
Linking Theories of Probabilistic
Programming

He Jifeng(B)

Shanghai Key Laboratory of Trustworthy Computing, East China
Normal University, Shanghai, China

jifeng@sei.ecnu.edu.cn

Abstract. Formal methods advocate the critical role played by the alge-
braic approach in specification and implementation of programs. Tradi-
tionally, a top-down approach (with denotational model as its origin)
links the algebra of programs with the denotational representation by
establishment of the soundness and completeness of the algebra against
the given model, while a bottom-up approach (a journey started from
operational model) introduces a variety of bisimulations to establish the
equivalence relation among programs. This paper follows up a new way
presented in [1] to handle probabilistic programming. Our approach takes
an algebra of probabilistic programs as its foundation, and then gener-
ates both denotational model and transition system, and explores the
consistency among three types of representations.

1 Introduction

Formal methods [4,5,9] advocate the critical role played by the algebra of pro-
grams in specification and implementation of programs [6,8]. Study leads to the
conclusion that both the top-down approach (with denotational model as its ori-
gin) [2,3,11] and the bottom-up approach (a journey started from operational
model) [10] can meet in the middle.

This paper proposes a new roadmap for linking theories of probabilistic pro-
gramming. Our new journey consists of the following steps:

Step 1: First we present an algebraic framework for a probabilistic programming
language, which provides a set of algebraic laws for probabilistic programs, and
introduces the concept of finite normal form. This paper then defines the refine-
ment relation �A, and demonstrates how to reduce finite programs into finite
normal form, and to transform an infinite program into an ascending chain of
finite normal forms.

Step 2: Within the given program algebra we discuss the algebraic properties
of the test operator T which composes test case tc and testing program P in

T (tc, P) =df (tc;P)

c© Springer Nature Switzerland AG 2018
C. Jones et al. (Eds.): Zhou-Festschrift, LNCS 11180, pp. 186–210, 2018.
https://doi.org/10.1007/978-3-030-01461-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01461-2_10&domain=pdf

Linking Theories of Probabilistic Programming 187

where tc is represented by a total constant assignment

x, y, .., z := a, b, .., c

Based on the algebra of test, this paper identifies a probabilistic program P as
a binary relation [P] which relates the test case with the final observation

[P] =df {(tc, obs) | T (tc, P) �A obs}

and selects the set inclusion as the refinement relation �rel

P �rel Q =df ([P] ⊇ [Q])

We establish the consistency of the denotational model against the algebraic
framework by proof of

�rel =�A

Step 3: We propose an algebraic definition of the consistency of step relation
of the transition system of programs such that any consistent transition system
(O, �O) satisfies

�O =�A

The paper is organised in the following way:

Section 2 is devoted to the algebraic framework of a probabilistic programming
language with a collection of algebraic laws. Section 3 shows the normal forms
of the finite and infinite probabilistic programs and proves that any probabilis-
tic program can be converted into normal form with algebraic laws. Section 4
presents a test-based model, where each program is identified as a binary rela-
tion between test case and visible observation recorded during the execution
of the test. It is shown that the refinement relation �rel in the test model is
equivalent to the algebraic refinement �A. Section 5 proposes a formal defini-
tion for the consistency of step relation of transition system against the algebra
of programs. Moreover, it provides a transition system for the probabilistic pro-
gramming language, and establishes its correctness. The paper ends with a short
summary.

2 Probabilistic Programming Language

This section is going to construct an algebraic framework for the probabilistic
programming language introduced in [12]

P ::= ⊥ | skip | var := exp
| P � bexp � P
| P ; P
| ⊕ {G}
| μX • P (X)

188 H. Jifeng

⊕(G) denotes the probabilistic choice with a list of weighted alternatives G as
its argument

G ::=<> | α(v) : P, G
where the expression α(v) maps any given value of program variable v to a non-
negative real number.

2.1 Probabilistic Choice

This section presents the algebraic properties of the probabilistic choice, which
plays a crucial role in construction of normal form for the probabilistic language,
and provides an elegant representation for finite observation. Later we are also
going to use these algebraic laws to show that any finite program can be con-
verted into a probabilistic choice.

The probabilistic choice is commutative.

(⊕-1) ⊕{β1 : P1, ..., βm : Pm} =A ⊕{βρ(1) : P1, ..., βρ(m) : Pm}

where ρ is an arbitrary permutation of the list < 1, ...,m >.

The alternative (1 − β) : ⊥ can be added to the probabilistic choice construct
where β =df Σiβi.

(⊕-2) ⊕{β1 : P1, ..., βm : Pm} =A ⊕{β1 : P1, ..., βk : Pk, (1 − β) : ⊥}

The probabilistic choice operator becomes void whenever it contains an alterna-
tive with the probability 1.

(⊕-3) ⊕{1 : Q} =A Q

Corollary. ⊕{} =A ⊥

Proof. From ⊕-2 and ⊕-3.

The next law shows how to eliminate the nested choices.

(⊕-4) Let P = ⊕{β1 : P1, ..., βm : Pm}, then

⊕{α : P, G}
=A ⊕ {(α · β1) : P1, ..., (α · βk) : Pk, G}

The probabilistic choice operator distributes over sequential composition.

Linking Theories of Probabilistic Programming 189

(⊕-5) ⊕{β1 : P1, ..., βm : Pm} ; Q
=A ⊕ {β1 : (P1;Q), ..., βk : (Pk;Q)}

Assignment distributes through the probabilistic choice.

(⊕-6) (v := e) ; ⊕{β1 : P1, ..., βm : Pm}

=A ⊕ {β1[e/v] : (v := e;P1), ..., βk[e/v] : (v := e;Pk)}

Two alternatives with the same guarded program can be merged.

(⊕-7) ⊕{α : Q, β : Q, G} =A ⊕ {(α + β) : Q, G}

Any alternative with zero probability can be removed.

(⊕-8) ⊕{0 : Q, G} =A ⊕ {G}

2.2 Conditional Choice

Conditional choice can be seen as a special form of probabilistic choice.

cond-1 (P � b � Q) =A ⊕ {(1 � b � 0) : P, (0 � b � 1) : Q}

From Law cond-1 and the laws of probabilistic choice presented in the previous
section, we can derive the following set of well-known properties of conditional
choice:

Theorem 2.1.
(1) P � b � P =A P
(2) P � b � Q =A Q � ¬b � P
(3) (P � b � Q) � c � R =A P � b ∧ c � (Q � c � R)
(4) P � b � (Q � c � R) =A (P � b � Q) � c � (P � b � R)
(5) P � true � Q =A P =A Q � false � P
(6) (P � b � Q);R =A (P ;R) � b � (Q;R)
(7) (v := e); (P � b � Q) =A ((v := e);P) � b[e/v] � ((v := e);Q)

Proof.
For any finite program P :
(1) P � b � P {cond − 1}
=A ⊕{(1 � b � 0) : P, (0 � b � 1) : P} {⊕ − 7}
=A ⊕{1 : P} {⊕ − 3}
=A P

(2) P � b � Q {cond − 1}
=A ⊕{(1 � b � 0) : P, (0 � b � 1) : Q} {⊕ − 1}
=A ⊕{(1 � ¬b � 0) : Q, (0 � ¬b � 1) : P} {cond − 1}
=A Q � ¬b � P

190 H. Jifeng

(3) (P � b � Q) � c � R {cond − 1}

=A ⊕
{
(1 � c � 0) : ⊕{(1 � b � 0) : P, (0 � b � 1) : Q),

(0 � c � 1) : R

}
{⊕ − 4}

=A ⊕

⎧⎨
⎩

(1 � b ∧ c � 0) : P,

Let(1 � ¬b ∧ c � 0) : Q,

(1 � ¬c � 0) : R

⎫⎬
⎭ {⊕ − 4}

=A ⊕
{
(1 � b ∧ c � 0) : P,

(0 � b ∧ c � 1) : ⊕{(1 � c � 0) : Q, (0 � c � 1) : R}

}
{cond − 1}

=A P � b ∧ c � (Q � c � R)

(4) P � b � (Q � c � R) {cond − 1}

=A ⊕
{
(1 � b � 0) : P,

(0 � b � 1) : ⊕{(1 � c � 0) : Q, (0 � c � 1) : R}

}
{⊕ − 4}

=A ⊕

⎧⎨
⎩

(1 � b � 0) : P,

(1 � ¬b ∧ c � 0) : Q,

(1 � ¬b ∧ ¬c � 0) : R

⎫⎬
⎭ {⊕ − 7}

=A ⊕

⎧⎪⎪⎨
⎪⎪⎩

(1 � b ∧ c � 0) : P,

(1 � b ∧ ¬c � 0) : P,

(1 � ¬b ∧ c � 0) : Q,

(1 � ¬b ∧ ¬c � 0) : R

⎫⎪⎪⎬
⎪⎪⎭

{⊕ − 1 and cond − 1}

=A ⊕
{
(1 � c � 0) : (P � b � Q),

(0 � ¬c � 1) : (P � b � R)

}
{cond − 1}

=A (P � b � Q) � c � (P � b � R)

(5) P � true � Q {cond − 1}
=A ⊕{(1 � true � 0) : P, (1 � true � 1) : Q} {⊕ − 8}
=A ⊕{1 : P} {⊕ − 3}
=A P {⊕ − 1, 3 and 8}
=A ⊕{0 : Q, 1 : P} {calculation}
=A ⊕{(1 � false � 0) : Q, (0 � false � 1) : P} {cond − 1}
=A Q � false � P

(6) From cond-1 and ⊕-5.

(7) From cond-1 and ⊕-6.

The probabilistic choice operator distributes over conditional.

Theorem 2.2.
Let P = ⊕{β1 : P1, ..., βm : Pm}, then
(P � b � Q) =A ⊕ {β1 : (P1 � b � Q), ..., βk : (Pk � b � Q)}
provided that Σiβi = 1

Proof.
P � b � Q {cond − 1}

=A ⊕{(1 � b � 0) : P, (0 � b � 1);Q} {⊕ − 4}

=A ⊕

⎧
⎪⎪⎨

⎪⎪⎩

(β1 � b � 0) : P1,
....,
(βm � b � 0) : Pm,
(0 � b � 1) : Q

⎫
⎪⎪⎬

⎪⎪⎭

{(⊕ − 7) and assumption:σiβi = 1}

Linking Theories of Probabilistic Programming 191

=A ⊕

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(β1 � b � 0) : P1,
....,
(βm � b � 0) : Pm,
(0 � ¬b � β1) : Q,
.....,
(0 � b � βm) : Q

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

{cond − 1}

=A ⊕

⎧
⎨

⎩

β1 : (P1 � b � Q),
....,
βm : (Pm � b � Q)

⎫
⎬

⎭

2.3 Sequential Composition

Sequential composition in the probabilistic programming language inherits the
algebraic laws of its counterpart in the conventional programming language. It
is associative, and has ⊥ as its zero, and skip as its unit.
seq-1. P ; (Q;R) =A (P ;Q);R
seq-2. ⊥;Q =A ⊥ =A P ;⊥
seq-3. skip;Q =A Q =A Q; skip

2.4 Total Assignment

An assignment is a total one if all the variables of the program appear on the
left hand side in some standard order

x, y, .., z := e, f, ..., g

A non-total assignment x := e can be transformed to a total assignment by
addition of identity assignments

asgn-1. (x := e) =A (x, y, .., z := e, y, ..., z)

For the notational simplicity we will use v to stand for the list x, y, .., z of
program variables and v := e for a total assignment.
The list of variables may be sorted into any desired order, provided that the
right hand side is subject tote same permutation.

asgn-2. (x, y, .. := e, f, ..) =A (y, x, .. := f, e, ..)

The following law enables us to eliminate sequential composition between total
assignments

asgn-3. (v := e ; v := f(v)) =A (v := f(e))

where the expression f(e) is easily calculated by substituting the expression in
the list e for the corresponding variables in the list v.

192 H. Jifeng

The following law deals with the conditional of total assignments

asgn-4. ((v := e) � b � (v := f)) =A (v := (e � b � f))

where the conditional expression e � b � f is defined mathematically:

e � b � f

{
=df e if b
=df f if ¬b

Finally, we need a law that determines when two total assignments are equal.

asgn-5. (v := f) =A (v := g) iff ∀v • f(v) = g(v)

3 Normal Form Reduction

This section is devoted to the concept of normal form. It will deal with the
following issues:

– Transform a finite program into a finite normal form based on the algebraic
laws of the previous section.

– Introduce the least upper bound operator for an ascending chain of finite
normal forms.

– Establish the continuity of programming combinators.
– Verify the continuity of the recursion operator.
– Convert an infinite program into an ascending chain of finite normal forms.

First we introduce the concept of finite normal form.

3.1 Finite Normal Form

Definition 3.1 (finite normal form).
A finite normal form is a probabilistic choice with total assignments as its alter-
natives:

⊕{β1 : (v := e1), ... , βk : (v := ek)}

Theorem 3.2. Let S1 = ⊕ {β1 : (v := e1), .., βm : (v := em)}
and S2 = ⊕ {α1 : (v := f1), .., αn : (v := fn)}.
Then

(1) S1;S2 =A ⊕

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(β1 · α1) : (v := f1(e1)),
...,
(β1 · αn) : (v := fn(e1)),
...
(βm · α1) : (v := f1(em)),
...,
(βm · αn) : (v := fn(em))

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

Linking Theories of Probabilistic Programming 193

(2) S1 � b � S2 =A ⊕

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(β1 � b � 0) : (v := e1),
......,
(βm � b � 0) : (v := em),
(α1 � ¬b � 0) : (v := f1),
......,
(αn � ¬b � 0) : (v := fn)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Proof.
(1) S1;S2 {⊕ − 5}
=A ⊕{β1 : (v := e1;S2), .., βm : (v := em;S2)} {⊕ − 6}

=A ⊕

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 : ⊕

⎧
⎨

⎩

α1[e1/v] : (v := e1; v := f1),
...,
αn[e1/v] : (v := e1; v := fn)

⎫
⎬

⎭
,

......,

βm : ⊕

⎧
⎨

⎩

α1[em/v] : (v := em; v := f1),
...,
αn[em/v] : (v := em; v := fn)

⎫
⎬

⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

{asgn − 3}

=A ⊕

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

β1 : ⊕
{

α1[e1/v] : (v := f1(e1)),
..., αn[e1/v] : (v := fn(e1))

}

,

......,

βm : ⊕

⎧
⎨

⎩

α1[em/v] : (v := f1(em)),
...,
αn[em/v] : (v := fn(em))

⎫
⎬

⎭

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

{⊕ − 4}

=A ⊕

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(β1 · α1) : (v := f1(e1)),
...,
(β1 · αn) : (v := fn(e1)),
...
(βm · α1) : (v := f1(em)),
...,
(βm · αn) : (v := fn(em))

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2) S1 � b � S2 {cond − 1}
=A ⊕{(1 � b � 0) : S1, (1 � ¬b � 0) : S2} {⊕ − 4}

=A ⊕

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(β1 � b � 0) : (v := e1),
......,
(βm � b � 0) : (v := em),
(α1 � ¬b � 0) : (v := f1),
......,
(αn � ¬b � 0) : (v := fn)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Theorem 3.3. Assume that Si = ⊕ {αi, 1 : (v := ei, 1), ..., αi, ki
: (v := ei, ki

)}
for 1 ≤ i ≤ n. Then

194 H. Jifeng

⊕{β1 : S1, ..., βn : Sn} =A ⊕

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(β1 · α1,1) : (v := e1, 1),
......,
(β1 · α1, k1) : (v := e1, k1),
......,
(βn · αn, 1) : (v := en, 1),
......,
(βn · αn, kn

) : (v := en, kn
)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

Proof: Similar to Theorem 3.2(1).

Theorem 3.4 (finite normal reduction).
Any finite program can be converted into a finite normal form.

Proof.
Basic case:
(1) From ⊕-3, we have (v := e) =A ⊕ {1 : (v := e)}
(2) From Corollary of ⊕-3, it follows that ⊥ =A ⊕{}

induction: The conclusion follows from Theorems 3.2 and 3.3.
The following law permits comparison of finite normal forms
norm-1. Let S1 = ⊕{β1(v) : (v := e1(v)), .., βm(v) : (v := em(v))}
and S2 = ⊕{α1(v) : (v := f1(v)), ..., αn(v) : (v := fn(v))}.
Then S1 �A S2 iff
∀c, d • (Σi{βi(c) | ei(c) = d} ≤ Σj{αj(c) | fj(c) = d})

Theorem 3.5. S1 �A S2 iff for all constants c

((v := c);S1) �A ((v := c);S2)

Proof. From ⊕-6 and norm-1.

Corollary. Assume that

T1 = ⊕{β1 : (v := c1), .., βn : (v := cm)}
T2 = ⊕{α1 : (v := d1), .., αn : (v := dn)}

where all βi and αj are constants, and furthermore both {c1, .., cm} and
{d1, .., dn} are lists of distinct constants.
Then T1 �A T2 iff there exists an injective mapping φ from {1, ..,m} to {1, .., n}
such that

∀i • (ci = dφ(i)) ∧ (βi ≤ αφ(i))

The next theorem shows that all programming combinators F satisfy

F (S1) �A F (S2)

whenever both S1 and S2 are finite normal forms, and S1 �A S2

Linking Theories of Probabilistic Programming 195

Theorem 3.6.
If S1 and S2 are finite normal forms satisfying S1 �A S2, then
(1) (S1 � b � R) �A (S2 � b � R)
provided that R is a finite program.
(2) ⊕{γ : S1, G} �A ⊕{γ : S2, G}
where G = ξ1 : R1, .., ξn : Rn and all Ri are finite.
(3) (S1;R) �A (S2;R) provided that R is a finite program.
(4) (R;S1) �A (R;S2) provided that R is a finite program.

Proof. From ⊕-6 we can transform (v := c);S1 and (v := c);S2 into the follow-
ing form

(v := c);S1 =A ⊕{β1 : (v := c1), .., βm : (v := cm)}
(v := c);S2 =A ⊕{α1 : (v := d1), ..., αn : (v := dn)}

where all βi and αj are constants, and furthermore both {c1, .., cm} and
{d1, .., dn} are lists of distinct constants. From Corollary of Theorem3.5 it follows
that there exists an injective mapping φ from {1, ..,m} to {1, .., n} satisfying

∀i • (ci = dφ(i)) ∧ (βi ≤ αφ(i))

Proof of (1).

Case 1:b[c/v] = true
(1) (v := c); (S1 � b � R) {Theorem 2.1(5)}
≡A (v := c);S1 {Theorem 3.5}
�A (v := c);S2 {Theorem 2.1(5)}
=A (v := c); (S2 � b � R)

Case 2: b[c/v] = false. From Theorem 2.1 it follows that

(v := c); (S1 � b � R) =A (v := c);R =A (v := c); (S2 � b � R)

The conclusion follows from Theorem 3.5.

Proof of (2). From Theorem 3.4 it follows that all Ri can be transformed into
finite normal forms:

Ri =A ⊕ {ρi, 1(v) : (v := fi, 1), ..., ρi, ki
(v) : (v := fi, ki

)}

for i ∈ {1, .., n}.
From Theorem 3.3 it follows that
(v := c);⊕{γ : S1, G} =A

⊕

⎧
⎪⎪⎨

⎪⎪⎩

(γ(c) · β1) : (v := c1),, (γ(c) · βm) : (v := cm),
(ξ1(c) · ρ1, 1(c)) : (v := f1, 1(c)),, (ξ1(c) · ρ1, k1(c)) : (v := f1, k1(c)),
.....,
(ξn(c) · ρn, 1(c)) : (v := fn, 1(c)),, (ξn(c) · ρn, kn

(c)) : (v := fn, kn
(c))

⎫
⎪⎪⎬

⎪⎪⎭

(v := c);⊕{γ : S2, G} =A

196 H. Jifeng

⊕

⎧
⎪⎪⎨

⎪⎪⎩

(γ(c) · α1) : (v := d1),, (γ(c) · αn) : (v := dn),
(ξ1(c)ρ1, 1(c)) : (v := f1, 1(c)),, (ξ1(c) · ρ1, k1(c)) : (v := f1, k1(c)),
.....,
(ξn(c) · ρn, 1(c)) : (v := fn, 1(c)),, (ξn(c) · ρn, kn

(c)) : (v := fn, kn
(c))

⎫
⎪⎪⎬

⎪⎪⎭

Then for any constant r

Σ

(
{(γ(c) · βi) | (ci = r)}
∪ {(ξi(c) · ρi, j(c)) | (fi, j = r)}

)

{∀i • (ci = dφ(i))}

= Σ

(
{(γ(c) · βi) | (dφ(i) = r)}
∪ {(ξi(c) · ρi, j(c)) | (fi, j = r}

)

{∀i • (βi ≤ αφ(i))}

≤ Σ

(
{(γ(c) · αφ(i)) | (dφ(i) = r)}
∪ {(ξi(c) · ρi, j(c)) | (fi, j = r)}

)

{(ΣX) ≤ (Σ (X ∪ Y))}

≤ Σ

(
{(γ(c) · αl) | (dl = r)}
∪ {(ξi(c) · ρi, j(c)) | (fi, j = r)}

)

which leads to the conclusion

(v := c);⊕{γ : S1, G} �A (v := c);⊕{γ : S2, G}

Proof of (3). From Theorem 3.4 we can convert R into a finite normal form

R =A ⊕ {ρ1(v) : (v := f1), ..., ρn(v) : (v := fn)}

From ⊕-5 and 6 we obtain
(v := c);S1;R =A

⊕

⎧
⎨

⎩

β1 · ρ1(c1) : (v := f1(c1)),, β1 · ρn(c1) : (v := fn(c1)),
.....,
βm · ρ1(cm) : (v := f1(cm)),, βm · ρn(cm) : (v := fn(cm))

⎫
⎬

⎭

(v := c);S2;R =A

⊕

⎧
⎨

⎩

(α1 · ρ1(d1)) : (v := f1(d1)),, (α1 · ρn(d1)) : (v := fn(d1)),
.....,
(αn · ρ1(dn)) : (v := f1(dn)),, (αn · ρn(dn)) : (v := fn(dn))

⎫
⎬

⎭

Then for any constant r we have
Σi, j{βi · ρj(ci) | fj(ci) = r} {∀i • (ci = dφ(i))}

= Σi, j{βi · ρj(dφ(i)) | fj(dφ(i)) = r} {∀i • (βi ≤ αφ(i))}
≤ Σi, j{αφ(i) · ρj(dφ(i)) | fj(dφ(i)) = r} {ΣX ≤ Σ(X ∪ Y)}
≤ Σi, j{αi · ρj(di) | fj(di) = r}

which leads to the conclusion that

(v := c);S1;R �A (v := c);S2;R

3.2 Infinite Normal Form

Definition 3.2 (infinite normal form).
An infinite normal form is represented by an infinite sequence of finite normal
forms

S = {Si | i ∈ Nat}
where each Si+1 is a more accurate description than its predecessor

(Si+1 �A Si) for all i ∈ Nat

Linking Theories of Probabilistic Programming 197

This is called ascending chain condition. It is this type of chain that will be taken
as the normal form for programs that contains recursion. The exact behaviour
of the normal form is captured by the least upper bound of the whole sequence,
written ⊔

S

The least upper bound operator is characterised by two laws:

norm-2.
⊔

S �A Q iff ∀i • (Si �A Q)
norm-3. If P is a finite normal form, then P �A

⊔
T iff

∀c, ∃j • ((v := c);P) �A ((v := c);Tj)

The following theorem states that
⊔

S is actually the least upper bound of the
ascending chain with respect to the refinement order �A.

Theorem 3.7.
(1) Si �A

⊔
S for all i ∈ Nat.

(2) If Si �A Q for all i ∈ Nat then
⊔

S �A Q

Proof. (1) From norm-3.
(2) From norm-2.

3.3 Continuity

This section deals with the continuity of programming combinators (including
recursion) before we show how to transform a program into an ascending chain
of finite normal form.

Definition 3.3 (continuity).
An operator is continuous if it distributes through least upper bound of descend-
ing chains.

The following laws explore the continuity of finite programming combinators.

norm-4. (
⊔

S) � b � P =A

⊔
i(Si � b � P)

norm-5. (
⊔

S);P =A

⊔
i(Si;P)

norm-6. P ; (
⊔

S) =A

⊔
i(P ;Si)

provided that P is a finite normal form.
norm-7. ⊕{α : (

⊔
S), G} =A

⊔
i ⊕{α : Si, G}

The next concern is how to eliminate the nested least upper bound operators.
norm-8.

⊔
k(

⊔
l Sk, l) =A

⊔
i Si, i

provided that (Sk, i+1 �A Sk, i) and (Si+1, l �A Si, l) for all i, k and l.

Law norm-8 lays down the foundation for computation of normal forms by
eliminating programming operators.

198 H. Jifeng

Theorem 3.8 (Continuity of finite programming combinators).
(1) (

⊔
S) � b � (

⊔
T) =df

⊔
i(Si � b � Ti)

(2) (
⊔

S) ; (
⊔

T) =df

⊔
i(Si ; Ti)

(3) ⊕{α : (
⊔

S), .., β : (
⊔

T)} =df

⊔
i ⊕{α : Si, ..., β : Ti)

Proof.
(2) (

⊔
S); (

⊔
T) {norm − 5}

=A

⊔
i(Si;

⊔
T) {norm − 6}

=A

⊔
i

⊔
j(Si;Tj) {norm − 8}

=A

⊔
i(Si;Ti)

The continuity theorem ensures that ascending chains constitute a valid normal
form for all the combinators of our probabilistic language, and the stage is set
for treatment of recursion.

3.4 Recursion

Consider first an innermost recursive program

μX • P (X)

where P (X) contains X as its only free identifier. Because X is certainly not in
normal form, it is impossible to express P (X) in normal form. However, all other
components of P (X) are expressible in finite normal form, and all its combina-
tors permit reduction to finite normal form. So if X were replaced by ⊥, P (⊥)
can be reduced to finite normal form, and so on P (⊥), P 2(⊥),.., Furthermore
from Theorem 3.6 it follows that P is monotonic, this constitutes an ascending
chain of finite normal forms.

rec-1. μX • P (X) =A

⊔
n Pn(⊥) provided that P is continuous.

where P 0(X) =df ⊥ and Pn+1(X) =df P (Pn(⊥)).
Finally we are going to show that the μ operator is also continuous.

Theorem 3.9 (Continuity of the recursion operator).
If Si(X) contains X as its only free recursive identifier for all i,
and that all Si are continuous and they form an ascending chain for all finite
normal forms X:

Si+1(X) �A Si(X) for all i ∈ Nat

then μX •
⊔

i Si(X) =A

⊔
i μX • Si(X)

Proof. Let P (X) =df

⊔
i Si(X). By induction we are going to establish for all

n ∈ Nat
Pn(⊥) =A

⊔

i

Sn
i (⊥) (∗)

Base case: n = 0

P 0(⊥) =A ⊥ =A

⊔

i

⊥ =A

⊔

i

S0
i (⊥)

Linking Theories of Probabilistic Programming 199

Induction:
Pn+1(⊥) {Def of Pn+1}

=A

⊔
i Si(Pn(⊥)) {induction hypothesis}

=A

⊔
i Si(

⊔
j Sn

j (⊥)) {Si is continuous}
=A

⊔
i

⊔
j Si(Sn

j (⊥)) {norm − 8}
=A

⊔
i Si(Sn

i (⊥)) {Def of Sn+1
i }

=A

⊔
i Sn+1

i (⊥)
which leads to the conclusion:

μX • P (X) {rec − 1}
=A

⊔
n Pn(⊥) {Conclusion (∗)}

=A

⊔
n(

⊔
i Sn

i (⊥)) {norm − 8}
=A

⊔
i(

⊔
n Sn

i (⊥)) {rec − 1}
=A

⊔
i μX • Si(X)

Now we reach the stage to eliminate the recursion operator.

Theorem 3.10.
Any recursive program μX • F (X) can be converted into the least upper

bound of an ascending chain.

Proof.
μX • F (X, μY.G1(Y), ..., μY • Gm(Y)) {rec − 1}

=A μX • F (X,
⊔

n Gn(⊥), ..,
⊔

n Gn
m(⊥)) {Theorem 3.8}

=A μX •
⊔

n(F (X, Gn(⊥), .., Gn
m(⊥))) {Theorem 3.9}

=A

⊔
n μX • F (X, Gn, .., Gn

m(⊥))
{

rec − 1 and let
Fn =df F (X, Gn(⊥), .., Gn

m(⊥))

}

=A

⊔
n

⊔
m Fm

n (⊥) {norm − 8}
=A

⊔
n Fn

n (⊥)

Theorem 3.11.
(1) If P �A Q, then
(a) (P � b � R) �A (Q � b � R)
(b) (P ;R) �A (Q;R)
(c) ⊕{γ : P, ξ1 : U1, ..., ξl : Ul} �A ⊕{γ : Q, ξl : Ul}
(d) (R;P) �A (R;Q)
(2) If P (S) �A Q(S) for any finite normal form S, then

μX • P (X) �A μX • Q(X)

Proof: From Theorems 3.4 and 3.10 we can transform P , Q and R into descend-
ing chain of finite normal forms:

P =A

⊔

i

Pi, Q =A

⊔

j

Qj R =A

⊔

k

Rk

From Definition 3.2 it follows that for any constant c there exists a mapping ψc

satisfying ∀i • (i ≤ ψc(i)), and

∀i • ((v := c);Pi) �A ((v := c);Qψc(i)) (∗)

200 H. Jifeng

Proof of 1.(a): From (∗) and Theorem 3.6(1) we reach the conclusion

∀i • ((v := c); (Pi � b � Ri)) �A ((v := c); (Qψc(i) � b � Rψc(i)))

which implies
(P � b � R) {Theorem 3.8}

=A

⊔
i(Pi � b � Ri) {norm 2 and 3}

�A

⊔
j(Qj � b � Rj) {Theorem 3.8}

=A (Q � b � R)

Proof of 1.(b): From (∗) and Theorem 3.6(3)(4) we reach the conclusion

∀i • ((v := c); (Pi;Ri)) �A ((v := c); (Qψc(i);Rψc(i)))

which implies
(P ;R) {Theorem 3.8}

=A

⊔
i(Pi;Ri) {norm 2 and 3}

�A

⊔
j(Qj ;Rj) {Theorem 3.8}

=A (Q;R)

Proof of 1.(c): From Theorems 3.4 and 3.10 there exists a family {{Ui, n n ∈
Nat} | 1 ≤ i ≤ l} of ascending chains such that for all i, Ui =A

⊔
j Ui, j . Then

we have

(v := c);⊕

⎧
⎪⎪⎨

⎪⎪⎩

γ : Pi,
ξ1 : U1,i,
..,
ξl : Ul, i

⎫
⎪⎪⎬

⎪⎪⎭

{⊕ − 6}

=A ⊕

⎧
⎪⎪⎨

⎪⎪⎩

γ(c) : ((v := c);Pi)),
ξ1(c) : ((v := c);U1, i),
...,
ξl(c) : ((v := c);Ul, i)

⎫
⎪⎪⎬

⎪⎪⎭

{Theorem 3.6}

�A ⊕

⎧
⎪⎪⎨

⎪⎪⎩

γ(c) : ((v := c);Qψc(i)),

ξ1(c) : ((v := c);U1, i),
...,
ξl(c) : ((v := c);Ul, i)

⎫
⎪⎪⎬

⎪⎪⎭

{(i ≤ ψc(i)) =⇒ ∀j • (Uj, i �A Uj, ψc(i)}

�A ⊕

⎧
⎪⎪⎨

⎪⎪⎩

γ(c) : ((v := c);Qψc(i)),

ξ1(c) : ((v := c);U1, ψc(i)),

...,
ξl(c) : ((v := c);Ul, ψc(i))

⎫
⎪⎪⎬

⎪⎪⎭

{⊕ − 6}

=A (v := c);⊕

⎧
⎪⎪⎨

⎪⎪⎩

γ : Qψc(i),

ξ1 : U1,ψc(i),

...,
ξl : Ul, ψc(i)

⎫
⎪⎪⎬

⎪⎪⎭

which leads to the conclusion.

Proof of 1.(d): Assume that

Ri =A ⊕{ξi, 1 : (v := ei, 1), ..., ξi, ni
: (v := ei, ni

: (v := ei, ni
)}

Linking Theories of Probabilistic Programming 201

Define Φc(i) =df max(ψei, 1(c)(i), ..., ψei, ni
(c)(i)). Then we have

(v := c);Ri;Pi {⊕ − 5 and 6}

=A ⊕

⎧⎨
⎩

xi, 1(c) : (v := ei, 1(c));Pi),

....,

xi, ni : (v := ei, ni ;Pi)

⎫⎬
⎭ {Conclusion 1(c)}

�A ⊕

⎧⎪⎨
⎪⎩

xi, 1(c) : (v := ei, 1(c));Qψei, 1(c)(i)
,

....,

xi, ni : (v := ei, ni ;Qψei, ni
(c)(i),

⎫⎪⎬
⎪⎭ {Def of Φ and Conclusion 1(c)}

�A ⊕

⎧⎨
⎩

xi, 1(c) : (v := ei, 1(c));QΦc(i),

....,

xi, ni : (v := ei, ni ;QΦc(i),

⎫⎬
⎭ {⊕ − 6}

=A (v := c);Ri;QΦc(i) {i ≤ Φc(i)}
�A (v := c);RΦc(i);QΦc(i)

which leads to the conclusion.

4 Testing Programs

An operational approach usually defines the relationship between a program and
its possible execution by machine. In an abstract way, a computation consists of
a sequence of individual steps with the following features:

– each step takes the machine from one state to a closely similar state;
– each step is drawn from a very limited repertoire.

In a stored program computer, the machine states are represented as pairs

(s, P)

where
(1) s is a text, defining the data state as an assignment of constant to all variables
of the alphabet

x, y, ..., z := a, b, ..., c

(2) P is a program text, representing the rest of the program that remains to be
executed. When this becomes the empty text ε, there is no more program to be
executed. The machine state

(t, ε)

is the last state of any execution sequence that contains it, and t presents the
final value of the variables in the end of execution.
The following lemma indicates that data states are the best programs.

Lemma 4.1.
(s �A P) implies (s =A P).

Definition 4.1 (Probabilistic state).
Let Si =,⊕{ξi, 1 : (v := ci, 1), .. ξi, mi

: (v := ci, mi
)} be a finite normal form for

all i ∈ Nat in which all ξi, j and ci, j are constants,

202 H. Jifeng

and ci, l, �= ci, m for all l �= m.
If Si �A Si+1 for all i ∈ Nat, then

⊔

i

Si

is called a probabilistic state.

The execution of program (s;P) can be seen as a test on P with the test case s.
The result of such a testing gives rise to a set of possible outcomes. We are then
able to compare the behaviours of two programs based on testing.
Formally, the test operator for our probabilistic programming language is defined
by

T (s, P) =df (s;P)

When ⊥ is taken as the test case, we obtain

T (⊥, P) =A ⊥

Execution of a test will deliver a probabilistic state.

Theorem 4.1. For any test T (s, P), there exists a probabilistic state t such
that

T (s, P) =A t

Proof. From Theorem 3.4 it follows that any finite program P can be converted
into a finite normal form:

P =A ⊕{β1 : (v := e1), ..., βm : (v := em)}

The conclusion is derived from ⊕ − 6.
For any program P there exists an ascending chain S = {Si | i ∈ Nat} of finite
normal form such that

P =A

⊔
S

The conclusion follows from norm − 6.

Corollary.
P �A Q iff for all test case s

T (s, P) �A T (s, Q)

Definition 4.2.
A program P can be identified as a binary relation [P] between test case s and
a final probabilistic data state t it may enter in the end of testing

[P] =df {(s, t) | T (s, P) �A t}

As usual we define the refinement relation �rel on the relational model by the
set inclusion

P �rel Q =df ([P] ⊇ [Q])

Linking Theories of Probabilistic Programming 203

Theorem 4.2.
�rel =�A

Proof.
P �A Q {Corollary of Theorem 4.1}

≡ ∀s • T (s, P) �A T (s, Q) {Theorem 4.1}
≡ ∀s, t • (T (s, Q) �A t) =⇒ (T (s, P) �A t) {Definition 4.2}
≡ [Q] ⊆ [P] {Definition of �rel}
≡ P �rel Q

Theorem 4.3.
(1) [P � b � Q](v := c) = [P](v := c) � b[c/v] � [Q](v := c)

(2) [⊕{β1 : P1, .., βm : Pm}](v := c) =
{

⊕{β1[c/v] : t1, .., βm[c/v] : tm} |
∀i • ti ∈ [Pi](v := c)

}

(3) [P ;Q] = [P] ◦ [Q] ↑
where [Q] ↑ is defined inductively:

[Q] ↑ (v := c) =df [Q](v := c)

[Q] ↑ (⊕{ρ1 : (v := c1), .., ρm : (v := cm)}) =df

{
⊕{ρ1 : t1, .., ρm : tm} |
∀i • ti ∈ [Q] ↑ (v := ci)

}

[Q] ↑ (
⊔

i

ti) =df {
⊔

i

ui | ∀i • ui ∈ [Q] ↑ (ti)}

(4) [μX • P (X)] =
⋂

n[Pn(⊥)]

Proof of (3)
(s, t) ∈ [P ;Q] {Definition 2.1}

≡ T (s, (P ;Q)) �A t {Theorem 4.1}
≡ ∃u • T (s, P) =A u ∧ (u;Q) �A t {Def of [Q] ↑}
≡ ∃u • T (s, P) =A u ∧ (u, t) ∈ [Q] ↑ {Theorem 3.11}
≡ ∃u • (T (s, P) �A u) ∧ (u, t) ∈ [Q] ↑ {Definition 4.2}
≡ ∃u • ((s, u) ∈ [P] ∧ (u, t) ∈ [Q] ↑) {Def of relational composition}
≡ (s, t) ∈ ([P] ◦ [Q] ↑)

5 Operational Approach

This section provides an operational semantics for our probabilistic programming
language. We will introduce the concept of the consistency of an operational
framework with respect to the algebra of programs, and present a transition sys-
tem for the probabilistic language. This section also explores the link between
the consistent transition system with the normal form representation of proba-
bilistic programs.
There are two types of transitions for our language
(1) Transition (s, P) → (t, Q) means P transfers to Q with the data state s
replaced by t.
We define the concept of divergence, being a machine state that can lead to an
infinite execution

divergence(s, P) =df ∀n∃t, Q • ((s, P) →n (t, Q))

204 H. Jifeng

where →0 =df id, and →n+1 =df (→ ;→n).
(2) Transition (s, P) r→ (s, Q) (where 0 < r ≤ 1 means Q is chosen by P to be
executed with the probability r, whereas the data state remains unchanged.
We examine the concept of finitary, being a machine state that can only engage
in finite number of probabilistic choices

finitary(s, P) =df ∃n∀t,Q, r,m •
(

(s, P) r→m (t, Q) ∧ m > n
=⇒ divergence(t, Q)

)

where r→1=df
r→

and r→n+1=df (→ ; r→n) ∪ {(r1→; r2→n) | r1 · r2 = r}
and r→∗=df

⋃
n

r→n

Definition 5.1. A transition system is consistent with respect to the algebraic
semantics if for all machine states (s, P)
(1) divergence(s, P) implies T (s, P) =A ⊥, and
(2) finitary(s, P) if P does not contain μ operator.
(3) T (s, P) =A ⊕ {r : T (t, Q) | (s, P) r→ (t, Q)},
where we extend the definition of the test operator to deal with the empty
program text ε by

T (s, ε) =df s

Theorem 5.1. Let → be a consistent transition system.
If finitary(s, P), then there exists n such that

T (s, P) =A ⊕ {r : t | ∃m • (m ≤ n) ∧ (s, P) r→m (t, ε)}

Otherwise

T (s, P) =A

⊔

n

⊕{r : t | ∃m • (m ≤ n) ∧ (s, P) r→m (t, ε)}

Proof. (1) Assume that finitary(s, P). For k > 0 define

finitaryk(s, P) =df ∀(t, Q), ∀r, m •
(

(s, P) r→m (t, Q) ∧ m > k
=⇒ divergence(t, Q)

)

The following inductive proof is based on the length of transition sequences
Basic case: finitary1(s, P).
The conclusion directly follows from (1) and (3) of Definition 5.1.
Induction step: finataryk+1(s, P).
From the definition of finitaryn+1 it follows that

(s, P) r→ (t, Q) =⇒ finitaryk(t, Q) (∗)

Linking Theories of Probabilistic Programming 205

T (s, P) {Def 5.1(3)}
=A ⊕ {r : T (u, Q) | (s, P)

r→ (u, Q)} {(∗) and inductive hypothesis}

=A ⊕
{

r : ⊕ {λ : t | ∃m • (m ≤ n)∧
(s, P)

r→ (u, Q) ∧ (u, Q)
λ→m (t, ε)}

}

{⊕ − 4 Let l = n + 1}

=A ⊕ {β : t | ∃m ≤ l • (s, P)
β→ (t, ε)}

(2) Consider the case where ¬finitary(s, P).
First we are going to establish the inequality

T (s, P) �A

⊔

n

⊕{r : t | ∃m ≤ n • (s, P) r→m (t, ε)

By norm-2 we are required to prove for all n

T (s, P) �A ⊕{r : t | ∃m • (m ≤ n) ∧ (s, P) r→m (t, ε)}

Basic case: n = 1.
T (s, P) {Def 5.1(3)}

=A ⊕
{

{λ : T (t, Q) | (s, P) λ→ (t, Q)} ∪
{β : t | (s, P)

β→ (t, ε)}

}

{Theorem 3.11(c)}

�A ⊕
{

{λ : ⊥ | (s, P) λ→ (t, Q)} ∪
{β : t | (s, P)

β→ (t, ε)}

}

{⊕ − 2}

=A ⊕{r : t | (s, P) r→ (t, ε)}
Induction:

T (s, P) {Def 5.1(3)}

=A ⊕
{

{λ : T (t, Q) | (s, P) λ→ (t, Q)} ∪
{β : t | (s, P)

β→ (t, ε)}

}

{inductive hypothesis}

�A ⊕

⎧
⎪⎨

⎪⎩

{λ : ⊕{ γ : u | (s, P) λ→ (t, Q) ∧
∃m ≤ n • (t, Q)

γ→m (u, ε)}} ∪
{β : t | (s, P)

β→ (t, ε)}

⎫
⎪⎬

⎪⎭
{Def r→n}

=A ⊕{r : t | ∃m ≤ n + 1 • (s, P) r→m (t, ε)}
Now we are going to prove the inequality

T (s, P) �A

⊔

n

⊕{r : t | ∃m • (m ≤ n) ∧ (s, P) r→m (t, ε)}

From Definition 5.1 (2) we conclude that P must contain μ operator. Let us
begin with the simplest case:

P = μX • F (X)

where F (X) does not refer to μ operator. Clearly from Definition 5.1(2) we have
for all n
(i) finitary(Fn(⊥))
By induction it can be shown that
(ii) (s, Fn(⊥)) λ→m (t, ε) =⇒ ∃k ≤ n • (s, μX • F (X)) λ→m+k (t, ε)
From (i) it follows that for all n there exists kn such that

206 H. Jifeng

T (s, F n(⊥)) {finitary(F n(⊥))}

=A ⊕ {r : t |
(

∃m • (m ≤ kn)∧
(s, F n(⊥))

r→m (t, ε)

)
} {(ii) and Corollary of norm − 1}

�A ⊕ {r : t |
(

∃m • (m ≤ (kn + n))∧
(s, μX • F (X))

r→m (t, ε)

)
} {norm − 3}

�A

⊔
n ⊕ {r : t |

(
∃m • (m ≤ n)∧
(s, μX • F)

r→m (t, ε)

)
}

which leads to the conclusion
T (s, μX • F (X)) {Theorem 3.8 and rec − 1}

=A

⊔
n T (s, F n(⊥)) {previous conclusion}

�A

⊔
n ⊕ {r : t |

(
∃m • (m ≤ n)∧
(s, μX • F)

r→m (t, ε)

)
}

Finally let us examine the case where

P = F (μX • Q(X), .., μX • R(X))

In a similar way we can prove
• T (s, F (μX • Q(X), .., μX • R(X))) {Theorem 3.8}

=A

⊔
n T (s, F (Qn(⊥), .., Rn(⊥))) {finitary(F (Qn(⊥), .., Rn(⊥)))}

=A

⊔
n ⊕ {r : t |

⎛
⎝ ∃m • (m ≤ nk)∧

(s, F (Qn(⊥), ...))
r→m (t, ε)

⎞
⎠} {proof for (P = μX • F (X))}

�A

⊔
n ⊕ {r : t |

⎛
⎝ ∃m • (m ≤ n)∧

(s, P)
r→m (t, ε)

⎞
⎠}

We propose the following transition system for our probabilistic programming
language.

Definition 5.2.
(1) Assignment
((v := c), v := e) → ((v := e[c/v]), ε).
(2) Probabilistic Choice

(a) ((v := c), ⊕ {r1 : P1, .., rm;Pm})
rk[c/v]−→ ((v := c), Pk)

provided that rk[c/v] > 0

(b) ((v := c), ⊕ {r1 : P1, .., rm;Pm})
1−∑

k rk[c/v]−→ ((v := c), ⊥)
provided that

∑
k rk[c/v] < 1.

(3) Conditional
(a) ((v := c), P � b � Q) → ((v := c), P) if b[c/v] = true
(b) ((v := c), P � b � Q) → ((v := c), Q) if b[c/v] = false
(4) Composition
(a) (s, P ;Q) r→ (t, R;Q) if (s, P) r→ (t, R)
(b) (s, P ;Q) → (t, R;Q) if (s, P) → (t, R)
(c) (s, P ;Q) r→ (t, Q) if (s, P) r→ (t, ε)
(d) (s, P ;Q) → (t, Q) if (s, P) → (t, ε)
(5) Recursion
(s, μX • P (X)) → (s, P (μX • P (X)))
(6) Chaos
(s, ⊥) → (s, ⊥)

Linking Theories of Probabilistic Programming 207

We are going to show that Definition 5.2 gives a consistent transition system.
First, we show that the given transition system satisfies Definition 5.1(3)

Lemma 5.2. T (s, P) =A ⊕{r : T (t, Q) | (s, P) r→ (t, Q)}

Proof. Direct from the following properties of the test operator T :
(1) From ⊕-6 it follows that
T ((v := c), ⊕{r1 : P1, .., rn : Pn} =A ⊕ {r1[c/v] : T ((v := c), P1), ..., rn[c/v] :
T ((v := c), Pn)}
(2) From Theorem 2.1(7) we obtain
T ((v := c), (P � b � Q)) =A T ((v := c), P) � b[c/v] � T ((v := c), Q)
(3) From Theorem 4.1 we have
T ((v := c), (P ;Q)) =A ⊕ {r1 : T ((v := d1), Q), ..., rm : T ((v := dm), Q)}
provided that T ((v := c), P) =A ⊕ {r1 : (v := d1), .., rm : (v := dm}
(4) T (s, μX • P (X)) =A T (s, P (μX • P (X)))
Next we deal with the condition (1) of Definition 5.1.

Lemma 5.3. If P is a finite program, then

divergence(s, P) =⇒ T (s, P) =A ⊥

Proof. We give an induction proof based on the structure of program text P :
Base case: Clearly the conclusion holds for the case P = v := e and P = ⊥
Inductive step:

divergence((v := c), (P � b � Q)) {Rule (3) in Definition 5.2}

=⇒

⎛
⎝divergence((v := c), P)

�b[c/v]�
divergence((v := c), Q)

⎞
⎠ {Induction hypothesis}

=⇒

⎛
⎝ (T ((v := c), P) =A ⊥)

�b[c/v]�
(T ((v := c), Q) =A ⊥)

⎞
⎠ {Theorem 2.1(7)}

=⇒ T ((v := c), (P � b � Q)) =A ⊥
divergence((v := c), ⊕ {r1 : P1, .., rn : Pn}) {Rule (2) in Definition 5.2}

=⇒ Σ{(rk[c/v])|divergence((v := c), Pk)} = 1 {Induction hypothesis}
=⇒ Σ{(rk[c/v])|T ((v := c), Pk) =A ⊥} = 1 {⊕ − 3 and 6}
=⇒ T ((v := c), ⊕ {r1 : P1, .., rn : Pn}) =A ⊥

Finally we are going to tackle infinite programs.

Lemma 5.4. If (s, G(Q)) →∗ (t, ε),
then either divergence(s, G(⊥)) or (s, G(⊥)) →∗ (t, ε).

Proof. Induction on the structure of G
Base case. G(Q) = Q From Rule (6)

(s, ⊥) → (s, ⊥)

in Definition 5.2.
Inductive step:
(1) G(Q) = G1(Q) � b � G2(X)

208 H. Jifeng

(s, G(Q)) →∗ (t, ε) {Rule (3) in Def 5.2}

=⇒

⎛

⎝
(s, G1(Q)) →∗ (t, ε)
�(s; b)�
(s, G2(Q)) →∗ (t, ε)

⎞

⎠ {Induction hypothesis}

=⇒

⎛

⎝
divergence(s, G1(⊥)) ∨ (s, G1(⊥)) →∗ (t, ε)

�(s; b)�
divergence(s, G2(⊥)) ∨ (s, G2(⊥)) →∗ (t, ε)

⎞

⎠ {Rule (3) in Def 5.2}

=⇒ divergence(s. G(⊥)) ∨ (s, G(⊥)) →∗ (t, ε)
(2) G(Q) = ⊕{α1 : G1(Q), ... αk : Gk(Q)}. Similar to Case (1).

(3) G(Q) = G1(Q);G2(Q)
(s, G(Q)) →∗ (t, ε) {Rule (4) in Def 5.2}

=⇒ ∃u •
(
(s, G1(Q)) →∗ (u, ε) ∨
(u, G2(Q)) →∗ (t, ε)

)

{Induction hypothesis}

=⇒ ∃u •

⎛

⎜
⎜
⎝

divergence(s, G1(⊥)) ∨
(s, G1(⊥)) →∗ (u, ε) ∨
divergence(u, G2(⊥)) ∨
(u, G2(⊥)) →∗ (t, ε)

⎞

⎟
⎟
⎠ {Rule (4) in Def 5.2}

=⇒ divergence(s. G(⊥)) ∨ (s, G(⊥)) →∗ (t, ε)
(4) G(Q) = μX • P (Q, X)

(s, μX • P (Q, X)) →∗ (t, ε) {Rule (5) in Def 5.2}
=⇒ (s, P (Q, μX • P (Q, X))) →∗ (t, ε) {Induction hypothesis}

=⇒
(
divergence(s, P (⊥, μX • P (⊥, X))) ∨
(s, P (⊥, μX • P (⊥, X))) →∗ (t, ε)

)

{Rule (5) in Def 5.2}

=⇒
(
divergence(s, μX • P (⊥, X)) ∨
(s, μX • P (⊥, X)) →∗ (t, ε)

)

Lemma 5.5.
(1) divergence(s, F (P)) =⇒ divergence(s, F(⊥))
(2) divergence(s, F (μX • P (X)) =⇒ divergence(s, F (P (μX • P (X))))

Proof. (1) Based on induction on the structure of F .
Base case: F (X) = X. The conclusion follows from the Rule (6) in Definition 5.2.
Inductive Step:

divergence(s, F1(Q) � b � F2(Q)) {Rule (3) in Def 5.2}

=⇒

⎛

⎝
divergence(s, F1(Q))
�(s; b)�
divergence(s, F2(Q))

⎞

⎠ {induction hypothesis}

=⇒

⎛

⎝
divergence(s, F1(⊥))
�(s; b)�
divergence(s, F2(⊥))

⎞

⎠ {Rule (3) in Def 5.2}

=⇒ divergence((s, (F1(⊥) � b � F2(⊥))))

divergence(s, F1(Q);F2(Q)) {Rule (4) in Def 5.2}
=⇒ divergence(s, F1(Q))∨

∃t • (s, F1(Q)) →∗ (t, ε) ∧ divergence(t, F2(Q)) {Lemma 5.4}

=⇒
(
divergence(s, F1(⊥))∨
(s, F1(⊥)) →∗ (t, ε) ∧ divergence(t, F2(⊥))

)

{Rule (4) in Def 5.2}

=⇒ divergence(s, F1(⊥);F2(⊥))

Lemma 5.6.
divergence(s, F (μX • P (X)) =⇒ T (s, F (μX • P (X))) =A ⊥

Linking Theories of Probabilistic Programming 209

Proof.
divergence(s, F (μX • P (X))) {Lemma 5.5(2)}

=⇒ ∀n • divergence(s, F (Pn(μX • P (X)))) {Lemma 5.5(1)}
=⇒ ∀n • divergence(s, F (Pn(⊥))) {Lemma 5.3}
=⇒ ∀n • T (s, F (Pn(⊥))) =A ⊥ {Theorem 3.8}
=⇒ T (s, F (μX • P (X))) =A ⊥

Lemma 5.7.
If P is finite, then fnitary(s, P) holds for all states s

Proof. On structural induction

Combining Lemmas 5.2, 5.6 and 5.7 we conclude

Theorem 5.8.
The transition system defined in Definition 5.2 is consistent.

6 Conclusions

This paper begins with an algebraic framework for our probabilistic program-
ming language, and then shows how to deliver the corresponding denotational
and operational representations consistently. The main contributions include:

– Clarify the type of observations we are able to record during the execution of
a probabilistic programs:

• The behaviour of a program cannot simply be modelled as a relation
between the initial data state and a finite distribution on the possible
final data states.

• The normal approach permits us to distinguish a program which can
terminate and deliver a final distribution function from a program which
can only generate an approximate distribution function during its ever-
lasting execution.

– The test algebra lays down the foundation for construction of a denotational
framework for our probabilistic programming language.

– The consistency of an operational approach against the algebra of programs
can be formalised and validated within the algebra of programs.

The language we put forward in this paper has not included the nondeterministic
choice operator given in the traditional programming languages. As a result, we
lose the case where the probabilistic choice can be identified as a refinement of
the nondeterministic choice. Moreover, the refinement order in the conventional
languages was directly induced from the choice operator, whereas we were forced
to adopt an inductive definition in Sects. 1 and 2 based on finite and infinite nor-
mal forms. Consequently, it makes the proof of monotonicity of programming
combinators in this paper look cumbersome.
In future, we will investigate a language armed with both probabilistic and non-
deterministic choice operators, and follow up the algebraic approach advocated
in this paper to explore the links among various programming presentations for
the probabilistic languages.

210 H. Jifeng

References

1. Jifeng, H., Qin, L.: A new roadmap for linking theories of programming and its
applications on GCL and CSP. Sci. Comput. Program. Elsevier 162, 3–34 (2018)

2. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge Press,
Cambridge (1996)

3. Abrial, J.-R.: Modelling in Event-B: System and Software Engineering. Cambridge
Press, Cambridge (2010)

4. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

5. Hehner, E.C.R.: A more complete model of communicating processes. Theor. Com-
put. Sci. 26, 105–120 (1983)

6. Hehner, E.C.R.: Predicative programming, part 1 and 2. Commun. ACM 27(2),
134–151 (1984)

7. Hennessy, M.C.: Algebraic Theory of Process. The MIT Press, Cambridge (1988)
8. Hoare, C.A.R., et al.: Laws of programming. Commun. ACM 30(8), 672–686 (1987)
9. Jones, C.B.: Systematic Software Development Using VDM. Prentice Hall, New

York (1986)
10. Plotkin, G.D.: A structural approach to operational semantics. Technical Report,

DAIMI-FN-19, Aarhus University, Denmark (1981)
11. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall, New York (1992)
12. Jifeng, H., Seidel, K., McIver, A.: Probabilistic models for the guarded command

language. Sci. Comput. Program. 28(2–3), 171–192 (1997)

	Linking Theories of Probabilistic Programming
	1 Introduction
	2 Probabilistic Programming Language
	2.1 Probabilistic Choice
	2.2 Conditional Choice
	2.3 Sequential Composition
	2.4 Total Assignment

	3 Normal Form Reduction
	3.1 Finite Normal Form
	3.2 Infinite Normal Form
	3.3 Continuity
	3.4 Recursion

	4 Testing Programs
	5 Operational Approach
	6 Conclusions
	References

