b(1), b(2)]). Then the maps f and hβ,λ,θ are topologically conjugate by some
homeomorphism ϕ : S1 → S1 with ϕ(b(1)) = a(0) and ϕ(b(2)) = c(0).

Since the rotation number ρ f is irrational, the invariant probability measure
μ f has no discrete ergodic component. Indeed, one knows, that every such P-
homeomorphism is ergodic also w.r.t. Lebesque measure l (see [14]). Suppose, μ f

has an absolutely continuous component μa.c
f with support A andμa.c

f (A) > 0. Then
also l(A) > 0. If p(x) is the density of μa.c

f , then on A obviously p(x) ≥ 0 and on
S1 \ A one has p(x) = 0. Since p(x) satisfies the functional equation p( f (x)) =

1
Df (x) p(x), x ∈ S1 and Df (x) ≥ const > 0, the subset A+ = {x : p(x) > 0} is f -
invariant. Ergodicity of f with respect to Lebesgue measure l implies that either
μa.c

f (A) = 1 or μa.c
f (A) = 0. Hence the invariant measure μ f is either pure abso-

lutely continuous or pure singular on S1.
The main idea of the proof of Theorem 3 is to construct for the homeomorphism

f a sequence of measurable subsets Gnm ⊂ S1, such that lim
m→∞ l(Gnm ) = ω ∈ (0, 1)

and lim
m→∞ | Dhqnm (x) − 1 |> K > 0 for all x ∈ Gnm ;

– under the assumption, that the invariant measure μ f is absolutely continuous w.r.t.
Lebesque measure l, one knows on the other hand, that Df qn (x) tends for n → ∞ to
1 in probability with respect to the normalised measure l, which showsμ f is singular
w.r.t. Lebesgue measure;
– since the P-homeomorphism f in Theorem 3 can be conjugated to Herman’s map
hθ = hβ,λ,θ , the structure of the break points of f nm is identical to the one of these
points of hqnm

θ
. One can then apply a slightly extended reasoning to the distribution

of the values of Df qn relating them to those of Dhqn
θ
with respect to the intervals of

the partition ηn defined by the breakpoints of hθ .



On Herman’s Theorem for Piecewise Smooth Circle Maps with Two Breaks 95

Let us start with the following proposition shown in [10].

Proposition 1 Let f be a P-homeomorphism of the circle with irrational rotation
number ρ f . If its invariant probability measureμ f is equivalent to Lebesquemeasure
l, then for all δ > 0 the sequence l({x :| Df qn (x) − 1 |> δ}) tends to zero as n → ∞.

Important for our discussion will be also

Lemma 9 For arbitrary δ ∈ (0, 1) and n ≥ 1 consider three points z1, z2, z3 ∈ S1

with z1 ≺ z2 ≺ z3 ≺ z1, such that the intervals [z1, z2] and [z2, z3] are qn-small.
Assume, the P-homeomorphism f qn ∈ C2+ε(S1 \ {z2}) has jump ratio σ f qn (z2) = Λ

at the break point z2. For v the total variation of log Df on S1 and tl ∈ (z1, z2) and
tr ∈ (z2, z3) with

l([tl, z2])
l([z1, z2]) = l([tr , z3])

l([z2, z3)] = δ (34)

one has either

log Df qn (x) ≤ − logΛ

2
+ Kevδ, (35)

for all x ∈ [tl, z2), or
log Df qn (y) ≥ logΛ

2
− Kevδ (36)

for all y ∈ (z2, tr ], when Λ > 1.
In the case Λ < 1 one has either

log Df qn (x) ≥ − logΛ

2
− Kevδ, (37)

for all x ∈ [tl, z2), or
log Df qn (y) ≤ logΛ

2
+ Kevδ (38)

for all y ∈ (z2, tr ].
Proof Assume logΛ = log Df qn− (z2)

Df qn+ (z2)
> 0, the case logΛ < 0 can be treated analo-

gously. Then log Df qn− (z2) = logΛ + log Df qn+ (z2), and hence

log Df qn+ (z2) ≤ − logΛ

2
i f and only i f log Df qn− (z2) ≤ logΛ

2
, (39)

respectively

log Df qn+ (z2) ≥ − logΛ

2
i f and only i f log Df qn− (z2) ≥ logΛ

2
. (40)

Hence, either

log Df qn+ (z2) ≤ − logΛ

2
(41)
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or

log Df qn− (z2) ≥ logΛ

2
. (42)

Then for an arbitrary x ∈ [tl, z2) one finds
| log Df qn− (z2)

Df qn (x) | ≤
qn−1∑
j=0

| log Df−( f j (z2)) − log Df ( f j (x))| ≤ K
qn−1∑
j=0

l([ f j (x), f j

(z2)])
≤ K

qn−1∑
j=0

l([ f j (tl), f j (z2)]) ≤ K
qn−1∑
j=0

l([ f j (tl ),g j (z2)])
l([ f j (z1), f j (z2)]) l([ f j (z1), f j (z2)])

= K
qn−1∑
j=0

Df j (ζ )

Df j (ϑ)

l([tl ,z2)])
l([z1,z2)]) l([ f j (z1), f j (z2)]) for certain ζ ∈ [t l, z2), ϑ ∈ [z1, z2) and

a universal constant K > 0 depending only on f . According to Lemma 1

e−v ≤ Df j (ζ )

Df j (ϑ)
≤ ev

and therefore

K
qn−1∑

j=0

Df j (ζ )

Df j (ϑ)

l([tl, z2)])
l([z1, z2)]) l([g

j (z1), f j (z2)]) ≤ Kevδ,

since l([tl ,z2)])
l([z1,z2)]) = δ. We used also, that the interval [z1, z2] is qn- small and hence

the intervals [ f j (z1), f j (z2)], 0 ≤ j ≤ qn − 1 are disjoint. This leads finally to the
bound

| log Df qn− (z2)

Df qn (x)
| ≤ Kevδ. (43)

In the same way it can be shown that

|log D f qn+ (z2)

Df qn (y)
| ≤ Kevδ (44)

for all y ∈ [tr , z2). Inserting the bounds (41)–(44) we get the bounds (35)–(38) in
Lemma 9.

An important role in the proof of Theorem 3 play certain neighbourhoods of the
break points of the P-homeomorphisms f , which we define next. As in the case of
Herman’s map hθ denote for fixed n ≥ 1 by ηn the partition of the circle generated
by the 2 qn break points BPn

f of f qn , whose elements are the closed intervals with
two neighbouring break points of f qn as boundary points. If z ∈ BPn

f , we denote by
V l
n(z) respectively V r

n (z) the interval in ηn whose right respectively left boundary
point is the break point z. Given some δ ∈ (0, 1), because of Lemma 9 we can then
construct left and right subintervals V l

n (z; δ) ⊂ V l
n(z) respectively V

r
n (z; δ) ⊂ V r

n (z),
both with the break point z as a boundary point, such that
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l(V l
n(z; δ))

l(V l
n(z))

= δ,
l(V r

n (z; δ))

l(V r
n (z))

= δ

Definition 4 The subintervalsV l
n(z; δ),V r

n (z; δ), respectively the intervalVn(z; δ) =
V l
n(z; δ) ∪ V r

n (z; δ) are called the left normalized δ-neighbourhood, the right nor-
malized δ− neighbourhood respectively the normalized δ− neighbourhood of
the break point z.

After these preparations we can now prove Theorem 3. We consider the home-
omorphism f as in Theorem 3. Assume there exists for ρ = ρ f = ρh a set Mρ as
in Theorem 3 such that the invariant measure μ f is absolutely continuous w.r.t.
Lebesque measure l if μ f (b(1)), b(2)([a0, c(0)]) ∈ Mρ . We will show that this leads
to a contradiction with Proposition 1. For this we have to use certain properties of
the distribution of the function Dhqnm for subsequences qnm . By (9) we have

1

log σ
log Dhqnβ,λ,θ (x) = qn · β

1 + β
mod 1, (45)

Then the sequence { 1
log σ

log Dhqnβ,λ,θ (x) mod 1} is uniformly distributed on [0, 1],
because the sequence { qn ·β1+β

mod 1} has this property. Hencewe can choose for every
ω ∈ (0, 1) a subsequence {nm,m = 1, 2, ...} such that

lim
m→∞

1

log σ
log Dh

qnm
β,λ,θ (x) = ω mod 1. (46)

Without loss of generality we can assume that for the subsequence {mn, n = 1, 2, ...}
the break point c(0) of Dhqnm fulfills the assumption of one of the three lemmas, either
Lemma 5, or Lemma 6 or Lemma 7. Assume, it fulfills the assumption of Lemma 6.
Then the step function 1

log σ
log Dh

qnm
β,λ,θ (x) takes only three values determined by

Dh
qnm+ (a(0)) and the jump ratio σ (see Lemma 6 ). Using Eq. (28) we obtain

1

log σ
logDh

qnm+ (a(0)
0 ) = (−1)nm (μh(Anm (i0)) − μh(Bnm (i0))) mod 1, (47)

and hence with (46)

lim
m→∞(−1)nm (μh(Anm (i0)) − μh(Bnm (i0))) = ω mod 1. (48)

W.l.o.g. we can assume

lim
m→∞(μh(Anm (i0)) − μh(Bnm (i0))) = ω, (49)

with ω ∈ (0, 1). We show that
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lim
m→∞(μh(Anm (i0)) ∪ Bnm (i0)) = d1 (50)

with ω ≤ d1 < 1. Suppose contrary

lim
m→∞(μh(Anm (i0)) ∪ Bnm (i0)) = 1; (51)

Then lim
m→∞ μh(S1 \ (Anm (i0) ∪ Bnm (i0)) = 0. But every interval in An and Bn is cov-

ered by an interval in the dynamical partition of rank n (see Fig. 3). Then it can easily
be shown, that the intervals (Anm (i0)) ∪ Bnm (i0)) and S1 \ (Anm (i0)) ∪ Bnm (i0))) are
C- comparable with some constant C = C(h) > 1. This on the other hand implies
that the limits of the above two sequences are either both zero, or take both values
in (0, 1), contradicting to (51) . Consequently, the relation (50) holds. Then

lim
m→∞ μh(S

1 \ (Anm (i0)) ∪ Bnm (i0))) = d2

with d2 = 1 − d1 ≤ 1 − ω < 1.
Next we prove the assertion of Theorem 1.3.
We have

lim
m→∞ μ f (S

1 \ (ϕ−1(Anm (i0)) ∪ ϕ−1(Bnm (i0)))) = d2 wi th d2 = 1 − d1 ≤ 1 − ω < 1. (52)

We consider two copies of the unit circle. Suppose on the first circle acts the
homeomorphism f and on the second Herman’s homeomorphism h. Relation (52),
the arrangement of the break points of f qn and absolutely continuity of the invariant
measure μh w.r.t. Lebesque measure l imply for sufficiently large nm the following
bounds

c1 ≤ l(ϕ−1(Anm (i0)) ∪ ϕ−1(Bnm (i0))) ≤ c2 (53)

for some constants c1, c2 ∈ (0, 1), and hence also

c3 ≤ l(S1 \ (ϕ−1(Anm (i0)) ∪ ϕ−1(Bnm (i0)))) ≤ c4 (54)

for some constants c3, c4 ∈ (0, 1). Consider next for a break point z ∈ BP( f qnm ) the
left and right normalized δ-neighbourhoods V l

nm (z, δ) respectively V r
nm (z, δ). Obvi-

ously, one of these two normalized δ- neighbourhoods is covered by an interval in
ϕ−1(Anm (i0)) or in ϕ−1(Bnm (i0)), whereas the other one is covered by an interval
I (nm )(z) ⊂ S1 \ (ϕ−1(Anm (i0)) ∪ ϕ−1(Bnm (i0))) of the partition ηnm . We conclude,
that the length l of each of these intervals covering the normalized δ-neighbourhoods
by definition is δ−1 times the length of the latter ones. Define

V l
nm (δ) :=

⋃

z∈BP(hqnm )

V l
n(z, δ), V r

nm (δ) :=
⋃

z∈BP(hqnm )

V r
nm (z, δ).
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Using then the definitions of Anm (i0), Bnm (i0) (see also Fig. 3) and the normalized
one sided δ-neighbourhoods V ·

n(z, δ), we obtain

l(Anm (i0) ∩ (V l
nm (δ) ∪ V r

nm (δ)) = δ · l(Anm (i0)), (55)

l(Bnm (i0) ∩ (V l
nm (δ) ∪ V r

nm (δ)) = δ · l(Bnm (i0)), (56)

consequently,

l((Anm (i0) ∪ Bnm (i0)) ∩ (V l
nm (δ) ∪ V r

nm (δ))) = δ · l(Anm (i0) ∪ Bnm (i0)) (57)

From this we can now derive bounds on the values of Df qnm . Put δ =
∣∣∣ log σ

aKev

∣∣∣, where

a >

∣∣∣ log σ

Kev

∣∣∣. From relations (35) and (36) of Lemma 9 it follows that either on the

left or on the right normalized δ-neighbourhood of every break point z of hqnm

| log Df qnm (x)| ≥
∣∣∣∣
(a − 2) log σ

2a

∣∣∣∣ . (58)

Denote by Gnm (δ) the union over z ∈ BP( f qnm ) of all those one-sided normalized

δ- neighbourhoods, on which | log f qn (x)| ≥
∣∣∣ (a−2) log σ

2a

∣∣∣. It is clear that l(Gnm (δ)) ≥
max{δ l(Anm (i0) ∪ Bnm (i0), l(Anm (i0) ∪ Bnm (i0))}. Finally we obtain

| log f qnm (x)| ≥
∣∣∣∣
(a − 2) log σ

2a

∣∣∣∣

for all x ∈ Gnm (δ). But this contradicts convergence of Df qn(x) to one in probability
with respect to normalized Lebesgue measure according to Proposition 1.
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Pursuit Game for an Infinite System
of First-Order Differential Equations
with Negative Coefficients

Ibragimov Gafurjan, Usman Waziri, Idham Arif Alias
and Zarina Bibi Ibrahim

Abstract We consider a pursuit differential game described by an infinite system
of 1st-order differential equations with negative coefficients in Hilbert space. The
control functions of players are subject to integral constraints. The pursuer attempts
to bring the system from a given initial state to another state for a finite time and the
evader’s purpose is opposite. We obtain a condition of completion of pursuit when
the control resource of the pursuer is greater than that of the evader. We study a
control problem as well.

Keywords Pursuer · Evader · Infinite system of differential equations · Control
strategy

1 Introduction

Differential games in finite dimensional Euclidean spaces were studied by many
researchers and developed important methods (see, for instance, [10, 25, 28, 30, 36,
37].)
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There are mainly two constraints on control functions of players: geometric and
integral constraints. In-views of the amount of works been done in developing the
differential games, the integral constraints have been extensively discussed by many
researchers with various approaches (see, for example, [4, 5, 8, 11, 12, 18–21, 26,
27, 29, 31, 34, 35, 39, 42–44] ).

One of the powerful tools in studying the control and differential game problems
in systems with distributed parameters is the decomposition method. Using this
method the control or differential game problem is reduced to ones described by
infinite systems of differential equations (see, for example, [2, 6, 7, 9, 13, 32, 40,
41, 45, 46]). We demonstrate briefly the method for the following parabolic equation

∂z(x, t)

∂t
+ Az(x, t) = w(x, t), z(x, 0) = z0(x), (1)

where 0 ≤ t ≤ T , T is a given positive number, x = (x1, . . . , xn) ∈ Ω ⊂ Rn , n ≥ 1,
Ω is a bounded set with piecewise smooth boundary,

Az = −
n∑

i, j=1

∂

∂xi

(
ai j (x)

∂z

∂x j

)
.

ai j (x) = a ji (x), x ∈ Ω , and, for some c > 0 and for all

(ξ1, . . . , ξn) ∈ Rn, x ∈ Ω,

n∑

i, j=1

ai j (x)ξiξ j ≥ c
n∑

i=1

ξ 2
i .

The domain of the operator A is the space of twice continuously differentiable func-

tions with compact support in Ω , denoted by
◦
C2 (Ω). Define inner product

(z, y)A = (Az, y), z, y ∈
◦
C2 (Ω).

Then
◦
C2 (Ω) becomes incomplete Euclidean space. To obtain a complete Hilbert

space associated with the operator A, we complete the space
◦
C2 (Ω) with respect

to the norm ||z||A = √
(Az, z), z ∈

◦
C2 (Ω). We use the fact that the operator A has

countably many eigenvalues

λ1, λ2, . . . , 0 < λ1 ≤ λ2 ≤ . . . , lim
k→∞ λk = +∞,

and generalized eigenfunctions ϕ1, ϕ2, . . ., which is a complete orthonormal system
in L2(Ω) [33].

Next, let C(0, T ; Hr (Ω)) and L2(0, T ; Hr (Ω)) denote the spaces of continuous
and measurable functions defined on [0, T ] with the values in
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Hr (Ω) =
{
f ∈ L2(Ω) | f =

∞∑

i=1

αiϕi ,

∞∑

i=1

λr
i α

2
i < ∞

}
,

respectively, where r is a given number. The space Hr (Ω) is a Hilbert space with
inner product and norm defined as follows: if

f =
∞∑

i=1

αiϕi ∈ Hr (Ω), g =
∞∑

i=1

βiϕi ∈ Hr (Ω),

then

( f, g) =
∞∑

i=1

λr
i αiβi , || f || =

( ∞∑

i=1

λr
i α

2
i

)1/2

.

It was proved [2] that if w(·) ∈ L2(0, T ; Hr (Ω)), then the initial value problem (1)
has a unique solution z(·) ∈ C(0, T ; Hr+1(Ω)). Next, represent the functions z(x, t)
and w(x, t) as

z(x, t) =
∞∑

k=1

zk(t)ϕk(x), w(x, t) =
∞∑

k=1

wk(t)ϕk(x), zk(·),wk(·) ∈ L2(0, T ), k = 1, 2, . . . ,

and substitute them into the Eq. (1), and then equate the coefficients at ϕk(x) to obtain

żk + λk zk = wk, zk(0) = zk0, k = 1, 2, . . . ,

where wk, zk, zk0 ∈ R1, k = 1, 2, . . ., wk , are control parameters, zk0 = (z0, ϕk).
Thus, we have obtained an infinite system of differential equations. Usually, the
control function is subjected to geometric or integral constraint. The geometric and
integral constraints for the control function w ∈ H(0, T ; Hr (Ω)) of the form

||w(x, t)|| ≤ ρ,

T∫

0

||w(x, t)||2dt ≤ ρ2,

respectively, can be written as follows

( ∞∑

k=1

λr
kw

2
k (t)

)1/2

≤ ρ,

∞∑

k=1

λr
k

T∫

0

w2
k (t)dt ≤ ρ2,

respectively.
Hence, there is an important connections between control problems described by

PDE and those described by infinite system of differential equations. Control and dif-
ferential game problems described by infinite system of differential equations are of
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independent interest and can be investigated within one theoretical framework inde-
pendently of those described by PDE assuming that the coefficients λk , k = 1, 2, . . .,
are any real numbers. Of course, in the case where λk are any real numbers, we must
give adequate definitions of state space, solution of infinite system of differential
equations. Also, we have to prove the existence-uniqueness of solution in the state
space.

There are severalworks devoted to control or differential gameproblemsdescribed
by infinite systemof differential equations (see, for example, [1, 3, 14, 16, 17, 22–24,
38]).

In the paper [14] a differential game problem described by the following infinite
system of differential equations

żk + λk zk = −uk + vk, zk(0) = zk0, k = 1, 2, . . . , (2)

where zk, uk, vk ∈ R
1, and λk , k = 1, 2, . . ., are positive numbers, was studied when

integral constraints are subjected to control functions of the players.
In the present paper, we study a pursuit differential game problems described by

(2) in the case of negative coefficients λk , k = 1, 2, . . .. Pursuer tries to bring the
state of the system from an initial state z0 to another given one z1 for a finite time.
Previous studies of differential games described by infinite system of differential
equations have only dealt with the case z1 = 0. We obtain sufficient conditions of
completion of pursuit.

2 Statement of Problem

Consider the following Hilbert space

l2r =
{

α = (α1, α2, . . .)|
∞∑

k=1

|λk |rα2
k < ∞

}
,

where, r is a real number and λ1, λ2, . . ., is a bounded sequence of negative numbers,
with inner product and norm defined by

〈α, β〉r =
∞∑

k=1

|λk |rαkβk, α, β ∈ l2r , ||α|| =
( ∞∑

k=1

|λk |rα2
k

)1/2

.

Let

L2(0, T, l2r ) =
{
w(·) = (w1(·),w2(·), . . .)| ‖w(·)‖L2(0,T,l2r ) < ∞, wk(·) ∈ L2(0, T )

}
,

where T > 0 is a given sufficiently big number,
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‖w(·)‖L2(0,T,l2r ) =
( ∞∑

k=1

|λk |r
∫ T

0
w2
k (t)dt

)1/2

,

We examine control and pursuit differential game problems described by the
following infinite system of differential equations

żk + λk zk = −uk + vk, zk(0) = z0k , k = 1, 2, . . . , (3)

where zk, uk, vk ∈ R
1, k = 1, 2, . . . ; u = (u1, u2, . . . ) is the control parameter of

pursuer and v = (v1, v2, . . . ) is that of evader, z0 = (z01, z02, . . . ) ∈ l2r+1.
Let

S(ρ0) = {
w(·) ∈ L2(0, T, l2r )| ‖w(·)‖L2(0,T,l2r ) ≤ ρ0

}
,

where ρ0 is a given positive number.

Definition 1 Functions w(·) ∈ S(ρ0), u(·) ∈ S(ρ), and v(·) ∈ S(σ ) are called
admissible control, admissible control of pursuer, and admissible control of evader,
respectively, where ρ and σ are given positive numbers.

It’s assumed that ρ > σ .

Definition 2 Let w(·) ∈ S(ρ0). A function z(t) = (z1(t), z2(t), . . . ), 0 ≤ t ≤ T ,
with zk(0) = z0k , k = 1, 2, . . . , is called solution of the initial value problem

żk(t) + λk zk(t) = wk(t), zk(0) = z0k , k = 1, 2, . . . , (4)

if zk(t), k = 1, 2, . . ., are absolutely continuous and almost everywhere on [0, T ]
satisfy the Eq. (4).

Let C(0, T ; l2r+1) be the space of continuous functions z(t) = (z1(t), z2(t), . . .) ∈
l2r+1 defined on [0, T ]. We need the following proposition [15].

Proposition 1 If w(·) ∈ S(ρ), then infinite system of differential equations (4) has
the only solution z(t) = (z1(t), z2(t), . . .), 0 ≤ t ≤ T , in the space C(0, T ; l2r+1),
where

zk(t) = eβk t

(
z0k +

∫ t

0
wk(s)e

−βk sds

)
, k = 1, 2, . . . ,

with βk = −λk > 0.

Note that this existence-uniqueness theorem for the system (4) was proved for any
finite interval [0, T ]. Therefore, we investigate the system (3) and (4) on [0, T ].
Definition 3 A function

U (t, v) = (U1(t, v),U2(t, v), . . .), U : [0, T ] × l2r → l2r ,

with the components of the form
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Uk(t, v) = wk(t) + vk(t), k = 1, 2, . . . ,

is referred to as the strategy of pursuer, if, for any admissible control of evader
v(·) = (v1(·), v2(·), . . .), the system (3) has the only solution at u(t) = U (t, v), where
w(·) = (w1(·),w2(·), . . .) ∈ S(ρ − σ).

We are given another state z1 = (z11, z12, . . . ) ∈ l2r+1.

Definition 4 We say that the game (3) can be completed for the time θ (θ ≤ T ), if
there exists a strategy U of pursuer such that, for any admissible control of evader,
z(τ ) = z1 at some time τ , 0 ≤ τ ≤ θ .

Pursuer tries to bring the state of the system (3) from z0 to z1, and the purpose of
evader is opposite. Formulate the problems.

Problem 1 Find a condition on the states z0, z1 ∈ l2r+1 such that the state z(t) of the
system (4) can be transferred from the initial position z0 to the final position z1 for
a finite time.

Problem 2 Find a condition on the states z0, z1 ∈ l2r+1, for which pursuit can be
completed in the game (3) for a finite time.

3 Control Problem

In this section, we study a control problem for transferring the system z(t) from the
initial position z0 to the final position z1.

For the system (4), we study the control problem: find a time θ such that

z(0) = z0, z(θ) = z1. (5)

First, we analysis the following series

E(t) = E1(t) + E2(t), t > 0, (6)

where

E1(t) = 2
∞∑

k=1

βr
k |z0k |2φk(t), E2(t) = 2

∞∑

k=1

βr
k |z1k |2ψk(t), (7)

φk(t) = 2βk

1 − e−2βk t
, ψk(t) = 2βk

e2βk t − 1
, k = 1, 2, . . . .

Lemma 1 Let z0, z1 ∈ l2r+1. If, in addition, z
0, z1 ∈ l2r , then the series E(t) converges

at any t > 0.
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Proof Let z0, z1 ∈ l2r . To show that the series (6) converges, we show that the series
E1(t) and E2(t) converge. Since βk is a bounded sequence of positive numbers,
therefore β = sup

k
βk < ∞. Since βk ≤ β, then it is not difficult to show that

φk(t) = 2βk

1 − e−2βk t
≤ 2β

1 − e−2βt
,

which implies that

E1(t) ≤ 4β

1 − e−2βt

∞∑

k=1

βr
k |z0k |2.

The series on the right hand side of this inequality is convergent since z0 ∈ l2r . Thus,
the series E1(t) is convergent.

We can see that ψk(t) ≤ 1
t , t > 0, k = 1, 2, . . .. Then

E2(t) ≤ 2

t

∞∑

k=1

βr
k |z1k |2.

The series on the right hand side of this inequality is convergent since z1 ∈ l2r . Thus,
the series E2(t) is convergent. This completes the proof of Lemma 1.

We’ll need some properties of E(t).

Property 1 E(t) has the following properties:

(i) E(t) is decreasing on (0, +∞);
(ii) E(t) → +∞ as t → 0+;

(iii) E(t) → 4
∞∑
k=1

βr+1
k |z0k |2 as t → +∞.

Proof The first property follows from the fact thatψk(t) and φk(t), k = 1, 2, . . ., are
decreasing on (0, +∞).

The proof of the property (ii) follows from the observations that ψk(t) → +∞
and φk(t) → +∞, as t → 0+ for each k.

Finally, we prove the property (iii). According to Lemma 1, E(t) is convergent
for any t > 0. We fix t0 > 0. Since E(t0) is convergent, then for any ε > 0, there
exists a positive integer N such that

F(t0) =
∞∑

k=N+1

βr
k

(
2|z0k |2φk(t0) + 2|z1k |2ψk(t0)

)
<

ε

3
, (8)

and also ∞∑

k=N+1

4βr+1
k |z0k |2 <

ε

3
(9)
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since z0 ∈ l2r+1. Then, F(t) < ε
3 for all t ≥ t0 since the functions ψk(t) and φk(t) are

decreasing on (0,+∞) for each k.
On the other hand, there exists number T1 > 0 such that, for all t > T1,

∣∣∣∣∣2
N∑

k=1

βr
k

(|z0k |2φk(t) + |z1k |2ψk(t)
) − 4

N∑

k=1

βr+1
k |z0k |2

∣∣∣∣∣ <
ε

3
, (10)

since the sum consists of a finite number of summands and

lim
t→+∞ φk(t) = 2βk, lim

t→+∞ ψk(t) = 0, k = 1, 2, . . .

Thus, by (8)–(10)

∣∣∣∣∣E(t) − 4
∞∑

k=1

βr+1
k |z0k |2

∣∣∣∣∣ ≤
∣∣∣∣∣2

N∑

k=1

βr
k

(|z0k |2φk(t) + |z1k |2ψk(t)
) − 4

N∑

k=1

βr+1
k |z0k |2

∣∣∣∣∣

+ 2
∞∑

k=N+1

βr
k

(|z0k |2φk(t) + |z1k |2ψk(t)
) + 4

∞∑

k=N+1

βr+1
k |z0k |2

<
ε

3
+ ε

3
+ ε

3
= ε.

This proves property (iii).

Next since
4

1 − e−2βk t
> 4, t > 0, therefore we obtain from (i) and (i i i) that

E(t) > 4
∞∑

k=1

βr+1
k |z0k |2, t > 0. (11)

Property 1 and (11) imply that the equation

E(t) = ρ2
0 (12)

has a root t = θ if and only if

ρ2
0 > 4

∞∑

k=1

βr+1
k |z0k |2, (13)

and this root is unique. Without loss of generality, we can assume that θ < T since
T is sufficiently big number.

The following statement is a solution for the control problem (5).
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Theorem 1 Let inequality (13) be satisfied and z0, z1 ∈ l2r . Then the system (4) can
be transferred from the initial position z0 to the position z1 for the time θ .

Proof Define a control

wk(t) =
{− [

z0k − z1ke
−βkθ

]
φk(θ)e−βk t , 0 ≤ t ≤ θ

0, t > θ
, k = 1, 2, . . . . (14)

Show that this control is admissible. Using Eq. (12), control (14), and the obvious
inequality |x − y|2 ≤ 2|x |2 + 2|y|2, we proceed as follows:

∞∑

k=1

βr
k

∫ θ

0
|wk(s)|2ds =

∞∑

k=1

βr
k

∫ θ

0

∣∣− [
z0k − z1ke

−βkθ
]
φk(θ)e−βk s

∣∣2 ds

≤
∞∑

k=1

βr
k

(
2|z0k |2 + 2|z1k |2e−2βkθ

)
φ2
k (θ)

∫ θ

0
e−2βk sds

= 2
∞∑

k=1

βr
k

(|z0k |2φk(θ) + |z1k |2ψk(θ)
)

= E(θ) = ρ2
0 .

Show that the system can be transferred from z0 to z1 for the time θ . Indeed,

zk(θ) = eβkθ

(
z0k − [

z0k − z1ke
−βkθ

]
φk(θ)

∫ θ

0
e−2βk sds

)

= eβkθ (z1ke
−βkθ ) = z1k .

This completes the proof of Theorem 1.

4 Pursuit Differential Game Problem

In this section, we study pursuit differential game described by the Eq. (3). It is
assumed that control resources of pursuer is greater than that of evader, that is ρ > σ .

We obtain from (3) that

zk(t) = eβk t

(
z0k −

∫ t

0
uk(s)e

−βk sds +
∫ t

0
vk(s)e

−βk sds

)
. (15)
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In view of the previous section we can state that the equation

E(t) = 2
∞∑

k=1

βr
k

(|z0k |2φk(t) + |z1k |2ψk(t)
) = (ρ − σ)2 (16)

has a root t = θ1 if and only if

(ρ − σ)2 > 4
∞∑

k=1

βr+1
k |z0k |2, (17)

and this root is unique. We can assume, by selecting T if needed that θ1 < T .

Theorem 2 Let (17) be satisfied and z0, z1 ∈ l2r . Then pursuit can be completed in
the game (3) for the time θ1.

Proof Construct a strategy for the pursuer. Set

uk(t, v) =
{[

z0k − z1ke
−βkθ1

]
φk(θ1)e−βk s + vk(t), 0 ≤ t ≤ θ1

0, t > θ1
, k = 1, 2, . . . (18)

Show that strategy (18) is admissible. Applying the Minkowskii inequality, we have
( ∞∑

k=1

βr
k

∫ θ1

0
|uk(s)|2 ds

)1/2

=
( ∞∑

k=1

βr
k

∫ θ1

0

∣∣∣
(
z0k − z1ke

−βkθ1
)

φk(θ1)e
−βk s + vk(s)

∣∣∣
2
ds

)1/2

≤
( ∞∑

k=1

βr
k

∫ θ1

0

∣∣∣
(
z0k − z1ke

−βkθ1
)

φk(θ1)e
−βk s

∣∣∣
2
ds

)1/2

+
( ∞∑

k=1

βr
k

∫ θ1

0
|vk(s)|2 ds

)1/2

≤
( ∞∑

k=1

βr
k |z0k − z1ke

−βkθ1 |2φ2
k (θ1)

∫ θ1

0
e−2βk sds

)1/2

+ σ. (19)

Using the obvious inequality |x − y|2 ≤ 2|x |2 + 2|y|2 and Eq. (16), we obtain
form (19) that

( ∞∑

k=1

βr
k

∫ θ1

0
|uk(s)|2 ds

)1/2

≤
(
2

∞∑

k=1

βr
k

(|z0k |2φk(θ1) + |z1k |2ψk(θ1)
)
)1/2

+ σ

= E1/2(θ1) + σ

= ρ − σ + σ = ρ.

Thus the strategy (18) is admissible.
Next, we show that pursuit is completed at the time θ1. Indeed, using (15) and

strategy (18), we have
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zk(θ1) = eβkθ1

(
z0k −

∫ θ1

0

((
z0k − z1ke

−βkθ1
)
φk(θ1)e

−βk s + vk(s)
)
e−βk sds +

∫ θ1

0
vk(s)e

−βk sds

)

= eβkθ1

(
z0k −

∫ θ1

0

(
z0k − z1ke

−βkθ1
)
φk(θ1)e

−2βk sds

)

= eβkθ1
(
z0k − z0k + z1ke

−βkθ1
) = z1k .

The proof of the theorem is completed.

5 Conclusion

We have studied a pursuit differential game problem described by infinite system
of 1st-order differential equations with negative coefficients in the space l2r+1. The
control functions of players are subjected to integral constraints.

We have obtained a condition for which a control problem is solvable, also we
have constructed a control that transfers the system from an initial state z0 to the final
state z1 for a finite time.

We have obtained a condition of completion of pursuit in the differential game.
Moreover, a pursuit strategy has been constructed.
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Invariance Principles for Ergodic
Systems with Slowly α-Mixing Inducing
Base

Jianyu Chen and Kien Nguyen

Abstract We investigate a class of ergodic systems, which admit an inducing base
with a slowly α-mixing generating partition. Under suitable moment condition on
the first return time, we prove the almost sure invariance principle (ASIP) for adapted
stationary processes. Our results apply to intermittent maps and billiards with flat
points.

Keywords ASIP · Alpha-mixing · Inducing · Stationary process

1 Introduction

As a functional generalization of the central limit theorems, the almost sure invari-
ance principle (ASIP) asserts the the partial sum of a random process can be well
approximated by a Brownian motion with an almost sure error. There has been a
great deal of work on the invariance principles in probability theory, such as [2, 8,
11, 22, 25, 27], etc., as well as in the context of dynamical systems, for instance, [1,
3–5, 9, 12, 14, 15, 20, 21, 23, 26, 28, 29], etc. Three major approaches are exploited
in the proof of invariance principles: (1) the martingale approximation method (e.g.
[5, 22]); (2) the inducing and Young towers (e.g. [20, 21] ); (3) the spectral method
for transfer operators (e.g. [12, 23]).

In the paper, we study the almost sure invariance principle (ASIP) for a class
of ergodic dynamical systems with a slowly α-mixing inducing base. Our setting
is rather abstract, and does not have any smooth structures. Also, we assume very
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low regularity for the observable that generates the stationary process, that is, the
observable is only integrable but could be unbounded. In this situation, we are able
to prove the ASIP for stationary processes that are generated by any adapted observ-
ables. Although adapted observables might be a quite narrowed class of functions,
they can provide good approximations for most regular observables.

This paper is organized as follows. In Sect. 2, we shall introduce Assumption (H1)
on the inducing base and Assumption (H2) for the first return time, and state our
main theorem. In Sect. 3, we deliver the proof of the ASIP in four subsections. In
Sect. 4, we apply our main result to intermittent maps and billiards with flat points.

2 Statement of Results

Let T be an ergodic measure-preserving transformation on a standard probability
space (M,B, μ). We choose a subset M ⊂ M of positiveμ-measure, and denote the
first return time to M by

R(x) = inf{n ≥ 1 : Tn(x) ∈ M}, for any x ∈ M.

Consider the induced base transformation T : (M,BM , ν) �, where

• T (x) = TR(x)(x) for any x ∈ M ;
• BM := {B ∩ M : B ∈ B};
• ν is the conditional measure of μ on M , i.e., ν(·) = μ(·| M).

By Poincaré recurrence and the ergodicity of T, we have

M =
∞⋃

n=1

{R = n} (mod ν), and M =
∞⋃

n=1

n−1⋃

k=0

Tk{R = n} (mod μ).

Remark 1 The induced map T must be ergodic, since the original map T is ergodic.
However, T may not be mixing, even if T is mixing.

We now impose the following assumptions.
(H1) T admits a generating partition ξ , i.e., F∞

0 = BM (mod ν), where Ft
s :=

σ
(
T−sξ ∨ · · · ∨ T−tξ

)
for any 0 ≤ s ≤ t ≤ ∞. Moreover, the family

F := {Ft
s}0≤s≤t≤∞ is α-mixing with polynomial rateO(n−β) for some β > 2, that is,

αF(n) = sup
t≥0

sup
A∈Ft

0

sup
B∈F∞

t+n

|ν(A ∩ B) − ν(A)ν(B)| = O(n−β). (1)

(H2) R ∈ L p(M, ν) for some p > 2 satisfying 1
β

+ 1
p < 1

2 , or equivalently,

ν{R > k} = O(k−p). (2)
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Refining ξ if necessary, one may assume that {R = n} ∈ F0
0 for each n ≥ 1. We

then naturally lift the partition ξ to the partition ξ̃ onM, to be precise,

ξ̃ := {
A ⊂ Tk{R = n} : T−k A ∈ ξ, n ≥ 1, 0 ≤ k ≤ n − 1

}
.

It is clear that ξ̃ is a generating partition for T. We denote F̃t
s := σ(

T−s ξ̃ ∨ · · · ∨ T−t ξ̃
)
for any 0 ≤ s ≤ t ≤ ∞.

A measurable function f : M → R(or f : M → R) is said to be an adapted
function if f is F̃t

s-measurable (or Ft
s-measurable) for some 0 ≤ s ≤ t < ∞. In

particular, the first return time R is adapted.
Our main result is the following.

Theorem 1 Let q > 2 be such that 1
β

+ 1
p + 1

q < 1
2 . Suppose that f ∈ Lq(M, μ)

with Eμ( f ) = 0, and f is an adapted function on M. Then the stationary pro-
cess X f := { f ◦ Tn}n≥0 satisfies an almost sure invariance principle (ASIP) as fol-

lows: for any λ ∈
(
max

{
1
4 ,

1
β

+ 1
p + 1

q

}
, 1
2

)
, enlarging to a richer probability space

(M′, μ′) if necessary, there exists a standard Brownian motion W (·) such that

∣∣∣∣∣

n−1∑

k=0

f ◦ Tk − W (nσ 2)

∣∣∣∣∣ = O(nλ), μ′ − a.s. (3)

where σ = σ( f ) is defined by (18) in Sect.3.4.

It is obvious from (3) that σ = limn→∞ 1
nEμ

(∑n−1
k=0 f ◦ Tk

)2
. We shall provide

an alternative formula in (18) for σ from the induced system.

Remark 2 We could easily extend Theorem 1 in the invertible case, with the only
modification on the families Ft

s and F̃t
s to be two sided, i.e., −∞ ≤ s ≤ t ≤ ∞.

3 Proof of Theorem 1

3.1 The Induced Function ̂f

For any measurable function f : M → R, we define the induced function on M by

f̂ (x) :=
R(x)−1∑

k=0

f ◦ Tk(x), x ∈ M.

Lemma 1 Let f : M → R be a function that satisfies Theorem 1. Then

(1) Eν( f̂ ) = 0;
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(2) f̂ ∈ Lr (M, ν) for any r ∈
(
2, pq

p+q

)
;

(3) For each n ≥ 0, the function f̂ ◦ T n is adapted on M.

Proof (1) By Kac formula, i.e.,
∫
M f̂ dμ = ∫

f dμ, and the fact that ν(·) = μ(·|M),
we have that Eν( f̂ ) = 0 if Eμ( f ) = 0.

(2) Note that f̂ = ∑∞
k=0 f ◦ Tk1{R>k}, then by Minkowski’s inequality, Hölder

inequality and T-invariance of μ, we have

‖ f̂ ‖Lr (ν) ≤
∞∑

k=0

‖| f | ◦ Tk1{R>k}‖Lr (ν)

= μ(M)−
1
r

∞∑

k=0

(∫
| f |r ◦ Tk1{R>k}dμ

) 1
r

≤ μ(M)−
1
r

∞∑

k=0

‖ f ◦ Tk‖Lq (μ) (μ{R > k})1/r−1/q

= μ(M)
− 1

q ‖ f ‖Lq (μ)

∞∑

k=0

(ν{R > k})1/r−1/q .

The last summation is finite due to Condition (2), i.e.,

∞∑

k=0

(μ{R > k})1/r−1/q = 1 + O

( ∞∑

k=1

(
k−p

)1/r−1/q

)
< ∞,

since p(1/r − 1/q) > 1. Therefore, ‖ f̂ ‖Lr (ν) < ∞ and thus f̂ ∈ Lr (M, ν).
(3) Since f is adapted, there are 0 ≤ s ≤ t < ∞ such that f is F̃t

s-measurable.
It is easy to see that f̂ is Ft

s-measurable. Moreover, we have that f̂ ◦ T n is Ft+n
s+n-

measurable for each n ≥ 0, since T−nFt
s = Ft+n

s+n .

We shall first study the induced process X f̂ := { f̂ ◦ T n}n≥1 on (M, ν).

3.2 ASIP for the Induced Process X
̂f

In this subsection, we establish an ASIP for the induced process X f̂ = { f̂ ◦ T n}n≥1.
We first recall the following special case of an ASIP result by Shao and Lu [25].

Definition 1 Given a random process X = {Xn}n≥0 on (M, ν), we denote

Gn
m(X) := σ {Xm, Xm+1, . . . , Xn}

for any 0 ≤ m ≤ n ≤ ∞. The α-mixing coefficient of the process is defined by
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αX(n) = sup
k≥0

sup
A∈Gk

0(X)

sup
B∈G∞

k+n(X)

|ν(A ∩ B) − ν(A)ν(B)| .

Proposition 1 Let δ ∈ (0, 2] and r ∈ (2 + δ,∞]. If X = {Xn}n≥0 is a zero-mean
random process such that

(i) supn≥0 ‖Xn‖Lr < ∞;

(ii)
∑∞

n=1 αX(n)
1

2+δ
− 1

r < ∞;

(iii) lim inf
n→∞

an
n

> 0, where an := Eν(
∑n−1

k=0 Xk)
2,

then for any ε > 0, enlarging to a richer probability space (M ′, ν ′) if necessary,
there exists a standard Brownian motion W (·) such that

∣∣∣∣∣

n−1∑

k=0

Xk − W (an)

∣∣∣∣∣ = O

(
a

1
2+δ

+ε

n

)
, ν ′ − a.s.

We now directly apply Proposition 1 to adapted stationary processes on (M, ν).

Lemma 2 Let r > 2 be such that 1
β

+ 1
r < 1

2 . Suppose that g ∈ Lr (M, ν) with
Eν(g) = 0, and g is an adapted function on M. Then the stationary process

Xg = {g ◦ T n}n≥0 satisfies an ASIP as follows: for any λ ∈
(
max

{
1
4 ,

1
β

+ 1
r

}
, 1
2

)
,

enlarging to a richer probability space (M ′, ν ′) if necessary, there exists a standard
Brownian motion W (·) such that

∣∣∣∣∣

n−1∑

k=0

g ◦ T k − W
(
nσ 2

g

)
∣∣∣∣∣ = O

(
nλ

)
, ν ′ − a.s. (4)

where σ 2
g is given by

σ 2
g :=

∞∑

n=−∞
Eν(g · g ◦ T n) =

∞∑

n=−∞

∫
g · g ◦ T n dν. (5)

Proof In the degenerate case when σg = 0, it is well known that g is a coboundary,
i.e., there exists a measurable function h : M → R such that g = h − h ◦ T (see e.g.
[17], Theorem 18.2.2), and thus (8) is automatic.

We now consider the non-degenerate case when σg > 0, and check conditions in
Proposition 1 for the stationary process Xg := {g ◦ T n}n≥0 as follows.

As λ ∈
(
max

{
1
4 ,

1
β

+ 1
r

}
, 1
2

)
, we pick a sufficiently small δ ∈ (

0, 1
λ

− 2
)
such

that 1
r < 1

2+δ
− 1

β
. By T -invariance of ν, we have Eν(g ◦ T n) = Eν(g) = 0 for any

n ≥ 0, that is, the process is of zero mean. Also, ‖g ◦ T n‖Lr (ν) = ‖g‖Lr (ν), and thus
Condition (i) in Proposition 1 holds.

For Condition (ii), we recall that Gn
m(Xg) is the σ -algebra generated by g ◦

Tm, . . . , g ◦ T n , where 0 ≤ m ≤ n ≤ ∞. Since g is an adapted function, there are
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some 0 ≤ s ≤ t < ∞ such that g is Ft
s-measurable. Therefore, g ◦ T n is Ft+n

s+n-
measurable, and hence Gn

m(Xg) ⊂ Ft+n
s+m . Hence by (1),

αXg (n) ≤ αF(n + s − t) = O
(
(n + s − t)−β

) = O
(
n−β

)
,

as n → ∞, which immediately implies Condition (ii) since β
(

1
2+δ

− 1
r

)
> 1.

By the covariance inequality in Lemma 7.2.1 in [22], we have

∣∣Eν(g · g ◦ T n)
∣∣ ≤ 10αXg (n)1−

2
r ‖g‖Lr (ν)‖g ◦ T n‖Lr (ν)

≤ 10‖g‖2Lr (ν)O
(
n−β(1− 2

r )
)

=: O (
n−β1

)
,

where we set β1 := β(1 − 2
r ) > 2. Hence the series in (5) absolutely converges. We

now check Condition (iii).

an = Eν

(
n−1∑

k=0

g ◦ T k

)2

= nEν(g)
2 + 2

n−1∑

k=1

(n − k)Eν(g · g ◦ T k)

= nσ 2
g − n

∑

|k|≥n

Eν(g · g ◦ T k) − 2
n−1∑

k=1

kEν(g · g ◦ T k)

= nσ 2
g + O(n

∑

|k|≥n

k−β1) + O

(
n−1∑

k=1

k1−β1

)

= nσ 2
g + O(1),

Therefore, lim
n→∞

an
n = σ 2

g > 0.

By Proposition 1, for any ε ∈ (0, λ − 1
2+δ

), enlarging to a richer probability space
(M ′, ν ′) if necessary, there exists a standard Brownian motion W (·) such that

∣∣∣∣∣

n−1∑

k=0

g ◦ T k − W (an)

∣∣∣∣∣ = O
(
n

1
2+δ

+ε
)

= O(nλ), ν ′ − a.s. (6)

We recall the following property of standard Brownian motions: for any s ≥ 0
and t > 0, the incrementW (s + t) − W (s) has the same distribution as Z(t), where
Z(t) is normally distributed with mean 0 and variance t . Also, it is well known that
E |Z(t)|2
 = t
(2
 − 1)!! for any 
 ∈ N, where the double factorial is defined by
(2
 − 1)!! = ∏


k=1(2k − 1). In particular, E |Z(t)|4 = 3t2. See e.g. [10] for details.
Now we compare W (an) and W

(
nσ 2

g

)
as follows. Since an = nσ 2

g + O(1), by
Markov’s inequality,
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∞∑

n=1

ν ′ {∣∣W (an) − W
(
nσ 2

g

)∣∣ ≥ nλ
} ≤

∞∑

n=1

Eν ′
∣∣Z(|an − nσ 2

g |)∣∣4
n4λ

=
∞∑

n=1

n−4λ · 3 ∣∣an − nσ 2
g

∣∣2

= O

( ∞∑

n=1

n−4λ

)
< ∞,

as λ > 1
4 . Then by Borel–Cantelli Lemma,

∣∣W (an) − W
(
nσ 2

g

)∣∣ = O(nλ), ν ′ − a.s. (7)

Therefore, (4) immediately follows from (6) and (7).

Applying Lemma 2 to the induced processes, we obtain

Lemma 3 The induced process X f̂ = { f̂ ◦ T n}n≥0 satisfies an ASIP as follows: for

any λ ∈
(
max

{
1
4 ,

1
β

+ 1
p + 1

q

}
, 1
2

)
, enlarging to a richer probability space (M ′, ν ′)

if necessary, there exists a standard Brownian motion W (·) such that

∣∣∣∣∣

n−1∑

k=0

f̂ ◦ T k − W
(
nσ 2

f̂

)∣∣∣∣∣ = O(nλ), ν ′ − a.s. (8)

where σ 2
f̂
is given by (5).

Proof Recall that λ ∈
(
max

{
1
4 ,

1
β

+ 1
p + 1

q

}
, 1
2

)
. Pick a sufficiently small δ ∈

(
0, 1

λ
− 2

)
, and choose some r > 2 such that

1

p
+ 1

q
<

1

r
< λ − 1

β
. (9)

By Lemma 1, f̂ ∈ Lr (M, r) and Eν( f̂ ) = 0, and f̂ is an adapted function on M .
Then (8) holds by Lemma 2.

3.3 Comparison Between X f and X ̂f

We now regard ν as a probability measure onM, although it is not T-invariant. Note
that ν-a.s. x ∈ M belongs to the induced space M . In this subsection, we shall show
that the induced process X f̂ = { f̂ ◦ T n}n≥1 on (M, ν) is comparable to the original
process X f = { f ◦ Tn}n≥1 on (M, ν).
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For any point x ∈ M , or equivalently, for ν-a.s. x ∈ M, we define the following
time functions: for any n ≥ 1, there is a unique integer n̂ = n̂(x, n) such that

n̂ = n̂(x, n) := max

{
m ≥ 1 :

m−1∑

k=0

R ◦ T k(x) ≤ n

}
. (10)

We set n̂ = 0 if the above set is empty. Also, we let

ñ = ñ(x, n) := n −
n̂−1∑

k=0

R ◦ T k(x). (11)

Lemma 4 For any ε > 0, we have

|̂n − nμ(M)| = O
(
n

1
2 +ε

)
, ν − a.s. (12)

Proof We first apply Lemma 2 to the stationary process

XR := {
R ◦ Tm − Eν(R)

}
m≥0 = {

(R − Eν(R)) ◦ Tm
}
m≥0

on the probability space (M, ν). Indeed, R − Eν(R) ∈ L p(ν) and it is of zero mean.
Furthermore, R is F0

0-measurable, and so is R − Eν(R). Hence by Lemma 2, enlarg-
ing to a richer probability space (M ′, ν ′) if necessary, there exists a standardBrownian
motion W1(·) such that

∣∣∣∣∣

m−1∑

k=0

R ◦ T k − mEν(R) − W1
(
m σ 2

R−Eν (R)

)
∣∣∣∣∣ = O

(
m

1
2

)
, ν ′ − a.s. (13)

By Kac formula, we have Eν(R) = 1
μ(M)

. It is well known (or use Borel–Cantelli

Lemma) that for any ε > 0, W1

(
m σ 2

R−Eν (R)

)
= O

(
m

1
2 +ε

)
, ν ′-a.s.. Hence (13)

implies that
m−1∑

k=0

R ◦ T k = m

μ(M)
+ O

(
m

1
2 +ε

)
, ν − a.s. (14)

By the definitions in (10) and (11), we have

|̃n| =
∣∣∣∣∣n −

n̂−1∑

k=0

R ◦ T k

∣∣∣∣∣ ≤ R ◦ T n̂ = O
(
n̂

1
p +ε

)
= O

(
n̂

1
2

)
, ν − a.s. (15)

where we use that R ∈ L p(ν) and p > 2. Hence by (14) and (15),
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n = n̂

μ(M)
+ O

(
n̂

1
2 +ε

)
,

for ν-a.s. x ∈ M . In particular, it follows that n̂ → ∞ a.s. if and only if n → ∞, and
n̂ = O(n). Therefore,

n = n̂

μ(M)
+ O

(
n

1
2 +ε

)
, ν − a.s.

from which (12) holds.

To compare the partial sums of X f and X f̂ , we consider

�n(x) :=
n−1∑

k=0

f ◦ Tk(x) −
n̂−1∑

j=0

f̂ ◦ T j (x) =
ñ−1∑

k=0

f ◦ Tk(T n̂(x)). (16)

for ν-a.s. x ∈ M .
Set h = | f |, and let ĥ be its induced function on M . Let λ be given by Theorem 1.

We choose r as in (9) and pick a sufficiently small ε > 0 such that 1
r + ε < λ.

Since h = | f | ∈ Lq(M, μ), by the same argument in the proof of Lemma 1 (2),
ĥ ∈ Lr (M, ν). By Lemma 4 and the expression in (16), we get

|�n| ≤ ĥ ◦ T n̂ = O
(
n̂

1
r +ε

)
= O

(
nλ

)
, ν − a.s. (17)

3.4 ASIP for the Original Process

We set
σ = σ( f ) := σ f̂

√
μ(M). (18)

where σ f̂ is given by (5) (in which we let g = f̂ ).

Lemma 5 For any ε > 0 and any standard Brownian motion W (·) on (M, μ),

∣∣∣W
(
nσ 2

) − W
(
n̂σ 2

f̂

)∣∣∣ = O(n
1
4 +ε), a.s., (19)

Proof Pick a positive integer 
 > 1/ε. By the basic property of standard Brownian
motions, as well as Markov’s inequality, Lemma 4 and (18),
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∞∑

n=1

μ
{∣∣∣W

(
nσ 2

) − W
(
n̂σ 2

f̂

)∣∣∣ ≥ n
1
4 +ε

}
≤

∞∑

n=1

Eμ

∣∣∣Z
(∣∣∣nσ 2 − n̂σ 2

f̂

∣∣∣
)∣∣∣

2


n2
(
1
4 +ε)

=
∞∑

n=1

n−2
( 1
4 +ε) · (2
 − 1)!!

∣∣∣nσ 2 − n̂σ 2
f̂

∣∣∣



= O

( ∞∑

n=1

n−
ε

)
< ∞.

Here again Z(t) denotes the normal distribution with mean 0 and variance t . Then
(19) follows from the Borel–Cantelli Lemma.

Let λ be given by Theorem 1. Again we regard ν as a probability measure onM,
and we show that the original process { f ◦ Tk}n≥0 satisfies an ASIP with rate O(nλ)

with respect to the measure ν.
Note that the almost sure bound for |�n| in (17) also holdswith respect to ν since ν

is absolutely continuous with respect toμ. Then by Lemmas 3–5, enlarging (M, ν) to
a richer probability space (M′, ν ′) if necessary, there is a standard Brownian motion
W (·) such that

∣∣∣∣∣

n−1∑

k=0

f ◦ Tk − W
(
nσ 2

)
∣∣∣∣∣

≤
∣∣∣∣∣∣

n−1∑

k=0

f ◦ Tk −
n̂−1∑

j=0

f̂ ◦ T j

∣∣∣∣∣∣
+

∣∣∣∣∣∣

n̂−1∑

j=0

f̂ ◦ T j − W
(
n̂σ 2

f̂

)
∣∣∣∣∣∣
+

∣∣∣W
(
n̂σ 2

f̂

)
− W

(
nσ 2

)∣∣∣

= O(nλ) + O(̂nλ) + O(n
1
4+ε) = O(nλ), ν ′ − a.s.

Finally, we need to show the ASIP for the original process { f ◦ Tk}n≥0 with respect
to the original measure μ, as the Brownian motion W (·) is not defined in a richer
space of (M, μ). Nevertheless, this issue is recently solved by Korepanov [18] and
Gouëzel [13]. Here we quote and state Corollary 1.3 in [13] for the our ergodic
system T : (M, μ) → (M, μ) with respect to the two measures ν and μ.

Proposition 2 If the ASIP holds for the process { f ◦ Tk}n≥0 with rate O(nλ) with
respect to ν, and f ◦ Tn = O(nλ) a.s., with respect to both μ and ν, then the ASIP
holds for { f ◦ Tk}n≥0 with the same rate O(nλ) with respect to μ.

Applying this proposition, we finish the proof of Theorem 1 by confirming f ◦
Tn = O(nλ). This is due to the fact that f ∈ Lq and that λ > 1

q .
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4 Applications

4.1 Intermittent Maps

A classical example of one-dimensional intermittent maps is provided by the
Manneville–Pomeau map Tα : [0, 1] → [0, 1] defined by

Tα(x) = x + x1+α (mod 1),

for any α ∈ (0, 1). It was shown in [16, 19, 24, 29] that bounded Lipschitz observ-

ables has the correlation decay in rate O
(
n1−

1
α

)
, and satisfies the central limit theo-

rem for α ∈ (0, 1/2). In [23], Pollicott and Sharp proved the weak invariance prin-
ciple for α ∈ (0, 1/3).

We consider the case when α ∈ (0, 1
2 ). We obtain the induced map Tα on

M = [c, 1], where c ∈ (0, 1) is such that Tα(c) = 0. It is well known that the first
return time R ∈ L1/α , and the natural partition ξ := {[R = n]}n≥1 is α-mixing with
exponential rate. An observable f is adapted if there are 0 ≤ s ≤ t < ∞ such that
f is constant on each element of T−s

α ∨ · · · ∨ T−t
α . By Theorem 1, the ASIP holds

for any Lq adapted function with q > α
1−2α .

Remark 3 Of course, here we do not improve results in [23], since we only deal with
adapted functions. Nevertheless, we do include some important functions, such as
the first return time R itself, and thus our theorem provides an advanced result on
the return time distribution.

4.2 Billiards with Flat Points

For the basics of chaotic billiards, we refer the reader to [7].
Chernov and Zhang [6] introduced a family of semi-dispersing billiards, for which

the decay of correlations for the collision map T is of order O(n−a) for any a ∈
(1,∞). By carefully choosing an inducing domain M , they obtained a generating
partition ξ of M given by the first return time R ∈ L1+a . Also, the two-sided σ -
filtration exhibits α-mixing with exponential rate. By Remark 2, our main theorem
implies that the ASIP holds for any Lq adapted function with q > 2 a+1

a−1 .
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Central Limit Theorem for Billiards
with Flat Points

Kien Nguyen and Hong-Kun Zhang

Abstract In this paper, we constructed stationary martingale difference approxima-
tions to certain processes generated by billiards with flat points, using the filtration
generated by the first return time function. This leads to the central limit theorem for
observables adapted to the filtration. Moreover, we also are able to obtain an explicit
formula for the diffusion constant for this class of observables.

Keywords Billiards · Flat points · Limit theorems · Decay of correlations
Martingales

1 Introduction to the Main Result

Billiards are natural models to many different physical problems, especially in clas-
sical and statistical mechanics. They have a wide range of properties depending on
the shape of the tables. Sinai introduced in 1970 the so-called Sinai (or dispers-
ing) billiards where the boundary of the table is smooth and concave with positive
curvature. These billiards are strongly chaotic: they are ergodic, mixing and have
exponential decay of correlations. The central limit theorem is known to be true for
these systems, see [2]. Since then, the central limit theorem and other limit theorems
have been proved for various billiards, including ones with slowmixing rate. Inmany
cases, the observables considered in those examples are Hölder continuous and the
diffusion constant is given as an infinite series by the Green–Kubo formula.

In their paper [4], Chernov and Zhang introduced a family of dispersing billiard
models. They were able to prove that the correlations for the collision map decay as
O(1/na) for any constanta ∈ (1,∞), by introducing an induced system togetherwith
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Fig. 1 Two types of dispersing billiards with one pair of flat points P and Q

a first return time function. Instead of using the traditional methods, we constructed
a filtration generated by the first return time function. Then we are able to construct a
stationary martingale difference sequence to approximate the process adapted to this
filtration.With this new tool, we are going to the central limit theorem for this billiard
family for a class of piecewise Hölder continuous functions. One achievement of our
results is that we are able to represent the diffusion constants in an explicit and simple
formula, comparing to the infinite series using the Green Kubo formula. Before we
proceed to the main result, let us briefly recall some basic notions; more detailed
exposition can be found in, for example, [3].

The billiard tableD considered in [4] has a pair of boundary components bounded
by the curves y = |x |β + 1, y = −(|x |β + 1) and some strictly inward convex curves
with nowhere vanishing curvature and no cusps. We denote P and Q be the only
two points with zero curvature (also called flat points). It was assume that there is
a periodic-2 trajectory running between the two flat points P and Q. A point mass
moves inside the table and bounces off its boundary ∂D elastically, see Fig. 1.

Let M be the collision space of the billiard dynamics on D. We parameterize
∂D by arclength in the clockwise direction and thus each collision is determined
by its position r on ∂D and its angle of reflection −π/2 ≤ ϕ ≤ π/2 (that formed
with the inward normal vector). They are natural coordinates M and we can write
M = [0, |∂D|] × [−π/2, π/2], where |∂D| is the length of ∂D. We denote S0 as
the boundary ofM, and S1 as the singular set for F . The collision map F : M → M

preserves a smooth probability measure μ on M defined by:

dμ = 1

2|∂D| cos(ϕ)drdϕ. (1)

Let f, g ∈ L2(M, μ) be two piecewise Hölder continuous with singularities coin-
cide with those of Fk for some k. The correlations of f and g are defined by:
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Cn( f, g,F, μ) =
∫
M

( f ◦ Fn) · gdμ −
∫
M

f dμ

∫
M

gdμ. (2)

Chernov and Zhang proved in [4] that these correlations decay polynomially, that is:

|Cn( f, g,F, μ)| ≤ C
(ln n)a+1

na
, (3)

where a = β+2
β−2 and C is some fixed constant.

For systems with slow rates of decay of correlations like this, it is typical to
study the dynamics on a subset of the phase space such that the induced system has
exponential decay of correlations, then extend the results to the original space.

Let M ⊂ M be a subset ofM obtained by removing the collisions that happen in
an arbitrarily small neighbourhood of the flat points. The first return time function
R : M → N is defined almost everywhere by:

R(z) = inf{n ≥ 1 : Fn(z) ∈ M}. (4)

Let Mn = {R = n} ⊂ M be the n-th level set of R, for each n ≥ 1. Moreover, for
n,m ≥ 1, we denote

pn,m := ν(F−1Mm ∩ Mn)

ν(Mn)
(5)

The quantities pn,m can be thought of as the transition probability of going from cell
Mn to cell Mm in one iteration. It is important to note that everything in Mn with
n ≥ 3must go to M1 if the neighbourhood is sufficiently small. From M2, although it
cannot go to cells of higher indices, it is possible, however, to go back to itself because
of the presence of period-four-orbit-like trajectories. There is a positive probability
to go from M1 to any cells. Fig. 2 shows the structure of level sets of R in the phase
space corresponding to Γ1 and Γ2, respectively, for the first table in Fig 1.

Now consider the induced collision map F : M → M given by: F(z) = FR(z)(z).
The function F is discontinuous on the lines separating the cells Mn’s. Moreover,
F preserves the conditional measure ν on M , where for each B ⊂ M , ν(B) :=
μ(B)

μ(M)
. The map F : M → M is strongly hyperbolic and has exponential decay of

correlations.
Since the set M is partitioned by the cells Mn’s, we also have a partition forM:

M = ∪∞
n=1 ∪n−1

k=0 F
kMn.

An element z ∈ M can be represented by the pair (y, i) where Π(z) = y is the
projection onto the base M and z = Fi (y) with 0 ≤ i ≤ R(y) − 1. Let FM

0 be the
σ -algebra generated by this partition of M. We now state the main theorem of this
paper:

Theorem 1 LetD be the billiard tablewith flat points. Let f : M → R be a bounded
FM
0 -measurable function and μ( f ) = 0. Then we have:
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Fig. 2 a The level sets of R in the phase space corresponding to collisions on Γ1. The shadowed
region is M2. The dashed curves are the boundary of level curves for R ◦ F . Ws is the weak
stable manifold for the periodic-2 trajectory. b The level sets for R and R ◦ F in the phase space
corresponding to collisions on Γ2. Note that in this phase space, besides M1 the level sets of R only
contains two components of M2. The dashed lines are boundaries of FM2

lim
n→∞ μ

{
Sn f√
n

≤ t

}
= 1√

2πσ f

∫ t

−∞
e
− s2

2σ2f ds. (6)

for all −∞ < t < ∞. Here:

Sn f = f + f ◦ F + · · · + f ◦ Fn−1.

Moreover, σ 2
f = σ 2

f̃
μ(M), where σ 2

f̃
is given in Theorem 2.

Remark 1 Since R ∈ L2+δ with δ > 0 (see Lemma 1 below), the bounded condition
on f can actually be replaced by f ∈ L2+2/δ(M, μ), see [8].

2 Induced Function

In order to prove Theorem 1, we will first prove that the induced function of f also
satisfies a central limit theorem. The induced function of f is given by:

f̃ := f + f ◦ F + · · · + f ◦ FR−1.

Lemma 1 We have that R ∈ L2+δ(M, ν) for any 0 < δ < a − 1.

Proof The verification of this lemma is straightforward, since:
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ν(R > n) ≤ C ′ · n−a−1 (7)

for every n ≥ 1 and some uniform constantC ′ (see [4]). We recall that a = β+2
β−2 > 1.

�

Suppose that f (z) : M → R is FM
0 -measurable. Then one can check that f̃ is

constant on each cell Mn and furthermore f̃ ∈ L2(M, ν) since f ∈ L∞(M, μ).

Theorem 2 (CLT for the induced function) Let f : M → R be defined as in Theo-
rem 1 and f̃ its induced function on M. Then we have

lim
n→∞ ν

{
Sn f̃ − nν( f̃ )√

n
≤ t

}
= 1√

2πσ f̃

∫ t

−∞
e
− s2

2σ2
f̃ ds. (8)

for all −∞ < t < ∞, where Sn f̃ = f̃ + f̃ ◦ F + · · · + f̃ ◦ Fn−1. and

σ 2
f̃

= Var( f̃ ) − 2(E( f̃ |M1))
2ν(M1) + 2

p2,2
p1,2

E( f̃ |M2)ν(M2)
(
E( f̃ |M1)(p1,1 − 1)+

+E( f̃ |M2)p1,2 − E( f̃ ◦ F |M1)
)
.

An important special case of Theorem 2 is when f̃ is the return time function:

Corollary 1 Let f be defined by:

f (z) =
{
1 if z ∈ M \ M

1 − ν(R) if z ∈ M,
(9)

then f̃ = R − ν(R). Thus the (centralised) return time function R − ν(R) also sat-
isfies the central limit theorem, that is:

lim
n→∞ ν

{
Sn R − nν(R)√

n
≤ t

}
= 1√

2πσR

∫ t

−∞
e
− s2

2σ2R ds. (10)

for all −∞ < t < ∞, with

σ 2
R = Var(R) − 2(1 − ν(R))2ν(M1) + p2,2

p1,2
(4 − 2ν(R))ν(M2)×

×
(
p1,2 − p1,3 + ν(R)(1 + p1,3) − E(R ◦ F |M1)

)
.

Assuming Theorem 2, we now show that the Theorem 1 is true. This standard
result is proved in several references, for example, [1, 3]. For completeness, we give
a proof here. But before we go to the proof of this lemma, we need some basic results.
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Lemma 2 For each n ≥ 1, let nx (n) be the number of times the point mass comes
back to M during the first n iterations. Then for ν-a.e. x ∈ M we have:

lim
n→∞

n

nx (n)
= ν(R).

Proof We first note that, for ν-almost every x , nx (n) → ∞ as n → ∞. The set of x
such that the sequence {nx (n)} is bounded has measure 0: it is the countable union
of all preimages of the set {R = ∞}.

The induced map F is ergodic and R ∈ L1(M, ν), therefore we have, by Birkhoff
ergodic theorem:

lim
n→∞

Sn R

n
= ν(R)

for almost every x ∈ M . For such an x ∈ M , since Snx (n)R ≤ n < Snx (n)+1R, we have
that:

Snx (n)R

nx (n)
≤ n

nx (n)
≤ Snx (n)+1R

nx (n) + 1
· nx (n) + 1

nx (n)
.

Therefore we have for almost every x ∈ M that

lim
n→∞

n

nx (n)
= ν(R). �

Corollary 2 We have:

lim
n→∞ ν

(
nx (n) − n/ν(R)√

n
≤ t

)
= 1√

2πσ

∫ t

−∞
e− s2

2σ2 ds.

for all t ∈ (−∞,∞) and σ 2 = σ 2
R/(ν(R))3 = σ 2

Rμ(M)3.

Note that we used the Kac formula ν(R)−1 = μ(M) in the above Corollary.

Lemma 3 Theorem 2 implies Theorem 1.

Proof In this proof, we will assume for simplicity that the function f is bounded.
See [6], Appendix A for a similar but longer proof of the more general case. Without
loss of generality, assume that μ( f ) = 0 and therefore we also have ν( f̃ ) = 0. Let
m = m(n) = n/ν(R)�. Corollary 2 implies that for any ε > 0, there exists Aε > 0
such that

ν(|nx − m| ≥ A
√
n) ≤ ε.

First we prove that with respect to μ on M we have:

Sn f ◦ Π√
n

=⇒ N (0, σ 2
f ).

We have:
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Sn f√
n

= Sn1 f̃√
n

+ Sn2 f̃ − Sn1 f̃√
n

+ Sn f − Sn2 f̃√
n

.

The first term converges to N (0, σ 2
f ) with respect to ν by our assumption and σ 2

f =
σ 2
f̃
/ν(R). The second and third terms converge to 0 in probability, byBirkhoff ergodic

theoremand the fact that f is a bounded function. Thuswehave shown that on (M, ν):

Sn f√
n

=⇒ N (0, σ 2
f ). (11)

We define a new probability measure ξ on M by dξ = R/ν(R)dν. Since ξ << ν,
the central limit theorem (11) also holds with respect to ξ . We have:

∫
M

exp

(
i t
Sn f ◦ Π√

n

)
dμ =

∫
M

R exp

(
i t
Sn f√

n

)
dμ =

∫
M

R

ν(R)
exp

(
i t
Sn f√

n

)
dν. (12)

This shows that on (M, μ):

Sn f ◦ Π√
n

=⇒ N (0, σ 2
f ).

To complete the prove of this lemma, we will show that Sn f√
n

− Sn f ◦Π√
n

−→ 0 in
probability.

Sn f (y, i) − Sn f (y, 0) =
n−1∑
k=0

f ◦ Fk(y, i) −
n−1∑
k=0

f ◦ Fk(y, 0)

= −
i−1∑
k=0

f ◦ Fk(y, 0) +
n+i−1∑
k=n

f ◦ Fk(y, 0)

= −
i−1∑
k=0

f (y, k) +
i−1∑
k=0

f ◦ Fn(y, k).

Since |Sn f (y, i) − Sn f (y, 0)| ≤ 2 ‖ f ‖∞ R, we have that

Sn f√
n

− Sn f ◦ Π√
n

−→ 0 in probability.

Thus we have shown that Theorem 2 implies Theorem 1. �
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3 Central Limit Theorem for the Induced Function

We devote this section to prove a central limit theorem on the induced system
(M, F, ν) of which Theorem 2 is a special case:

Theorem 3 Let X : M → R be anF0-measurable function such that X ∈ L2(M, ν)

and E(X) = 0. Then
Sn X√
n

⇒ N (0, σ 2
X ), (13)

where the variance σ 2
X is given by formula (31).

There is a filtration of σ -algebras on M :

Fn = σ(R ◦ Fk : −n ≤ k ≤ n) (14)

for n ≥ 0 and Fn = {∅, M} for n < 0. Let Xn = X ◦ Fn for n ≥ 0. Because F pre-
serves the probability measure ν, the sequence {Xn}n≥0 is a stationary stochastic
process adapted to the filtration {Fn}. By replacing X by X − E(X), we can assume
that E(X) = 0.

Our method in proving that Sn X√
n
converges to a normal distribution as n → ∞ is

to approximate the Birkhoff sum by a series of martingale differences for which a
central limit theorem is already proved, see [7]:

Lemma 4 Let {Z j : j ≥ 1} be a stationary ergodic sequence of martingale differ-
ences such that E(Z2

1) = σ 2 < ∞. Then we have

Sn Z√
n

=⇒ N (0, σ 2).

The convergence here is in distribution.

Our approximation is as follows. Fix any large integer k ≥ 1. Then for any n ≥ 1
we have a decomposition:

Xn = E(Xn|Fn−k) + hk ◦ Fn−1 + ukn − vk
n, (15)

where hk = ∑k
i=1

(
E(Xi |F1) − E(Xi |F0), vk

n−1 = ukn and

ukn =
k−2∑
i=0

(E(Xn+i |Fn−1) − E(Xn+i |Fn−k+i )) . (16)

Therefore:
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X0 + · · · + Xn−1 =
n−2∑
i=0

hk ◦ Fi + E(X0 + · · · + Xk−1|F0) − vkn−1 +
n−1∑
i=k

E(Xi |Fi−k).

(17)
Note that E(Xi |Fi−k) = E(Xk |F0) ◦ Fi−k for i ≥ k, and vk

n = vk
k ◦ Fn−k . We have:

lim sup
n→∞

n−1E
(
X0 + · · · + Xn−1 −

n−2∑
i=0

hk ◦ Fi )2

= lim sup
n→∞

n−1E
(
E(X0 + · · · + Xk−1|F0) − vkn−1 +

n−1∑
i=k

E(Xi |Fi−k)
)2

≤ 3 lim sup
n→∞

n−1E
( n−1∑

i=k

E(Xi |Fi−k)
)2

= 3 lim sup
n→∞

(
n − k

n
E

(
E(Xk |F0)

)2 + 2

n

n−k−1∑
i=1

(n − k − i)E
(
E(Xk |F0) · E(Xk |F0) ◦ Fi

))
.

Since X : M → R is an F0-measurable function, we can compute the quantities
E(Xk |F0) rather explicitly.

Lemma 5 Let E(Xk |F0) = ∑∞
n=1 a

(k)
n χMn , where a

(k)
n = E(Xk |Mn) for n ≥ 1 and

k ≥ 0. We have a recurrence relation:

a(k+1)
i =

∞∑
m=1

a(k)
m pi,m for i = 1, 2, and a(k+1)

n = a(k)
1 for k ≥ 0 and n ≥ 3. (18)

Moreover,
lim
k→∞ a(k)

i = 0, for i = 1, 2. (19)

Proof Suppose that E(Xk |F0) = ∑∞
n=1 a

(k)
n χMn . Then

E(Xk+1|F1) = E(Xk |F0) ◦ F =
∞∑
n=1

a(k)
n χF−1Mn ,

and thus:

E(Xk+1|F0) =
∞∑
n=1

E(E(Xk+1|F1)|Mn)χMn =
∞∑
n=1

( ∞∑
m=1

a(k)
m pn,m

)
χMn ,

where we define pn,m as in (5). for n,m ≥ 1. It is straightforward that
∑∞

m=1 pnm = 1
for any n ≥ 1 since the cells Mn’s are disjoint and the map F is invertible. Suppose
that x ∈ Mn; that means the point mass will enter the neighbourhood of the flat points
and come out after n − 1 collisions with the boundary. For n ≥ 3, by shrinking the
neighbourhood if necessary, once the point mass come out it will not come back to
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the neighbourhood after at least 2 collisions with the good part of the boundary of
the table. That is to say F−1M1 ∩ Mn = Mn , hence pn,1 = 1, for n ≥ 3. In essence,
we have a three-state Markov chain. Therefore we have that:

E(Xk+1|F0) =
( ∞∑
m=1

a(k)
m p1,m

)
χM1 +

( ∞∑
m=1

a(k)
m p2,m

)
χM2 + a(k)

1

∞∑
n=3

χMn . (20)

Let zk = (a(k)
1 , a(k)

2 , a(k−1)
1 )t , and

(Ai j ) =
⎛
⎝p1,1 p1,2 1 − p1,1 − p1,2
p2,1 1 − p2,1 0
1 0 0

⎞
⎠ . (21)

The recurrence can then be written in matrix form as:

zk+1 = Azk for k ≥ 1; z1 = (a(1)
1 , a(1)

2 , a(0)
1 )t . (22)

We note that the first row of A is strictly positive, thus A is an irreducible,
aperiodic stochastic matrix and the unique stationary probability vector is π =
(ν(M1), ν(M2), ν(Mn≥3)):

ν(M1)A12 = ν(M2)A21

ν(M1)A13 = ν(Mn≥3)

It follows that limk→∞ a(k)
i = π · z1 for i = 1, 2. Furthermore, π · z1 =

E(E(X1|F0)) = 0. Thus we have:

lim
k→∞ a(k)

i = 0, for i = 1, 2. �

Lemma 6
lim
k→∞E(E(Xk |F0))

2 = 0.

Proof We recall that

E(Xk |F0) =
∑
n≥1

a(k)
n χMn = a(k)

1 χM1 + a(k)
2 χM2 + a(k−1)

1 (1 − χM1 − χM2).

Therefore:

E (E(Xk |F0))
2 = (a(k)

1 )2ν(M1) + (a(k)
2 )2ν(M2) + (a(k−1)

1 )2(1 − ν(M1) − ν(M2)).

Thus we have:
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lim
k→∞E (E(Xk |F0))

2 = 0. �

Lemma 7

lim
k→∞

∞∑
i=1

E
(
E(Xk |F0) · E(Xk |F0) ◦ Fi

) = 0.

Proof As before we have

E(Xk |F0) · E(Xk+i |F0) = a(k)
1 a(k+i)

1 χM1 + a(k)
2 a(k+i)

2 χM2 + a(k−1)
1 a(k+i−1)

1 (1 − χM1 − χM2 ).

Taking the expectation we have:

E(E(Xk |F0) · E(Xk+i |F0)) = a(k)
1 a(k+i)

1 ν(M1) + a(k)
2 a(k+i)

2 ν(M2)+
+ a(k−1)

1 a(k+i−1)
1 (1 − ν(M1) − ν(M2))

= a(k)
1 ν(M1)(a

(k+i)
1 − a(k+i−1)

1 ) + a(k)
2 ν(M2)(a

(k+i)
2 − a(k+i−1)

1 ).

To deal with the last term, we have for n ≥ 2 that:

a(n)
2 − a(n−1)

1 = (a(n−1)
2 − a(n−1)

1 )A22 (23)

a(n−1)
2 − a(n−1)

1 = a(n)
1 − a(n−1)

1

A12
+ (a(n−1)

1 − a(n−2)
1 )A13

A12
. (24)

Thus the series
∑∞

i=1 E(E(Xk |F0) · E(Xk |F0) ◦ Fi ) is in fact a telescoping series
and noting that a(k)

i → 0 as k → ∞ for i = 1, 2, it must be the case that:

lim
k→∞

∞∑
i=1

E(E(Xk |F0) · E(Xk |F0) ◦ Fi ) = 0. �

Thus for any positive sequence εk → 0 as k → ∞, there exists a sequence nk →
∞ as k → ∞ such that

lim sup
n→∞

n−1E
(
X0 + · · · + Xn−1 −

n−2∑
i=0

hnk ◦ Fi
)2

< εk .

The sequence {hnk ◦ Fi }i≥0 is a stationary sequence of martingale differences
adapted to the filtration {Fi }. The CLT holds for this sequence:

n−1/2
n−1∑
i=0

hnk ◦ Fi =⇒ N (0, σ 2
k ) (25)
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where σ 2
k = E(h2nk ).

Next, we show that the sequence {σk} converges to some limit as k → ∞.

(σi − σ j )
2 ≤ E

(
hni − hn j

)2

= n−1E
( n−1∑

m=0

(hni − hn j ) ◦ Fm
)2

≤ 2(εi + ε j ).

Therefore {σk} is a Cauchy sequence and hence σk → σX as k → ∞ for some
constant σX and

lim
n→∞E

(
Sn X√
n

)2

= σ 2
X .

Finally, the variance σ 2
X can be computed directly as below:

For any n ≥ 1:

Cov(X, X ◦ Fn) = E
(
E(X ◦ Fn|F0) · X)

= E

((
a(n)
1 χM1 + a(n)

2 χM2 + a(n−1)
1

∑
m≥3

χMm

)
·

∞∑
m=1

a(0)
m χMm

)

= a(n)
1 a(0)

1 ν(M1) + a(n)
2 a(0)

2 ν(M2) + a(n−1)
1

∞∑
m=3

a(0)
m ν(Mm)

= (a(n)
1 − a(n−1)

1 )a(0)
1 ν(M1) + (a(n)

2 − a(n−1)
1 )a(0)

2 ν(M2).

In particular, for n = 1:

Cov(X, X ◦ F) = (a(1)
1 − a(0)

1 )a(0)
1 ν(M1) + (a(1)

2 − a(0)
1 )a(0)

2 ν(M2) (26)

= (a(1)
1 − a(0)

1 )a(0)
1 ν(M1) + (a(0)

2 − a(0)
1 )A22a

(0)
2 ν(M2). (27)

For n ≥ 2, we have:

a(n)
2 − a(n−1)

1 = (a(n−1)
2 − a(n−1)

1 )A22 (28)

a(n−1)
2 − a(n−1)

1 = a(n)
1 − a(n−1)

1

A12
+ (a(n−1)

1 − a(n−2)
1 )A13

A12
. (29)

Therefore:



Central Limit Theorem for Billiards with Flat Points 139

Cov(X, X ◦ Fn) = (a(n)
1 − a(n−1)

1 )a(0)
1 ν(M1)

+
(
a(n)
1 − a(n−1)

1 + (a(n−1)
1 − a(n−2)

1 )A13

) A22

A12
a(0)
2 ν(M2).

= (a(n)
1 − a(n−1)

1 )(a(0)
1 ν(M1) + W ) + (a(n−1)

1 − a(n−2)
1 )A13W,

where:

W = A22

A12
a(0)
2 ν(M2). (30)

We can then compute the variance of Sn X√
n
as follows:

Var

(
Sn X√
n

)
= Var(X) + 2

n

n−1∑
k=1

(n − k)Cov(X, X ◦ Fk)

= Var(X) + 2
n−1∑
k=1

Cov(X, X ◦ Fk) − 2

n

n−1∑
k=1

kCov(X, X ◦ Fk).

The second term is:

n−1∑
k=1

Cov(X, X ◦ Fk) = Cov(X, X ◦ F) + (a(n−1)
1 − a(1)

1 )(a(0)
1 ν(M1) + W )

+ (a(n−2)
1 − a(0)

1 )A13W.

Taking limit as n → ∞, the third term converges to 0 by Kronecker’s lemma or
by direct verification. Thus we have:

σ 2
X = lim

n→∞ Var

(
Sn X√
n

)
= Var(X) − 2(a(0)

1 )2ν(M1) + 2W
(
a(0)
1 A11 + a(0)

2 A12 − a(0)
1 − a(1)

1

)
.

(31)

Thus we have shown that Sn X√
n

=⇒ N (0, σ 2
X ) in distribution and completed the

proof of Theorem 3.

Remark 2 Our method also works for functions X that are Fm-measurable for any
m ≥ 0. The martingale approximation is virtually the same, and the estimations of
the errors are easily reduced to estimation of the case X isF0-measurable sincewe are
dealing with stationary stochastic sequences. Thus the central limit theorem actually
holds for a much larger class of observables than those considered in Theorem 1.
However, a drawback is that a formula for the diffusion constant would be more
complicated.
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Almost Sure Rates of Mixing for Random
Intermittent Maps

Marks Ruziboev

Abstract We consider a family F of maps with two branches and a common neu-
tral fixed point 0 such that the order of tangency at 0 belongs to some interval
[α0, α1] ⊂ (0, 1). Maps in F do not necessarily share common Markov partition. At
each step a member of F is chosen independently with respect to the uniform distri-
bution on [α0, α1]. We show that the construction of the random tower in Bahsoun
et al. (Quenched Decay of Correlations for Slowly Mixing Systems, 2018, [5]) with
general return time can be carried out for random compositions of such maps. Thus
their general results are applicable and gives upper bounds for the quenched decay
of correlations of form the n1−1/α0+δ for the any δ > 0.

Keywords Random dynamical system · Quenched decay of correlations
Random induced schemes · General return times · Intermittent maps

1 Introduction

In recent years there has been remarkable interest in studying statistical properties of
random dynamical systems induced by random compositions of different maps (see
for example [1–6, 10, 11, 14, 15, 17] and references therein). In [4] i.i.d. random
compositions of two Liverani–Saussol–Vaienti (LSV)1 maps were considered and
it was shown that the rate of decay of the annealed (averaged over all realisations)
correlations is given by the fast dynamics. Recently the general results on quenched

1A subclass of the so called Pomeau–Manneville maps introduced in [18], and popularised
by Liverani, Saussol and Vaienti in [16]. Such systems have attracted the attention of both
mathematicians and physicists (see [15] for a recent work in this area).
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decay rates (i.e. decay rates for almost every realisation) for the random composi-
tions of non-uniformly expandingmaps were obtained in [5]. As an illustration it was
shown ibidem that the general results are applicable to the random map induced by
compositions of LSVmaps with parameters in [α0, α1] ⊂ (0, 1) chosen with respect
to a suitable distribution ν on [α0, α1]. In the current note we fix the uniform distri-
bution on [α0, α1] and consider a family of maps with common neutral fixed point.
Our maps do not share a common Markov partition. We show that the construction
of the random tower of [5] with general return time can be carried out for the random
compositions of such maps. Hence the main result of [5] is applicable. We obtain
upper bounds for the quenched decay of correlations of the form n1−1/α0+δ for any
δ > 0.

The paper is organised as follows. In Sect. 2, we give a formal definition of the
family F and state the main result of the paper (Theorem 1). In Sect. 3, we construct
uniformly expanding induced randommap and show that the assumptions required in
[5] are satisfied, i.e. we check uniform expansion, bounded distortion, decay rates for
the tail of the return time and aperiodicity. Also we formulate a technical proposition
in this section which is used to obtain the tail estimates and proved in Sect. 4.

2 The Set up and the Main Results

In this section we define the main object of the current note: the random maps. Fix
two real numbers 0 < α0 < α1 < 1. Let I = [0, 1] and letF be a parametrised family
of maps Tα : I → I , α ∈ [α0, α1] with the following properties.

(A1) There exists a C1 function x : [α0, α1] → (0, 1), α �→ xα such that Tα :
[0, xα) → [0, 1) and Tα : [xα, 1] → [0, 1] are increasing diffeomorphisms.

(A2) T ′
α(x) > 1 for any x > 0.

(A3) There exists ε0 > 0 and continuous functions α �→ cα , (x, α) �→ fα(x) such
that fα(0) = 0 and Tα(x) = x + cαx1+α(1 + fα(x)) for any x ∈ [0, ε0].

(A4) Every Tα is C3 on (0, xα] with negative Schwarzian derivative.
(A5) (x, α) �→ T ′′

α (x) and (x, α) �→ T ′
α(x) are continuous on I × [α0, α1].

Notice that the elements of F are parametrised according to the tangency near
0. Now, we describe the randomising dynamics. Let η be the normalised Lebesgue
measure on [α0, α1]. LetΩ = [α0, α1]Z andP = ηZ. Then the shift map σ : Ω → Ω

preservers P, i.e. σ∗ P = P. For ω ∈ Ω , ω = . . . ω−1, ω0, ω1, . . . let α(ω) = ω0 ∈
[α0, α1]. The randommap is formed by random compositions of maps Tα(ω) : I → I
from F, where the compositions are defined as T n

ω (x) = Tα(σ n−1(ω)) ◦ · · · ◦ Tα(ω)(x).
Below we use more shorter notation T n

ω = Tωn−1 ◦ · · · ◦ Tω0(x). We are interested in
studying the statistical properties of equivariant families of measures i.e. families
of measures {μω}ω∈Ω such that (Tω)∗ μω = μσω. Let μ be a probability measure on
I × Ω such that μ(A) = ∫

Ω
μω(A)dP(ω) for A ⊂ I × Ω . We say that the system

{ fω, μω}ω∈Ω (or simply {μω}ω) is mixing if for all ϕ,ψ ∈ L2(μ),
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lim
n→∞

∣
∣
∣
∣

∫

Ω

∫ 1

0
ϕσ nω ◦ f nω · ψωdμωdP −

∫

Ω

∫ 1

0
ϕωdμωdP

∫

Ω

∫ 1

0
ψωdμωdP

∣
∣
∣
∣ = 0.

Further, future and past correlations are defined as follows. Let ϕ,ψ : I → R be two
observables on I . Then we define future correlations as

Cor f
μ (ϕ,ψ) :=

∣
∣
∣
∣

∫
(ϕ ◦ T n

ω )ψdμσ nω −
∫

ϕdμσ nω

∫
ψdμω

∣
∣
∣
∣

and past correlations as

Cor p
μ(ϕ,ψ) :=

∣
∣
∣
∣

∫
(ϕ ◦ T n

σ−nω)ψdμω −
∫

ϕdμω

∫
ψdμσ−nω

∣
∣
∣
∣ .

Theorem 1 Let Tω be the random map described above. Then for almost every
ω ∈ Ω there exists a family of absolutely continuous equivariant measures {μω}ω
on I , which is mixing. Moreover, for every δ > 0 there exists a full measure subset
Ω0 ⊂ Ω and a random variable Cω : Ω → R+ which is finite on Ω0 such that for
any ϕ ∈ L∞(I ), ψ ∈ Cη(I ) there exists a constant Cϕ,ψ > 0 so that

Cor f
μ (ϕ,ψ) ≤ CωCϕ,ψn

1− 1
α0

+δ and Cor p
μ(ϕ,ψ) ≤ CωCϕ,ψn

1− 1
α0

+δ
.

Furthermore, there exist constants C > 0, u′ > 0 and 0 < v′ < 1 such that

P{Cω > n} ≤ Ce−u′nv′ .

Remark 1 Notice that in the deterministic setting every mapping in the family F

admits an absolutely continuous invariant probabilitymeasure,which is polynomially
mixing at the rate n1−1/α if Tα(x) = x + cαx1+α(1 + fα(x)) (see [9, 20]). In the
random setting the upper bounds we give are arbitrarily close to the sharp decay
rates of the fastest mixing system in the family. Since the result holds for almost
every ω ∈ Ω , and in principle there can be arbitrarily long compositions of systems
in T n

ω whose mixing rates are slower than that of Tα0 it is not expected that the mixing
rate of the random system will be the same as the mixing rate of the fastest mixing
system in the family F and Cω integrable at the same time.

Remark 2 We also remark that we are choosing the familyF so that all the maps in it
share the common neutral fixed point 0. If we choose the family by allowing different
maps having distinct neutral fixed points i.e. Tα(p(α)) = p(α), T ′

α(p(α)) = 1 and
p(α) �= 0 for a positive (with respect to η) measure set of parameters α ∈ [α0, α1]
and expanding elsewhere, then the resulting random map is expanding on average.
Whence one can apply spectral techniques as in [7] on the Banach space of quasi-
Hölder functions from [13] to [19] and obtain exponential decay rates. Such systems
are out of context in our setting since we are after systems with only polynomial
decay of correlations.



144 M. Ruziboev

To prove the theorem we construct a random induced map (or Random Young
Tower) for Tω with the properties described in [5]. Below we briefly recall the defi-
nition of induced map.

Let m denote the Lebesgue measure on I and Λ ⊂ I be a measurable subset.
We say Tω admits a Random Young Tower with the base Λ if for almost every
ω ∈ Ω there exists a countable partition {Λ j (ω)} j of Λ and a return time function
Rω : Λ → N that is constant on each Λ j (ω) such that

(P1) for eachΛ j (ω) the induced map T Rω
ω |Λ j (ω) : Λ j (ω) → Λ is a diffeomorphism

and there exists a constant β > 1 such that (T Rω
ω )′ > β.

(P2) There exists D > 0 such that for all Λ j (ω) and x, y ∈ Λ j (ω)

∣
∣
∣
∣
(T Rω

ω )′x
(T Rω

ω )′y
− 1

∣
∣
∣
∣ ≤ Dβ−s(T Rω

ω (x),T Rω
ω (y)),

where s(x, y) is the smallest n such that (T Rω
ω )nx and (T Rω

ω )n y lie in distinct
elements.

(P3) There exists M > 0 such that

∑

n

m{x ∈ Λ | Rω(x) > n} ≤ M for all ω ∈ Ω;

There exist constantsC, u, v > 0,a > 1,b ≥ 0, a fullmeasure subsetΩ1 ⊂ Ω ,
and a random variable n1 : Ω1 → N so that

{
m{x ∈ Λ | Rω(x) > n} ≤ C (log n)b

na , whenever n ≥ n1(ω),

P{n1(ω) > n} ≤ Ce−unv ; (1)

∫
m{x ∈ Λ| Rω = n}dP(ω) ≤ C

(log n)b

na+1
. (2)

(P4) There are N ∈ N and {ti ∈ Z+ | i = 1, 2, ..., N } such that g.c.d.{ti } = 1 and
εi > 0 so that for almost every ω ∈ Ω and i = 1, 2, . . . N we have m{x ∈ Λ |
Rω(x) = ti } > εi .

Under the above assumptions it is proven in [5, Theorem4.1] that there exists a family
of absolutely continuous equivariant measures, which is mixing and the mixing rates
have upper bound of form the n1+δ−a for any δ > 0 (Theorem 4.2, [5]). Therefore to
prove Theorem 1 it is sufficient to construct an induced map T Rω

ω with the properties
(P1)–(P4), which is carried out in the next section.
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3 Inducing Scheme

Here we will construct a uniformly expanding full branch induced random map on
Λ = (0, 1] for every ω ∈ Ω . Let X0(ω) = 1, X1(ω) = x(ω0) = xα(ω) and

Xn(ω) = (Tω|[0,x(ω0)))
−1Xn−1(σω) for n ≥ 2.

Let In(ω) = (Xn(ω), Xn−1(ω)]. Then by definition Tω(In(ω)) = In−1(σω). By
induction we have

In(ω)
Tω−−→ In−1(σω)

Tσω−−→ · · · I1(σ n−1ω)
Tσn−1ω−−−→ Λ.

Hence, every interval In(ω) first is mapped onto I1(ω) and then is mapped onto
Λ by the next iterate of Tω. Define a return time Rω : (0, 1] → N by setting
Rω|(Xn(ω),Xn−1(ω)] = n. Then the induced map T Rω

ω : (0, 1] → (0, 1] defined as
T Rω

ω |In(ω) = T n
ω , for n ≥ 1 is full branch. By assumptions (A1) and (A2) there exists

β > 1 such that (T Rω
ω )′ > β for all ω ∈ Ω . In fact, we can choose

β = min
ω0∈[α0,α1]

min
x∈[x(ω0),1]

|T ′
ω0

(x)|. (3)

This proves (P1). By (A1) all the maps in F have two full branches with xα <

1. Hence, the interval where Rω = 1 has strictly positive length and thus (P4) is
obviously satisfied.

To prove the remaining properties we use the following proposition, which is
proved in Sect. 4.

Proposition 1 (1) For every ω ∈ Ω the sequence {Xn(ω)}n is decreasing and
limn→∞ Xn(ω) = 0. Moreover, there exists a constant C0 > 0 such that for all
ω ∈ Ω

1

C0n1/α0
≤ Xn(ω) ≤ C0

n1/α1
. (4)

(2) There exist C, u > 0, v ∈ (0, 1) and a random variable n1 : Ω → N which is
finite for P-almost every ω ∈ Ω such that

P{ω | n1(ω) > n} ≤ Ce−unv , (5)

Xn(ω) ≤ Cn−1/α0(log n)1/α0 ∀n ≥ n1, (6)
∫

(Xn−1(ω) − Xn(ω))dP(ω) ≤ Cn−1−1/α0(log n)1/α0 . (7)

Now we will prove (P3). For every ω ∈ Ω by definition of Rω and inequality (4)
we have

m{Rω > n} = Xn(ω) ≤ C0n
−1/α1 .
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Since α1 < 1 we have
∑

n−1/α1 < +∞ and hence, there exists M > 0 such that

∑

n≥1

m{Rω > n} ≤ M.

Inequalities (5) and (6) in Proposition 1 directly imply the inequalities in (1).
Inequality (7) implies inequality (2) in (P3). It remains to show distortion estimates
(P2) for the induced map. Our proof is based on Koebe principle. Recall that the
Schwarzian derivative of a C3 diffeomorphism g is defined as

Sg(x) = g′′′(x)
g′(x)

− 3

2

(
g′′(x)
g′(x)

)2

.

It can be easily checked that if f and g are two maps such that f ′ ≥ 0, S f < 0
and Sg ≤ 0, then S(g ◦ f ) = (Sg) ◦ f · f ′ + S f < 0 i.e. the composition g ◦ f has
negative Schwarzian derivative.Wewill use this observation in the proof of Lemma1.

Let J ⊂ J ′ be two intervals and let τ > 0. J ′ is called a τ -scaled neighbourhood
of J if both components of J ′ \ J have length at least τ |J |, where |J | denotes the
length of J . The Koebe principle [8, Chap. IV, Theorem 1.2] states that, if g is a
diffeomorphism onto its image with Sg < 0, and J ⊂ J ′ are two intervals such that
g(J ′) contains τ -scaled neighbourhood of g(J ) then there exists K̂ (τ ) such that for
any x, y ∈ J ∣

∣
∣
∣
g′(x)
g′(y)

− 1

∣
∣
∣
∣ ≤ K̂ (τ )

|x − y|
|J | . (8)

By applying the mean value theorem twice first in J and then in (x, y) ⊂ J for any
x, y ∈ J we obtain

|g(x) − g(y)|
|g(J )| = |g′(v)|

|g′(u)|
|x − y|

|J |
for some u ∈ J , v ∈ (x, y). Now inequality (8) implies that |g′(v)|/|g′(u)| ≥ (1 +
K̂ (τ ))−1. Thus ∣

∣
∣
∣
g′(x)
g′(y)

− 1

∣
∣
∣
∣ ≤ K (τ )

|g(x) − g(y)|
|g(J )| , (9)

for K (τ ) = (1 + K̂ (τ ))K̂ (τ ).
Recall that by (A4) the left branch of Tω has negative Schwarzian derivative for

all ω ∈ Ω . This fact will be used in the proof of the following lemma.

Lemma 1 There exists K > 0 such that for all ω ∈ Ω , n ∈ N and for x, y ∈ In(ω)

∣
∣
∣
∣
(T n

ω )′(x)
(T n

ω )′(y)
− 1

∣
∣
∣
∣ ≤ K |T n

ω (x) − T n
ω (y)|.
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Proof Notice, that M = maxω0∈[α0,α1] maxx∈I1(ω) |T ′′
ω (x)| < +∞ by (A5). Also,

recall that T ′
α|Iω > β > 1 for any Tα ∈ F. Thus for n = 1, we have

∣
∣
∣
∣
(Tω)′(x)
(Tω)′(y)

− 1

∣
∣
∣
∣ ≤ 1

β
|(Tω)′(x) − (Tω)′(y)| ≤ M

β2
|Tω(x) − Tω(y)|.

For n ≥ 2 we use Koebe principle mentioned above. Set J = [Xn(ω), Xn−1(ω)] and
J ′ = [Xn+1(ω), 2]. We first extend Tωn−2 , . . . , Tω0 to (0,+∞) analytically, keeping
the Schwarzian derivative non-positive.2 Let g = Tωn−2 ◦ · · · ◦ Tω0 . Then, g has nega-
tive Schwarzian derivative.Wewill show that g(J ′) contains τ scaled neighbourhood
of g(J ) for some τ > 0, which is independent of ω. Since g(Xn(ω)) = X1(σ

n−1ω)

and g(Xn+1(ω)) = X2(σ
n−1ω). It is sufficient to show that X1(ω) − X2(ω) is

bounded below by a constant independent of ω. By definition of Xn we have

|X1(ω) − X2(ω)| = |T−1
ω (1) − T−1

ω ◦ T−1
σ(ω)(1)| ≥ 1

β ′ |1 − T−1
σ(ω)(1)| ≥ κ > 0,

where β ′ = min{T ′
ω(x) | (x, ω0) ∈ [X̃ , 1] × [α0, α1]} > 1 with X̃ = minω X2(ω)

and κ = β ′(1 − minα xα) > 0 by (A1). Thus, using the fact |g(J )| > 1 − maxα xα >

0 from (9) we obtain ∣
∣
∣
∣
g′(x)
g′(y)

− 1

∣
∣
∣
∣ ≤ K |g(x) − g(y)|.

with K = K (τ )/(1 − maxα xα) which finished the proof.

Lemma 2 There exists a constant C > 0 independent of ω such that for all ω ∈ Ω

and for any x, y ∈ In(ω)

∣
∣
∣
∣log

(T Rω
ω )′(x)

(T Rω
ω )′(y)

∣
∣
∣
∣ ≤ C |T Rω

ω (x) − T Rω

ω (y)|.

Proof From now on we suppress the ω in Rω, since no confusion arises. Note that
T R

ω (x) is the composition of the right branch of Tσ R−1ω and g i.e. T R
ω (x) = Tσ R−1ω ◦

g(x). Therefore, by definition of β in (3) by Lemma 1 we have

log

∣
∣
∣
∣
(T R

ω )′(x)
(T R

ω )′(y)

∣
∣
∣
∣ ≤ K |T R(x) − T R(y)| + K |g(x) − g(y)| ≤ K (1 + 1

β
)|T R(x) − T R(y)|.

Now, we will prove (P2). Together with an elementary inequality |x − 1| ≤ C | log x |
(for some C > 0, whenever | log x | is bounded above) Lemma 3 implies that for any
x, y ∈ In(ω) we have

2Such extensions can be constructed easily. For example, for f ∈ F it is sufficient to take
f̃ (x) = a(x − xα)4 + b(x − xα)3 + c(x − xα)2 + d(x − xα) + 1 with a < bc/d, where a, b, c
are the Taylor coefficients of f at x = xα .
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∣
∣
∣
∣
(T R

ω )′x
(T R

ω )′y
− 1

∣
∣
∣
∣ ≤ D(K , β)|T R(x) − T R(y)| ≤ Dβ−s(T R

ω (x),T R
ω (y)),

whereD = D(K , β) is a constant that depends only on K andβ and the last inequality
follows from the observation: if x, y ∈ (0, 1] are such that s(x, y) = n then |x − y| ≤
β−n . Indeed, by definition (T R

ω )i (x) and (T R
ω )i (y) belong to the same element of the

partition {Ik(ω)} for all i = 0, ..., n − 1. Thus by the mean value theorem

|x − y| = |[(T R
ω )n]′(ξ)|−1|(T R

ω )n(x) − (T R
ω )n(y)| ≤ β−n .

4 The Proof of Proposition 1

We start by proving an auxiliary lemma, which is used in the proof.

Lemma 3 For any k ∈ N, c ≥ 1 and t > 0 we have

EP[e−(cα(σ kω)−α0)t ] = 1

α1 − α0

eα0t (1−c)

ct
(1 − e−ct (α1−α0)).

Proof Since σ preserves P we have

EP[e−(cα(σ kω)−α0)t ] = EP[e−(cα(ω)−α0)t ]
= 1

α1 − α0

∫ α1

α0

e−(cx−α0)t dx = 1

α1 − α0

eα0t (1−c)

ct
(1 − e−ct (α1−α0)).

Proof (Proof of Proposition 1) First we prove item (1). The first two assertions are
obvious, since T ′

ω(x) > 1 for x > 0 and x = 0 is the unique fixed point in [0, 1/2].
Since all the maps in F are uniformly expanding except at 0, there exists n0 ∈ N

independent of ω such that Xn(ω) ∈ (0, ε0) for all n ≥ n0. Thus, it is sufficient
to prove inequality (4) for any n ≥ n0. We now define a sequence {Zn}n which
bounds Xn(ω) from below and has desired asymptotic. Let K0 = [0, ε0] × [α0, α1]
and C1 = max(x,α)∈K0 cα(1 + fα(x)). Set G(x) = x(1 + C1xα0). Define {Zn}n≥n0 as
follows: Zn0 = minω∈Ω Xn0(ω) and let Zn = (G|[0,ε0])−1(Zn−1) for n > n0. Since
G(x) ≥ Tα(ω)(x) for any x ∈ [0, ε0] and for any ω ∈ Ω , one can easily verify by
induction that Zn ≤ Xn(ω) for n ≥ n0. Finally note that Zn ∼ n−1/α0 [9]. Defin-
ingC ′

1 = min(x,α)∈K0 cα(1 + fα(x)),G ′(x) = x(1 + C ′
1x

α1), Z ′
n0 = maxω∈Ω Xn0(ω)

and Z ′
n = (G ′|[0,ε0])−1(Z ′

n−1) for n > n0 we obtain a sequence {Z ′
n} such that

Xn(ω) ≤ Z ′
n and Z ′

n ∼ n−1/α1 . This finishes the proof.

Item (2) is proved below. Note that by the choice of n0 for any n ≥ n0 we have

Xn(σω) = Xn+1(ω)[1 + cα(ω)Xn+1(ω)α(ω)(1 + fα(ω) ◦ Xn+1(ω))]. (10)
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The latter equality togetherwith the standard estimate (1 + x)−a ≤ 1 − ax + a(a+1)
2 x2

for x, a > 0 implies that

1

Xn+1(ω)α0
− 1

Xn(σω)α0
≥ C1α0Xn+1(ω)α(ω)−α0 − C2Xn+1(ω)2α(ω)−α0 ,

where, C2 = α0(α0+1)
2 min(α,x)∈K0 [cα(1 + fα(x))]2. Hence,

1

Xn(ω)α0
≥ 1

xα0
α(ω)

+ C1α0

n∑

k=2

Xk(ω)α(σ n−kω)−α0 − C2

n∑

k=2

Xk(ω)2α(σ n−kω)−α0 ,

Notice that we can take C1 and C2 are independent of ω. Therefore, by inequality
(4) we have

1

Xn(ω)α0
≥ 1 + C3

n∑

k=2

(k1/α0)α0−α(σ n−kω) − C2

n∑

k=2

(k1/α1)(−2α(σ n−kω)+α0), (11)

To obtain estimates for the right hand side first we will show the right hand side of
the latter inequality on average behaves like n−1 log n as n goes to infinity. We set

ak := (k1/α0)α0−α(σ n−kω), bk = (k1/α1)−2α(σ n−kω)+α0

and

Sn =
n∑

k=2

C3ak − C2bk .

Lemma 4 There exists C4 > 0 such that lim
n→∞

log n

n
EP(Sn) = C4.

Proof Applying the above lemma to EP(elog ak ) with c = 1 and t = log k1/α1 and
using the fact

∑
k≤n

1
log k ∼ n

log n we obtain

n∑

k=2

EP(ak) = α0

α1 − α0

n∑

k=2

1

log k
(1 − k

− α1−α0
α0 ) = α0

α1 − α0

n

log n
+ O(n

1− α1−α0
α0 (log n)−1)

and hence,
log n

n

n∑

k=2

EP(ak) = α0

α1 − α0
+ O(n− α1−α0

α0 ). (12)

Similarly, applying Lemma 3 to EP(bk) with c = 2 and t = log k1/α1 , we obtain

n∑

k=2

EP(bk) := α1

2(α1 − α0)

n∑

k=2

1

log k
(k

− α0
α1 − k

α0
α1

−2
) = α1

2(α1 − α0)

n1−α0/α1

log n
+ o(n).
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and hence,

lim
n→∞

log n

n

n∑

k=2

EP(bk) = lim
n→∞ n−α0/α1 = 0. (13)

Combining (12) and (13) implies

lim
n→∞

log n

n
EP(Sn) = lim

n→∞
log n

n

n∑

k=2

EP(C3ak − C2bk) = C4,

where C4 = C3α0/(α1 − α0).

Now we construct a random variable n1 : Ω → N as in item (2) of Proposition 1.
Notice that Lemma 4 implies that there exists N independent of ω such that

C4

2
≤ log n

n
EP(Sn) ≤ 3C4

2
(14)

for all n ≥ N . On the other hand, by [12, Theorem 1], there exists C > 0 such that
for every t > 0 and n ∈ N we have

P

{
log n

n
|Sn+1 − EP(Sn+1)| < t

}

≤ e
− Cnt2

(log n)2 .

Thus, by letting C5 = CC2
4/16 we obtain

P

{
log n

n
Sn+1 <

C4

4

}

≤ P

{
log n

n
(Sn+1 − EPSn+1) < −C4

4

}

≤ e
− C5n

(log n)2 . (15)

Define

n1(ω) = inf

{

n ≥ N | ∀k ≥ n,
log k

k
Sk ≥ C4

4

}

.

Inequality (15) implies that

P{n1(ω) > n} ≤
∞∑

k=n

e
− C5k

(log k)2 ≤ C6

∞∑

k=n

e−ukv ≤ Ce−unv

for some C > 0, u > 0 and v ∈ (0, 1) which proves inequality (5).
For any n ≥ n1 by (11) we have

Xn(ω)α0 ≤ log n

n

4

C4
.

Hence, for some positive C > 0 we have
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Xn(ω) ≤ C

(
log n

n

)1/α0

.

This finishes the proof of (6). It remains to prove (7). Recall that there exists n0
which depends only on ε0 in (A3) such that (10) holds for all n ≥ n0. Thus, recalling
that σ preserves P we have

∫
m{Rω = n}dP(ω) =

∫
(Xn−1(σω) − Xn(σω))dP(ω) =

∫

{n1(ω)>n}
(Xn−1(σω) − Xn(ω))dP(ω) +

∫

{n1(ω)≤n}
(Xn−1(σω) − Xn(ω))dP(ω)

≤ Ce−unv +
∫

{n1(ω)≤n}
cα(ω)Xn(ω)α(ω)+1(1 + fα(ω) ◦ Xn(ω)dP(ω)

≤ Ce−unv + C
∫ (

log n

n

)(α(ω)+1)/α0

dP(ω) ≤ C

(
log n

n

)(α0+1)/α0

.

This finishes the proof for all n ≥ n0. For n < n0 the assertion follows by increasing
the constant C if necessary.
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Conjugations Between Two Critical
Circle Maps With Non-integer Exponents

Utkir Safarov

Abstract Let f1 and f1 be orientation preserving circle homeomorphisms with
single critical point of non-integer order and same irrational rotation numbers. We
prove that if the orders of critical points are different then the map h conjugating f1
and f2 is a singular function.

Keywords Circle homeomorphisms · Rotation number · Critical point
Conjugation map · Singular function

1 Introduction

In this paper we study a class of circle homeomorphisms with single critical point
i.e. the derivative vanishes at the point. The classification of circle homeomorphisms
under change of variables is one of the important problems in one-dimensional
dynamics. It was started by Poincaré who was motivated by studies in differential
equations more than a century ago and has been actively studied ever since.

We identify the unit circle S1 = R1/Z1 with the half open interval [0, 1). Let f be
a circle homeomorphism that preserves orientation, i.e. f (x) = F(x)(mod 1), x ∈
S1 � [0, 1), where F is continuous, strictly increasing on R1 and F(x + 1) =
F(x) + 1 for any x ∈ R. F is called lift of homeomorphism f . The most impor-
tant arithmetic characteristic of the homeomorphism f of the unit circle S1 is the
rotation number. If f is a circle homeomorphism with lift F , then rotation number
ρ = ρ f is defined by

ρ f = lim
n→∞

Fn(x)

n
(mod 1),

with Fn the nth iterate of F . The rotation number is rational if and only if
f has periodic points. By Denjoy’s classical theorem [4], any C2 circle diffeo-
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morphism f with irrational rotation number are conjugate to the linear rotation
fρ : x → x + ρ(mod 1), that is, there exists an essentially unique homeomorphism
ϕ of the circle with ϕ ◦ f = fρ ◦ ϕ. Since the conjugating map ϕ and the unique
f -invariant measure ν f are related by ϕ(x) = ν f ([0, x]), x ∈ S1 (see [3]), regu-
larity properties of the conjugating map ϕ imply corresponding properties of the
density of the absolutely continuous invariant measures ν f . The problem of relating
the smoothness of ϕ to that of f has been studied extensively. In depth results have
been found in works ([1, 8, 9, 12, 14, 16]). Note that for sufficiently smooth circle
diffeomorphism f with a typical irrational rotation number the conjugacy ϕ is C1-
homeomorphism. Consequently, the invariant measure ν f is absolutely continuous
w.r.t. Lebesgue measure � on S1.

A natural extension of circle diffeomorphisms is circle homeomorphisms with
critical points.

Definition 1 The point xcr ∈ S1 is called non-flat critical point of a homeomor-
phism f with order d > 1, if for a some δ− neighborhoodUδ(xcr ) such that f (x) =
φ(x)|φ(x)|d−1 + f (xcr ) for all x ∈ Uδ(xcr ), where φ : Uδ(xcr ) → φ(Uδ(xcr )) is a
C3 diffeomorphism such that φ(xcr ) = 0.

By a critical circle map we define an orientation preserving circle homeomor-
phism with exactly one non-flat critical point.

An important one-parameter family of examples of critical circle maps are the
Arnold’s maps defined by

fθ (x) := x + θ + 1

2π
sin 2πx (mod1), x ∈ S1

For every θ ∈ R1 the map fθ is a critical map with critical point 0 of cubic type.
Yoccoz in [16] generalizedDenjoy’s classical result, a critical circle homeomorphism
with irrational rotation number is topologically conjugate to an irrational rotation.

The singularity of conjugatingmap for critical circle homeomorphismswas shown
by Graczyk and Swiatek in [7]. They proved that if f is C3 smooth circle home-
omorphism with finitely many critical points of polynomial type and an irrational
rotation number of bounded type, then the conjugating map ϕ is a singular function
on S1 i.e. ϕ′(x) = 0 a.e. with respect to the Lebegue measure.

Hence the problem of regularity of the conjugacy between two critical maps
with identical irrational rotation number arises naturally. This is called the rigidity
problem for critical circle homeomorphisms. For the critical circle maps with odd
order (i.e. d = 2m + 1, m ∈ N ) the rigidity problem is developed by de Faria, de
Melo, Yampolsky, Khanin and Teplinsky among others. Initial results connectedwith
rigidity for critical maps were proven by de Faria and de Melo [6]. They proved that
any twoC3 critical circlemapswith the same order of the critical points (given by odd
integer numbers) and with the same irrational rotation number of bounded type are
C1+ε, ε > 0 smoothly conjugate to each other. Later D. Khmelev andM. Yampolsky
[13] showed that in the analytic case the conjugacy is C1+α smooth near the critical
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point. A. Avila [2] showed, that there exist f1 and f2 analytic homeomorphisms with
the same irrational rotation number such that h is not C1+α for any α > 0.

Next we formulate the fundamental result of K. Khanin and A. Teplinsky [11].

Theorem 1 Let f1 and f2 be two analytic critical circle maps with the same order of
critical points and the same irrational rotation number. Then they are C1-smoothly
conjugate to each other.

Here we consider the case, when the order of critical points are non-integer and
different. Now we formulate our main result.

Theorem 2 Let f1 and f2 be critical circle maps with the same irrational rotation
number. Suppose that (i) fi , i = 1, 2 have an unique critical point x (i)

cr with order
mi ∈ R1, mi > 2 and m1 �= m2;

(i i) fi (x) = (x − x (i)
cr )|x − x (i)

cr |mi−1 + fi (x (i)
cr ) for some ωi -neighborhood

Uωi (x
(i)
cr ) and fi ∈ C3(S1 \Uωi (x

(i)
cr ))

Then the conjugacy h between f1 and f2 is a singular function on S1.

2 Dynamical Partitions, Cross-Ratio Tools

2.1 Dynamical Partition

Let f be an orientation preserving homeomorphism of the circle with lift F and
irrational rotation number ρ = ρ f . We denote by {an, n ∈ N } the sequence of entries
in the continued fraction expansion of ρ, i.e. ρ = [a1, a2, . . . , an, . . .]. Denote by
pn/qn = [a1, a2, . . . , an] the convergents of ρ. Their denominators qn satisfy the
recurrence relation, that is qn+1 = an+1qn + qn−1, n ≥ 1, q0 = 1, q1 = a1.

For an arbitrary point x0 ∈ S1 we define Δ
(n)
0 (x0) the closed interval on S1 with

endpoints x0 and xqn = f qn (x0). Note that for odd n the point xqn lies to the left of x0
and for even n to the right. Denote by Δ

(n)
i (x0) the iterates of the interval Δ

(n)
0 (x0)

under f :Δ(n)
i (x0) := f i (Δ(n)

0 (x0)), i ≥ 1.

Lemma 1 (see [12]) Consider an arbitrary point x0 ∈ S1. A finite piece {xi , 0 ≤
i < qn + qn−1} of the trajectory of this point divides the circle into the following
disjoint (except for the endpoints)intervals: Δ

(n−1)
i (x0), 0 ≤ i < qn, Δ

(n)
j (x0), 0 ≤

j < qn−1.

We denote the obtained partition by ξn(x0) and call it nth dynamical parti-
tion of the circle. We now briefly describe the process of transition from ξn(x0)
to ξn+1(x0). All intervals Δ

(n)
j (x0), 0 ≤ j < qn−1, are preserved, and each of the

intervals Δ
(n−1)
i (x0) is divided into an+1 + 1 sub intervals:

Δ
(n−1)
i (x0) = Δ

(n+1)
i (x0) ∪

an+1−1⋃

s=0

Δ
(n)
i+qn−1+sqn

(x0).
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Obviously one has ξ1(x0) ≤ ξ2(x0) ≤ . . . ≤ ξn(x0) ≤ . . ..

Definition 2 Let K > 1 be a constant. We call two intervals I1 and I2 of S1 are K−
comparable, if the inequalities K−1�(I2) ≤ �(I1) ≤ K�(I2) hold.

Next we formulate the lemma, that is proved in the similar way as in [15].
Let xcr ∈ S1 be a critical point of homeomorphism f . For any x0 ∈ S1, consider

the dynamical partition ξn(x0). For definiteness we assume that n is odd. Then xqn ≺
x0 ≺ xqn−1 . The structure of the dynamical partition implies that xcr = f −p(xcr ) ∈
[xqn , xqn−1 ], for some p, 0 < p < qn . Let I1 and I2 be any elements of a dynamical
partition ξm(xcr ), m ≥ n having a common endpoints.

Lemma 2 Let f ∈ C3(S1) be a critical circle homeomorphism with irrational rota-
tion number. Then there exists a constant K > 1 depending only on f such that the
intervals I1 and I2 are K -comparable.

It follows from the Lemma2 that the trajectory of each point is dense in S1. Hence
it follows that there exists conjugation map ϕ between f and fρ , i.e. ϕ( f (x)) =
fρ(ϕ(x)) for any x ∈ S1.
We assume that Δ(m+k) is element of partitioning ξm+k(xcr ), while Δ(m) is an

element of partitioning ξm(xcr ) that contains Δ(m+k).

Lemma 3 (see [10], Lemma 2, p.183) There exist constants λ1( f ) < λ2( f ) < 1
such that

�(Δ(m+k)) ≤ constλk
2( f )�(Δ

(m)), �(Δ
(m)
0 ) ≥ constλm

1 ( f )

2.1.1 Cross-Ratio Tools

In the proof of our main theorem the tool of cross-ratio plays a key role.

Definition 3 The cross-ratio of four points (z1, z2, z3, z4), z1 < z2 < z3 < z4 is
the number

Cr(z1, z2, z3, z4) = (z2 − z1)(z4 − z3)

(z3 − z1)(z4 − z2)
.

Definition 4 Given four real numbers (z1, z2, z3, z4) with z1 < z2 < z3 < z4 and a
strictly increasing function F : R1 → R1. The distortion of their cross-ratio under
F is given by

Dist (z1, z2, z3, z4; F) = Cr(F(z1), F(z2), F(z3), F(z4))

Cr(z1, z2, z3, z4)
.

Form ≥ 3 and zi ∈ S1, 1 ≤ i ≤ m, suppose that z1 ≺ z2 ≺ · · · ≺ zm ≺ z1 (in the
sense of the ordering on the circle). Then we set ẑ1 := z1 and
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ẑi :=
{
zi , if z1 < zi < 1,
1 + zi , if 0 < zi < z1.

for 2 ≤ i ≤ m.
Obviously, ẑ1 < ẑ2 < · · · < ẑm . The vector (ẑ1, ẑ2, . . . , ẑm) is called the lifted

vector of (z1, z2, . . . , zm) ∈ (S1)m .
Let f be a circle homeomorphism with lift F . We define the cross-ratio distor-

tion of (z1, z2, z3, z4), z1 ≺ z2 ≺ z3 ≺ z4 ≺ z1 with respect to f by Dist (z1, z2, z3,
z4; f ) = Dist (ẑ1, ẑ2, ẑ3, ẑ4; F), where (ẑ1, ẑ2, ẑ3, ẑ4) is the lifted vector of (z1, z2,
z3, z4). We need the following lemma.

Lemma 4 ([5]) Let zi ∈ S1, i = 1, 2, 3, 4, z1 ≺ z2 ≺ z3 ≺ z4. Consider a circle
homeomorphism f1with f1 ∈ C2+ε([z1, z4]), ε > 0,and f ′

1(x) ≥ const > 0 for x ∈
[z1, z4]. Then there is a positive constant C1 = C1( f ) such that

| Dist (z1, z2, z3, z4; f1) − 1 |≤ C1|ẑ4 − ẑ1|1+ε,

where (ẑ1, ẑ2, ẑ3, ẑ4) is the lifted vector of (z1, z2, z3, z4).

We now consider the case when the interval [z1, z4] contains a critical point x (1)
cr of

the homeomorphism f1. More precisely, suppose that z2 = x (1)
cr . We define numbers

α, β, γ, ξ and η as follows:

α := ẑ2 − ẑ1, β := ẑ3 − ẑ2, γ := ẑ4 − ẑ3, ξ := β

α
, η := β

γ
,

where (ẑ1, ẑ2, ẑ3, ẑ4) is the lifted vector of (z1, z2, z3, z4).
Thus we need the following lemma.

Lemma 5 Suppose that the homeomorphism f1 with lift F1 satisfies the conditions
of Theorem 1. Then for any zi ∈ Uδ(x (1)

cr ), i = 1, 4, z1 ≺ z2 = x (1)
cr ≺ z3 ≺ z4 one

has

|Dist (z1, z2, z3, z4; f1) = 1 + ξ

1 + ξm1
· (1 + η)m1 − ηm1

(1 + η)m1
· (1 + η).

Proof By the assumption of the lemma z2 = xcr .WewriteCr( f1(z1), f1(z2), f1(z3),
f1(z4)) as follows

Cr( f1(z1), f1(z2), f1(z3), f1(z4)) = (F1(ẑ2) − F1(ẑ1))(F1(ẑ4) − F1(ẑ3))

(F1(ẑ3) − F1(ẑ1))(F1(ẑ4) − F1(ẑ2))
, (1)

where (ẑ1, ẑ2, ẑ3, ẑ4) is the lifted vector of (z1, z2, z3, z4). Since F1(x) = (x −
x̂ (1)
cr )|x − x̂ (1)

cr |m1−1 + F1(x̂ (1)
cr ) on the interval Uω1(x̂

(1)
cr ) and from (1) we have

Cr( f1(z1), f1(z2), f1(z3), f1(z4)) = αm1

αm1 + βm1
· (α + β)m1 − βm1

(α + β)m1
.
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Using this we get

Dist (z1, z2, z3, z4; f1) =
1

1+ξm1

1
1+ξ

·
(1+η)m1−ηm1

(1+η)m1

1
1+η

.

From the last relation it follows

Dist (z1, z2, z3, z4; f1) = 1 + ξ

1 + ξm1
· (1 + η)m1 − ηm1

(1 + η)m1
· (1 + η).

Thus Lemma 5 is proved.
Next suppose the interval [z1, z4] is a subset of the intervalUω1(x

(1)
cr ) but does not

contain a critical point x (1)
cr of the homeomorphism f1. Let d = min

1≤s≤4
�([zs, x (1)

cr ]).

Lemma 6 Let f1 be a circle homeomorphism satisfying conditions of Theorem 1.
Suppose that d > α + β + γ . Then the following equality holds

Dist (z1, z2, z3, z4; f1) = 1 + O

((
α + β + γ

d

)2
)

.

Proof Let f1 be satisfying the conditions of Theorem 1. For definiteness, we may
assume that x (1)

cr ≺ z1 ≺ z2 ≺ z3 ≺ z4. By definition of cross-ratio implies that

Cr( f1(z1), f1(z2), f1(z3), f1(z4)) = (α + d)m1 − dm1

(α + β + d)m1 − dm1
×

× (α + β + γ + d)m1 − (α + β + d)m1

(α + β + γ + d)m1 − (α + d)m1
= 1 − (1 + α

d )m1

1 − (1 + α+β
d )m1

· (1 + α+β
d )m1 − (1 + α+β+γ

d )m1

(1 + α
d )m1 − (1 + α+β+γ

d )m1
.

The following equalities are easy to check:

(
1 + α

d

)m1 = 1 + m1
α

d
+ m1(m1 − 1)

2

(α

d

)2 + O

((α

d

)3
)

,

(
1 + α + β

d

)m1

= 1 + m1
α + β

d
+ m1(m1 − 1)

2

(
α + β

d

)2

+ O

((
α + β

d

)3
)

,

(
1 + α + β + γ

d

)m1

= 1 + m1
α + β + γ

d
+ m1(m1 − 1)

2

(
α + β + γ

d

)2

+ O

((
α + β + γ

d

)3
)

.

Using these relations we obtain that
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Dist (z1, z2, z3, z4; f1) =
1 + m1−1

2
α
d + O

((
α
d

)2)

1 + m1−1
2

α+β
d + O

((
α+β
d

)2) ·
1 + m1−1

2
α
d + O

((
α
d

)2)

1 + m1−1
2

α+β
d + O

((
α+β
d

)2) =

=
(
1 + m1 − 1

2

α

d
+ O

((
α

d

)2)
·
(
1 − m1 − 1

2

α + β

d
+ O

((
α + β

d

)2))
·
(
1 + m1 − 1

2

α

d
+ O

((
α

d

)2))
·

·
(
1 − m1 − 1

2

α + β

d
+ O

((
α + β

d

)2
))

=
(
1 − m1 − 1

2
· β

d
+ O

((
α + β + γ

d

)2
))

·

·
(
1 + m1 − 1

2
· β

d
+ O

((
α + β + γ

d

)2
))

= 1 + O

((
α + β + γ

d

)2
)

.

Lemma 6 is proved.

3 Proof of Theorem 1

In order to prove Theorem 1 we need several lemmas which we formulate next.
Their proofs will be given later. We consider two copies of the unit circle S1. The
homeomorphism f1 acts on the first circle and f2 acts on the second one. Assume
that fi , i = 1, 2 satisfies the conditions of Theorem 1.

Let ϕ1 and ϕ2 be conjugations of f1 and f2 to linear rotation fρ , i.e. ϕ1 ◦ f1 =
fρ ◦ ϕ1 and ϕ2 ◦ f2 = fρ ◦ ϕ2. It is easy to check that the homeomorphisms f1 and
f2 are conjugated by h = ϕ2 ◦ ϕ−1

1 , i. e. h ◦ f1(x) = f2 ◦ h(x),∀x ∈ S1. Recall that
every ϕi , i = 1, 2 is unique up to an additional constant. This gives us a possibility
to choose h with initial condition h(x (1)

cr ) = x (2)
cr .

Notice the conjugation h(x) is continuous function on S1. It suffices to show that
h′(x) = 0 for almost all x with respect to the Lebesgue measure. The derivative
h′(x) = 0 exists for almost all x with respect to the Lebesgue measure because the
function h is monotonic. Let us show that h′(x) = 0 at all points where the derivative
is defined.

Lemma 7 (see [5]) Assume, that the conjugating homeomorphism h(x) has a pos-
itive derivative h′(x0) = p0 at some point x0 ∈ S1, and that the following conditions
hold for the points zi ∈ S1, i = 1, .., 4, with z1 ≺ z2 ≺ z3 ≺ z4, and some constant
R1 > 1 :
(a) the intervals [z1, z2], [z2, z3], [z3, z4] are pairwise R1-comparable;
(b) max

1≤i≤4
�([zi , x0]) ≤ R1�([z1, z2]).
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Then for any ε > 0 there exists δ = δ(ε) > 0 such that

|Dist (z1, z2, z3, z4; h) − 1| ≤ C2ε, (2)

if zi ∈ (x0 − δ, x0 + δ) for all i = 1, 2, 3, 4, where the constant C2 > 0 depends
only on R1, ω0 and not on ε.

Suppose that h′(x0) = p0, where x0 ∈ S1. Let ξn(x0) be its nth dynamical parti-
tion. Put t0 := h(x0) and consider the dynamical partition τn(t0) of t0 on the second
circle determined by the homeomorphism f2, i.e.

τn(t0) = {I (n−1)
i (t0), 0 ≤ i ≤ qn − 1} ∪ {I (n)

j (t0), 0 ≤ j ≤ qn−1 − 1}

with I (n)
0 (t0) the closed interval with endpoints t0 and f qn2 (t0). Choose an odd

natural number n1 = n( f1, f2) such that the n1th renormalization neighborhoods
[xqn1 , xqn1−1] and [tqn1 , tqn1−1] do not contain critical point of f1 and f2 respectively.
Since the identical rotation number ρ of f1 and f2 is irrational, the order of the
points on the orbit { f k1 (x0), k ∈ Z} on the first circle will be precisely the same
as the one for the orbit { f k2 (t0), k ∈ Z} on the second one. This together with the
relation h( f1(x)) = f2(h(x)) for x ∈ S1 implies that

h(Δ
(n1−1)
i ) = I (n1−1)

i , 0 ≤ i ≤ qn1 − 1, h(Δ
(n1)
j ) = I (n1)

j , 0 ≤ j ≤ qn1−1 − 1.
(3)

The structure of the dynamical partitions implies that x (1)
cr (n1) = f −l

1 (x (1)
cr ) ∈

[xqn1 , xqn1−1],where l ∈ (0, qn1−1) if x
(1)
cr (n1) ∈ [xqn1 , x0], and l ∈ (0, qn1) if x

(1)
cr (n1) ∈

[x0, xqn1−1]. Since h conjugation between f1 and f2, we get

f l2(h(x(1)
cr )) = f l−1

2 ( f2(h(x(1)
cr ))) = f l−1

2 (h( f1(x
(1)
cr ))) = · · · = h( f l1(x

(1)
cr )) = h(x(1)

cr ) = x(2)
cr .

Hence x (2)
cr (n1) = f −l

2 (x (2)
cr ) ∈ [tqn1 , tqn1−1 ]. The points x (1)

cr (n1) and x
(2)
cr (n1) are called

the qn1 -preimages of the critical points x (1)
cr and x (2)

cr , respectively.
Next we introduce the concept of a “regular” cover of the critical point. Let

zi ∈ S1, i = 1, 4, z1 ≺ z2 ≺ z3 ≺ z4 ≺ z1. Define for each j, 0 < j < qn

ξ f1( j) = �([ f j
1 (z2), f j

1 (z3)])
�([ f j

1 (z1), f j
1 (z2)])

, η f1( j) = �([ f j
1 (z2), f j

1 (z3)])
�([ f j

1 (z3), f j
1 (z4)])

.

Definition 5 Let M > 1, ζ ∈ (0, 1), δ > 0 be constant numbers, n - a positive inte-
ger and x0 ∈ S1. We say that a triple of intervals ([z1, z2], [z2, z3], [z3, z4]), zi ∈
S1, i = 1, 2, 3, 4, covers the critical point of x (1)

cr “(M, ζ, θ, δ; x0)-regularly”, if the
following conditions hold:

(1) [z1, z4] ⊂ (x0 − δ, x0 + δ), and the systemof intervals { f j
1 ([z1, z4]), 0 ≤ j ≤

qn − 1} cover critical point x (1)
cr only once;

(2) z2 = f −l
1 (x (1)

cr ) for some l, 0 < l < qn;
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(3) ξ f1(l) < ζ and η f1(l) ≥ M .

Denote
L = min{m1, m2, |m1 − m2|}.

Lemma 8 Suppose that the homeomorphisms fi , i = 1, 2 satisfy the conditions of
Theorem 1. Then for any x0 ∈ S1 and δ > 0 there exist constant M0 > 1 and ζ0 ∈
(0, 1), such that for all triples of intervals [zs, zs+1] ⊂ (x0 − δ, x0 + δ), s = 1, 2, 3,
and [h(zs), h(zs+1)], s = 1, 2, 3, covering the critical points x (1)

cr and x (2)
cr regularly

with constants M0 and ζ0 the following inequalities hold:

| 1 + ξ f1(l)

1 + ξ
m1
f1

(l)
· (1 + η f1(l))

m1 − η
m1
f1

(l)

(1 + η f1(l))m1
· (1 + η f1(l)) − m1| <

L

16
,

| 1 + ξ f2(l)

1 + ξ
m1
f2

(l)
· (1 + η f2(l))

m1 − η
m1
f2

(l)

(1 + η f2(l))m1
· (1 + η f2(l)) − m2| <

L

16
,

where m1 and m2 are orders of critical points x (1)
cr and x (2)

cr respectively.

Assume that the homeomorphism f1 satisfies the conditions of Theorem 1. Let
ξn(x (1)

cr ) be a dynamical partition of the circle by f1. We take a natural number r , such
that Δ

(r)
0 (x (1)

cr ) ∪ Δ
(r−1)
0 (x (1)

cr ) ⊂ Uω1(x
(1)
cr ). Suppose that h′(x0) = p0 > 0 for some

x0 ∈ S1. Consider the dynamical partition ξn(x0) of the point x0 under f1. Suppose
that n > r an odd natural number. Let x (1)

cr = f −l(x (1)
cr ) ∈ [xqn , xqn−1 ].

Let {ξn+k(x
(1)
cr )}∞k=0 be a sequence of dynamical partitions of the point xcr . We

define the points zi , i = 1, 2, 3, 4 as follows

z1 = f qn+k0 (x (1)
cr ), z2 = x (1)

cr , z3 = f qn+k0+k1 (x (1)
cr ), z4 = f qn+k0+k1+qn+k2 (x (1)

cr ).

Lemma 9 Suppose that the homeomorphisms f1 and f2 satisfies the conditions of
Theorem 1. Let h′(x0) = p0 > 0 for some x0 ∈ S1, δ ∈ (0, 1) and k0 ∈ N. Then there
exist natural numbers k1, k2 such that for sufficiently large n, the triple of intervals
[zs, zs+1] ⊂ (x0 − δ, x0 + δ), s = 1, 2, 3 satisfies the following properties:

(1) the intervals {[ f j
1 (z1), f j

1 (z4)], 0 ≤ j ≤ qn} cover each point at most once;
(2) the intervals [zs, zs+1] and [ f qn1 (zs), f qn1 (zs+1)] s = 1, 2, 3 satisfy conditions

(a) and (b) of Lemma 7 with some constant R1 > 1 depending on k0, k1, k2;
(3) the triples of intervals ([zs, zs+1], s = 1, 2, 3) and ([h(zs), h(zs+1)], s =

1, 2, 3) cover the critical points x (1)
cr , x

(2)
cr , “(M0, ζ0, δ; x0)-regularly” and “(M0, ζ0,

δ; h(x0))-regularly”, respectively.

Lemma 10 Suppose the circle homeomorphisms f1 and f2 satisfy the conditions of
Theorem1. Then there exists natural number k0 such that for intervals [zs, zs+1], s =
1, 2, 3 satisfying conditions (1)-(3) of Lemma 9, and for sufficiently large n the
following inequality holds
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| Dist (z1, z2, z3, z4; f qn1 )

Dist (h(z1), h(z2), h(z3), h(z4); f qn2 )
− 1 |≥ R2 > 0, (4)

where the constant R2 depends only on f1 and f2.

Proof of Theorem 1 Let f1 and f2 be circle homeomorphisms satisfying the condi-
tions of Theorem 1. The lift H(x) of the conjugating map h(x) is a continuous and
monotone increasing function on R1. Hence H(x) has a finite derivative H ′(x) for
almost all x with respect to Lebesgue measure. We claim that h′(x) = 0 at all points
x where the finite derivative exists. Suppose h′(x0) > 0 for some point x0 ∈ S1.
Fix ε > 0. We take a triple of intervals [zs, zs+1] ⊂ (x0 − δ, x0 + δ), s = 1, 2, 3,
satisfying the conditions of Lemma 10.

Using the assertion of Lemma 7 we obtain

|Dist (z1, z2, z3, z4; h) − 1| ≤ C3ε, (5)

|Dist ( f qn1 (z1), f qn1 (z2), f qn1 (z3), f qn1 (z4); h) − 1| ≤ C3ε. (6)

Hence

| Dist (z1, z2, z3, z4; h)

Dist ( f qn1 (z1), f qn1 (z2), f qn1 (z3), f qn1 (z4); h)
− 1| ≤ C4ε, (7)

where the constant C4 > 0 does not depend on ε and n.
Since h is conjugating f1 and f2 we can readily see that

Cr(h( f qn1 (z1)), h( f qn1 (z2)), h( f qn1 (z3)), h( f qn1 (z4))) =

= Cr( f qn2 (h(z1)), f qn2 (h(z2)), f qn2 (h(z3)), f qn2 (h(z4))).

Hence we obtain

Dist ( f qn1 (z1), f qn1 (z2), f qn1 (z3), f qn1 (z4); h)

Dist (z1, z2, z3, z4; h)
=

= Cr(h( f qn1 (z1)), h( f qn1 (z2)), h( f qn1 (z3)), h( f qn1 (z4)))

Cr( f qn1 (z1), f qn1 (z2), f qn1 (z3), f qn1 (z4))
×

× Cr(z1, z2, z3, z4)

Cr(h(z1), h(z2), h(z3), h(z4))
= Cr( f qn2 (h(z1)), f qn2 (h(z2)), f qn2 (h(z3)), f qn2 (h(z4)))

Cr(h(z1), h(z2), h(z3), h(z4))
:

: Cr( f
qn
1 (z1), f qn1 (z2), f qn1 (z3), f qn1 (z4))

Cr(z1, z2, z3, z4)
= Dist (h(z1), h(z2), h(z3), h(z4); f qn2 )

Dist (z1, z2, z3, z4; f qn1 )
.

This, together with (7) obviously implies that
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| Dist (z1, z2, z3, z4; f qn1 )

Dist (h(z1), h(z2), h(z3), h(z4); f qn2 )
− 1 |≤ C5ε,

where the constant C5 > 0 does not depend on ε and n. This contradicts equation
(4). Therefore Theorem 1 is completely proved.

4 The Proofs of Lemmas 8–10

Proof of Lemma 8 Denote

ψ1(ξ f1(l)) = 1 + ξ f1(l)

1 + ξ
m1
f1

(l)
,

and

ψ2(η f1(l)) = (1 + η f1(l))
m1 − η

m1
f1

(l)

(1 + η f1(l))m1
· (1 + η f1(l)).

It is easy to check that for η f1(l) > 0 the function ψ2(η f1(l)) is monotone increasing
and 1 < ψ2(η f1(l)) < m1. Obviously

lim
ξ f1 (l)→0

ψ1(ξ f1(l)) = 1, lim
η f1 (l)→∞

ψ2(η f1(l)) = m1.

Taking these remarks into account and using the explicit form of the functions
ψ1(ξ f1(l)) and ψ2(η f1(l)) we can now estimate | ψ1 · ψ2 − m1) |. Firstly, we esti-
mate ψ2 for large value of η f1(l). Using the explicit form of the function ψ2(η f1(l)),
we see that the inequality

|ψ2 − m1| = O

(
1

η f1(l)

)
≤ R3

(
1

η f1(l)

)
, (8)

where the constant R3 > 0 depends only on f1. If we choose η f1(l) satisfying the

inequality R3

(
1

η f1 (l)

)
< L

32 , then

|ψ2(η f1(l)) − m1| <
L

32
,

for η f1(l) > 32R3
L .

We next estimate |ψ1 − 1| for small value of ξ f1(l). Using the explicit form of the
function ψ1(ξ f1(l)), we see that |ψ1(ξ f1(l)) − 1| = O(ξ f1(l)) ≤ R4ξ f1(l). It follows
from this together with (8) that |ψ1 · ψ2 − m1| ≤ |ψ2 − m1| + |ψ2| · |ψ1 − 1| ≤
L
32 + m1R4ξ f1(l). If we take
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ζ1 := min{ L

32m1R5
, 1}, M1 := max{32R5

L
, 1},

where R5 = max{R3, R4}, then for all ξ f1(l) < ζ1 and η f1(l) > M1 the following
inequality holds

|ψ1 · ψ2 − m1| ≤ L

16
.

Similarly it can be shown that with

ζ2 := min{ L

32m2R6
, 1}, M2 := max{32R6

L
, 1}, (9)

and ξ f2(l) < ζ2 and η f2(l) > M2, the second assertion of Lemma 8 holds. In (9) the
constants R6 > 0 depends only on f2. Finally, if we set ζ0 := min{ζ1, ζ2} and M0 :=
max{M1, M2}, then Lemma 8 holds for ξ f1(l), ξ f2(l) ∈ [0, ζ0) and η f1(l), η f2(l) ≥
M0. Lemma 8 is proved.

Proof of Lemma 9 Firstly, we prove the third assertion of the lemma. By the con-
struction of the points zi , i = 1, 2, 3, 4, it implies that the intervals [zs, zs+1] and
[h(zs), h(zs+1)], s = 1, 2, 3 satisfy the 1) and 2) conditions of definition of “regu-
larly” covering. We consider dynamical partition ξn(x (1)

cr ). According to Lemma 2
the intervals Δ

(n)
0 (x (1)

cr ) and Δ
(n−1)
0 (x (1)

cr ) are K -comparable, i. e. there exist constant
K > 1 such that K−1�(Δ

(n−1)
0 (x (1)

cr )) ≤ �(Δ
(n)
0 (x (1)

cr )) ≤ K�(Δ
(n−1)
0 (x (1)

cr )). Thus it
follows that there exists k(1)

1 ∈ N such that the following inequality holds

�([x (1)
cr , f

q
n+k0+k(1)1

1 (x (1)
cr )])

�([ f qn+k0
1 (x (1)

cr ), x (1)
cr ]) < ζ0. (10)

Indeed, it is clear that

�(Δ
(qn+k0+3)

0 (x (1)
cr ))

�(Δ
(qn+k0+1)

0 (x (1)
cr ))

= 1

�(Δ
(qn+k0+1)

0 (x (1)
cr ))

�(Δ
(qn+k0+3)

0 (x (1)
cr ))

≤ 1

1 + 1
K

= K

K + 1
.

Hence �(Δ
(qn+k0+3)

0 (x (1)
cr )) ≤ K

K+1�(Δ
(qn+k0+1)

0 (x (1)
cr )). Using the last inequality we

obtain that for any k

�(Δ
(qn+k0+k )

0 (x (1)
cr )) ≤ (

K

K + 1
)k�(Δ

(qn+k0+1)

0 (x (1)
cr )).

Since Δ
(qn+k0+1)

0 (x (1)
cr )) and Δ

(qn+k0 )

0 (x (1)
cr )) are K -comparable, there exists a k(1)

1 ∈ N
such that the inequality (10) is true. Similarly, we can show that there exists a k(1)

2 ∈ N
such that the following inequality holds
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�([x (1)
cr , f

qn+k0+k1
1 (x (1)

cr )])
�([ f qn+k0+k1

1 (x (1)
cr ), f

q
n+k0+k(1)1

+q
n+k(1)2

1 (x (1)
cr )])

> M0.

Similarly, it can be shown that with natural numbers k(2)
1 and k(2)

1 the inequalities

�([x (2)
cr , f

q
n+k0+k(2)1

2 (x (2)
cr )])

�([ f qn+k0
2 (x (2)

cr ), x (2)
cr ]) < ζ0,

�([x (2)
cr , f

q
n+k0+k(2)1

2 (x (2)
cr )])

�([ f
q
n+k0+k(2)1

2 (x (2)
cr ), f

qn+k0+k1+q
n+k(2)2

2 (x (2)
cr )])

> M0

hold. If we take k1 = max{k(1)
1 , k(2)

1 } and k2 = max{k(1)
2 , k(2)

2 } then the third assertion
ofLemma9holds for k1 and k2.By the definition of the points zi , i = 1, 2, 3 it implies
the first assertion of the lemma.

Let ξn(x
(1)
cr ) be a dynamical partition of the point x (1)

cr . According to Lemma 2
the intervals Δ

(n)
0 (x (1)

cr ) and Δ
(n−1)
0 (x (1)

cr ) are K -comparable. Hence, it implies that
the intervals [zs, zs+1], s = 1, 2, 3 are pairwise Kk1+k2 - comparable. It is easy to see
that the intervals [ f qn1 (zs), f qn1 (zs+1)], s = 1, 2, 3 are pairwise Kk1+k2 - comparable.
Obviously,

1

Kk0+1
≤ �(Δ

(n−1)
0 (x (1)

cr ))

�([z1, z2]) ≤ Kk0+1,
1

Kk0+1
≤ �(Δ

(n−1)
0 (x (1)

cr ))

�([ f qn1 (z1), f qn1 (z2)]) ≤ Kk0+1.

Since the intervals Δ
(n−1)
0 (x (1)

cr ) and Δ
(n−1)
0 ( f −qn−1

1 (x (1)
cr )) are K -comparable and

x0 ∈ Δ
(n−1)
0 ( f −qn−1

1 (x (1)
cr )) ∪ Δ

(n−1)
0 (x (1)

cr ) we get max
1≤i≤4

{�([ f qn (zi ), x0]), �([zi , x0])}
≤ (K + 1)Kk0+1�([z1, z2]). If we take R1 = (K + 1)Kk0+k1+k2 , then we obtain the
proof of the second assertion of Lemma 9 with constant R1. Lemma 9 is proved.

Proof of Lemma 10 Suppose, the triples of intervals ([zs, zs+1], s = 1, 2, 3) and
([h(zs), h(zs+1)], s = 1, 2, 3) satisfy the conditions of Lemma 9. We want to
compare the distortion Dist (z1, z2, z3, z4; f qn1 ) and Dist (h(z1), h(z2), h(z3), h(z4);
f qn2 ). We estimate only the first distortion, the second one can be estimated analo-
gously. Obviously

Dist (z1, z2, z3, z4; f qn1 ) =
qn−1∏

i=0

Dist ( f i1 (z1), f i1 (z2), f i1 (z3), f i1 (z4); f1).

We denote

Jr (x
(1)
cr ) = Δ

(r)
0 (x (1)

cr ) ∪ Δ
(r−1)
0 (x (1)

cr ), A = {i : ( f i1 (z1), f i1 (z4)) ∩ Jr (x
(1)
cr ) = ∅},

B = {i : ( f i1 (z1), f i1 (z4)) ∩ Jr (x
(1)
cr ) �= ∅}.

It is clear that A ∪ B = {0, 1, . . . , qn}.
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Next we rewrite Dist (z1, z2, z3, z4; f qn1 ) in the form

Dist (z1, z2, z3, z4; f qn1 ) =
∏

i∈A

Dist ( f i1 (z1), f i1 (z2), f i1 (z3), f i1 (z4); f1)×

×
∏

i∈B
Dist ( f i1 (z1), f i1 (z2), f i1 (z3), f i1 (z4); f1). (11)

We estimate the first factor in (11). Using the Lemmas 4 we obtain

|
∏

i∈A

Dist ( f i1 (z1), f i1 (z2), f i1 (z3), f i1 (z4); f1) − 1| =

= |
∏

i∈A

(1 + O(�([ f i1 (z1), f i1 (z4]))1+ν) − 1| = max
i

(�([ f i1 (z1), f i1 (z4]))ν×

×O(
∑

i∈A

�([ f i1 (z1), f i1 (z4])) = O(λnν
f1 ),

where ν > 0 and 0 < λ f1 < 1. We fix ε > 0. There exists N0 = N0(ε) ≥ 1 such that
for any n ≥ N0 the estimate

|
∏

i∈A

Dist ( f i1 (z1), f i1 (z2), f i1 (z3), f i1 (z4); f1) − 1| < C6ε. (12)

holds. We now estimate the second factor in (11). We rewrite the second factor in
the following form

∏

i∈B
Dist ( f i1 (z1), f i1 (z2), f i1 (z3), f i1 (z4); f1) =

=
∏

i∈B,i �=l

Dist ( f i1 (z1), f i1 (z2), f i1 (z3), f i1 (z4); f1)×

× Dist ( f l1(z1), f l1(z2), f l1(z3), f l1(z4); f1). (13)

By applying Lemmas 5 and 8 we obtain

|Dist ( f l1(z1), f l1(z2), f l1(z3), f l1(z4); f1) − m1| <
L

8
. (14)

Using Lemma 6 for the first factor in (13), we get

|
∏

i∈B,i �=l

Dist ( f i1 (z1), f i1 (z2), f i1 (z3), f i1 (z4); f1) − 1| = |
∏

i∈B,i �=l

(1 + O(
�([ f i1 (z1), f i1 (z4)])

di
)2) − 1| =
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= | exp{
∑

i∈B,i �=l

log(1 + O(
�([ f i1 (z1), f i1 (z4)])

di
)2)} − 1| ≤ const

∑

i∈B,i �=l

(
�([ f i1 (z1), f i1 (z4)])

di
)2 =

= const
n−r∑

q=0

∑

i :[ f i1 (z1), f i1 (z4)]⊂(Jn−q (x
(1)
cr )\Jn−q+1(x

(1)
cr )),i �=l

(
�([ f i1 (z1), f i1 (z4)])

di
)2

Obviously,

∑

i :[ f i1 (z1), f i1 (z4)]⊂(Jn−q (x
(1)
cr )\Jn−q+1(x

(1)
cr )),i �=l

(
�([ f i1 (z1), f i1 (z4)])

di
) = const

and it follows from Lemma 3 that �([ f i1 (z1), f i1 (z4)])
di

≤ constλk0+1+q
f1

. Consequently

|
∏

i∈B,i �=l

Dist ( f i1 (z1), f i1 (z2), f i1 (z3), f i1 (z4); f1) − 1| ≤ C7λ
k0
f1
, (15)

where C7 > 0 depends only on f1 and 0 ≤ λ f1 ≤ 1 is defined in Lemma 3.
Similarly one can show that for the triple of intervals ([h(zs), h(zs+1)], s =

1, 2, 3) the following inequality

|
∏

i∈B,i �=l

Dist ( f i2 (h(z1)), f i2 (h(z2)), f i2 (h(z3)), f i2 (h(z4)); f2) − 1| ≤ C8λ
k0
f2
, (16)

where C8 > 0 depends only on f2 and 0 ≤ λ f2 ≤ 1 is defined in Lemma 3.
If we choose

k0 = max{[logλ f1

L

(8m1 + L)C7
] + 1, [logλ f2

L

(8m2 + L)C8
] + 1},

then from the relations (11)–(19) it implies that for sufficiently large n

|Dist (z1, z2, z3, z4; f qn1 ) − m1| <
L

4
. (17)

Similarly

|Dist (h(z1), h(z2), h(z3), h(z4); f qn2 ) − m2| <
L

4
. (18)

The inequalities (17) and (18) implies

Dist (z1, z2, z3, z4; f qn1 )

Dist (h(z1), h(z2), h(z3), h(z4); f qn2 )
− 1 ≥ 4(m1 − m2) − 2L

4m2 + L
> 0, (19)



168 U. Safarov

if m1 > m2, and

Dist (z1, z2, z3, z4; f qn1 )

Dist (h(z1), h(z2), h(z3), h(z4); f qn2 )
− 1 ≤ 4(m1 − m2) + 2L

4m2 − L
< 0, (20)

if m1 < m2. If we set

R2 := min{ |4(m1 − m2) − 2L|
4m2 − L

,
|4(m1 − m2) + 2L|

4m2 + L
}, (21)

then it follows from (19)–(21) that the assertion of the lemma holds.
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ε-Positional Strategy in the Second
Method of Differential Games of Pursuit

Tukhtasinov Muminjon

Abstract In the present work, methods of completion on any vicinity of a terminal
set are offered. At the same time the type of a terminal set and a condition quite of
a sweepability significantly used. The pursuing player applies ε positional strategy.
At the end the work two examples illustrating the received results are given.

Keywords Differential game · Pursuer · Evader · Strategy · Methods of
Pontryagin

1 Introduction

To solve effectively linear differential games of pursuit from the pursuer’s perspec-
tive, several methods have been developed. In the fundamental work [1, 2] L.S.
Pontryagin gave the complete description of his results on linear differential games
including the second method that had a large field of applicability. The important
mathematical apparatus used by L.S. Pontryagin was the apparatus of multivalued
mappings. At present, this apparatus has been widely used in the theory of optimal
control and in the theory of differential games. In particular, certain aspects of this
method were concretized in all mathematical rigor in [3].

The main problem in the pursuit theory is selection of those points from which
the pursuit can be finished in a finite time. There is a number of works, where
sufficient conditions of a general type are given for possibility to finish the pursuit
from the given point z0 and the guarantee time is effectively calculated. In real conflict
situations, controls are usually selected on the basis of some information about the
dynamic capabilities of objects and the current changes in the system states. The
players (pursuer and evader) use their awareness to achieve their goals. The pursuer
goal is to remove z(t) from z0 on M for as short a time as possible, the evader has
the opposite goal.

Special attention should be given paper [3], in which, at first the concept of the
lower alternating integral is introduced. This integral, according to the author’s pro-
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posal, is called dual to the alternating Pontryagin integral. Because of the lower
alternating integral and the Azamov theorem [4], it was possible to solve the Pon-
tryagin epsilon problem.Additionally, connectionwas established between these two
alternating integrals, hereupon the question of getting into any neighborhood of the
terminal set is completely resolved with the help of the epsilon-positional strategy
of the pursuer [3, 4].

In works [5–7], the pursuit problem is studied for positional games: the pursuit
control is constructed on the basis of the position information (t, z); in themonograph
[6], in particular, it is considered the problem on reduction of generalized motions on
the terminal set. In this connection, one can put the problem of allocating one motion
from the mentioned generalized motions. It is easy to invent examples in which it is
not satisfied the condition on a single element of the support set from [5, 7].

There are classes of strategies in the theory of differential games: quasilinear,
stroboscopic, positional and others. From the point of view of the mathematical
statement of the problem by indicating and constructing the strategies of the players
in order to achieve the set goal, the game is considered completely solved.

In the present work, the new method is proposed consisting of two variants to
complete the pursuit in any neighborhood of the terminal set under additional con-
ditions on the game parameters. If the terminal set is significantly used in the first
variant, then the sweepability condition is used in the second one. Moreover, the
pursuer uses ε-positional strategy to complete the pursuit [3]. At the end of the work,
two examples are given that illustrating the obtained results.

2 Preliminaries

It is considered the linear differential game described by the equation

ż = Cz − u + v (1)

where z ∈ R
d is a phase vector; C is a constant square matrix of the order d × d;

u ∈ P, v ∈ Q are control parameters, moreover P, Q are nonempty compact subsets
of the spaceRd . The terminal set on which the game is finished is a nonempty closed
subset M of the space Rd .

Equation (1), sets P, Q, and M describe the two-player differential game: the
pursuer that controls the vector u and the evader that controls the vector v.Themotion
of the point z begins at t = 0 and proceeds under the action of measurable controls
u(t) ∈ P and v(t) ∈ Q, t > 0.

As it is known, the alternating Pontryagin integral [1]

W2(τ ) =
τ∫

M,0

[
esC P ds ∗ esC Q ds

]
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is the limit of the alternating sum of sequences of compact convex sets

U1, U2, . . . , Un and V1, V2, . . . , Un

with the initial value A0 = M; Ui =
τi∫

τi−1

esC P ds, Vi =
τi∫

τi−1

esC Q ds, i = 1, . . . , n;

where 0 = τ0 < τ1 < · · · < τn = τ is a partition of [0, τ ]. The sum is determined as
follows [1]:

Ai = (Ai−1 +Ui )
∗ Vi , i = 1, . . . , n.

An will be written in the expanded form by the formula

An = (. . . ((((M +U1)
∗ V1) +U2)

∗ V2) + . . . +Un)
∗ Vn. (2)

We say that the end of the pursuit game from the starting state z(0) = z0 is possible
if the pursuer has such admissible strategyU (z0, t, v) that for any admissible control
of the evader v(t) ∈ Q and u[t] = U (z0, t, v(t)) ∈ P, t ≥ 0, the end of the game
takes place on M, i.e. there exists a finite time moment τ > 0 such that z(τ ) ∈ M
where z(t), t ≥ 0, is the corresponding solution of the problem (1) at u = u[t],
v = v(t), t ≥ 0 and z(0) = z0.

Theorem 1 [1] If the following inclusion

eτC z0 ∈ W2(τ )

holds for a given starting point z0 /∈ M at a time moment τ, then the pursuit from
the point z0 can be completed in the time τ.

LetM be a closed convex set, F andG be compact convex sets. Then the following
easily proved inclusions are true [1]:

(M ∗ F) + G ⊂ (M + G) ∗ F. (3)

(M ∗ F) ∗ G = M ∗ (F + G). (4)

If we put
U = U1 + · · · +Un, V = V1 + · · · + Vn,

then using formulas (3), (4), by virtue of additivity of the integral we obtain from
(2):

An ⊂
(
M +

τ∫

0

esC P ds

)
∗

τ∫

0

esC Q ds,
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what implies

W2(τ ) ⊂
(
M +

τ∫

0

esC P ds

)
∗

τ∫

0

esC P ds = W (τ ).

3 Main results

Let ε > 0, W ⊂ R
d . We denote by L(ε,W ) the totality of all measurable functions

ω(·) : [0, ε] → W [3].

Definition 1 The mapping

Pε : Rd × R
d × R

d → L(ε, P)

is said to be the ε-positional strategy of the pursuer.

Definition 2 The mapping
Qε : Rd → L(ε, Q)

is said to be the ε-positional strategy of the evader.

Definition 3 We say that the game (1) from the starting point z0 is finished by the
time moment τ with the ε-positional strategy if there exists an ε-positional strategy
of the pursuer Pε(·, ·, ·) such that for any ε-positional strategy Qε(·) of the evader
the inclusion z(τ ) ∈ M takes place.

Assumption 1 For arbitrary numbers 0 < a ≤ b, t ≥ 0, the inclusion

b∫

a

e−sC P ds ⊂
b∫

a

e−(t+s)C P ds

holds.

Assumption 2 Let for any ε = τ/k, there be a partition M1, M2, . . . , Mk of the
set M such that

W (τ ) ⊂
k∑

i=1

((
Mk−i+1 +

iε∫

(i−1)ε

esC P ds

)
∗

iε∫

(i−1)ε

esC Q ds

)
.

Suppose the following means hypothetical inclusion

eτC z0 ∈ W (τ ). (5)
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Theorem 2 Let for a given starting state z0 and a time moment τ, the inclusion (5)
and Assumptions 1 and 2 be valid. Then for any number α > 0, there is a positive
number ε such that the game (1) will be finished by the time moment τ with the
ε-positional strategy in the α-neighborhood of the set M : z(τ ) ∈ Mα.

Proof Let for a given starting state z0 and a time moment τ the inclusion (5) hold.
Evidently, for any positive number α, there exists a natural number k such that the
inequality ∣∣∣∣

ε∫

0

esC P ds

∣∣∣∣ <
α

2
(6)

holds for ε = τ/k where
∣∣F∣∣ = max

{|| f || : f ∈ F
}
for a compact set F.

Since

iε∫

(i−1)ε

esC P ds =
τ−(i−1)ε∫

τ−iε

e(τ−s)C P ds and

iε∫

(i−1)ε

esC Q ds =
τ−(i−1)ε∫

τ−iε

e(τ−s)C Q ds

then using Assumption 2, we obtain from (5)

eτC z0 ∈
k∑

i=1

((
Mi +

iε∫

(i−1)ε

e(τ−s)C P ds

)
∗

iε∫

(i−1)ε

e(τ−s)C Q ds

)
. (7)

Thus, by virtue of the inclusion (7), for the given starting state z0 and the time

moment τ there exist vectors gi ∈
(
e−τCMi +

iε∫
(i−1)ε

e−sC P ds

)
∗ iε∫

(i−1)ε
e−sC Q ds,

i = 1, 2, . . . , k, for which the equality

z0 = g1 + g2 + · · · + gk (8)

is valid.
Now let v(s) ∈ Q, 0 ≤ s ≤ τ be arbitrary admissible control of the evader. On the

segment [0, ε], the pursuer chooses arbitrary admissible control u(1)(s), 0 ≤ s ≤ ε.

Then at the time moment ε we have the position of the form

z(ε) = eεC z0 −
ε∫

0

e(ε−s)C
(
u(1)(s) − v(s)

)
ds,

what implies the equality
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z(ε) − eεC

(
z0 − g1 −

ε∫

0

e−sCu(1)(s) ds

)
= eεC

(
g1 +

ε∫

0

e−sCv(s) ds

)
. (9)

By Assumption 1, we have

g1 +
ε∫

0

e−sCv(s) ds ∈ g1 +
ε∫

0

e−sC Q ds ⊂ e−τCM1 +
ε∫

0

e−sC P ds ⊂ e−τCM1

+
2ε∫

ε

e−sC P ds.

So, we obtain from (9)

z(ε) − eεC
(
z0 − g1 −

ε∫

0

e−sCu(1)(s) ds
)

∈ eεC

(
e−τCM1 +

2ε∫

ε

e−sC P ds

)
.

Hence, knowing z(ε) and z1 = z0 − g1, one can find an elementm1 ∈ M1 and admis-
sible control u(2)(s) ∈ P, ε ≤ s ≤ 2ε such that the equalities

z(ε) − eεC

(
z0 − g1 −

ε∫

0

e−sCu(1)(s) ds

)
= eεC

(
e−τCm1 +

2ε∫

ε

e−sCu(2)(s) ds

)

and

g1 +
ε∫

0

e−sCv(s) ds = e−τCm1 +
2ε∫

ε

e−sCu(2)(s) ds

hold.
Moreover, the trajectory z(t) on the segment [0, ε] is determined as the solution

of the Cauchy problem

ż = Cz − u(1)(t) + v(t), z(0) = z0

where v(·) = Qε(z(0)), u(1)(·) = Pε(z(0), z0, 0). In addition, u(1)(·) is arbitrary but
fixed element of the space L(ε, P).

Then we apply the method of mathematical induction. Let 1 < i < k. Using the
explicit form of the solution of the system (1), write its value by the moment iε:
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z(iε) = eiεC z0 −
iε∫

0

e(iε−s)C
(
u(s) − v(s)

)
ds.

We obtain after not difficult transformations

z(iε) − eiεC
(
z0 − g1 − g2 − · · · − gi + g1 +

ε∫

0

e−sCv(s) ds + g2 +
2ε∫

ε

e−sCv(s) ds + · · · +

gi−1 +
(i−1)ε∫

(i−2)ε

e−sCv(s) ds −
ε∫

0

e−sCu(1)(s) ds −
2ε∫

ε

e−sCu(2)(s) ds −
3ε∫

2ε

e−sCu(3)(s) ds − · · · −

iε∫

(i−1)ε

e−sCu(i)(s) ds

)
= eiεC

(
gi +

iε∫

(i−1)ε

e−sCv(s) ds

)
. (10)

Since

gi +
iε∫

(i−1)ε

e−sCv(s) ds ∈ gi +
iε∫

(i−1)ε

e−sC Q ds ⊂ e−τCMi +
iε∫

(i−1)ε

e−sC P ds (11)

then using Assumption 1, we obtain the inclusion

e−τCMi +
iε∫

(i−1)ε

e−sCv(s) ds ∈ e−τCMi +
(i+1)ε∫

iε

e−sC P ds. (12)

Thus, (10)–(12) imply that there exists an elementmi ∈ Mi and admissible control
u(i+1)(s) ∈ P, iε ≤ s ≤ (i + 1)ε such that:

z(iε) − eiεC
(
z0 − g1 − g2 − · · · − gi + e−τC (

m1 + · · · + mi−1
) −

ε∫

0

e−sCu(1)(s) ds

)
=

eiεC
(
e−τCmi +

(i+1)ε∫

iε

e−sCu(i+1)(s) ds

)

and

gi +
iε∫

(i−1)ε

e−sCv(s) ds = e−τCmi +
(i+1)ε∫

iε

e−sCu(i+1)(s) ds.
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Introduce the following notations: zi = z0 − g1 − · · · − gi + e−τC(m1 + · · · +
mi−1), m0 = 0, and put: Pε(z(iε), zi , mi )(t − iε) = u(i+1)(t), iε ≤ t < (i + 1)ε.

If we repeat all induction arguments for the case of i = k, then we obtain from
(10) and (11)

z(kε) − ekεC
(
z0 − g1 − g2 − · · · − gk + e−τC (

m1 + · · · + mk−1
) −

ε∫

0

e−sCu(1)(s) ds

)
=

ekεC
(
gk +

kε∫

(k−1)ε

e−sCv(s) ds

)
∈ ekεC

(
gk +

kε∫

(k−1)ε

e−sC Q ds

)
⊂

ekεC
(
e−τCMk +

kε∫

(k−1)ε

e−sC P ds

)
.

The last inclusion with the equality (8) imply

z(τ ) ∈ M −
ε∫

0

e(τ−s)C P ds +
τ∫

(k−1)ε

e(τ−s)C P ds.

Since the following easily proved inclusions

ε∫

0

e(τ−s)C P ds ⊂
ε∫

0

e(ε−s)C P ds =
ε∫

0

esC P ds and

τ∫

(k−1)ε

e(τ−s)C P ds =
ε∫

0

esC P ds,

take place, then, taking into account the inequality (6), we obtain

z(τ ) ∈ Mα.

Let’s consider a class of the theory of linear differential pursuit games.

Definition 4 Let F and G be arbitrary subsets of the space Rd . We say that the set
G sweeps out the set F if the equality (F ∗ G) + G = F holds.

Lemma 1 ([8]) Let F, G, K be nonempty convex closed sets fromR
d ,moreover G,

K be bounded sets and (F ∗ G) + G = F, i.e. the set G sweeps out the set F. Then

(K + F) ∗ G = K + (F ∗ G)

and the set G sweeps out the set F + K .



ε-Positional Strategy in the Second Method of Differential Games of Pursuit 177

Assumption 3 For any t ∈ [0, τ ], the set
t∫
0
e−sC Q sweeps out the set

t∫
0
e−sC P.

Theorem 3 Let for a given starting state z0 and a time moment τ the inclusion (5)
and Assumptions 1 and 3 hold. Then for any number α > 0 there exists a positive
number ε such that the game (1) is finished with the ε-positional strategy by the time
moment τ in the α-neighborhood of the set M : z(τ ) ∈ Mα.

Proof Choose a positive number ε > 0. By Assumption 3, there exists a set D ⊂ R
d

such that

D +
ε∫

0

e−sC Q ds =
ε∫

0

e−sC P ds,

what implies

e−εC D +
2ε∫

ε

e−sC Q ds =
2ε∫

ε

e−sC P ds.

Once again applying to both parts of this equality the operator e−εC , we obtain

e−2εC D +
3ε∫

2ε

e−sC Q ds =
3ε∫

2ε

e−sC P ds,

and so on. Hence, for any i ≥ 1, we have

e−iεC D +
(i+1)ε∫

iε

e−sC Q ds =
(i+1)ε∫

iε

e−sC P ds. (13)

If we set ε = τ/k for any natural number k, then summing (13) by i from 0 to
k − 1, we obtain on one side

(E + e−εC + · · · + e−(k−1)εC )D +
kε∫

0

e−sC Q ds =
kε∫

0

e−sC P ds, (14)

on the other hand, referring to Assumption 1, we obtain from (13)

(E + e−εC + · · · + e−(k−1)εC )D =
k∑

i=1

( iε∫

(i−1)ε

e−sC P ds ∗
iε∫

(i−1)ε

e−sC Q ds

)
.

(15)
Comparing equalities (14) and ((15), we get
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kε∫

0

e−sC P ds ∗
kε∫

0

e−sC Q ds =
k∑

i=1

( iε∫

(i−1)ε

e−sC P ds ∗
iε∫

(i−1)ε

e−sC Q ds

)

or

kε∫

0

e(τ−s)C P ds ∗
kε∫

0

e(τ−s)C Q ds =
k∑

i=1

( iε∫

(i−1)ε

e(τ−s)C P ds ∗
iε∫

(i−1)ε

e(τ−s)C Q ds

)
.

Using the statement of Lemma and Assumption 3 on complete sweepability, we
obtain from here:

(
M +

kε∫

0

e(τ−s)C Pds

)
∗

kε∫

0

e(τ−s)C Qds =

= M+
k∑

i=1

( iε∫

(i−1)ε

e(τ−s)C Pds ∗
iε∫

(i−1)ε

e(τ−s)C Q ds

)
. (16)

Suppose that for a timemoment τ the inclusion (5) and Assumptions 1 and 3 hold.
It is clear that if u(s) ∈ P, v(s) ∈ Q, 0 ≤ s ≤ t are arbitrary admissible controls of
the pursuer and evader, respectively, then after substituting them into the right-hand
side of (1), we obtain the inhomogeneous system of linear differential equations

ż = Cz − u(t) + v(t),

the solution of which with the initial condition z(0) = z0 is presented by the Cauchy
formula:

z(t) = etC z0 −
t∫

0

e(t−s)C
(
u(s) − v(s)

)
ds. (17)

For a given positive number α, choose a natural number k such that the inequality
(6) takes place.

It follows from (5) and (16) that for a given starting state z0 and τ, there exist

elements m ∈ M and gi ∈
iε∫

(i−1)ε
e−sC P ds ∗ iε∫

(i−1)ε
e−sC Q ds, i = 1, 2, . . . , k, for

which the equality
z0 = e−τCm + g1 + g2 + · · · + gk (18)

hold.
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Now let Qε(·) be arbitrary ε-positional strategy of the evader. The pursuer chooses
on the segment [0, ε] arbitrary admissible control u(1)(s), 0 ≤ s ≤ ε. Then we have
at the time moment ε the position of the form

z(ε) = eεC z0 −
ε∫

0

(
e(ε−s)Cu(1)(s) − e(ε−s)Cv(s)

)
ds.

We get from here the following equality

z(ε) − eεC

(
z0 − g1 −

ε∫

0

e−sCu(1)(s) ds

)
= eεC

(
g1 +

ε∫

0

e−sCv(s) ds

)
. (19)

By virtue of Assumption 1 we have

g1 +
ε∫

0

e−sCv(s) ds ∈ g1 +
ε∫

0

e−sC Q ds ⊂ e−εC

ε∫

0

e−sC P ds ⊂
2ε∫

ε

e−sC P ds.

Thus, we obtain from (19)

z(ε) − eεC
(
z0 − g1 −

ε∫

0

e−sCu(1)(s) ds
)

= eεC
(
g1 +

ε∫

0

e−sCv(s) ds
)

∈ eεC

2ε∫

ε

e−sC P ds.

Hence, knowing z(ε) and z0 − g1, one can construct the admissible control u(2)(s) ∈
P, 0 ≤ s ≤ ε such that the equalities

z(ε) − eεC

(
z0 − g1 −

ε∫

0

e−sCu(1)(s) ds

)
=

2ε∫

ε

e(ε−s)Cu(2)(s) ds.

and

g1 +
ε∫

0

e−sCv(s) ds =
2ε∫

ε

e−sCu(2)(s) ds

hold where v(·) = Qε(z(0)), u(2) = Pε(z(0), z0, 0).
Further we apply the method of mathematical induction. Let 1 < i < k. Using

the explicit form (17) of the solution of (1), write its value by the moment iε :

z(iε) = eiεC z0 −
iε∫

0

(
e(iε−s)Cu(s) − e(iε−s)Cv(s)

)
ds.
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We get after not difficult transformations

z(iε) − eiεC
(
z0 − g1 − g2 − · · · − gi + g1 +

ε∫

0

e−sCv(s) ds + g2 +
2ε∫

ε

e−sCv(s) ds + · · · +

gi−1 +
(i−1)ε∫

(i−2)ε

e−sCv(s) ds −
ε∫

0

e−sCu(1)(s) ds −
2ε∫

ε

e−sCu(2)(s) ds +
3ε∫

2ε

e−sCu(3)(s) ds + · · · +

iε∫

(i−1)ε

e−sCu(i)(s) ds

)
= eiεC

(
gi +

iε∫

(i−1)ε

e−sCv(s) ds

)
, (20)

what implies by virtue of Assumption 1

gi +
iε∫

(i−1)ε

e−sCv(0)(s) ds ⊂ gi +
iε∫

(i−1)ε

e−sC Q ds ⊂ e−εC

iε∫

(i−1)ε

e−sC P ds ⊂
(i+1)ε∫

iε

e−sC P ds.

(21)
So, it follows from (20) and (21) that there exists an admissible control u(i+1)(s) ∈ P,

iε ≤ s ≤ (i + 1)ε such that:

z(iε) − eiεC
(
z0 − g1 − g2 − · · · − gi −

ε∫

0

e−sCu(1)(s) ds

)
= eiεC

(i+1)ε∫

iε

e−sCu(i+1)(s) ds

and

gi +
iε∫

(i−1)ε

e−sCv(s) ds =
(i+1)ε∫

iε

e−sCu(i+1)(s) ds

where v(s) = Qε(z(iε))(s − iε) and u(i+1) = Pε(z(iε), zi )(s − iε), iε ≤ (i + 1)ε.
If we repeat all induction arguments for the case of i = k, then we obtain from

(20) and (21)

z(kε) − ekεC
(
z0 − g1 − g2 − · · · − gk −

ε∫

0

e−sCu(1)(s) ds

)
= ekεC

(
gk +

kε∫

(k−1)ε

e−sC v(s) ds

)
∈

ekεC
(
gk +

kε∫

(k−1)ε

e−sC Q ds

)
⊂ ekεC

kε∫

(k−1)ε

e−sC P ds.

We get from the last inclusion and the equality
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z(kε) − m ∈ −
ε∫

0

e(kε−s)C P ds +
kε∫

(k−1)ε

e(kε−s)C P ds.

Thus,

||z(kε) − m|| ≤
∣∣∣∣

ε∫

0

e(kε−s)C P ds

∣∣∣∣ +
∣∣∣∣

kε∫

(k−1)ε

e(kε−s)C P ds

∣∣∣∣.

Now, taking into account the inequality (6), we obtain

||z(τ ) − m|| ≤
∣∣∣∣

ε∫

0

e(τ−s)C P ds

∣∣∣∣ +
∣∣∣∣

kε∫

(k−1)ε

e(τ−s)C P ds

∣∣∣∣ <
α

2
+ α

2
= α.

4 Examples

1. LetC = λE , λ ≤ 0, P = ρK , Q = σK , M = K , ρ > σ where K is the unit cube
with the center at zero of the space Rd; E be the unit matrix of the order d. Then all
conditions of Theorem 1 are fulfilled, so the pursuit can be finished from any starting
state z0 ∈ R

d .

2. Let in Example (1.1), C = λE, λ ≤ 0, P = Sρ(0), Q = Sσ (0), M = S1(0),
ρ > σ where Sr (0) is a ball of a radius r > 0 with the center at zero of the spaceRd;
E is the square unit matrix of the order d. Then one can easily check that conditions
of Assumptions 1 and 3 are fulfilled for any z0 ∈ R

d .

3. The Pontryagin taste example. Let

C =
⎛
⎝ 0 1 −1
0 −α 0
0 0 −β

⎞
⎠

in the game (1) where α, β are positive numbers; u = (0,−ū, 0)T , v = (0, 0, v̄)T ,

under the condition ‖ū‖ ≤ ρ, ‖v̄‖ ≤ σ. The terminal set is a closed convex cylinder
in the space R

3n. One can show, if inequalities ρ > σ, ρ/α > σ/β hold, then all
conditions of Assumptions 1 and 3 are valid for any z0 ∈ R

d .

References

1. Pontryagin, L.S.: Linear differential games of pursuit. Mat. Sb. 112(154):3(7), 307–330 (1980)
2. Pontryagin, L.S.: Selected scientific works, 2, Nauka, M., 576 p (1988). (Russian)



182 T. Muminjon

3. Azamov, A.: On Pontryagin’s second method in linear differential games of pursuit. Math.
USSR-Sb. 46(3), 429–437 (1983)

4. Azamov, A.: Semistability and duality in the theory of pontryagin alternating intefral. Sov.Math.
Dokl. 37(2), 355–359 (1988)

5. Satimov, N.: On the pursuit problem for position in differential games. Sov. Math. Dokl. 229(4),
808–811 (1976)

6. Krasovskiy, N.N., Subbotin, A.I.: Positional differential games, Nauka, M., 455 p (1974) (Rus-
sian)

7. Pshenichny, B.N,: Linear differential games. Avtomat. i Telemekh., no. 1, pp. 65–78 (1968)
8. Satimov,N.:On the pursuit problem in linear differential games.Differ.Uravn. 9(11), 2000–2009

(1973)



Unilateral Ball Potentials on Generalized
Lebesgue Spaces with Variable Exponent

Yakhshiboev Makhmadiyor

Abstract The theorem on the boundedness of the unilateral ball potentials operator
in the Lebesgue spaces with variable exponent.

Keywords Unilateral ball potentials · Riesz potential operator · Generalized
Lebesgue space · Maximal function

1 Introduction

Lebesgue spaces with variable exponents have been of interest during the last years
(see, for instance, [1, 3, 4, 8, 10–17, 24, 28] for the basic properties). In particular,
there was an important progress concerning to the study of classical operators of
Harmonic Analysis in these spaces. We refer to [9, 12, 22–24] for details on the
development of this theory and [4], where the boundedness of various operators was
obtained by extrapolation techniques.

Investigations in this area are strongly stimulated by applications in various prob-
lems related to objects with non-standard variable local growth (in elasticity theory,
fluid mechanics, differential equations, see for example [6, 21, 27, 29, 30]). The
spaces L p(·)(Ω) are proved to be an appropriate tool applicable in this area.

In papers [19, 25] were considered unilateral ball potentials Bα±ϕ—
multidimensional analogs of operators of Riemann–Liouville fractional integration.
Number of properties of unilateral ball potentials are describe in [19, 25], (see, also,
[26, 29]).

In this paper, we study unilateral ball potentials of variable order in variable expo-
nent Lebesgue spaces. We will show the boundedness of unilateral ball potentials in
variable exponent Lebesgue spaces. Among the challenging problems is the Sobolev
type theorem on boundedness of the unilateral ball potentials operators Bα±ϕ, from
L p(·)(Ω) into Lq(·)(Ω).

This paper is structured as follows. Notations and basic definitions on variable
exponent spaces on metric measure spaces are given in Sect. 1. In Sect. 2 fractional
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maximal functions are described. The Riesz potential operator on variable Lebesgue
spaces are studied in Sect. 3. In Sect. 3 there are presented some known results con-
nected to the unilateral ball potentials. The main results, the Sobolev-type Theorems
3 and 5, are proved in Sect. 4.

Notation. Ω is a measurable set in Rn , |Ω| is its Lebesgue measure; B(x, δ) is
the ball centered at x and of radius δ; χΩ(x) is the characteristic function of a set Ω

in Rn; cn,α = Γ ( n−α
2 )2−α

πn/2Γ ( α
2 )

; γn,α = Γ ( n
2 )

πn/2Γ (α)
, P(x) =

{
(p′)−, |x | ≥ 1,
(p′)+, |x | ≤ 1.

.

2 Preliminaries

2.1 L p(·) Spaces with Variable Exponents

We refer to [1, 5–9, 16] for details on variable Lebesgue spaces over domains in Rn ,
but give some necessary definitions. For a measurable function p : Ω → [1,∞),
where Ω ⊂ Rn is an open set, we define p− := ess inf

x∈Ω
p(x), p+ := ess sup

x∈Ω

p(x).

Definition 1 By P(Ω) we denote the set of functions p : Ω → [1,∞) satisfying
the conditions 1 < p− ≤ p(x) ≤ p+ < ∞ on Ω

p(x) − p(y)| ≤ A

ln 1
|x−y|

for some (x, y) ∈ Ω, with |x − y| ≤ 1

2
, (1)

where C > 0 dose not depend on x and y.

In the case when Ω = Rn we have the following definition

Definition 2 LetΩ be an unbounded set. By P∞(Ω)wedenote the set of all bounded
measurable functions p : Ω → [1,∞), such that 1 < p− ≤ p(x) ≤ p+ < ∞ and

|p(x) − p(∞)| ≤ C

ln(e + |x |) for some (x, y) ∈ Ω, p(∞) = lim
x→∞ p(x), (2)

where C > 0 does not depend on x and y.

Definition 3 We define the following class of variable exponents

Plog(Ω) :=
{
p ∈ P(Ω) : 1

p
is globally log-Holder continuous

}
.

By clog(p) or clog we denote the log-Holder constant of 1
p .

The generalized Lebesgue space L p(·)(Ω) with variable exponent is defined as
the set of functions f on Ω for which



Unilateral Ball Potentials on Generalized Lebesgue Spaces with Variable Exponent 185

Ap( f ) :=
∫
Ω

| f (x)|p(x)dx < ∞,

and equipped with the norm

‖ f ‖L p(·)(Ω) = in f

{
λ > 0 : Ap(

f (x)

λ
) ≤ 1

}
.

L p(·)(Ω) is a Banach space when p+ < ∞ .
If p ∈ P(Ω), then we define p′ ∈ P(Ω) by 1

p(x) + 1
p′(x) = 1.

The function p′ is called the dual variable exponent of p.
The notation L p(·)(Ω, ρ) will stand for the corresponding weighted space

L p(·)(Ω, ρ) = { f : [ρ] 1
p(x) } ∈ L p(·)(Ω)},

‖ f ‖L p(·)(Ω,ρ) = in f

{
λ > 0 :

∫
Ω

ρ(x)

∣∣∣∣ f (x)λ

∣∣∣∣
p(x)

dx ≤ 1

}
,

where ρ(x) ≥ 0 a.e. and |{x ∈ Ω : ρ(x) = 0}|.
From Holder inequality for the L p(·)(Ω)-spaces we have

|
∫
Ω

u(x)v(x)dx | < (
1

p− + 1

(p′)−
)‖u‖L p′(·)(Ω)‖v‖L p(·)(Ω).

2.2 The Maximal Operator in L p(·)

For a locally integrable function f on Rn , the Hardy-Littlewood maximal operator
M is defined by

M f (x) = sup
δ>0

1

|B(x, δ)|
∫

B(x,δ)

| f (y)|dy,

where B(x, δ) denotes the open ball centered at x ∈ Rn and radius δ > 0. The suf-
ficiency of condition (1), provided by the next theorem, was proved by Diening
[5].

Theorem 1 (Diening) Let Ω ∈ Rn be an open, bounded domain, and let p : Ω →
[1,∞) satisfy (1) and be such shat 1 < p− ≤ p(x) ≤ p+ < ∞. Then the maximal
operator is bounded on L p(·)(Ω):

‖M f ‖p(x),Ω ≤ C(p(x),Ω)‖ f ‖p(x),Ω .
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2.3 The Riesz Potential Operator on Variable Lebesgue
Spaces

The boundedness the Riesz potential operator on variable Lebesgue spaces was first
considered in [22], where the Sobolev type theorem for bounded domains was proved
under the assumption that the maximal operator is bounded in L p(·) from Lq(·).
L. Diening in [6] proved the Sobolev theorem on for satisfying the local logarithmic
condition (2) and constant at infinity.

Theorem 2 ([6]) Let 0 < α < n and let 1 < p− ≤ p(x) ≤ p+ < n
α
. Assume also

that p satisfies the log-Holder conditions (1) and (2), then there exists C > 0 such
that

‖I α f ‖Lq(·)(Rn) ≤ C‖ f ‖L p(·)(Rn),

where q(x) is the Sobolev exponent given by 1
q(x) = 1

p(x) − α
n , x ∈ Rn.

Lemma 1 ([23]) Let e1 = (1, 0, ..., 0) . For the integral

Ja,b(t) =
∫

|y|<t

dy

|y|α|y − e1|b , 0 < t < ∞,

where a < n, b < n, a + b < n, the following estimate is valid

Ja,b(t) ≤ C
6|a|+|b| tn−a

(n − a)(n − b)(n − a − b)(1 + t)b
, 0 < t < ∞,

where C > 0 is an absolute constant not depending on t, a and (depending oily
on n.)

3 Unilateral Ball Potentials

Series of problem in mathematical physics (see, for example, [2]) are reduced to the
reversion of the following integral operators,

I α
Ωϕ = cn,α

∫
Ω

ϕ(y)

|x − y|n−α
dy, x ∈ Ω ⊂ Rn, 0 < α < n, (3)

named by Riesz potentials.
Let Ω be a full-sphere in Rn or area supplementing a full-sphere to only Rn. In

the given work it is considered one-sided spherical potentials in Lebesgue spaces
L p(·)(Ω) with variable exponent p(x).
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Lemma 2 ([19]) At 0 < α < n, |x | 
= |y| relations hold

cn,α

|x − y|n−α
= 2n−α

Γ 2( α
2 )ω2

n−1

∫
|z|<min(|x |,|y|)

(|x |2 − |z|2)α/2(|y|2 − |z|2)α/2

|x − z|n|y − z|n|z|α dz, (4)

cn,α

|x − y|n−α
= 2n−α

Γ 2( α
2 )ω2

n−1

∫
|z|>max(|x |,|y|)

(|z|2 − |x |2)α/2(|z|2 − |y|2)α/2

|x − z|n|y − z|n|z|α dz. (5)

Let’s consider Riesz potential

I αϕ = cn,α

∫
R n

ϕ(y)

|x − y|n−α
dy, ϕ ∈ Lp(R

n), 1 ≤ p <
n

α
. (6)

Substituting in (6) kernel under formulas (4), (5) and changing the integration order,
we obtain the following [18–20, 25]

I αϕ = 2−αB
α
2+|y|−αB

α
2−ϕ, I αϕ = 2−αB

α
2−|y|−αB

α
2+ϕ, (7)

where

B
α
2+ϕ = 2

Γ (α
2 )ωn−1

∫
|y|<|x |

(|x |2 − |y|2)α/2

|x − y|n ϕ(y)dy, (8)

B
α
2−ϕ = 2

Γ (α
2 )ωn−1

∫
|y|>|x |

(|y|2 − |x |2)α/2

|x − y|n ϕ(y)dy. (9)

Potential operator I αϕ in formulas (7) is called B factorization. Factorization (7)
is convenient in studying potentials (3) in case when the regionΩ is a sphere. Integral
operators in (8), (9) are called unilaterals ball potentials.

Unilaterals ball potentials of order α > 0 in a spherical layer U (a, b), 0 ≤ a <

b ≤ ∞ , are defined by:

Bα
a+ϕ = 2

Γ (α)ωn−1

∫
a<|y|<|x |

(|x |2 − |y|2)α
|x − y|n ϕ(y)dz,

Bα
b−ϕ = 2

Γ (α)ωn−1

∫
|x |<|y|<b

(|y|2 − |x |2)α
|x − y|n ϕ(y)dz.

Potentials Bα
a+ϕ are named left sided, and Bα

b−ϕ right sided. At a = 0, b = ∞we
will write accordingly Bα+ϕ, Bα−ϕ .
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4 The Main Statement

For 0 ≤ α < n
p+ and p ∈ P(Rn) we define q ∈ P(Rn) point-wise by

1
q(x) := 1

p(x) − α
n for all x ∈ Rn . Then q ∈ P(Rn) with

1 <
n p−

n − α p− = (q)− ≤ (q)+ = n p+

n − α p+ < ∞.

It is clear that q ∈ Plog(Rn) with clog(p) = clog(p) if p ∈ Plog(Rn) .

Lemma 3 Let Ω ⊂ Rn—be a bounded open set and 0 < α < n. Let p ∈ Plog(Ω)

with 1 < p− ≤ p+ < n
α
. If k ≥ max{ p+

n−αp+ , 1}, then

|Bα
+ f | ≤ C |x |αk 1

p+ M f (x)1−
αp(x)
n (10)

for all f ∈ L p(.)(Ω)with ‖ f ‖p(.) ≤ 1 and every x ∈ Ω ⊂ Rn. The constant depends
only on α, n, clog(p) and diam(Ω).

Proof To estimate Bα+ f we observe that |x | − |y| ≤ |x − y| and |x | + |y| ≤ 2|x |,
so that

|Bα
+ f | ≤ 2αγn,α|x |α

∫
Rn

1

|x − y|n−α
| f (y)|dy = E(x, δ) + F(x, δ), (11)

where

E(x, δ) := 2αγn,α|x |α
∫

|y−x |<δ

1

|x − y|n−α
| f (y)|dy,

F(x, δ) := 2αγn,α|x |α
∫

|y−x |>δ

1

|x − y|n−α
| f (y)|dy.

Therefore,

E(x, δ) = 2αγn,α|x |α
∫

|y−x |<δ

1

|x − y|n−α
| f (y)|dy =

2αγn,α|x |α
∞∑
k=1

∫
2−kδ<|y−x |<2−k+1δ

1

|x − y|n−α
| f (y)|dy ≤

2αγn,α|x |α
∞∑
k=1

2−kα+knδα−n (2−k+1δ)n

(2−k+1δ)n

∫
2−kδ<|y−x |<2−k+1δ

| f (y)|dy ≤
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2n+αγn,α|x |αδα

∞∑
k=1

2−kαM f (x). (12)

By (12), we have

E(x, δ) ≤ 2nγn,α|x |αδα

2α − 1
M f (x) ≤ C |x |αδαM f (x) (13)

with same absolute constant C = C(α0, n) > 0 not depending on x and δ.
The second function F(x, δ) is written as follows

F(x, δ) = 2αγn,α|x |α
∫

Rn\B(x,δ)

1

|x − y|n−α
| f (y)|dy.

Set B := B(x, δ). Using Holders inequality and taking into account that the fact
‖ f ‖p(·) ≤ 1, we have

F(x, δ) ≤ 2αγn,α|x |α‖ f ‖p(·)‖χRn\B |x − ·|α−n‖p′(·) ≤

2αγn,α|x |α‖χRn\B |x − ·|α−n‖p′(·) = 2αγn,α|x |α‖χRn\B |x − ·|−n‖ n−α
n

s(·) ,

where s := n−α
n p′. Next we note that

M(χB |B|−1)(y) ≥ 1

|2|x − y||n
∫

B(y,2|y−x |)
χB(z)dz = |B(y, 2|y − x |)|−1 = C |y − x |−n

for all y ∈ Rn \ B(x, δ). Therefore,

CχRn\B(x,δ)|y − x |−n ≤ M(χB |B|−1)(y)

for all y ∈ Rn . Combining the previous estimates, we find that

F(x, δ) ≤ 2αγn,α|x |α|B| α−n
n ‖M(χB)‖ n−α

n
s(·) ≤ 2αγn,α|x |α((s)−)′| α−n

n ‖χB‖ n−α
n

s(·) ,

where we used Theorem 1 for the boundedness of M on Lq(·)(Rn) . In addition, we
conclude that

‖χB‖ n−α
n

s(·) = ‖χB‖p′(·) ≤ C |B|
1
p′B ,

where the second estimate follows from Corollary 4.5.9 in [9]. Combining these
estimates, we obtain
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F(x, δ) ≤ 2αγn,α|x |α((s)−)′| α−n
n |B|

α−n
n + 1

p′B ≤ 2αC |x |α(
n − α

n − α p+ )
n−α
n |B| 1

qB . (14)

Let x ∈ Ω and let 0 < δ < 2diamΩ be a number to be specified later. Having
substituted (13) and (14) into (11), we have

|Bα
+ f | ≤ C |x |α[δαM f (x) + (

n − α

n − α p+ )
n−α
n |B| 1

qB ] ≤

C |x |α[δαM f (x) + (k)
1

(p+)′ δ
−n

qB(x,δ) ]. (15)

Since, 0 < δ < 2diamΩ , we have δ
−n

qB(x,δ) ≈ δ
−n
q(x) .

If [M f (x)] −p(x)
n < 2diamΩ , we choose δ = [M f (x)] −p(x)

n . Then estimate (15)
gives (10). On the other hand, if δ = [M f (x)] −p(x)

n > 2diamΩ , we choose δ =
2diamΩ . Now we have δα = [M f (x)] −p(x)α

n , so (10) follows directly from Lemma
6.1.4 in [9].

Lemma 4 Let p ∈ Plog(Rn),0 < α < n, and1 < p− ≤ p+ < n
α
. Then for anym >

n there exists C > 0 only depending on clog(p), p+, α, and n such that the following
estimate

||x |−αBα
+|q(x) ≤ |I α f |q(x) ≤ CM f (x)p(x) + h(x)

holds for all f ∈ L p(·) with ‖ f ‖p(·) ≤ 1 and all x ∈ Rn, where h ∈ L1(Rn)
⋂

L∞
(Rn), 1

q(x) := 1
p(x) − α

n .

The proof of Lemma 4 is similar to the proof of Lemma 6.1.8 in [9].

Theorem 3 Let p ∈ Plog(Rn), 0 < α < n and 1 < p− ≤ p+ < n
α
. Then the follow-

ing estimate
‖|x |−αBα

+ f ‖q(.)
≤ C‖ f ‖p(.),

holds for all f ∈ L p(·) with ‖ f ‖p(·) ≤ 1, where the constant C depends on p only
via clog(p), p− and p+, 1

q(x) := 1
p(x) − α

n .

Proof Let h ∈ L1(Rn)
⋂

L∞(Rn) be as in Lemma 4. Let ‖ f ‖p(·) ≤ 1 and thus
Ap(·)( f ) ≤ 1 by the unit ball property. Integrating in all sides of the estimate in
Lemma 4 over x ∈ Rn yields

Aq(·)(|x |−αBα
+ f ) ≤ Aq(·)(I α f ) ≤ Ap(·)(M f ) + A1(h) ≤ Ap(·)(M f ) + c.

By Theorem 1 we have that, M is bounded on L p(·)(Rn) and so Ap(·)(M f ) ≤ 1
implies Ap(·)(M f ) ≤ C , withq+ < ∞ . Hence, Aq(·)(|x |−αBα+ f ) ≤ Aq(·)(I α f ) ≤ C
and therefore, ‖|x |−αBα+ f ‖q(.)

≤ C , with q+ < ∞. Since, I α is sublinear, a scaling
argument completes the proof.
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Theorem 4 Let p ∈ P1(Ω), 0 < α < n and 1 < p− ≤ p+ < ∞. If p− > n
α
, then

|Bα
+ f | ≤ C |x | 2α−n

P(x) +n
, (16)

for all f ∈ L p(.)(Rn)with ‖ f ‖p(.) ≤ 1 and all x ∈ Rn, where the constant C depends
on α, n, clog(p).

Proof For points x, y ∈ Rn let us denote r = |x |, ρ = |y|, x ′ = x
|x | , y

′ = y
|y| . Apply-

ing Holders Inequality, we get

|Bα
+ f | ≤ ‖ϕ(x, y)‖p′(·)‖ f ‖p(·),

where

ϕ(x, y) := γn,α

(|x |2 − |y|2)α
|x − y|n χB(0,|x |)(y).

We use the property

ρp(·)
(

f

b

)
≤ a ⇒ ‖ f ‖p(·) ≤ abν,

where

ν =
{

1
p− , b ≥ 1,
1
p+ , b < 1.

We can prove that

ρp′(·)(
ϕ(x, ·)
|x |2α−n

) ≤ C |x |n, (17)

which implies that
‖ϕ(x, ·)‖p′(·) ≤ C |x | 2α−n

P(x) +n
,

where

P(x) =
{

(p′)−, |x | ≥ 1,
(p′)+, |x | ≤ 1.

Let us try to prove (19). We have

ρp′(·)(
ϕ(x, ·)
|x |2α−n

) = γn,α

∫
|y|<|x |

(|x |2 − |y|2)α p′(·)

|x |(2α−n)p′(·)|x − y|n p′(·) dy ≤

γn,α2
α(p′)+

∫
|y|<|x |

dy

|x ′ − y
|x | |(n−α)p′(·)

Taking y = |x |rotxξ, rotxe1 = x ′, e1 = (1, 0, ..., 0), we have
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ρp′(·)(
ϕ(x, ·)
|x |2α−n

) ≤ C |x |n
∫

|ξ |<1

dξ

|e1 − ξ |(n−α)p′(|x |rotx ξ)

= C |x |n(
∫

|ξ |<1,|e1−ξ |<1

+
∫

|ξ |<1,|e1−ξ |>1

)
dξ

|e1 − ξ |(n−α)p′(|x |rotx ξ)

≤ C |x |n(
∫

|ξ |<1,|e1−ξ |<1

dξ

|e1 − ξ |(n−α)(p′)+ +
∫

|ξ |<1,|e1−ξ |>1

dξ

|e1 − ξ |(n−α)(p′)− )

Here, we obtain following inequality based on Lemma 1

ρp′(·)(
ϕ(x, ·)
|x |2α−n

) ≤ C |x |n( 3(n−α)(p′)+

n(n − (n − α)(p′)+)2
+ 3(n−α)(p′)−

n(n − (n − α)(p′)−)2
). (18)

Using (18) and (17), we have (16). This completes the proof.

Theorem 5 Let p ∈ P(Ω), 0 < α < n and 1 < p− ≤ p(x) ≤ p+ < ∞ . If p− >
n
α
, then

‖|x | n−2α
P(x) −n Bα

+ f ‖L p(·)(Ω)
≤ C‖ f ‖L p(·)(Ω),

for all f ∈ L p(.)(Ω)with ‖ f ‖L p(·)(Ω) ≤ 1 and all x ∈ Ω , where the constant depends
on α and n.

The proof of this theorem is similar to the proof of the Theorem 3.

Theorem 6 Let Ω ⊂ Rn be a bounded domain in 0 < α < n and let p ∈ Plog(Rn)

with 1 < p− ≤ p+ < n
α
. Then the following estimate

‖Bα
− f ‖Lq(·)(Ω)

≤ C‖ f ‖L p(·)(Ω), (19)

holds for all f ∈ L p(.)(Ω) with ‖|y|α f ‖p(.) ≤ 1, where the constant C depends on
α, n, and clog(p),

1
q(x) := 1

p(x) − α
n .

Proof In the integral |Bα− f | , we observe that |x | − |y| ≤ |x − y| and |x | + |y| ≤
2|y|, so that

|Bα
− f | ≤ 2αγn,α

∫
|y|>|x |

|y|α
|x − y|n−α

| f (y)|dy ≤ 2αγn,α

∫
Rn

|y|α
|x − y|n−α

| f (y)|dy =

E1(x, δ) + F1(x, δ), (20)

where
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E1(x, δ) = 2αγn,α

∫
|y−x |<δ

|y|α
|x − y|n−α

| f (y)|dy,

F1(x, δ) = 2αγn,α

∫
|y−x |>δ

|y|α
|x − y|n−α

| f (y)|dy.

For E1(x, δ), via the standard binary decomposition

E1(x, δ) ≤ 2αγn,α

∞∑
k=1

∫
2−kδ<|y−x |<2−k+1δ

1

|x − y|n−α
|y|α| f (y)|dy

we obtain

E1(x, δ) ≤ 2n+αγn,αδα

2α − 1
Mg(x) ≤ CδαMg(x), (21)

where g := ||y|α f |, with some absolute constant C1 = C1(α, n) > 0 not depending
on x and δ .Weassume that‖|y|α f ‖p(.) ≤ 1. For the termweuse theHolder inequality
and obtain

F1(x, δ) ≤ 2αγn,α‖|y|α f ‖p(·)‖χΩ\B |x − ·|α−n‖p′(·). (22)

We can apply Theorem 1.17 in [22], its assumptions being satisfied due to conditions
of our theorem. Then we have

‖χΩ\B |x − ·|α−n‖p′(·) ≤ Cδ
− n

q(x) . (23)

From (20), in view of (21)–(23), we obtain

|Bα
− f | ≤ C(δαM(|y|α f ) + δ

− n
q(x) ).

Minimizing with respect to δ, at δ = (M(|y|α f ))−
p(x)
n we get

|Bα
− f | ≤ CM(|y|α f )

p(x)
q(x) .

Hence, ∫
Ω

|Bα
− f |q(x)dx ≤ C

∫
Ω

|(M(|y|α f ))|p(x)dx ≤ C. (24)

Then
∫
Ω

|(M(|y|α f ))|p(x)dx ≤ C and by (24) we obtain that

∫
Ω

|Bα
− f |q(x)dx ≤ C

for all f ∈ L p(.)(Ω) with ‖|y|α f ‖p(.) ≤ 1, which is equivalent to (19).
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