
Characterization and Verification of
Stuttering Equivalence

Xinxin Liu(B) and Wenhui Zhang

State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences , University of Chinese Academy of Sciences,

Huairou, China
{xinxin,zwh}@ios.ac.cn

Abstract. Stuttering equivalence is an important equivalence relation
on Kripke structures. It is the equivalence which preserves all CTL*-X
properties. Two key issues concerning this equivalence are how to char-
acterize it and how to verify whether two given states are equivalent
with respect to it. For this purpose, we propose two bisimulation style
definitions, one called ω-bisimulation which provides a concise character-
ization of the equality and one called stuttering bisimulation with induc-
tion which provides a verification method for establishing the equality.
We also show that stuttering bisimulation with induction coincides with
well-founded bisimulation, a notion introduced by Namjoshi for verifying
stuttering equivalence.

1 Introduction

Stuttering equivalence on Kripke structures is an important equivalence that has
the exact distinguishing strength of the set of CTL*-X properties (the compu-
tation tree logic CTL* [14] without the next operator). An important feature of
stuttering equivalence is that it is a divergence preserving equivalence with a high
level of abstraction. A main issue concerning stuttering equivalence, which has
both theoretical interest and practical implication, is how to characterize such an
equivalence in a way that two states can be shown equivalent with minimal effort.
The definition of stuttering equivalence in [3] presented it as the limit of a con-
verging sequence of equivalences. Such a definition is not very helpful either for
equality checking or for equality proving. Here “equality checking” is the prob-
lem of deciding whether two given states are equivalent, and “equality proving”
is the problem of verifying that whether a given evidence (or a proof, e.g. a
supposed bisimulation relation) of equality two states is valid. In [11], a simpler
characterization is proposed, in which a well founded relation is used for the char-
acterization of the stuttering equivalence. It is called well-founded bisimulation.
It is proven that well-founded bisimulation corresponds to stuttering equivalence
[11]. A difficulty with this definition is that it is not obvious how to construct
the well-founded relation, in order to be used to show the equivalence of states.
In addition, such a well-founded relation may be unnecessarily large, if it is not
c© Springer Nature Switzerland AG 2018
C. Jones et al. (Eds.): Zhou-Festschrift, LNCS 11180, pp. 116–132, 2018.
https://doi.org/10.1007/978-3-030-01461-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01461-2_7&domain=pdf

Characterization and Verification of Stuttering Equivalence 117

constructed carefully. In this paper, we address these difficulties by proposing
a characterization of stuttering equivalence with the notion of stuttering bisim-
ulation with induction. Firstly, we propose another characterization with the
notion of ω-bisimulation which is easy to use to establish theoretical foundation.
Secondly, we have a concept that uses the inductive principle instead of infinite
sequence of relations and well-founded relations. Thirdly, we relate well-founded
bisimulation to the new definition. Finally, we show that the new definition can
be used to construct a well-founded relation that is required for showing stutter-
ing equivalence by well-founded bisimulation, and therefore providing a method
for proving the equivalence of states with well-founded bisimulation.

The paper is organized as follows. In the next section we present stuttering
equivalence in terms of ω-bisimulation. In Sect. 3 we introduce the notion of
stuttering bisimulation with induction to characterize stuttering equivalence. In
Sect. 4 we study the relationship between stuttering bisimulation with induction
and well-founded bisimulation. We discuss related works in Sect. 5, summarize
and conclude in Sect. 6.

2 Stuttering Equivalence and ω-Bisimulation

In this section we establish a theoretical foundation for stuttering equivalence
with the notion of ω-bisimulation. We start with some basic notions and nota-
tions.

Definition 1 (Kripke structure and infinite runs). A Kripke structure is a tuple
K = 〈S,AP,L,−→〉 where:

– S is a set of states;
– AP is a set of atomic propositions or labels;
– L : S → 2AP is the labeling function which assigns each state a set of atomic

propositions;
– −→⊆ S×S is the transition relation. An element (s, t) of −→, usually written

as s −→ t, is called a transition. Following the convention, we assume that
−→ is a total relation, i.e. for each s ∈ S there exists s′ ∈ S such that
s −→ s′.

– A finite run of K is a finite sequence of states, with each pair of neighbouring
states connected by a transition. If ρ is a finite run of K with starting state s
and finishing state t, we also say that ρ is a finite run from s to t, and write
first(ρ) for s, last(ρ) for t. The length of ρ, written length(ρ), is the number
of transitions connecting ρ (thus length(s) = 0 where s is the run consists of
a single state s ∈ S).

– An infinite run of K is an infinite sequence of states, with each pair of neigh-
bouring states connected by a transition. If ρ is an infinite run of K with start-
ing state s, we also say that ρ is an infinite run from s, and write first(ρ)
for s.

118 X. Liu and W. Zhang

Let R,R1, R2 be binary relations. In general, we define the converse R−1 of
R and the composition R1R2 of R1 and R2 by

R−1 = {(s, t) | (t, s) ∈ R},
R1R2 = {(s, t) | there exist (s, u) ∈ R1, (u, t) ∈ R2 for some u}.

Definition 2 (Relations on finite and infinite runs). Let K = 〈S,AP,L,−→〉 be
a Kripke structure, R be a binary relation on S.

Define a binary relation R� between finite runs of K by induction on the
lengths of the runs such that (s1 . . . sn, t1 . . . tm) ∈ R� if and only if (s1, t1) ∈ R
and moreover one of the following holds:

1. n = m = 1;
2. (s2 . . . sn, t1 . . . tm) ∈ R�;
3. (s1 . . . sn, t2 . . . tm) ∈ R�;
4. (s2 . . . sn, t2 . . . tm) ∈ R�.

Define a binary relation R� between infinite runs of K such that for two
infinite runs σ, ρ of K, (σ, ρ) ∈ R� if and only if both of the following hold:

1. for each finite prefix σ′ of σ, there is a finite prefix ρ′ of ρ with (σ′, ρ′) ∈ R�;
2. for each finite prefix ρ′ of ρ, there is a finite prefix σ′ of σ with (σ′, ρ′) ∈ R�.

The intuition of R� (R�) is that it describes a relation between two finite (infinite)
runs such that the states in the two sequences of the runs are pairwise related
by R while making progress in lock steps modulo finite stuttering.

The following lemma shows expected homomorphic and monomorphic prop-
erties of � and �, which is required later in establishing transitivity of some
desired equivalence relation.

Lemma 1. Let K = 〈S,AP,L,−→〉 be a Kripke structure, R1, R2 be two binary
relations on S. Then

1. R1
�R2

� ⊆ (R1R2)
�;

2. R1
�R2

� ⊆ (R1R2)
�;

3. If R1 ⊆ R2, then R1
� ⊆ R2

� and R1
� ⊆ R2

�.

Proof. 1 can be proved by a detailed case analysis. 2 follows from 1. For 3,
suppose R1 ⊆ R2, then it can be proved by induction on the total lengths of
the finite runs σ and ρ that if (σ, ρ) ∈ R�

1 then (σ, ρ) ∈ R�
2. Then it follows

immediately that in this case also R1
� ⊆ R2

�. ��
In [3], stuttering equivalence was originally defined as the limit of a con-

verging sequence of equivalences. This kind of definition is not easy to work
with either for theoretical foundation or for practical verification. The notion of
bisimulation, proposed by Park [7], has been very successfully applied by Mil-
ner in studying equivalence relations on labeled transition systems [8]. Thus we
wish to establish the theory of stuttering equivalence based on the notion of
bisimulation. However, due to the consideration of infinite runs in stuttering

Characterization and Verification of Stuttering Equivalence 119

equivalence, the bisimulation characterization of stuttering equivalence is a lit-
tle more complex than that of many well-known equivalence relations. So we
first ignore the issue of divergence, and present a divergence blind equivalence
which is easy to describe by using bisimulation and which is also very close to
stuttering equivalence.

Definition 3 (Stuttering bisimulation, divergence blind stuttering equiva-
lence). Let K = 〈S,AP,L,−→〉 be a Kripke structure. A stuttering bisimulation
is a binary relation R ⊆ S × S such that for all (s0, t0) ∈ R the following hold:

1. L(s) = L(t);
2. if s0 −→ s1 then there is a finite run ρ from t0 such that (s0s1, ρ) ∈ R�;
3. if t0 −→ t1 then there is a finite run σ from s0 such that (σ, t0t1) ∈ R�.

We write s ≈db t if there is a stuttering bisimulation R such that (s, t) ∈ R. We
call ≈db divergence blind stuttering equivalence.

With this definition, by Lemma 1, it is routine to prove that ≈db is an equivalence
relation, and ≈db is the largest stuttering bisimulation.

Definition 4 (Divergence). Let K = 〈S,AP,L,−→〉 be a Kripke structure, ≡
be an equivalence relation on S. An infinite run ρ = s0s1 . . . si . . . of K is called
a divergent run with respect to ≡ if s0 ≡ si for all i. In this case s0 is said
to be divergent with respect to ≡, written s0 ⇑≡. We say that ≡ is divergence
preserving, if whenever s ≡ t and s ⇑≡ then t ⇑≡.

In discussing divergence we often omit mentioning “with respect to ≡” if it
is obvious from the context.

Although ≈db is an equivalence relation with many desired properties, it is
well known that ≈db is not divergence preserving. This is why we call it divergence
blind stuttering equivalence, and use the subscript db for it. In order to obtain
divergence preserving property, it turns out that we need to strengthen the
definition of divergence blind stuttering equivalence so that correspondence of
all infinite runs from states are required, instead of only requiring correspondence
of finite runs. The result is the following notion of ω-bisimulation.

Definition 5 (ω-bisimulation, stuttering equivalence). Let K = 〈S,AP,L,−→〉
be a Kripke structure. An ω-bisimulation is a binary relation R ⊆ S × S such
that for all (s, t) ∈ R the following hold:

1. L(s) = L(t);
2. for any infinite run σ from s, there exists an infinite run ρ from t such that

(σ, ρ) ∈ R�;
3. for any infinite run ρ from t, there exists an infinite run σ from s such that

(σ, ρ) ∈ R�.

Define ≈st=
⋃{R |R is an ω-bisimulation}. We call ≈st stuttering equivalence,

and for s, t ∈ S we say s is stuttering equivalent to t if s ≈st t.

120 X. Liu and W. Zhang

The name ω-bisimulation refers to the examination of infinite runs in the defi-
nition.

Theorem 1. ≈st is an equivalence relation.

Proof. First note that Id = {(s, s) | s ∈ S} is an ω-bisimulation. Thus ≈st is
reflexive.

If R is an ω-bisimulation then it is easy to see from the definition that its
converse R−1 is also an ω-bisimulation. Thus ≈st is symmetric.

If R1, R2 are two ω-bisimulations, then by Lemma 1 (2) it is easy to see that
their composition R1R2 is also an ω-bisimulation. Thus ≈st is transitive. ��
Theorem 2. Let K = 〈S,AP,L,−→〉 be a Kripke structure. Then ≈st is the
largest ω-bisimulation on S.

Proof: First, we show that ≈st is an ω-bisimulation. For that, let s ≈st t for
s, t ∈ S. Then there is R ⊆ S×S such that (s, t) ∈ R and R is an ω-bisimulation.
By Definition 5 the following hold:

1. L(s) = L(t);
2. for any infinite run σ from s, there exists an infinite run ρ from t such that

(σ, ρ) ∈ R�;
3. for any infinite run ρ from t, there exists an infinite run σ from s such that

(σ, ρ) ∈ R�.

Note that R ⊆≈st, and by Lemma 1 (3) R� ⊆ ≈�
st, then it is easy to see that

≈st is an ω-bisimulation.
It is obvious from the definition that if R is an ω-bisimulation then R ⊆≈st,

thus ≈st is the largest such. ��
This theorem shows that ≈st is well defined. Now we examine divergence

preserving property of ≈st.

Theorem 3. Let K = 〈S,AP,L,−→〉 be a Kripke structure, ≡ be an equivalence
relation on S. If ≡ is an ω-bisimulation, then ≡ is divergence preserving.

Proof: Suppose s ≡ t and s ⇑≡. Then there is a divergent run σ from s. Since ≡
is an ω-bisimulation, there exists an infinite run ρ from t such that (σ, ρ) ∈≡�.
Then from the condition that σ is a divergent run, it is easy to see that ρ must
be a divergent run, thus t ⇑≡. ��
Corollary 1. ≈st is divergence preserving.

Proof: Follows immediately from Theorems 2 and 3. ��
The following theorem is pretty straight forward.

Theorem 4. Let K = 〈S,AP,L,−→〉 be a Kripke structure, R be a binary
relation on S. If R is an ω-bisimulation, then R is a stuttering bisimulation.

Characterization and Verification of Stuttering Equivalence 121

Proof: Let (s, t) ∈ R and s −→ s′, and σ be an infinite run with s, s′ as its first
two states (since we assume that −→ is total, such a σ can always be found).
Then because R is an ω-bisimulation, there is an infinite run ρ from t such that
(σ, ρ) ∈ R�. By Definition 2, for ss′, which is a finite prefix of σ, there is a finite
prefix ρ′ of ρ such that (ss′, ρ′) ∈ R�. Thus R is a stuttering bisimulation. ��
Corollary 2. ≈st is a stuttering bisimulation.

Proof: Follows immediately from the above theorem and Theorem 2. ��
From Corollaries 1 and 2, it is easy to see that ≈st is a divergence preserving

stuttering bisimulation. In fact this gives an alternative characterization of ≈st

which we will prove in the next section: ≈st is the weakest equivalence which is
a divergence preserving equivalence and a stuttering bisimulation.

3 Stuttering Bisimulation with Induction

Although the notion of ω-bisimulation makes stuttering equivalence quite
straightforward both conceptually and intuitively, it is not very helpful in ver-
ification. This is because Definition 5 requires one to examine conditions on
infinite runs, of which there are obviously too many to handle in actual verifi-
cation. What we need is a characterization which can be useful in verification,
something like stuttering bisimulation – the conditions to check only concern
finite runs of length one. Then the following definition comes into view.

Definition 6 (Stuttering bisimulation with induction). Let K=〈S,AP,L,−→〉
be a Kripke structure. For a binary relation R ⊆ S × S, let BI(R) be the binary
relation inductively defined by the following rule: for s, t ∈ S, if the following
hold then (s, t) ∈ BI(R):

1. whenever s −→ s′ then either there exists a finite run ρ from t such that
length(ρ) > 0 and (ss′, ρ) ∈ R�, or (s′, t) ∈ R and (s′, t) ∈ BI(R);

2. whenever t −→ t′ then either there exists a finite run σ from s such that
length(σ) > 0 and (σ, tt′) ∈ R�, or (s, t′) ∈ R and (s, t′) ∈ BI(R).

If R ⊆ BI(R), then we call R a stuttering bisimulation with induction. We write
s ≈si t if there is a stuttering bisimulation with induction R such that (s, t) ∈ R.

Comparing the above definition with Definition 3 for stuttering bisimulation,
we can find obvious similarities. The rationale behind this definition is as follows.
Since ≈st is strictly stronger than ≈db, and since those non-divergence preserving
pairs in ≈db are extras for ≈st, a natural idea to make a stuttering bisimulation
like definition for ≈st is to strengthen the conditions of stuttering bisimulation
in such a way that those non-divergence preserving pairs are excluded. The
definition of stuttering bisimulation with induction did exactly that.

By using the set of ordinals O, the following characterization of BI(R) is very
helpful in some of the later proofs as well as in understanding the definition of
BI(R).

122 X. Liu and W. Zhang

Definition 7. Let K = 〈S,AP,L,−→〉 be a Kripke structure, R be a binary
relation on S. We define Bλ

I (R) for each ordinal λ ∈ O, as follows:

1. B0
I (R) = ∅.

2. (s, t) ∈ Bκ+1
I (R) if and only if the following hold:

(a) whenever s −→ s′ then either there exists a finite run ρ from t such that
length(ρ) > 0 and (ss′, ρ) ∈ R�, or (s′, t) ∈ R and (s′, t) ∈ Bκ

I (R);
(b) whenever t −→ t′ then either there exists a finite run σ from s such that

length(σ) > 0 and (σ, tt′) ∈ R�, or (s, t′) ∈ R and (s, t′) ∈ Bκ
I (R).

3. For limit ordinal λ, (s, t) ∈ Bλ
I (R) if and only if (s, t) ∈ Bκ

I (R) for some
κ < λ.

Theorem 5. Let K = 〈S,AP,L,−→〉 be a Kripke structure, R be a binary
relation on S. Then for s, t ∈ S the following hold:

1. BI(R) =
⋃

λ∈O Bλ
I (R);

2. if λ is the least ordinal with (s, t) ∈ Bλ
I (R), then λ = κ + 1 for some κ ∈ O.

Proof. 1 can be proved by standard fixed-point arguments. To see 2, just note
that λ cannot be 0 since B0

I (R) is empty, neither can it be a limit since otherwise
there would exist a smaller ordinal κ with (s, t) ∈ Bκ

I (R). ��
In the rest of this section, our major task is to prove that the resulting

relation ≈si is indeed the same as ≈st.

Lemma 2. If R1 ⊆ R2, then BI(R1) ⊆ BI(R2).

Proof. Easy to prove by induction on the definition of BI(R1), or to use the
ordinal characterization and prove by induction on all λ ∈ O. ��

This lemma shows a very nice property of the definition. It essentially says
that if we consider BI as a function on binary relations then it is monotonic.
Then Knaster-Tarski fixed-point theorem can be applied to the complete lattice
(2S×S ,⊆) to obtain ≈si as the maximum fixed-point of BI .

Theorem 6. ≈si is a stuttering bisimulation with induction, and it is the largest
stuttering bisimulation with induction, and moreover ≈si= BI(≈si).

Proof. The theorem is in fact an instance of Knaster-Tarski fixed-point theorem.
To show that ≈si is a stuttering bisimulation with induction, we have to establish
≈si⊆ BI(≈si). Suppose that R is a stuttering bisimulation with induction, then
obviously R ⊆ BI(R) and R ⊆≈si. According to Lemma 2, BI is monotonic,
thus BI(R) ⊆ BI(≈si), so we showed that for any stuttering bisimulation with
induction R it holds that R ⊆ BI(≈si). Now to see ≈si⊆ BI(≈si), just note that
≈si=

⋃{R | R is a stuttering bisimulation with induction}.
If R is a stuttering bisimulation with induction, then by the definition obvi-

ously R ⊆≈si. Thus ≈si is the largest stuttering bisimulation with induction.
We have just shown above that ≈si⊆ BI(≈si), then since BI is monotonic,

BI(≈si) ⊆ BI(BI(≈si)). So BI(≈si) is a stuttering bisimulation with induction,
thus BI(≈si) ⊆≈si and BI(≈si) =≈si. ��

Characterization and Verification of Stuttering Equivalence 123

Remark 1. It is clear from this theorem that ≈si is the greatest fixed-point of
BI , i.e. ≈si= νR(BI(R)) in μ-calculus notation. In fact, from Definition 6, it is
also clear that BI(R) itself is the least fixed-point of F(R), where for a given
R∗ ⊆ S × S, (s, t) ∈ F(R)(R∗) if and only if the following hold:

1. whenever s −→ s′ then either there exists a finite run ρ from t such that
length(ρ) > 0 and (ss′, ρ) ∈ R�, or (s′, t) ∈ R and (s′, t) ∈ R∗;

2. whenever t −→ t′ then either there exists a finite run σ from s such that
length(σ) > 0 and (σ, tt′) ∈ R�, or (s, t′) ∈ R and (s, t′) ∈ R∗.

Then ≈si= νR(μR∗(F(R)(R∗))), that is, ≈si is expressed as an alternating fixed-
point (it is easy to see that F(R) is monotonic, thus the least fixed-point is well
defined). For relations defined as an alternating fixed-point, there are efficient
local algorithms to decide whether (s, t) ∈ νR(μR∗(F(R)(R∗))) where s, t are
states of a Kripke structure with finite states set, see e.g. [10]. Here the localness
means that the algorithm does not compute the whole of νR(μR∗(F(R)(R∗)))
in order to decide whether (s, t) ∈ νR(μR∗(F(R)(R∗))) holds, it only com-
putes a part P ⊆ νR(μR∗(F(R)(R∗))) which is big enough to decide whether
(s, t) ∈ νR(μR∗(F(R)(R∗))) holds. In fact such P is just stuttering bisimulation
with induction. Thus the characterization of stuttering equivalence in stuttering
bisimulation with induction facilitates local decision strategy, which would give
stuttering bisimulation with induction a clear advantage in verification practice.

Another important property to establish about ≈si is that it is an equiva-
lence relation. Unfortunately, it is not an easy task to directly prove that ≈si is
transitive. Here we will take an indirect approach, since anyhow we are going to
establish that ≈si=≈st (Theorem 9). Then from the fact that ≈st is an equiva-
lence relation, we immediately know that so is ≈si.

Theorem 7. Let ≡ be an equivalence. If ≡ is divergence preserving, and is a
stuttering bisimulation, then ≡⊆ BI(≡).

Proof. First define a binary relation ⊆ S × S such that s s′ if and only
if s is not divergent and s ≡ s′ and s −→ s′. Then it is clear that if ≡ is
divergence preserving, then is well founded, i.e. there is no infinite descending
chain s s1 . . . si Otherwise σ = ss1 . . . si . . . would be a divergent run
from s.

Now suppose that ≡ is a stuttering bisimulation, and s ≡ t, we will show
(s, t) ∈ BI(≡) by well-founded induction on . Let s −→ s′ be any transition
from s, we have to find a match for it that meets the requirements in Definition 6.
Since ≡ is a stuttering bisimulation, s ≡ t, then there must exist a finite run ρ
from t such that (ss′, ρ) ∈ R�. Now we can discuss in two cases. The first case is
that we can find such a ρ with length(ρ) > 0, then a required match for s −→ s′

is found. The second case is that, the only such ρ has length 0, and in this case
s′ ≡ t. Obviously t must not be a divergent state (otherwise there is a divergent
run η from t, and any finite prefix ρ of η satisfies (ss′, ρ) ∈ R�), and since ≡ is
divergence preserving, then s is not divergent. Now s s′, s′ ≡ t, and by the
induction hypothesis (s′, t) ∈ BI(≡), and a required match for s −→ s′ is also
found. Thus we proved (s, t) ∈ BI(≡). ��

124 X. Liu and W. Zhang

Corollary 3. ≈st is a stuttering bisimulation with induction, and ≈st⊆≈si.

Proof. From Corollaries 1, and 2, ≈st is a divergence preserving equivalence and
it is a stuttering bisimulation. Then by Theorem 7 ≈st⊆ BI(≈st), thus ≈st is a
stuttering bisimulation with induction, and ≈st⊆≈si. ��

To establish the other direction, we need to show that ≈si is an ω-
bisimulation.

Lemma 3. Let K = 〈S,AP,L,−→〉 be a Kripke structure, R be a binary relation
on S. For all λ ∈ O, if (s, t) ∈ Bλ

I (R) then the following hold

1. if σ is an infinite run from s, then there is a finite run ρ from t with
length(ρ) > 0, and a finite prefix σ∗ of σ such that (σ∗, ρ) ∈ R�;

2. if ρ is an infinite run from t, then there is a finite run σ from s with
length(σ) > 0, and a finite prefix ρ∗ of ρ such that (σ, ρ∗) ∈ R�.

Proof. Here we only show 1, because 2 can be proved in the same way. We prove
by induction on λ ∈ O. If λ = 0 there is nothing to be proved. If λ = κ + 1, let
(s, t) ∈ Bκ+1

I (R), σ = s1s2s3 Then s1 −→ s2, according to the definition of
Bκ+1

I (R), there are the following two cases. The first case is that there exists a
finite run ρ from t such that length(ρ) > 0, (s1s2, ρ) ∈ R�, and in this case take
s1s2 as σ∗, then ρ is the required run from t. The second case is that (s2, t) ∈ R
and (s2, t) ∈ Bκ

I (R), and in this case by the induction hypothesis, for the infinite
run σ′ = s2s3 . . ., there is a finite run ρ from t with length(ρ) > 0, and there is a
finite prefix σ† of σ′ such that (σ†, ρ) ∈ R�, and in this case we take σ∗ = s1σ

†,
then (σ∗, ρ) ∈ R� and ρ is the required run. If λ is a limit ordinal, then there
is κ ∈ O such that κ < λ and (s, t) ∈ Bκ

I (R), then the induction hypothesis
immediately gives a finite run ρ from t with length(ρ) > 0, and there is a finite
prefix σ∗ of σ such that (σ∗, ρ) ∈ R�. ��
Theorem 8. Let K = 〈S,AP,L,−→〉 be a Kripke structure, R be a binary
relation on S. If R is a stuttering bisimulation with induction, then R is an
ω-bisimulation.

Proof. Suppose R ⊆ BI(R), and (s, t) ∈ R we need to prove the following:

1. if σ is an infinite run from s, then there is an infinite run ρ from t such that
(σ, ρ) ∈ R�;

2. if ρ is an infinite run from t, then there is an infinite run σ from s such that
(σ, ρ) ∈ R�.

Here we only prove 1, because 2 can be proved in the same way. So suppose σ
is an infinite run from s. Since in this case (s, t) ∈ BI(R), then (s, t) ∈ Bλ

I (R)
for some λ ∈ O, by Lemma 3 we can obtain a finite prefix σ1 of σ and a finite
run ρ1 from t with length(ρ1) > 0, such that (σ1, ρ1) ∈ R�. Now we can do
the same thing for (last(σ1), last(ρ1)) ∈ R with the infinite run which is the
remaining part of σ after σ1. Repeating the process to infinity we obtain a run
ρ by concatenating ρ1, ρ2, . . . in the obvious way. Since each ρi has a positive
length, clearly ρ is an infinite run and it is not difficult to see that (σ, ρ) ∈ R�. ��

Finally, we are ready to prove:

Characterization and Verification of Stuttering Equivalence 125

Theorem 9. ≈si=≈st.

Proof. According to Theorem 6, ≈si is a stuttering bisimulation with induction,
then, by Theorem 8, ≈si is an ω-bisimulation, thus ≈si⊆≈st. Then combine this
with Corollary 3 we obtain ≈si=≈st. ��

Thus ≈si is an equivalence relation. As we promised in the end of the last
section, we have to prove the following important characterization of ≈si and
≈st.

Theorem 10. ≈st (as well as ≈si) is the weakest equivalence which is a stut-
tering bisimulation and at the same time is a divergence preserving equivalence.

Proof. Now it is clear that ≈st is divergence preserving and is a stuttering
bisimulation. To show that it is the weakest such, let ≡ be a stuttering bisimu-
lation and at the same time it is a divergence preserving equivalence. Then by
Theorem 7 ≡⊆ BI(≡), thus ≡⊆≈si=≈st. ��
Remark 2. In principle, one can “define” an equivalence relation � by requiring
that s � t if and only if there exists a divergence preserving equivalence relation
≡ such that ≡ is a stuttering bisimulation and s ≡ t. However, such kind of
“definition” needs to be justified in order to be meaningful. In particular, one
needs to prove that the defined relation � is indeed an equivalence relation, and
is divergence preserving, and is a stuttering bisimulation. Here Theorem 10 pro-
vides the justification for �. In some cases this kind of justification is routine.
Such examples include strong and weak bisimulation equivalences, branching
bisimulation equivalence, etc. In these examples, due to the existence of obvious
monotonic functions, application of Knaster-Tarski fixed-point theorem turned
the justification into a routine task. In other cases it cannot be considered rou-
tine, where justification is difficult by the definition itself, and one needs to find
other ways to get around. This is the case here, since from the definition itself
it is not obvious how to prove that � is an equivalence relation, one has to con-
struct an equivalence by other means (like ≈st or ≈si), and then to use that to
prove that � is an equivalence. It is for this reason that we do not consider the
way of introducing � as desirable. It easily causes confusion while does not save
any amount of work.

4 Well-Founded Bisimulation

In [11], the notion of well-founded bisimulation was proposed to capture stut-
tering equivalence. In this section we study its relationship to stuttering bisim-
ulation with induction.

Definition 8 (Well-founded bisimulation). Let K = 〈S,AP,L,−→〉 be a Kripke
structure. Let rank : S × S × S → W be a total function, where (W,≺) is well-
founded. A binary relation R ⊆ S ×S is a well-founded bisimulation w.r.t. rank
iff R is symmetric and for every (s, t) ∈ R the following hold:

126 X. Liu and W. Zhang

1. L(s) = L(t);
2. whenever s −→ u then one of the following must hold:

(a) t −→ v for some v ∈ S with (u, v) ∈ R;
(b) (u, t) ∈ R and rank(u, u, t) ≺ rank(s, s, t);
(c) (u, t) �∈ R and t −→ v for some v ∈ S with (s, v) ∈ R and

rank(u, s, v) ≺ rank(u, s, t).

The purpose of the ternary rank function rank(u, s, t), when used in case (c)
in the above definition, is to enforce an order in defining the condition that the
transition s −→ u can be matched by a transition from t. In case (b), the rank
function is used to enforce an order in defining the condition that the transition
s −→ u can be matched by default. In principle the two well founded orders in
case (b) and case (c) of the definition are different: the former being an order
between pairs of states and latter an order between triples of states. It is just a
coincidence that the function rank can serve both purpose.

First, we show that every well-founded bisimulation is a stuttering bisimula-
tion with induction.

Theorem 11. Let K = 〈S,AP,L,−→〉 be a Kripke structure. If R is a well-
founded bisimulation on K with some well-founded set (W,≺) and total function
rank, then R is a stuttering bisimulation with induction.

Proof. We first establish the following fact by well-founded induction on ≺:

If (s, t) ∈ R and s −→ u and (u, t) /∈ R, then there exists a finite run ρ
such that length(ρ) > 0 and (su, ρ) ∈ R�.

To show that, suppose (s, t) ∈ R and s −→ u and (u, t) /∈ R. Since R is a
well-founded bisimulation, one of the conditions in (a), (b), (c) of Definition 8
must hold. However because (u, t) /∈ R, condition (b) is excluded, thus either
(a) or (c) must hold. If (a) holds, then t −→ v with (u, v) ∈ R for some v ∈ S,
clearly tv is the ρ we are looking for. If (c) holds, then t −→ v for some v ∈ S
with (s, v) ∈ R and rank(u, s, v) ≺ rank(u, s, t). Now we have two subcases to
discuss: (u, v) ∈ R and (u, v) /∈ R. In the first subcase, again tv is the ρ we
are looking for. In the second subcase, because (s, v) ∈ R, s −→ u, (u, v) /∈ R,
and rank(u, s, v) ≺ rank(u, s, t), by the induction hypothesis there is a finite
run ρ′ from v such that length(ρ′) > 0 and (su, ρ′) ∈ R�. Let ρ = tρ′, clearly
(su, ρ) ∈ R�.

Now suppose (s, t) ∈ R, we show (s, t) ∈ BI(R) by well-founded induction
as follows. Let s −→ u, then we have two cases to discuss: (u, t) /∈ R and
(u, t) ∈ R. In the first case, by the fact we proved above there is a finite run ρ
from t with length(ρ) > 0 and (su, ρ) ∈ R�. In the second case, by the condition
that R is a well-founded bisimulation, one of the conditions in (a), (b), (c) of
Definition 8 must hold. However (c) is clearly excluded because in this case
(u, t) ∈ R. So we have two subcases to discuss. If (a) holds, then t −→ v with
(u, v) ∈ R for some v ∈ S, clearly (su, tv) ∈ R�. If (b) holds, then (u, t) ∈ R and
rank(u, u, t) ≺ rank(s, s, t), by the induction hypothesis (u, t) ∈ BI(R). Thus,

Characterization and Verification of Stuttering Equivalence 127

for the given (s, t), we showed that whenever s −→ u then either there is a
finite run ρ from t such that length(ρ) > 0 and (su, ρ) ∈ R�, or (u, t) ∈ R and
(u, t) ∈ BI(R), hence (s, t) ∈ BI(R). ��

Next, we show that a symmetric stuttering bisimulation with induction is a
well-founded bisimulation.

Theorem 12. Let K = 〈S,AP,L,−→〉 be a Kripke structure, R be a symmetric
binary relation on S. If R is a stuttering bisimulation with induction, then R is a
well-founded bisimulation with some well-founded set (W,≺) and total function
rank.

Proof. Define rank : S × S × S → O as follows:

1. For s, t ∈ S, if (s, t) ∈ BI(R) then rank(s, s, t) = λ where λ is the least
ordinal such that (s, t) ∈ Bλ

I (R) (by Theorem 5 λ = κ + 1 for some κ ∈ O),
if (s, t) /∈ BI(R) then rank(s, s, t) = 0;

2. For u, s, t ∈ S with u, s being two different states, then rank(u, s, t) = l, where
l is the length of the shortest finite run ρ from t such that length(ρ) > 0 and
(su, ρ) ∈ R� if such a ρ exists, otherwise let l = 0 (in fact just let l be any
value will do in this case).

Suppose R is a stuttering bisimulation with induction and R is symmetric, we will
show that with (O, <) and rank defined above, R is a well-founded bisimulation.
Let (s, t) ∈ R. Since R is a stuttering bisimulation with induction, thus
(s, t) ∈ BI(R), and let rank(s, s, t) = λ = κ + 1, so (s, t) ∈ Bκ+1

I (R). First note
that in this case L(s) = L(t). Suppose s −→ u, since (s, t) ∈ Bκ+1

I (R), two of
the following will happen. Either there exists a finite run ρ from t such that
length(ρ) > 0 and (su, ρ) ∈ R�, or (u, t) ∈ R and (u, t) ∈ Bκ

I (R). In the latter
case, obviously rank(u, u, t) < λ, so condition (b) of Definition 8 is satisfied. In
the former case, according to the definition of rank(u, s, t), there is l > 0 and
rank(u, s, t) = l. We distinguish two subcases. The first subcase is that l = 1,
then let ρ = tv, and clearly t −→ v, (u, v) ∈ R, condition (a) of Definition 8 is
satisfied. The second subcase is that l > 1, then according to the definition of
rank(u, s, t) there is ρ = tvv1 . . . which is the shortest finite run from t such that
length(ρ) = l and (su, ρ) ∈ R�. With a detailed case analysis it is not difficult
to see that (s, v) ∈ R, and rank(u, s, v) ≤ l − 1 < rank(u, s, t), and condition
(c) of Definition 8 is satisfied. ��

Theorems 11 and 12 not only imply that well-founded bisimulation and (sym-
metric) stuttering bisimulation with induction both characterize the same rela-
tion, i.e. stuttering equivalence, but also claim that the two notions are essen-
tially the same thing. From the point of view of verification practice, each of
the two notions has its own advantages. As explained in Remark 1, stuttering
bisimulation with induction is presented as an alternating fixed-point of some
monotonic function on the complete lattice of binary relations, thus existing
efficient local correctness checking strategies can be applied to decide whether
some given pairs of states are stuttering equivalent. With given well-founded set
and function rank, the conditions of well-founded bisimulation is easy to verify.

128 X. Liu and W. Zhang

So a well-founded bisimulation R can be used as a proof that the pairs in the
relation are stuttering equivalent. In other words, stuttering bisimulation with
induction is more useful for equality checking, while well-founded bisimulation
is better suited for equality proving. In fact the two can be combined in such
a way that first using a fast local algorithm to obtain a relation R which is a
stuttering bisimulation with induction, and then using the construction in the
proof of Theorem 12 on the symmetric stuttering bisimulation R∪R−1 to obtain
a well-founded bisimulation as a proof for the equality of all pairs in R. In fact
the construction can be turned into an algorithm which, for a given symmetric
stuttering bisimulation with induction R on a Kripke structure with finite num-
ber of states, computes the function rank for the well-founded bisimulation. We
describe such an algorithm in the rest of this section.

To describe the algorithm, we need a theorem which says that often it is
sufficient to stay out of limit ordinals. The following lemma is needed for proving
the theorem.

Lemma 4. If κ < λ then Bκ
I (R) ⊆ Bλ

I (R).

The proof of the lemma is standard, and we omit it here.

Theorem 13. Let K = 〈S,AP,L,−→〉 be a Kripke structure, R be a binary
relation on S.

1. If −→ is finite branching, i.e. {s ∈ S | s0 −→ s} is a finite set for all s0 ∈ S,
then whenever (s, t) ∈ BI(R) there is a natural number n such that (s, t) ∈
Bn

I (R).
2. If S is finite with m states, then there exists n with 0 < n ≤ m2 such that

B0
I (R) ⊆ B1

I (R) . . . ⊆ Bn
I (R) is an increasing chain and BI(R) = Bn

I (R).

Proof. To prove 1, it is sufficient to prove by induction that in this case for all
λ ∈ O if (s, t) ∈ Bλ

I (R) then there is a natural number n such that (s, t) ∈ Bn
I (R).

If λ is a natural number, then the claim trivially holds. If λ is a limit ordinal,
by Definition 7 there is κ < λ such that (s, t) ∈ Bκ

I (R), then by the induction
hypothesis there is a natural number n such that (s, t) ∈ Bn

I (R). If λ = κ + 1,
by Definition 7 and the induction hypothesis the following hold:

1. whenever s −→ s′ then either there exists a finite run ρ from t such that
length(ρ) > 0 and (ss′, ρ) ∈ R�, or (s′, t) ∈ R and (s′, t) ∈ Bn

I (R) for some
natural number n;

2. whenever t −→ t′ then either there exists a finite run σ from s such that
length(σ) > 0 and (σ, tt′) ∈ R�, or (s, t′) ∈ R and (s, t′) ∈ Bn

I (R) for some
natural number n.

Now since −→ is finite branching, {s′ | s −→ s′} ∪ {t′ | t −→ t′} is a finite set,
we can choose the maximum among the finitely many n’s, and let it be m, then
by Lemma 4 the following hold

1. whenever s −→ s′ then either there exists a finite run ρ from t such that
length(ρ) > 0 and (ss′, ρ) ∈ R�, or (s′, t) ∈ R and (s′, t) ∈ Bm

I (R);

Characterization and Verification of Stuttering Equivalence 129

2. whenever t −→ t′ then either there exists a finite run σ from s such that
length(σ) > 0 and (σ, tt′) ∈ R�, or (s, t′) ∈ R and (s, t′) ∈ Bm

I (R).

So in this case (s, t) ∈ Bm+1(R).
In order to prove 2, note that when S has m elements, the size of the relations

in the increasing chain B0
I (R) ⊆ B1

I (R) . . . ⊆ Bn
I (R) . . . is bounded by m2. So

there exists n with 0 < n ≤ m2 such that Bn
I (R) = Bn+1

I (R). Then it is easy
to prove by induction that for all λ ∈ O, it holds that Bλ

I (R) ⊆ Bn
I (R). Then

BI(R) = Bn
I (R) follows easily. ��

By Theorem 13, we know that when the Kripke structure is finite branch-
ing, in constructing rank for the well-founded bisimulation in Theorem 12, we
can always use natural numbers as the well-founded set for the well-founded
bisimulation. And when the Kripke structure has only finite number of states,
we can always use a finite subset of natural numbers as the well-founded set for
the well-founded bisimulation, and moreover in this case there is n such that
BI(R) = Bn

I (R).
We assume a basic procedure FindRun which takes (u, s, t) as input where

(s, t) ∈ R and s −→ u, and find the shortest run ρ from t such that length(ρ) > 0
and (su, ρ) ∈ R�. It outputs the length of such a run if there exists one, or it
outputs 0. It is not difficult to see that this is similar to looking for the shortest
path in a graph, which can be implemented with time complexity polynomial to
the size of the state set.

Now, for a given symmetric stuttering bisimulation R, the algorithm con-
structs a well-founded bisimulation as follows.

First, according to Definition 7, we use FindRun to compute Bk
I (R) from

k = 0 until k = n where Bn
I (R) = Bn+1

I (R). It is not difficult to see that each
Bk

I (R) can be computed with time polynomial to the size of the state set. Thus
the overall time complexity for computing Bk

I (R) from k = 0 to k = n is also
polynomial to the size of the state set.

As the last step, we construct rank as follows:

1. for (u, s, t) with u, s being different states, (s, t) ∈ R and s −→ u, let
rank(u, s, t) = l where l is the output of FindRun(u, s, t);

2. for (s, s, t) with (s, t) ∈ R, let rank(s, s, t) = l where (s, t) ∈ Bl
I(R) and

(s, t) /∈ Bl−1
I (R);

3. for the rest of (u, s, t), let rank(u, s, t) = 0.

It is not difficult to see that the total time complexity of the algorithm is
polynomial to the size of the state set. According to the proof of Theorem 12,
R with rank is a well-founded bisimulation.

5 Related Works

The notion of stuttering bisimulation with induction is an adaptation of the
notion of inductive branching bisimulation introduced in [16], which is the study
of the labeled transition system version of divergence preserving stuttering equiv-
alence. The presentation of the theory part in Sects. 3 and 4 is slightly different

130 X. Liu and W. Zhang

from the presentation in [16]. In particular, the notion of ω-bisimulation is intro-
duced in place of the complete branching bisimulation. The new presentation is
simpler and more concise for stuttering equivalence due to the complete nature
of the transition relation in Kripke structures, i.e. for any state there always
exists some out-going transition. As an equivalence which has the exact dis-
tinguishing strength as the set of CTL*-X properties, stuttering equivalence is
certainly very important. However, it seems that it is still in need for a general
rigorous formulation. It is for this purpose that we propose ω-bisimulation as a
candidate for this role. From the theoretical development in this paper, it looks
fit for this role. The formulation in the original paper [3] is in the form of the
limit of a convergence sequence of equivalence relations, which is not easy to use
in proving theorems about it. Also it is assumed for finite state systems, which
makes it not general enough. In [11] the formulation of stuttering equivalence
relies on a non-trivial definition of a matching relation which only appears in the
appendix of the paper. The matching relation makes the formulation not easy
to handle, in particular it seems not easy to establish that the final relation is
indeed an equivalence (no proof has been provided in the paper).

The notion of well-founded bisimulation was introduced in [11] and studied
in [9] to characterize stuttering equivalence. Due to the lack of a clear theo-
retical foundation for stuttering equivalence, the characterization proofs in the
mentioned works left something to be desired. In [9], stuttering equivalence is
characterized by the so-called divergence sensitive stutter bisimulation, which
is based on the notion of R-divergence. This characterization is similar to the
kind of definition mentioned in Remark 2. Although the characterization proof
of well-founded bisimulation was provided in [9] in terms of divergence sensitive
stutter bisimulation, such characterization of stuttering equivalence itself needs
further justification. Theorems 11 and 12 and their proofs in this paper provide
a sound theoretical foundation for well-founded bisimulation. Another disadvan-
tage of divergence sensitive stutter bisimulation is, since it relies on equivalence
relations that satisfy certain conditions on infinite paths, it would need much
effort when it is used directly as a method for proving the equivalence of states.

In [13] branching bisimulation with explicit divergence is studied in detail,
which is the labeled transition system version of stuttering equivalence. Branch-
ing bisimulation with explicit divergence is defined similar to the kind of defini-
tion mentioned in Remark 2. In [13] the authors took serious efforts to complete
the needed justification for the definition. However the proofs there were quite
complicated due to the lack of good co-inductive properties of the definition.

In [15], a partition based efficient algorithm for divergence blind stuttering
equivalence was presented. Also a transformation between finite Kripke struc-
tures was given in [15] such that two states are divergence blind stuttering equiv-
alent in the transformed Kripke structure if and only if the corresponding states
in the original Kripke structure are stuttering equivalent. This implies that the
problem of checking stuttering equivalence can also be solved by their algorithm.
Compared to the local algorithm approach mentioned in Remark 1, the partition
based algorithm has better worst case time complexity due to the exploitation of

Characterization and Verification of Stuttering Equivalence 131

good properties of equivalence relation. However partition algorithms are inher-
ently global, which makes them unable to exploit early termination chances.

6 Conclusion

In this paper, we propose the notion of stuttering bisimulation with induction
to characterize stuttering equivalence. It is argued that, due to its fixed-point
style definition, stuttering bisimulation with induction is a good characteriza-
tion for stuttering equivalence in that there are efficient local algorithms for the
equality checking problem. We also use stuttering bisimulation with induction
to analyze the notion of well-founded bisimulation. It is shown that stuttering
bisimulation with induction and well-founded bisimulation are essentially the
same thing, and as a byproduct a method for constructing the ranking function
for well-founded bisimulation from a given stuttering bisimulation with induc-
tion is presented. Also a notion of ω-bisimulation is introduced to characterize
stuttering equivalence, which leads to smooth development of the theory.

As we pointed out in Sect. 4, stuttering bisimulation with induction and well-
founded induction are good for different things, the former is good for equality
checking and latter for equality proving. In this respect an interesting future work
is to combine them in a tool where a local equality decision procedure produces a
stuttering bisimulation with induction, which is then used to construct the corre-
sponding well-founded bisimulation. And the resulting well-founded bisimulation
can act as a proof of equality for the elements in the stuttering bisimulation with
induction.

References

1. Hennessy, M.C.B., Plotkin, G.D.: A term model for CCS. In: Dembiński, P. (ed.)
MFCS 1980. LNCS, vol. 88, pp. 261–274. Springer, Heidelberg (1980). https://doi.
org/10.1007/BFb0022510

2. Walker, D.J.: Bisimulation and divergence. Inf. Comput. 85, 212–241 (1990)
3. Browne, M.C., Clarke, E.M., Grümberg, O.: Characterizing finite Kripke structures

in propositional temporal logic. Theor. Comput. Sci. 59, 115–131 (1988)
4. Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about networks with many

identical finite state processes. Inf. Comput. 81(1), 13–31 (1989)
5. Glabbeek, R.J.: The linear time — branching time spectrum II. In: Best, E. (ed.)

CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-57208-2 6

6. de Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995)

7. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://
doi.org/10.1007/BFb0017309

8. Milner, R.: Communication and Concurrency. Prentice-Hall, New York (1989)
9. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge

(2008)

https://doi.org/10.1007/BFb0022510
https://doi.org/10.1007/BFb0022510
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309

132 X. Liu and W. Zhang

10. Vergauwen, B., Lewi, J.: Efficient local correctness checking for single and alter-
nating boolean equation systems. In: Abiteboul, S., Shamir, E. (eds.) ICALP 1994.
LNCS, vol. 820, pp. 304–315. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58201-0 77

11. Namjoshi, K.S.: A simple characterization of stuttering bisimulation. In: Ramesh,
S., Sivakumar, G. (eds.) FSTTCS 1997. LNCS, vol. 1346, pp. 284–296. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0058037

12. van Glabbeek, R.J., Weijland, P.: Branching time and abstraction in bisimulation
semantics. J. ACM 43(3), 555–600 (1996)

13. van Glabbeek, R.J., Luttik, B., Trcka, N.: Branching bisimilarity with explicit
divergence. Fundam. Inform. 93(4), 371–392 (2009)

14. Allen Emerson, E., Halpern, J.Y.: “Sometimes” and “Not Never” revisited: on
branching versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)

15. Groote, J.F., Vaandrager, F.: An efficient algorithm for branching bisimulation and
stuttering equivalence. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp.
626–638. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032063

16. Liu, X., Yu, T., Zhang, W.: Analyzing divergence in bisimulation semantics. In:
Proceedings of 44th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL2017), Paris (2017)

https://doi.org/10.1007/3-540-58201-0_77
https://doi.org/10.1007/3-540-58201-0_77
https://doi.org/10.1007/BFb0058037
https://doi.org/10.1007/BFb0032063

	Characterization and Verification of Stuttering Equivalence
	1 Introduction
	2 Stuttering Equivalence and -Bisimulation
	3 Stuttering Bisimulation with Induction
	4 Well-Founded Bisimulation
	5 Related Works
	6 Conclusion
	References

