
Cliff Jones
Ji Wang
Naijun Zhan (Eds.)

Symposium on Real-Time
and Hybrid Systems

Fe
st

sc
hr

ift
LN

CS
 1

11
80

Essays Dedicated to Professor Chaochen Zhou
on the Occasion of His 80th Birthday

 123

Lecture Notes in Computer Science 11180

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Cliff Jones • Ji Wang • Naijun Zhan (Eds.)

Symposium on Real-Time
and Hybrid Systems
Essays Dedicated to Professor Chaochen Zhou
on the Occasion of His 80th Birthday

123

Editors
Cliff Jones
Newcastle University
Newcastle
UK

Ji Wang
National University of Defense Technology
Changsha
China

Naijun Zhan
Institute of Software, CAS
Beijing
China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-01460-5 ISBN 978-3-030-01461-2 (eBook)
https://doi.org/10.1007/978-3-030-01461-2

Library of Congress Control Number: 2018955709

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover illustration: Z. Chaochen and M. R. Hansen (Eds.), Duration Calculus, paragraph of page 156.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Above: Chaochen Zhou together with his wife Yuping Zhang
Below: Chaochen Zhou and his wife together with Dines Bjørner and Anders Ravn.
The photographs are published with permission.

Preface

In October 2017, friends, colleagues and former students met in honour of Professor
Zhou Chaochen’s 80th birthday. The conference in Changsha heard papers on a range
of topics to which Chaochen had made his own scientific contributions. This volume
contains papers from most of the speakers at the memorable event.

Zhou Chaochen has had a distinguished international career that has addressed the
foundations of real-time and hybrid systems as well as distributed computing. To single
out just one of his many scientific insights, his seminal contribution to the Duration
Calculus has led to many developments and wide application.

Internationally, he has worked in Oxford with Professor Tony Hoare, in Denmark
with Professor Dines Bjørner and at the United Nations University International
Institute for Software Technology (UNU/IIST) in Macau. At the latter, of these he was
a Principal Research Fellow and then Director of the Institute from 1992–2002.

Recognition for his contributions include being elected a member of the Chinese
Academy of Sciences and a winner of the National Award for Natural Sciences.

The warm personal praise and gratitude from his friends and colleagues reflected
another dimension of Chaochen’s impact on the scientific community: his students
recognised the key impact of his teaching and his colleagues such as Anders Ravn
spoke warmly of his penetrating and constructive criticism. Everyone at the Changsha
event had special stories of friendship and help from both Chaochen and his charming
wife, Yuping Zhang.

The editors and all participants at the memorable conference wish Yuping and
Chaochen many more years of happiness.

July 2018 Cliff Jones
Ji Wang

Naijun Zhan

Organization

Program Committee

Yunwei Dong Northwestern Polytechnical University, China
Wenfei Fan The University of Edinburgh, UK
Martin Fränzle University of Oldenburg, Germany
Cliff Jones Newcastle University, UK
Xiaoshan Li University of Macau, SAR China
Xuandong Li Nanjing University, China
Xinxin Liu Institute of Software, Chinese Academy of Sciences, China
Zhiming Liu Southwest University, China
Ernst-Ruediger

Olderog
University of Oldenburg, Germany

Anders Ravn Aalborg University, Denmark
Ji Wang National University of Defense Technology, China
Mingsheng Ying University of Technology Sydney, Australia
Naijun Zhan Institute of Software, Chinese Academy of Sciences, China

Additional Reviewers

Ahmad, Ehsan
Bu, Lei
Chen, Mingshuai

Li, Yangjia
Liu, Wanwei
Yin, Liangze

Contents

Think Sequential, Run Parallel . 1
Wenfei Fan, Muyang Liu, Ruiqi Xu, Lei Hou, Dongze Li,
and Zizhong Meng

Concurrency: Handling Interference Formally . 26
Cliff B. Jones

Decidability of the Initial-State Opacity of Real-Time Automata 44
Lingtai Wang and Naijun Zhan

Domain Science and Engineering A Review of 10 Years Work
and a Laudatio The ZCC Fest, 20 October 2017, Changsha, China 61

Dines Bjørner

HAT: Analyzing Linear Hybrid Automata as Labelled
Transition System . 85

Lei Bu, Hui Jiang, Xin Chen, Enyi Tang, and Xuandong Li

Overview: System Architecture Virtual Integration based
on an AADL Model . 105

Yunwei Dong, Xiaomin Wei, and Mingrui Xiao

Characterization and Verification of Stuttering Equivalence 116
Xinxin Liu and Wenhui Zhang

QjSIi : A Quantum Programming Environment . 133
Shusen Liu, Xin Wang, Li Zhou, Ji Guan, Yinan Li, Yang He,
Runyao Duan, and Mingsheng Ying

The Demon, the Gambler, and the Engineer: Reconciling Hybrid-System
Theory with Metrology . 165

Martin Fränzle and Paul Kröger

Linking Theories of Probabilistic Programming. 186
He Jifeng

Space for Traffic Manoeuvres: An Overview . 211
Ernst-Rüdiger Olderog

Cloud Robotics: A Distributed Computing View. 231
Wang Huaimin, Ding Bo, and Jie Xu

Analyzing Interrupt Handlers via Interprocedural Summaries 246
Xueguang Wu, Liqian Chen, and Ji Wang

Author Index . 263

XII Contents

Think Sequential, Run Parallel

Wenfei Fan1,2(B), Muyang Liu2, Ruiqi Xu1, Lei Hou2(B), Dongze Li2(B),
and Zizhong Meng2(B)

1 University of Edinburgh, Edinburgh, UK
wenfei@ed.ac.uk

2 Beihang University, Beijing, China
{houlei,lidz}@act.buaa.edu.cn, mengzizhong@buaa.edu.cn

Abstract. Parallel computation is often a must when processing large-
scale graphs. However, it is nontrivial to write parallel graph algorithms
with correctness guarantees. This paper presents the programming model
of GRAPE, a parallel GRAPh Engine [19]. GRAPE allows users to “plug
in” sequential (single-machine) graph algorithms as a whole, and it par-
allelizes the algorithms across a cluster of processors. In other words,
it simplifies parallel programming for graph computations, from think
parallel to think sequential. Under a monotonic condition, it guarantees
to converge at correct answers as long as the sequential algorithms are
correct. We present the foundation underlying GRAPE, based on simulta-
neous fixpoint computation. As examples, we demonstrate how GRAPE
parallelizes our familiar sequential graph algorithms. Furthermore, we
show that in addition to its programming simplicity, GRAPE achieves
performance comparable to the state-of-the-art graph systems.

1 Introduction

There has been increasing demand for graph computations, e.g., graph traversal,
connectivity, pattern matching, and collaborative filtering. Indeed, graph compu-
tations have found prevalent use in mobile network analysis, pattern recognition,
knowledge discovery, transportation networks, social media marketing and fraud
detection, among other things. In addition, real-life graphs are typically big, eas-
ily having billions of nodes and trillions of edges [24]. With these comes the need
for parallel graph computations. In response to the need, several parallel graph
systems have been developed, e.g., Pregel [33], GraphLab [22,32], Trinity [42],
GRACE [47], Blogel [50], Giraph++ [44], and GraphX [23].

However, users often find it hard to write and debug parallel graph programs
using these systems. The most popular programming model for parallel graph
algorithms is the vertex-centric model, pioneered by Pregel and GraphLab. For
instance, to program with Pregel, one needs to “think like a vertex”, by writing
a user-defined function compute(msgs) to be executed at a vertex v, where v
communicates with other vertices by message passing (msgs). Although graph
computations have been studied for decades and a large number of sequential
(single-machine) graph algorithms are already in place, to use Pregel, one has to
c© Springer Nature Switzerland AG 2018
C. Jones et al. (Eds.): Zhou-Festschrift, LNCS 11180, pp. 1–25, 2018.
https://doi.org/10.1007/978-3-030-01461-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01461-2_1&domain=pdf

2 W. Fan et al.

recast the existing algorithms into vertex-centric programs. Trinity and GRACE
also support vertex-centric programming. While Blogel and Giraph++ allow
blocks to have their status as a “vertex” and support block-level communication,
they still adopt the vertex-centric programming paradigm. GraphX also recasts
graph computation into its distributed dataflow framework as a sequence of
join and group-by stages punctuated by map operations, on the Spark platform.
The recasting is nontrivial for users who are not very familiar with the parallel
models. Moreover, none of the systems provides a guarantee on the correctness
or even termination of parallel programs developed in their models. These make
the existing systems a privilege for experienced users only.

Is it possible to simplify parallel programming for graph computations, from
think parallel to think sequential? That is, can we have a system that allows users
to plug in existing sequential graph algorithms for a computational problem,
and it automatically parallelizes the computation across a cluster of processors?
Better yet, is there a general condition under which the parallelization guarantees
to converge at correct answers as long as the sequential algorithms plugged in are
correct? After all, humans find it far easier to devise sequential processes that
cope with the interference and synchronisation required in parallel algorithms.

It was to answer this question that we developed GRAPE [19], a parallel
GRAPh Engine for graph computations. The main objective of GRAPE is to
make parallel graph computations accessible to a large group of users. It allows
users to think sequential and go parallel, by parallelizing sequential graph algo-
rithms as a whole. Moreover, under a monotonic condition, it guarantees to
converge at correct answers when provided with correct sequential graph algo-
rithms. As proof of concept, GRAPE has been developed [18] and evaluated in
industry. In addition to its programming simplicity, it outperforms the state-of-
the-art parallel graph systems in scalability and efficiency.

The remainder of the paper is organized as follows. We present the parallel
model underlying GRAPE (Sect. 2), based on simultaneous fixpoint computation
with partial evaluation and incremental computation. We then demonstrate how
our familiar sequential graph algorithms are parallelized by GRAPE (Sect. 3),
including single-source shortest path (SSSP), graph simulation (Sim), connected
components (CC) and minimum spanning tree (MST). In addition, we provide
an empirical study to demonstrate the scalability and efficiency of GRAPE, com-
pared to the state-of-the-art graph systems (Sect. 4). Finally, we discuss related
work and identify topics for future research (Sect. 5).

2 From Think Parallel to Think Sequential

We next present the programming model and parallel model of GRAPE [19].

2.1 Graphs and Graph Partition

We start with basic notations, in particular graph partitions.

Think Sequential, Run Parallel 3

Graphs. We consider graphs G = (V,E,L), directed or undirected, where (1)
V is a finite set of nodes; (2) E ⊆ V ×V is a set of edges; and (3) each node v in
V (resp. edge e ∈ E) carries L(v) (resp. L(e)), indicating its content, as found
in social networks, knowledge bases and property graphs.

We will use two notions of subgraphs. A graph G′ = (V ′, E′, L′) is called a
subgraph of G if V ′ ⊆ V , E′ ⊆ E, and for each node v ∈ V ′ (resp. edge e ∈ E′),
L′(v) = L(v) (resp. L′(e) = L(e)). Subgraph G′ is said to be induced by V ′ if E′

consists of all the edges in G whose endpoints are both in V ′.
Partition strategy. GRAPE supports data-partitioned parallelism: it partitions
a graph G and distributes fragments of G across m processors, such that com-
putations on G can be conducted in parallel on the fragments. More specifically,
given a graph G and a number m, a graph partition strategy P partitions G
into fragments (F1, . . . , Fm) such that each Fi = (Vi, Ei, Li) is a subgraph of G,
E =

⋃
i∈[1,m] Ei, V =

⋃
i∈[1,m] Vi, and Fi resides at processor Pi for i ∈ [1,m].

GRAPE allows users to pick a strategy P to partition G, e.g., vertex-cut [30]
or edge-cut [7]. When P is vertex-cut, denote by

– Fi.O the set of border nodes v ∈ Vi such that there exists a copy of v in
another fragment Fj (i �= j); and

– F .O =
⋃

i∈[1,m] Fi.O.

Similarly, border nodes are defined under edge-cut, which have an edge to (or
from) nodes in another fragment (see [19] for details).

We adopt vertex-cut in the sequel unless stated otherwise; the results of the
paper still hold under other partition strategies.

2.2 Programming Model

Consider a graph computation problem Q. Informally, a parallel program for Q
is a program that operates on a graph G, where G is partitioned and distributed
across a cluster of processors. Here we assume that the cluster adopts the shared
nothing architecture in which processors do not share memory or disk storage,
and the processors exchange information among themselves by message passing,
as commonly adopted nowadays. In our familiar terms, we refer to an instance
of the problem (excluding graph G) as a query Q of Q. Given a query Q ∈ Q,
the program computes the set Q(G) of answers to Q in graph G by operating
on the fragments of G in parallel with the processors.

To develop a parallel algorithm for a class Q of queries with GRAPE, one
only needs to specify the following three functions.

(1) PEval: a sequential (single-machine) algorithm for Q that given a query Q ∈ Q
and a graph G, computes the answer Q(G) to Q in G.

(2) IncEval: a sequential incremental algorithm for Q that given Q, G, Q(G) and
updates ΔG to G, computes updates ΔO to the old output Q(G) such that
Q(G ⊕ ΔG) = Q(G) ⊕ ΔO, where G ⊕ ΔG denotes G updated by ΔG [40].

4 W. Fan et al.

(3) Assemble: a function that collects partial answers computed locally at each
processor by PEval and IncEval, and assembles the partial results into complete
answer Q(G). This function is often straightforward.

The three functions are referred to as a PIE program for Q (PEval, IncEval
and Assemble). Note that PEval and IncEval can be any existing sequential (incre-
mental) algorithms for Q that operate on a fragment Fi of graph G partitioned
via a strategy P. Note that fragment Fi is a graph itself.

The only additions are the following declarations in PEval.
(a) Update parameters. PEval declares status variables x̄ for a set Ci of nodes in a
fragment Fi, which store contents of Fi or intermediate results of a computation.
Here Ci is a set of nodes and edges within d-hops of the nodes in Fi.O, for an
integer d that is determined by Q. When d = 0, Ci is Fi.O.

We denote by Ci.x̄ the set of update parameters of Fi, including status vari-
ables associated with the nodes and edges in Ci. As will be seen shortly, the
variables in Ci.x̄ are candidates to be updated by incremental steps IncEval.
(b) Aggregate functions. PEval also specifies an aggregate function faggr, e.g., min
and max, for conflict resolution, i.e., to resolve conflicts when multiple processors
attempt to assign different values to the same update parameter.

Update parameters and aggregate function are specified in PEval and are
shared by IncEval. We will provide examples in Sect. 3.

2.3 Parallel Computation Model

We next show how GRAPE parallelizes a PIE program ρ (PEval, IncEval, Assemble)
for Q. Given a partition strategy P and PIE program ρ, GRAPE first partitions G
into (F1, . . . , Fm) with P, and distributes the fragments across m shared-nothing
virtual workers (i.e., processors) (P1, . . . , Pm), respectively. It maps m virtual
workers to n physical workers. When n < m, multiple virtual workers that are
mapped to the same worker share memory.

Note that graph G is partitioned once for all queries Q ∈ Q on G.
We start with basic ideas behind GRAPE parallelization.

(1) Given a function f(s, d) and the s part of its input, partial evaluation is to
specialize f(s, d) w.r.t. the known input s [29]. That is, it performs the part of
f ’s computation that depends only on s, and generates a partial answer, i.e., a
residual function f ′ that depends on the as yet unavailable input d. For each
worker Pi in GRAPE, its local fragment Fi is its known input s, while the data
residing at other workers is the yet unavailable input d. As will be seen shortly,
given a query Q ∈ Q, GRAPE computes Q(Fi) in parallel as partial evaluation.

(2) Workers exchange changed values of their local update parameters with each
other. Upon receiving message Mi that consists of changes to the update param-
eters at fragment Fi, worker Pi treats Mi as updates to Fi, and incrementally
computes changes ΔOi to Q(Fi) such that Q(Fi ⊕ Mi) = Q(Fi) ⊕ ΔOi, mak-
ing maximum reuse of previous results Q(Fi). This is often more efficient than
recomputing Q(Fi ⊕ Mi) starting from scratch, since in practice Mi is typically

Think Sequential, Run Parallel 5

small, and so is Oi. Better still, the incremental computation may be bounded:
its cost can be expressed as a function in |Mi| + |ΔOi|, i.e., the size of changes
in the input and output, instead of |Fi|, no matter how big Fi is [16,40].

Fig. 1. Workflow of GRAPE

Model. Given a query Q ∈ Q at the master (processor) P0, GRAPE answers Q
in the partitioned graph G following BSP [45]. It posts the same query Q to all
the workers, and computes Q(G) in three phases as follows, as shown in Fig. 1.
(1) Partial evaluation (PEval). In the first superstep, upon receiving Q, each
worker Pi applies function PEval to its local fragment Fi, to compute partial
results Q(Fi), in parallel (i ∈ [1,m]). After Q(Fi) is computed, PEval generates
a message at each worker Pi and sends it to master P0. The message is simply
the set Ci.x̄ of update parameters at fragment Fi.

For each i ∈ [1,m], master P0 maintains update parameters Ci.x̄. It deduces
a message Mi to worker Pi based on the following message grouping policy. (a)
For each status variable x ∈ Ci.x̄, it collects the set Sx of values from messages of
all workers, and computes xaggr = faggr(Sx) by applying the aggregate function
faggr declared in PEval. (b) Message Mi includes only those faggr(Sx)’s such that
faggr(Sx) �= x, i.e., only the changed values of the update parameters of Fi.
(2) Incremental computation (IncEval). GRAPE iterates the following super-
steps until it terminates. Following BSP, each superstep starts after the master
P0 receives messages (possibly empty) from all workers Pi for i ∈ [1,m]. A
superstep has two steps itself, one at P0 and the other at the workers.

(a) Master P0 routes (nonempty) messages from the last superstep to workers, if
there exist any.

(b) Upon receiving message Mi, worker Pi incrementally computes Q(Fi ⊕ Mi)
by applying IncEval, and by treating Mi as updates, in parallel for i ∈ [1,m].

At the end of IncEval process, Pi sends a message to P0 that encodes updated
values of Ci.x̄, if any. Upon receiving messages from all workers, master P0

6 W. Fan et al.

deduces a message Mi to each worker Pi following the message grouping policy
given above; it sends message Mi to worker Pi in the next superstep.
(3) Termination (Assemble). At each superstep, master P0 checks whether for
all i ∈ [1,m], Pi is inactive, i.e., Pi is done with its local computation, and there
exist no more changes to any update parameter of Fi. If so, GRAPE invokes
Assemble at P0, which pulls partial results from all workers, groups together the
partial results and gets the final result at P0, denoted by ρ(Q,G). It returns
ρ(Q,G) and terminates. Otherwise, it proceeds to the next superstep (step (2)).
Fixpoint. The GRAPE parallelization of the PIE program can be modeled as
a simultaneous fixed point operator φ(R1, . . . , Rm) defined on m fragments. It
starts with PEval for partial evaluation, and conducts incremental computation
by taking IncEval as the intermediate consequence operator, as follows:

R0
i = PEval(Q,F 0

i [x̄i]), (1)
Rr+1

i = IncEval(Q,Rr
i , F

r
i [x̄i],Mi), (2)

where i ∈ [1,m], r indicates a superstep, Rr
i denotes partial results in step r at

worker Pi, fragment F 0
i = Fi, F r

i [x̄i] is fragment Fi at the end of superstep r
carrying update parameters x̄i, and Mi is a message indicating changes to x̄i.
More specifically, (1) in the first superstep, PEval computes partial answers R0

i

(i ∈ [1,m]). (2) At step r+1, the partial answers Rr+1
i are incrementally updated

by IncEval, taking Q, Rr
i and message Mi as input. (3) The computation proceeds

until Rr0+1
i = Rr0

i at a fixed point r0 for all i ∈ [1,m]. Function Assemble is then
invoked to combine all partial answers Rr0

i and get the final answer ρ(Q,G).

2.4 Features of GRAPE

As outlined above, GRAPE has the following unique features.
(1) Parallel programming simplicity. GRAPE allows users to plug in sequen-
tial graph algorithms as a whole (subject to declarations of update parameters
and aggregate function in PEval), and executes these algorithms on fragmented
and distributed graphs. That is, users can “think sequential” when programming
with GRAPE, instead of think parallel. Moreover, a large number of sequen-
tial graph algorithms are already in place after decades of study, and are well
optimized. Moreover, there have been methods for incrementalizing graph algo-
rithms, to get incremental algorithms from their batch counterparts [6,14]. Fur-
thermore, as will be shown in Sects. 3.2 and 3.4, it is quite straightforward to
develop IncEval by revising a batch sequential algorithm. These make parallel
graph computations accessible to college students who know conventional graph
algorithms covered in undergraduate textbooks.

This said, GRAPE cannot be used without some insight by simply plugging
in sequential algorithms without making any change. Programming with GRAPE
still requires to declare update parameters and an aggregate function.
(2) Correctness guarantees. Under a general condition, GRAPE paralleliza-
tion is guaranteed to converge at correct answers. To see this, we use the fol-
lowing notations. (a) A sequential algorithm PEval for Q is correct if given all

Think Sequential, Run Parallel 7

Q ∈ Q and graphs G, it terminates and returns Q(G). (b) A sequential incre-
mental algorithm IncEval for Q is correct if given all Q ∈ Q, graphs G, old
output Q(G) and updates ΔG to G, it computes changes ΔO to Q(G) such
that Q(G ⊕ ΔG) = Q(G) ⊕ ΔO. (c) We say that Assemble is correct for Q
w.r.t. P if when GRAPE with PEval, IncEval and P terminates at superstep r0,
Assemble(Q(F1[x̄r0

1]), . . . , Q(Fm[x̄r0
m])) = Q(G), where x̄r0

i denotes the values of
parameters Ci.x̄i at round r0. (d) We say that GRAPE correctly parallelizes a
PIE program ρ with a partition strategy P if for all queries Q ∈ Q and graphs
G, GRAPE guarantees to reach a fixed point such that ρ(Q,G) = Q(G).

As shown in [19], GRAPE correctly parallelizes a PIE program ρ for a graph
computation problem Q if (a) its PEval and IncEval are correct sequential algo-
rithms for Q, and (b) Assemble correctly combines partial results, and (c) PEval
and IncEval satisfy the following monotone condition: for all variables x ∈ Ci.x̄,
i ∈ [1,m], (a) the values of x are computed from the active domain of G, and
(b) there exists a partial order px on the values of x such that IncEval updates
x in the order of px. That is, x draws values from a finite domain (condition (a)
above), and x is updated “monotonically” following px (condition (b)).

It should be remarked that the monotonicity above is just a sufficient condi-
tion for GRAPE computations to converge, but it is not a necessary condition.
Indeed, a variety of contracting conditions have been developed for fixpoint com-
putation, e.g., [10–12]. These conditions can be adapted to GRAPE convergence
as well, in addition to the monotonic condition given above.

Moreover, it does not mean that only algorithms satisfying the monotonic
condition can be parallelized in GRAPE. As will be seen shortly, any MapReduce
algorithm can be migrated to GRAPE without extra complexity. Obviously not all
MapReduce algorithms have the monotonicity. In other words, the monotonicity
is just a condition under which one does not have to worry about convergence.
(3) Expressive power. The programming simplicity does not imply degrada-
tion in functionality of the existing systems. Following [46], we say that a parallel
model M1 can optimally simulate model M2 if there exists a compilation algo-
rithm that transforms any program with cost C on M2 to a program with cost
O(C) on M1. The cost includes computational cost and communication cost.

As shown in [19], GRAPE can optimally simulate MapReduce [13], BSP [45]
and PRAM (Parallel Random Access Machine) [46]. That is, all algorithms in
MapRedue, BSP or PRAM with n workers can be simulated by GRAPE using n
workers with the same number of supersteps and memory cost. As a consequence,
these algorithms can be migrated to GRAPE without increasing the complexity.

The result above aims to show the expressive power of GRAPE. In particular,
graph computations that have effective (e.g., bounded) incremental algorithms
may be substantially accelerated by GRAPE. Nonetheless, for algorithms that
make only one fragment active at a time, we do not expect that GRAPE speeds up
their parallel computations. A particular example is Depth First Search (DFS),
which is known to be hard to parallelize. While DFS can be parallelized by
GRAPE, GRAPE may not make it more efficient than other platforms.

8 W. Fan et al.

(4) Graph-level optimization. GRAPE naturally inherits all optimization
strategies available for sequential graph algorithms, e.g., indexing, compression
and partitioning. Indeed, PEval and IncEval work on fragments, which are graphs
themselves. Hence prior optimization strategies developed for sequential graph
algorithms remain effective for PEval and IncEval. In contrast, these strategies
are hard to implement for, e.g., vertex-centric programs.
(5) Reducing redundant computations. GRAPE reduces the costs of itera-
tive graph computations by using IncEval, to minimize unnecessary recomputa-
tions. We should remark that IncEval speeds up iterative computations by making
use of prior partial results Q(Fi) at each worker Pi, no matter whether IncEvalis
bounded or not. Indeed, boundedness is not the only criterion for the effectiveness
of incremental algorithms. Alternative performance guarantees for incremental
graph algorithms have been developed, such as semi-boundedness [16], localiz-
able incremental algorithms and relative boundedness [14].
(6) Compatibility. To simplify the discussion, we have focused on synchronous
model BSP, when iterative computation is separated into supersteps, and mes-
sages from one superstep are only accessible in the next one. Our recent results
have shown that the programming model of GRAPE remains intact under asyn-
chronous parallel model (AP), when a worker has immediate access to incoming
messages, and when fast workers can move ahead, without waiting for strag-
glers. Moreover, the convergence condition given above can be adapted to the
asynchronous model. In other words, with GRAPE, it is no longer hard to write,
debug and analyze parallel algorithms, no matter whether under BSP or AP.

3 Programming with GRAPE

We next show how GRAPE parallelizes familiar graph algorithms, by taking
single-source shortest distance (SSSP), graph simulation (Sim), connected com-
ponents (CC) and minimum spanning tree (MST) as examples. We parallelize
these algorithms in Sects. 3.1–3.4 under a vertex-cut partition. Taken together
with the parallelization of [19] under edge-cut, these show that GRAPE program-
ming works equally well under vertex-cut and edge-cut partition.

3.1 Graph Traversal

Consider Q denoting the single source shortest path problem (SSSP). It targets a
directed graph G = (V,E,L) in which for each edge e, L(e) is a positive number.
The length of a path (v0, . . . , vk) in G is the sum of L(vi−1, vi) for i ∈ [1, k]. For
a pair (s, v) of nodes, denote by dist(s, v) the shortest distance from s to v. i.e.,
the length of a shortest path from s to v. SSSP is stated as follows.

– Input: A directed graph G as above, and a node s in G.
– Output: Distance dist(s, v) for all nodes v in G.

It is known that SSSP is in O(|E| + |V |log|V |) time [20].

Think Sequential, Run Parallel 9

Input: Fragment Fi(Vi, Ei, Li), source vertex s.
Output: A set Q(Fi) consisting of current dist(s, v) for all v ∈ Vi.
Message preamble: /* candidate set Ci is Fi.O*/

for each node v ∈ Vi, an integer variable dist(s, v);
1. initialize priority queue Que; dist(s, s) := 0;
2. for each v in Vi do
3. if v! = s then dist(s, v) := ∞;
4. Que.addOrAdjust(s, dist(s, s));
5. while Que is not empty do
6. u := Que.pop() /* pop vertex with minimal distance */
7. for each child v of u do /* only if v has not been visited */
8. alt := dist(s, u) + Li(u, v);
9. if alt < dist(s, v) then
10. dist(s, v) := alt;
11. Que.addOrAdjust(v, dist(s, v));
12. Q(Fi) := {(v, dist(s, v)) | v ∈ Vi};
Message segment: Mi := {(v, dist(s, v)) | v ∈ Fi.O};

faggr = min({dist(s, v)});

Fig. 2. PEval for SSSP

For SSSP under vertex cut, GRAPE takes existing sequential (incremental)
algorithms for SSSP as PEval and IncEval, just like GRAPE under edge-cut [19].
(1) PEval. As shown in Fig. 2, PEval (lines 1–11 of Fig. 2) is verbally identical to
Dijsktra’s algorithm [20], except that it declares the following (underlined):

(a) for each node v ∈ Vi, an integer variable dist(s, v), initially ∞ (except dist(s, s)
= 0); the candidate set Ci is the set Fi.O of border nodes and the set of
updated parameters is Ci.x̄ = {dist(s, v) | v ∈ Fi.O}; and

(b) an aggregate function faggr defined as min to resolve the conflicts: if multiple
values are assigned to the same dist(s, v) by different workers, the smallest
value is taken by the linear order on integers.

At the end of its process, PEval sends Ci.x̄ to master P0. At P0, GRAPE
maintains dist(s, v) for all nodes v ∈ Fi.O (i ∈ [1,m]). Upon receiving messages
from all workers, it takes the smallest value for dist(s, v) of each border node
v ∈ Ci.x̄. For each i ∈ [1,m], it finds those variables with smaller dist(s, v) for
v ∈ Fi.O, groups them into message Mi, and sends Mi to Pi.
(2) IncEval. As shown in Fig. 3, IncEval is the sequential incremental algorithm
for SSSP developed in [39], in response to changed dist(s, v) for v in Fi.O (here
Mi includes changes to dist(s, v) for v ∈ Fi.O). Using a queue Que, it starts with
Mi, propagates the changes to affected area, and updates the distances (see [40]).
The partial result is now the set of revised distances (line 11). At the end of the
process, the updated values of Ci.x̄ are sent to the master as messages, where
the aggregate function min is applied to resolve conflicts as in PEval.

10 W. Fan et al.

Input: Fragment Fi(Vi, Ei, Li), partial result Q(Fi), message Mi.
Output: New output Q(Fi ⊕ Mi).
1. initialize priority queue Que;
2. for each dist(s, v) in Mi do
3. Que.addOrAdjust(v, dist(s, v));
4. while Que is not empty do
5. u := Que.pop() /* pop vertex with minimum distance*/
6. for each children v of u do /* only if v has not been visited*/
7. alt := dist(s, u) + Li(u, v);
8. if alt < dist(s, v) then
9. dist(s, v) := alt;
10. Que.addOrAdjust(v, dist(s, v));
11. Q(Fi) := {(v, dist(s, v)) | v ∈ Vi};
Message segment: Mi := {(v, dist(s, v)) | v ∈ Fi.O, dist(s, v) decreased};

Fig. 3. IncEval for SSSP

Here IncEval is bounded. Following [39], it can be verified that its cost is
determined by the size of “updates” |Mi| and the changes to the output. This
reduces the cost of iterative computation of SSSP (the While and For loops).
(3) Assemble simply takes Q(G) =

⋃
i∈[1,n] Q(Fi), the union of the shortest dis-

tance for each node in V .
(4) Correctness. Termination is guaranteed since the values of update parameters
are from a finite domain and are monotonically decreasing in the process. The
correctness is assured since (a) the algorithms for PEval [20] and IncEval [40] are
correct and (b) IncEval are monotonic by taking min as faggr.

3.2 Graph Simulation

We next study graph simulation, which is commonly used in social media mar-
keting [17] and social network analysis [15], among other things.

A graph pattern is a graph Q = (VQ, EQ, LQ), where (a) VQ is a set of query
nodes, (b) EQ is a set of query edges, and (c) each u in VQ carries a label LQ(u).

A graph G = (V,E,L) matches a pattern Q = (VQ, EQ, LQ) via graph simu-
lation if there exists a binary relation R ⊆ VQ × V such that

(a) for each query node u ∈ VQ, there is a node v ∈ V such that (u, v) ∈ R, and
(b) for each pair (u, v) ∈ R, (i) LQ(u) = L(v), and (ii) for each (u, u′) in EQ,

there exists (v, v′) in graph G such that (u′, v′) ∈ R.

For (u, v) ∈ R, we refer to v as a match of u. It is known that if G matches Q,
then there exists a unique maximum relation [27], referred to as Q(G). If G does
not match Q, Q(G) is the empty set. Moreover, it is known that Q(G) can be
computed in O((|VQ| + |EQ|)(|V | + |E|)) time [15,27].

Graph pattern matching via graph simulation is stated as follows.

Think Sequential, Run Parallel 11

– Input: A directed graph G and a graph pattern Q.
– Output: The unique maximum relation Q(G).

Input: Q = (VQ, EQ, LQ), and Fi = (Vi, Ei, Li).
Output: Maximum match relation sim for Q(Fi).

Message preamble: /* candidate set Ci is Fi.O */
for each node u in VQ and v in Vi, an integer variable cnt(v,u) := 0;

/* Initialize variable γ(v) = true if v has a successor in G, at loading time */
1. for each u ∈ VQ do
2. if post(u) = ∅ then
3. sim(u) := {v ∈ Vi | LQ(u) = Li(v)};
4. else sim(u) := {v ∈ Vi | LQ(u) = Li(v) ∧ γ(v) = true};
5. for each v ∈ Vi do
6. cnt(v,u) = |{w ∈ Vi | w ∈ post′(v) ∧ w ∈ sim(u)}|;
7. Q(Fi) := sim;
Message segment: Mi := {Δcnt(v,u) | u ∈ VQ ∧ v ∈ Fi.O};

faggr = sum (Δcnt(v,u));

Fig. 4. PEval for graph simulation

GRAPE parallelizes Sim by adopting the sequential algorithm gsim for Sim
developed in [27]. It uses the initialization of gsim as PEval to generate candidate
matches sim(u) for each query node u ∈ VQ; it then uses the main loop of gsim
as IncEval, to refine sim(u) by recursively filtering out false positives in sim(u).
(1) PEval. As shown in Fig. 4, PEval adopts the initialization step of gsim. It sets
Ci to Fi.O and declares, for each query node u ∈ Vq and data node v in fragment
Fi, a status variable cnt(v,u). Here cnt(v,u) denotes the number of successors of v
that are candidate matches of u in G, defined as |{w | w ∈ post(v)∧w ∈ sim(u)}|,
where post(v) denotes the set of successors of v in G. It will be used by IncEval
to filter out invalid candidate matches of u from sim(u). PEval initializes sim(u)
in the same way as sequential algorithm gsim (lines 1–4), except that it uses a
Boolean variable γ(v) to check candidate matches in Ci for sim(u), where γ(v)
is set to true if v has any successor in G and is initialized when loading the data
graph G. It also initializes cnt(v,u) as the number of “local” successors of v that
are in fragment Fi and are candidate matches of u in Fi (lines 5–6). As will be
seen shortly, we use counters cnt(v,u) to determine invalid match candidates.

We take Fi.O as Ci, and treat Ci.cnt as update parameters. After cnt(v,u)
is locally initialized in PEval, the set Ci.cnt is sent to master P0. At P0, upon
receiving messages from all workers, the changes to cnt(v,u) are aggregated using
faggr = sum to generate the global value of cnt(v,u). GRAPE then groups these
variables into message Mi and sends Mi to Pi.
(2) IncEval. As shown in Fig. 5, IncEval is a minor revision of IncGSim; it refines
candidate matches (lines 1–14). In particular, it uses cnt(v,u) to speedup the

12 W. Fan et al.

Input: pattern Q, fragment Fi, partial result sim and message Mi.
Output: maximum match relation sim for Q and Fi ⊕ Mi.

1. queue remove := ∅;
2. for each Δcnt(v,u) in Mi do
3. cnt(v,u) := cnt(v,u) + Δcnt(v,u);
4. for each cnt(v,u) that is updated to 0 do
5. remove(u) := remove(u) ∪ {v};
6. while there exists u ∈ VQ such that remove(u) �= ∅ do
7. for each u′ ∈ pre(u) do
8. for each w ∈ remove(u) do
9. if w ∈ sim(u′) then
10. sim(u′) := sim(u′) \ {w};
11. for each w′ ∈ pre′(w) do
12. decrease cnt(w′,u′) by 1;
13. if cnt(w′,u′) = 0 then remove(u′) := remove(u′) ∪ {w′};
14. remove(u) := ∅;
15. Q(Fi) := sim;
Message segment:

Mi := {Δcnt(v,u) | u ∈ VQ, v ∈ Fi.O, cnt(v,u)changed};

Fig. 5. IncEval for graph simulation

refinement: if cnt(v,u) = 0, then no children of v can match u, and hence v
cannot match any query node u′ that is a parent of u in Q. The counter cnt on
v’s parents is then updated, which is used to identify more false matches. More
specifically, IncEval first updates cnt(v,u) on border nodes, by applying changes
to cnt(v,u) in the message. For each (u, v), if cnt(v,u) = 0, then there is no match
of u in post(v). Hence v cannot match any vertex in pre(u) in VQ. After false
match (u′, v) is spotted, cnt(w,u′) is reduced by 1 for all w in pre(v). This is
propagated through incoming edges iteratively, to identify more false matches.

Similar to the edge-cut version of IncEval in [16], one can verify that IncEval
is semi-bounded: its cost is decided by the size of updates Mi and changes to the
affected area necessarily checked by all incremental algorithms for Sim, rather
than by Fi. This guarantees the efficiency of IncEval for graph simulation.
(3) Assemble takes Q(G) =

⋃
i∈[1,n] Q(Fi), the union of all partial matches, i.e.,

the sim relation computed at each fragment Fi at the end of the process.
(4) Correctness of the GRAPE parallelization above is warranted by monotonic
updates to Ci.cnt and by the correctness of sequential algorithm gsim [27]. More
specifically, cnt(v,u) is initially the maximum count of possible matches in post(v)
with u after the process of PEval; it is monotonically reduced in the IncEval
process, until it reaches the number of true matches in post(v) with u.

3.3 Graph Connectivity

We next study graph connectivity, for computing connected components (CC).

Think Sequential, Run Parallel 13

Consider an undirected graph G. A subgraph Gs of G is a connected com-
ponent of G if (a) it is connected, i.e., for any pair (v, v′) of nodes in Gs, there
exists a path between v to v′, and (b) it is maximum, i.e., adding any node to Gs

makes the induced subgraph no longer connected. The CC problem is as follows.

– Input: An undirected graph G = (V,E,L).
– Output: All connected components of G.

The problem is known to be in O(|G|) time [9].
GRAPE parallelizes CC as follows. It picks a sequential CC algorithm as PEval.

At each fragment Fi, PEval computes its local connected components and creates
their ids. The component ids of the border nodes are exchanged with neighbor-
ing fragments. The (changed) ids are then used to incrementally update local
components in each fragment by IncEval, which simulates a “merging” of two
components whenever possible, until no more changes can be made.

Input: Fi = (Vi, Ei, Li).
Output: Q(Fi) consisting of v.cid for each v ∈ Vi.
Message preamble: /* candidate set Ci is Fi.I */

for each v ∈ Vi, an integer variable v.cid initialized as v’s id;
1. CC := DFS(Fi); /* use DFS to find the set of local CCs */
2. for each local component C ∈ CC do
3. add a new single root node vr;
4. vr.cid := min{v.cid | v ∈ C};
5. for each node v ∈ C do
6. link v to vr; v.root := vr; v.cid := vr.cid;
7. Q(Fi) := {v.cid | v ∈ Vi};
Message segment: Mi := {v.cid | v ∈ Fi.O};

faggr = min(v.cid);

Fig. 6. PEval for CC

(1) PEval declares an integer status variable v.cid for each node v in fragment
Fi, initialized as its node id. As shown in Fig. 6, PEval first uses a standard
sequential traversal DFS (Depth-First Search) to compute the local connected
components of Fi. For each local component C, (a) PEval creates a “root” node
vr carrying the minimum node id in C as vr.cid, and (b) links all the nodes in
C to vr, and sets their cid as vr.cid. These can be completed in one pass of the
edges of Fi via DFS. At the end of process, PEval sends {v.cid | v ∈ Fi.O} to
master P0. The set consists of the update parameters at fragment Fi.

At master P0, GRAPE maintains v.cid for each all v ∈ Fi.O (i ∈ [1,m]). It
updates v.cid by taking the smallest cid if multiple cids are received, by taking
min as faggr in the message segment of PEval. It groups the nodes with updated
cids into messages Mi, and sends Mi to worker Pi.

14 W. Fan et al.

(2) IncEval incrementally updates the cids of the nodes in each fragment Fi upon
receiving Mi, in parallel, as shown in Fig. 7. Observe that message Mi sent to
Pi consists of v.cid with updated (smaller) values. For each v.cid in Mi, IncEval
finds the root vr of v (line 3), and updates vr.cid to the smaller v.cid. IncEval
then propagates the changes from every updated root node vr to all nodes linked
to vr by changing their cids to vr.cid. At the end of the process, IncEval sends to
master P0 the updated cids of nodes in Fi.O just like in PEval.

One can verify that the incremental algorithm IncEval is bounded: it takes
O(|Mi|) time to identify the root nodes, and O(|AFF|) time to update cids by
following the direct links from the roots, where AFF consists of only those nodes
with their cid changed. Hence, it avoids redundant local traversal.

Input: Fi = (Vi, Ei, Li), partial result Q(Fi), message Mi (grouped cid).
Output: Q(Fi ⊕ Mi).
/* incremental connected component (pseudo-code) */
1. Δ := ∅;
2. for each v.cid ∈ Mi do /* v ∈ Fi.O */
3. vr := v.root;
4. if v.cid < vr.cid then
5. vr.cid := v.cid; Δ := Δ ∪ {vr};
6. for each vr ∈ Δ do /* propagate the change*/
7. for each v′ ∈ Vi linked to vr do
8. v′.cid := vr.cid;
9. Q(Fi) := {v.cid | v ∈ Vi};
Message segment: Mi := {v.cid | v ∈ Fi.O, v.cid decreased};

Fig. 7. IncEval for CC

(3) Assemble merges all the nodes that have the same cid in the same connected
component, and returns all the connected components.
(4) Correctness. The process terminates as the cids of the nodes are monotonically
decreasing by faggr until no changes can be made. Moreover, it correctly merges
two local connected components by propagating the smaller cid.

3.4 Minimum Spanning Tree

Consider a connected undirected graph G = (V,E,W), where for each edge
e = (v, v′), W (e) is a number specifying the cost to connect v and v′. A spanning
tree T of G is a subgraph of G that is a tree (i.e., an undirected graph in which
any two nodes are connected by exactly one path), and includes all the vertices
of V . A minimum weighted spanning tree T of G is a spanning tree of G such that
the total weight w(T) = Σe∈TW (e) is minimized. To simplify the discussion, we
assume that each edge e in G has a distinct cost W (e). It is known that a unique
MST exists in such a graph G [21]. The MST problem is stated as follows.

Think Sequential, Run Parallel 15

– Input: A graph G = (V,E,W) as described above.
– Output: The minimum spanning tree MST of G.

It is known that MST is in O(|E| + |V | log |V |) time.
GRAPE parallelizes MST as follows. It combines Prim’s sequential MST algo-

rithm [37] and Bor̊uvka’s sequential algorithm [35] as PEval: it adopts Prim’s
algorithm to generate initial partial MSTs (i.e., sub-trees of the final MST), and
uses Bor̊uvka’s algorithm to generate messages. For IncEval, it employs Bor̊uvka’s
algorithm alone to iteratively connect those partial MSTs, forming the final MST.
It should be remarked that marrying Prim’s and Bor̊uvka’s MST algorithms is
a common practice for efficiently computing MST in parallel (see e.g., [8]).
(1) PEval. As shown in Fig. 8, PEval takes Fi.O as Ci and declares, for each node
u in Ci, a triple u.m(u, tid, e) initialized as (u, u.id,nil), where u.id is the node
id of u. It generates a set T of partial MSTs of Fi excluding border nodes in
Fi.O, using Prim′, a minor revision of Prim’s algorithm to ensure such partial
MSTs are guaranteed to be sub-trees of the global MST of G (line 1). It then
treats each border node in Fi.O as a partial MST and includes them in T as well
(line 2). For each partial MST T in T , it maintains an index for T , denoted by
T.tid, using the minimum node id of nodes in T (line 3). Such tids will be used
to combine partial MSTs by IncEval. For convenience, we also write Tu as the
unique partial MST that contains u and u.tid as Tu.tid.

Fig. 8. PEval for MST

It then generates messages for border nodes by using Bor̊uvka’s algorithm
(lines 4–7). Following Bor̊uvka’s algorithm, it treats each MST in T as a “virtual”
node and expands each “virtual” node, say, MST T ∈ T , with the edge e adjacent

16 W. Fan et al.

to T that has the minimum weight among all edges connecting T and some other
MSTs in T (line 5). It merges the new edge e = (u, v) into T and updates the
MST index of T accordingly if u ∈ T and u is not a border node (line 6). When
u is a border node, PEval cannot decide whether the local minimum weighted
adjacent edge e is the global minimum edge in G for u, and hence PEval encodes
it together with u.tid in the message for u (line 7). For those border nodes whose
messages have not been generated in this way, a default message without the
adjacent edge (i.e., nil) is generated (lines 8–9).

The message for each border node u on all fragments will be gathered at
master P0. The minimum tid and the global minimum adjacent edge for u will
be deduced by faggr specified in the message segment of PEval.

Fig. 9. IncEval for MST

(2) IncEval. Following Bor̊uvka’s algorithm, IncEval iteratively merges partial
MSTs in T . Since each message (u0, tid0, e0) for border node u0 tells us that
(a) the minimum tid for partial MSTs containing u0 on all fragments is tid0,
and (b) the global minimum weighted adjacent edge for expanding u0 is e0,
IncEval connects the partial MSTs upon receiving messages in two steps. It first
updates tids of all local MSTs with tid0 so that all MSTs containing u0 on all
fragments are assigned with the same tid (lines 1–2). It further merges partial
MSTs on each fragment via the aggregated global minimum weighted adjacent
edge e0 in the message, and updates the tid accordingly (lines 3–5). It then
expands each updated MST in T and generates messages for border nodes in
the same way as PEval (lines 6–11). Note that by only connecting MSTs with
distinct tids (line 4) and using tids to choose minimum weighted adjacent edges
(line 8), IncEval ensures that no cycle is produced in the entire process of IncEval
iterations.

Think Sequential, Run Parallel 17

One can verify that the incremental IncEval is bounded: it takes O(|Mi|) time
to update the tids and merge partial MST s, and O(|AFF|) time to generate
messages, where AFF consists of border nodes in Fi.O with changed tids, and
hence, |AFF| is bounded by the changes of the output of IncEval.
(3) Assemble simply merges edges in the partial MSTs from all fragments and
returns all the edges, as the final MST.
(4) Correctness. The process terminates as the tid’s and the weights of selected
adjacent edges of border nodes for connecting MSTs are monotonically decreasing
by faggr until no changes can be made. Its correctness follows from the following:
(a) by Prim’s algorithm, PEval correctly computes MSTs of the subgraph con-
sisting of inner edges in each fragment; and (b) by Bor̊uvka’s algorithm, IncEval
correctly merges the MSTs computed by PEval into the final MST of G.

4 Experimental Study

Using real-life and synthetic graphs, we next evaluate the performance of GRAPE
for its (1) efficiency, (2) communication cost, and (3) scale-up. We compared
the performance of GRAPE with that of three state-of-the-art graph systems:
(a) Giraph [3] and synchronized GraphLabsync (PowerGraph [22]) under the bulk
synchronous parallel model (BSP), and (b) asynchronized GraphLabasync under
asynchronous model (AP) without global synchronization, when a worker has
immediate access to messages, allowing fast workers to move ahead 1.

Table 1. Real-life graph information

Graph Type | V | | E | Algorithm

DBpedia Knowledge graph 28 million 33.4 million For Sim, MST

traffic Road network 23 million 58 million For SSSP, CC, MST

Friendster Social network 65 million 1.8 billion For SSSP, CC, Sim

UKWeb Web graph 133 million 5 billion For SSSP, CC, Sim

Experimental setting. We start with our settings.
Graphs. We used four real-life graphs of different types, including DBpedia [1],
traffic [4], Friendster [2] and UKWeb [5], as shown in Table 1, such that each
algorithm was evaluated with at least two real-life graphs. We randomly assigned
weights to traffic, Friendster and UKWeb for testing SSSP and MST, and assigned
up to 50 node labels to unlabeled Friendster for testing Sim.

To test the scalability of GRAPE, we developed a generator to produce graphs
G = (V,E,L) controlled by the number |V | of nodes (up to 0.4 billion) and edges
|E| (up to 20 billion), with L drawn from an alphabet of 100 labels.

1 GraphLabsync and GraphLabasync run different modes of GraphLab (PowerGraph).

18 W. Fan et al.

Queries. We randomly generated queries for SSSP and Sim. (a) For SSSP, we
sampled 10 source nodes from each graph G used, such that each source node
can reach 90% nodes in G. We constructed an SSSP query for each node. (b)
We generated 20 pattern queries Q for Sim, controlled by |Q| = (|VQ|, |EQ|, LQ),
where |VQ| and |EQ| denote the number of nodes and edges, respectively, using
labels LQ drawn from the graphs experimented with.

It should be remarked that GRAPE is able to load a graph G once and
process query workload (i.e., a set of queries) posed on G, without reloading G.
In contrast, Giraph and GraphLab require the graph to be reloaded each time a
single query is issued, and loading is costly over large graphs. In favor of these
systems, we exclude the loading cost when reporting the experimental results.

 1

 20

 400

 8000

64 96 128 160 192

T
im

e
(s

ec
on

ds
)

GRAPE
Giraph

Graphlab-sync
Graphlab-async

(a) SSSP (traffic)

 10

 100

 1000

 10000

64 96 128 160 192

T
im

e
(s

ec
on

ds
)

GRAPE
Giraph

Graphlab-sync
Graphlab-async

(b) SSSP (Friendster)

 1

 10

 100

 1000

64 96 128 160 192

T
im

e
(s

ec
on

ds
)

GRAPE
Giraph

Graphlab-sync
Graphlab-async

(c) SSSP (UKWeb)

 0.05

 1

 20

 400

 8000

64 96 128 160 192

T
im

e
(s

ec
on

ds
)

GRAPE
Giraph

Graphlab-sync
Graphlab-async

(d) CC (traffic)

 10

 100

 1000

64 96 128 160 192

T
im

e
(s

ec
on

ds
)

GRAPE
Giraph

Graphlab-sync
Graphlab-async

(e) CC (Friendster)

 1

 10

 100

 1000

64 96 128 160 192

T
im

e
(s

ec
on

ds
)

GRAPE
Giraph

Graphlab-sync
Graphlab-async

(f) CC (UKWeb)

 10

 100

 1000

64 96 128 160 192

T
im

e
(s

ec
on

ds
)

GRAPE
Giraph

Graphlab-sync
Graphlab-async

(g) Sim (Friendster)

 0.1

 1

 10

 100

64 96 128 160 192

T
im

e
(s

ec
on

ds
)

GRAPE
Giraph

Graphlab-sync
Graphlab-async

(h) Sim (DBpedia)

 1

 10

 100

 1000

64 96 128 160 192

T
im

e
(s

ec
on

ds
)

GRAPE
Giraph

Graphlab-sync
Graphlab-async

(i) Sim (UKWeb)

 1

 20

 400

64 96 128 160 192

T
im

e
(s

ec
on

ds
)

GRAPE
Giraph

(j) MST (traffic)

 20

 400

64 96 128 160 192

T
im

e
(s

ec
on

ds
)

GRAPE
Giraph

(k) MST (DBpedia)

 0.4

 0.6

 0.8

 1

16 32 64 128 256

T
im

e
(R

at
io

)

SSSP
WCC

Sim
MST

(l) Scale up of GRAPE

Fig. 10. Performance Evaluation

Think Sequential, Run Parallel 19

Algorithms. We evaluated the PIE programs developed in Sect. 3 for SSSP, CC,
Sim and MST on GRAPE. We used “default” code provided by Giraph and
GraphLab when it was available. Otherwise, we made our best efforts to develop
and optimize the algorithms on the competitor systems if possible (see below).

We used the degree-based hashing (DBH) [48] algorithm to partition graphs
as the default graph partition strategy. It was a state-of-the-art vertex-cut graph
partition strategy. To improve the locality of partition, we first applied Xtra-
PuLP [43] to graphs, and then took its output as the input of DBH.

We deployed these systems on an HPC cluster, and used servers with 16
cores of 2.40GHz, 128GB memory. Each core is treated as a worker. We ran each
experiment 5 times, and the average of results is reported here.

Experimental results. We next report our findings.

Exp-1: Efficiency. We first evaluated the efficiency of GRAPE by varying the
number n of workers used, from 64 to 192, compared with Giraph, GraphLabsync
and GraphLabasync when possible. For SSSP and CC, we experimented with real-
life graphs traffic, Friendster and UKWeb; for Sim, we used Friendster, DBpedia
and UKWeb; and for MST, we used traffic and DBpedia, based on applications of
these algorithms in transportation networks, knowledge bases, Web and social
graph analysis. We do not report times that exceeded 20000 s.
(1) SSSP. We compared the efficiency of GRAPE for SSSP with that of Giraph,
GraphLabsync and GraphLabasync by using “default” code provided by these sys-
tems. The results are reported in Figs. 10(a)–(c), which tell us the following.

(a) GRAPE consistently outperforms these systems. Over traffic (resp. Friendster
and UKWeb), it is on average 15449 (resp. 21.5 and 310.8), 6261 (resp. 2.0 and
438.5) and 4026.7 (resp. 10.0 and 1749) times faster than Giraph, GraphLabsync
and GraphLabasync, respectively. Note that the improvement of GRAPE on traffic
is far more significant than on Friendster and UKWeb. This is because Giraph,
GraphLabsync and GraphLabasync adopt vertex-centric programming, which takes
more “rounds” to converge on graphs with larger diameters. For instance, on
Friendster, Giraph takes 36 rounds to converge, similarly for GraphLabsync, com-
pared with 21 rounds by GRAPE. In contrast, on traffic, a graph with larger
diameter, Giraph and GraphLabsync take 10789 and 10778 rounds, respectively,
while GRAPE takes 31 rounds. These verify the efficiency of GRAPE as a parallel
engine for graph traversal algorithms such as SSSP.

(b) GRAPE is on average 2.0, 2.2 and 2.6 times faster on traffic, Friendster and
UKWeb, respectively, when the number n of workers varies from 64 to 192. That
is, the more workers are used, the faster SSSP runs on GRAPE.
(2) CC. We evaluated GRAPE versus Giraph, GraphLabsync and GraphLabasync
using their “default” code for CC. As shown in Figs. 10(d)–(f) over traffic,
Friendster and UKWeb, respectively, (a) GRAPE substantially outperforms
these systems. When n = 192, GRAPE is on average 28787, 10960 and 3957 times
faster than Giraph, GraphLabsync and GraphLabasync over these real-life graphs,
respectively. (b) GRAPE scales well with the number of workers used: it is on aver-
age 2.3 times faster when n varies from 64 to 192.

20 W. Fan et al.

(3) Sim. Fixing |Q| = (6, 10), i.e., patterns Q with 6 nodes and 10 edges, we
evaluated GRAPE versus Giraph, GraphLabsync and GraphLabasync for Sim. We
developed Sim algorithms for the other platforms with our best efforts since
neither Giraph nor GraphLab provides code for Sim. As shown in Figs. 10(g), (h)
over Friendster, DBpedia and UKWeb, respectively, (a) GRAPE outperforms other
systems. When n = 192, GRAPE is on average 195, 10.5 and 36.0 times faster
than Giraph, GraphLabsync and GraphLabasync over the three graphs, respectively.
(b) On average GRAPE is 2.4 times faster when n varies from 64 to 192.
(4) MST. We evaluated the efficiency of GRAPE for MST versus Giraph, with
code for MST from [25]. We did not compare with GraphLabsync and GraphLabasync
since as observed in [26], MST “cannot be implemented efficiently on GraphLab
because GraphLab does not fully support graph mutations”, e.g., deletions of
edges and vertices; such mutations are needed for an efficient implementation
of MST. As shown in Figs. 10(j), (k) over traffic and DBpedia, respectively, (a)
GRAPE is on average 502.7 (resp. 35.75) times faster than Giraph on traffic (resp.
DBpedia), when n = 192. (b) GRAPE is on average 2.1 times faster when n is
increased from 64 to 192, i.e., GRAPE makes good use of parallelism.

Table 2. Communication cost (MB)

Giraph GraphLabsync GraphLabasync GRAPE

SSSP

traffic 1426920 4016909 4548842 1.2

Friendster 101758 112673 377529 11840

UKWeb 89015 297179 1514413 152.6

CC

traffic 61419 266594 579265 1.66

Friendster 74864 100087 227475 11000

UKWeb 227754 202706 810039 112.9

Sim

Friendster 15901 114311 10149 1182

DBpedia 871 7213 12990 7.8

UKWeb 24158 222290 310658 4.3

MST

traffic 9300 / / 29.6

DBpedia 2701 / / 1119

Exp-2: Communication. We next report the communication costs of the sys-
tems. Different systems measure communication costs in different ways because
each system makes use of its own implementation of message blocks and pro-
tocols [26]. For a fair comparison, we monitored the system file /proc/net/dev

Think Sequential, Run Parallel 21

to report total bytes of message sent by each machine, following the practice
of [26]. This metric reveals consistent results with better insights.

The communication costs over real-life graphs are reported in Table 2, when
192 workers were used. These results tell us the following. For all these algo-
rithms, GRAPE incurs less communication costs than the other systems. On aver-
age GRAPE ships 3.9%, 3.5%, and 1.0% of data shipped by Giraph, GraphLabsync
and GraphLabasync for SSSP, 4.9%, 3.6% and 2.4% for CC, and 2.8%, 0.38%
and 0.41% for Sim, respectively. For MST, the communication cost of GRAPE
accounts for 20.5% of Giraph. In particular, GRAPE ships only 0.2%, 0.0003% and
0.00016% of data shipped by Giraph, GraphLabsync and GraphLabasync on traffic.
This is because GRAPE converge in far less rounds than vertex-centric systems.
Among other things, GRAPE reduces communication costs by employing incre-
mental IncEval, which ships only changed values of update parameters.

Exp-3 Scale-up of GRAPE. As observed in [34], the speed-up of a distributed
system may degrade when using more workers. Thus we evaluated the scale-up
of GRAPE, which measures the degradation of speed-up when both the size of
graph G = (|V |, |E|) and the number n of workers increase proportionally. We
varied n from 16 to 256, and for each n, deployed GRAPE over a synthetic graph
of size varied from (25M, 1.25B) to (0.4B, 20B), proportional to n.

As reported in Fig. 10(l) for SSSP, CC, Sim and MST, respectively, GRAPE
preserves a reasonable scale-up, all above 0.8. We did not test with single-thread
since many of the graphs are too large to fit in a single machine.

Summary. From the experimental study we find the following. (1) GRAPE
consistently outperforms the state-of-the-art systems. Over real-life graphs and
with 192 workers, compared to Giraph, GraphLabsync and GraphLabasync, GRAPE
is on average (a) 5260, 2233 and 1940 times faster for SSSP, (b) 28787, 10960
and 3957 times faster for CC, and (c) 195, 10.5 and 36.0 times faster for Sim,
respectively. It is 7187 times faster than Giraph for MST (as remarked earlier,
GraphLab does not efficiently support MST). (2) GRAPE speeds up SSSP, CC,
Sim and MST on average 2.3, 2.3, 2.4 and 2.1 times, respectively, when the
number of workers n varies from 64 to 192. (3) On average, its communication
costs account for 2.8%, 3.7%, 1.2% and 20.5% of the other systems for SSSP, CC,
Sim and MST, respectively. (4) GRAPE has a reasonable scale-up.

These results are consistent with their counterparts reported in [19] under
edge-cut partition. Compared to GRAPE under edge-cut partition, GRAPE under
vertex-cut is on average 0.91 times slower for SSSP but is 1.21 times faster for CC.
It incurs 79% and 56% of the communication cost under edge-cut for SSSP and
CC, respectively. That is, GRAPE has comparable performance under vertex-
cut and edge-cut for SSSP and CC. The PIE program for Sim under vertex-
cut (Sect. 3.2) is slightly different from its counterpart under edge-cut [19]. It
employs a different version of IncEval, which has to synchronize the status of
border nodes. As a result, the PIE program for SIM under vertex-cut is 0.75
times slower and incurs on average 4 times more communications cost than its
edge-cut counterpart. As remarked earlier, MST was not studied in [19].

22 W. Fan et al.

5 Concluding Remarks

The main objective of GRAPE is to simplify parallel programming for graph
computations, from think parallel to think sequential. It allows users to devise
existing sequential graph algorithms (with declarations of update parameters and
an aggregate function; see Sect. 2.2), and parallelizes the computation across a
cluster of machines. It reduces the total cost of ownership and makes paral-
lel graph computations accessible to companies that cannot afford experienced
developers who are able to write, debug and analyze parallel graph algorithms.
Moreover, GRAPE guarantees to converge at correct answers under a general
condition as long as it is provided with correct single-machine graph algorithms,
and it inherits optimization strategies developed for sequential graph algorithms.

As proof of concept (PoC), we have deployed and evaluated GRAPE at three
companies. In a large online payment company, GRAPE serves as the graph com-
puting infrastructure supporting its financial risk control system. The company
employs graphs in which vertices denote customers, and edges represent transac-
tions and associations with other customers; it needs to evaluate the customers
and assign a credit. The company used to deploy its system on Neo4j + Hive +
Spark. However, none of the systems can process the tasks alone; the workflow
spans three systems and takes 15 minutes on average for a single query. In con-
trast, GRAPE provides a unified solution for this scenario. It supports real-time
ad-hoc queries and offline complex score computation, without the need to cou-
ple with other systems. Moreover, GRAPE improves the performance of financial
risk analyses: it is 9.0 times faster in graph batch ingesting and streaming, 128.8
times faster in association analysis, and is faster by up to 5 orders of magnitude
in batch processing of real-life business applications.

GRAPE also works well for other applications. We have also carried out PoC
at a company that provides big data services, and at one of the largest telecom-
munication equipment and service companies in the world. The results are con-
sistent and very promising: GRAPE is able to perform a number of tasks that
are not supported by the state-of-the-art graph systems, and for jobs that can
also be run at other systems, it substantially outperforms the existing systems.

To the best of our knowledge, GRAPE is the first system that is able to
parallelize existing sequential graph algorithms as a whole, without recasting
the algorithms into a new model. Prior work on automated parallelization has
focused on the instruction or operator level [36,41] by breaking dependencies via
symbolic and automate analyses. There has also been work at a data partition
level [51], to perform multi-level partition (“parallel abstraction”) and adapt
locality-optimized access to different parallel abstraction. In contrast, GRAPE
does not require users to revise the logic of the existing algorithms. It makes
parallel computation accessible to end users, while [36,41,51] target experienced
developers of parallel algorithms. There have also been tools for translating
imperative code to MapReduce, e.g., word count [38]. GRAPE advocates a differ-
ent approach, by parallelizing the runs of sequential graph algorithms to benefit
from data-partitioned parallelism, without translating the algorithms.

Think Sequential, Run Parallel 23

This paper extends [19] in the following. (a) We develop PIE algorithms for
SSSP, CC and Sim under vertex-cut, demonstrating the adaptability of GRAPE to
vertex-cut from edge-cut [19]. (b) We provide a new PIE algorithm for MST. (c)
We conduct experiments using larger graphs, and demonstrate the performance
of GRAPE under vertex-cut compared to its counterpart under edge-cut [19].

As a topic for future work, we are developing a new parallel model that sub-
sumes BSP, AP and SSP (Stale Synchronous Parallel model [28] for machine
learning with parameter servers [31,49]) as special cases. We are currently
extending GRAPE to support the new model such that it is able to automatically
switch among these models at different stages in a single execution, to optimize
performance. Another topic is to support streaming updates when answering
continuous queries for, e.g., fraud detection, beyond static graphs assumed by
existing graph systems. GRAPE is well positioned to accomplish this given that
incremental computation is built in its parallel computation model.

Acknowledgments. The paper is a tribute to Professor Chaochen Zhou, who took
Fan as an MSc student 30 years ago, despite pressure from a powerful person, whom
Fan confronted to get justice done for his late former MSc adviser. The authors are sup-
ported in part by 973 Program 2014CB340302, ERC 652976, EPSRC EP/M025268/1,
NSFC 61421003, Beijing Advanced Innovation Center for Big Data and Brain Comput-
ing, Shenzhen Peacock Program 1105100030834361, and Joint Research Lab between
Edinburgh and Huawei.

References

1. DBpedia. http://wiki.dbpedia.org/Datasets
2. Friendster. https://snap.stanford.edu/data/com-Friendster.html
3. Giraph. http://giraph.apache.org/
4. Traffic. http://www.dis.uniroma1.it/challenge9/download.shtml
5. UKWeb. http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/, 2006
6. Acar, U.A.: Self-adjusting computation. Ph.D thesis, CMU (2005)
7. Andreev, K., Racke, H.: Balanced graph partitioning. Theory Comput. Syst. 39(6),

929–939 (2006)
8. Bader, D.A., Cong, G.: Fast shared-memory algorithms for computing the mini-

mum spanning forest of sparse graphs. J. Parallel Distrib. Comput. 66(11), 1366–
1378 (2006)

9. Bang-Jensen, J., Gutin, G.Z.: Digraphs: Theory, Algorithms and Applications.
Springer, Berlin (2008)

10. Baudet, G.M.: Asynchronous iterative methods for multiprocessors. J. ACM 25(2),
226–244 (1978)

11. Bertsekas, D.P.: Distributed asynchronous computation of fixed points. Math. Pro-
gram. 27(1), 107–120 (1983)

12. Chazan, D., Miranker, W.: Chaotic relaxation. Linear Algebr. Appl. 2(2), 199–222
(1969)

13. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
Commun. ACM 51(1) (2008)

14. Fan, W., Hu, C., Tian, C.: Incremental graph computations: doable and undoable.
In: SIGMOD (2017)

http://wiki.dbpedia.org/Datasets
https://snap.stanford.edu/data/com-Friendster.html
http://giraph.apache.org/
http://www.dis.uniroma1.it/challenge9/download.shtml
http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/

24 W. Fan et al.

15. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y.: Graph pattern matching: from
intractability to polynomial time. In: PVLDB (2010)

16. Fan, W., Wang, X., Wu, Y.: Incremental graph pattern matching. TODS 38(3)
(2013)

17. Fan, W., Wang, X., Wu, Y., Xu, J.: Association rules with graph patterns. PVLDB
8(12), 1502–1513 (2015)

18. Fan, W., Xu, J., Wu, Y., Yu, W., Jiang, J.: GRAPE: parallelizing sequential graph
computations. PVLDB 10(12), 1889–1892 (2017)

19. Fan, W., et al.: Parallelizing sequential graph computations. In: SIGMOD (2017)
20. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network

optimization algorithms. JACM 34(3), 596–615 (1987)
21. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-

weight spanning trees. TOPLAS 5(1), 66–77 (1983)
22. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: dis-

tributed graph-parallel computation on natural graphs. In: USENIX (2012)
23. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.:

GraphX: graph processing in a distributed dataflow framework. In: OSDI (2014)
24. Grujic, I., Bogdanovic-Dinic, S., Stoimenov, L.: Collecting and analyzing data from

E-Government Facebook pages. In: ICT Innovations (2014)
25. Han, M., Daudjee, K.: Giraph unchained: barrierless asynchronous parallel execu-

tion in pregel-like graph processing systems. PVLDB 8(9), 950–961 (2015)
26. Han, M., Daudjee, K., Ammar, K., Ozsu, M.T., Wang, X., Jin, T.: An experimental

comparison of Pregel-like graph processing systems. VLDB 7(12) (2014)
27. Henzinger, M.R., Henzinger, T., Kopke, P.: Computing simulations on finite and

infinite graphs. In: FOCS (1995)
28. Ho, Q., et al.: More effective distributed ML via a stale synchronous parallel param-

eter server. In: NIPS, pp. 1223–1231 (2013)
29. Jones, N.D.: An introduction to partial evaluation. ACM Comput. Surv. 28(3)

(1996)
30. Kim, M., Candan, K.S.: SBV-Cut: vertex-cut based graph partitioning using struc-

tural balance vertices. Data Knowl. Eng. 72, 285–303 (2012)
31. Li, M., et al.: Parameter server for distributed machine learning. In: NIPS Work-

shop on Big Learning (2013)
32. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.:

Distributed graphlab: a framework for machine learning in the cloud. PVLDB
5(8) (2012)

33. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: SIGMOD
(2010)

34. McSherry, F., Isard, M., Murray, D.G.: Scalability! but at what cost? In: HotOS
(2015)

35. Nesetril, J., Milková, E., Nesetrilová, H.: Otakar boruvka on minimum spanning
tree problem. Discret. Math. 233(1–3), 3–36 (2001)

36. Pingali, K., et al.: The tao of parallelism in algorithms. In: PLDI (2011)
37. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst.

Tech. J. 36(6) (1957)
38. Radoi, C., Fink, S.J., Rabbah, R.M., Sridharan, M.: Translating imperative code

to mapreduce. In: OOPSLA (2014)
39. Ramalingam, G., Reps, T.: An incremental algorithm for a generalization of the

shortest-path problem. J. Algorithms 21(2), 267–305 (1996)
40. Ramalingam, G., Reps, T.: On the computational complexity of dynamic graph

problems. TCS 158(1–2) (1996)

Think Sequential, Run Parallel 25

41. Raychev, V., Musuvathi, M., Mytkowicz, T.: Parallelizing user-defined aggrega-
tions using symbolic execution. In: SOSP (2015)

42. Shao, B., Wang, H., Li, Y.: Trinity: a distributed graph engine on a memory cloud.
In: SIGMOD (2013)

43. Slota, G.M., Rajamanickam, S., Devine, K., Madduri, K.: Partitioning trillion-edge
graphs in minutes. In: IPDPS (2017)

44. Tian, Y., Balmin, A., Corsten, S.A., Shirish Tatikonda, J.M.: From “think like a
vertex” to “think like a graph”. PVLDB 7(7), 193–204 (2013)

45. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

46. Valiant, L.G.: General purpose parallel architectures. Handbook of Theoretical
Computer Science, vol. A (1990)

47. Wang, G., Xie, W., Demers, A.J., Gehrke, J.: Asynchronous large-scale graph pro-
cessing made easy. In: CIDR (2013)

48. Xie, C., Yan, L., Li, W.-J., Zhang, Z.: Distributed power-law graph computing:
theoretical and empirical analysis. In: NIPS (2014)

49. Xing, E.P., Ho, Q., Dai, W., Kim, J.K., Wei, J., Lee, S., Zheng, X., Xie, P., Kumar,
A., Petuum, YYu.: A new platform for distributed machine learning on big data.
IEEE Trans. Big Data 1(2), 49–67 (2015)

50. Yan, D., Cheng, J., Lu, Y., Ng, W.: Blogel: a block-centric framework for dis-
tributed computation on real-world graphs. PVLDB 7(14), 1981–1992 (2014)

51. Zhou, Y., Liu, L., Lee, K., Pu, C., Zhang, Q.: Fast iterative graph computation
with resource aware graph parallel abstractions. In: HPDC (2015)

Concurrency: Handling Interference
Formally

Cliff B. Jones(B)

School of Computing, Newcastle University, Newcastle upon Tyne, UK
cliff.jones@ncl.ac.uk

Abstract. Interference between threads makes it difficult to design con-
current programs. Faced with such a difficulty, it is reasonable to seek
clarification and leverage from formality. Whereas powerful abstractions
have been found for sequential programming languages, the inherent
operational nature of interference infects attempts to describe it for-
mally. Model-oriented (i.e. operational and denotational) and property-
oriented (mainly axiomatic) descriptions of the semantics of program-
ming languages that support shared-variable concurrency look totally
different. This paper identifies the source of the challenge as accommo-
dating interference and highlights some important connections between
the approaches.

1 Introduction

Frighteningly many high level programming languages have been invented over
the relatively short history of computer science. Some of the thousands of lan-
guages genuinely offer new concepts (e.g. objects in Simula [DMN68]); all too
often new languages are marred by failure on the parts of their designers to
learn from previous successes and failures; almost invariably new features inter-
act in unpredictable and confusing ways with previously understood concepts.
In only a handful of cases has an explicit use of formalism informed the design
of a language. More often, the formalist is faced with the unenviable task of
post facto formalisation and finding abstractions that model undesirable feature
interactions.

The focus of this paper is on those languages that allow concurrent threads
to access and change shared variables. Here again, there is a significant diversity
of ways in which concurrency is initiated and controlled. A central challenge is
the interference that is the inevitable result of shared-variable concurrency. The
interest in this paper is on approaches to the formal description of programming
languages that admit interference. The description task is to characterise exactly
the range of possible outcomes of executing a program. It proves difficult to
achieve this without becoming concrete about low-level details of the language
in question.

The near-standard taxonomy of formal semantic methods distinguishes oper-
ational, denotational and axiomatic approaches (with the more recent addition
c© Springer Nature Switzerland AG 2018
C. Jones et al. (Eds.): Zhou-Festschrift, LNCS 11180, pp. 26–43, 2018.
https://doi.org/10.1007/978-3-030-01461-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01461-2_2&domain=pdf

Concurrency: Handling Interference Formally 27

of algebraic semantics). It is sometimes useful to think of operational and deno-
tational approaches as model-oriented and to group axiomatic and algebraic
approaches as property-oriented.1 This grouping reflects the fact that the former
pair use an explicit notion of state (albeit abstract) in their descriptions whereas
property-oriented descriptions attempt to eschew explicit states.

Rather than contribute yet another formal semantic approach, the objective
here is to discuss in detail how the various approaches record the meaning of
interfering threads. By considering the underlying concepts of an approach (and
getting behind their syntactic details), it is possible to observe deep connections
and throw the actual differences into sharper relief.

As an indication of the challenge of interference, consider the possible exe-
cutions of Program 1 that has two threads each of which consist of a sequence
of assignment statements:

(x ← 1; x ← x + 3) || (x ← 2; x ← x ∗ 2) (1)

For now, it is assumed that assignments are executed as atomic statements—
finer granularity of merges is addressed in Sect. 2.2 below. There are six different
ways in which the threads can merge in Program 1; depending on which happens,
the final value of x ′ can be any value in the set {4, 5, 7, 8, 10}

Program 1 is not likely to be useful but the interference can actually be at
least as complicated in realistic examples. The following code is an implementa-
tion of an example taken from [Owi75]—the task is to find the lowest index (t)
to a vector of values (v , indexed from 1..N) such that p(v(t)) holds—executing
two2 parallel threads has the potential to reduce the execution time:

var ot , et ← N + 1,N + 1;Ü
var oc ← 1;
while oc < min(ot , et) do

if p(v(oc)) then ot ← oc
else oc ← oc + 2

var ec ← 2;
while ec < min(et , ot) do

if p(v(ec)) then et ← ec
else ec ← ec + 2

ê
;

t ← min(ot , et)

(A version of the above in which both threads can assign to t has a write/write
data race on t which would require messy locking. Reifying t to min(ot , et)
removes the need for locking but leaves interference between –say– writing ot in
one thread and it being read in the while test of the other thread. The proof in
[HJ18] does not make unrealistic atomicity assumptions.)

1 A wider review of the challenges that arise in writing formal semantic descriptions
is given in [JA17]; more historical context is given in [JA16] (which will appear in
the proceedings of HaPoP-16 as [AJ18]).

2 Any partition of {1..N } will serve—choosing to split odd/even indexes is notationally
convenient and abbreviates the presentation.

28 C. B. Jones

2 Model-Oriented Formal Semantics

Underlying a model-oriented semantics is the choice of the semantic objects in
terms of which the effect of a computation is expressed. For a basic language,
the states might be simple associations of values with the names of identifiers:3

Σ = Id m−→ N

and the denotations of statements would be functions from states to states:

Σ → Σ

For a sequential language without concurrency, the meaning function (M)
would map assignments (or sequences thereof) to such denotations:

M :Assn∗ → (Σ → Σ)

A commonly used argument for denotational semantics is that it is composi-
tional in the sense that the meaning of a composite construct C in the language is
given (by a homomorphic function) in terms of the meanings of the constituents
of C .

M [[([s] � rl)]] � M [[s]] ◦ M [[rl]]

The majority of the discussion of model-oriented semantics below is based
on the operational approach; Sect. 2.4 briefly reviews the additional issues seen
in denotational semantics.

For most sequential language constructs, the differences between a denota-
tional and a Structural Operational Semantics (SOS) [Plo81] are small: one could
say they differ only by a Lambda abstraction (on Σ). Compare:

M [[mk -Assn(lhs, rhs)]] � λσ · σ † {lhs �→ eval(rhs, σ)}

with:

exec :Assn × Σ → Σ

exec(mk -Assn(lhs, rhs), σ) � σ † {lhs �→ eval(rhs, σ)}

Gordon Plotkin had made fundamental contributions to domain theory
[Plo76] before he went on sabbatical to Aarhus in 1981 (see Sect. 2.4). It is
therefore interesting that he took the decision to base his lectures on opera-
tional semantics. His 1981 Aarhus notes [Plo81] were republished as [Plo04b]
and he wrote an accompanying reflection [Plo04a].4

3 The use of VDM notation will hopefully present no difficulty: it has been widely used
for decades and is the subject of an ISO standard; one useful reference is [Jon90].

4 At the time Plotkin’s useful commentary was being written, the current author was
writing [Jon03b] and drafts were exchanged between Plotkin and Jones that enriched
the cross references.

Concurrency: Handling Interference Formally 29

A big step (or natural) SOS rule for sequences of assignments can still be
viewed as compositional in some sense:

execl :Assn∗ × Σ → Σ

execl([s] � rl , σ) � execl(rl , exec(s, σ))

The crucial difference between the two model-oriented approaches is that proofs
about operational semantics nearly always revolve around induction over the
computation whereas reasoning about denotational descriptions of semantics
can be conducted at a higher level of abstraction. The material in the remainder
of this section casts doubt on whether this advantage for denotational semantics
survives the challenge of concurrency.

2.1 SOS of Concurrency

The operational semantics in the preceding section is presented as functions; the
crucial step made in [Plo81] was to simplify the move to a relational view of
semantics by writing SOS descriptions as rules of inference.

For a language whose programs contain two threads of assignments:
Program :: sl1 : Assn∗

sl2 : Assn∗

Using the relations:

stl−→:P((Stmt∗ × Σ) × Σ)
nd−→:P((Program × Σ) × Σ)

the following two SOS rules:

(sl1, σ) stl−→ σ′

(sl2, σ′) stl−→ σ′′

(sl1 || sl2, σ) nd−→ σ′′

(sl2, σ) stl−→ σ′

(sl1, σ′) stl−→ σ′′

(sl1 || sl2, σ) nd−→ σ′′

introduce non-determinacy but admit only two of the possible outcomes of Pro-
gram 1. In order to express all of the results identified in Sect. 1, it is necessary to
have a relation over configurations that pair the text remaining to be executed
with a state:

par−→:P((Program × Σ) × (Program × Σ))

the SOS rules then become:

30 C. B. Jones

(s1, σ) st−→ σ′

([s1] � rl1 || sl2, σ)
par−→ ((rl1 || sl2), σ′)

(s2, σ) st−→ σ′

(sl1 || [s2] � rl2, σ)
par−→ ((sl1 || rl2), σ′)

these form a small step semantics. It is important to look carefully at what is
going on in such a semantic description: not only is it the case that either rule
matches a program in which both threads are non-empty (as is the case initially
in Program 1); it is also true that the pattern matching with the program part of
the configuration reconsiders the whole program at each step of the computation.

Section 2.3 contains some comments about the evolution of research into
operational semantics but it is worth noting here that Plotkin’s SOS rules:

– make it explicit that the semantics for non-determinacy must be a relation;
and

– neatly factor out the non-determinism to the selection of which semantic rule
is chosen.

The second point leads to a much more readable description than would
attempts to use:

exec:Stmt∗ × Σ → Σ-set

2.2 Granularity

The task of the person describing semantics of a language is to delimit exactly the
set of permissible outcomes of executing a text in that language. Investigating
a finer level of atomicity (than assignments) makes it possible to reinforce and
perhaps clarify some points about model-oriented semantics and interference.

The assumption that assignment statements can be executed atomically
(e.g. in Program 1) is unrealistic. Any compiler will map each assignment state-
ment to a series of load and store instructions and the most likely unit of atom-
icity at the machine level would be access and change of a machine word. A com-
piler could in theory generate something like semaphores that achieved atomicity
at the assignment level but the code would be inefficient.5

At the finer level of granularity, Program 1 could deliver a state where x ′ = 2
because execution of x ← x ∗ 2 could effectively be interrupted between the
right hand access to x and the left hand change—making this explicit with a
temporary variable t the computation could be:

x ← 2; x ← 1; t ← x ; x ← x + 3; x ← t ∗ 2 (2)

5 The rule that is erroneously referred to as Reynold’s rule states that there should
be only one shared variable in any assignment—this does not provide a general
semantics.

Concurrency: Handling Interference Formally 31

Leaving aside the possibility of side effects caused by function calls, the
semantics of expression evaluation would need to contain rules such as:

e ∈ Id
(e, σ) ex−→ (σ(e), σ)

v1, v2 ∈ Z

(mk -Addition(v1, v2), σ) ex−→ (v1 + v2, σ)

It is important to realise that, after any variable de-reference to obtain its value,
the tree of the remaining text is updated by replacing the identifier with the
value; then the whole text in the configuration is available for the next match.

This semantics is now very much small step. But that is precisely what is
required to explain realistic interference.

There is also an interesting contrast that can be made: there is a distinction
between the non-determinism that results from (assignment) statement execu-
tion and expression evaluation:

– at the statement level, the state can be changed and it is necessary to carry
forward both the remaining text and the current state (in the configuration);

– at the expression level, the effect of accessing a variable is represented by
substituting the value in place of the identifier which caused its access.

2.3 Operational Semantics: A Little Context

As indicated in Sect. 1, the main purpose of the current paper is to investi-
gate technical issues around concurrency; although historical material has been
reviewed at some length elsewhere [JA16,JA17], a brief review of some ear-
lier attempts to provide operational semantic descriptions helps clarify technical
issues.

A key contributor to formal semantics was John McCarthy. The paper
[McC66] that he presented at the 1964 IFIP Working Conference in Baden-
bei-Wien on Formal Language Description Languages6 is a useful checkpoint:

– it argues that an abstract syntax is a better basis for recording semantics
than the more widely known concrete syntax (e.g. as given by BNF);

– it provides an operational semantics for “micro-ALGOL”.

McCarthy’s choice of features for inclusion in his subset of ALGOL is inter-
esting. He could have chosen assignment, sequential composition, conditional
and while loops; this would have illustrated most of what he wanted to show
and would have had a more elegant and tractable semantics. In fact, he included
labels and jumps. This choice necessitates keeping the whole program text plus
a form of program counter in the state.

6 The proceedings [Ste66] took two years to appear but are invaluable partly because
they include transcripts of the recorded discussions.

32 C. B. Jones

The group at the IBM Vienna Laboratory always acknowledged (e.g. in
[LW69])7 McCarthy as providing a key influence on their efforts to formalise
the semantics of the PL/I language using their VDL (operational) approach.
PL/I was, of course, a vastly more challenging object of study:

– PL/I is a huge language!
– it certainly includes non-determinacy on the order of expression evaluation

(complicated by the fact that side-effects can be caused by invoking functions)
– there is even deliberate under specification of how composite values are

mapped onto machine storage—this led Hans Bekič and Kurt Walk to devise
a form of axiomatic storage model [BW71]

– concurrency comes about from an involved Tasking feature
– PL/I also provides a complex exception mechanism

Although PL/I is entirely different in scale from Micro-ALGOL, one can see
the complex control tree of VDL descriptions as an extension of McCarthy’s way
of handling jumps: control trees in VDL models retain the entire active text of a
program being executed. In the case of concurrent execution, the single program
counter is replaced by the rule that any leaf of the tree is available as the next
step of a computation.

An even more interesting comparison is between VDL and SOS. Superficially,
definitions in these two styles look totally different: VDL descriptions are written
as though the semantics was a (non-deterministic) function; as seen in Sect. 2.1,
the inference rules of SOS descriptions succeed in allowing non-determinism
whilst retaining a natural reading. But underneath this notational difference,
both styles are representing the text that still has to be executed. There is the
oft-repeated argument that it was unfortunate that VDL descriptions used a
grand state approach8 but this does not really set SOS apart from VDL because
configurations in SOS descriptions actually pair the text with the state and
appear on both sides of the semantic relation. Even the worry that the control
tree could be changed in arbitrary ways can be reproduced with configurations
(in neither case would it be wise to do this without good reason).

2.4 Denotational Semantics and Interference

The powerful abstraction of using functions from states to states (see [Sto77]) as
denotations of sequential programs does not cope with interference. The clearest
connection with operational semantics is the use of resumptions that embody a
step-by-step behaviour.

An additional issue that becomes more delicate with concurrency is the deno-
tation of program constructs that fail to terminate.

7 They also always mentioned Cal Elgot and Peter Landin.
8 The adverse effects on proofs of putting unnecessary things in the state are examined

in [JA16, §3].

Concurrency: Handling Interference Formally 33

Denotations that are sets of traces are used for process algebras. It is, how-
ever, worth emphasising that process algebras do not avoid the problem of inter-
ference as can be seen by the ease with which analogues of shared variables can
be programmed in, for example, the π-calculus [MPW92,SW01].

3 Axiomatic View

Axiomatic semantics are tuned to reasoning about programs in a language (as
opposed to reasoning about processors of the language—or the language per
se). There is a deliberate attempt to minimise any underlying (state) model in
axiomatic descriptions. The question here, however, is the impact of interference
on the axiomatic approach to semantics.

For sequential programs, Tony Hoare’s seminal paper [Hoa69] on the
axiomatic method9 offers rules of inference about judgements represented as
triples that relate pre and post conditions to program constructs — for exam-
ple:

; -intro

{P} S1 {Q}
{Q} S2 {R}
{P} S1;S2 {R}

for sequential composition.10 There is, again, a sense in which this rule is compo-
sitional : the task of satisfying some overall specification (P/R), can be decom-
posed into two sub-tasks whose specifications are independent of that of their
sibling and of the overall specification.

A relational view of specifications copes well with non-determinism and this
has the pleasing payoff that non-deterministic specifications can be used to delay
design decisions in formal developments. Unfortunately, even the powerful idea
of non-deterministic post conditions does not itself overcome the challenge of
interference. The difficulty is precisely that a post condition is inadequate to
describe semantics in the presence of interference.

In [Hoa72], various degrees of interaction between parallel processes are con-
sidered. For the simplest case, the following rule holds:

|| -intro

{P1} S1 {Q1}
{P2} S2 {Q2}
{P1 ∧ P2} S1 || S2 {Q1 ∧ Q2}

9 Hoare’s path from a comment made at the 1964 Formal Language Description Lan-
guages Working Conference in Baden-bei-Wien to his Axiomatic Basis paper [Hoa69]
is outlined in [JA16]. The relation to (but lack of influence of) earlier work by Turing
and von Neumann is discussed in [Jon03a].

10 The decision to employ predicates of a single state even for post conditions looks
convenient especially in this rule but the choice results in messy tricks to circumvent
the fact that a specification should obviously relate the initial and final states—VDM
[Jon80], Z [Hay86] and B [Abr96] all use relations.

34 C. B. Jones

But this “axiom” holds only if there is no interference between S1 ans S2.. This
points to a discussion of Separation Logic (Sect. 3.1).

Susan Owicki’s thesis [Owi75] (see also [OG76]) addresses reasoning about
programs that admit interference. Essentially, the Owicki/Gries approach
requires that normal Hoare-style proofs are first conducted for each thread; this
is then followed by a global Einmischungsfrei proof that establishes that the
proofs of the threads do not interfere with each other. Apart from requiring a
lot of work, there is one obvious major reservation about this approach: it is
non-compositional in the sense that final code must be available for all threads
before the interference freedom proof obligation can be discharged. Thus it is
completely possible that a designer could decompose an overall task into –say–
two threads, record their pre/post conditions and have programmers develop
verified code that satisfies the specifications of each thread but then discover
that their proofs interfere facing the programmers with no choice but to start
over!

There is also a less obvious danger in the Owicki-Gries method and that is
the assumption about granularity. The interference freedom step (as well as the
proof outlines of the threads) is conducted under the assumption that assignment
statements are executed atomically. As is made clear in Sect. 2.2, this is not a
realistic assumption.

3.1 Separation Logic

At a conference in Cambridge (UK) in April 2009, Peter O’Hearn acknowledged
that the || -intro rule in the preceding section can be seen as a pre-echo of the
ideas behind Concurrent Separation Logic (CSL).

John Reynolds introduced Separation Logic in [Rey02] as a way of reasoning
about sequential programs that manipulate heap variables. After some strong
interaction with colleagues at CMU (recalled in [BO16]), O’Hearn’s key publi-
cation on CSL [O’H07] was presented at a session of MFPS in honour of John
Reynolds.

The key rule in CSL for introducing parallelism uses separating conjunction
(∗):

|| -intro-SL

{P1} S1 {Q1}
{P2} S2 {Q2}
{P1 ∗ P2} S1 || S2 {Q1 ∗ Q2}

In contrast to the standard form, separating conjunction is only applicable where
the variables affecting the two conjuncts are disjoint. This is also another sig-
nificant step beyond Hoare’s rule above: Hoare was considering stack variables
where disjointness was a simple check of identifiers; CSL treats heap variables
that are identified by their addresses. In fact, it might have been useful to use
the adjective ownership for such logics.

Concurrency: Handling Interference Formally 35

An interesting observation is that an operational semantics rule along the
lines of:

(S1, σ) st−→ σ′

(S2, τ) st−→ τ ′

(S1 || S2, σ ∪ τ)
par−→ σ′ ∪ τ ′

σ, σ′, τ, τ ′ ∈ (Address m−→ Value)

actually gives precisely the separation (or ownership) condition of Separation
Logic because VDM’s map union operator is undefined if the domains of its
operands are not disjoint.

Another interesting perspective on Separation Logic is given in [JY15] where
it is argued that separation can be viewed as an abstraction that has to be
realised in any reification to heap data structures. The examples tackled in [JY15]
are:

– Reynolds’ in-place list reversal where it is straightforward to see how an
abstraction which separates the initial and final sequences can be represented
in a single heap. It then becomes a proof obligation to establish that the cho-
sen heap representation preserves the assumption of separation. Since this first
example has no concurrency, neither Separation Logic nor Rely/Guarantee
reasoning (see Sect. 3.2) are required.

– The second example is taken from O’Hearn’s treatment in CSL of parallel
merge sort [O’H07]. In [JY15], the use of the abstraction of separation serves
to give an initial algorithm whose correctness is obvious. Because sub-lists are
sorted in parallel, a single simple use of a Rely/Guarantee law is needed to
complete the development—the development without Separation Logic makes
an interesting comparison with [O’H07].

It is perhaps worth summarising some other observations about SL that have
been made elsewhere (e.g. [JA17]):

– although SL handles ownership reasoning in some cases, it appears to be
challenged by the ownership of ‘slots’ in Simpson’s ‘4-slot’ implementation
of Asynchronous Communication Mecanisms (ACMs): Richard Bornat who
is a contributor to (and fan of) SL uses both SL and R/G in [BA10] and
R/G and Linearisability in [BA11]; Wang&Wang do use SL to argue about
slot ownership in [WW10] but fail to prove the crucial ‘freshness’ property of
ACMs;

– there is somewhat of a ‘growth industry’ in that new Separation Logics are
perhaps too frequently introduced; Matt Parkinson who is a key contributor
warned of this tendency in his paper [Par10] on The next 700 SLs ; it remains
to be seen if Views [DYBG+13] stem the flow..

As its adjective implies, Separation Logic is not an approach that helps with
interference.

36 C. B. Jones

3.2 Rely/Guarantee

The motivation for the research on Rely/Guarantee (R/G) methods was to find
a compositional development method for concurrent programs. To achieve this,
it was realised that interference must be tackled head on in both specifications
and proof obligations.

Fig. 1. A trace of states made by execution of a component and its environment

Basic R/G Concept. The core of the idea is simple: details of actual interfer-
ence can be abstracted by recording relations about environmental state changes.
See Fig. 1 which shows a component step constrained by guar and an environ-
ment step similarly constrained by rely (as well as the conventional pre limiting
initial states and post defining the valid relation between initial and final states).

More references both to R/G research and related approaches can be found
in [HJ18]11—here the following summary should suffice:

– the first book on the program development aspects of VDM was [Jon80] but
it only coped with sequential programs (the approach did however embody a
meaningful notion of compositionality in both operation decomposition and
data refinement);

– R/G was an attempt to provide a related compositional development method
for concurrent programs;

– as indicated at the beginning of Sect. 3, the Owicki/Gries method was not
compositional (for more detail on this, see [dR01]);

– Jones’ Oxford thesis [Jon81] provides proof obligations (POs) for rely and
guarantee conditions—the key PO is shown to be sound with respect to a
(rather heavy) VDL semantics;

– early publications [Jon83a,Jon83b] used keywords to identify rely and guar-
antee conditions (in addition to defining the frame of each operation together
with its pre and post conditions);

– specifications could also be presented as five-tuples {P ,R} S {G ,Q};
– more recently, in collaboration with Ian Hayes [HJC14,JHC15], R/G has

been completely recast in a refinement calculus style [Mor90,BvW98];
– the R/G idea has been shown to be rather general and has been applied to

the development of fault-tolerant control systems that link to components
which change continuously [HJJ03,JHJ07,Jon10].

11 Particularly interesting Chinese references include [Fen09,LFF12,Lia14].

Concurrency: Handling Interference Formally 37

Pulling R/G Apart. The details of one or other presentation of the R/G
concept are actually less important than the overall picture shown in Fig. 1 but
to give a flavour of how [HJC14,JHC15] has “pulled apart” the five-tuple form
of R/G:

– the Refinement Calculus presents specifications as x :
î
P ,Q

ó
(with the option

of omitting pre conditions that are true);
– the ordering S
 C asserts that S refines to C in the sense that C meets all

of the requirements of S ;
– S1 = S2 means that both S1
 S2 and S2
 S1 hold;
– it is allowed to wrap relyR · C or guarG · C around any construct C .

Some R/G Laws. A crucial advantage of this refinement calculus presentation
is that algebraic properties of R/G are apparent as is illustrated by the following
four laws:

– nested guarantee conditions correspond to the conjunction of the guarantee
relations
(guar g1 · (guar g2 · c)) = (guar g1 ∧ g2 · c)

– introducing a guarantee condition only makes implementation more challeng-
ing
c
 (guar g · c)

– because a guarantee condition has to apply to every step of a computation,
its transitive closure can be removed from a post condition
(guar g · [g∗ ∧ q]) = (guar g · [q])

– a symmetric version12 of the basic R/G concurrency law is
[∧iqi]
 ‖i (guar gr · (rely gr · [qi]))

The above four laws can be used to justify the abstract level of a parallel sieve
of Eratosthenes that computes the prime numbers up to some given maximum;
[HJ18] takes this development through to running code using a compare and
swap instruction at the level of setting bits within a word.

The R/G approach is to cope with interference by abstraction: a rely condi-
tion r indicates that its specified component must tolerate steps of interference
but that the state changes that occur will not violate the rely relation r .

An important aspect of R/G development is that the approach does not
commit to a level of granularity; this is a subtle point that is easier to comprehend
in actual complete developments but it can be seen as deriving from the algebraic
property that guarantee conditions distribute over both semicolon and parallel
decomposition.

Semantic Model(s). Any set of R/G laws needs to be shown to be consistent
with an underlying model of the language: a Structural Operational Semantics
is used in [Col08,CJ07]; more recent papers (e.g. [CHM16]) use Aczel traces

12 The asymmetric version needed in examples such as concurrent garbage collection
[JVY17] or Asynchronous Communication Mechanisms [JH16] is actually more inter-
esting.

38 C. B. Jones

[Acz83] as denotations. In [Hay16], proofs are simplified by using properties
such as interchange laws.

Expressiveness. The description in this section on R/G is not aimed at selling
the approach as a way of developing concurrent, shared-variable, programs. In
fact, the limitation of using only relations as a way of abstracting interference is
discussed in [JVY17]. The point of the description of R/G is to make clear that
it is quite difficult to step away from the operational nature of such interference.

An alternative is to use a more expressive logic like that from the Augsburg
group: RGITL [STE+14] marries Interval Temporal Logic [Mos86] with R/G.
This combination is powerful enough to express details of the interference but
as argued in [HJ18] might be too expressive in the sense that ITL can be used
to encode every environment step.

Further insight into interference can be obtained by looking at a notation that
arose as an extension of R/G. Interference has the effect that a variable might
have many values during the execution of an operation. Suppose an operation
has read access to a variable y , writing:

x : [x ′ = y ∨ x ′ = y ′]

expresses only that the final value of x has either the value of y at the beginning
of the operation or the value of y at the end of the execution. Such a specification
fails, for example, to be satisfied by:

x ← y

in a context where the interfering environment could change the value of y
several times. This realisation led to the introduction of a notation for possible
values where y� denotes the set of values that can arise during execution of the
operation in whose post condition this is written. Thus:

x : [x ′ ∈ y�]
 (x ← y)

The need for a concept such as possible values is a direct consequence of
interference. The need was realised and introduced in [JP11], is related to non-
deterministic expression evaluation in [HBDJ13] and studied further in [JH16].

4 Conclusions

Even for a non-concurrent language, it is essential that the semantics fixes the
order of execution of statements. This normally left-to-right order is easy to
see in an operational or denotational semantics. Interference in programming
languages is a very operational concept and pushes language descriptions into
allowing and constraining the ways that processes can merge. One strength of
SOS descriptions is that they somewhat mitigate this complication. But at their
core, they have to fix the granularity and control the merging just as much as was

Concurrency: Handling Interference Formally 39

required in VDL control trees: interference from other threads must be allowed
to occur between each step.

Axiomatic semantics either attempt to ban interference (data races) or
abstract from the details of interference. It is clearly worth considering ways
in which programming language design can constrain interference and there is a
long history of proposals such as monitors [Bri73,Hoa74]. The fact that object-
oriented languages such as Pierre America’s POOL [Ame89] limit access to vari-
ables to their defining object makes them particularly promising. But, whatever
constraints are adopted, the fact that some applications require shared resources
must be accommodated. The descriptions of SL (Sect. 3.1) and R/G (Sect. 3.2)
are unlikely to be seen as impartial but the presentation is not intended in a
competitive way. The topic of the paper is interference and it should be clear
that R/G thinking does take this aspect of concurrency seriously. If there is one
idea that is argued to be universally important it is the use of abstraction (in
various contexts) — hopefully few would argue with this claim.

A final word is in order about algebraic approaches to semantics. These
are attractive in the sense that they can elevate the level of reasoning about
languages but more research is required to see how properties that do not even
determine the order of execution to be left-to-right can fix the level of granularity
of interference.

These difficulties could be met with a reaction that designers should make
interference impossible in the programming language that they propose. This
is one of the motivations behind the development of process algebras such as
CSP [Hoa85], CCS [Mil89] and π-calculus [SW01] but, since it is possible to
emulate shared variables as processes, this can at most shift the argument to the
question of whether reasoning about interference in terms of trace assertions is
really easier than assertions about the values of shared variables themselves.

Dedication

It is an enormous pleasure to dedicate this paper to my friend and colleague Zhou
Chaochen. From our first time together in Oxford around 1980, I have followed
his work with interest and admiration. The wonderful visit that he arranged
for Tony Hoare, me and both of our families cemented the contact between our
families and so it was a special privilege to join in the 2017 celebration in his
honour. I humbly offer this paper with best wishes to Chaochen.

References

[Abr96] Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge
University Press, Cambridge (1996)

[Acz83] Aczel, P.H.G.: On an inference rule for parallel composition. (private
communication) Manuscript, Manchester (1983)

40 C. B. Jones

[AJ18] Astarte, T.K., Jones, C.B.: Formal semantics of ALGOL 60: four descrip-
tions in their historical context. In: De Mol, L., Primiero, G. (eds.) Reflec-
tions on Programming Systems - Historical and Philosophical Aspects.
Springer Philosophical Studies Series, pp. 71–141. In press (2018)

[Ame89] America, P.: Issues in the design of a parallel object-oriented language.
Form. Asp. Comput. 1, 366–411 (1989)

[BA10] Bornat, R., Amjad, H.: Inter-process buffers in separation logic with rely-
guarantee. Form. Asp. Comput. 22(6), 735–772 (2010)

[BA11] Bornat, R., Amjad, H.: Explanation of two non-blocking shared-variable
communication algorithms. Form. Asp. Comput. 1–39 (2011)

[BO16] Brookes, S., W O’Hearn, P.: Concurrent separation logic. ACM SIGLOG
News 3(3), 47–65 (2016)

[Bri73] Brinch Hansen, P.: Concurrent programming concepts. ACM Comput.
Surv. 5, 223–245 (1973)

[BvW98] Back, R.-J.R., von Wright, J.: Refinement Calculus: A Systematic Intro-
duction. Springer, New York (1998)

[BW71] Bekič, H., Walk, K.: Formalization of storage properties. In: Engeler, E.
(ed.) Eng71, pp. 28–61. Springer, Berlin (1971)

[CHM16] Colvin, R.J., Hayes, I.J., Meinicke, L.A.: Designing a semantic model for
a wide-spectrum language with concurrency. Form. Asp. Comput. 1–22
(2016)

[CJ07] Coleman, J.W., Jones, C.B.: A structural proof of the soundness of
rely/guarantee rules. J. Logic Comput. 17(4), 807–841 (2007)

[Col08] Coleman, J.W.: Constructing a Tractable Reasoning Framework upon a
Fine-Grained Structural Operational Semantics. Ph.D. thesis, Newcastle
University School of Computer Science (2008)

[DMN68] Dahl, O.-J., Myhrhaug, B., Nygaard, K.: SIMULA 67 common base lan-
guage. Technical Report S-2, Norwegian Computing Center, Oslo (1968)

[dR01] de Roever, W.-P.: Concurrency Verification: Introduction to Compo-
sitional and Noncompositional Methods. Cambridge University Press,
Cambridge (2001)

[DYBG+13] Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.:
Views: compositional reasoning for concurrent programs. In: Proceedings
of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 287–300. ACM (2013)

[Eng71] Engeler, E. (ed.): Symposium on Semantics of Algorithmic Languages.
LNM, vol. 188. Springer, Heidelberg (1971). https://doi.org/10.1007/
BFb0059689

[Fen09] Feng, X.: Local rely-guarantee reasoning. In: Proceedings of the 36th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2009, pp. 315–327. ACM, New York, NY, USA
(2009)

[Hay86] Hayes, I. (ed.): Specification Case Studies. Prentice-Hall International,
Upper Saddle River (1986)

[Hay16] Hayes, I.J.: Generalised rely-guarantee concurrency: an algebraic founda-
tion. Form. Asp. Comput. 28(6), 1057–1078 (2016)

[HBDJ13] Hayes, I.J., Burns, A., Dongol, B., Jones, C.B.: Comparing degrees of
non-deterministic in expression evaluation. Comput. J. 56(6), 741–755
(2013)

https://doi.org/10.1007/BFb0059689
https://doi.org/10.1007/BFb0059689

Concurrency: Handling Interference Formally 41

[HJ18] Hayes, I.J., Jones, C.B.: A guide to rely/guarantee thinking. In: Bowen,
J., Liu, Z., Zhan, Z. (eds.), Engineering Trustworthy Software Systems -
Second International School, SETSS 2017, LNCS. Springer (2018)

[HJC14] Hayes, I.J., Jones, C.B., Colvin, R.J.: Laws and semantics for rely-
guarantee refinement. Technical Report CS-TR-1425, Newcastle Univer-
sity (2014)

[HJJ03] Hayes, I.J., Jackson, M.A., Jones, C.B.: Determining the Specification of
a Control System from That of Its Environment. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 154–169. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45236-2 10

[Hoa69] Hoare, Charles Antony, Richard, : An axiomatic basis for computer pro-
gramming. Commun. ACM 12(10), 576–580 (1969)

[Hoa72] Hoare, C.A.R.: Towards a theory of parallel programming. In: Hoare,
C.A.R., Perrot, R. (eds.) Operating System Techniques, pp. 61–71. Aca-
demic Press (1972)

[Hoa74] Hoare, C.A.R.: Monitors: an operating system structuring concept. Com-
mun. ACM 17, 549–557 (1974)

[Hoa85] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall,
Upper Saddle River (1985)

[JA16] Jones, C.B., Astarte, T.K.: An Exegesis of Four Formal Descriptions of
ALGOL 60. Technical Report CS-TR-1498, Newcastle University School
of Computer Science (2016). Forthcoming as a paper in the HaPoP 2016
proceedings

[JA17] Jones, C.B., Astarte, T.K.: Challenges for semantic description: compar-
ing responses from the main approaches. Technical Report CS-TR-1516,
Newcastle University School of Computer Science (2017)

[JH16] Jones, C.B., Hayes, I.J.: Possible values: exploring a concept for concur-
rency. J. Log. Algebr. Methods Program. (2016)

[JHC15] Jones, C.B., Hayes, I.J., Colvin, R.J.: Balancing expressiveness in formal
approaches to concurrency. Form. Asp. Comput. 27(3), 465–497 (2015)

[JHJ07] Jones, C.B., Hayes, I.J., Jackson, M.A.: Deriving specifications for sys-
tems that are connected to the physical world. In: Jones, C.B., Liu, Z.,
Woodcock, J. (eds.) Formal Methods and Hybrid Real-Time Systems.
LNCS, vol. 4700, pp. 364–390. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-75221-9 16

[Jon80] Jones, C.B.: Software Development: A Rigorous Approach. Prentice Hall
International, Englewood Cliffs (1980)

[Jon81] Jones, C.B.: Development Methods for Computer Programs including a
Notion of Interference. Ph.D. thesis, Oxford University (1981). Printed
as: Programming Research Group, Technical Monograph 25

[Jon83a] Jones, C.B.: Specification and design of (parallel) programs. In: Proceed-
ings of IFIP 1983, pp. 321–332. North-Holland (1983)

[Jon83b] Jones, C.B.: Tentative steps toward a development method for interfering
programs. Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

[Jon90] Jones, C.B.: Systematic Software Development using VDM, 2nd edn.
Prentice Hall International, Upper Saddle River (1990)

[Jon03a] Jones, C.B.: The early search for tractable ways of reasoning about pro-
grams. IEEE, Ann. Hist. Comput. 25(2), 26–49 (2003)

[Jon03b] Jones, C.B.: Operational semantics: concepts and their expression. Inf.
Process. Lett. 88(1–2), 27–32 (2003)

https://doi.org/10.1007/978-3-540-45236-2_10
https://doi.org/10.1007/978-3-540-75221-9_16
https://doi.org/10.1007/978-3-540-75221-9_16

42 C. B. Jones

[Jon10] Jones, C.B.: From problem frames to HJJ (and its known unknowns).
In: Nuseibeh, B., Zave, P. (eds.), Software Requirements and Design:
The Work of Michael Jackson, chapter 16, pp. 357–372. Good Friends
Publishing Company (2010)

[JP11] Jones, C.B., Pierce, K.G.: Elucidating concurrent algorithms via layers of
abstraction and reification. Form. Asp. Comput. 23(3), 289–306 (2011)

[JVY17] Jones, C.B., Velykis, A., Yatapanage, N.: General lessons from a
rely/guarantee development. In: Larsen, K.G., Sokolsky, O., Wang, J.
(eds.) SETTA 2017. LNCS, vol. 10606, pp. 3–24. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69483-2 1

[JY15] Jones, C.B., Yatapanage, N.: Reasoning about separation using abstrac-
tion and reification. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015.
LNCS, vol. 9276, pp. 3–19. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-22969-0 1

[LFF12] Liang, H., Feng, X., Fu, M.: A rely-guarantee-based simulation for ver-
ifying concurrent program transformations. In: Proceedings of the 39th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2012, pp. 455–468. ACM, New York, NY, USA
(2012)

[Lia14] Liang, H.: Refinement Verification of Concurrent Programs and Its Appli-
cations. Ph.D. thesis, USTC, China (2014)

[LW69] Lucas, P.: Walk, Kurt: on the formal description of PL/I. Ann. Rev.
Autom. Program. 6, 105–182 (1969)

[McC66] McCarthy, J.: A formal description of a subset of ALGOL. In: Formal
Language Description Languages for Computer Programming, pp. 1–12.
North-Holland (1966)

[Mil89] Milner, R.: Communication and Concurrency. Prentice Hall, Upper Sad-
dle River (1989)

[Mor90] Morgan, C.: Programming from Specifications. Prentice-Hall, Upper Sad-
dle River (1990)

[Mos86] Moszkowski, B.: Executing Temporal Logic Programs. Cambridge Uni-
versity Press, Cambridge (1986)

[MPW92] Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Inf.
Comput. 100, 1–77 (1992)

[OG76] Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel pro-
grams I. Acta Inf. 6, 319–340 (1976)

[O’H07] O’Hearn, P.W.: Resources, concurrency and local reasoning. Theor. Com-
put. Sci. 375(1–3), 271–307 (2007)

[Owi75] Owicki, S.S.: Axiomatic Proof Techniques for Parallel Programs. Ph.D.
thesis, Department of Computer Science, Cornell University (1975). Hard
copy - Published as technical report 75–251

[Par10] Parkinson, M.: The next 700 separation logics. In: Leavens, G., O’Hearn,
P., Rajamani, S. (eds.) Verified Software: Theories. Tools, Experiments,
volume 6217 of LNCS, pp. 169–182. Springer, Berlin/Heidelberg (2010)

[Plo76] Plotkin, G.D.: A powerdomain construction. SIAM J. Comput. 5, 452–
487 (1976)

[Plo81] Plotkin, G.D.: A structural approach to operational semantics. Technical
Report DAIMI FN-19, Aarhus University (1981)

[Plo04a] Plotkin, G.D.: The origins of structural operational semantics. J. Logic
Algebr. Program. 60–61, 3–15 (2004)

https://doi.org/10.1007/978-3-319-69483-2_1
https://doi.org/10.1007/978-3-319-22969-0_1
https://doi.org/10.1007/978-3-319-22969-0_1

Concurrency: Handling Interference Formally 43

[Plo04b] Plotkin, G.D.: A structural approach to operational semantics. J. Logic
Algebr. Program. 60–61, 17–139 (2004)

[Rey02] Reynolds, J.: A logic for shared mutable data structures. In: Plotkin, G.
(ed.) LICS 2002. IEEE Computer Society Press (2002)

[Ste66] Steel, T.B.: Formal Language Description Languages for Computer Pro-
gramming. North-Holland (1966)

[STE+14] Schellhorn, G., Tofan, B., Ernst, G., Pf”ahler, J., Reif, W.: Rgitl: a tem-
poral logic framework for compositional reasoning about interleaved pro-
grams. Ann. Math.Artif. Intell. 71(1–3), 131–174 (2014)

[Sto77] Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory. MIT Press, Cambridge (1977)

[SW01] Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes.
Cambridge University Press, Cambridge (2001)

[WW10] Wang, S., Wang, X.: Proving simpson’s four-slot algorithm using owner-
ship transfer. In: VERIFY Workshop, Edinburgh (2010)

Decidability of the Initial-State Opacity
of Real-Time Automata

Lingtai Wang1,2 and Naijun Zhan1,2(B)

1 State Key Lab. of Comp. Sci., Institute of Software, Chinese Academy of Sciences,
Beijing, China
znj@ios.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China

Abstract. In this paper, we investigate the initial-state opacity of real-
time automata. A system is called initial-state opaque if an intruder with
partial observability is unable to determine whether or not the execution
starts from a secret state. In order to prove that the initial-state opacity
problem is decidable, we first calculate the lapse of time between each
pair of observable events. Two real-time automata are constructed which
accept the projection of languages from secret initial states and non-
secret ones, respectively. Then, the two real-time automata are further
transformed into trace-equivalent finite-state automata. Subsequently,
we adapt complement and product on the finite-state automata, and
check accepting language of the finally-obtained automaton. The system
is initial-state opaque if it accepts nothing or only empty trace, and not
initial-state opaque otherwise.

Keywords: Real-time automata · Initial-state opacity · Decidability
Trace-equivalence

1 Introduction

In the wake of development of network communications and online services,
security and privacy have become more significant and thus received more and
more attention. Opacity is an information flow property aiming at keeping the
“secret” of a system opaque to its outsider (called the intruder). There are two
types of “secrets”: subsets of traces and subsets of states. This divides opacity
properties into language-based opacity and state-based opacity. The intruder is
believed to know the structure of the system, but only has partial observability
over it. Once the intruder has observed the execution, he can get an estimation
whether the execution belongs to the secret. This paper focuses on initial-state
opacity, which is state-based, that is, the secret S is a set of states. The system is
initial-state opaque if the intruder can never determine whether it starts from a

This work is funded partly by NSFC under grant No. 61625206 and 61732001, by
“973 Program” under grant No. 2014CB340701, and by the CAS/SAFEA Interna-
tional Partnership Program for Creative Research Teams.

c© Springer Nature Switzerland AG 2018
C. Jones et al. (Eds.): Zhou-Festschrift, LNCS 11180, pp. 44–60, 2018.
https://doi.org/10.1007/978-3-030-01461-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01461-2_3&domain=pdf

Decidability of the Initial-State Opacity of Real-Time Automata 45

secret state or a non-secret one no matter what he has observed. Examples from
tracking problems in sensor networks have been used to motivate initial-state
opacity in [1], where the sensor network only has partial observation.

Systems being investigated are often modelled as discrete event systems
(DES), for example, Petri nets [2,3], labeled transition systems (LTS) [4] and
finite-state automata (FSA) [1,5–7]. Probabilistic models are also taken into con-
sideration, such as [8–11]. However, in [12], the notion of opacity was extended to
dense-time systems, with the result that the (language-based) opacity problem
is already undecidable for a very restrictive class of event-recording automata
(ERA).

As time is an important attack vector against secure systems, we extend the
notion of initial-state opacity to real-time automata [13]. Real-time automata is a
class of timed automata with a single clock which is reset at each transition, also
regarded as finite automata with time information for each transition. Classical
results for finite automata can thus be extended to real-time automata such as
Kleene’s theorem, Pumping Lemma and the closure under complementation [13].
Besides, as pointed out in [13], RTA is not comparable with ERA.

Our analysis mainly focuses on calculating time taken by unobservable tran-
sitions and then constructing two real-time automata accepting the projection
of languages from secret initial states and non-secret ones respectively. A rela-
tionship between languages of real-time automata and their corresponding finite-
state automata, called trace-equivalence, is introduced, so that the initial-opacity
problem is transformed into the problem of language inclusion of finite-state
automata. Thus, the initial-state opacity problem is proved to be decidable.

The remainder of this paper is organized as follows. In Sect. 2, we recall
preliminaries for finite-state automata, regular expressions, real-time automata,
and the initial-state opacity problem of real-time automata. The correspondence
of real-time automata and finite-state automata is introduced in Sect. 3. Section 4
provides a procedure to determine whether a real-time automaton is initial-state
opaque w.r.t. a given set of secret states and an observable alphabet, and Sect. 5
concludes this paper.

2 Preliminaries

We use R≥0, Q≥0, and N to denote the set of nonnegative real numbers, non-
negative rational numbers, and natural numbers, respectively.

Let E, a set of events, be the alphabet. A word or string over E is a finite
sequence w = a1a2 . . . an, where ai ∈ E for i = 1, 2, . . . , n. |w| = n is the length
of w. ε is the empty word, whose length |ε| = 0. E∗ is the set of all the finite
words over E including ε. L is a language over E if L ⊆ E∗.

Commonly used operations on languages include union, intersection, and
difference as in set theory, as well as concatenation, Kleene closure and projection
which are defined below:

Concatenation: Let L1, L2 ⊆ E∗, the concatenation L1L2 = {s1s2 | s1 ∈
L1 ∧ s2 ∈ L2}.

46 L. Wang and N. Zhan

Kleene closure: Let L ⊆ E∗, and L0 = {ε}, L1 = L, Lk = (Lk−1)L for k > 1,
then the Kleene closure of L is L∗ =

⋃
k∈N

Lk = {ε} ∪ L ∪ LL ∪ · · · .
Projection: Given E and a subset Eo ⊆ E, we can define a projection PEo

:
E∗ → E∗

o , where

PEo
(ε) = ε

PEo
(as) =

{
aPEo

(s), if a ∈ Eo

PEo
(s), otherwise

, for a ∈ E and s ∈ E∗.

Given any B ⊆ E∗ and C ⊆ E∗
o , the image of B under PEo

is PEo
(B) = {PEo

(s) |
s ∈ B} ⊆ E∗

o and the inverse image of C under PEo
is P−1

Eo
(C) = {s ∈ E∗ |

PEo
(s) ∈ C} ⊆ E∗.
Consider the alphabet Σ × R≥0. A timed word over Σ is a finite word over

the alphabet Σ × R≥0 with the form of wt = (a1, t1)(a2, t2) . . . (an, tn), where
0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, meaning that ai occurs at ti successively for 1 ≤ i ≤ n.
TW∗(Σ) denotes the set of all timed words over Σ. A subset of TW∗(Σ) is a timed
language. If Σo ⊆ Σ is the observable alphabet, PΣo,t denotes the projection from
TW∗(Σ) into TW∗(Σo). For example, if wt = (a, 2)(b, 3)(a, 5)(b, 8), P{b},t(wt) =
(b, 3)(b, 8) and P{a},t(wt) = (a, 2)(a, 5).

2.1 Finite-State Automata and Regular Expressions

Automata are a kind of well-known model to study discrete transition systems
and their behaviours. Finite-state automata (FAs) are automata with finitely
many states. They can be deterministic or non-deterministic.

Definition 1. – A deterministic finite-state automaton (DFA) is a 5-tuple
Ad = (S,Σ, δ, s0, F), where

• S is a finite set of states;
• Σ is a finite alphabet;
• δ : S × Σ → S is the transition relation, a partial function on S × Σ;
• s0 ∈ S is the initial state; and
• F ⊆ S is the set of accepting states.

– A non-deterministic finite-state automaton (NFA) is a 5-tuple An = (S,Σ ∪
{ε}, δ, Init, F), where

• S is a finite set of states;
• Σ is a finite alphabet;
• δ : S × (Σ ∪ {ε}) → 2S is the transition function;
• Init ⊆ S is the set of initial states; and
• F ⊆ S is the set of accepting states.

Obviously, a DFA can be viewed as a special kind of NFA, where there is
only one initial state, one or zero state in each δ(s, a), and no ε-transition.

For an NFA A, if s2 ∈ δ(s1, σ), (s1, σ, s2) is called a σ-transition, written as
s1

σ−→ s2. A run of A is either a single state s0, where s0 ∈ Init, or a sequence
s0

σ1−→ s1
σ2−→ · · · sn−1

σn−−→ sn, where n > 0, s0 ∈ Init, σi ∈ Σ ∪ {ε} and

Decidability of the Initial-State Opacity of Real-Time Automata 47

si ∈ δ(si−1, σi−1) for 1 ≤ i ≤ n. The trace of the run s0 is ε, and the trace of the
sequence from s0 to sn is the finite word obtained by projecting σ1σ2 . . . σn onto
Σ∗, that is, the string a1a2 . . . am obtained by removing each ε from σ1σ2 . . . σn;
hence the length of the trace is m, less than or equal to n. An accepting run is
a run ending in a state sn ∈ F . The language generated by A, denoted by L(A)
is the set of traces of runs of A; the language accepted by A, denoted by Lf (A)
is the set of traces of accepting runs. A language is said to be regular if it can
be accepted by a finite-state automaton.

Two automata are called language-equivalent, or equivalent for short, if they
generate and accept the same languages. An NFA An = (S,Σ, δ, Init, F) can
be transformed into an equivalent DFA Ad = (S′, Σ, δ′, Init′, F ′) defined below.
Let εR(s, ε) denote the set of states which are reachable from state s via no
transitions or only ε-transitions, and εR(s, a) the set of states which are reachable
from state s via one a-transition together with ε-transitions before and after it.
Then in Ad, S′ = 2S ; δ′(S1, a) =

⋃
s1∈S1

εR(s1, a); Init′ = εR(s0, ε); F ′ = {S1 |
S1 ∩ F 	= ∅}.

Regular expressions are another way to describe regular languages.

Definition 2. Regular expressions over alphabet Σ can be defined recursively as
follows:

1. (Base Clause): ∅, ε, a ∈ Σ are regular expressions, where ∅ denotes the empty
set, ε denotes the set {ε}, and a denotes the set {a} for a ∈ E.

2. (Inductive Clause): If r, r1, r2 are regular expressions, then r1 ·r2, r1 +r2, r∗

are regular expressions. r1 · r2 denotes the concatenation of language denoted
by r1 and r2, r1 + r2 denotes the union of the two languages, and r∗ denotes
the Kleene closure of the language denotes by r.

3. (External Clause): Regular expressions can only be constructed by applying 1
and 2.

Theorem 1 (Kleene’s Theorem). Any regular language is accepted by a finite
automaton; any language accepted by a finite automaton is regular.

Complement and product operations on DFAs. Consider a DFA A =
(S,Σ, δ, s0, F). The complement automaton Acomp which accepts Lf (A)c = Σ∗\
Lf (A) can be constructed as follows:

1. Augment S with a new state snew /∈ S;
2. Augment δ such that it becomes a total function, denoted as δcomp. For all

(s, a) ∈ S × Σ, if δ(s, a) is defined, let δcomp(s, a) = δ(s, a); if δ(s, a) is not
defined, let δcomp(s, a) = snew. Also δ(snew, a) = snew for each a ∈ Σ. After
that Σ∗ becomes the language generated, while the language accepted keeps
unchanged;

3. Let the accepting set of states be (S \ F) ∪ {snew}.

To sum up, Acomp = (S ∪ {snew}, Σ, δcomp, s0, S \ F ∪ {snew}).
Given two DFAs A1 = (S1, Σ1, δ1, s0,1, F1) and A2 = (S2, Σ2, δ2, s0,2, F2)

with S1 ∩ S2 = ∅, the product of A1 and A2 is Ap = A1 × A2 =

48 L. Wang and N. Zhan

(Sp, Σp, δp, sp
0, F

p), defined as follows: Sp = S1 × S2; Σp = Σ1 ∩ Σ2;
δp((s1, s2), a) = (s′

1, s
′
2) if δ(s1, a) = s′

1 and δ(s2, a) = s′
2, and is not defined

otherwise; sp
0 = (s0,1, s0,2); F p = F1 × F2.

Then Lf (A1 × A2) = Lf (A1) ∩ Lf (A2).

2.2 Real-Time Automata

Real-time automata are very similar to classical automata despite their taking
time into account as well. We can easily get a real-time automaton by attaching
time information to each transition of a given automaton.

Definition 3. A real-time automaton is a 6-tuple A = (S,Σ,Δ, Init, F, μ),
where

– S is a finite set of states;
– Σ is a finite alphabet;
– Δ ⊆ S × Σ × S is the transition relation;
– Init ⊆ S is the set of initial states;
– F ⊆ S is the set of accepting states; and
– μ : Δ → 2R≥0 \ {∅} is the time labelling function, whose range, μ(Δ), is

usually a set of intervals whose endpoints are in N ∪ {+∞} or Q≥0 ∪ {+∞}.
A transition (s1, a, s2) ∈ Δ starts in s1, ends in s2 and is labelled by a.

Transitions of the form (s1, a, s2) are called a-transitions. Δa denotes the set
of all a-transitions. Prea and Posta denotes the set of states from which and
to which are a-transitions respectively, i.e., Prea = {s1 | ∃(s1, a, s2) ∈ Δ} and
Posta = {s2 | ∃(s1, a, s2) ∈ Δ}. A run of A is either a single initial state s0 from
Init or a finite sequence ρ = s0

a1−→
λ1

s1
a2−→
λ2

· · · sn−1
an−−→
λn

sn, where n > 0, s0 ∈ Init,

(si−1, ai, si) ∈ Δ, and λi ∈ μ(si−1, ai, si) for i ≥ 1. The trace of a run ρ, denoted
by trace(ρ), is defined as follows: if ρ = s0, trace(ρ) = εt, where subscript “t” is
used to emphasize the time factor; if ρ is of the form s0

a1−→
λ1

s1
a2−→
λ2

. . . sn−1
an−−→
λn

sn, trace(ρ) is the timed word (a1, t1)(a2, t2) . . . (an, tn) where ti =
∑i

j=1 λj , for
i = 1, . . . , n. Let Tr(s0) be the set of traces of runs from state s0, and Tr(S0)
be the set of traces of runs from any state s0 ∈ S0, i.e., Tr(S0) =

⋃
s0∈S0

Tr(s0).
L(A) = Tr(Init) =

⋃
s0∈Init Tr(s0), is called the timed language generated by A,

and Lf (A) = {trace(ρ) | ρ starts from s0 ∈ S0 and ends in sn ∈ F} is the set of
traces accepted by A.

Example 1. In Fig. 1, transitions are depicted as arrows, with their labels from
the alphabet {a, b} above and time-labels below. For the real-time automaton
A1, Tr(s0) = {εt} ∪ {(a, ta) | ta ∈ [1, 2]} ∪ {(a, ta)(b, tb) | ta ∈ [1, 2], tb ∈ [2, 3]},
and Tr(s3) = {εt} ∪ {(b, tb) | tb ∈ [3, 4]}.

A1 generates L(A1) = {εt} ∪ {(a, ta) | ta ∈ [1, 2]} ∪ {(a, ta)(b, tb) | ta ∈
[1, 2], tb ∈ [2, 3]} ∪ {(b, tb) | tb ∈ [3, 4]} and accepts Lf (A1) = {(a, ta)(b, tb) | ta ∈
[1, 2], tb ∈ [2, 3]} ∪ {(b, tb) | tb ∈ [3, 4]}. ��

Decidability of the Initial-State Opacity of Real-Time Automata 49

s0 s1

s2

s3

a

[1, 2]
b

[2, 3]

b

[3, 4]

Fig. 1. A real-time automaton A1

2.3 Initial-State Opacity of Real-Time Automata

Given a real-time automaton A with an alphabet Σ and an observable alphabet
Σo ⊆ Σ, intruders can only observe timed words in PΣo,t(L(A)). Suppose we
have a set of secret states Ssecret. In this case, can intruders detect whether the
current run of the system starts from the secret set Ssecret according to what they
have observed? This is considered in the initial-state opacity problem. Formally,

Definition 4. Given a real-time automaton A = (S,Σ,Δ, Init, F, μ), an observ-
able alphabet Σo ⊆ Σ and a secret set of states Ssecret ⊆ S, A is initial-state
opaque w.r.t. Ssecret and Σo iff for all s0 ∈ Init ∩ Ssecret and all w ∈ Tr(s0),
∃s′

0 ∈ Init \ Ssecret, ∃w′ ∈ Tr(s′
0) s.t.

PΣo,t(w) = PΣo,t(w′),

or equivalently,

PΣo,t(Tr(Init ∩ Ssecret))) ⊆ PΣo,t(Tr(Init \ Ssecret)).

The initial-state opacity problem of real-time automata is thus expressed as
follows: Is a real-time automaton A = (S,Σ,Δ, Init, F, μ) initial-state opaque
w.r.t. some given secret set Ssecret ⊆ S and Σo ⊆ Σ?

In the following, we would like to use Ls and Lns instead of PΣo,t(Tr(Init ∩
Ssecret))) and PΣo,t(Tr(Init \ Ssecret)) respectively for sake of convenience.

Note that in the initial-state opacity problem, the set of accepting states of
the real-time automaton A does not play any role. Therefore, without loss of
generality, each state of the real-time automaton under study can be regarded
as an accepting state such that Lf (A) = L(A).

Example 2. (Ctd.) We still consider the automata A1 shown in Fig. 1. Let Σo =
{b} and Ssecret = {s0}. If PΣo,t(wt) = (b, 3.5), possible runs include ρ1 = s0

a−→
1

s1
b−−→
2.5

s2 and ρ2 = s3
b−−→
3.5

s2. In this case the intruders are incapable of

ascertaining the secret. If PΣo,t(wt) = (b, 5), we can easily know that wt =

(a, 2)(b, 5) and the unique run is ρ = s0
a−→
2

s1
b−→
3

s2. Thus, the secret is exposed

in this case. From the above, A1 is not initial-state opaque w.r.t. {s0} and {b}.

50 L. Wang and N. Zhan

However, A1 is initial-state opaque w.r.t. {s3} and {b}. This is because there
always exists a run s0

a−→
1

s1
b−−→

t−1
s2 with the same projection as s3

b−→
t

s2 with

3 ≤ t ≤ 4.
From the perspective of set theory, P{b},t(Tr(s3)) = {(b, t) | t ∈ [3, 4]} �

P{b},t(Tr(s0)) = {(b, t) | t ∈ [3, 5]}, so A1 is not initial-state opaque w.r.t. {s0}
and {b}, and is initial-state opaque w.r.t. {s3} and {b}. ��

If there exist two real-time automata which accept the two languages Ls and
Lns, respectively, then we can solve the initial-state opacity problem by checking
whether the accepting language of the former is included in that of the latter.
This checking can be achieved by utilizing trace-equivalence relation given in
the next section. The basic idea is to translate the two real-time automata into
their trace-equivalent finite-state automata, and construct another finite-state
automaton Ap

dfa according to the two resulting finite-state automata. The fact
that Ap

dfa accepts nothing or ε implies that Ls ⊆ Lns, i.e., the original real-time
automaton is initial-state opaque.

3 Correspondence Between NFAs and Real-Time
Automata

As real-time automata and non-deterministic automata have very similar struc-
tures, a real-time automaton with alphabet Σ can be translated into an NFA
with alphabet Σ × (2R≥0 \ {∅}).

Given a real-time automaton A = (S,Σ,Δ, Init, F, μ), let μa denote the set of
time information of all a-transitions, that is, μa = {μ(s1, a, s2) | (s1, a, s2) ∈ Δ},
which is finite since Δ is finite. Each element of μa is a non-empty subset Λa

of R≥0, such as a point, an interval, or a more complicated set. For each μa,
a partition of R≥0 (i.e., a set of R≥0’s non-empty subsets satisfying each real
number x ≥ 0 is in one and only one of those subsets) should be constructed
such that any Λa ∈ μa is the union of some elements from the partition. Here
we define a function I to compute a partition of R≥0 based on a finite C ∈
2R≥0 \ {∅}. I is defined by induction: if |C| = 1, say μa = {Λ}, the partition is
I(C) = {Λ, R≥0 \ Λ} \ {∅}; if |C| = k with I(C) = {I1, . . . , ImC

} and Λ /∈ C,
I(C ∪ {Λ}) = {I1 ∩ Λ, I1 \ Λ, . . . , ImC

∩ Λ, ImC
\ Λ, } \ {∅}. Additionally, it can

be easily proved from the definition that |I(C)| is no more than 2|C|. So we can
obtain the partition I(μa) satisfying the aforementioned constraint. For instance,
if μa = {[2, 5], [3, 6]}, we can construct {[3, 5], [2, 3), (5, 6], [0, 2)∪ [6,+∞)} as one
partition based on Λa. Then a non-deterministic finite-state automaton Anfa =
(Snfa, Σnfa, δnfa, Initnfa, Fnfa) can be constructed.

Definition 5. Given A = (S,Σ,Δ, Init, F, μ), the corresponding NFA Anfa =
(Snfa, Σnfa, δnfa, Initnfa, Fnfa) can be constructed as follows.

– Snfa = S;
– Σnfa =

⋃
a∈Σ

({a} × I(μa)
)
;

Decidability of the Initial-State Opacity of Real-Time Automata 51

– δnfa(s1, (a, I)) = {s2 | (s1, a, s2) ∈ Δ ∧ I ⊆ I ′, for some I ′ ∈ μ(s1, a, s2)};
– Initnfa = Init;
– Fnfa = F .

Example 3. The real-time automaton in Fig. 1 can be translated into the finite-
state automaton in Fig. 2. Note that I(μa) = {[1, 2], [0, 1) ∪ (2,+∞)} and
I(μb) = {[3, 3], [2, 3), (3, 4], [0, 2) ∪ (4,+∞)} and that the alphabet of the finite-
state automaton is {a} × I(μa) ∪ {b} × I(μb). ��

s0 s1

s2

s3

(a, [1, 2])
(b, [2, 3))

(b, [3, 3])

(b, (3, 4])

(b, [3, 3])

Fig. 2. A2, the corresponding FA of A1

Nevertheless, what needs special attention is that languages generated from
the two kinds of automata are different. Obviously, the language generated by
a real-time automaton A is a subset of TW∗(Σ). By contrast, the language
generated by the corresponding finite-state automaton Anfa is a subset of (Σ ×
(2R≥0 \ {∅}))∗. The relationship between L(A) and L(Anfa) can be described
using the trace-equivalence relation defined below.

Definition 6. Given L1 a timed language over Σ and L2 a language over Σ ×
(2R≥0 \ {∅}), L2 is said to be trace-equivalent to L1, denoted by L2 ≈tr L1, if

0. εt ∈ L1 iff ε ∈ L2;
1. If any timed word wt = (a1, t1)(a2, t2) . . . (an, tn) ∈ L1, then there exists some

w = (a1, Λ1)(a2, Λ2) . . . (an, Λn) ∈ L2 such that t1 ∈ Λ1 and (ti − ti−1) ∈ Λi

for 1 < i ≤ n;
2. If w = (a1, Λ1)(a2, Λ2) . . . (an, Λn) ∈ L2, then all timed words of the form

wt = (a1, t1)(a2, t2) . . . (an, tn) with t1 ∈ Λ1 and (ti − ti−1) ∈ Λi for 1 < i ≤ n
are in L1.

Lemma 1. For a given real-time automaton A = (S,Σ,Δ, Init, F, μ) and its
corresponding NFA Anfa = (Snfa, Σnfa, δnfa, Initnfa, Fnfa) as defined in Defini-
tion 5, Lf (Anfa) ≈tr Lf (A).

Proof. Lf (A) = ∅ iff Lf (Anfa) = ∅. This is because Lf (A) = ∅ iff no accept-
ing states are reachable in A, iff no accepting states are reachable in Anfa, iff
Lf (Anfa) = ∅. So, in this case, trivially Lf (Anfa) ≈tr Lf (A).

52 L. Wang and N. Zhan

If εt ∈ Lf (A), a possible run is s0, where s0 ∈ Init∩F . Thus, s0 ∈ Initnfa∩Fnfa

according to Definition 5. Hence, Anfa has a run s0 whose trace is ε, i.e., ε ∈
Lf (Anfa). On the contrary, suppose ε ∈ Lf (Anfa), which implies there exists
an initial state s0 ∈ Initnfa ∩ Fnfa. It follows that s0 ∈ Init ∩ F according to
Definition 5. Hence, εt ∈ Lf (A).

Suppose wt = (a1, t1) . . . (an, tn) ∈ Lf (A), where n ≥ 1, then there exists
a run of A, say ρ = s0

a1−→
λ1

s1
a2−→
λ2

· · · sn−1
an−−→
λn

sn such that s0 ∈ Init,

sn ∈ F , (si−1, ai, si) ∈ Δ, and λi ∈ μ(si−1, ai, si) for i ≥ 1. So there exists

a run of Anfa, that is, ρ′ = s0
(a1,Λ1)−−−−−→ s1

(a2,Λ2)−−−−−→ · · · sn−1
(an,Λn)−−−−−→ sn,

where s0 ∈ Initnfa and sn ∈ Fnfa, according to Definition 5. Thus, there
exists a w = (a1, Λ1)(a2, Λ2) . . . (an, Λn) ∈ Lf (Anfa) such that t1 ∈ Λ1 and
(ti − ti−1) ∈ Λi for 1 < i ≤ n, where Λi ⊆ Ii, for some Ii ∈ μ(si−1, ai, si) and
1 ≤ i ≤ n.

Given a word w = (a1, Λ1)(a2, Λ2) . . . (an, Λn) ∈ Lf (Anfa), there must be a

run of the form s0
(a1,Λ1)−−−−−→ s1

(a2,Λ2)−−−−−→ · · · sn−1
(an,Λn)−−−−−→ sn, according to Defi-

nition 5. Hence (si−1, ai, si) ∈ Δ with Λi ⊆ Ii, for some Ii ∈ μ(si−1, ai, si) and
1 ≤ i ≤ n. It follows that there exists a run s0

a1−→
λ1

s1
a2−→
λ2

· · · sn−1
an−−→
λn

sn and

a timed word wt = (a1, t1)(a2, t2) . . . (an, tn) ∈ Lf (A) such that t1 ∈ I1 and
(ti − ti−1) ∈ Ii for 1 < i ≤ n. ��

In order to consider complement and intersection over trace-equivalent lan-
guages, we should put some restrictions over these languages over Σ×(2R≥0\{∅}),
for example, the partitioned language defined below.

Definition 7. A language L over an alphabet E ⊆ Σ × (2R≥0 \ {∅}), where Σ
is finite, is called to be partitioned, if for any a ∈ Σ, Pa = {Ia : (a, Ia) ∈ E} is
a partition of R≥0.

The accepting language of the NFA defined in Definition 5 is partitioned,
since I(μa) is a partition of R≥0 for each a ∈ Σ.

Lemma 2. If L1 is a timed language over Σ, L2 is a partitioned language over
E =

⋃
a∈Σ

({a} × Pa

)
where each Pa is a partition of R≥0, and L2 ≈tr L1 as

defined in Definition 6, then it also holds that (E∗ \ L2) ≈tr (TW∗(Σ) \ L1).

Proof. εt ∈ Σ \ L1 ⇔ εt /∈ L1 ⇔ ε /∈ L2 ⇔ ε ∈ E∗ \ L2.
Suppose wt = (a1, t1)(a2, t2) . . . (an, tn) ∈ TW∗(Σ) \ L1, then there must be

Iai
� ti − ti−1 for each i (t0 is set to 0 here). Thus, it follows (a1, Ia1) (a2, Ia2)

. . . (an, Ian
) ∈ E∗. (a1, Ia1)(a2, Ia2) . . . (an, Ian

) is not in L2, otherwise wt would
be in L1. So (a1, Ia1)(a2, Ia2) . . . (an, Ian

) is in E∗ \ L2.
Suppose w = (a1, Λ1)(a2, Λ2) . . . (an, Λn) ∈ E∗ \ L2, let wt = (a1, t1) (a2, t2)

. . . (an, tn) be any timed word with t1 ∈ Λ1 and ti − ti−1 ∈ Λi for i = 2, . . . , n.
It holds that wt /∈ L1, otherwise there would exist some w′ = (a1, Λ

′
1) (a2, Λ

′
2)

. . . (an, Λ′
n) such that t1 ∈ Λ′

1 and ti − ti−1 ∈ Λ′
i for 1 < i ≤ n, and therefore

Λi = Λ′
i and w = w′, which is a contradiction. So wt is in TW∗(Σ) \ L1. ��

Decidability of the Initial-State Opacity of Real-Time Automata 53

Lemma 3. If L1, L3 are timed languages over Σ, L2, L4 are partitioned lan-
guages over the same alphabet E =

⋃
a∈Σ

({a} × Pa) where Pa is a partition of
R≥0, and L2 ≈tr L1 and L4 ≈tr L3 as defined in Definition 6, it also holds that
(L2 ∩ L4) ≈tr (L1 ∩ L3).

Proof. εt ∈ L1 ∩ L3 ⇔ εt ∈ L1 ∧ εt ∈ L3 ⇔ ε ∈ L2 ∧ ε ∈ L4 ⇔ ε ∈ L2 ∩ L4.
If wt = (a1, t1)(a2, t2) . . . (an, tn) ∈ L1 ∩ L3, then wt ∈ L1 ∧ wt ∈ L3. There

exists a w2 = (a1, Λ
2
1)(a2, Λ

2
2) . . . (an, Λ2

n) ∈ L2 such that ti −ti−1 ∈ Λ2
i for each i

(here t0 = 0), and there exists a w4 = (a1, Λ
4
1)(a2, Λ

4
2) . . . (an, Λ4

n) ∈ L4 such that
ti − ti−1 ∈ Λ4

i for each i (also t0 = 0). Since L2 and L4 are partitioned language
over a common alphabet E, Λ2

i and Λ4
i are both in the partition Pai

. Λ2
i ∩Λ4

i 	= ∅
means that Λ2

i = Λ4
i for i = 1, . . . , n and w2 = w4. So w2 ∈ L2 ∧ w2 ∈ L4. Then

w2 ∈ L2 ∩ L4.
If w = (a1, Λ1)(a2, Λ2) . . . (an, Λn) ∈ L2 ∩ L4, w ∈ L2 and w ∈ L4. For

any wt = (a1, t1)(a2, t2) . . . (an, tn) where ti − ti−1 ∈ Λi (t0 = 0), wt ∈ L1 and
wt ∈ L3, so wt ∈ L1 ∩ L3. ��

4 Decidability

Time plays an important role in real-time automata, since all transitions take
some time to execute no matter whether their labels are observable. When unob-
servable labels are deleted from a trace, their elapsed time cannot vanish. In
an observed timed word vt = (a1, t1)(a2, t2) . . . (an, tn), each ai-transition takes
some time less or equal to ti − ti−1 (t0 = 0) due to possible unobservable transi-
tions. For example, in Fig. 1, if P{b},t(wt) = (b, 4.5), there must be an a occurring
before b in wt, that is, wt = (a, ta)(b, 4.5) with 1.5 ≤ ta ≤ 2.

If there exists a real-time automaton accepting the observable language gen-
erated by the original one, then we can translate this real-time automaton into
its trace-equivalent finite-state automata and then into an equivalent determinis-
tic automaton. Thus, two DFAs can be constructed As

dfa and Ans
dfa, which accept

languages that are trace-equivalent to Ls and Lns respectively as defined in
Sect. 2.3.

We will describe the constructions in details in the following, with A =
(S,Σ,Δ, Init, F, μ) being the original real-time automaton, Ssecret ⊆ S being
the secret, and Σo ⊆ Σ being the observable alphabet. τ is used to denote all
the unobservable events in the set Σ \ Σo.

4.1 Calculating Time Between Observable Events

Unobservable transitions are similar to ε-transitions of non-deterministic
automata. The only difference is that unobservable transitions still take some
time.

Consider a run of A: s0
τ−→
λ1

s1
τ−→
λ2

· · · τ−−−→
λn−1

sn−1
an−−→
λn

sn, which consists of

n − 1 unobservable transitions and one observable transition in sequence. Then
an occurs at

∑n
i=1 λi. Similarly, if we consider a segment of a run: s′

0 · · · a0−→
λ0

54 L. Wang and N. Zhan

s0
τ−→
λ1

s1
τ−→
λ2

· · · τ−−−→
λn−1

sn−1
an−−→
λn

sn, the time difference between an and a0 is

also
∑n

i=1 λi. It includes two parts: the sum of time taken by unobservable ones,
and the time taken by the final observable one.

Based on the analysis above, there are two things to be done for each pair
of states (s, s′), where s is an initial state or the post-state of an observable
transition, and s′ is the pre-state of an observable one. The first is to calculate
how much time it can probably take to transit from s to s′ via unobservable
transitions, and the result is denoted by Λuo(s, s′), which is a subset of R≥0.
The second is to sum up Λuo(s, s′) with the time taken by each observable
transition from s′, say (s′, a, s′′), thus we can obtain new transitions of the form
(s, a, s′′) whose corresponding time is the sum of Λuo(s, s′) and μ(s′, a, s′′). And
therefore we can build a new real-time automaton whose alphabet is Σo alone.

In order to calculate Λuo(s, s′) for each pair (s, s′), we construct the timing
automaton At, a finite-state automaton with the alphabet

⋃
τ∈Σ\Σo

μτ , where
μτ = {μ(s1, τ, s2) | (s1, τ, s2) ∈ Δ}. Only unobservable transitions of A and time
taken by them are considered in At. Each event in the alphabet of At is actually
a non-empty subset of R≥0. Formally,

Definition 8. The timing automaton of a real-time automaton A is a finite-
state automaton At = (St, Σt, δt, Initt, Ft), where

– St = A.S;
– Σt is

⋃
τ∈Σ\Σo

μτ =
⋃

τ∈Σ\Σo
{μ(s1, τ, s2) | (s1, τ, s2) ∈ Δ};

– δt(s1, Λ) = {s2 | ∃τ ∈ Σuo

(
(s1, τ, s2) ∈ A.Δ ∧ A.μ(s1, τ, s2) = Λ

)};
– Initt = A.Init ∪ ⋃

a∈Σo
Posta, and

– Ft =
⋃

a∈Σo
Prea.

Based on At, we can calculate Λuo(s, s′) using regular expressions by follow-
ing the proof methods for Kleene’s theorem.

Suppose the set of states is {si}i∈{1,...,n}. Let R(si1 , si2 , k) be the regular
expression denoting all the traces of runs from si1 to si2 where there are no
states in between for k = 0, and no states with subscripts larger than k in
between, for 1 ≤ k ≤ n.

For any (si1 , si2), the set {Λ | si2 ∈ δt(si1 , Λ)} is the events of all transitions
from si1 to si2 . Let R0(si1 , si2) be the regular expression which is the sum of all
events in {Λ | si2 ∈ δt(si1 , Λ)}. If there is no such Λ, R0(si1 , si2) is set to ∅.

Then R(si1 , si2 , k) is computed inductively: R(si1 , si1 , 0) = ε + R0(si1 , si1),
and R(si1 , si2 , 0) = R0(si1 , si2) if i1 	= i2. And R(si1 , si2 , k +1) = R(si1 , si2 , k)+
R(si1 , sk+1, k) · R(sk+1, sk+1, k)∗ · R(sk+1, si2 , k).

So we can finally obtain R(si1 , si2 , n) for each pair of states (si1 , si2) ∈ Initt×
Ft, which denotes the traces of runs from si1 to si2 .

After regular expressions have been obtained, the next step is to translate
them into subsets of R≥0. Here ∅ means an empty set, ε means the set {0}, and
Λ means the set Λ. And if r, r1, r2 are regular expressions and Λ, Λ1, Λ2 are
their corresponding sets, we can translate r1 · r2 into Λ1 + Λ2 := {λ1 + λ2 |
λ1 ∈ Λ1, λ2 ∈ Λ2}, r1 + r2 into Λ1 ∪ Λ2 := {λ | λ ∈ Λ1 ∨ λ ∈ Λ2}, and r∗ into
Λ∗ :=

⋃
k∈N

kΛ, where 0Λ = {0} and (k + 1)Λ = kΛ + Λ for k ≥ 0.

Decidability of the Initial-State Opacity of Real-Time Automata 55

Following these steps, we can obtain Λuo(si1 , si2) from R(si1 , si2 , n) for each
pair of states (si1 , si2) ∈ Initt × Ft.

s1 s2

s2

τ [0, 3]
b

[2, 4]

a [1, 2]

τ

[2, 3]
τ

[0, 1]

b

[3, 4]

a

[3, 4]

Fig. 3. Example: A, the original real-time automaton under study

Example 4. In the real-time automaton A in Fig. 3, Σ is divided into two sets,
the observable {a, b} and the unobservable {τ}. The states s1, s2, s3 are all
initial and accepting. Transitions are arrows from one state to another with a
label a, b, or τ , and timing information of each transition is the interval written
near its label.

Its timing automaton, denoted as At, is depicted in Fig. 4.
R(si1 , si2 , k) not equal to ∅ are listed below:

k = 0: R(s1, s1, 0) = ε+[0, 3], R(s2, s2, 0) = ε, R(s2, s3, 0) = [2, 3], R(s3, s2, 0) =
[0, 1], R(s3, s3, 0) = ε;

k = 1: R(s1, s1, 1) = (ε + [0, 3]) + (ε + [0, 3])(ε + [0, 3])∗(ε + [0, 3]) = [0, 3]∗,
R(s2, s2, 1) = ε, R(s2, s3, 1) = [2, 3], R(s3, s2, 1) = [0, 1], R(s3, s3, 1) = ε;

k = 2: R(s1, s1, 2) = [0, 3]∗, R(s2, s2, 2) = ε, R(s2, s3, 2) = [2, 3] + εε∗[2, 3] =
[2, 3], R(s3, s2, 2) = [0, 1] + [0, 1]ε∗ε = [0, 1], R(s3, s3, 2) = ε + [0, 1]ε∗[2, 3) =
ε + [0, 1] · [2, 3];

k = 3: R(s1, s1, 3) = [0, 3]∗, R(s2, s2, 3) = ε + [2, 3](ε + [0, 1] · [2, 3])∗[0, 1] =
([2, 3] · [0, 1])∗, R(s2, s3, 3) = [2, 3] + [2, 3](ε + [0, 1] · [2, 3])∗(ε + [0, 1] · [2, 3]) =
[2, 3]([0, 1]·[2, 3]))∗, R(s3, s2, 3) = [0, 1]+(ε+[0, 1]·[2, 3])(ε+[0, 1]·[2, 3])∗[0, 1] =
[0, 1]([2, 3] · [0, 1])∗, R(s3, s3, 3) = (ε+[0, 1] · [2, 3])+(ε+[0, 1] · [2, 3])(ε+[0, 1] ·
[2, 3])∗(ε + [0, 1] · [2, 3]) = ([0, 1] · [2, 3])∗.

Finally, Λuo(si1 , si2) can be obtained from R(si1 , si2 , 3): Λuo(s1, s1) = [0,+∞),
Λuo(s2, s2) = Λuo(s3, s3) = {0} ∪ [2,+∞), Λuo(s3, s2) = [0, 1] ∪ [2,+∞), Λuo(s2,
s3) = [2,+∞), and Λuo(s1, s2) = Λuo(s1, s3) = Λuo(s2, s1) = Λuo(s3, s1) = ∅. ��

56 L. Wang and N. Zhan

s1 s2

s3

[0, 3]

[2, 3] [0, 1]

Fig. 4. Example: At

4.2 Constructing Real-Time Automata Aobs, Aobs,s and Aobs,ns

After that, we can define a real-time automaton Aobs. Its alphabet is Σo, and
each of its transition starts from an initial state or a post-state of an observable
transition and ends in a post-state of an observable transition of A. Formally,

Definition 9. Aobs = (Sobs, Σobs,Δobs, Initobs, Fobs, μobs) can be constructed as
follows:

– Sobs = A.Init ∪ ⋃
a∈Σo

Posta,
– Σobs = Σo,
– Δobs = {(s1, a, s2) | ∃s3 ∈ A.S

(
Λuo(s1, s3) 	= ∅ ∧ (s3, a, s2) ∈ A.Δ

)},
– Initobs = A.Init,
– Fobs =

⋃
a∈Σo

Posta, and
– μobs(s1, a, s2) =

⋃{Λuo(s1, s3) + A.μ(s3, a, s2) | ∃s3 ∈ A.S
(
Λuo(s1, s3) 	=

∅ ∧ (s3, a, s2) ∈ A.Δ
)}.

Example 5 (Ctd.). Now we build Aobs = (Sobs, Σobs,Δobs, Initobs, Fobs, μobs)
shown in Fig. 5. Sobs = Initobs = Fobs = {s1, s2, s3}. Σobs = {a, b}. Transi-
tions and their corresponding time labels are listed below:
(s1, b, s2): μ(s1, b, s2) = [2,+∞);
(s2, a, s2): μ(s2, a, s2) = [1, 2] ∪ [3,+∞);
(s3, a, s2): μ(s3, a, s2) = [1,+∞);
(s2, b, s3): μ(s2, b, s3) = [5,+∞];
(s3, b, s3): μ(s3, b, s3) = [3, 4] ∪ [5,+∞);
(s2, a, s1): μ(s2, a, s1) = [5,+∞);
(s3, a, s1): μ(s3, a, s1) = [3, 4] ∪ [5,+∞).
The time information is neglected in the figure for the sake of simplicity. ��

Lemma 4. Given wt in Tr(s0) of A, PΣ,t(wt) is in Tr(s0) of Aobs if PΣ,t(wt) 	=
εt.

Decidability of the Initial-State Opacity of Real-Time Automata 57

s1 s2

s2

b

a
a

b

a

a

b

Fig. 5. Example: Aobs

Proof. PΣ,t(wt) 	= εt means that there is at least one observable label in wt.
Suppose observable labels occurring in wt are a1, a2, ..., and an at t1, t2, ..., and
tn respectively, then PΣ,t(wt) = (a1, t1)(a2, t2) . . . (an, tn). Let ρ be a run of A
from s0 whose trace is wt. There must be transitions (s1, a1, s

′
1), (s2, a2, s

′
2), ...,

and (sn, an, s′
n) in ρ, and si+1 is reachable from s′

i for 0 ≤ i < n. (Let s′
0 = s0

and t0 = 0 here.) Each tk − tk−1 is the sum of two parts: one is time taken
by unobservable transition(s) from s′

k−1 to sk, and the other is time taken by
transition (sk, ak, s′

k). In other words, there exists some λuo,k ∈ Λuo(s′
k−1, sk)

and λo,k ∈ A.μ(sk, ak, s′
k) such that tk − tk−1 = λuo,k + λo,k. Based on the

constructing steps of Aobs, there exists transitions (s′
k−1, ak, s′

k) in Aobs whose
time labels include tk − tk−1 respectively, so that there exists a run ρobs = s0

a1−→
t1

s′
1

a2−−−→
t2−t1

s′
2 · · · s′

n−1
an−−−−−→

tn−tn−1
s′

n, whose trace is PΣ,t(wt). ��

Lemma 5. Given vt 	= εt in Tr(s0) of Aobs, there exists some wt in Tr(s0) of
A such that PΣ,t(wt) = vt.

Proof. Suppose there exists a run of Aobs, say ρobs = s0
a1−→
t1

s′
1

a2−−−→
t2−t1

s′
2 · · ·

s′
n−1

an−−−−−→
tn−tn−1

s′
n, whose trace is vt = (a1, t1)(a2, t2) . . . (an, tn). There must be

transitions (s1, a1, s
′
1), (s2, a2, s

′
2), ..., and (sn, an, s′

n) in A, and si+1 is reachable
from s′

i via only unobservable transitions for 0 ≤ i < n (s′
0 = s0 here). Each

tk − tk−1 is the sum of some λuo,k ∈ Λuo(s′
k−1, sk) and λo,k ∈ A.μ(sk, ak, s′

k)
(t0 = 0 here). Hence, there is a run of A, ρ = s0 · · · s1 a1−−→

λo,1
s′
1 · · · s2 a2−−→

λo,2

s′
2 · · · sn

an−−−→
λo,n

s′
n with PΣo,t(trace(ρ)) = (a1, t1)(a2, t2) . . . (an, tn) = vt. ��

Based on the above discussion, two real-time automata, Aobs,s and Aobs,ns,
can be constructed according to the given Ssecret as follows:

– If (Aobs.Init ∩ Aobs.F) ∩ Ssecret is not empty, let Aobs,s be the same as Aobs

except that its initial states are Aobs.Init ∩ Ssecret. Otherwise, we introduce
a new state sε, having no transition starts from or ends in it, to ensure εt is

58 L. Wang and N. Zhan

also accepted. Here Aobs,s is the same as Aobs except that its initial states
are {sε} ∪ Aobs.Init ∩ Ssecret, and that its accepting states are {sε} ∪ Aobs.F .

– If (Aobs.Init ∩ Aobs.F) \ Ssecret is not empty, let Aobs,ns be the same as Aobs

except that its initial states are Aobs.Init \ Ssecret. Otherwise, we introduce
sε, then Aobs,s is the same as Aobs except that its initial and accepting states
are {sε} ∪ Aobs.Init \ Ssecret and {sε} ∪ Aobs.F respectively.

Theorem 2. Aobs,s accepts language Ls = PΣo,t(Tr(A.Init ∩ Ssecret))), and
Aobs,ns accepts language Lns = PΣo,t(Tr(A.Init \ Ssecret))).

Proof. This is straightforward from Lemmas 4 and 5 and the constructions of
Aobs,s and Aobs,ns. ��
Example 6 (Ctd.). Let Ssecret = {s1}. Then Aobs,s and Aobs,ns are depicted in
Fig. 6. Their time information is also neglected in this figure, the same as the
previous example’s. ��

s1 s2

s3

b

a
a

b

a

a

b

(a) Aobs,s

s1 s2

s3

b

a
a

b

a

a

b

(b) Aobs,ns

Fig. 6. Example: Aobs,s and Aobs,ns

4.3 Building Trace-Equivalent NFAs

Since Aobs,s and Aobs,ns are built, they can be transformed into their corre-
sponding NFAs Anfa,s and Anfa,ns, which are trace-equivalent to them respec-
tively. Thus can be built DFAs Adfa,s and Adfa,ns further, which are equivalent
to Anfa,s and Anfa,ns respectively. By exploiting complement and product oper-
ations over DFAs, Ap

dfa = Acomp
dfa,ns × Adfa,s can be obtained. Ap

dfa accepts the
language trace-equivalent to the intersection of Ls = Lf (Aobs,s) and complement
of Lns = Lf (Aobs,ns), based on Sect. 3.

Theorem 3. The initial-state opacity problem of real-time automata is decid-
able.

Decidability of the Initial-State Opacity of Real-Time Automata 59

Proof. Given a real-time automaton A, Σo and Ssecret, an automaton Ap
dfa can

be constructed by following the steps discussed above. Ap
dfa accepts the language

Lf (Adfa,ns)c ∩Lf (Adfa,s), which is trace-equivalent to the timed language Lc
ns ∩

Ls.
The problem is to check whether Ap

dfa accepts any word w 	= ε. A word
w = (a1, Λ1) . . . (an, Λn) being accepted means that any timed word wt =
(a1, t1) . . . (an, tn) with ti − ti−1 ∈ Λi (t0 = 0) is in the set Lc

ns ∩ Ls, that
is, A is not initial-state opaque w.r.t Ssecret and Σo. Otherwise, A is opaque
w.r.t Ssecret and Σo. ��

5 Conclusion

In this paper, we investigated the initial-state opacity problem of real-time
automata. The original real-time automaton is first translated into a new one
whose alphabet is the observable alphabet, and then into two real-time automata
accepting the projection of secret and non-secret languages respectively. We
introduce a relation between timed words over Σ and untimed words over
Σ × (2R≥0 \{∅}) called trace-equivalence, and transform real-time automata into
finite-state automata. We also introduce the notion of partitioned languages, to
guarantee the closure under complementation and product. Therefore results of
finite-state automata can be applied. Finally, we come up with the conclusion
that the initial-state opacity problem of real-time automata is decidable.

A system is called language-opaque if an intruder with partial observability
can never determine whether a trace of the system is secret no matter what
he has observed. As an on-going and future work, it deserves to investigate the
language opacity problem of RTA, which will be reported in another paper. In
addition, it is quite interesting how to apply RTA to model security properties
of communication protocols with time in the real-world.

References

1. Saboori, A., Hadjicostis, C.N.: Verification of initial-state opacity in security appli-
cations of discrete event systems. Inf. Sci. 246, 115–132 (2013)

2. Bryans, J.W., Kounty, M., Ryan, P.Y.: Modelling opacity using petri nets. Elec-
tron. Notes Theor. Comput. Sci. 121, 101–115 (2005). Proceedings of the 2nd
International Workshop on Security Issues with Petri Nets and other Computa-
tional Models (WISP 2004)

3. Tong, Y., Li, Z., Seatzu, C., Giua, A.: Verification of state-based opacity using
Petri nets. IEEE Trans. Autom. Control. 62(6), 2823–2837 (2017)

4. Bryans, J.W., Kounty, M., Mazaré, L., Ryan, P.Y.A.: Opacity generalised to tran-
sition systems. Int. J. Inf. Secur. 7(6), 421–435 (2008)

5. Saboori, A., Hadjicostis, C.N.: Verification of k-step opacity and analysis of its
complexity. In: Proceedings of the 48th IEEE Conference on Decision and Control
(CDC) held jointly with 2009 28th Chinese Control Conference, pp. 205–210 (2009)

6. Saboori, A., Hadjicostis, C.N.: Opacity-enforcing supervisory strategies via state
estimator constructions. IEEE Trans. Autom. Control. 57(5), 1155–1165 (2012)

60 L. Wang and N. Zhan

7. Saboori, A., Hadjicostis, C.N.: Verification of infinite-step opacity and complexity
considerations. IEEE Trans. Autom. Control. 57(5), 1265–1269 (2012)

8. Keroglou, C., Hadjicostis, C.N.: Initial state opacity in stochastic des. In: 2013
IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA),
pp. 1–8 (2013)

9. Bérard, B., Chatterjee, K., Sznajder, N.: Probabilistic opacity for Markov decision
processes. Inf. Process. Lett. 115(1), 52–59 (2015)

10. Bérard, B., Mullins, J., Sassolas, M.: Quantifying opacity. In: 2010 Seventh Interna-
tional Conference on the Quantitative Evaluation of Systems, pp. 263–272 (2010)

11. Ibrahim, M., Chen, J., Kumar, R.: Secrecy in stochastic discrete event systems. In:
Proceedings of the 11th IEEE International Conference on Networking, Sensing
and Control, pp. 48–53 (2014)

12. Cassez, F.: The dark side of timed opacity. In: Park, J.H., Chen, H.-H., Atiquzza-
man, M., Lee, C., Kim, T., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576, pp. 21–30.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02617-1 3

13. Dima, C.: Real-time automata. J. Autom. Lang. Comb. 6(1), 3–24 (2001)

https://doi.org/10.1007/978-3-642-02617-1_3

Domain Science and Engineering
A Review of 10 Years Work and a Laudatio

The ZCC Fest, 20 October 2017, Changsha, China

Dines Bjørner1,2(B)

1 Technical University of Denmark, 2800 Kongens Lyngby, Denmark
2 Fredsvej 11, 2840 Holte, Danmark

bjorner@gmail.com

http://www.imm.dtu.dk/~db

Abstract. A personal account is given of my scientific work since I
retired 10 years ago. This work centers around a new dimension to com-
puting science: that of domain science & engineering. By a domain we
shall understand a rationally describable segment of a human assisted real-
ity, i.e., of the world, its physical parts, and living species. These are
endurants (“still”), existing in space, as well as perdurants (“alive”), exist-
ing also in time. Emphasis is placed on “human-assistedness”, that is,
that there is at least one (man-made) artifact and that humans are a pri-
mary cause for change of endurant states as well as perdurant behaviours.
Section 7 brings my laudatio.

1 Introduction

I survey recent work in the area of domain science & engineering1.
A strict interpretation of the triptych of software engineering dogma suggests

that software development “ideally” proceeds in three phases:

– First a phase of domain engineering in which an analysis of the application
domain leads to a description of that domain.

– Then a phase of requirements engineering in which an analysis of the domain
description leads to a prescription of requirements to software for that domain.

– And, finally, a phase of software design in which an analysis of the requirements
prescription leads to software for that domain.

We see domain science & engineering as a discipline that need not be justified as
a precursor to requirements engineering. Just as physicists study nature, irrespective
of engineering, so we can study manifest domains irrespective of computing.

1 It is appropriate, at this point, to state that my use of the term ‘domain’ is not related
to that of Domains and Processes such as in the Proceedings of 1st International
Symposium on Domain Theory, Shanghai, China, October 1999, eds.: Klaus Keimel,
Zhang Guo-Qiang, Liu Ying-Ming and Chen Yi-Chang. Springer Science + Business
Media, New York, 2001.

c© Springer Nature Switzerland AG 2018
C. Jones et al. (Eds.): Zhou-Festschrift, LNCS 11180, pp. 61–84, 2018.
https://doi.org/10.1007/978-3-030-01461-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01461-2_4&domain=pdf

62 D. Bjørner

1.1 Recent Papers and Reports

Over the last decade I have iterated a number of investigations of aspects of this
triptych dogma. This has resulted in a number of papers (and revised reports):

– Manifest Domains: Analysis & Description (2018, 2014) [29,35]
– Domain Facets: Analysis & Description (2018. 2008) [12,31]
– From Domains to Requirements (2018, 2008) [8,25]
– Formal Models of Processes and Prompts (2014,2017) [20,23]
– To Every Domain Mereology a CSP Expression (2017, 2009) [10,33]
– Domains: Their Simulation, Monitoring and Control (2008) [16,24]
– A Philosophy of Domain Science & Engineering (2018) [30]

[30], a report, is the most recent.

1.2 Recent Experiments

Applications of the domain science and engineering outlined in [8–29] are exem-
plified in reports and papers on experimental domain analysis & description.
Examples are:

– Urban Planning [41], – Road Transportation [19],

– Documents [28] – Web/Transaction-based Software [14],

– Credit Cards [22], – “The Market” [4],

– Weather Information Systems [26], – Container [Shipping]Lines[7],

– The Tokyo Stock Exchange [34], – Railway Systems [3,5,37,51,56].

– Pipelines [18],

1.3 My Emphasis on Software Systems

An emphasis in my work has been on research into and experiments with appli-
cation areas that required seemingly large scale software. Not on tiny, beautiful,
essential data structures and algorithms.

I first worked on the proper application of formal methods in software engi-
neering at the IBM Vienna Laboratory in the early 1970s. That was to the formal-
isation of the semantics of IBMs leading programming language then, PL/I , and
to a systematic development of a compiler for that language. The latter never
transpired.

Instead I got the chance to formulate the stages of development of a compiler
from a denotational semantics description to so-called “running code” [2, 1977].
That led, from 1978 onward, to two MSc students and a colleague and I working
on a formal description of the CCITT Communications High Level Language, CHILL
and its compiler [1,46]. And that led, in 1980, to five MSc students of ours

Domain Science and Engineering 63

producing a formal description of a semantics for the US DoD Ada programming
language, Ada [40]. And that led to the formation of Dansk Datamatik Center [38]
which embarked on the CHILL and Ada compiler developments [42,50]. To my
knowledge that project which was on time, at budget, and with a history of less that
3% cost of original budget for subsequent error correction over the first 20 years of
use of that compiler was a first, large, successful example of the systematic use of
formal methods in large scale (42 man years) software development.

1.4 How Did We Get to Domain Science and Engineering?

So that is how we came from the semantics of programming languages to the
semantics of human-centered, manifest application domain software develop-
ment. Programming language semantics has to do with the meaning of abstract
concepts such as programs, procedures, expressions, statements, GOTOs, labels,
etc. Domain semantics, for manifest domains, in so far as we can narrate and for-
malize it, or them, must capture some “meanings” of the manifest objects that
we can touch and see, of the actions we perform on them, and of the sentences
by means of which we talk about those phenomena in the domain.

1.5 Preliminaries

We need formulate a few characterisations.

Method & Methodology: By a method I understand a set of principles for
selecting and applying techniques and tools for constructing a manifest or an
abstract artifact.

By methodology I understand the study and knowledge of methods.
My contributions over the years have contributed to methods for software design

and, now, for the last many years, methods for domain analysis & description.
In my many experiments with domain analysis & description, cf. Sect. 5, I

have found that I often let a so-called “streak of creativity” enter my analysis
& description – and, as a result I get stuck in my work. Then I recall, ah !, but
there are these principles, techniques and tools for analysis & description, and
once I apply them, “strictly”, i.e., methodically, I am back on the track, and, in
my view, a more beautiful description emerges !

Computer & Computing Sciences: By computer science I understand the study
and knowledge about the things that can exist inside computing devices.

By computing science I understand the study and knowledge about how to
construct the things that can exist inside computing devices. Computing science
is also often referred to as programming methodology. My work is almost exclusively
in the area of computing science.

A Triptych of Informatics: Before software can be designed we must have a
firm grasp on its/their requirements. Before requirements can be prescribed we
must have a firm grasp on their basis: the domain. We therefore see informatics
as consisting of

64 D. Bjørner

– domain science & engineering,
– requirements science & engineering, and
– programming methodology.

This paper contributes to the establishment of domain science & engineering,
while hinting that requirements science & engineering can benefit from the rela-
tion between the two [8,25]. How much of a domain must we analyse & describe
before we attempt the second and third phases of the triptych ?. When this ques-
tion is raised, after a talk of mine over the subject, and by a colleague researcher
& scientist I usually reply: As large a domain as possible ! This reply is often
met by this comment (from the audience) Oh ! No, that is not reasonable ! To
me that comment shows either or both of: the questioner was not asking as a
researcher/scientist, but as an engineer. Yes, an engineer needs only analyse &
describe up to and slightly beyond the “border” of the domain-of-interest for
a current software development – but a researcher cum scientist is, of course,
interested not only in a possible requirements engineering phase beyond domain
engineering, but is also curious about the larger context of the domain, in pos-
sibly establishing a proper domain theory, etc.

1.6 The Papers

IM2HO I consider the first of the papers reviewed, [29], my most important paper.
It was conceived of last2, after publication of three of the other papers [8,12,
16]. Experimental evidence then necessitated extensive revisions to these other
papers, resulting in [24,25,31].

1.7 Structure of This Paper

Section 2 reviews [29, Analysis & Description Prompts], and Sect. 3 reviews related
science and methodology papers. [31, Domain Facets] (Sect. 3.1), [25, From
Domains to Requirements] (Sect. 3.2), [23, An Analysis & Description Process
Model] (Sect. 3.3), and [33, From Mereologies to Lambda-Expressions] (Sect. 3.4),
Finally, Sect. 4 briefly reviews [30, A Philosophy Basis] work-in-progress.

2 Manifest Domains: Analysis & Description [29]

This work grew out of many years of search for principles, techniques and tools
for systematically analyzing and describing manifest domains. By a manifest
domain we shall understand a domain whose entities we can observe and whose
endurants we can touch !

2 Publication [13,15] is a predecessor of [35] which is then a predecessor of [29].

Domain Science and Engineering 65

Fig. 1. Domain Ontology

2.1 A Domain Ontology

Parts, Components and Materials: The result became a calculus of analysis
and description prompts3. These prompts are tools that the domain analyser &
describer uses. The domain analyser & describer is in the domain, sees it, can
touch it, and then applies the prompts, in some orderly fashion, to what is being
observed. So, on one hand, there is the necessarily informal domain, and, on
the other hand, there are the seemingly formal prompts and the “suggestions for
something to be said”, i.e., written down: narrated and formalised. Fig. 1 suggests
a number of analysis and description prompts. The domain analyser & describer
is “positioned” at the top, the“root”. If what is observed can be conceived and
described then it is an entity. If it can be described as a “complete thing” at no
matter which given snapshot of time then it is an endurant. If it is an entity but
for which only a fragment exists if we look at or touch them at any given snapshot
in time, then it is a perdurant. Endurants are either discrete or continuous. With
discrete endurants we can choose to associate, or to not associate mereologies4.
If we do we shall refer to them as parts, else we shall call them components. The
continuous endurants we shall also refer to as (gaseous or liquid) materials. Parts
are either atomic or composite and all parts have unique identifiers, mereology
and attributes. Atomic parts may have one or more components and/or one or
more materials

If the observed part, p:P , is composite then we can observe the part sorts,
P1, P2, ..., Pm of p: observe part sorts(p) which yields the informal and formal
3 Prompt, as a verb: to move or induce to action; to occasion or incite; inspire; to assist
(a person speaking) by. ”suggesting something to be said”.

4 — ‘mereology’ will be explained next.

66 D. Bjørner

description: Narrative: ... Formal: type P1, P2, ..., Pm, value obs Pi: P → Pi,
repeated for all m part sorts Pis” !

Part sorts may have a concrete type: has concrete type(p) in which case
observe concrete part type(p) yields Narrative: ... Formal: type: T = P -
set, value obs T: P → K -set – where K-set is one of the concrete type forms,
and where K is some sort.

Materials have types (i.e., are of sorts): Mi. Observing the (one) material, of
type M , of an endurant e of sort E is expressed as obs materials(e) which yields
some narrative and some formal description text: Narrative: ... Formal: type
M value obs M: E → M . The narrative text (...) narrates what the formal text
expresses5.

Components, i.e., discrete endurants for whom we do not consider possible
mereologies or attributes, can be observed from materials, m : M , or are just
observed of discrete endurants, e : E: obs components(em) which yields the
informal and formal description: Narrative: ... Formal: type: C1, C2, ..., Cn

value obs Ci: (E|M) → Ci repeated for all n component sorts Cs” to the formal
text !

• • •
The above is a pedagogic simplification. As shown in Fig. 1 there are not only
parts. There are also living species: plants and animals, including humans. And,
because there are humans in the domains, parts and materials are either natural
or artifacts (man-made). Humans create artifacts, usually with an intent. Humans
have intents, and artifacts “possess” intents. Intents are like attributes, see below.

• • •
We have just summarised the analysis and description aspects of endurants in
extension (their “form”). We now summarise the analysis and description aspects
of endurants in intension (their “contents”). There are three kinds of intensional
qualities associated with parts, two with components, and one with materials.
Parts and components, by definition, have unique identifiers; parts have mereolo-
gies, and all endurants have attributes.

Unique identifiers: Unique identifiers are further undefined tokens that uniquely
identify parts and components. The description language observer uid P,
when applied to parts p:P yields the unique identifier, π:Π, of p. The
observe part sorts(p) invocation yields the description text: ... [added to the nar-
rative and] type Π1,Π2, ...,Πm; value uid Πi : Pi → Πi, repeated for all m
part sorts Pis and added to the formalisation.

Mereology: Mereology is the study and knowledge of parts and part relations. The
mereology of a part is an expression over the unique identifiers of the (other)
parts with which it is related, hence mereo P: P→E(Πj , ...,Πk), E(Πj , ...,Πk)
is a type expression. The observe part sorts(p) invocation yields the description
text: ... [added to the narrative and] value mereo Pi : Pi → Ei(Πij , ...,Πik)
[added to the formalisation]

5 – not how it expresses it, as, here, in the RAISE [44] Specification Language, RSL [43].

Domain Science and Engineering 67

Example: The mereologies, (i, o), of pipe units in a pipeline system thus express,
for each kind of pipe unit,whether it is a well, a linear pipe, a fork, a join, a
pump, a valve, or a sink, the identities of the zero, one or two pipe units that it
is “connected” to on the input, i, respectively the output, o, side: for well (0, 1),
for pipe (1, 1), for fork (1, 2), for join (2, 1), for valve (1, 1), for pump (1, 1), for
sink (1, 0) units

Attributes: Attributes are the remaining qualities of endurants. The analy-
sis prompt obs attributes applied to an endurant yields a set of type names,
A1, A2, ..., At, of attributes. They imply the additional description text: Nar-
rative: ... Formal: type A1, A2, ..., At value attr Ai: E→Ai repeated for all
t attribute sorts Ais ! Examples: Typical attributes of a person are Gender,
Weight, Height, Birth date, etcetera. Dynamic and static attributes of a pipe unit
include current flow into the unit, per input, if any, current flow out of the unit,
per output, if any current leak from the unit, guaranteed maximum flow into the
unit, guaranteed maximum flow out of the unit, guaranteed maximum leak from the
unit, etcetera. Michael A. Jackson [49] categorizes attributes as either static or
dynamic, with dynamic attributes being either inert, reactive or active. The latter
are then either autonomous, biddable or programmable. This categorization has
a strong bearing on how these (f.ex., part) attributes are dealt with when now
interpreting parts as behaviours.

2.2 From Manifest Parts to Domain Behaviours

[35] then presents an interpretation, τ , which to manifest parts associate
behaviours. These are then specified as CSP [48] processes. This interpretation
amounts to a transcendental deduction !

The Transcendental Deduction Idea — by means of an example: The term
train can have the following “meanings”: The train, as an endurant, parked at the
railway station platform, i.e., as a composite part. The train, as a perdurant, as it
“speeds” down the railway track, i.e., as a behaviour. The train, as an attribute,

Atomic Parts: Atomic parts translate into their core behaviours: bpatomcore . The
core behaviours are tail recursively defined, that is, are cyclic. bpatomcore (...) ≡ (.... ;
bpatomcore (...)) where (...) indicate behaviour (i.e., function) arguments.

Composite Parts: A composite part, p, “translates”, τ , into the parallel composi-
tion of a core behaviour: b

pcomp
core (...), for part p, with the parallel composition of the

translations, τ , for each of the parts, p1, p2, ..., pm, of p, (τ(p1)||τ(p2)||...||τ(pm))
that is: τ(p) ≡ b

pcomp
core (...) || (τ(p1)||τ(p2)||...||τ(pm))

Concrete Parts: The translation of concrete part set, t, types, t : T = K−set,
is τ(t) ≡ ||{τ(ki)|ki : K•ki ∈ t}.

Translation of Part Qualities (...): Part qualities, that is: unique identifiers,
mereologies and attributes, are translated into behaviour arguments – of one
kind or another, i.e., (...). Typically we can choose to index behaviour names,
b by the unique identifier, id, of the part based on which they were translated,

68 D. Bjørner

i.e., bid. Mereology values are usually static, and can, as thus, be treated like
we treat static attributes (see next), or can be set by their behaviour, and are
then treated like we treat programmable attributes (see next), i.e., (...). Static
attributes become behaviour definition (body) constant values. Inert, reactive
and autonomous attributes become references to channels, say ch dyn, such that
when an inert, reactive and autonomous attribute value is required it is expressed
as ch dyn ?. Programmable and biddable attributes become arguments which are
passed on to the tail-recursive invocations of the behaviour, and possibly updated
as specified [with]in the body of the definition of the behaviour, i.e., (...).

2.3 Contributions of [29] – and Open Problems

For the first time we have, now, the beginnings of a calculus for developing
domain descriptions. In [13,15] we speculate on laws that these analysis &
description prompts (i.e., their “meanings”) must satisfy. With this calculus
we can now systematically develop domain descriptions [41–56]. I am right now
working on understanding issues of implicit/explicit semantics6 Since December
2017 I have revised [35] extensively: simplified it, extended it, clarified some
issues, provided analysis & description techniques for channels and arguments,
et cetera. The revised paper is [29]7.

3 Related Papers

3.1 Domain Facets: Analysis & Description [12,31]

Overview. By a domain facet we shall understand one amongst a finite set of
generic ways of analyzing a domain: a view of the domain, such that the different
facets cover conceptually different views, and such that these views together
cover the domain.

[31] is an extensive revision of [12]. Both papers identify the following facets:
intrinsics, support technologies, rules & regulations, scripts, license languages, man-
agement & organisation, and human behaviour. Recently I have “discovered” what
might be classified as a domain facet: classes of attribute semantics: the diver-
sity of attribute semantics resolving the issue of so-called implicit and explicit
semantics. I shall not cover this issue in this talk.

Intrinsics: By domain intrinsics we shall understand those phenomena and con-
cepts of a domain which are basic to any of the other facets, with such domain
intrinsics initially covering at least one specific, hence named, stakeholder view.

Support Technology: By a domain support technology we shall understand ways
and means of implementing certain observed phenomena or certain conceived
concepts.

6 Cf. http://impex2017.loria.fr/.
7 You can find it on the Internet: http://www.imm.dtu.dk/∼dibj/2018/tosem/

Bjorner-TOSEM.pdf.

http://impex2017.loria.fr/
http://www.imm.dtu.dk/~dibj/2018/tosem/Bjorner-TOSEM.pdf
http://www.imm.dtu.dk/~dibj/2018/tosem/Bjorner-TOSEM.pdf

Domain Science and Engineering 69

Rules and Regulations: By a domain rule we shall understand some text (in
the domain) which prescribes how people or equipment are expected to behave
when dispatching their duties, respectively when performing their functions.

By a domain regulation we shall understand some text (in the domain) which
prescribes what remedial actions are to be taken when it is decided that a rule
has not been followed according to its intention.

Scripts: By a domain script we shall understand the structured, almost, if not
outright, formally expressed, wording of a procedure on how to proceed, one that
possibly has legally binding power, that is, which may be contested in a court
of law.

Management & Organisation: By domain management we shall understand
such people (such decisions) (i) who (which) determine, formulate and thus set
standards (cf. rules and regulations) concerning strategic, tactical and opera-
tional decisions; (ii) who ensure that these decisions are passed on to (lower)
levels of management and to floor staff; (iii) who make sure that such orders, as
they were, are indeed carried out; (iv) who handle undesirable deviations in the
carrying out of these orders cum decisions; and (v) who “backstops” complaints
from lower management levels and from“floor” staff.

By domain organisation we shall understand (vi) the structuring of man-
agement and non-management staff “overseeable” into clusters with“tight” and
“meaningful” relations; (vii) the allocation of strategic, tactical and operational
concerns to within management and non-management staff clusters; and hence
(viii) the “lines of command”: who does what, and who reports to whom, admin-
istratively and functionally.

Human Behaviour: By domain human behaviour we shall understand any of a
quality spectrum of carrying out assigned work: (i) from careful, diligent and
accurate, via (ii) sloppy dispatch, and (iii) delinquent work, (iv) to outright
criminal pursuit.

Contributions of [12,31] – and Open Problems: [31] now covers techniques and
tools for analyzing domains into these facets and for their modeling. The issue of
license languages are particularly intriguing. The delineations between the listed8

facets is necessarily not as precise as one would wish: we are dealing with an
imprecise world, that of (manifest) domains. License languages are treated in
[31].

3.2 From Domains to Requirements [8,25]

Overview: [25] outlines a calculus of refinements and extensions which applied
to domain descriptions yield requirements prescriptions. As for [35] the calculus
is to be deployed by human users, i.e., requirements engineers. Requirements
are for a machine, that is, the hardware and software to be developed from

8 We have omitted a facet: license languages.

70 D. Bjørner

the requirements. A distinction is made between domain, interface and machine
requirements. I shall briefly cover these in another order.

Machine requirements: Machine requirements are such which can be expressed
using only technical terms of the machine: performance and dependability acces-
sibility, availability, integrity, reliability, safety, security and robustness). and
development requirements development process, maintenance, platform, man-
agement and documentation). Within maintenance requirements there are adap-
tive, corrective, perfective, preventive, and extensional requirements. Within
platform requirements there are development, execution, maintenance, and
demonstration requirements. Etcetera. [25] does not cover these. See instead
[6, Sect. 19.6].

Domain Requirements: Domain requirements are such which can be expressed
using only technical terms of the domain. The are the following domain-to-
requirements specification transformations: projection, instantiation, determina-
tion, extension and fitting. I consider my work on these domain requirements issues
the most interesting.

1. Projection: By a domain projection we mean a subset of the domain description,
one which projects out all those endurants: parts, materials and components, as
well as perdurants: actions, events and behaviours that the stake-holders do not
wish represented or relied upon by the machine.

2. Instantiation: By domain instantiation we mean a refinement of the partial
domain requirements prescription (resulting from the projection step) in which
the refinements aim at rendering the endurants: parts, materials and compo-
nents, as well as the perdurants: actions, events and behaviours of the domain
requirements prescription more concrete, more specific.

3. Determination: By domain determination we mean a refinement of the par-
tial domain requirements prescription, resulting from the instantiation step, in
which the refinements aim at rendering the endurants: parts, materials and com-
ponents, as well as the perdurants: functions, events and behaviours of the partial
domain requirements prescription less non-determinate, more determinate.

4. Extension: By domain extension we understand the introduction of endurants
and perdurants that were not feasible in the original domain, but for which, with
computing and communication, and with new, emerging technologies, for exam-
ple, sensors, actuators and satellites, there is the possibility of feasible imple-
mentations, hence the requirements, that what is introduced becomes part of
the unfolding requirements prescription.

5. Fitting: Often a domain being described “fits” onto, is “adjacent”
to,“interacts” in some areas with, another domain: transportation with logis-
tics, health-care with insurance, banking with securities trading and/or insurance,
and so on. The issue of requirements fitting arises when two or more software
development projects are based on what appears to be the same domain. The
problem then is to harmonize the two or more software development projects by
harmonizing, if not too late, their requirements developments.

Domain Science and Engineering 71

Interface Requirements: Interface requirements are such which can be expressed
only by using technical terms of both the domain and the machine. Thus inter-
face requirements are about that which is shared between the domain and the
machine: endurants that are represented in machine storage as well as co-existing
in the domain; actions and behaviours that are performed while interacting with
phenomena in the domain; etc.

Contributions of [8,25]: [25] does not follow the “standard division” of require-
ments engineering into systems and user requirements etcetera. Instead [25]
builds on domain descriptions and eventually gives a rather different “division of
requirements engineering labour” – manifested in the domain, the interface and
the machine requirements paradigms, and these further into sub-paradigms, to
wit: projection, instantiation, determination, extension and fitting. Some readers
have objected to my use of the term refinement for the domain-to-requirements
transformations.

3.3 Formal Models of Processes and Prompts [20,23]

Overview: [35] outlines a calculus of prompts, to be deployed by human users,
i.e., the domain analyzers & describers. That calculus builds on the assumption
that the domain engineers build, in their mind, i.e., conceptually, a syntactical
structure of the domain description, although, what the domain engineers can
“see & touch” are semantic objects. A formal model of the analysis and descrip-
tion prompt process and of the meanings of the prompts therefore is split into a
model for the process and a model of the syntactic and semantics structures.

A Summary of Analysis and Description Prompts
The Analysis Prompts:

[a] is entity

[b] is endurant

[c] is perdurant

[d] is discrete

[e] is continuous

[f] is part

[g] is component

[h] is material

[i] is atomic

[j] is composite

[k] has concrete type

[l] has mereology

[m] has components

[n] has material

[o] has parts

The Description Prompts:

[1] observe part sorts

[2] observe concrete type

[3] observe unique identifier

[4] observe mereology

[5] observe attributes

[6] observe component sorts

[7] observe part material sort

[8] observe material part sorts

A Glimpse of the Process Model

Process “Management”: Domain description involves the “generation” and use of
an indefinite number of type (sort) names, Nm. The global, assignable variables
αps and νps serve to hold the names of the sorts to be analysed, respectively the
names of the sorts for which unique identifiers, mereologies and attributes have
to be analysed and described.

72 D. Bjørner

type
Nm = PNm | MNm | KNm

variable
αps := [Δnm] type Nm-set
νps := [Δnm] type Nm-set

value
sel and remove Nm: Unit → Nm
sel and remove Nm() ≡

let nm:Nm • nm ∈ νps in
νps := νps \ {nm} ; nm end; pre: νps �= {}

Some Process Functions: The analyse and describe endurants function is the major
function. It invokes a number of other analysis & description functions. We
illustrate two:

value
analyse and describe endurants: Unit → Unit
analyse and describe endurants() ≡

while ∼is empty(νps) do
let nm = sel and remove Nm() in
analyse and describe endurant sort(nm,ι:nm) end end ;

for all nm:PNm • nm ∈ αps do if has mereology(nm,ι:snm)
then observe mereology(nm,ι:nm) end end

for all nm:Nm • nm ∈ αps do observe attributes(nm,ι:nm) end

analyse and describe endurant sort: NmVAL → Unit
analyse and describe endurant sort(nm,val) ≡

is part(nm,val) → analyse and describe part sorts(nm,val),
is material(nm,val) → observe material part sort(nm,val),
is component(nm,val) → observe component sort(nm,val)

A Glimpse of the Syntax and Semantics Models We suggest a syntax and a
semantics of domain descriptions.
The Syntactical Structure of Domains: First the syntax of domains –
divided into the syntax of endurants parts, materials and components.

TypDef = PTypes ∪ MTypes ∪ KTypes
PTypes = PNm →m PaTyp
MTypes = MNm →m MaTyp
KTypes = KNm →m KoTyp

ENDType = PaTyp | MaTyp | KoTyp
PaTyp == AtPaTyp | AbsCoPaTyp | ConCoPaTyp

AtPaTyp :: mkAtPaTyp(s qs:PQ,s omkn:({|”nil”|}|MNn|KNm))
AbsCoPaTyp :: mkAbsCoPaTyp(s qs:PQ,s pns:PNm-set)

axiom ∀ mkAbsCoPaTyp(pq,pns):AbsCoPaTyp • pns �= {}
ConCoPaTyp :: mkConCoPaTyp(s qs:PQ,s p:PNm)

MaTyp :: mkMaTyp(s qs:MQ,s opn:({|”nil”|}|PNm))
KoTyp :: mkKoTyp(s qs:KQ)

Domain Science and Engineering 73

Then the syntax of the internal qualities of endurants:
PQ = s ui:UI×s me:ME×s atrs:ATRS}
UI

ME == “nil”|mkUI(s ui:UI)|mkUIset(s uil:UI)|...
ATRS = ANm →m ATyp

ANm, ATyp
MQ = s atrs:ATRS
KQ = s uid:UI × s atrs:ATRS

The Semantical Values of Domains: Corresponding, homomorphically, to these
syntaxes are their semantics types:

ENDVAL = PVAL | MVAL | KVAL
PVAL == AtPaVAL|AbsCoPVAL|ConCoPVAL

AtPaVAL :: mkAtPaVAL(s qval:PQVAL,
s omkvals:({|”nil”|}|MVAL|KVAL-set))

AbsCoPVAL :: mkAbsCoPaVAL(s qval:PQVAL,s pvals:(PNm →m PVAL))
axiom ∀ mkAbsCoPaVAL(pqs,ppm):AbsCoPVAL•ppm�=[]

ConCoPVAL :: mkConCoPaVAL(s qval:PQVAL,s pvals:PVAL-set)
MVAL :: mkMaVAL(s qval:MQVAL,s pvals:PVAL-set)
KVAL :: mkKoVAL(s qval:KQVAL)

Qualities: Semantic Types

PQVAL = UIVAL×MEVAL×ATTRVALS
UIVAL

MEVAL == mkUIVAL(s ui:UIVAL)|mkUIVALset(s uis:UIVAL-set)|...
ATTRVALS = ANm →m AVAL
ANm, AVAL

MQVAL = ATTRVALS
KQVAL = UIVAL×ATTRVALS

From Syntax to Semantics and “Back Again ! ” We define mappings from sort
names to the possibly infinite set of values of the named type, and from endurant
values to the names of their sort.

type
Nm to ENDVALS =

(PNm →m PVAL-set)∪(MNm →m MVAL-set)∪(KNm →m KVAL-set)
ENDVAL to Nm =

(PVAL →m PNm)∪(MVAL →m MNm)∪(KVAL →m KNm)
value

typval: TypDef
∼→ Nm to ENDVALS

typval(td) ≡ let ρ =
[n	→M(td(n))(ρ)|n:(PNm|MNm|KNm)•n ∈ dom td] in ρ end

valtyp: Nm to ENDVALS
∼→ ENDVAL to Nm

valtyp(ρ) ≡
[v	→n|n:(PNm|MNm|CNm),v:(PVAL|MVAL|KVAL)•

n ∈ dom ρ∧v ∈ ρ(n)]

74 D. Bjørner

M: (PaTyp → ENV
∼→PVAL-set)|

(MaTyp→ENV
∼→MVAL-set)|

(KoTyp→ENV
∼→KVAL-set)

The environment, ρ, of typval is the least fix point of the recursive equation. The
crucial function is M, in the definition of typval. Examples of its definition, by
part category, is given below.

value
ι nm:Nm ≡ iota(nm)
iota: Nm → TypDef → VAL
iota(nm)(td) ≡

let val:(PVAL|MVAL|KVAL)•val∈(typval(td))(nm)
in val end

Analysis Functions: We exemplify the semantics functions for three analysis
prompts.

value
is endurant: Nm×VAL → TypDef

∼→ Bool
is endurant(,val)(td) ≡ val ∈ dom valtyp(typval(td));

pre: VAL is any value type

is discrete: NmVAL → TypDef
∼→ Bool

is discrete(,val)(td) ≡ (is PaTyp|is CoTyp)(td((valtyp(typval(td)))(val)))

is part: NmVAL → TypDef
∼→ Bool

is part(,val)(td) ≡ is PaTyp(td((valtyp(typval(td)))(val)))

Description Functions: We exemplify the semantics of one of the description
prompts. The generated description RSL-text is enclosed within [” ... ”].

variable
τ := [] Text-set

value
observe part sorts: Nm×VAL → TypDef → Unit
observe part sorts(nm,val)(td) ≡

let mkAbsCoPaTyp(,{P1,P2,...,Pn})
= td((valtyp(typval(td)))(val)) in

τ := τ ⊕ [” type P1,P2,...,Pn;
value

obs part P1: nm →P1

obs part P2: nm →P2

...,
obs part Pn: nm →Pn;

proof obligation
D; ”]

|| νps := νps ⊕ ([” P1,P2,...,Pn ”] \ αps)

Domain Science and Engineering 75

|| αps := αps ⊕ [” P1,P2,...,Pn ”]
end

pre: is AbsCoPaTyp(td((valtyp(typval(td)))(val)))

.
The M Function

1 The meaning of an atomic part type expression,
– mkAtPaTyp((ui,me,attrs),omkn) in
– mkAtPaTyp(s qs:PQ,s omkn:({ |”nil”| }|MNn|KNm)),
– is the set of all atomic part values,

mkAtPaVAL((uiv,mev,attrvals),omkval) in
– mkAtPaVAL(s qval:(UIVAL×MEVAL×(ANm →m AVAL)),

s omkvals:({ |”nil”| }|MVAL|KVAL-set)).
a uiv is a value in UIVAL of type ui,
b mev is a value in MEVAL of type me,
c attrvals is a value in (ANm →m AVAL) of type (ANm →m ATyp), and
d omkvals is a value in ({ |”nil”| }|MVAL|KVAL-set):

i either ’’nil’’,
ii or one material value of type MNm,
iii or a possibly empty set of component values, each of type KNm.

1. M: mkAtPaTyp((UI×ME×(ANm →m ATyp))×({|”nil”|}|MVAL|KVAL-set))
1. →ENV

∼→PVAL-set
1. M(mkAtPaTyp((ui,me,attrs),omkn))(ρ) ≡
1. { mkATPaVAL((uiv,mev,attrval),omkvals) |
1a. uiv:UIVAL•type of(uiv)=ui,
1b. mev:MEVAL•type of(mev)=me,
1c. attrval:(ANm →m AVAL)•type of(attrval)=attrs,
1d. omkvals: case omkn of
1(d)i. ”nil” → ”nil”,
1(d)ii. mkMNn() → mval:MVAL•type of(mval)=omkn,
1(d)iii. mkKNm() →
1(d)iii. kvals:KVAL-set•kvals⊆{kv|kv:KVAL•type of(kval)=omkn}
1d. end }

Formula terms 1a–1(d)iii express that any applicable uiv is combined with any
applicable mev is combined with any applicable attrval is combined with any
applicable omkvals.

2 The meaning of an abstract composite part type expression,
– mkAbsCoPaTyp((ui,me,attrs),pns) in
– mkAbsCoPaTyp(s qs:PQ,s pns:PNm-set), is the set of all abstract, com-

posite part values,
– mkAbsCoPaVAL((uiv,mev,attrvals),pvals) in
– mkAbsCoPaVAL(s qval:(UIVAL×MEVAL×(ANm →m AVAL)),

s pvals:(PNm →m PVAL)).

76 D. Bjørner

a uiv is a value in UIVAL of type ui: UI,
b mev is a value in MEVAL of type me: ME,
c attrvals is a value in (ANm →m AVAL) of type (ANm →m ATyp), and
d pvals is a map of part values in (PNm →m PVAL), one for each name,

pn:PNm, in pns such that these part values are of the type defined for
pn.

2. M: mkAbsCoPaTyp((UI×ME×(ANm →m ATyp)),PNm-set)
2. → ENV

∼→ PVAL-set
2. M(mkAbsCoPaTyp((ui,me,attrs),pns))(ρ) ≡
2. { mkAbsCoPaVAL((uiv,mev,attrvals),pvals) |
2a. uiv:UIVAL•type of(uiv)=ui
2b. mev:MEVAL•type of(mev)=me,
2c. attrvals:(ANm →m ATyp)•type of(attrsval)=attrs,
2d. pvals:(PNm →m PVAL) •

2d. pvals∈{[pn	→pval|pn:PNm,pval:PVAL•pn∈ pns∧pval∈ρ(pn)]} }

Contributions of [23]. The contributions of [23] are to suggest and carry through
a “formalisation” of the conceptual, syntactical and semantical structures per-
ceived by the domain engineer, to formalise the meaning of the informal analysis
& description prompts, and to formalise the possible sets of sequences of valid
prompts.

3.4 To Every Manifest Domain Mereology a CSP Expression [33]

Overview. In [35] we have shown how parts can be endowed with mereologies.
Mereology, as was mentioned earlier, is the study and knowledge of “part-hood”:
of how parts are related parts to parts, and parts to “a whole”. Mereology, as
treated by us, originated with the Polish mathematician/logician/philosopher
Stanislaw Lešhniewski.
An Axiom System for Mereology :

part of : P : P × P → Bool
proper part of : PP : P × P → Bool

overlap : O : P × P → Bool
underlap : U : P × P → Bool

over crossing : OX : P × P → Bool
under crossing : UX : P × P → Bool
proper overlap : PO : P × P → Bool

proper underlap : PU : P × P → Bool

Let P denote part-hood ; px is part of py, is then expressed as P(px, py).9 (1) Part
px is part of itself (reflexivity). (2) If a part px is part of py and, vice versa, part

9 Our notation now is not RSL but a conventional first-order predicate logic notation.

Domain Science and Engineering 77

py is part of px, then px = py (anti-symmetry). (3) If a part px is part of py and
part py is part of pz, then px is part of pz (transitivity).

∀px : P • P(px, px) (1)
∀px, py : P • (P(px, py) ∧ P(py, px))→px = py (2)

∀px, py, pz : P • (P(px, py) ∧ P(py, pz))→P(pz, pz) (3)

We exemplify one of the mereology propositions: proper underlap, PU: px and py
are said to properly underlap if px and py under-cross and py and px under-cross.

PU(px, py)
�
= UX(px, py) ∧ UX(py, px) (4)

A Model for the Axioms [33] now gives a model for parts: atomic and com-
posite, commensurate with [23,35], and their unique identifiers, mereology and
attributes and show that the model satisfies the axioms.

Contributions of [33]. [33] thus contributes to a domain science, helping to secure
a firm foundation for domain engineering.

4 Domain Science & Engineering: A Philosophy Basis
[30]

My most recent work is documented in [30]. It examines the question:

– What must inescapably be in any domain description ?

Another formulation is:

– Which are the necessary characteristics of each and every possible world and our
situation in it.

Recent works by the Danish philosopher Kai Sørlander [52–55] appears to direct
us towards an answer.

Here is how it is done, in brief. On the basis of possibility of truth10 Sørlander
establishes the logical connectors and from them the existence of a world with
symmetry, asymmetry and transitivity. By a transcendental deduction Sørlander
then reasons that space and time, inescapably, are “in the world”11. Further
logical reasoning and transcendental deductions establishes the inescapability
of Newton’s 1st, 2nd and 3rd Laws. And from that kinematics, dynamics, and
gravitational pull. And so forth. Thus the worlds that can possibly be described
must all satisfy the laws of physics.

This line of reasoning and deduction thus justifies the focus, in our calculi,
on natural parts, components and materials.
10 Sørlander makes his logical reasoning and transcendental deductions on the basis of

the possibility of truth – where Immanuel Kant [45], according to Sørlander, builds
on the possibility of self-awareness, which is shown to lead to contradictions.

11 Kant assumes space and time.

78 D. Bjørner

But Sørlander goes on and reasons and transcendentally deduce the
inescapable existence of living species: plants and animals, and, among the lat-
ter, humans. Because of reasoned characteristics of humans we inescapably have
artifacts: man-made parts components and materials. Humans construct artifacts
with an intent, an attribute of both humans and artifacts. These shared intents
lead to a notion of intentional “pull”12 and so forth.

This line of reasoning and deduction thus justifies the inclusion, in our calculi,
of living species and artifacts.

[30] is presently an approximately 90 page report. As such it is presently a
repository for a number of “texts” related to the issue of “what must inescapably
be in any domain description ?” It may be expected that a far shorter paper may
emerge.

5 The Experiments [41–56]

In order to test and tune the domain analysis & description method a great
number of experiments were carried out. In our opinion, when applied to manifest
domains, they justify the calculi reported in [23,35].

– Urban Planning [41],
– A Space of Swarms of Drones [27],
– Documents [28],
– Credit Cards [22],
– Weather Information Systems [26],
– The Tokyo Stock Exchange [34],
– Pipelines [18],

– Road Transportation [19],
– Web/Transaction-based Software

[14],
– “The Market” [4],
– Container [Shipping] Lines [7],
– Railway Systems [3,5,37,51,56].

6 Summary

We have identified a discipline of domain science and engineering. Its first
“rendition” was applied to the semantics of programming languages and the
development of their compilers [46, CHILL] and [42, Ada]. Domain science and
engineering, as outlined here, is directed at a wider spectrum of “languages”:
the“meaning” of computer application domains and software for these applica-
tions. Where physicists model facets of the world emphasizing physical, dynamic
phenomena in nature, primarily using differential calculi, domain scientists cum
engineers emphasize logical and both discrete phenomena of man and human
institutions primarily using discrete mathematics.
12 We shall here give an example of intentional “pull”: humans create automobiles and

roads. An intention of automobiles is to drive on roads, and an intention of roads is
to have automobiles move along roads. We can thus speak of the traffic history of an
automobile as the time-stamped sequence of vehicle positions along roads, and of the
traffic history of a road as the time-stamped sequence of vehicle positions along that
road. Now, for the sum total of all automobiles and all roads the two consolidate
histories must be identical. It cannot be otherwise.

Domain Science and Engineering 79

7 Laudatio

At the Zhou ChaoChen Fest dinner I gave a dinner speech. It is not about
Zhou Chaochen’s scientific life. But it is a laudatio expressed in admiration for
a wonderful man and our lives together.

– It was in 1981, in Beijing, 36 years ago.
At the Institute of Computing Technology.
On my first day of a three week visit. 30 lectures, 30 degrees Celsius. I liked it.
I was being received. All sat in soft cushioned armchairs along the walls.
I sat to the right of this wonderful man, Xu KongShi.
During our conversation I queried about a young researcher, Zhou ChaoChen.
Tony Hoare had told me to watch out for him.
So I did, with an invitation letter, right in my pocket, for him to visit my dept.
Asked Xu KongShi as to the whereabouts of Zhou?
And he smiled: right next to the right of you !

– That became the first day of a 36 year acquaintance.
Almost half of our life-times !
Zhou came to visit us, 3 months every other winter. It was during the 1980s.
What a wonderful time, for me, for my colleagues and for our students.
One time I asked him to tutor a young MSc student. She performed brilliantly.
It was something about “the meeting calendar problem”.
Even Zhou was impressed.
Perhaps he has forgotten it now.
When I took him to the airport, some weeks later.
I told him that Ulla, that was her name, was a great granddaughter of Niels Bohr.
Zhou appreciated then that I only told him then.

– For the 1989 visit I had “stipulated” that Zhou bring his family.
Three months to Lyngby, three months to Oxford.
And Zhou kindly agreed. All was set to go.
But a certain incident early that June caused us all concern.
Yet, on July 1st that year the whole family arrived.

– Zhou wasn’t keen to return to China.
I speed-dialled Tony’s Oxford number.
“Tony on the line” was the reply
“Tony: Zhou is with me here, in my office in Lyngby.”
“Hello Zhou”
“Hello Tony”.
“Tony, I have just offered Zhou a three year appointment.”
Well I hadn’t, but there it was, and Zhou got listening.
“8 months a year here at Lyngby. 4 with you at Oxford.”
Tony’s reply: “Well, I had got it wrong, the other way around”.
“Let Zhou decide”, I replied, and Zhou said:

80 D. Bjørner

“It is as Dines proposes.”

– Those became three great years, at Lyngby and at Oxford.
Zhang Yi Ping and children lodged in Oxford - Zhou commuting.
Science progressing.
It was at a ProCoS meeting in Viborg.
E.V.Sørensen had given a talk on signal transitions of electric circuits.
The concept of ‘duration’ was mentioned.
Afterwards I saw Zhou, A.P. and Tony, in an adjacent room.
Discussing, standing at the white board, scribbling.
And “The Duration Calculus” was born.

– The following year I was asked to become Director of UNU-IIST.
On the flight home, in May 1991, from Japan, via a visit to Macau
I decided to ask Zhou to join me in Macau.
And a year later, things take time in international affairs, we began.
With Zhou in charge of theory and I of engineering, an institute was built.
After my five years followed Zhou’s five years.
Some of you, in this room, can look back at defining years at UNU-IIST.
I returned to Lyngby and eventually Zhou to Beijing.

– The Duration Calculus took root.
Painstakingly a theory was cemented and applications realized.
The ProCoS project and UNU-IIST played an important rôle in this.
But at the core of all this was Zhou ChaoChen.

– Dear Zhou:
Thank you for your tremendous contributions to science.
Thank you for inspiring generations of scientists.
Thank you for hosting our daughter, Charlotte, the fall of 1986–31 years ago !
Thank you for putting our son, Nikolaj, on the road to science
– also 31 years ago !

8 Bibliography

8.1 Bibliographical Notes

In the last ten years I have also worked on related topics:

– Domains: Their Simulation, Monitoring and Control, see [16], [24] 2008,
– Compositionality: Ontology and Mereology of Domains13, [36] 2008,
– Domain Science & Engineering, [13,15] 2010,
– Computation for Humanity: Domain Science and Engineering, [17] 2012,

13 With Asger Eir.

Domain Science and Engineering 81

– 40 Years of Formal Methods — Obstacles and Possibilities14, [39] 2014,
– Domain Engineering – A Basis for Safety Critical Software, [21] 2014,
– Implicit and Explicit Semantics and the Domain Calculi, [32] 2017.

Work on these papers and on the many, extensive experiments has helped solidify
the basic domain analysis & description method.

Acknowledgments. I am grateful to Prof. Zhan NaiJun for inviting me to the Zhou
ChaoChen Fest and for inviting me to submit my talk as a paper for this Festschrift. I
am grateful to my “old student”, now Prof. Ji Wang for his arranging a wonderful stay
in Changsha, my fourth visit to that great city, and for his fantastic cheerful welcome.

References

1. Anon: C.C.I.T.T. High Level Language (CHILL), Recommendation Z.200, Red
Book Fascicle VI.12. See [47], ITU (Intl. Telecmm. Union), Geneva, Switzerland
(1980–1985)

2. Bjørner, D.: Programming languages: formal development of interpreters and com-
pilers. In: Morlet, E., Ribbens, D. (eds.) International Computing Symposium, vol.
77, pp. 1–21. European ACM, North-Holland Publ. Co., Amsterdam (1977)

3. Bjørner, D.: Formal software techniques in railway systems. In: Schnieder, E.
(ed.) 9th IFAC Symposium on Control in Transportation Systems, pp. 1–12.
VDI/VDEGesellschaft Mess- und Automatisieringstechnik, VDIGesellschaft für
Fahrzeug- und Verkehrstechnik, Technical University, Braunschweig, Germany (13–
15 June 2000), invited talk

4. Bjørner, D.: Domain models of “the market” – in preparation for e-transaction
systems. In: Kilov, H., Baclawski, K. (eds.) Practical Foundations of Business and
System Specifications. Kluwer Academic Press, The Netherlands (December 2002),
Final draft version. http://www2.imm.dtu.dk/∼db/themarket.pdf

5. Bjørner, D.: Dynamics of railway nets: on an interface between automatic con-
trol and software engineering. In: Tsugawa, S., Aoki, M. (eds.) CTS2003: 10th
IFAC Symposium on Control in Transportation Systems. Elsevier Science Ltd.,
Oxford, UK (August 4–6 2003). https://doi.org/10.1016/S1474-6670(17)32424-2,
Symposium Held at Tokyo, Japan. Final version. http://www2.imm.dtu.dk/∼db/
ifac-dynamics.pdf

6. Bjørner, D.: Software Engineering, Volume 3: Domains, Requirements and Software
Design. Texts in Theoretical Computer Science, the EATCS Series. Springer, Berlin
(2006), See [9,11]

7. Bjørner, D.: A container line industry domain. Technical Report, Fredsvej 11, DK-
2840 Holte, Denmark (June 2007), Extensive Draft. http://www2.imm.dtu.dk/
∼db/container-paper.pdf

8. Bjørner, Dines: From domain to requirements. In: Degano, P., De Nicola, R.,
Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 278–
300. Springer, Heidelberg (May 2008). https://doi.org/10.1007/978-3-540-68679-
8 18

9. Bjørner, D.: Software Engineering, Volume 3: Domains, Requirements and Software
Design (Qinghua University Press). Springer, Berlin (2008)

14 With Klaus Havelund.

http://www2.imm.dtu.dk/~db/themarket.pdf
https://doi.org/10.1016/S1474-6670(17)32424-2
http://www2.imm.dtu.dk/~db/ifac-dynamics.pdf
http://www2.imm.dtu.dk/~db/ifac-dynamics.pdf
http://www2.imm.dtu.dk/~db/container-paper.pdf
http://www2.imm.dtu.dk/~db/container-paper.pdf
https://doi.org/10.1007/978-3-540-68679-8_18
https://doi.org/10.1007/978-3-540-68679-8_18

82 D. Bjørner

10. Polkowski, Lech: Mereology in engineering and computer science. In: Calosi, Clau-
dio, Graziani, Pierluigi (eds.) Mereology and the Sciences. SL, vol. 371, pp. 47–70.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05356-1 10

11. Bjørner, D.: Chinese: Software Engineering, Volume 3: Domains, Requirements and
Software Design (Qinghua University Press). Springer, Berlin (2010) (Translated
by Dr Liu Bo Chao et al.)

12. Bjørner, D.: Domain engineering. In: Boca, P., Bowen, J. (eds.) Formal Methods:
State of the Art and New Directions, pp. 1–42. Springer, London (2010). https://
doi.org/10.1007/978-1-84882-736-3 1

13. Bjørner, D.: Domain Science & Engineering - From Computer Science to The
Sciences of Informatics, Part I of II: The Engineering Part. Kibernetika i sistemny
analiz, vol. 4, pp. 100–116 (2010)

14. Bjørner, D.: On Development of Web-based Software: A Divertimento of Ideas and
Suggestions. Technical, Technical University of Vienna (August–October 2010).
http://www.imm.dtu.dk/∼dibj/wfdftp.pdf

15. Bjørner, D.: Domain Science & Engineering - From Computer Science to The
Sciences of Informatics Part II of II: The Science Part. Kibernetika i sistemny
analiz, vol. 2, pp. 100–120 (2011)

16. Bjørner, Dines: Domains: their simulation, monitoring and control—a divertimento
of ideas and suggestions. In: Calude, Cristian S., Rozenberg, Grzegorz, Salomaa,
Arto (eds.) Rainbow of Computer Science. LNCS, vol. 6570, pp. 167–183. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19391-0 13

17. Bjørner, D.: Domain science and engineering as a foundation for computation for
humanity. In: Zander, J., Mosterman, P.J. (eds.) Computational Analysis, Synthe-
sis, and Design of Dynamic Systems, pp. 159–177. CRC [Francis & Taylor] (2013)

18. Bjørner, D.: Pipelines - a Domain Description. http://www.imm.dtu.dk/∼dibj/
pipe-p.pdf. Experimental Research Report 2013–2, DTU Compute and Fredsvej
11, DK-2840 Holte, Denmark (Spring 2013)

19. Bjørner, D.: Road Transportation - a Domain Description. http://www.imm.dtu.
dk/∼dibj/road-p.pdf. Experimental Research Report 2013–4, DTU Compute and
Fredsvej 11, DK-2840 Holte, Denmark (Spring 2013)

20. Bjørner, D.: Domain Analysis: Endurants - An Analysis & Description Process
Model. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and
Software: A Festschrift Symposium in Honor of Kokichi Futatsugi. Springer, Berlin
(May 2014)

21. Bjørner, D.: Domain Engineering - A Basis for Safety Critical Software. Invited
Keynote, ASSC2014: Australian System Safety Conference, Melbourne, 26–28 May
(December 2014)

22. Bjørner, D.: A Credit Card System: Uppsala Draft. Technical Report: Experimen-
tal Research, Fredsvej 11, DK-2840 Holte, Denmark (November 2016). http://
www.imm.dtu.dk/∼dibj/2016/credit/accs.pdf

23. Bjørner, D.: Domain Analysis and Description - Formal Models of Processes and
Prompts (2016), extensive revision of [20]. http://www.imm.dtu.dk/∼dibj/2016/
process/process-p.pdf

24. Bjørner, D.: Domains: Their Simulation, Monitoring and Control - A Divertimento
of Ideas and Suggestions. Technical report Fredsvej 11, DK-2840 Holte, Denmark
(2016), extensive revision of [16]. http://www.imm.dtu.dk/∼dibj/2016/demo/faoc-
demo.pdf

25. Bjørner, D.: From Domain Descriptions to Requirements Prescriptions - A Different
Approach to Requirements Engineering (2016), Extensive revision of [8]

https://doi.org/10.1007/978-3-319-05356-1_10
https://doi.org/10.1007/978-1-84882-736-3_1
https://doi.org/10.1007/978-1-84882-736-3_1
http://www.imm.dtu.dk/~dibj/wfdftp.pdf
https://doi.org/10.1007/978-3-642-19391-0_13
http://www.imm.dtu.dk/~dibj/pipe-p.pdf
http://www.imm.dtu.dk/~dibj/pipe-p.pdf
http://www.imm.dtu.dk/~dibj/road-p.pdf
http://www.imm.dtu.dk/~dibj/road-p.pdf
http://www.imm.dtu.dk/~dibj/2016/credit/accs.pdf
http://www.imm.dtu.dk/~dibj/2016/credit/accs.pdf
http://www.imm.dtu.dk/~dibj/2016/process/process-p.pdf
http://www.imm.dtu.dk/~dibj/2016/process/process-p.pdf
http://www.imm.dtu.dk/~dibj/2016/demo/faoc-demo.pdf
http://www.imm.dtu.dk/~dibj/2016/demo/faoc-demo.pdf

Domain Science and Engineering 83

26. Bjørner, D.: Weather Information Systems: Towards a Domain Description. Tech-
nical Report: Experimental Research, Fredsvej 11, DK-2840 Holte, Denmark
(November 2016), http://www.imm.dtu.dk/∼dibj/2016/wis/wis-p.pdf

27. Bjørner, D.: A Space of Swarms of Drones. Research Note (November–December
2017). http://www.imm.dtu.dk/∼dibj/2017/swarms/swarm-paper.pdf

28. Bjørner, D.: What are Documents? Research Note (2017). http://www.imm.dtu.
dk/∼dibj/2017/docs/docs.pdf

29. Bjørner, D.: A Domain Analysis & Description Method - Principles, Techniques
and Modeling Languages. Research Note based on [35] (February 20 2018). http://
www.imm.dtu.dk/∼dibj/2018/tosem/Bjorner-TOSEM.pdf

30. Bjørner, D.: A Philosophy of Domain Science & Engineering - An Interpretation of
Kai Sørlander’s Philosophy. Research Note (Spring 2018). http://www.imm.dtu.
dk/∼dibj/2018/philosophy/filo.pdf

31. Bjørner, D.: Domain Facets: Analysis & Description (May 2018), extensive revision
of [12]. http://www.imm.dtu.dk/∼dibj/2016/facets/faoc-facets.pdf

32. Bjørner, D.: The Manifest Domain Analysis & Description Approach to Implicit
and Explicit Semantics. EPTCS: Electronic Proceedings in Theoretical Computer
Science, Yasmine Ait-Majeur, Paul J. Gibson and Dominique Méry: First Interna-
tional Workshop on Handling IMPlicit and EXplicit Knowledge in Formal Fystem
Development, 17 November 2017. Xi’an, China (2018)

33. Bjørner, D.: To every manifest domain a CSP expression – a rôle for mereology in
computer science. J. Log. Algebr. Methods Program. 94, 91–108 (2018). https://
doi.org/10.1016/j.jlamp.2017.09.005. January

34. Bjørner, D.: The Tokyo Stock Exchange Trading Rules. R&D Experiment,
Fredsvej 11, DK-2840 Holte, Denmark (January and February, 2010), Ver-
sion 1.http://www2.imm.dtu.dk/∼db/todai/tse-1.pdf, Version 2.http://www2.
imm.dtu.dk/∼db/todai/tse-2.pdf

35. Bjørner, D.: Manifest domains: analysis & description. Form. Asp. Comput. 29(2),
175–225 (2016). https://doi.org/10.1007/s00165-016-0385-z

36. Bjørner, Dines, Eir, Asger: Compositionality: ontology and mereology of domains.
In: Dams, Dennis, Hannemann, Ulrich, Steffen, Martin (eds.) Concurrency, Com-
positionality, and Correctness. LNCS, vol. 5930, pp. 22–59. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11512-7 3

37. Bjørner, D., George, C.W., Prehn, S.: Computing Systems for Railways – A Rôle for
Domain Engineering. Relations to Requirements Engineering and Software for Con-
trol Applications. In: Integrated Design and Process Technology. Editors: Bernd
Kraemer and John C. Petterson. Society for Design and Process Science, P.O.
Box 1299, Grand View, Texas 76050–1299, USA (24–28 June 2002), Extended
version.http://www2.imm.dtu.dk/∼db/pasadena-25.pdf

38. Bjørner, D., Gram, C., Oest, O.N., Rystrømb, L.: Dansk Datamatik Center. In:
Wangler, B., Lundin, P. (eds.) History of Nordic Computing. Springer, Stockholm,
Sweden (18–20 October 2010)

39. Bjørner, Dines, Havelund, Klaus: 40 years of formal methods — 10 obstacles and 3
possibilities. In: Jones, Cliff, Pihlajasaari, Pekka, Sun, Jun (eds.) FM 2014. LNCS,
vol. 8442, pp. 42–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06410-9 4

40. Bjørner, D., Nest, O.N. (eds.): Towards a Formal Description of Ada. LNCS, vol.
98. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10283-3

41. Bjørner, D.: Urban Planning Processes. Research Note (July 2017). http://www.
imm.dtu.dk/∼dibj/2017/up/urban-planning.pdf

http://www.imm.dtu.dk/~dibj/2016/wis/wis-p.pdf
http://www.imm.dtu.dk/~dibj/2017/swarms/swarm-paper.pdf
http://www.imm.dtu.dk/~dibj/2017/docs/docs.pdf
http://www.imm.dtu.dk/~dibj/2017/docs/docs.pdf
http://www.imm.dtu.dk/~dibj/2018/tosem/Bjorner-TOSEM.pdf
http://www.imm.dtu.dk/~dibj/2018/tosem/Bjorner-TOSEM.pdf
http://www.imm.dtu.dk/~dibj/2018/philosophy/filo.pdf
http://www.imm.dtu.dk/~dibj/2018/philosophy/filo.pdf
http://www.imm.dtu.dk/~dibj/2016/facets/faoc-facets.pdf
https://doi.org/10.1016/j.jlamp.2017.09.005
https://doi.org/10.1016/j.jlamp.2017.09.005
http://www2.imm.dtu.dk/~db/todai/tse-1.pdf
http://www2.imm.dtu.dk/~db/todai/tse-2.pdf
http://www2.imm.dtu.dk/~db/todai/tse-2.pdf
https://doi.org/10.1007/s00165-016-0385-z
https://doi.org/10.1007/978-3-642-11512-7_3
http://www2.imm.dtu.dk/~db/pasadena-25.pdf
https://doi.org/10.1007/978-3-319-06410-9_4
https://doi.org/10.1007/978-3-319-06410-9_4
https://doi.org/10.1007/3-540-10283-3
http://www.imm.dtu.dk/~dibj/2017/up/urban-planning.pdf
http://www.imm.dtu.dk/~dibj/2017/up/urban-planning.pdf

84 D. Bjørner

42. Clemmensen, G., Oest, O.: Formal specification and development of an Ada com-
piler - a VDM case study. In: Proceedings of the 7th International Conference on
Software Engineering, 26–29. March 1984, Orlando, Florida, pp. 430–440. IEEE
(1984)

43. George, C.W., et al.: The RAISE Specification Language. The BCS Practitioner
Series. Hemel Hampstead, Prentice-Hall, England (1992)

44. George, C.W., Haxthausen, A.E., Hughes, S., Milne, R., Prehn, S., Pedersen, J.S.:
The RAISE Development Method. The BCS Practitioner Series. Prentice-Hall,
Hemel Hampstead, England (1995)

45. Guyer, P. (ed.): The Cambridge Companion to Kant. Cambridge University Press,
England (1992)

46. Haff, Peter, Olsen, Anders: Use of VDM within CCITT. In: Bjørner, Dines, Jones,
Cliff B., Mac an Airchinnigh, Mı́cheál, Neuhold, Erich J. (eds.) VDM 1987. LNCS,
vol. 252, pp. 324–330. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-
17654-3 18

47. Haff, P. (ed.): The Formal Definition of CHILL. ITU (Intl. Telecmm. Union),
Geneva, Switzerland (1981)

48. Hoare, C.: Communicating Sequential Processes. C.A.R. Hoare Series in Computer
Science. Prentice-Hall International (1985), published electronically: http://www.
usingcsp.com/cspbook.pdf (2004)

49. Jackson, M.A.: Software Requirements & Specifications: A Lexicon of Practice,
Principles and Prejudices. ACM Press, Addison-Wesley, Reading, England (1995)

50. Oest, O.N.: VDM from research to practice (invited paper). In: IFIP Congress, pp.
527–534 (1986)

51. Pěnička, M., Strupchanska, A.K., Bjørner, D.: Train maintenance routing. In: Tar-
nai, G., Schnieder, E. (eds.) FORMS’2003: Symposium on Formal Methods for
Railway Operation and Control Systems. L’Harmattan Hongrie (15–16 May 2003),
conf. held at Technical University of Budapest, Hungary, Germany. Final version.
http://www2.imm.dtu.dk/∼db/martin.pdf

52. Sørlander, K.: Det Uomgængelige - Filosofiske Deduktioner [The Inevitable - Philo-
sophical Deductions, with a foreword by Georg Henrik von Wright]. Munksgaard ·
Rosinante, 168 p. (1994)

53. Sørlander, K.: Under Evighedens Synsvinkel [Under the viewpoint of eternity].
Munksgaard · Rosinante, 200 p. (1997)

54. Sørlander, K.: Den Endegyldige Sandhed [The Final Truth]. Rosinante, 187 p.
(2002)

55. Sørlander, K.: Indføring i Filosofien [Introduction to The Philosophy]. Informations
Forlag, 233 p. (2016)

56. Strupchanska, A.K., Pěnička, M., Bjørner, D.: Railway staff rostering. In: Tarnai,
G., Schnieder, E. (eds.) FORMS2003: Symposium on Formal Methods for Railway
Operation and Control Systems. L’Harmattan Hongrie (15–16 May 2003), conf.
held at Techn. Univ. of Budapest, Hungary, Germany. Final version. http://www2.
imm.dtu.dk/∼db/albena.pdf

https://doi.org/10.1007/3-540-17654-3_18
https://doi.org/10.1007/3-540-17654-3_18
http://www.usingcsp.com/cspbook.pdf
http://www.usingcsp.com/cspbook.pdf
http://www2.imm.dtu.dk/~db/martin.pdf
http://www2.imm.dtu.dk/~db/albena.pdf
http://www2.imm.dtu.dk/~db/albena.pdf

HAT: Analyzing Linear Hybrid Automata
as Labelled Transition System

Lei Bu(B), Hui Jiang, Xin Chen, Enyi Tang, and Xuandong Li

State Key Laboratory for Novel Software Technology, Department of Computer
Science and Technology, Nanjing University, Nanjing, Jiangsu 210093, People’s

Republic of China
bulei@nju.edu.cn

Abstract. Linear Hybrid Automata (LHA) is a natural modeling lan-
guage for real-time embedded systems. However, due to the existences of
both discrete and continuous behaviors, formal analysis of LHA is rec-
ognized as a very challenging task. Despite decades of active research,
the kinds of LHA problems that can be efficiently analyzed is rather
limited. On the other hand, Labelled Linear Transition System (LTS)
is a widely used modeling language to describe the state changes of the
system before and after certain transitions. Lots of research efforts have
been devoted into the verification of LTS models. Many off-the-shelf for-
mal techniques and tools are available for analyzing different kinds of
problems for LTS systems. In this paper, we propose to express an LHA
as an equivalent LTS model explicitly. Then, we can take advantage of all
the off-the-shelf formal checkers of LTS to answer different problems of
the LHA model. A prototype tool HAT is implemented under this idea.
By integrating typical LTS checkers like ARMC and Interproc, we con-
duct considerably difficult checking problems like reachability verifica-
tion, termination analysis, and invariant generation of LHA successfully
and efficiently. It shows the open possibility of analyzing more kinds of
difficult problems of LHA by LTS checkers easily in the future.

Keywords: Linear hybrid automata · Transition system
Reachability checking · Termination analysis · Invariant generation

1 Introduction

Real-time embedded systems are widely used in the safety-critical area. There-
fore, formal verification of these systems is crucial. Linear Hybrid Automata
(LHA) [16] is a mainstream modeling language for such system. However, due to
the existences of both discrete and continuous state changes in the system, the
infinite state space of LHA is extremely difficult to verify. Currently, the verifi-
cation of LHA is still mainly focusing on the basic reachability/safety problem,
which has been proved to be undecidable [1,16]. Other typical classes of prob-
lems, e.g. invariant generation (for stability) [26,27], termination analysis (for

c© Springer Nature Switzerland AG 2018
C. Jones et al. (Eds.): Zhou-Festschrift, LNCS 11180, pp. 85–104, 2018.
https://doi.org/10.1007/978-3-030-01461-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01461-2_5&domain=pdf

86 L. Bu et al.

liveness) [22,23] and so on, which are widely discussed in areas like hardware
and software are rarely studied in the area of LHA.

Labelled Linear Transition System (LTS) [22,23] is a basic formal modeling
language which describes the changes of the system variables’ valuations between
states. Different from LHA whose variables’ valuations can be changed along with
time continuously when staying in certain locations, the valuations of the system
variables in the LTS can only be changed by discrete transitions. This gives a
nice support of modeling the behavior of general systems. Taking an assignment
expression in a software code for example, x := x − 2 can be modeled by a
discrete transition labelled with linear constraint x′ = x− 2, where x′ stands for
the valuation of x after the transition is fired.

Compared with LHA, LTS can be applied more widely in the modeling and
analysis of different kinds of system. Therefore, decades of efforts have been
devoted into formal analysis of LTS. Numerous technologies and tools have
been proposed/implemented for the analysis of different kinds of problems of
LTS, not only reachability. For example, as mentioned before, ranking func-
tion based termination analysis [22,23], abstract interpretation based invariant
generation [9,17] and of course counterexample-guided-abstraction-refinement
(CEGAR) [8] based reachability verification.

In general, the behavior of any system is a sequence of transitions from
one state to another. Therefore, LTS is widely used to describe the semantics of
many formal languages, including LHA. This brings the motivation of this paper:
transform an LHA into an equivalent LTS model; then solve the generated LTS
model by existing off-the-shelf LTS checkers to answer questions that can not be
(efficiently) answered so far about the behavioral state space of the LHA model.

However, due to the existences of both discrete and continuous behaviors,
LHA is an infinite state system. Therefore, if we want to describe an LHA as
an LTS in the typical way by enumerating all the possible states and connecting
them by transitions, standing for the discrete jumps and/or continuous flows,
the resulting LTS will have infinite number of nodes and transitions, which will
be impossible to be passed to any checker to solve. Furthermore, the continuous
part also makes the presentation of the LHA’s semantic in the form of LTS with
existential and universal quantifiers included [16]. For example, when an LHA
model stays in location v, ∀ continuous states in v must satisfy the invariants
and flow conditions of v. Clearly, this is not the class of LTS that can be solved
by existing LTS checkers.

As a result, in order to take advantage of the existing techniques and tools on
LTS models to analyze the state space of LHA model, we have to transform the
LHA model into an equivalent LTS model with finite structure and no quantifier,
which is solvable by the existing tools. Luckily, for the class of LHA, this prob-
lem is solvable. By extending the idea from path-oriented linear programming
encoding [20] and SMT-based BMC encoding of LHA [3], we present a method
to transform an LHA into an equivalent LTS without quantifiers explicitly. We
introduce a self loop on each control node to represent the continuous flow step.
We also introduce a variable t to stand for the numeric value of the time spent

HAT: Analyzing Linear Hybrid Automata as Labelled Transition System 87

during the past continuous step. As the value of t is reset to a nondeterminis-
tic positive value after the transition is fired, we can represent all the possible
behavior of the LHA model in the LTS model by assigning random values to t
in each loop.

Although the generated LTS is still an infinite state system, it gives us an
opportunity to take full advantage of the numerous achievements on all the
aspects of verification of LTS to analyze different properties, far more than
reachability analysis, of the original LHA model. Based on the above idea, we
present a prototype tool HAT in this paper. First, HAT transforms an LHA into
an equivalent LTS. Then, HAT can feed the generated LTS into different LTS
checkers to conduct different analysis. So far, HAT supports the interaction with
three mature LTS checkers which are, ARMC [24] for both reachability analysis
and termination analysis, Invgen [14] and Interproc [19] for invariant genera-
tion. We conduct sets of case studies on a series of well-known benchmarks. The
experiment results show that, by using the method and tool presented in this
paper, we can answer many considerably difficult questions on LHA easily and
also efficiently.

Structure of the Paper. This paper is organized as follows. In the next
section, we give the formal definitions of the LHA and LTS model used in this
paper. We present the construction of the equivalent LTS model from the LHA
model in Sect. 3. The equivalence proof is given in the same section. The imple-
mentation and case studies are given in Sect. 4. We discuss the related works in
Sect. 5. Finally, the conclusion is stated in Sect. 6.

2 Notations

In this section, we give the formal definitions of the class of LHA and LTS used
in our paper.

2.1 Linear Hybrid Automata

The linear hybrid automata (LHA) considered in this paper is a variation of the
definition given in [16]. The flow conditions of variables in an LHA considered
here can be given as ranges of values for their derivatives.

Definition 1. An LHA is a tuple H = (X,V, V 0, E, α, β, γ), where

– X is a finite set of real-valued variables; V is a finite set of locations; V 0 ⊆ V
is a set of initial locations.

– E is a transition relation set whose elements are of the form (v, φ, ψ, v′), where
v, v′ are in V , φ is a set of transition guards of the form

∑m
i=0 bixi ∼ a, and ψ

is a set of reset actions of the form x := c where xi ∈ X , x ∈ X, a, bi, c ∈ R,
∼∈ {<,≤, >,≥,=}.

– α is a labeling function which maps each location in V to a location invariant
which is a set of variable constraints of the form

∑m
i=0 bixi ∼ a where xi ∈ X,

a, bi ∈ R, ∼∈ {<,≤, >,≥,=}.

88 L. Bu et al.

– β is a labeling function which maps each location in V to a set of flow condi-
tions which are of the form of ordinary differential inclusion ẋ ∈ [a, b] where
x ∈ X, and a, b ∈ R and (a ≤ b). For any v ∈ V , for any x ∈ X, there is one
and only one flow condition ẋ ∈ [a, b] ∈ β(v).

– γ is a labeling function which maps each location in V 0 to a set of initial
conditions which are of the form x ∈ [a, b]. For any v ∈ V 0, for any x ∈ X,
there is at most one initial condition definition x ∈ [a, b] ∈ γ(v), where x ∈ X,
a, b ∈ R.

Definition 2. Given an LHA H = (X,V, V 0, E, α, β, γ), a state s of H is a pair
(v, q) where

– v ∈ V
– q = (x1q , x2q . . . xmq

) is a valuation of all the continuous variables in X, such
that q satisfies the location invariant α(v) of v.

2.2 Labelled Linear Transition System

Definition 3. A Labelled Linear Transition System (LTS) is a tuple T =
(XT , VT , V O

T , ET , I), where

– XT is a finite set of variables;
– VT is a finite set of locations;
– V O

T is a set of initial locations, such that V O
T ⊆ VT ;

– ET is a transition relation whose elements are of the form (v, φT , v′), where
v, v′ are in VT , φT is a set of linear constraints of the form

∑m
i=0 bixi+cix

′
i ∼ a,

where xi, x
′
i ∈ XT , a, bi and ci ∈ R, ∼∈ {<,≤, >,≥,=}. The constraint φT

gives the relations between the valuations of system variables before and after
certain transitions, which are represented as x and x′ respectively.

– I is a labeling function which maps each location in V O
T to a set of initial

conditions in the form of
∑m

i=0 bixi + cix
′
i ∼ a, where xi, x

′
i ∈ XT , a, bi and

ci ∈ R, ∼∈ {<,≤, >,≥,=}.

Definition 4. Given an LTS T = (VT , V O
T ,XT , ET , I), a state s of T is a pair

(v, q) such that

– v ∈ VT

– q = (x1q , x2q . . . xmq
) is a valuation of all the continuous variables in XT .

Definition 5. The behavior of a LTS T is a run σ which is a sequence of states
s0, s1, . . . , sn, such that:

– s0 = (v0, q0) where v0 ∈ V O
T and q0 satisfy I(v0).

– for each i ≥ 0 there exists a transition e ∈ ET such that si = (vi, qi) goes to
si+1 = (vi+1, qi+1) under e , formally e = (vi, φe, vi+1), and (qi, qi+1) satisfies
φe.

If a state s is in a behavior of T , we say s is reachable.

HAT: Analyzing Linear Hybrid Automata as Labelled Transition System 89

2.3 LTS Semantic for LHA

Definition 6. The behavior of a LHA H is a sequence of states s0, s1, . . . , sn,
such that:

• Each state si is a pair (vi, qi) where vi ∈ V and qi = (x1qi
, x2qi

. . . xmqi
)

is a valuation of all the continuous variables in X, such that q satisfies the
location invariant α(v) of v (0 ≤ i ≤ n).

• s0 = (v0, q0) where v0 ∈ V 0 and q0 satisfies the initial conditions in γ(v0).
• For each state si = (vi, qi) and sj = (vj , qj), either

– vi �= vj (discrete jump): there is transition (vi, φi, ψi, vj) ∈ E, qi and qj
satisfy φi and ψi.

– vi = vj (continuous jump): there exists (∃) a positive real δi ∈ R and a
differentiable function Wk : [0, δi] → R for each variable xk ∈ X(1 ≤ i ≤
n, 1 ≤ k ≤ m), with the first derivative wk : [0, δi] → R, such that
1. Wk(0) = xkqi

and Wk(δi) = xkqj

2. For all (∀) reals ε ∈ [0, δi]
(a) Wk(ε) satisfies all the invariants in α(vi)
(b) wk(ε) ∈ [aj , bj] ⊆ βvi

Definition 7. For an LHA H = (X,V, V 0, E, α, β, γ), if a sequence of states
s0, s1, . . . , sn is a behavior of H, we say sn is reachable.

Definition 8. For an LHA H = (X,V, V 0, E, α, β, γ), if an infinite sequence of
states s0, s1, . . . , sn, . . . is a behavior of H and visits a discrete transition ei ∈ E
infinitely many times, we say H is not terminating1.

In general, the behavior of any model/language can be represented as transi-
tions from state to state. Therefore, LTS has been used to represent the semantics
for lots of formal languages, including LHA.

Of course, we can connect all the states of an LHA by either discrete jump
or continuous jump, then the state space of the LHA is an LTS. However, due
to the existence of continuous flow conditions, the state space of LHA is infinite.
Furthermore, the LTS presentation of such infinite state space is an LTS with
infinite structure and quantifiers, including both ∃ and ∀, as we can see from
Definition 6 in this paper and also the Definition 1.3 in [16], which is the first
introduction of hybrid automata. Clearly, this class of LTS is not the typical
LTS that can be processed efficiently by existing techniques.

3 Quantifier-Free LTS Construction for LHA

As shown in the previous section, if we want to use any mature off-the-shelf
LTS checker to analyze LHA, it is necessary to present a method to transfer the
LHA model into an equivalent LTS model with finite structure and no quanti-
fiers at first. Luckily, researchers have started to encode the transition relations
1 Please refer to [23] for the detail definition of termination for LTS.

90 L. Bu et al.

between states of LHA symbolically in many studies, e.g. path-oriented reacha-
bility encoding in [20] and SMT-based BMC encoding in [3]. By extending such
methods, we present a method to transform an LHA H to a quantifier-free LTS
T explicitly, which preserves the same behavior of H.

Given an LHA H = (X,V, V 0, E, α, β, γ), the LTS T = (VT , V O
T ,XT , ET , I)

corresponding to H can be constructed in the following way:

• Model Structure:
– For each location vi ∈ V , generate a location: viT in VT . If vi ∈ V O,

viT ∈ V O
T .

– For each location vi ∈ V , generate a self-loop transition evi
: viT → viT

in ET . The self-loop transition stands for the continuous jump of H in
location vi.

– For each transition ei ∈ E, which is in the form of vi→vj , generate tran-
sition eiT : viT → vjT in ET .

• Variable:
– Generate a new specific variable t in XT to stand for the time spent in

each continuous flow.
– For each variable x ∈ X, generate a variable with the same name x in

XT .
• Constraint Label:

– Constraints on Continuous Flow Self Loop Transition evi
: (viT , φCT

, viT):
∗ For each invariant inv =

∑l
i=0 bixi ∼ a in α(vi) of location vi ∈ V ,

generate a constraint inv′ =
∑m

i=0 bix
′
i ∼ a based on variable x′, add

inv and inv′ to the constraint set φCT
. These two constraints ask

that the valuations of all the variables must satisfy the invariants of
location vi before and after the system takes a continuous flow.

∗ For each flow condition flow in βvi
of location vi ∈ V , e.g, ẋ ∈ [a, b],

generate two new constraints: flow′ : x′ − at − x ≥ 0 and flow′′ :
x′ − bt − x ≤ 0, add flow′ and flow′′ to the constraint set φCT

.
These two constraints ask that before and after the system takes a
continuous flow in location vi, the relation of the valuations of certain
variable must obey the flow conditions.

∗ For each location vi ∈ V , generate constraints t > 0 and t′ > 0, and
add them to φCT

. By t > 0, we mean, if the self loop transition is fired,
then the time spent in this continuous flow is t which is a positive real
value. Furthermore, t′ > 0 is a reset of the timer indicate that the time
spent in next continuous flow behavior would be a random positive
value. It is worth to note that we use t > 0 rather than t ≥ 0 because
t == 0 means the system takes a continuous jump in the location
without spending any time. In that case, everything keeps the same.
It’s not necessary to distinguish the states before and after this “0”
time continuous flow in the system behavior.

– Constraints on Discrete Switch Transition eiT : (viT , φDT
, vjT)

∗ For each constraint guard =
∑m

i=0 bixi ∼ a in guard φ of transition
ei = (vi, φ, ψ, vj), add guard to φDT

.

HAT: Analyzing Linear Hybrid Automata as Labelled Transition System 91

∗ For each reset reset : x = a in ψ of transition ei = (vi, φ, ψ, vj),
generate constraint reset′ : x′ = a, add reset′ to φDT

. For any variable
x which is not reset in the transition, add x′ = x to φDT

.
∗ For each invariant inv =

∑m
i=0 bixi ∼ a in α(vj) of location vj , gen-

erate a constraint inv′ =
∑m

i=0 bix
′
i ∼ a based on variable x′, add inv

and inv′ to φDT
. These two constraints ask that before and after the

system takes the discrete jump, the valuations of all the variables must
satisfy the invariants of the source and target location respectively.

∗ If vi ∈ V 0, for each x ∈ [a, b] in γvi
, add x′ ∈ [a, b] to I(viT)

Now, we use a simple LHA model to help to illustrate our transformation from
the LHA model to the LTS system. The automaton in Fig. 1 describes a model
of water level monitor cited from [1]. The LTS we get after the transformation
is shown below in Fig. 22. We will mainly use the location v1 and transition e1
to illustrate the transformation as follows.

Fig. 1. The LHA model of water-level monitor

• For the graph structure and discrete behavior in the LHA:
– Two system variables are generated in the LTS: x, y corresponding to x, y

in the LHA respectively.
– For location v1, generate the corresponding location v1T in the LTS.
– For transition e1 : v1 → v2 in the LHA, generate the corresponding new

transition e1T : v1T → v2T in the LTS.
– For guard y = 10 on transition e1 in the LHA, generate new constraint

y = 10 and add it into e1T in the LTS.

2 For any variable z which is not reset in the transition, the corresponding constraint
z′ = z is omitted in the picture to keep the figure neat. Meanwhile, the initial
conditions in this model are in the format of x := a, which can be considered as a
special case of the general form x ∈ [a, b].

92 L. Bu et al.

– For reset x := 0 on transition e1, generate new constraint x′ = 0 and
add it into e1T in the LTS, where x′ stands for the valuation of x after
the transition is fired. As y is not reset on e1, generate constraint y′ = y
to indicate the value of y keeps the same after the transition. y′ = y is
omitted in the graph as explained in the footnote below.

– For invariant y ≤ 10 in v1, generate constraint y ≤ 10 in e1T .
– For invariant x ≤ 2 in v2, generate constraint x′ ≤ 2 in e1T .

• For the continuous behavior in the LHA:
– One additional system variables t is generated in the LTS as a timer which

stands for the time spent in each continuous flow.
– For location v1, generate one new transition ev1 from v1T → v1T . The

self-loop transition stands for the continuous jump of H in location v1
– For location v1, generate two new constraints t > 0 and t′ > 0, in tran-

sition ev1 . t > 0 means if the self-loop transition is fired, the time spent
in this continuous flow is positive real valuet. While, t′ > 0 is a reset of
the timer indicates that the time spent in next continuous flow behavior
would be another nondeterministic positive value.

– For invariant y ≤ 10 in v1, generate two constraints y ≤ 10 and y′ ≤ 10
in ev1 .

– For flow constraint ẋ = 1 in v1, generate a new constraint x′ = x + t in
ev1 .

Fig. 2. The Generated LTS model of water-level monitor

HAT: Analyzing Linear Hybrid Automata as Labelled Transition System 93

Theorem 1. Given an LHA H, and an LTS T , which is generated from H
according to the above transformation rules, a sequence of states in H is a
behavior of H if and only if there is a corresponding sequence of states in T ,
which consists a run of T .

Here, we give the proof sketch of the equivalence between the LHA and the
generated LTS.

Proof:

1. If a sequence of states s1, s2, . . . , sm, where si = (vi, qi), 1 ≤ i ≤ m, is a
behavior of H. Clearly, there is a corresponding sequence of states in the LTS
T .

– If vi == vi+1, the transition between si and si+1 is a continuous jump. We
can have two corresponding states (viT , qiT) and (viT , qi+1T) in the LTS,
where qiT and qi+1T satisfy the constraints on the self loop of location
viT in T.

– If vi �= vi+1, the transition between si and si+1 is a discrete jump. We
can have two corresponding states (viT , qiT) and (vi+1T , qi+1T) in the
LTS, where qiT and qi+1T satisfy the constraints on the jump between
location viT and vi+1T in T.

2. On the other direction, if there is a run, sequence states, of the LTS, there is
a corresponding behavior of the LHA.

– Similar with the above proof, for any pair of states which composes a
discrete jump in the LTS, there is a corresponding discrete jump in the
LHA for sure.

– What we need to prove is for any pair of states which composes a con-
tinuous self-loop jump in the LTS, there is a legal continuous behavior
in the LHA. Since all the constraints, e.g. invariants and flow conditions,
in the LHA model are linear, the corresponding potential state space in
one location of the LHA is a convex set. According to the convex theory,
given any two points in a convex set, if we connect these two points by
a straight line π, all the points on π are in the convex set. In another
word, given two legal states (vi, xt1) and (vi, xt2) on the same location
vi, there must have a differentiable function which can connect these two
states and satisfies all the constraints. For example, connect these two
states by a straight line, where the flow condition w(t), the slope of the
line: (xt2 − xt1)/(t2 − t1), satisfies βv1 , and every states on this line must
satisfy all the invariants in α(vi).

Take the water-level LHA for example, the state sequence (v1, (x == 0, y ==
1)), (v1, (x == 5.5, y == 6.5)), (v1, (x == 9, y == 10)), (v2, (x == 0, y == 10)),
(v2, (x == 0.9, y == 10.9)), (v2, (x == 2, y == 12)), (v3, (x == 2, y == 12)),
(v3, (x == 3, y == 10)), (v3, (x == 5.5, y == 5)), (v4, (x == 0, y = 5)),
(v4, (x == 1.5, y = 2)) is a valid behavior of the automaton, Fig. 1.

This behavior spends 5.5 time units then 3.5 time units in v1, then y == 10
so it jumps to v2. It spends 0.9 time unit at first, then 1.1 time units in v2 before

94 L. Bu et al.

it jumps to v3. In v3, it spends 1 time unit and then 2.5 time units, then goes
to v4, where it spends 1.5 time units and stops finally.

We have an equivalent run of the corresponding LTS, Fig. 2, as follows:
(v1T , (x == 0, y == 1, t == 5.5)), (v1T , (x == 5.5, y == 6.5, t == 3.5)),
(v1T , (x == 9, y == 10, t == 0.9)), (v2T , (x == 0, y == 10, t == 0.9)),
(v2T , (x == 0.9, y == 10.9, t == 1.1)), (v2T , (x == 2, y == 12, t == 1)),
(v3T , (x == 2, y == 12, t == 1)), (v3T , (x == 3, y == 10, t == 2.5)),
(v3T , (x == 5.5, y == 5, t == 1.5)), (v4T , (x == 0, y == 5, t == 1.5)),
(v4T , (x == 1.5, y == 2, t == 0.2)). Note that, according to our transforma-
tion rule the timer t is reassigned to a random value in each continuous step.
Therefore, even the system ends in the final state, we still assign a random value
0.2 to t.

Based on Theorem 1, we can have the following corollaries straightforwardly.

Corollary 1. A state (vi, qi) in LHA H is reachable iff the corresponding state
(viT , qiT) is reachable in the generated LTS T .

Corollary 2. An invariant
∑m

i=0 bixi ∼ a of location viT in the generated LTS
T is an invariant for location vi in the original LHA H as well.

Corollary 3. An infinite sequence of states δT = s0T , s1T , s2T , . . . , where siT =
(viT , qiT), is a behavior of the generated LTS T and visits a transition eiT infinite
times, iff the corresponding infinite sequence of states δ = s0, s1, s2, . . . , where
si = (vi, qi), is a behavior of the original LHA H and visits ei infinitely times as
well.

Now, we have an approach to construct an equivalent LTS T of a given
LHA H. We can analyze the state space of the generated LTS system by tak-
ing advantage of the off-the-shelf LTS checkers. According to Corollary 1– 3,
such verification results are also valid for the state space of the original LHA.
For example, now we can conduct ranking function based termination analysis,
abstract interpretation based invariant generation and CEGAR based reachabil-
ity verification on the state space of the LHA.

4 Implementation and Experiment

4.1 Tool Implementation

A prototype tool HAT, H ybrid Automata Checker Based on Labelled
T ransition System Construction and Analysis, is implemented to demonstrate
the feasibility of our method. HAT automates the LTS construction and the
subsequent interactions with the LTS checkers. Currently, HAT supports the
interaction with three LTS checkers, including ARMC [24] which performs both
CEGAR based reachability checking and ranking function detection based termi-
nation analysis of LTS system; Interproc [19] which is a typical abstract interpre-
tation based invariant generator built upon APRON library [17]; and InvGen [14]
which is another invariant generator of LTS system based on constraint solving

HAT: Analyzing Linear Hybrid Automata as Labelled Transition System 95

technique. Due to the space limitation, we focus on the introduction of the inte-
gration and experience of ARMC and Interproc in the following paragraph, as
InvGen targets a similar problem with Interproc, by different techniques though.

First of all, the structure and workflow of HAT is shown below in Fig. 3.
After a LHA model is generated using the graphical LHA editor in HAT3, HAT
transforms the LHA H into an internal LTS data structure automatically. Then,
according to the problem/tool user chose, HAT generates the input file for the
specific tool, feeds the input file to the tool and translates the analysis result
back to the state space of the LHA H. The functionalities of HAT include:

Fig. 3. Workflow of HAT

– Invariant generation by Interproc4: As Interproc is abstract interpretation
based, it asks the user to select the abstract domain first. In HAT, the domains
can be selected including: box, octagon, polyhedral and so on. According to
Corollary 2, the invariant for each node viT in the LTS model is also the
invariant for the node vi in the original LHA model. Therefore, after the
invariants are generated on the LTS, HAT adds the generated invariants into
the original LHA model, resulting a refined LHA model. For example, the
model shown in the left part of Fig. 4 is the water level monitor model from
Fig. 1. The right part of Fig. 4 is the refined model based on the generated
invariants. Take location v4 for example, compared with Fig. 1, we can find
new invariants like 2x + y = 5 and x ≥ 0 which are marked by red. These
invariants are generated by Interproc and added into the model by HAT.

3 The editor is integrated from LHA BMC checker BACH [6].
4 In order to make Interproc handle LTS much easier, we modify the input language

syntax of Interproc slightly. The modified version of Interproc is available upon
request.

96 L. Bu et al.

Furthermore, location v5 disappears in the refined model as the invariant
generated by Interproc for v5 is ⊥, which means v5 is not reachable at all.

– Termination Analysis by ARMC: ARMC conducts the termination analy-
sis of LTS by looking for well-founded ranking functions [22] in the system.
An informal definition of well-founded ranking function is an expression like
f(x) ≤ a, while the valuation of f(x) is keeping increasing with the executing
of the system. If such function exists for the transition relation of a system,
the system terminates [22]. According to Corollary 3, if ARMC claims such
ranking function doesn’t exist and presents a witness infinite loop in the sys-
tem, such infinite state loop can be mapped back to a infinite state sequence
in the LHA model straightforwardly, this implies the execution of the LHA
is not terminating as well.

– Reachability Analysis by ARMC: Besides of termination analysis, ARMC
also supports CEGAR based reachability verification of LTS. According to
Corollary 1, a node is not reachable in the LHA iff it is reachable in the
LTS. Therefore, we can take advantage of the powerful CEGAR techniques
to perform the reachability checking of LHA without performing expensive
geometric computation.

Fig. 4. GUI of interproc based invariant generation in HAT

4.2 Case Studies

In order to evaluate the performance of HAT, we conduct a series of case stud-
ies on a set of widely-used LHA benchmarks. The first LHA is the water-level
monitor system (WLM) used through this paper in Fig. 1. The second one is the
temperature control rod system (TCS) in Fig. 5.

Besides of the above small scale models, we also conduct the case studies on
the scalable automated highway system from [18] in Fig. 6. It is worth noting
that the size of the highway system model can be easily expanded by introducing

HAT: Analyzing Linear Hybrid Automata as Labelled Transition System 97

more cars into the system, which will increase new locations and variables in the
model. For example, Figs. 7 and 8 are the models for the automated highway
system with three cars and four cars respectively.

The experiments are conducted on a normal desktop PC (Intel Core2 Quad
2.66GHz, 4GB RAM, UBUNTU12.04). The tool HAT, all the sample models
and the output results are all available from http://seg.nju.edu.cn/HAT/. For
the following experiment data, the time usage is recorded by tool runlim [5]. If
any tool fails to give the result in the time limit, one hour, the corresponding
blank is marked by “N/A”.

Fig. 5. Temperature control system Fig. 6. Automated highway system

Invariant Generation. The performance data of invariant generation in HAT,
by Interproc, are given in Table 1. In this table, we record the size of the model,
number of variables and locations, and the time spend for invariant generation
on different domain as well. Due to the space limitation, the detail information
about the invariants generated are refer to http://seg.nju.edu.cn/HAT/.

From this table and the generated invariants on the website we can see that,
consistent with the common sense, by choosing abstract domain like box or
octagon, HAT/ Interproc can solve the system very efficiently and the scalability
is very nice. For example, for a system with 100 variables and 101 locations, we
can get the invariants for all the nodes in 26.17 s.

However, if the user chooses complex domain like polyhedral (PPL), the size
of the system that can be solved is much smaller. Nevertheless, the invariants
generated in PPL domain are much more accurate. For example, by PPL, HAT
can annotate the invariants of certain locations of WLM and Motor series models
as ⊥. While the results on domains like box and octagon are much more abstract.

The above experiments show the process capability and scalability of our
method about invariant generation for LHA. Furthermore, we can get deeper
information of the system under investigation from the generated invariants.
Such information can benefits the future analysis for sure. For example, when

http://seg.nju.edu.cn/HAT/
http://seg.nju.edu.cn/HAT/

98 L. Bu et al.

the invariant on certain location is marked as ⊥, the location is definitely not
reachable. The model that need to verify shall be much easier to handle. The
topic of how to use the invariants generated for the future analysis, like model
checking, theorem proving or stability analysis, has been widely discussed in
numerous studies. Therefore, we will not discuss it in detail in this paper.

Fig. 7. Automated highway system
with three cars

Fig. 8. Automated highway system
with four cars

Table 1. Invariant generation performance data

System Variable Location Box Octagon PPL

WLM 2 5 0.4s 0.31s 0.97s

TCS 3 4 0.4s 0.94s 0.82s

Motor5 5 6 0.44s 0.64s 3.21s

Motor10 10 11 0.76s 3.15s N/A

Motor30 30 31 1.22s 180.29s N/A

Motor60 60 61 6.16s N/A N/A

Motor100 100 101 26.17s N/A N/A

Termination Analysis. It is really rare to see works perform termination
analysis on the infinite state space of real time systems. By taking advantage of
ARMC, it is possible to conduct such analysis of LHA by looking for ranking
functions in the corresponding LTS system. We slightly modify some constraints
in each model to generate two versions of each model, one is able to terminat-
ing, one is not. Then, both of the versions are feed to HAT for analysis. The

HAT: Analyzing Linear Hybrid Automata as Labelled Transition System 99

Table 2. Termination analysis performance data

Name Variable Location Model type Time Result

WLM 2 5 NonTermi. 4.74s ARMC: cannot find rank

Termi. 1.6s ARMC: program is correct

TCS 3 4 NonTermi. 0.69s ARMC: feasible counterexample

Termi. 0.76s ARMC: program is correct

Motor5 5 6 NonTermi. 1.45s ARMC: feasible counterexample

Termi. 0.58s ARMC: program is correct

Motor20 20 21 NonTermi. 1455.65s ARMC: feasible counterexample

Termi. 2.0s ARMC: program is correct

Motor30 30 31 NonTermi. N/A N/A

Termi. 3.78s ARMC: program is correct

Motor50 50 51 NonTermi. N/A N/A

Termi. 14.84s ARMC: program is correct

Motor100 100 101 NonTermi. N/A N/A

Termi 142.52s ARMC: program is correct

performance data for the corresponding models are given in Table 2. The detail
information is available on the website as well.

From the data we can see that, by using ARMC, HAT successfully reports
“program is correct” for all the models which are able to terminating. For those
which cannot terminate, ARMC either reports a feasible counterexample which
is a infinite loop or reports it cannot find a ranking function. In one hour time
limit, the largest nonterminating model solved is Motor20, which has 20 variables
and 21 locations. For terminating ones, even for a large model like Motor100,
100 variables and 101 locations, HAT/ARMC finishes the computing in 142.5 s.

Reachability Verification. We also use ARMC in HAT to conduct the reach-
ability verification of all the benchmarks as well. Furthermore, different from the
above two problems which are difficult to find related tools to compare, there
are many mature works about reachability verification of LHA. Therefore, we
compare the performance of HAT with the state-of-the-art LHA model checker
SpaceEx [12], which is the upgraded version of PHAVer [11], with both of its
underlying algorithms. The first one is the algorithm in PHAVer, marked as
SpaceExphav. The second one is the lately introduced “support function” algo-
rithm [12], marked as SpaceExsupp

5.
The experiment data for the time spent in each benchmark is shown in

Table 3. From Table 3, we can see that HAT outperforms both configurations

5 The comparison between HAT and the PHAVer algorithm SpaceExphav is fair as
they are addressing the same class of HA. On the other hand, support function algo-
rithm (SpaceExsupp) is more suitable to handle HA with piecewise affine dynamics
which is different from the class of HA considered in this paper. We just list the data
here for reference.

100 L. Bu et al.

of SpaceEx significantly on most of the cases, especially on large scale models,
like the series of Motor problems. For example, the largest problem SpaceEx
solved in the time limit is Motor5 which has only 5 variables, while the largest
problem HAT solved in the one hour time limit has 70 variables and 71 locations
included.

Table 3. Reachability Verification Performance Data

Name Variable Location HATARMC SpaceExphav. SpaceExsupp.

WLM 2 5 0.63s 0.27s 0.16s

TCS 3 4 0.84s N/A 1.10s

Motor5 5 6 0.42s 3.99s N/A

Motor20 20 21 16.41s N/A N/A

Motor30 30 31 77.53s N/A N/A

Motor50 50 51 628.74s N/A N/A

Motor70 70 71 3087.63s N/A N/A

5 Related Works

5.1 Reachability Analysis

Formal analysis of LHA is considerably difficult. Most of the research efforts are
devoted to the reachability verification problem, which is recognized as a basic
problem in the context of formal analysis of LHA [11,12]. However, it has been
proved that the reachability problem for LHA is undecidable [16]. The typical
procedures of reachability verification is to compute the closure of the system’s
state space by geometric computation, which is very expensive. As we shown in
the last paragraph, the capability of the-state-of-the-art checker is limited. They
do not scale well to the high dimension system.

In recent years, Bounded Model Checking [4] has been presented. The basic
idea is to encode the next-state relation of a system as a propositional for-
mula, unroll this formula to some integer k, and search for a counterexample in
the model executions whose length is bounded by k. There are several related
works [3,10] to check LHA by the BMC idea. Several tools were developed, such
as MathSAT [3] and HySAT [10]. These tools are based on a SAT-solver that
calls the solver on demand for conjunctions of the domain-specific constraints.
Nevertheless, it is difficult to apply those tools to analyze problems with large
bound.

To control the complexity of BMC, a new method path-oriented reachability
is proposed in [20]. The basic idea is to check the reachability of one path at a
time. As the number of potential paths in the given bound is finite, the BMC

HAT: Analyzing Linear Hybrid Automata as Labelled Transition System 101

can be performed efficiently [6,29]. The construction of LTS from the LHA is
inspired by the encoding technique used in these set of BMC works.

ARMC is a CEGAR based checker. The CEGAR [8] technique has also
been applied onto reachability verification of hybrid automata directly in stud-
ies like [2,7]. These works proposed to apply predicates on the states of HA
to abstract the model. However, they have to split the locations of the model
during refinement which may cause huge system to analyze. Study [18] pro-
posed a method to drop variables from the original LHA in each iteration,
and ask PHAVer to solve the simplified model. As this technique still relies
on PHAVer, in another word geometric computation, as the underlying checker
for the abstracted model, its scalability is also limited. As the implementations
of this work are not available, we can only compare with [18] numerically as it
also reported its performance on the Motor series problem. According to [18],
the largest Motor model it solved has 19 variables included. It took [18] 652.51
s to solve such a problem, while for a larger problem, Motor20, HAT solved it
in only 16.41 s and HAT solved a much larger system Motor70 in the one hour
time limit successfully.

5.2 Invariant Generation

Invariant generation of hybrid system has been studied widely. In [27], Sankara-
narayanan propose to use templates to generate invariants of a specific form
for hybrid system by constraint solving. Study [26] present a method to com-
pute the most precise polynomial equational invariant for linear hybrid system
based on Gröbner basis computation. However, these techniques cannot handle
hybrid systems with inequalities in initial sets or switching surfaces, which is
very common in real cases [21].

Study [13] also uses a template with unknown coefficient as the guide of
invariant of the LHA system, which will generate a formula with quantifiers
like ∃∀. Then, quantifier elimination techniques based on Farkas Lemma are
deployed to translate the formula into a ∃ formula, which can be solved by SMT
decision procedures. It is well known that quantifier elimination technique has
high complexity, which may restrict the size of the system that can be handled.

Region stability of hybrid automata is analyzed in [25] to check whether
the behavior of the system will drop into certain region, which is similar with
invariant analysis. [25] derives binary reachability relations over hybrid system
behavior, then call model checker PHAVer [11] to generate the relations between
the valuation of a variable in certain modes. Then, it will try to find the ranking
function of the relation. Once a ranking function is found, then the relation can
be terminated, which means the variable can fall into certain ranges. However,
this technique will double the size of system variables in the system. As it relies
on safety verification techniques like polyhedral computation which is very com-
plex, the size of the system can be solved is limited. Furthermore, the stability
invariant that can be solved by this technique is only a region box of a given
variable, which is rather abstract.

102 L. Bu et al.

Recently, differential logic is proposed in [21] to generate differential invariant
for nonlinear hybrid system. In study [21] the differential invariants are computed
as fixed points using theorem proving by differential logic for hybrid systems.
This work is interesting and can handle nonlinear systems, while our work is
focusing on linear hybrid automata, which is much simpler. Thus, we can gen-
erate invariants of LHA efficiently by techniques like abstract interpretation [9].

5.3 Termination Analysis

Termination analysis of hybrid automata has not been studied intensively. Nev-
ertheless, work [28] proved that the liveness problem of infinite state system
can be transformed to the fairness termination problem. Therefore, this is an
important problem that has been widely discussed in the context of liveness of
transition system.

Researchers has achieved significant progress in areas like termination anal-
ysis of software code [22–24]. The tool ARMC used in HAT is a typical success
product of such research. However, to the best of our knowledge, we have not
find any discussion about this topic in the area of LHA yet.

5.4 TS Construction for HA

Most of the works about transforming HA model into transition system are
discussed in the invariant generation subsection. Besides that, study [15,30] try
to introduce a timer to present the continuous behavior. However, they use a
constant time-step dt as a clock, even if the constant is a infinitesimal number,
we still cannot describe the behavior of the system in any given time instance,
say, in the middle of dt. In this paper, by focusing on LHA and set the timer as
a free variable, we are able to present all the possible states in the behavior.

6 Conclusion

In this paper, we propose that by generating the equivalent LTS model of an
LHA, we can take advantage of the powerful off-the-shelf LTS checkers to answer
many different problems, not only reachability, on the state space of LHA easily.

A prototype tool HAT is implemented. By interacting with ARMC and Inter-
proc in HAT, we show that considerably difficult problems, including invariant
generation, termination analysis and reachability verification of high dimension
system, are solved efficiently.

Last but not least, HAT is an open framework. In the future HAT can be
extended easily by integrating different LTS checkers to answer different kinds
of questions about the state space of LHA model seamlessly.

Acknowledgment. The authors want to thank Prof. Edmund Clarke, Dr. Sumit Jha,
Dr. Silke Wagner, and Dr. Axel Legay for their constructive discussions on the topic
of presenting an LHA as an LTS for fair termination analysis. The authors also want

HAT: Analyzing Linear Hybrid Automata as Labelled Transition System 103

to thank Prof. Andrey Rybalchenko for his help with ARMC. The valuable comments
given by all the anonymous reviewers are also appreciated! This paper is supported
in part by the National Natural Science Foundation of China (No.61561146394 and
No.61572249), in which No.61561146394 is a Joint NSFC-ISF Research Program, jointly
funded by the National Natural Science Foundation of China and the Israel Science
Foundation.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theor. Comput. Sci. 138(1), 3–34 (1995)

2. Alur, R., Dang, T., Ivancic, F.: Counterexample-guided predicate abstraction of
hybrid systems. Theor. Comput. Sci. 354(2), 250–271 (2006)

3. Audemard, G., Bozzano, M., Cimatti, A., Sebastiani, R.: Verifying industrial
hybrid systems with mathsat. Electr. Notes Theor. Comput. Sci. 119(2), 17–32
(2005)

4. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58, 117–148 (2003)

5. Biere, A., Jussila, T.: runlim (2000). http://fmv.jku.at/runlim/
6. Bu, L., Li, Y., Wang, L., Li, X.: BACH: bounded reachability checker for linear

hybrid automata. In: Formal Methods in Computer-Aided Design, FMCAD 2008,
Portland, Oregon, USA, 17–20 November 2008, pp. 1–4 (2008)

7. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Stursberg, O., Theobald, M.: Verifi-
cation of hybrid systems based on counterexample-guided abstraction refinement.
In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 192–207.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X 14

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Computer Aided Verification, 12th International Con-
ference, CAV 2000, Chicago, IL, USA, July 15–19, 2000, Proceedings, pp. 154–169
(2000)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
Los Angeles, California, USA, January 1977, pp. 238–252 (1977)

10. Fränzle, M., Herde, C.: Hysat: an efficient proof engine for bounded model checking
of hybrid systems. Form. Methods Syst. Des. 30(3), 179–198 (2007)

11. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2 17

12. Gopalakrishnan, G., Qadeer, S. (eds.): CAV 2011. LNCS, vol. 6806. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-22110-1

13. Gupta, A., Malik, S. (eds.): CAV 2008. LNCS, vol. 5123. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-70545-1

14. Gupta, A., Rybalchenko, A.: InvGen: an efficient invariant generator. In: Bouajjani,
A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 634–640. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02658-4 48

15. Hasuo, I., Suenaga, K.: Exercises in nonstandard static analysis of hybrid systems.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 462–478.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 34

http://fmv.jku.at/runlim/
https://doi.org/10.1007/3-540-36577-X_14
https://doi.org/10.1007/978-3-540-31954-2_17
https://doi.org/10.1007/978-3-642-22110-1
https://doi.org/10.1007/978-3-540-70545-1
https://doi.org/10.1007/978-3-642-02658-4_48
https://doi.org/10.1007/978-3-642-31424-7_34

104 L. Bu et al.

16. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings, 11th Annual
IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey,
USA, July 27–30, 1996, pp. 278–292 (1996)

17. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 52

18. Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability for linear hybrid
automata using iterative relaxation abstraction. In: Bemporad, A., Bicchi, A., But-
tazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 287–300. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71493-4 24

19. Lalire, G., Argoud, M., Jeannet, B.: The interproc analyzer (2009). http://pop-
art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/

20. Li, X., Aanand, S.J., Bu, L.: Towards an efficient path-oriented tool for bounded
reachability analysis of linear hybrid systems using linear programming. Electr.
Notes Theor. Comput. Sci. 174(3), 57–70 (2007)

21. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as
fixedpoints. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 176–
189. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1 17

22. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-
0 20

23. Podelski, A., Rybalchenko, A.: Transition predicate abstraction and fair termina-
tion. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2005, Long Beach, California, USA, Jan-
uary 12–14, 2005, pp. 132–144 (2005)

24. Podelski, A., Rybalchenko, A.: ARMC: the logical choice for software model check-
ing with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol.
4354, pp. 245–259. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-
540-69611-7 16

25. Podelski, A., Wagner, S.: Model checking of hybrid systems: from reachabil-
ity towards stability. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS,
vol. 3927, pp. 507–521. Springer, Heidelberg (2006). https://doi.org/10.1007/
11730637 38

26. Rodŕıguez-Carbonell, E., Tiwari, A.: Generating polynomial invariants for hybrid
systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 590–
605. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2 38

27. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid
systems. Form. Methods Syst. Des. 32(1), 25–55 (2008)

28. Vardi, M.Y.: Verification of concurrent programs: the automata-theoretic frame-
work. Ann. Pure Appl. Log. 51(1–2), 79–98 (1991)

29. Xie, D., Bu, L., Zhao, J., Li, X.: SAT-LP-IIS joint-directed path-oriented bounded
reachability analysis of linear hybrid automata. Form. Methods Syst. Des. 45(1),
42–62 (2014)

30. Zutshi, A., Sankaranarayanan, S., Tiwari, A.: Timed relational abstractions for
sampled data control systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012.
LNCS, vol. 7358, pp. 343–361. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31424-7 27

https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-540-71493-4_24
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/
https://doi.org/10.1007/978-3-540-70545-1_17
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-69611-7_16
https://doi.org/10.1007/978-3-540-69611-7_16
https://doi.org/10.1007/11730637_38
https://doi.org/10.1007/11730637_38
https://doi.org/10.1007/978-3-540-31954-2_38
https://doi.org/10.1007/978-3-642-31424-7_27
https://doi.org/10.1007/978-3-642-31424-7_27

Overview: System Architecture Virtual
Integration based on an AADL Model

Yunwei Dong, Xiaomin Wei(B), and Mingrui Xiao

School of Computer Science and Engineering, Northwestern Polytechnical University,
Xi’an 710072, PR China

yunweidong@nwpu.edu.cn, {xmwei,xiaomingrui}@mail.nwpu.edu.cn

Abstract. Many large scale embedded systems are safety-critical sys-
tems and are becoming increasingly complex. They are designed and
developed by a worldwide network of enterprises and companies and often
use multiple distributed models with little or late integration. System
Architecture Virtual Integration (SAVI) is an effective way to improve
system quality and reduce cost. It enables the model-driven virtual inte-
gration of complex systems across multiple development environments.
It aims to find defects earlier in the development process, thus saving
time. Architecture Analysis and Design Language (AADL), as a standard
architecture modelling language, supports SAVI virtual integration pro-
cess and can be a central and integrated model of integration. This paper
gives an overview of SAVI virtual integration based on an AADL model.
The integration can be performed using model transformation that trans-
forms heterogeneous models into an AADL model, or using the model bus
through which various annotated architecture models can interoperate.
The focus of SAVI is to integrate and analyze systems, and then build.
So, AADL-based non-functional properties analysis approaches are pre-
sented. The tool for these methods has been implemented to demonstrate
feasibility and applicability.

Keywords: AADL · SAVI · Model transformation · Model bus
Non-functional properties analysis

1 Introduction

Safety-critical embedded systems in avionics, aerospace, medical, robotics, and
industrial process controllers are becoming increasingly complex and contain
more and more functions. For example, the F-35 Lightning II [1] is a fifth gen-
eration fighter and its software has more than 8 million lines of code. Such large
scale systems often use multiple distributed models with little or late integration.
Additionally, several studies of safety-critical systems have found that 70% of
errors are introduced during the requirement and architecture design phases [2].
This results in 300 to 1,000 times the cost of in-phase correction for correcting
requirement and design problems in later phases. What is worse is the fact that

c© Springer Nature Switzerland AG 2018
C. Jones et al. (Eds.): Zhou-Festschrift, LNCS 11180, pp. 105–115, 2018.
https://doi.org/10.1007/978-3-030-01461-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01461-2_6&domain=pdf

106 Y. Dong et al.

undiscovered errors exist in the final system. To improve system quality and
reduce cost, SAVI is a good choice. SAVI is a model-based virtual integration
approach. It uses models as central and indispensable artifacts throughout a
product’s life cycle.

SAVI aims to provide a new way of performing system integration: a vir-
tual integration process (VIP) based on heterogeneous cross-domain models. It
enables the model-driven virtual integration of complex systems across multiple
development environments. The purpose is to lower development costs and find
defects earlier in the development process, and save time. Return-on-investment
(ROI) analysis of the SAVI initiative shows that $2.391 billion can be saved for
a system that contains 27 million lines of source code [3]. It is a 26.1% cost sav-
ing (of an estimated $9.176 billion). Integration can begin at conceptualization.
To get it right sooner, SAVI moves the integration forward and then keeps the
integration right when changes occur.

Fig. 1. SAVI virtual integration approach (referenced from AVSI)

The SAVI approach begins during early requirements definition and con-
tinuously monitors system evolution for inter-model consistency, as shown in
Fig. 1 (referenced from Aerospace Vehicle Systems Institute (AVSI) [4]). It uses
new tools, standards, and processes to detect and correct errors and defects
much earlier in the development cycle than is possible with a traditional inte-
gration approach. Model-driven virtual integration is used to support predictive
modelling and analysis across a distributed heterogeneous set of development
domains and environments.

AADL [5] was designed to provide a modelling and analysis capability for
engineering software systems. It can be a technical foundation for Model-Based

Overview: System Architecture Virtual Integration 107

Engineering (MBE) and supports the SAVI virtual integration process [3]. An
AADL model is a hierarchical model, which contains software components (such
as the thread, process, and data components), execution platform components
(such as the processor, memory, bus, and device components), composite and
generic components (i.e., system and abstract components) and component inter-
actions (such as port connections and the data access). Three port types are sup-
ported, i.e., data, event and event data. AADL allows definition of properties
for components to provide information about model elements. Each property
has a value or list of values, which is associated with the named property in
a given specification. AADL has powerful extendability. Specifically, the Error
Model Annex, version 2 (EMV2) [6] and Behavior Annex [7] are the sublan-
guage extension of AADL. Thus, AADL can not only build architecture models
for safety-critical systems, but support safety, reliability and schedulability anal-
ysis.

In this paper, an overview of AADL-based SAVI is presented. SAVI inte-
grates and analyzes models early and throughout the life cycle at different lev-
els of fidelity, so that system-level faults can be found earlier in the life cycle.
Multiple architecture modelling languages are provided for SAVI. The model
repository and model bus are introduced to integrate multiple models. Model
transformation techniques are also presented for virtual integration. Moreover,
both model bus and model transformation techniques support the transforma-
tion to analyzable/computable models acceptable to different analysis tools.
To analyze and discover faults, approaches for dynamic reconfiguration and
AADL-based non-functional properties analysis (safety, reliability and schedula-
bility) are explained. The tool, which supports our analysis approaches, is also
described.

The rest of this paper is organized as follows. Section 2 introduces the
SAVI virtual integration for safety-critical systems, including modelling complex
safety-critical systems and integrating multiple heterogeneous models through
the model bus or model transformation. Section 3 provides our non-functional
properties analysis and dynamic reconfiguration approaches for the integrated
model. Section 4 presents the structure of our tool that has extended EMV2, cre-
ated the Hazard Model Annex and implemented analysis approaches. Section 5
highlights challenges for SAVI based on an AADL model. Finally, Sect. 6 con-
cludes this paper.

2 SAVI Virtual Integration for Safety-Critical Systems

Many large scale safety-critical systems are designed and developed by a world-
wide network of enterprises and companies. They have a variety of expertise,
tools and approaches to the development process. This section will introduce
architecture modelling languages for SAVI, and the way to integrate heteroge-
neous models into a model.

108 Y. Dong et al.

2.1 Modelling Complex Safety-Critical Systems

Multiple Architecture Modelling Languages. Multiple architecture mod-
elling languages have been used in SAVI virtual integration. Because different
companies/organizations might describe systems with different architecture lan-
guages. SAVI virtual integration can exploit the strengths of these languages.
Safety-critical systems can be described by the Systems Modelling Language
(SysML), AADL, Simulink, Modelica, etc. The SysML is a general-purpose mod-
elling language for systems engineering applications. AADL is the SAE Stan-
dard AS 5506 for modelling safety-critical systems. Simulink is a graphical pro-
gramming environment for modelling, simulating and analyzing multi-domain
dynamic systems. Modelica is an object-oriented, equation based language to
conveniently describe complex physical systems. To verify this method, Redman
[8] created four models of the same simple system, the sliding mass example
system, using different languages: SysML, AADL, Simulink and Modelica.

Extending AADL for Modelling Hybrid Systems. It has been shown [9]
that AADL device components cannot describe continuous properties of the
data sample and control process therefore AADL is extended for description of
properties for continuous process and interaction behavior. Finally, an AADL
Hybrid Annex is built. As observed in papers [10,11], Hybrid Communicating
Sequential Processes (HCSP) is applied to build the formal semantics for the
synchronous subset of AADL models annotated with Hybrid Annex specifica-
tions. The correctness of an AADL model with Hybrid Annex is verified with a
theorem prover, Hybrid Hoare Logic (HHL) prover.

2.2 Model Transformation-Based Integration

Model transformation techniques are vitally important. They are often used in
MBE. The model transformation can be used for virtual integration by trans-
forming heterogeneous models into an AADL model.

Fig. 2. An overview of ATL model transformation (referenced from [12])

Overview: System Architecture Virtual Integration 109

ATLAS Transformation Language (ATL) [12] is a widely used model trans-
formation language. It provides ways to produce a set of target models from
a set of source models. For example, Fig. 2 shows the ATL model transforma-
tion from a SysML model Ma to an AADL model Mb. Meta models MMa and
MMb are built for Ma and Mb, respectively. Ma and Mb must conform to MMa

and MMb, respectively. Transformation rules are defined by the transformation
model Mt, which must conform to a transformation meta model MMt. MMa,
MMb and MMt have to conform to a meta-meta model MMM such as Meta
Object Facilities (MOF) or Ecore. We are currently doing work on the trans-
formation from SysML models to AADL models and from Simulink models to
AADL models. This work can be used to virtually integrate various architecture
models into a complete system.

2.3 Model Bus-Based Integration

The model repository and model bus are one key concept of SAVI [13]. The
model repository contains two kinds of models. They are the annotated archi-
tecture reference model, and detailed models that are refinements of architec-
ture components. For instance, Modelica can describe details for physical system
components, and Simulink for control system components.

Rhapsody
SysML model

respository
Architecture
diagram

Use Case
Diagram

Activity
diagram

Sequence
diagram

State machine
diagram

Modelling
fuction

Instantiation
function

Code generation
function

Simulation
function

Simulink tool
Simulink model

respository

StateFlow model

Simulink model

Modelling
fuction

Instantiation
function

Code generation
function

Verification
function

Simulation
function

Model bus

AADL modelling and analysis toolAADL model
respository

data model
Behavior
model

ARINC653 Error model

Architecture
model

Model instantiation
function

Model management
function

Model parsing
function

Model design
function

Model analysis
function

Fig. 3. An example of model bus-based integration

110 Y. Dong et al.

The model bus is a data interchange mechanism, operating with a standard-
ized model representation [13]. It is used for the interchange between model
repositories. A standardized XML format can be used to interchange between
annotated heterogeneous architecture models. For instance, as shown in Fig. 3,
there are several heterogeneous models including the AADL model, SysML
model and Simulink model. They are virtually integrated and can communi-
cate with each other through the model bus.

3 Non-functional Properties Analysis for SAVI

“Integrate, analyze ... then build” is the mantra for SAVI. Since an AADL model
can be the integrated model after the SAVI virtual integration process, in this
section, approaches for safety analysis, dynamic reconfiguration, reliability anal-
ysis, and schedulability analysis are presented to analyze an AADL model.

3.1 Safety Analysis

AADL describes safety-critical systems in the early development phase. To
reduce errors and mitigate the effect of mishaps as early as possible, we compen-
sate for the weaknesses of EMV2 for AADL-based safety analysis and propose the
HMA. Then, an architecture-level hazard analysis for an AADL model (includ-
ing error model and hazard model) is provided. Moreover, a qualitative safety
analysis approach, FMECA, for AADL is presented. The last section introduces
a safety analysis approach that has integrated quantitative verification for an
AADL model.

Hazard Model Annex. Although EMV2 has extended AADL to support
architecture fault modelling [14,15], AADL still cannot effectively be used for
hazard analysis [16], since it has some weaknesses, as presented in paper [17].
EMV2 only uses a multi-valued property to represent the hazard and mishap,
and it cannot effectively support hazard.

To improve the capability of the AADL language in describing the complex
occurrence process of mishaps and supporting hazard analysis approach, papers
[17,18] propose the Hazard Model Annex (HMA) language to extend the EMV2.
HMA can specify hazard sources, hazards, hazard trigger mechanisms, mishaps
and the relationship among them. Therefore, a safety model can be built by
annotating an AADL architecture model with the error model and hazard model.

Hazard Analysis. In papers [17,18], we propose an architecture-based hazard
analysis approach using AADL. This approach can provide the component-level
and system-level safety analysis results including hazard sources, hazard trig-
ger mechanisms, severities and probability levels. HMA is employed to support
hazard analysis. To ensure the correctness of the probabilities of occurrence of
hazards, we also prove the semantic preservation of the model transformation
between an AADL model and a Deterministic Stochastic Petri Net (DSPN)
model that is used for quantitative computation.

Overview: System Architecture Virtual Integration 111

FMECA. Failure Modes, Effects and Criticality Analysis (FMECA) is a tra-
ditional and typical safety analysis method for safety-critical systems and has
been used in real systems. In paper [19], EMV2 is extended and AADL-based
FMECA is proposed to perform the qualitative safety analysis for safety-critical
embedded systems. As quantitative safety analysis using FMECA requires the
computation of the occurrence probabilities of errors, hazards and mishaps, we
are currently taking full advantage of the computability of the DSPN model by
applying the previous model transformation [17,18] from an AADL model to a
DSPN model to compute occurrence probabilities for the quantitative FMECA.
This work is about to be finished.

QaSten. Quantitative verification is an effective technique for analyzing quan-
titative aspects of a safety critical system’s design. Paper [20] proposes a new
methodology, QaSten, which fastens quantitative verification to safety analysis
for an AADL model (including error model). QaSten can transform an AADL
model to a PRISM model and generate two safety property formulas automat-
ically to check against the PRISM model for each hazardous state. It also can
determine the hazard risk acceptance level.

3.2 Dynamic Reconfiguration

Many embedded systems are safety-critical systems and reconfigurable, such as
Integrated Modular Avionics (IMA) systems that are required to reconfigure
at runtime if components fail. An embedded software reconfiguration technique
based on the model is proposed in paper [21,22]. The system model is an hier-
archical AADL architecture model. It is divided into four levels, which are the
system level, mission level, function level and component level. The reconfigu-
ration is described using modes and mode transitions. Furthermore, paper [23]
proposes a safety-based software reconfiguration method for IMA systems at the
architecture level. The software reconfiguration method integrates error events
and hazard triggers into the reconfiguration process. AADL is extended so that
the runtime architecture is described using AADL and EMV2. To simulate the
IMA system with the proposed reconfiguration method, mapping rules from an
AADL model to DSPNs are formulated.

3.3 Reliability Analysis

System reliability and component reliability may vary with the occurrence prob-
abilities of error events. To compute the reliability, papers [24,25] build a system
reliability model for embedded systems using AADL and error models. Transfor-
mation rules are made to perform the transformation from an AADL reliability
model to a General Stochastic Petri-net (GSPN) model. Paper [24] assesses the
reliability of an embedded system based on a GSPN analysis tool, Platform
Independent Petri-net Editor 2 (PIPE2) [26]. Moreover, paper [27] takes the
system behavior into account for the variation of the system reliability. AADL

112 Y. Dong et al.

and Behavior Annex are used to build an embedded system model, which is also
transformed to a GSPN model so that we can evaluate and predict the system
reliability.

3.4 Schedulability Analysis

To predicate the schedulability of real-time embedded systems in the model
design stage, an AADL-based schedulability analysis method is presented in
[28]. A Resource Competition Model (RCM) is built according to the AADL
system architecture, timing properties and connections between components.
By analyzing the RCM, the response time of thread components is calculated
for the schedulability analysis. In addition, like some other research, Cheddar is
also used to evaluate system schedulability. An AADL model is transformed to
an analyzable model for the Cheddar [29] tool, a real-time scheduling simulator.
Then, Cheddar will be used to compute the scheduling of a task set for the AADL
model. From such scheduling, it can compute various performance criteria, such
as worst/best case response time, missed deadlines, deadlocks, etc.

Eclipse Integrated development environment

AADL text editing AADL Graphical editing

Parsing and compiling System instantiation

OSATE-based basic functions

System reliability
analysis

Component reliability
analysis

GSPN model
transformation

reliability analysis Safety analysis

FMECA analysis

Hazard analysis

DSPN model
transformation

Model file transformation

Scheduling simulation

Resource competition
time analysis

Schedulability analysis
SysML model
transformation

Model parsing

Model transformation

Error model annex

Hazard model annex

PIPE2 TimeNET Cheddar ADT

First layer

Second layer

Third layer

Fourth layer

Fig. 4. The architecture of SAVI tool Prototype: ESMEAT

4 A Tool for Non-functional Properties Analysis

The AADL extension and non-functional properties analysis approaches are
implemented as the Embedded Software Modelling, Evaluation and Analysis
Tool (ESMEAT). The architecture of the tool is provided in Fig. 4. The first
layer is the Eclipse Integrated Development Environment, as the basic support
framework of the tool. The second layer contains basic functions supporting

Overview: System Architecture Virtual Integration 113

the system modelling, instantiation and analysis. This layer is based on Open
Source AADL Tool Environment (OSATE), version 2.0.2. HMA is designed and
implemented to specify hazard behavior. The modelling of EMV2 in OSATE is
also extended. The third layer is the implementation of the SysML model trans-
formation and non-functional properties analysis methods including the safety
analysis, reliability analysis and schedulability analysis. The fourth layer con-
tains existing tools, such as TimeNET [30], PIPE2, Cheddar and ADT (ATL
Development Tool) [12]. They are used to support the third layer.

5 Challenges

There has been much progress towards AADL-based SAVI virtual integration
for safety-critical systems. However, some significant challenges have yet to be
overcome, as below:

– Security has attracted more and more attention. We will extend modelling
capability of AADL for security analysis and perform AADL-based vulnera-
bility analysis for safety-critical systems.

– Resource is limited in safety-critical systems, for example, the memory and
I/O in avionics systems. To sufficiently use the resource, resource effectiveness
analysis is necessary for the improvement of system performance.

– Model transformation is a significant technique for SAVI. To make it possible
to integrate more heterogeneous models into an AADL model, we will do more
work to design rules and implement the model transformation from various
models, such as Simulink, Modelica, etc.

– The model repository and model bus are good ideas for SAVI, but it is still
challenging to implement a model bus that is compatible with various model
repositories.

6 Conclusions

This paper presents an overview of SAVI virtual integration based on an AADL
model. There are various kinds of architecture modelling languages support-
ing system specifications. SAVI virtual integration can be implemented through
the model bus or model transformation, which also support the transformation
from system models to analyzable/computable models acceptable to different
analysis tools. An AADL model can be an integrated model of various het-
erogeneous models. To analyze and improve the integrated model, AADL-based
non-functional properties analysis approaches are also provided, including safety
analysis, dynamic reconfiguration, reliability analysis and schedulability analy-
sis. The tool named ESMEAT which is designed by Northwestern Polytechnical
University, as the implementation of these methods, is introduced.

Acknowledgments. This work was supported by the National Science Foundation
of China under Grant No. 61772423, and the Aviation Science Foundation of China
under Grant No. 2016ZC31003 and No. 20161953020.

114 Y. Dong et al.

References

1. A digital jet for the modern battlespace, June 2018. https://www.f35.com/about/
life-cycle/software

2. Ellison, R.J.: Assuring software reliability. Technical report, Carnegie Mellon Uni-
versity, Aug. 2014

3. Hansson, J., Helton, S., Feiler, P.: ROI analysis of the system architecture vir-
tual integration initiative. Technical report, Carnegie-Mellon Univerity Software
Engineering Institute Pittsburgh United States (2018)

4. SAVI virtual integration overview, June 2018. http://savi.avsi.aero/about-savi/
virtual-integration/

5. SAE International. AS5506C - (R) Architecture Analysis and Design Language
(AADL). SAE International, January 2017

6. SAE International. (R) SAE Architecture Analysis and Design Language (AADL)
Annex Volume 1: Annex A: ARINC653 Annex, Annex C: Code Generation Annex,
Annex E: Error Model Annex. SAE International, September 2015

7. SAE International. AS5506/2 - SAE Architecture Analysis and Design Language
(AADL) Annex Volume 2: Annex D: Behavior Model Annex. SAE International,
January 2011

8. Redman, D.: SAVI behavior model integration virtual integration process. Global
Product Data Interoperability Summit (2015)

9. Ahmad, E., Larson, B.R., Barrett, S.C., Zhan, N., Dong, Y.: Hybrid annex: an
AADL extension for continuous behavior and cyber-physical interaction modeling.
In: ACM SIGAda Ada Letters, vol. 34, pp. 29–38. ACM (2014)

10. Ahmad, E., Dong, Y.W., Larson, B., Lü, J.D., Tang, T., Zhan, N.J.: Behavior
modeling and verification of movement authority scenario of Chinese train control
system using AADL. Sci. China Inf. Sci. 58(11), 1–20 (2015). Nov

11. Ahmad, E., Dong, Y., Wang, S., Zhan, N., Zou, L.: Adding formal meanings to
AADL with hybrid annex. In: Lanese, I., Madelaine, E. (eds.) FACS 2014. LNCS,
vol. 8997, pp. 228–247. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
15317-9 15

12. ATL - a model transformation technology, June 2018. http://www.eclipse.org/atl/
13. Feiler, P., Wrage, L., Hansson, J.: System architecture virtual integration: a case

study. In: Embedded Real-time Software and Systems Conference (2010)
14. Delange, J., Feiler, P.: Architecture fault modeling with the aadl error-model annex.

In: 2014 40th EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA), pp. 361–368. IEEE (2014)

15. Feiler, P., Hudak, J.J., Delange, J., Gluch, D.: Architecture fault modeling and
analysis with the error model annex, version 2 (2016)

16. Ericson, C.A.: Hazard Analysis Techniques for System Safety. Wiley, Hoboken
(2005)

17. Wei, X., Dong, Y., Li, X., Eric Wong, W.: Architecture-level hazard analysis using
AADL. J. Syst. Softw. 137, 580–604 (2018)

18. Wei, X., Dong, Y., Yang, M., Hu, N., Ye, H.: Hazard analysis for AADL model. In:
2014 IEEE 20th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pp. 1–10, Aug 2014

19. Gu, B., Dong, Y., Wei, X.: A qualitative safety analysis method for AADL
model. In: 2014 IEEE Eighth International Conference on Software Security and
Reliability-Companion, pp. 213–217, June 2014

https://www.f35.com/about/life-cycle/software
https://www.f35.com/about/life-cycle/software
http://savi.avsi.aero/about-savi/virtual-integration/
http://savi.avsi.aero/about-savi/virtual-integration/
https://doi.org/10.1007/978-3-319-15317-9_15
https://doi.org/10.1007/978-3-319-15317-9_15
http://www.eclipse.org/atl/

Overview: System Architecture Virtual Integration 115

20. Wei, X., Dong, Y., Ye, H.: QaSten: integrating quantitative verification with
safety analysis for AADL model. In: 2015 International Symposium on Theoretical
Aspects of Software Engineering (TASE), pp. 103–110, Sept 2015

21. Li, L., Dong, Y., Qin, Y., Zhang, F.: Design and implementation of software recon-
figuration tool based on AADL. Comput. Sci. 38(7), 121–125 (2011)

22. Qin, Y., Dong, Y.: Research on embedded software dynamic reconfigurable tech-
nology based on mode. Comput. Sci. 39(2), 174–175 (2012)

23. Wei, X., Dong, Y., Xiao, M.: Architecture-level safety-based software reconfig-
uration method for integrated modular avionics systems. In IEEE International
Conference on Software Quality, Reliability and Security Companion, July 2018

24. Dong, Y., Ren Wang, G., Zhang, F., Gao, L.: Reliability analysis and assessment
tool for AADL model. J. Softw. 22(6), 1252–1266 (2011)

25. Gao, L., Dong, Y., Zhang, F., Wang, G.: AADL system reliability model transfor-
mation method. Comput. Eng. 37(14), 21–26 (2011)

26. Dingle, N.J., Knottenbelt, W.J., Suto, T.: Pipe2: a tool for the performance evalu-
ation of generalised stochastic Petri nets. ACM SIGMETRICS Perform. Eval. Rev.
36(4), 34–39 (2009)

27. Chang, S., Dong, Y., Zhang, F.: On reliability analysis for embedded systems with
AADL behavior model 430(4), 116–119 (2012)

28. Dong, Y., Cheng, Y., Wu,T., Ye, H.: On schedulability analysis for embedded sys-
tems with aadl model. In: 2013 13th International Conference on Quality Software,
pp. 320–325, July 2013

29. Cheddar: an open-source real-time scheduling tool/simulator, June 2018. http://
beru.univ-brest.fr/singhoff/cheddar/

30. Zimmermann, A.: Modelling and performance evaluation with TimeNET 4.4. In:
Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 300–303.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66335-7 19

http://beru.univ-brest.fr/singhoff/cheddar/
http://beru.univ-brest.fr/singhoff/cheddar/
https://doi.org/10.1007/978-3-319-66335-7_19

Characterization and Verification of
Stuttering Equivalence

Xinxin Liu(B) and Wenhui Zhang

State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences , University of Chinese Academy of Sciences,

Huairou, China
{xinxin,zwh}@ios.ac.cn

Abstract. Stuttering equivalence is an important equivalence relation
on Kripke structures. It is the equivalence which preserves all CTL*-X
properties. Two key issues concerning this equivalence are how to char-
acterize it and how to verify whether two given states are equivalent
with respect to it. For this purpose, we propose two bisimulation style
definitions, one called ω-bisimulation which provides a concise character-
ization of the equality and one called stuttering bisimulation with induc-
tion which provides a verification method for establishing the equality.
We also show that stuttering bisimulation with induction coincides with
well-founded bisimulation, a notion introduced by Namjoshi for verifying
stuttering equivalence.

1 Introduction

Stuttering equivalence on Kripke structures is an important equivalence that has
the exact distinguishing strength of the set of CTL*-X properties (the compu-
tation tree logic CTL* [14] without the next operator). An important feature of
stuttering equivalence is that it is a divergence preserving equivalence with a high
level of abstraction. A main issue concerning stuttering equivalence, which has
both theoretical interest and practical implication, is how to characterize such an
equivalence in a way that two states can be shown equivalent with minimal effort.
The definition of stuttering equivalence in [3] presented it as the limit of a con-
verging sequence of equivalences. Such a definition is not very helpful either for
equality checking or for equality proving. Here “equality checking” is the prob-
lem of deciding whether two given states are equivalent, and “equality proving”
is the problem of verifying that whether a given evidence (or a proof, e.g. a
supposed bisimulation relation) of equality two states is valid. In [11], a simpler
characterization is proposed, in which a well founded relation is used for the char-
acterization of the stuttering equivalence. It is called well-founded bisimulation.
It is proven that well-founded bisimulation corresponds to stuttering equivalence
[11]. A difficulty with this definition is that it is not obvious how to construct
the well-founded relation, in order to be used to show the equivalence of states.
In addition, such a well-founded relation may be unnecessarily large, if it is not
c© Springer Nature Switzerland AG 2018
C. Jones et al. (Eds.): Zhou-Festschrift, LNCS 11180, pp. 116–132, 2018.
https://doi.org/10.1007/978-3-030-01461-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01461-2_7&domain=pdf

Characterization and Verification of Stuttering Equivalence 117

constructed carefully. In this paper, we address these difficulties by proposing
a characterization of stuttering equivalence with the notion of stuttering bisim-
ulation with induction. Firstly, we propose another characterization with the
notion of ω-bisimulation which is easy to use to establish theoretical foundation.
Secondly, we have a concept that uses the inductive principle instead of infinite
sequence of relations and well-founded relations. Thirdly, we relate well-founded
bisimulation to the new definition. Finally, we show that the new definition can
be used to construct a well-founded relation that is required for showing stutter-
ing equivalence by well-founded bisimulation, and therefore providing a method
for proving the equivalence of states with well-founded bisimulation.

The paper is organized as follows. In the next section we present stuttering
equivalence in terms of ω-bisimulation. In Sect. 3 we introduce the notion of
stuttering bisimulation with induction to characterize stuttering equivalence. In
Sect. 4 we study the relationship between stuttering bisimulation with induction
and well-founded bisimulation. We discuss related works in Sect. 5, summarize
and conclude in Sect. 6.

2 Stuttering Equivalence and ω-Bisimulation

In this section we establish a theoretical foundation for stuttering equivalence
with the notion of ω-bisimulation. We start with some basic notions and nota-
tions.

Definition 1 (Kripke structure and infinite runs). A Kripke structure is a tuple
K = 〈S,AP,L,−→〉 where:

– S is a set of states;
– AP is a set of atomic propositions or labels;
– L : S → 2AP is the labeling function which assigns each state a set of atomic

propositions;
– −→⊆ S×S is the transition relation. An element (s, t) of −→, usually written

as s −→ t, is called a transition. Following the convention, we assume that
−→ is a total relation, i.e. for each s ∈ S there exists s′ ∈ S such that
s −→ s′.

– A finite run of K is a finite sequence of states, with each pair of neighbouring
states connected by a transition. If ρ is a finite run of K with starting state s
and finishing state t, we also say that ρ is a finite run from s to t, and write
first(ρ) for s, last(ρ) for t. The length of ρ, written length(ρ), is the number
of transitions connecting ρ (thus length(s) = 0 where s is the run consists of
a single state s ∈ S).

– An infinite run of K is an infinite sequence of states, with each pair of neigh-
bouring states connected by a transition. If ρ is an infinite run of K with start-
ing state s, we also say that ρ is an infinite run from s, and write first(ρ)
for s.

118 X. Liu and W. Zhang

Let R,R1, R2 be binary relations. In general, we define the converse R−1 of
R and the composition R1R2 of R1 and R2 by

R−1 = {(s, t) | (t, s) ∈ R},
R1R2 = {(s, t) | there exist (s, u) ∈ R1, (u, t) ∈ R2 for some u}.

Definition 2 (Relations on finite and infinite runs). Let K = 〈S,AP,L,−→〉 be
a Kripke structure, R be a binary relation on S.

Define a binary relation R� between finite runs of K by induction on the
lengths of the runs such that (s1 . . . sn, t1 . . . tm) ∈ R� if and only if (s1, t1) ∈ R
and moreover one of the following holds:

1. n = m = 1;
2. (s2 . . . sn, t1 . . . tm) ∈ R�;
3. (s1 . . . sn, t2 . . . tm) ∈ R�;
4. (s2 . . . sn, t2 . . . tm) ∈ R�.

Define a binary relation R� between infinite runs of K such that for two
infinite runs σ, ρ of K, (σ, ρ) ∈ R� if and only if both of the following hold:

1. for each finite prefix σ′ of σ, there is a finite prefix ρ′ of ρ with (σ′, ρ′) ∈ R�;
2. for each finite prefix ρ′ of ρ, there is a finite prefix σ′ of σ with (σ′, ρ′) ∈ R�.

The intuition of R� (R�) is that it describes a relation between two finite (infinite)
runs such that the states in the two sequences of the runs are pairwise related
by R while making progress in lock steps modulo finite stuttering.

The following lemma shows expected homomorphic and monomorphic prop-
erties of � and �, which is required later in establishing transitivity of some
desired equivalence relation.

Lemma 1. Let K = 〈S,AP,L,−→〉 be a Kripke structure, R1, R2 be two binary
relations on S. Then

1. R1
�R2

� ⊆ (R1R2)
�;

2. R1
�R2

� ⊆ (R1R2)
�;

3. If R1 ⊆ R2, then R1
� ⊆ R2

� and R1
� ⊆ R2

�.

Proof. 1 can be proved by a detailed case analysis. 2 follows from 1. For 3,
suppose R1 ⊆ R2, then it can be proved by induction on the total lengths of
the finite runs σ and ρ that if (σ, ρ) ∈ R�

1 then (σ, ρ) ∈ R�
2. Then it follows

immediately that in this case also R1
� ⊆ R2

�. ��
In [3], stuttering equivalence was originally defined as the limit of a con-

verging sequence of equivalences. This kind of definition is not easy to work
with either for theoretical foundation or for practical verification. The notion of
bisimulation, proposed by Park [7], has been very successfully applied by Mil-
ner in studying equivalence relations on labeled transition systems [8]. Thus we
wish to establish the theory of stuttering equivalence based on the notion of
bisimulation. However, due to the consideration of infinite runs in stuttering

Characterization and Verification of Stuttering Equivalence 119

equivalence, the bisimulation characterization of stuttering equivalence is a lit-
tle more complex than that of many well-known equivalence relations. So we
first ignore the issue of divergence, and present a divergence blind equivalence
which is easy to describe by using bisimulation and which is also very close to
stuttering equivalence.

Definition 3 (Stuttering bisimulation, divergence blind stuttering equiva-
lence). Let K = 〈S,AP,L,−→〉 be a Kripke structure. A stuttering bisimulation
is a binary relation R ⊆ S × S such that for all (s0, t0) ∈ R the following hold:

1. L(s) = L(t);
2. if s0 −→ s1 then there is a finite run ρ from t0 such that (s0s1, ρ) ∈ R�;
3. if t0 −→ t1 then there is a finite run σ from s0 such that (σ, t0t1) ∈ R�.

We write s ≈db t if there is a stuttering bisimulation R such that (s, t) ∈ R. We
call ≈db divergence blind stuttering equivalence.

With this definition, by Lemma 1, it is routine to prove that ≈db is an equivalence
relation, and ≈db is the largest stuttering bisimulation.

Definition 4 (Divergence). Let K = 〈S,AP,L,−→〉 be a Kripke structure, ≡
be an equivalence relation on S. An infinite run ρ = s0s1 . . . si . . . of K is called
a divergent run with respect to ≡ if s0 ≡ si for all i. In this case s0 is said
to be divergent with respect to ≡, written s0 ⇑≡. We say that ≡ is divergence
preserving, if whenever s ≡ t and s ⇑≡ then t ⇑≡.

In discussing divergence we often omit mentioning “with respect to ≡” if it
is obvious from the context.

Although ≈db is an equivalence relation with many desired properties, it is
well known that ≈db is not divergence preserving. This is why we call it divergence
blind stuttering equivalence, and use the subscript db for it. In order to obtain
divergence preserving property, it turns out that we need to strengthen the
definition of divergence blind stuttering equivalence so that correspondence of
all infinite runs from states are required, instead of only requiring correspondence
of finite runs. The result is the following notion of ω-bisimulation.

Definition 5 (ω-bisimulation, stuttering equivalence). Let K = 〈S,AP,L,−→〉
be a Kripke structure. An ω-bisimulation is a binary relation R ⊆ S × S such
that for all (s, t) ∈ R the following hold:

1. L(s) = L(t);
2. for any infinite run σ from s, there exists an infinite run ρ from t such that

(σ, ρ) ∈ R�;
3. for any infinite run ρ from t, there exists an infinite run σ from s such that

(σ, ρ) ∈ R�.

Define ≈st=
⋃{R |R is an ω-bisimulation}. We call ≈st stuttering equivalence,

and for s, t ∈ S we say s is stuttering equivalent to t if s ≈st t.

120 X. Liu and W. Zhang

The name ω-bisimulation refers to the examination of infinite runs in the defi-
nition.

Theorem 1. ≈st is an equivalence relation.

Proof. First note that Id = {(s, s) | s ∈ S} is an ω-bisimulation. Thus ≈st is
reflexive.

If R is an ω-bisimulation then it is easy to see from the definition that its
converse R−1 is also an ω-bisimulation. Thus ≈st is symmetric.

If R1, R2 are two ω-bisimulations, then by Lemma 1 (2) it is easy to see that
their composition R1R2 is also an ω-bisimulation. Thus ≈st is transitive. ��
Theorem 2. Let K = 〈S,AP,L,−→〉 be a Kripke structure. Then ≈st is the
largest ω-bisimulation on S.

Proof: First, we show that ≈st is an ω-bisimulation. For that, let s ≈st t for
s, t ∈ S. Then there is R ⊆ S×S such that (s, t) ∈ R and R is an ω-bisimulation.
By Definition 5 the following hold:

1. L(s) = L(t);
2. for any infinite run σ from s, there exists an infinite run ρ from t such that

(σ, ρ) ∈ R�;
3. for any infinite run ρ from t, there exists an infinite run σ from s such that

(σ, ρ) ∈ R�.

Note that R ⊆≈st, and by Lemma 1 (3) R� ⊆ ≈�
st, then it is easy to see that

≈st is an ω-bisimulation.
It is obvious from the definition that if R is an ω-bisimulation then R ⊆≈st,

thus ≈st is the largest such. ��
This theorem shows that ≈st is well defined. Now we examine divergence

preserving property of ≈st.

Theorem 3. Let K = 〈S,AP,L,−→〉 be a Kripke structure, ≡ be an equivalence
relation on S. If ≡ is an ω-bisimulation, then ≡ is divergence preserving.

Proof: Suppose s ≡ t and s ⇑≡. Then there is a divergent run σ from s. Since ≡
is an ω-bisimulation, there exists an infinite run ρ from t such that (σ, ρ) ∈≡�.
Then from the condition that σ is a divergent run, it is easy to see that ρ must
be a divergent run, thus t ⇑≡. ��
Corollary 1. ≈st is divergence preserving.

Proof: Follows immediately from Theorems 2 and 3. ��
The following theorem is pretty straight forward.

Theorem 4. Let K = 〈S,AP,L,−→〉 be a Kripke structure, R be a binary
relation on S. If R is an ω-bisimulation, then R is a stuttering bisimulation.

Characterization and Verification of Stuttering Equivalence 121

Proof: Let (s, t) ∈ R and s −→ s′, and σ be an infinite run with s, s′ as its first
two states (since we assume that −→ is total, such a σ can always be found).
Then because R is an ω-bisimulation, there is an infinite run ρ from t such that
(σ, ρ) ∈ R�. By Definition 2, for ss′, which is a finite prefix of σ, there is a finite
prefix ρ′ of ρ such that (ss′, ρ′) ∈ R�. Thus R is a stuttering bisimulation. ��
Corollary 2. ≈st is a stuttering bisimulation.

Proof: Follows immediately from the above theorem and Theorem 2. ��
From Corollaries 1 and 2, it is easy to see that ≈st is a divergence preserving

stuttering bisimulation. In fact this gives an alternative characterization of ≈st

which we will prove in the next section: ≈st is the weakest equivalence which is
a divergence preserving equivalence and a stuttering bisimulation.

3 Stuttering Bisimulation with Induction

Although the notion of ω-bisimulation makes stuttering equivalence quite
straightforward both conceptually and intuitively, it is not very helpful in ver-
ification. This is because Definition 5 requires one to examine conditions on
infinite runs, of which there are obviously too many to handle in actual verifi-
cation. What we need is a characterization which can be useful in verification,
something like stuttering bisimulation – the conditions to check only concern
finite runs of length one. Then the following definition comes into view.

Definition 6 (Stuttering bisimulation with induction). Let K=〈S,AP,L,−→〉
be a Kripke structure. For a binary relation R ⊆ S × S, let BI(R) be the binary
relation inductively defined by the following rule: for s, t ∈ S, if the following
hold then (s, t) ∈ BI(R):

1. whenever s −→ s′ then either there exists a finite run ρ from t such that
length(ρ) > 0 and (ss′, ρ) ∈ R�, or (s′, t) ∈ R and (s′, t) ∈ BI(R);

2. whenever t −→ t′ then either there exists a finite run σ from s such that
length(σ) > 0 and (σ, tt′) ∈ R�, or (s, t′) ∈ R and (s, t′) ∈ BI(R).

If R ⊆ BI(R), then we call R a stuttering bisimulation with induction. We write
s ≈si t if there is a stuttering bisimulation with induction R such that (s, t) ∈ R.

Comparing the above definition with Definition 3 for stuttering bisimulation,
we can find obvious similarities. The rationale behind this definition is as follows.
Since ≈st is strictly stronger than ≈db, and since those non-divergence preserving
pairs in ≈db are extras for ≈st, a natural idea to make a stuttering bisimulation
like definition for ≈st is to strengthen the conditions of stuttering bisimulation
in such a way that those non-divergence preserving pairs are excluded. The
definition of stuttering bisimulation with induction did exactly that.

By using the set of ordinals O, the following characterization of BI(R) is very
helpful in some of the later proofs as well as in understanding the definition of
BI(R).

122 X. Liu and W. Zhang

Definition 7. Let K = 〈S,AP,L,−→〉 be a Kripke structure, R be a binary
relation on S. We define Bλ

I (R) for each ordinal λ ∈ O, as follows:

1. B0
I (R) = ∅.

2. (s, t) ∈ Bκ+1
I (R) if and only if the following hold:

(a) whenever s −→ s′ then either there exists a finite run ρ from t such that
length(ρ) > 0 and (ss′, ρ) ∈ R�, or (s′, t) ∈ R and (s′, t) ∈ Bκ

I (R);
(b) whenever t −→ t′ then either there exists a finite run σ from s such that

length(σ) > 0 and (σ, tt′) ∈ R�, or (s, t′) ∈ R and (s, t′) ∈ Bκ
I (R).

3. For limit ordinal λ, (s, t) ∈ Bλ
I (R) if and only if (s, t) ∈ Bκ

I (R) for some
κ < λ.

Theorem 5. Let K = 〈S,AP,L,−→〉 be a Kripke structure, R be a binary
relation on S. Then for s, t ∈ S the following hold:

1. BI(R) =
⋃

λ∈O Bλ
I (R);

2. if λ is the least ordinal with (s, t) ∈ Bλ
I (R), then λ = κ + 1 for some κ ∈ O.

Proof. 1 can be proved by standard fixed-point arguments. To see 2, just note
that λ cannot be 0 since B0

I (R) is empty, neither can it be a limit since otherwise
there would exist a smaller ordinal κ with (s, t) ∈ Bκ

I (R). ��
In the rest of this section, our major task is to prove that the resulting

relation ≈si is indeed the same as ≈st.

Lemma 2. If R1 ⊆ R2, then BI(R1) ⊆ BI(R2).

Proof. Easy to prove by induction on the definition of BI(R1), or to use the
ordinal characterization and prove by induction on all λ ∈ O. ��

This lemma shows a very nice property of the definition. It essentially says
that if we consider BI as a function on binary relations then it is monotonic.
Then Knaster-Tarski fixed-point theorem can be applied to the complete lattice
(2S×S ,⊆) to obtain ≈si as the maximum fixed-point of BI .

Theorem 6. ≈si is a stuttering bisimulation with induction, and it is the largest
stuttering bisimulation with induction, and moreover ≈si= BI(≈si).

Proof. The theorem is in fact an instance of Knaster-Tarski fixed-point theorem.
To show that ≈si is a stuttering bisimulation with induction, we have to establish
≈si⊆ BI(≈si). Suppose that R is a stuttering bisimulation with induction, then
obviously R ⊆ BI(R) and R ⊆≈si. According to Lemma 2, BI is monotonic,
thus BI(R) ⊆ BI(≈si), so we showed that for any stuttering bisimulation with
induction R it holds that R ⊆ BI(≈si). Now to see ≈si⊆ BI(≈si), just note that
≈si=

⋃{R | R is a stuttering bisimulation with induction}.
If R is a stuttering bisimulation with induction, then by the definition obvi-

ously R ⊆≈si. Thus ≈si is the largest stuttering bisimulation with induction.
We have just shown above that ≈si⊆ BI(≈si), then since BI is monotonic,

BI(≈si) ⊆ BI(BI(≈si)). So BI(≈si) is a stuttering bisimulation with induction,
thus BI(≈si) ⊆≈si and BI(≈si) =≈si. ��

Characterization and Verification of Stuttering Equivalence 123

Remark 1. It is clear from this theorem that ≈si is the greatest fixed-point of
BI , i.e. ≈si= νR(BI(R)) in μ-calculus notation. In fact, from Definition 6, it is
also clear that BI(R) itself is the least fixed-point of F(R), where for a given
R∗ ⊆ S × S, (s, t) ∈ F(R)(R∗) if and only if the following hold:

1. whenever s −→ s′ then either there exists a finite run ρ from t such that
length(ρ) > 0 and (ss′, ρ) ∈ R�, or (s′, t) ∈ R and (s′, t) ∈ R∗;

2. whenever t −→ t′ then either there exists a finite run σ from s such that
length(σ) > 0 and (σ, tt′) ∈ R�, or (s, t′) ∈ R and (s, t′) ∈ R∗.

Then ≈si= νR(μR∗(F(R)(R∗))), that is, ≈si is expressed as an alternating fixed-
point (it is easy to see that F(R) is monotonic, thus the least fixed-point is well
defined). For relations defined as an alternating fixed-point, there are efficient
local algorithms to decide whether (s, t) ∈ νR(μR∗(F(R)(R∗))) where s, t are
states of a Kripke structure with finite states set, see e.g. [10]. Here the localness
means that the algorithm does not compute the whole of νR(μR∗(F(R)(R∗)))
in order to decide whether (s, t) ∈ νR(μR∗(F(R)(R∗))) holds, it only com-
putes a part P ⊆ νR(μR∗(F(R)(R∗))) which is big enough to decide whether
(s, t) ∈ νR(μR∗(F(R)(R∗))) holds. In fact such P is just stuttering bisimulation
with induction. Thus the characterization of stuttering equivalence in stuttering
bisimulation with induction facilitates local decision strategy, which would give
stuttering bisimulation with induction a clear advantage in verification practice.

Another important property to establish about ≈si is that it is an equiva-
lence relation. Unfortunately, it is not an easy task to directly prove that ≈si is
transitive. Here we will take an indirect approach, since anyhow we are going to
establish that ≈si=≈st (Theorem 9). Then from the fact that ≈st is an equiva-
lence relation, we immediately know that so is ≈si.

Theorem 7. Let ≡ be an equivalence. If ≡ is divergence preserving, and is a
stuttering bisimulation, then ≡⊆ BI(≡).

Proof. First define a binary relation
⊆ S × S such that s
 s′ if and only
if s is not divergent and s ≡ s′ and s −→ s′. Then it is clear that if ≡ is
divergence preserving, then
 is well founded, i.e. there is no infinite descending
chain s
 s1 . . .
 si Otherwise σ = ss1 . . . si . . . would be a divergent run
from s.

Now suppose that ≡ is a stuttering bisimulation, and s ≡ t, we will show
(s, t) ∈ BI(≡) by well-founded induction on
. Let s −→ s′ be any transition
from s, we have to find a match for it that meets the requirements in Definition 6.
Since ≡ is a stuttering bisimulation, s ≡ t, then there must exist a finite run ρ
from t such that (ss′, ρ) ∈ R�. Now we can discuss in two cases. The first case is
that we can find such a ρ with length(ρ) > 0, then a required match for s −→ s′

is found. The second case is that, the only such ρ has length 0, and in this case
s′ ≡ t. Obviously t must not be a divergent state (otherwise there is a divergent
run η from t, and any finite prefix ρ of η satisfies (ss′, ρ) ∈ R�), and since ≡ is
divergence preserving, then s is not divergent. Now s
 s′, s′ ≡ t, and by the
induction hypothesis (s′, t) ∈ BI(≡), and a required match for s −→ s′ is also
found. Thus we proved (s, t) ∈ BI(≡). ��

124 X. Liu and W. Zhang

Corollary 3. ≈st is a stuttering bisimulation with induction, and ≈st⊆≈si.

Proof. From Corollaries 1, and 2, ≈st is a divergence preserving equivalence and
it is a stuttering bisimulation. Then by Theorem 7 ≈st⊆ BI(≈st), thus ≈st is a
stuttering bisimulation with induction, and ≈st⊆≈si. ��

To establish the other direction, we need to show that ≈si is an ω-
bisimulation.

Lemma 3. Let K = 〈S,AP,L,−→〉 be a Kripke structure, R be a binary relation
on S. For all λ ∈ O, if (s, t) ∈ Bλ

I (R) then the following hold

1. if σ is an infinite run from s, then there is a finite run ρ from t with
length(ρ) > 0, and a finite prefix σ∗ of σ such that (σ∗, ρ) ∈ R�;

2. if ρ is an infinite run from t, then there is a finite run σ from s with
length(σ) > 0, and a finite prefix ρ∗ of ρ such that (σ, ρ∗) ∈ R�.

Proof. Here we only show 1, because 2 can be proved in the same way. We prove
by induction on λ ∈ O. If λ = 0 there is nothing to be proved. If λ = κ + 1, let
(s, t) ∈ Bκ+1

I (R), σ = s1s2s3 Then s1 −→ s2, according to the definition of
Bκ+1

I (R), there are the following two cases. The first case is that there exists a
finite run ρ from t such that length(ρ) > 0, (s1s2, ρ) ∈ R�, and in this case take
s1s2 as σ∗, then ρ is the required run from t. The second case is that (s2, t) ∈ R
and (s2, t) ∈ Bκ

I (R), and in this case by the induction hypothesis, for the infinite
run σ′ = s2s3 . . ., there is a finite run ρ from t with length(ρ) > 0, and there is a
finite prefix σ† of σ′ such that (σ†, ρ) ∈ R�, and in this case we take σ∗ = s1σ

†,
then (σ∗, ρ) ∈ R� and ρ is the required run. If λ is a limit ordinal, then there
is κ ∈ O such that κ < λ and (s, t) ∈ Bκ

I (R), then the induction hypothesis
immediately gives a finite run ρ from t with length(ρ) > 0, and there is a finite
prefix σ∗ of σ such that (σ∗, ρ) ∈ R�. ��
Theorem 8. Let K = 〈S,AP,L,−→〉 be a Kripke structure, R be a binary
relation on S. If R is a stuttering bisimulation with induction, then R is an
ω-bisimulation.

Proof. Suppose R ⊆ BI(R), and (s, t) ∈ R we need to prove the following:

1. if σ is an infinite run from s, then there is an infinite run ρ from t such that
(σ, ρ) ∈ R�;

2. if ρ is an infinite run from t, then there is an infinite run σ from s such that
(σ, ρ) ∈ R�.

Here we only prove 1, because 2 can be proved in the same way. So suppose σ
is an infinite run from s. Since in this case (s, t) ∈ BI(R), then (s, t) ∈ Bλ

I (R)
for some λ ∈ O, by Lemma 3 we can obtain a finite prefix σ1 of σ and a finite
run ρ1 from t with length(ρ1) > 0, such that (σ1, ρ1) ∈ R�. Now we can do
the same thing for (last(σ1), last(ρ1)) ∈ R with the infinite run which is the
remaining part of σ after σ1. Repeating the process to infinity we obtain a run
ρ by concatenating ρ1, ρ2, . . . in the obvious way. Since each ρi has a positive
length, clearly ρ is an infinite run and it is not difficult to see that (σ, ρ) ∈ R�. ��

Finally, we are ready to prove:

Characterization and Verification of Stuttering Equivalence 125

Theorem 9. ≈si=≈st.

Proof. According to Theorem 6, ≈si is a stuttering bisimulation with induction,
then, by Theorem 8, ≈si is an ω-bisimulation, thus ≈si⊆≈st. Then combine this
with Corollary 3 we obtain ≈si=≈st. ��

Thus ≈si is an equivalence relation. As we promised in the end of the last
section, we have to prove the following important characterization of ≈si and
≈st.

Theorem 10. ≈st (as well as ≈si) is the weakest equivalence which is a stut-
tering bisimulation and at the same time is a divergence preserving equivalence.

Proof. Now it is clear that ≈st is divergence preserving and is a stuttering
bisimulation. To show that it is the weakest such, let ≡ be a stuttering bisimu-
lation and at the same time it is a divergence preserving equivalence. Then by
Theorem 7 ≡⊆ BI(≡), thus ≡⊆≈si=≈st. ��
Remark 2. In principle, one can “define” an equivalence relation � by requiring
that s � t if and only if there exists a divergence preserving equivalence relation
≡ such that ≡ is a stuttering bisimulation and s ≡ t. However, such kind of
“definition” needs to be justified in order to be meaningful. In particular, one
needs to prove that the defined relation � is indeed an equivalence relation, and
is divergence preserving, and is a stuttering bisimulation. Here Theorem 10 pro-
vides the justification for �. In some cases this kind of justification is routine.
Such examples include strong and weak bisimulation equivalences, branching
bisimulation equivalence, etc. In these examples, due to the existence of obvious
monotonic functions, application of Knaster-Tarski fixed-point theorem turned
the justification into a routine task. In other cases it cannot be considered rou-
tine, where justification is difficult by the definition itself, and one needs to find
other ways to get around. This is the case here, since from the definition itself
it is not obvious how to prove that � is an equivalence relation, one has to con-
struct an equivalence by other means (like ≈st or ≈si), and then to use that to
prove that � is an equivalence. It is for this reason that we do not consider the
way of introducing � as desirable. It easily causes confusion while does not save
any amount of work.

4 Well-Founded Bisimulation

In [11], the notion of well-founded bisimulation was proposed to capture stut-
tering equivalence. In this section we study its relationship to stuttering bisim-
ulation with induction.

Definition 8 (Well-founded bisimulation). Let K = 〈S,AP,L,−→〉 be a Kripke
structure. Let rank : S × S × S → W be a total function, where (W,≺) is well-
founded. A binary relation R ⊆ S ×S is a well-founded bisimulation w.r.t. rank
iff R is symmetric and for every (s, t) ∈ R the following hold:

126 X. Liu and W. Zhang

1. L(s) = L(t);
2. whenever s −→ u then one of the following must hold:

(a) t −→ v for some v ∈ S with (u, v) ∈ R;
(b) (u, t) ∈ R and rank(u, u, t) ≺ rank(s, s, t);
(c) (u, t) �∈ R and t −→ v for some v ∈ S with (s, v) ∈ R and

rank(u, s, v) ≺ rank(u, s, t).

The purpose of the ternary rank function rank(u, s, t), when used in case (c)
in the above definition, is to enforce an order in defining the condition that the
transition s −→ u can be matched by a transition from t. In case (b), the rank
function is used to enforce an order in defining the condition that the transition
s −→ u can be matched by default. In principle the two well founded orders in
case (b) and case (c) of the definition are different: the former being an order
between pairs of states and latter an order between triples of states. It is just a
coincidence that the function rank can serve both purpose.

First, we show that every well-founded bisimulation is a stuttering bisimula-
tion with induction.

Theorem 11. Let K = 〈S,AP,L,−→〉 be a Kripke structure. If R is a well-
founded bisimulation on K with some well-founded set (W,≺) and total function
rank, then R is a stuttering bisimulation with induction.

Proof. We first establish the following fact by well-founded induction on ≺:

If (s, t) ∈ R and s −→ u and (u, t) /∈ R, then there exists a finite run ρ
such that length(ρ) > 0 and (su, ρ) ∈ R�.

To show that, suppose (s, t) ∈ R and s −→ u and (u, t) /∈ R. Since R is a
well-founded bisimulation, one of the conditions in (a), (b), (c) of Definition 8
must hold. However because (u, t) /∈ R, condition (b) is excluded, thus either
(a) or (c) must hold. If (a) holds, then t −→ v with (u, v) ∈ R for some v ∈ S,
clearly tv is the ρ we are looking for. If (c) holds, then t −→ v for some v ∈ S
with (s, v) ∈ R and rank(u, s, v) ≺ rank(u, s, t). Now we have two subcases to
discuss: (u, v) ∈ R and (u, v) /∈ R. In the first subcase, again tv is the ρ we
are looking for. In the second subcase, because (s, v) ∈ R, s −→ u, (u, v) /∈ R,
and rank(u, s, v) ≺ rank(u, s, t), by the induction hypothesis there is a finite
run ρ′ from v such that length(ρ′) > 0 and (su, ρ′) ∈ R�. Let ρ = tρ′, clearly
(su, ρ) ∈ R�.

Now suppose (s, t) ∈ R, we show (s, t) ∈ BI(R) by well-founded induction
as follows. Let s −→ u, then we have two cases to discuss: (u, t) /∈ R and
(u, t) ∈ R. In the first case, by the fact we proved above there is a finite run ρ
from t with length(ρ) > 0 and (su, ρ) ∈ R�. In the second case, by the condition
that R is a well-founded bisimulation, one of the conditions in (a), (b), (c) of
Definition 8 must hold. However (c) is clearly excluded because in this case
(u, t) ∈ R. So we have two subcases to discuss. If (a) holds, then t −→ v with
(u, v) ∈ R for some v ∈ S, clearly (su, tv) ∈ R�. If (b) holds, then (u, t) ∈ R and
rank(u, u, t) ≺ rank(s, s, t), by the induction hypothesis (u, t) ∈ BI(R). Thus,

Characterization and Verification of Stuttering Equivalence 127

for the given (s, t), we showed that whenever s −→ u then either there is a
finite run ρ from t such that length(ρ) > 0 and (su, ρ) ∈ R�, or (u, t) ∈ R and
(u, t) ∈ BI(R), hence (s, t) ∈ BI(R). ��

Next, we show that a symmetric stuttering bisimulation with induction is a
well-founded bisimulation.

Theorem 12. Let K = 〈S,AP,L,−→〉 be a Kripke structure, R be a symmetric
binary relation on S. If R is a stuttering bisimulation with induction, then R is a
well-founded bisimulation with some well-founded set (W,≺) and total function
rank.

Proof. Define rank : S × S × S → O as follows:

1. For s, t ∈ S, if (s, t) ∈ BI(R) then rank(s, s, t) = λ where λ is the least
ordinal such that (s, t) ∈ Bλ

I (R) (by Theorem 5 λ = κ + 1 for some κ ∈ O),
if (s, t) /∈ BI(R) then rank(s, s, t) = 0;

2. For u, s, t ∈ S with u, s being two different states, then rank(u, s, t) = l, where
l is the length of the shortest finite run ρ from t such that length(ρ) > 0 and
(su, ρ) ∈ R� if such a ρ exists, otherwise let l = 0 (in fact just let l be any
value will do in this case).

Suppose R is a stuttering bisimulation with induction and R is symmetric, we will
show that with (O, <) and rank defined above, R is a well-founded bisimulation.
Let (s, t) ∈ R. Since R is a stuttering bisimulation with induction, thus
(s, t) ∈ BI(R), and let rank(s, s, t) = λ = κ + 1, so (s, t) ∈ Bκ+1

I (R). First note
that in this case L(s) = L(t). Suppose s −→ u, since (s, t) ∈ Bκ+1

I (R), two of
the following will happen. Either there exists a finite run ρ from t such that
length(ρ) > 0 and (su, ρ) ∈ R�, or (u, t) ∈ R and (u, t) ∈ Bκ

I (R). In the latter
case, obviously rank(u, u, t) < λ, so condition (b) of Definition 8 is satisfied. In
the former case, according to the definition of rank(u, s, t), there is l > 0 and
rank(u, s, t) = l. We distinguish two subcases. The first subcase is that l = 1,
then let ρ = tv, and clearly t −→ v, (u, v) ∈ R, condition (a) of Definition 8 is
satisfied. The second subcase is that l > 1, then according to the definition of
rank(u, s, t) there is ρ = tvv1 . . . which is the shortest finite run from t such that
length(ρ) = l and (su, ρ) ∈ R�. With a detailed case analysis it is not difficult
to see that (s, v) ∈ R, and rank(u, s, v) ≤ l − 1 < rank(u, s, t), and condition
(c) of Definition 8 is satisfied. ��

Theorems 11 and 12 not only imply that well-founded bisimulation and (sym-
metric) stuttering bisimulation with induction both characterize the same rela-
tion, i.e. stuttering equivalence, but also claim that the two notions are essen-
tially the same thing. From the point of view of verification practice, each of
the two notions has its own advantages. As explained in Remark 1, stuttering
bisimulation with induction is presented as an alternating fixed-point of some
monotonic function on the complete lattice of binary relations, thus existing
efficient local correctness checking strategies can be applied to decide whether
some given pairs of states are stuttering equivalent. With given well-founded set
and function rank, the conditions of well-founded bisimulation is easy to verify.

128 X. Liu and W. Zhang

So a well-founded bisimulation R can be used as a proof that the pairs in the
relation are stuttering equivalent. In other words, stuttering bisimulation with
induction is more useful for equality checking, while well-founded bisimulation
is better suited for equality proving. In fact the two can be combined in such
a way that first using a fast local algorithm to obtain a relation R which is a
stuttering bisimulation with induction, and then using the construction in the
proof of Theorem 12 on the symmetric stuttering bisimulation R∪R−1 to obtain
a well-founded bisimulation as a proof for the equality of all pairs in R. In fact
the construction can be turned into an algorithm which, for a given symmetric
stuttering bisimulation with induction R on a Kripke structure with finite num-
ber of states, computes the function rank for the well-founded bisimulation. We
describe such an algorithm in the rest of this section.

To describe the algorithm, we need a theorem which says that often it is
sufficient to stay out of limit ordinals. The following lemma is needed for proving
the theorem.

Lemma 4. If κ < λ then Bκ
I (R) ⊆ Bλ

I (R).

The proof of the lemma is standard, and we omit it here.

Theorem 13. Let K = 〈S,AP,L,−→〉 be a Kripke structure, R be a binary
relation on S.

1. If −→ is finite branching, i.e. {s ∈ S | s0 −→ s} is a finite set for all s0 ∈ S,
then whenever (s, t) ∈ BI(R) there is a natural number n such that (s, t) ∈
Bn

I (R).
2. If S is finite with m states, then there exists n with 0 < n ≤ m2 such that

B0
I (R) ⊆ B1

I (R) . . . ⊆ Bn
I (R) is an increasing chain and BI(R) = Bn

I (R).

Proof. To prove 1, it is sufficient to prove by induction that in this case for all
λ ∈ O if (s, t) ∈ Bλ

I (R) then there is a natural number n such that (s, t) ∈ Bn
I (R).

If λ is a natural number, then the claim trivially holds. If λ is a limit ordinal,
by Definition 7 there is κ < λ such that (s, t) ∈ Bκ

I (R), then by the induction
hypothesis there is a natural number n such that (s, t) ∈ Bn

I (R). If λ = κ + 1,
by Definition 7 and the induction hypothesis the following hold:

1. whenever s −→ s′ then either there exists a finite run ρ from t such that
length(ρ) > 0 and (ss′, ρ) ∈ R�, or (s′, t) ∈ R and (s′, t) ∈ Bn

I (R) for some
natural number n;

2. whenever t −→ t′ then either there exists a finite run σ from s such that
length(σ) > 0 and (σ, tt′) ∈ R�, or (s, t′) ∈ R and (s, t′) ∈ Bn

I (R) for some
natural number n.

Now since −→ is finite branching, {s′ | s −→ s′} ∪ {t′ | t −→ t′} is a finite set,
we can choose the maximum among the finitely many n’s, and let it be m, then
by Lemma 4 the following hold

1. whenever s −→ s′ then either there exists a finite run ρ from t such that
length(ρ) > 0 and (ss′, ρ) ∈ R�, or (s′, t) ∈ R and (s′, t) ∈ Bm

I (R);

Characterization and Verification of Stuttering Equivalence 129

2. whenever t −→ t′ then either there exists a finite run σ from s such that
length(σ) > 0 and (σ, tt′) ∈ R�, or (s, t′) ∈ R and (s, t′) ∈ Bm

I (R).

So in this case (s, t) ∈ Bm+1(R).
In order to prove 2, note that when S has m elements, the size of the relations

in the increasing chain B0
I (R) ⊆ B1

I (R) . . . ⊆ Bn
I (R) . . . is bounded by m2. So

there exists n with 0 < n ≤ m2 such that Bn
I (R) = Bn+1

I (R). Then it is easy
to prove by induction that for all λ ∈ O, it holds that Bλ

I (R) ⊆ Bn
I (R). Then

BI(R) = Bn
I (R) follows easily. ��

By Theorem 13, we know that when the Kripke structure is finite branch-
ing, in constructing rank for the well-founded bisimulation in Theorem 12, we
can always use natural numbers as the well-founded set for the well-founded
bisimulation. And when the Kripke structure has only finite number of states,
we can always use a finite subset of natural numbers as the well-founded set for
the well-founded bisimulation, and moreover in this case there is n such that
BI(R) = Bn

I (R).
We assume a basic procedure FindRun which takes (u, s, t) as input where

(s, t) ∈ R and s −→ u, and find the shortest run ρ from t such that length(ρ) > 0
and (su, ρ) ∈ R�. It outputs the length of such a run if there exists one, or it
outputs 0. It is not difficult to see that this is similar to looking for the shortest
path in a graph, which can be implemented with time complexity polynomial to
the size of the state set.

Now, for a given symmetric stuttering bisimulation R, the algorithm con-
structs a well-founded bisimulation as follows.

First, according to Definition 7, we use FindRun to compute Bk
I (R) from

k = 0 until k = n where Bn
I (R) = Bn+1

I (R). It is not difficult to see that each
Bk

I (R) can be computed with time polynomial to the size of the state set. Thus
the overall time complexity for computing Bk

I (R) from k = 0 to k = n is also
polynomial to the size of the state set.

As the last step, we construct rank as follows:

1. for (u, s, t) with u, s being different states, (s, t) ∈ R and s −→ u, let
rank(u, s, t) = l where l is the output of FindRun(u, s, t);

2. for (s, s, t) with (s, t) ∈ R, let rank(s, s, t) = l where (s, t) ∈ Bl
I(R) and

(s, t) /∈ Bl−1
I (R);

3. for the rest of (u, s, t), let rank(u, s, t) = 0.

It is not difficult to see that the total time complexity of the algorithm is
polynomial to the size of the state set. According to the proof of Theorem 12,
R with rank is a well-founded bisimulation.

5 Related Works

The notion of stuttering bisimulation with induction is an adaptation of the
notion of inductive branching bisimulation introduced in [16], which is the study
of the labeled transition system version of divergence preserving stuttering equiv-
alence. The presentation of the theory part in Sects. 3 and 4 is slightly different

130 X. Liu and W. Zhang

from the presentation in [16]. In particular, the notion of ω-bisimulation is intro-
duced in place of the complete branching bisimulation. The new presentation is
simpler and more concise for stuttering equivalence due to the complete nature
of the transition relation in Kripke structures, i.e. for any state there always
exists some out-going transition. As an equivalence which has the exact dis-
tinguishing strength as the set of CTL*-X properties, stuttering equivalence is
certainly very important. However, it seems that it is still in need for a general
rigorous formulation. It is for this purpose that we propose ω-bisimulation as a
candidate for this role. From the theoretical development in this paper, it looks
fit for this role. The formulation in the original paper [3] is in the form of the
limit of a convergence sequence of equivalence relations, which is not easy to use
in proving theorems about it. Also it is assumed for finite state systems, which
makes it not general enough. In [11] the formulation of stuttering equivalence
relies on a non-trivial definition of a matching relation which only appears in the
appendix of the paper. The matching relation makes the formulation not easy
to handle, in particular it seems not easy to establish that the final relation is
indeed an equivalence (no proof has been provided in the paper).

The notion of well-founded bisimulation was introduced in [11] and studied
in [9] to characterize stuttering equivalence. Due to the lack of a clear theo-
retical foundation for stuttering equivalence, the characterization proofs in the
mentioned works left something to be desired. In [9], stuttering equivalence is
characterized by the so-called divergence sensitive stutter bisimulation, which
is based on the notion of R-divergence. This characterization is similar to the
kind of definition mentioned in Remark 2. Although the characterization proof
of well-founded bisimulation was provided in [9] in terms of divergence sensitive
stutter bisimulation, such characterization of stuttering equivalence itself needs
further justification. Theorems 11 and 12 and their proofs in this paper provide
a sound theoretical foundation for well-founded bisimulation. Another disadvan-
tage of divergence sensitive stutter bisimulation is, since it relies on equivalence
relations that satisfy certain conditions on infinite paths, it would need much
effort when it is used directly as a method for proving the equivalence of states.

In [13] branching bisimulation with explicit divergence is studied in detail,
which is the labeled transition system version of stuttering equivalence. Branch-
ing bisimulation with explicit divergence is defined similar to the kind of defini-
tion mentioned in Remark 2. In [13] the authors took serious efforts to complete
the needed justification for the definition. However the proofs there were quite
complicated due to the lack of good co-inductive properties of the definition.

In [15], a partition based efficient algorithm for divergence blind stuttering
equivalence was presented. Also a transformation between finite Kripke struc-
tures was given in [15] such that two states are divergence blind stuttering equiv-
alent in the transformed Kripke structure if and only if the corresponding states
in the original Kripke structure are stuttering equivalent. This implies that the
problem of checking stuttering equivalence can also be solved by their algorithm.
Compared to the local algorithm approach mentioned in Remark 1, the partition
based algorithm has better worst case time complexity due to the exploitation of

Characterization and Verification of Stuttering Equivalence 131

good properties of equivalence relation. However partition algorithms are inher-
ently global, which makes them unable to exploit early termination chances.

6 Conclusion

In this paper, we propose the notion of stuttering bisimulation with induction
to characterize stuttering equivalence. It is argued that, due to its fixed-point
style definition, stuttering bisimulation with induction is a good characteriza-
tion for stuttering equivalence in that there are efficient local algorithms for the
equality checking problem. We also use stuttering bisimulation with induction
to analyze the notion of well-founded bisimulation. It is shown that stuttering
bisimulation with induction and well-founded bisimulation are essentially the
same thing, and as a byproduct a method for constructing the ranking function
for well-founded bisimulation from a given stuttering bisimulation with induc-
tion is presented. Also a notion of ω-bisimulation is introduced to characterize
stuttering equivalence, which leads to smooth development of the theory.

As we pointed out in Sect. 4, stuttering bisimulation with induction and well-
founded induction are good for different things, the former is good for equality
checking and latter for equality proving. In this respect an interesting future work
is to combine them in a tool where a local equality decision procedure produces a
stuttering bisimulation with induction, which is then used to construct the corre-
sponding well-founded bisimulation. And the resulting well-founded bisimulation
can act as a proof of equality for the elements in the stuttering bisimulation with
induction.

References

1. Hennessy, M.C.B., Plotkin, G.D.: A term model for CCS. In: Dembiński, P. (ed.)
MFCS 1980. LNCS, vol. 88, pp. 261–274. Springer, Heidelberg (1980). https://doi.
org/10.1007/BFb0022510

2. Walker, D.J.: Bisimulation and divergence. Inf. Comput. 85, 212–241 (1990)
3. Browne, M.C., Clarke, E.M., Grümberg, O.: Characterizing finite Kripke structures

in propositional temporal logic. Theor. Comput. Sci. 59, 115–131 (1988)
4. Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about networks with many

identical finite state processes. Inf. Comput. 81(1), 13–31 (1989)
5. Glabbeek, R.J.: The linear time — branching time spectrum II. In: Best, E. (ed.)

CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-57208-2 6

6. de Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995)

7. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://
doi.org/10.1007/BFb0017309

8. Milner, R.: Communication and Concurrency. Prentice-Hall, New York (1989)
9. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge

(2008)

https://doi.org/10.1007/BFb0022510
https://doi.org/10.1007/BFb0022510
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309

132 X. Liu and W. Zhang

10. Vergauwen, B., Lewi, J.: Efficient local correctness checking for single and alter-
nating boolean equation systems. In: Abiteboul, S., Shamir, E. (eds.) ICALP 1994.
LNCS, vol. 820, pp. 304–315. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58201-0 77

11. Namjoshi, K.S.: A simple characterization of stuttering bisimulation. In: Ramesh,
S., Sivakumar, G. (eds.) FSTTCS 1997. LNCS, vol. 1346, pp. 284–296. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0058037

12. van Glabbeek, R.J., Weijland, P.: Branching time and abstraction in bisimulation
semantics. J. ACM 43(3), 555–600 (1996)

13. van Glabbeek, R.J., Luttik, B., Trcka, N.: Branching bisimilarity with explicit
divergence. Fundam. Inform. 93(4), 371–392 (2009)

14. Allen Emerson, E., Halpern, J.Y.: “Sometimes” and “Not Never” revisited: on
branching versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)

15. Groote, J.F., Vaandrager, F.: An efficient algorithm for branching bisimulation and
stuttering equivalence. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp.
626–638. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032063

16. Liu, X., Yu, T., Zhang, W.: Analyzing divergence in bisimulation semantics. In:
Proceedings of 44th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL2017), Paris (2017)

https://doi.org/10.1007/3-540-58201-0_77
https://doi.org/10.1007/3-540-58201-0_77
https://doi.org/10.1007/BFb0058037
https://doi.org/10.1007/BFb0032063

Q|SI〉 : A Quantum Programming
Environment

Shusen Liu1(B), Xin Wang1, Li Zhou1, Ji Guan1, Yinan Li1, Yang He1,
Runyao Duan1(B), and Mingsheng Ying1,2,3(B)

1 Centre for Quantum Software and Information, Faculty of Engineering and
Information Technology, University of Technology Sydney, Ultimo, NSW 2007,

Australia
Shusen.Liu@student.uts.edu.au

2 Department of Computer Science and Technology, Tsinghua University,

Beijing 100084, China
3 State Key Laboratory of Computer Science, Institute of Software,

Chinese Academy of Sciences, Beijing 100190, China

Abstract. This paper describes a quantum programming environment,
named Q|SI〉 , to support quantum programming using a quantum
extension of the while-language. Embedded in the .Net framework, the
Q|SI〉 platform includes a quantum while-language compiler and a suite
of tools to simulate quantum computation, optimize quantum circuits,
analyze and verify quantum programs. This paper demonstrates Q|SI〉 in
use. Quantum behaviors are simulated on classical platforms with a
combination of components and the compilation procedures for differ-
ent back-ends are described in detail. Q|SI〉 bridges the gap between
quantum hardware and software. As a scalable framework, this platform
allows users to code and simulate customized functions, optimize them
for a range of quantum circuits, analyze the termination of a quantum
program, and verify the program’s correctness (The software of Q|SI〉 is
available at http://www.qcompiler.com.).

Keywords: Quantum programming · Quantum compilation
Quantum simulation · Quantum program analysis
Quantum program verification

1 Introduction

It is well-known that quantum computers can solve certain categories of prob-
lems much more efficiently than classical computers. For example, Shor’s fac-
toring algorithm [22], Grover’s search algorithm [8] and more recently Harrow,
Hassidim and Lloyd’s algorithm for systems of linear equations [9] are all known
to be particularly suited quantum computation. In recent years, governments
and industries around the globe have been racing to build quantum computers.
And, as quantum hardware advances quantum software is also blossoming.
c© Springer Nature Switzerland AG 2018
C. Jones et al. (Eds.): Zhou-Festschrift, LNCS 11180, pp. 133–164, 2018.
https://doi.org/10.1007/978-3-030-01461-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01461-2_8&domain=pdf
http://www.qcompiler.com

134 S. Liu et al.

However, just as with classical computing, once quantum computers are com-
mercialized, programmers will certainly need a modern platform to express and
implement their quantum algorithms without concern for trivialities of their
circuits. In fact, such platforms will be even more helpful for quantum program-
mers because the counterintuitive features of quantum systems are much more
likely to lead to misunderstandings. Using a programming environment means
the physical implementation of quantum algorithms is less of a concern and the
errors caused by misunderstandings can be (partially) avoided.

To be of any use, quantum hardware requires quantum software that is com-
patible with the device. Yet beyond these hardware constraints, several fur-
ther barriers are limiting the practical applications of quantum software, e.g.,
concerning physical topology of quantum computers. For example, Veldhorst
et al. [15,27] use microwave electron-spin resonance (ESR) to perform global
Hadamard gate and demarcate the transitions between tick and took intervals.
This rule makes quantum programming more elusive when the programmer needs
to perform a local Hadamard gate. Further, IBMQ’s quantum computers in the
cloud [11,12] deliver several different physical topologies, each with a different
back-end, and these topologies require specific low-level device commands to per-
form an operation. Without an appropriate compiler from software, producing
a workable quantum program is a very difficult task.

Several quantum programming platforms have been developed over the last
two decades. The first quantum programming language, called QCL, was pro-
posed by Ömer [18,20] in 1998. It was implemented in C++. In 2000, Sanders
and Zuliani [19] introduced qGCL as a quantum extension of Dijkstra’s Guarded-
Command Language (GCL) and along with pGCL, a probabilistic extension of
GCL. Then, in 2003, Bettelli et al. [4] defined a quantum programming language
very similar to QCL, called Q language. Q language was implemented as a C++
library. However, just in the past few years, some quantum programming plat-
forms have emerged that are more scalable and robust. In 2013, Green et al. [7]
proposed a scalable functional quantum programming language, called Quipper,
using Haskell as the host language. JavadiAbhari et al. [14] defined Scafford
in 2014, presenting its accompanying compilation system ScaffCC in [13]. In
the same year, Wecker and Svore from QuArc (Microsoft Research Quantum
Architecture and Computation team) developed LIQUi|〉as a modern tool-set
embedded within F# [28]. Smelyanskiy et al. [24] at Intel built a parallel quan-
tum computing simulator qHiPSTER in 2016 that is able to simulate up to 40
qubits on a supercomputer with very high performance. And very recently, at
the end of 2017, QuARC announced a new programming language and simulator
designed specifically for full stack quantum computing, called Q#. Q#’s ability
to support 32 qubits on a PC and up to 40 qubits on the Microsoft Azure Cloud
platform represents a new milestone in quantum programming.

The IBMQ team at IBM have also released quantum computers and simula-
tor for high-performance computing. 2017 saw the release of a 5-qubit quantum
cloud computer along with their corresponding PythonSDK and PythonAPI
tools [11,12], followed by 20 qubits in 2018. The combination of hardware and

Q|SI〉 : A Quantum Programming Environment 135

software provides general researchers with access to the most advanced cloud-
based quantum computing platform. As the second renaissance in quantum com-
putation, IBMQ has attracted great interests from both the public and private
sectors.

Contributions of this paper: This paper presents a powerful and flex-
ible new quantum programming environment called Q|SI〉 1, named after our
research center2. The core of Q|SI〉 is a quantum programming language and
its compiler. The language is a quantum extension of the while-language, first
defined in [29] followed by a careful study of its operational and denotational
semantics (see also [30], Chapter 3). The language includes a measurement-based
case statement and a measurement-based while-loop. These two program con-
structs are extremely convenient for describing large-scale quantum algorithms,
such as quantum random walk-based algorithms.

For operations with quantum hardware, we have defined a new assembly
language called f-QASM (Quantum Assembly Language with feedback) as an
interactive command set. f-QASM is an extension of the QASM instruction set
introduced in [26]. A feedback instruction has been added that allows the effi-
cient implementation of measurement-based case and loop statements. A com-
piler then transforms the quantum while-program into a sequence of f-QASM
instructions and further generates a corresponding quantum circuit equivalent to
the program (i.e., a sequence of executable quantum gates). Q|SI〉 also contains
a module for optimizing the quantum circuits as well as a module for simulating
quantum programs on a classical computer. Two novel features set Q|SI〉 apart
from the existing quantum programming environments - its quantum program
analyzers and its quantum program verifier:

– The quantum program analyzer. Q|SI〉 includes several algorithms for termi-
nation analysis and computing the average running time of quantum programs
developed by Ying et al. [31,34], one of the authors of this paper. In addition,
the platform includes a semi-definite programming (SDP) algorithm to gen-
erate invariants of quantum while-loops [33], also developed by Ying. These
algorithms are used for the static analysis of quantum programs to help the
compiler with its optimization procedures.

– A quantum program verifier. A logic in the Floyd-Hoare style was established
in [29] (see also [30], Chapter 4). This logic, which reasons about the correct-
ness of quantum programs, has been written in the quantum while-language.
Recently, a theorem prover was implemented by Liu et al. [16] for quantum
Floyd-Hoare logic based on Isabelle/HOL. We intend to link Q|SI〉with the
quantum theorem prover presented in [16] to provide a facility for verifying
the correctness of quantum programs.

1 http://www.qcompiler.com.
2 http://www.qsi.uts.edu.au.

http://www.qcompiler.com
http://www.qsi.uts.edu.au

136 S. Liu et al.

2 Quantum while-Language

For convenience, a brief review of the quantum while-language follows. The
quantum while-language is a pure quantum language without classical variables.
It assumes only a set of quantum variables denoted by the symbols q0, q1, q2,
However, in practice, almost all existing quantum algorithms involve elements
of both classical and quantum computation. Therefore, Q|SI〉 has been designed
such that the quantum while-language can be embedded into C#, which brings
a significant level of convenience to the program design process. Some expla-
nations of the quantum program constructs follow; however, for more detailed
descriptions and examples, see [29] and Chapter 3 of [30]. The quantum while-
language is generated using the following simple syntax:

S ::= skip | q := |0〉 | q̄ = U [q̄] | S1;S2 |if (�m · M [q̄] = m → Sm) fi

| while M [q̄] = 1 doSod.

Skip. Just like the classical while-language, the statement skip does nothing
and terminates immediately.

Initialization. The initialization statement “q := |0〉” sets the quantum vari-
able q to the basis state |0〉.

Unitary transformation The statement “q̄ := U [q̄]” means that a unitary
transformation (quantum gate) U is performed on quantum register q̄ leaving
the other variables unchanged.

Sequential composition. In the composition S1;S2, program S1 is executed
first as per a classical programming language. Once S1 terminates, S2 is
executed.

Case statement. In the case statement if (�m · M [q̄] = m → Sm) fi, M
is a quantum measurement with m representing its possible outcomes. To
execute this statement, M is first performed on the quantum register q̄ and
a measurement outcome m is obtained with a certain probability. Then, the
subprogram Sm is selected according to the outcome m and executed. The
difference between a classical case statement and a quantum case statement
is that the state of the quantum program variable q̄ changes after performing
the measurement.

while-Loop. In the loop while M [q̄] = 1 doSod, M is a “yes-no” measure-
ment with only two possible outcomes: 0 and 1. During execution, M is
performed on the quantum register q̄ to check the loop guard. If the outcome
is 0, the program terminates. If the outcome is 1 the program executes the
loop body S and continues. Note that, here, the state of the program variable
q̄ also changes after measuring M .

3 The Structure of Q|SI〉
This section provides an introduction to the basic structure of Q|SI〉 , leaving
the details to be described in subsequent sections. Q|SI〉 is designed to offer

Q|SI〉 : A Quantum Programming Environment 137

a unified general-purpose programming environment to support the quantum
while-language. It includes a compiler for quantum while-programs, a quan-
tum computation simulator, and a module for the analysis and verification of
quantum programs. We have implemented Q|SI〉 as a deeply embedded domain-
specific platform for quantum programming using the host language C#.

Q|SI〉 ’s framework is shown in Fig. 1.

Quantum Program
(QP)

Quantum
Compiler

QP Analysis
Module

QTerminator
QAverage
Running-

Timer

QP Verifica on
Module

Q-HOL

Quantum Circuits

Quantum
Computer
(Quantum
Emulator)

Quantum ASM

Pre-parser

Support Assembly

Quantum
Simulator

Engine

Sta s cs Running
Output

Quantum Behaviors
Library

Fig. 1. Framework of Q|SI〉 . Rectangle modules indicate the main stream process
with respect to the execution parts in Q|SI〉 , and double edged rectangles suggest the
auxiliary modules. Ripple rectangles are the input and output data structures or files.
QP Verification Module with Q-HOL is going to link with a theorem prover proposed
by Liu et al. [16] which is still under developing.

3.1 Basic Features of Q|SI〉
The main features of Q|SI〉 are explained as follows:

Language support. Q|SI〉 is the first platform to support the quantum while-
language. Specifically, it allows programmers to develop software with
measurement-based case statements and while-loops. The two program con-
structs provide more efficient and clearer descriptions of some quantum algo-
rithms, such as quantum walks and Grover’s search algorithm.

Quantum type enriched. Compared to other simulators and analysis tools,
Q|SI〉 supports quantum types beyond pure qubit states, such as density oper-
ators, mixed states, etc. These types have unified operations and can be used
in different scenarios. This feature provides high flexibility to the program-
ming process.

138 S. Liu et al.

Dual mode. Q|SI〉has two executable modes. “Running-time execution” mode
simulates quantum behaviors in one-shot experiments. “Static execution”
mode is mainly designed for quantum compilation, analysis, and verification.

f-QASM instruction set. Defined as an extension of Quantum Assembly Lan-
guage (QASM) [26], f-QASM is essentially a quantum circuit description lan-
guage that can be adapted for a variety purpose. In this language, every line
has only one command. f-QASM’s ‘goto’ structure contains more informa-
tion than the original QASM [26] and is more space efficient QASM-HL [13].
f-QASM can also be used for further optimization and analysis.

Quantum circuits generation. Similar to modern digital circuits in classical
computing, quantum circuits provide a low-level representation of quantum
algorithms [26]. Q|SI〉 compiler module can produce a quantum circuit from
a program written in the high-level quantum while-language.

Arbitrary unitary operator implementation.
The Q|SI〉platform includes the Solovay-Kitaev algorithm [5] together with
a two-level matrix decomposition algorithm [17] and a quantum multiplexor
(QMUX) algorithm [21]. As such, an arbitrary unitary operator could be con-
verted from a small pre-defined set of basic gates into a quantum circuit once
these are available from quantum chip manufactures.

Gate-by-gate description. Similar to other quantum simulators, Q|SI〉 has
a gate-by-gate description feature. The platform inherently provides some
basic quantum gates that programmer can use to build their desired quan-
tum circuits gate-by-gate. We have also provided a decomposition function
to generate arbitrary two-dimensional controlled-unitary gates for emulation
feasibility.

3.2 Main Components of Q|SI〉
The Q|SI〉 platform mainly consists of four parts.

Quantum Simulation Engine This component includes some support assem-
blies, a quantum mechanics library, and a quantum simulator engine. The
support assemblies house the quantum types, and the quantum language
semantics. More specifically, they provide a series of quantum objects, and
reentrant encapsulated functions to play the role of the quantum if and while
constructs. The quantum mechanics library provides the behaviors for quan-
tum objects such as unitary transformation and measurement including the
result and post-state. The quantum simulator engine is designed as an exe-
cution engine. It accepts quantum objects and their rules from the quantum
mechanics library and converts them into probability programming which can
be executed on a classical computer.

Quantum Program (QP) Analysis Module This module currently com-
prises two sub-modules to support static analysis mode: the “QTerminator”
and the “QAverage Running-Timer”. The former provides the terminating
information, and the latter evaluates the running time of the given program.
Their outputs are sent to the quantum compiler at the next stage for further
use.

Q|SI〉 : A Quantum Programming Environment 139

QP Verification Module This module is a tool for verifying the correctness of
quantum programs. It is based on quantum Hoare logic, which was introduced
by one of the authors in [29] and is still under development. One possibility
for its future advancement is to link Q|SI〉 to the quantum theorem prover
developed by Liu et al [16].

Quantum Compiler The compiler consists of a series of tools to map
a high-level source program representing a quantum algorithm into the
language/back-end of the targeted quantum device [26], e.g., f-QASM for
Q|SI〉 ’s built-in simulator, OpenQASM for IBMQ quantum computers, etc.
The compiler helps programmers to implement their source code without
needing to consider a diverse range of devices by atuomatically constructing
an executable quantum circuit. This effectively allows programmers to ignore
the physical constraints of the quantum hardware their code will ultimately
run on. A tool to optimize the quantum circuits will be added in the future.

3.3 Implementation of Q|SI〉
One of the basic problems during implementation is how to use probabilistic and
classical algorithms to simulate quantum behaviors. To support quantum oper-
ations, Q|SI〉has been enriched with data structures in a quantum simulation
engine. Figure 2. shows the simulation procedure.

Given the quantum simulation engine involves numerous matrix computa-
tions and operations, Math.net is used for matrix computation. Math.NET has
been an open-source initiative to build and maintain toolkits that support fun-
damental mathematics. It targets both the everyday and the advanced needs
of .Net developers3. It includes numerical computing, computer algebra, signal
processing and geometry. Math.net is also able to accelerate matrix calculations
when the simulation includes a MIC device (Many Integrated Core Architecture).
It should also be noted that the data in these parts are delivered by floating-
points numbers with pre-defined fault-tolerant calculation while QP Analysis
Module employs algebraic numbers accompanying with Symbolic Math Toolbox
from Matlab library.

In static analysis mode, Roslyn is involved as an auxiliary code analysis tool.
Roslyn is a set of open-source compilers and code analysis APIs for C# and
Basic languages. Since our platform is embedded in the .Net framework for C#
language, Roslyn is used as a parser to produce an abstract syntax tree (AST)
for further analysis.

4 The Quantum Compiler

A compiler often works as a connection between different back-ends and program
data/command structures. The framework of the compiler is described in Fig. 3.
The compiler in Q|SI〉 produces f-QASM code for simulation purposes with its
3 https://www.mathdotnet.com.

https://www.mathdotnet.com

140 S. Liu et al.

Q|SI> Quantum Simulation Engine

Syntax Start Quantum Types Support Assembly Probability Algorithms Classical Type, Clause
and Algorithm

Quantum While-
Language Semantics Output

Quantum While
Language

Probability
Select

Process

Quantum
Language,
Classical

Language or
Mixed?

Qbit

Mixed
Quantum

types?

Ket(High
dimension qbit)

Bra(KetDagger)

DensityOperator

MeasurementOpe
rator

SuperOperator

Quantum While
Language Semantics

Quantum
While-clause

Quantum If-
clause

Quantum initial-
clause

Quantum Skip-
clause

Quantum
Unitary

Transformation

Quantum
Channel

Quantum
Measurement

Classical Types,
Clauses,

Algorithms

Quantum Compiler
Analysis Output

Math Execution
Platform

Classical Syntax Output

Fig. 2. Q|SI〉 The procedure for simulating in the quantum simulation engine. Three
types of languages are supported: pure quantum while-language, classical while-
language and a mixed language. The engine starts a support flow path when it detects
the existing of the quantum part in a program. Then in the flow path, the engine
checks the quantum type for each variable and operator and executes the correspond-
ing support assembly which will be explained as a constrained object in the classical
computer. As mentioned before, one of the main features of Q|SI〉 is that it supports
programming in the quantum while-language. This feature is provided by the quantum
while-language support assemblies. All of the behaviors considering the semantics are
explained by probabilistic algorithms. The outputs are extended C# languages which
can be executed directly on the .Net framework or can be explained in f-QASM and
OpenQASM by the compiler.

built-in simulator. It also provides embedded Python for the IBMQ Python SDK
and OpenQASM 2.0 for the IBMQ Python API. As physical quantum computers
only permit several specific operations, some restrictions are imposed on the
quantum circuits designs [10] and acceptable commands are generated through
several conversion techniques. Other useful functions include the optimization
and reconstruction procedures.

The Q|SI〉 compiler is heavily dependent on other modules. It collects data
structures from the quantum simulation engine and splits the program into sev-
eral parts: variables, quantum gates, quantum measurements, and the entry and
exit points of each clause along with their positions. An AST (Abstract Syntax

Q|SI〉 : A Quantum Programming Environment 141

Tree) is constructed from the program, and then the program is reconstructed as
a sequence of f-QASM instructions for further use. Based on f-QASM, the com-
piler provides a method for decomposing the unitary operators. It can decompose
an arbitrary unitary operator U(n) into a sequence of basic quantum gates from a
pre-defined set {U1, U2, . . . , Um} where U1, U2, . . . , Um ∈ U(2) (qubit gate). This
corresponds to scenarios in quantum device development where people need uni-
versal computation in spite of only a few of gates, manufacturers can produce.
Further, the quantum while-language delivers the power of loops, but it also
increases the complexity of compilation. A quantum program with a loop struc-
ture is much harder to trace than one without. The QP Analysis module provides
static analysis tools including a “QTerminator” for termination checking and a
“QAverage Running-Timer” for computing the expected running time. In addi-
tion, a QP Verification module, still in development, is currently been designed
to verify quantum programs. Once complete, programmers will be able to insert
the assertions to debug program behaviors.

Compiler

IBMQ Python API

IBMQ Back-ends

IBMQ 5 Qubits
Quantum Computer

IBMQ 5 Qubits
Quantum Computer2

IBMQ 16 Qubits
Quantum Computer

Built-in Simulator

Hardware
Constrains

Job
scheduling

Classical
Command
Roll Over

OpenQASM 2.0

Embedded Python

F-QASM

Fig. 3. The compiler of Q|SI〉 is the bridge between high-level language and low-level
hardware instruction sets. f-QASM is designed for connecting the built-in simulator.
Even the built-in simulator is not very powerful on the personal computer, it sup-
ports the case-statement and loop structure which are significantly different from the
flattened quantum circuits description. For connecting with the IBMQ cloud quan-
tum computer, the platform can generate two kinds of language, Embedded Python
and OpenQASM 2.0. The Embedded Python is the front-end of IBMQ clients packing
with an open compiler in QISKit project. It can also manage hardware resources, con-
straints and classical information. Moreover, the key component, Python API can be
called directly with OpenQASM 2.0 to achieve better performance and compatibility
with other high-level languages.

142 S. Liu et al.

4.1 f-QASM

QASM (Quantum Assembly Language) is widely used in modern quantum simu-
lators. It was first introduced in [26] and is defined as a technology-independent
assembly language with a reduced-instruction-set but extended with a set of
quantum instructions based on a model of the quantum circuit. Ying et al. [32]
carefully characterize its theoretical properties. In 2014, JavadiAbhari et al. [13]
defined a space-consuming flat description and denser hierarchical description
QASM, called QASM-HL. Recently, Smith et al. [25] proposed a hybrid QASM
for classical-quantum algorithms and applied it to Quil. Quil is the front-end of
Forest which is a tool for quantum programming and simulation that works in
the cloud.

We propose a specific QASM format, called f-QASM (Quantum Assembly
Language with feedback). The most significant motivation behind our variation
is to translate the inherent logic of quantum program written in a high-level
programming language into a simple command set, where every line or period
only contains one command. However, a further motivation is to provide the
ability to allow conditional operations to issue feedback based on measurement
outcomes-an issue raised in the IBMQ QASM 2.0 list.
The basic definition of f-QASM. The registers are defined as follows:

– Define {r1, r2, . . .} as a finite set of classical registers.
– Define {q1, q2, . . .} as a finite set of quantum registers.
– Define {fr1, fr2, . . .} as a finite set of flag registers. These are a special kind

of classical registers that are often used to illustrate partial results of the code
segment. In most cases, the flag registers can not be operated directly by any
developed code.

There are two kinds of basic operations:

– Define the command “op(q)” as q := op(q), where op is a unitary operator
and q is a quantum register.

– Define the command “{op}(q)” as r := {op}(q), where {op} is a set of mea-
surement operators, q is a quantum register, and r is a classical register.

The assembly functions are defined as:

– Define “INIT (q)” as q := |0〉 〈0|, where q is a quantum register. The value

of q is assigned from
[
1 0
0 0

]
.

– Define “OP{q, num}”, where q is a quantum register, num ∈ N and OP is
an operator, in another functional form of q := op(q). num can be 0 or other
value, i.e., 0 means the unitary operator belongs to the pre-defined set of
basic quantum gates which can be prepared by either the manufacturer or
the user. Otherwise, num can only be used after being decomposed into basic
gates, or else it is ignored.

– Define “MOV (r1, r2)”, r1 and r2 are the classical registers. This function
assigns the value of the register r2 to the register r1 and empties r2.

Q|SI〉 : A Quantum Programming Environment 143

– Define “CMP (r1, r2)” as fr1 = δ(r1, r2) or as fr1 = (r1 == r2), where r1, r2
are two classical registers, and δ is the function that compares whether r1 is
equal to r2. If r1 is equal to r2 then fr1 = 1; otherwise, fr1 = 0.

– “JMP l0” directs the current command to go to the line indexed by l0.
– Define “JE l0” as the index value of fr1 and jumping. If fr1 is equal to 1

then the compiler executes JMP l0, otherwise it does nothing.

f-QASM examples Some simple examples to help readers understand f-QASM
follow,

Initialization q := |0〉 means the program initializes the quantum register q in
the state |0〉. In f-QASM, initializing two quantum registers Q1 and Q2 in
the state |0〉 would be written as

INIT(Q1);
INIT(Q2);

Unitary transformation q̄ = U[q̄] means the program performs a unitary
transformation on the register q. The compiler checks whether or not the
unitary matrix is a basic gate. A segment of an example program with a
unitary transformation follows:

hGate(q1);

Here we support hGate as a Hadamard gate performed on single qubit, i.e.,

hGate = 1√
2

[
1 1
1 −1

]
. To transform this into an f-QASM instruction, it would

be written as

hGate(q1, 0);

Sequential composition Contemporary language is not designed for concur-
rent programming. Thus, the sequential composition is trivial for converting
the quantum while-language to f-QASM.

Case statement The following program segment is written as a case statement
in the quantum while-language:

QIf(m(q1)
() =>
{
xGate(q1);
},
() =>
{
hGate(q1);
}
);
zGate(q1);

144 S. Liu et al.

where hGate is a Hadamard gate performed on single qubit, xGate is a bit-

flip gate performing on single qubit xGate =
[
0 1
1 0

]
, and zGate is a phase-flip

gate zGate =
[
1 0
0 −1

]
. Here we assume that all the gates can be provided. M

is a user-defined measurement. The compiler interprets this segment as the
following f-QASM instructions:

MOV(r,{M}(q1));
CMP(r,0);
JE L1;
CMP(r,1);
JE L2;
L1:
xGate(q1,0);
JMP L3;
L2:
hGate(q1,0)
JMP L3;
L3:
zGate(q1,0);

Loop A loop construct is provided using QWhile(M(q)), where QWhile is a
keyword, M is a measurement and q is a quantum register. An example
program segment with quantum while-loop follows:

QWhile(m(q1),
() =>
{
xGate(q1);
}
);
hGate(q1);

hGate and xGate are both basic gates as described above. Loop could be
transformed into f-QASM as follows:

L1:
MOV(r,{M}(q1));
CMP(r,0);
JE L2;
XGate(q1,0);
JMP L1;
L2:
hGate(q1,0);

Q|SI〉 : A Quantum Programming Environment 145

4.2 Decomposition of a General Unitary Transformation

A physical quantum computer is not like a theoretical formulation of a quantum
algorithm. Theoretical algorithms allow unitary transformations to have arbi-
trary dimensions and qubits can be connected at will. Hirata et al. [10] proposed
a conversion of quantum circuits on a Linear Nearest Neighbor (LNN) quantum
computer, while Beals et al. [2] analyzed the implementation quantum circuits on
the different physical topologies of a quantum computer using ancillary qubits.
Considering the physical constraints of the IBMQ quantum computer, we cur-
rently use Swap gates to transfer the control qubit to a target qubit for physical
implementation.

The universal gate set can be defined as follows. Given a set {U1, U2, . . . , Un}
of basic gates. If any unitary operator can be approximated to arbitrary accu-
racy by a sequence of gates from this set, then the set is said to be universal [17].
However, different back-ends have different universal gate sets. For general pur-

poses, we only considering the discrete single qubit gates, hGate = 1√
2

[
1 1
1 −1

]
,

sGate =
[
1 0
0 i

]
, T =

[
1 0
0 eiπ/4

]
and T † ∈ U(2) and controlled-NOT gate

(CNOT). In the procedure of compiler, there are two kinds of built-in decompo-
sition algorithms. One is the QR method enlightened by [1,17], which consists
of the following steps:

1. An arbitrary unitary operator is decomposed exactly into (the composition
of) two-level unitary matrices, which are a sequence of unitary operators that
act non-trivially only on a subspace spanned by two computational basis
states. The decomposition includes a product of at most 2n−1(2n −1) unitary
matrices following the method in [17];

2. Each unitary operator, which only acts non-trivially on a subspace spanned
by two computational basis states are further expressed using single qubit
gates (U(2)) and the CNOT gate. This step generates O(n2) gates;

3. Each single qubit gate can be decomposed into a sequence of gates from a
given small set of basic (single qubit) gates using the Solovay-Kitaev theo-
rem [5]. This step will generate O(logc(1/ε)) gates;

4. Check the connectivity between the control qubit and the target qubit against
the physical constraints for each CNOT gate in Step 2. Using the Swap gate
to transfer the control qubit to another qubit which is in a pair with the
target qubit on the physical topology.

The other is the QSD method presented in [21]. This method consists of the
following steps:

1. An arbitrary operator is decomposed into three multiplexed rotations and
four generic U(2d−1) operators, where d is the number of qubits;

2. Repeatedly execute step 1 until U(4) is generated;
3. The U(4) operator is decomposed into U(2) operators with two extra CNOT

gates;

146 S. Liu et al.

4. Each single qubit gate in U(2) is decomposed into gates from a given small
set of basic (single qubit) gates using the Solovay-Kitaev theorem [5];

5. Check the connectivity between the control qubit and the target qubit against
the physical constraints for each CNOT gate in Step 2. Swap gate is used to
transfer the control qubit to another qubit which is in a pair with the target
qubit on the physical topology.

5 The Quantum Simulator

5.1 Quantum Types

Data types can be extended from classical computing to quantum computing. For
example, quantum generalizations of boolean and integer variables were intro-
duced in [29]. The state space of a quantum boolean variable is the 2-dimensional
Hilbert space Boolean = H2, and the state space of a quantum integer vari-
able is the infinite-dimensional Hilbert space integer = H∞. In Q|SI〉 , every
kind of quantum variable has its initialization method and operations. Cur-
rently, Q|SI〉 contains only finite-dimensional quantum variables, but infinite-
dimensional variables will be added in the future. The quantum types used in
Q|SI〉 are presented in Fig. 4.

QuantumTypes<T>

Vector<T>

Matrix<T>

Ket (High-dimension
variable)

QBit (2-dimension
variable)

Bra (High-dimension
variable)

QBitBra (2-dimension
variable)

DensityOperator<T>

MeasureMatrixSet

SuperOperator

PureDensityOperator

MixDensityOperator

MeasureMatrix2

MeasureMatrixH

Fig. 4. Q|SI〉 Quantum types layer

Each quantum type is defined as a subclass of one virtual base
class called QuantumTypes〈T 〉, which houses the quantum objects. Within
QuantumTypes〈T 〉, there are two extended virtual base classes: Vector〈T 〉, con-
tains the quantum variables;these share some vector rules, and Matrix〈T 〉, which
represents a class of quantum operators that share some operator rules.

Quantum variables come in two basic types: Ket is used to denote a quantum
variable of arbitrary dimensions, and Bra is the conjugate transpose of Ket. Two

Q|SI〉 : A Quantum Programming Environment 147

specialized (sub)types QBit and QBitBra are provided as 2-dimensional quantum
variables. Note that these two variables are compatible when the boolean type is
considered to be a subtype of an integer. In addition, Ket and QBit types must
accept a few rules:

Normalized states For example, a qubit can be written as |ψ〉 = α |0〉+β |1〉,
which returns a result of 0 with a probability of |α|2 or a result of 1 with a
probability of |β|2 when it is measured on a computational basis. Since these
probabilities must sum to 1, it obeys |α|2 + |β|2 = 1. Thus, the length of a
vector should be normalized to 1 during initialization and computation. For
convenience, Q|SI〉 provides a function QBit.NormlizeSelf() to keep the norm
of the variable types QBit and Ket.

Hidden states It is well-known that the information of a QBit or a Ket cannot
be extracted until the state is measured. However, as indicated by Nielsen and
Chuang in [17], although “nature evolves a closed quantum system of qubits,
not performing any ‘measurements’, she apparently does keep track of all
the continuous variables describing the state, like α and β ”. In Q|SI〉 , we
use a black box trick to simulate quantum computing, where each quantum
state is a black box and each part within the box cooperates with the other
parts, but an external viewer knows nothing. Functions and other object
methods including unitary transformations and quantum channels know the
exact quantum state, but this information is hidden from the viewer until it
is measured. Thus, the about a state is stored in a special “Protect” class, to
make it more difficult to access.

The matrix form is widely used in the semantics of the quantum while-
language. There are three categorized of matrix: DensityOperator〈T 〉, Measure-
MatrixSet and SuperOperator. DensityOperator〈T 〉 is also a virtual basic class
with two sub-classes: PureDensityOperator and MixDensityOperator. In fact, the
difference between PureDensityOperator and MixDensityOperator is that only
MixDensityOperator accepts an ensemble, namely a set of probabilities and their
corresponding states, which can be expressed by a PureDensityOperator〈T 〉 or
a Vector〈T 〉. The object quantum variable ρ of a DensityOperator〈T 〉 must sat-
isfy the following two conditions: (1) ρ has a trace of 1; (2) ρ is a positive
operator. To ensure the object is a real density operator, every operation on a
objects triggers a verification of these conditions. MeasureMatrixSet is a mea-
surement containing an array of matrix M = {M0,M1, . . . ,Mn} that satisfies a
completeness condition

∑
i M†

i Mi = I, which is a very flexible way to define a
quantum measurement. Specifically, a plus-minus basis {|+〉 , |−〉} and a compu-
tation basis {|0〉 , |1〉} are two built-in measurements, and a user can easily use
their designed measurement. A SuperOperator can be used to simulate an open
quantum system using an array of Kraus operators E = {E0, E1, . . . , En} that
satisfy

∑
i E†

i Ei ≤ I as a representation.
Simulating quantum behaviors. The basis of simulating quantum computa-
tion is to simulate the quantum behaviors as defined in the four basic postulates
of quantum mechanics [17]:

148 S. Liu et al.

– Postulate 1: Associated to any isolated physical system is a complex vector
space with an inner product (Hilbert space) known as the state space of the
system. The system is completely described by its state vector, which is a
unit vector in the system’s state space.

In Q|SI〉 , a Math.net function called
double ConjugateDotProduct(Vector〈T 〉 other)

supports the inner product.

– Postulate 2: The evolution of a closed quantum system is described by a
unitary transformation. That is, the state |ψ〉 of the system at time t1 is
related to the state |ψ′〉 of the system at time t2 by a unitary operator U
which depends only on the time t1 and t2. |ψ′〉 = U |ψ〉.

To simulate this feature in Q|SI〉 , we have added a function called
UnitaryTrans to some of our quantum types such as QBit, Ket and Den-
sityOperator〈T 〉 in a closed quantum system. In addition, the static global
function SuperMatrixTrans describes the dynamics of an open quantum sys-
tem as a super-operator E .

– Postulate 3: Quantum measurements are described by a collection {Mm} of
measurement operators. These are operators acting on the state space of the
system being measured. The index m refers to the measurement outcomes
that may occur in the experiment. If the state of the quantum system is |ψ〉
before the measurement, then the probability that the result m occurs is given
by p(m) = 〈ψ|M†

mMm|ψ〉 and the state of the system after the measurement
is Mm|ψ〉

〈ψ|M†
mMm|ψ〉 .

Quantum measurements are simulated with a modified Monte Carlo method.
A detailed description is provided in the next subsection.

– Postulate 4: The state space of a composite physical system is the tensor
product of the state spaces of the component physical systems. Moreover, if
we have systems numbered 1 through n, and system number i is prepared in
the state |ψ〉, then the joint state of the total system is |ψ1〉 ⊗ |ψ2〉 ⊗ . . .

The tensor product method relies on a function called void KroneckerProduct
(Matrix 〈T 〉 other, Matrix 〈T 〉 result), which is embedded in Math.net.

Simulating measurement with pseudo-random number sampling. A
pseudo-random number sampling method simulates quantum measurement in
Q|SI〉 . This is a numerical experiment that generates and distributes pseudo-
random numbers according to a given probability distribution [6].

Let a quantum measurement be described by a collection of bounded linear
operators {Mm} that satisfy the completeness condition

∑
m M†

mMm = I. m

Q|SI〉 : A Quantum Programming Environment 149

denotes the measurement results, and P denotes the corresponding probability
set, where P = {p1, p2, . . . , pm}. The indexed variable set is denoted as Y and
can be settled to a value of {0, 1}. The current system state is assumed to be the
quantum state |ψ〉, the indexed variables are Y1, . . . , Ym and the probabilities
are Pr[Yi = 1] = pi where pi = 〈ψ|M†

i Mi|ψ〉, P = {p1, . . . , pm}. A uniform
distribution X from Q|SI〉 is used to simulate a random variable Y .

Math.net provides a random variable X called RandomSource which is uni-
formly distributed between (0, 1). The interval [0, 1] is then divided into m inter-
vals as [0, p1], (p1, p1 + p2], . . . , (

∑m−1
i=1 pi, 1]. The width of interval i equals the

probability pi.
Finally, measurement triggers the following strategy:

1. Given a measurement {Mm} and the current quantum state |ψ〉,
Q|SI〉 computes the set P = {p1, p2, . . . , pm}, where pi = 〈ψ|M†

i Mi|ψ〉. This
step provides the probability distribution Y : Pr[Y = i] = pi.

2. Q|SI〉 checks the elements of P . If there exists any pi = 0, discard the index
i in the next step. If there exists any pi = 1, return the index i as the final
result and skip the following steps.

3. Assuming P ′ is a set with the same quantity as P , Q|SI〉 accumulates the
distribution from P to P ′ with the rules: for each pi in P ′, p′

i =
∑

i pi.
4. Draw a number x which is a uniformly pseudo-random number distributed

between (0, 1).
5. Find p′

i, such that p′
i−1 ≤ x and p′

i ≥ x and return the index i. It should be
noted that i = 1 in the case of x < p′

1 and i = m in the case of x > p′
m−1.

The P distribution of the Y variable where pi = Pr(0 < Y ≤ p′
i) =

∑
i p′

i is a
simulated distribution using the uniform distribution variable X. This method
of pseudo-random number sampling was developed for Monte-Carlo simulations
and its quality is determined by the quality of the pseudo-number.

After i is randomly chosen with a distribution P = {p1, . . . , pm}, the function
returns the value for i and the quantum state is modified as an atom operation.
According to quantum mechanics, the state |ψ〉 will be changed into |ψ′〉 =

Mi|ψ〉√
〈ψ|M†

i Mi|ψ〉
.

Simulating the operational semantics of the quantum while-language.
Simulating the computation of a program written in the quantum while-
language is based on simulating the operational semantics of the language. To
clearly delineate the different types of coding in the quantum simulation engine
for mixed classic-quantum programs, quantum if -clauses are denoted as cif and
quantum while-clauses are denoted as cwhile. The related methods for simu-
lating these two functions are encapsulated in the Quantum Mechanics Library.

The execution of a quantum program can be conveniently described in terms
of transitions between configurations.

Definition 1. A quantum configuration is a pair 〈S, ρ〉, where:

– S is a quantum program or the empty program E (termination);

150 S. Liu et al.

– ρ is a partial density operator that is used to indicate the (global) state of
quantum variables.

With the preparations in the previous subsections, we are able to simulate
the transition rules that define the operational semantics of the quantum while-
language:

Skip

〈skip, ρ〉 → 〈E, ρ〉 .

The statement skip does nothing and terminates immediately. Both the I-
identity operation and the null clause must satisfy this procedure requirement
to be simulated in Q|SI〉 .

Initialization

〈q := |0〉 , ρ〉 → 〈E, ρq
0〉

,

where

ρq
0 =

⎧⎨
⎩

|0〉q 〈0| ρ |0〉q 〈0| + |0〉q 〈1| ρ |1〉q 〈0| if type(q) = Boolean,

∑∞
n=−∞ |0〉q 〈n| ρ |n〉q 〈0| if type(q) = Integer.

The initialization statement “q := |0〉” sets the quantum variable q to the
basis state |0〉.

Initialization has two forms in Q|SI〉 . When the variable q is a QBit, it is
explained as �q := |0〉�(ρ) = |0〉 〈0| ρ |0〉 〈0| + |0〉 〈1| ρ |1〉 〈0|; otherwise, it is
explained as �q := |0〉�(ρ) =

∑d
n=0 |0〉 〈n| ρ |n〉 〈0|, where d is the dimension

of the quantum variable q. Moreover, a more flexible initialization method is
provided with the help of unitary transformation.

Unitary Revolution

〈q̄ := U [q̄], ρ〉 → 〈E, UρU†〉 .

The statement “q̄ := U [q̄]” means that the unitary gate U is performed on
the quantum register q̄ leaving other variables unchanged.

A corresponding method named

QuantumTypes〈T 〉.UnitaryTrans(Matrix〈T 〉 other)

has been designed to perform this function on QBit,Ket,DensityOperator〈T 〉
objects. This function accepts a unitary operator and performs the operator
on the variable with null returns. We have also provided a global function
named

UnitaryGlobalTrans(QuantumType〈T 〉,Matrix〈T 〉)

Q|SI〉 : A Quantum Programming Environment 151

that perform an arbitrary unitary matrix on quantum variables.

The quantum while-language does not include any assignment claim for a
pure state because a unitary operator U exists for any pure state |ψ〉 that sat-
isfies |ψ〉 = U |0〉. Therefore, any pure state can be produced from a combina-
tion of an initialization clause and a unitary transformation clause. However,
for convenience, Q|SI〉provides a flexible state claim to initialize a QBit, or
a Ket using a vector, and to initialize a DensityOperator〈T 〉 using a positive
matrix.

Sequential composition

〈S1, ρ〉 → 〈S′
1, ρ〉

〈S1;S2, ρ〉 → 〈S′
1;S2, ρ′〉 .

The current version of the quantum while-language is not designed for con-
current programming. Thus sequential composition is spontaneous.

Case Statement

〈if(�m · M [q̄] = m → Sm)fi, ρ〉 → 〈Sm,MmρM†
m〉 ,

for each possible outcome m of measurement M = {Mm} .

The first step in executing of the case statement is to perform a measurement
M on the quantum variable q̄ and observe the output result index. The cor-
responding subprogram Sm is then chosen according to the index.

Case statements in Q|SI〉use an encapsulated function with the prototype

cif(QuantumTypes〈T 〉,MeasureMatrixSet, Func〈T 〉, Func〈T 〉 . . .) .

By default, the Func〈T 〉 sequence is a subprogram corresponding to a mea-
surement output index, i.e., the nth Func〈T 〉 corresponds to the nth mea-
surement output index. However, we have also considered cases where the
user has not provided a corresponding subprogram for every measurement
output index. In these situations, the strategy is to automatically skip that
clause if the outcome index exceeds the Func〈T 〉 number. In fact, this leaves
nothing to be done on the variables excepted for a measurement.
Another difference between a classical and a quantum case statement is that
the quantum case statement variables must be modified into a state that cor-
responds to the measurement output index after performing a measurement.
The function that returns the measurement result is named

int Measu2ResultIndex(MeasureMatrixSet) .

It then goes to the correct subprogram and will inherently call the

void StateChange(int) ,

which changes the variable q̄ to the corresponding state after the measure-
ment.

152 S. Liu et al.

Loop Statement

(L0) 〈while(M [q̄] = 1)doS od, ρ〉 → 〈E,M0ρM†
0 〉 ,

(L1) 〈while(M [q̄] = 1)doS od, ρ〉 → 〈S;while(M [q̄] = 1)doS od, M1ρM†
1 〉 .

An encapsulated function is used to implement this loop statement in
Q|SI〉 with the prototype

cwhile(QuantumTypes〈T 〉,MeasureMatrixSet, int, Func〈T 〉) .

This function accepts quantum types, a measurement, and an integer. Then,
it compares the measurement result with the given integer in the guard. If the
guard has a value of ‘1’, it enters into the loop body; otherwise, it terminates.
In addition, the state changes after being measured in the guard. The function

int Measu2ResultIndex(MeasureMatrixSet)

is called to return the result to the guard index and go to the correct subpro-
gram. Then, the void StateChange(int) is inherently called as per the case
statement.

6 Experiments

Here, we present three experiments to show the power of Q|SI〉 quantum pro-
gramming environment: Qloop, BB84 and Grover’s search algorithm. Further
details are available in the Appendices.

Qloop The Qloop case is a “Hello world” example that includes a quantum
channel, a quantum measurement, a quantum while-clause and some quan-
tum variables. Essentially, this experiment can be regarded as a simplified
quantum walk to illustrate the three main features of the Q|SI〉platform -
super-operators, unitary transformations and quantum measurement.
The basic idea of a Qloop is to perform a super-operator on a quantum state
and leave the state changed. A counter is used to record the number of times
the state enters different branches. A measurement is taken for every shot,
and the resulting counter should indicate the predicted probability of the
state.

BB84 BB84 is a quantum key distribution (QKD) protocol developed by Ben-
nett and Brassard in 1984 [3]. The protocol is an already-proven security
protocol [23] that relies on the no-cloning theorem. Using this protocol Alice
and Bob reach agreement over a classical key string that can be used to
encrypt classical bits.
Several different scenarios are considered in this experiment. The simple BB84
case outlines the basic communications procedure between two clients: Alice
and Bob. The multi-client BB84 case illustrates a more practical example

Q|SI〉 : A Quantum Programming Environment 153

where one Alice generates the raw keys, while many Bobs make an agreement
key with Alice. The most interesting case is the BB84 protocol in a chan-
nel with quantum noise. Because no real quantum systems are ever perfectly
closed, super-operators can serve as a key tool for describing the dynam-
ics of open quantum systems. This case explores the influential factors in
QKD, revealing that package length and sampling percentages are crucial to
real QKD protocols given quantum noise. Different parameters in different
channels are tested withQ|SI〉 , each of which can be adjusted for practical
purposes when using this protocol.

Grover’s search algorithm Grover’s search algorithm is an impressive algo-
rithm in the quantum domain. It uses an oracle to solve search task in disor-
derly databases consisting of N elements, indexed by number 0, 1, . . . , N − 1.
The oracle finds its answers according to position and can find solutions with
a high probability within O(1/N) errors and O(

√
N) steps.

A more general multi-object Grover’s search is also considered that supposes
there is more than one answer (position) for the oracle to find. In this case, we
use a blind box strategy that reverses the proper position of the answer. This
experiment reveals that Grover’s algorithm leads to an avalanche of errors in
a multi-object setting, as an indication that the algorithm needs be modified
in some way.

7 Conclusions

This paper presents a new software platform, called Q|SI〉 , for programming
with quantum computers. In a sense, Q|SI〉 the potential to enrich and expand
the applications where quantum hardware is useful, as: the abundant quantum
types, case-statements and loops, Q|SI〉 provides users to perform experiments
beyond the standard flattened quantum circuits. Q|SI〉 includes an embedded
quantum while-language, a quantum simulator, and toolkits for quantum pro-
gram analysis and verification. Combined, these modules create a platform that
can be used to simulate quantum algorithms, analyze the termination and aver-
age running time of quantum programs, and verify a program’s correctness.

Throughout the paper, we demonstrate how to use Q|SI〉 to simulate quan-
tum behaviors on classical platforms and how to generate instructions for real
quantum hardware. We show how to simulate measurement with pseudo-random
number sampling, and the method for generating the syntax and semantics of
the quantum while-language.

Active development of Q|SI〉 is ongoing. The current implementation of the
tensor products is a clumsy way to emulate quantum circuits. In future devel-
opment, we may need to consider a timing-based and entanglement analysis
inspired by [13] to extend Q|SI〉 ’s quantum computing power. The termination
and average running time modules need to be unified into one format for syntax,
and we are considering how to split classical and quantum coding for verification
purposes.

Interfaces for different quantum computation programs, such as LIQUi|〉,
ScaffCC and even other quantum computation platforms, such as Microsoft

154 S. Liu et al.

Azure (Simulator) also need to be considered as these diversified platforms often
can provide different views of one quantum program.

Acknowledgments. We are grateful to Professors Michael Blumenstein, Ian Burnett,
Yuan Feng, and Glenn Wightwick for their helpful discussions and their strong supports
of this project. We also acknowledge use of the IBM Q experience for this work. The
views expressed are those of the authors and do not reflect the official policy or position
of IBM or the IBM Q experience team.

A Setup and Configuration of Q|SI〉
Q|SI〉 mainly relies on IDE (Visual Studio) to provide the details of the program.
After coding a program using Q|SI〉 , the programmer needs to build and compile
it. This feature is considered to be an essential component because a smarter
IDE is a basic way of ensuring the syntax is correct as programs grow in size
and complexity. This feature is unlike IScasMC or QPAT which are not able to
execute a program.

NuGet is a part of the .Net development platform and is used in Q|SI〉 to
manage the packages. All packages used to provide functions, such as matrix
computation, random number generation, and Roslyn, etc., can be automatically
controlled by NuGet. To access all the essential packages, a user needs only to
add the NuGet feed v3 “https://api.nuget.org/v3/index.json” to their Visual
Studio 2017 configuration. This will add the package resources and automatically
configure them for the platform.

Q|SI〉 is compatible with any version of Visual Studio 2015 and later. How-
ever, we recommend the Enterprise version of Visual Studio 2017 because of
its premium features, e.g., the ability to draw quantum circuits with DGML
tools, the most up-to-date Math.net, etc. Examples are stored in the sub-folder
UnitTest. All entry-level examples can be found in the ‘Program.cs’ file in
UnitTest.

B Experiment-Qloop Case

The first example showcases the Qloop case. It uses quantum channels, measure-
ment, quantum while-clause and quantum variables. The Qloop case can also
be treated as a simplified quantum walk. The flow path is shown in Fig. 5.

B.1 Input and Output

Input:
– ρ0 := |+〉 〈+|;
– E := {E0 = |0〉 〈0| + |1〉 〈1| /√

2, E1 = |0〉 〈1| /√
2};

– M := {M0 = |0〉 〈0| ,M1 = |1〉 〈1|};
– H := |+〉 〈0| + |−〉 〈1|;
– Counter := 0.

Output:
– num: the number of circles is num.

https://api.nuget.org/v3/index.json

Q|SI〉 : A Quantum Programming Environment 155

B.2 Results

The Qloop experiment executes for approximately 100, 000 shots with the results
shown in Fig. 6.

B.3 Features and Analysis

After calculation, it is clear that ρ1 = E(ρ0) = 3
4 |0〉〈0| + 1

4 |1〉〈1| + 1
2
√
2
|0〉〈1| +

1
2
√
2
|1〉〈0|, ρ2 = |1〉〈1|, ρ′

1 = |+〉〈+| and ρ3 = |0〉〈0|.

The three main features of this experiment include super-operators, unitary
transformation, and measurement operations. In addition, processes that con-
sider a qubit’s collapse and measurement probability are inherently involved as
part of quantum mechanics.

ρ0

ρ1;ρ′
1

ρ2 ρ3

E(ampd)

M0 = |0〉 〈0|

M1,counter

H

Fig. 5. Qloop

0 2 4 6 8 10 12 14 16 18
Circle times

0

1

2

3

4

5

6

7

8

C
ou

nt
er

 T
im

es

104

Fig. 6. Qloop data

156 S. Liu et al.

– Super-operator operation. The initial state passes through a quantum channel
and becomes ρ1. Let M be performed on the state ρ1 in each shot. There is a
3
4 probability that the state will change to ρ3 and then terminate. Likewise,
there is a 1

4 probability of moving in a circle and having the process recorded
by the counter. So if the program is executed many times, such as in a 100, 000
shot experiment, the counter should show that the state enters the circle about
25, 000 times.

– Measurement operations and unitary transformations. After the first mea-
surement, ρ1 may change to ρ2 and continue, or it may change to ρ3 and
terminates. If the state changes to ρ2 after a Hadamard operator which is a
unitary transformation, it becomes ρ′

1 = |+〉〈+| and the counter records the
circle once. When a measurement M is performed on the state, we can assert
that almost half the time ρ′

1 becomes |0〉〈0| and the other half of the time it
becomes |1〉〈1|. If the result is |1〉〈1|, it will enter into the loop body again
be recorded by the counter. The counter number shows how many circles the
state enters into in total. Obviously, this decreases at almost half the rate of
a geometric progression, as in say 1 − 12556, 2 − 6140, 3 − 3095, . . .

C BB84 Case

BB84 is a basic quantum key distribution (QKD) protocol developed by Bennett
and Brassard in 1984 [3].

C.1 Simple BB84 Case

In this case, a client-server model is used as a prototype for a multi-user commu-
nication protocol. A “quantum type converter” is used to convert a ‘Ket’ into
a density operator. For simplicity and clarity, this example only consider ‘Ket’
quantum types, not quantum channels or Eves. The entire flow path is shown in
Fig. 7.

1. Alice randomly generates a sequence of classical bits called a rawKeyArray.
Candidates from this raw key sequence are chosen to construct the final
agreement key. The sequence length is determined by user input.

2. Alice also randomly generates a sequence of classical bits called
basisRawArray. This sequence indicates the chosen basis to be used in next
step. Alice and Bob share a rule before the protocol:
– They use {|+〉 , |−〉} or {|0〉 , |1〉} to encode the information.
– A classical bit of 0 indicates a {|0〉 , |1〉} basis while a classical bit of 1

indicates {|+〉 , |−〉}. This rule is used to generate Alice’s qubits and to
check Bob’s basis.

3. Alice generates a sequence of quantum bits called a KetEncArray, one by
one according to the following rules:
– If the basisRawArray[i] in position [i] is 0 and the rawKeyArray[i] in

position [i] is 0, KetEncArray[i] would be |0〉.

Q|SI〉 : A Quantum Programming Environment 157

Quantum Channel(ketEncArray)

Alice Bob

Classical Channel(measureRawArray)

Classical Channel(correctBroadArray)

Initial

Generate rawKeyArray{0,1}
Generate basisRawArray{0,1}
if basisRawArray==0，rawKeyArray==0，
ketEncArray=ket(0)
if basisRawArra==0，rawKeyArray==1,
ketEncArray=ket(1)
if basisRawArray==1，rawKeyArray==0，
ketEncArray=ket(1/Sqrt(2),1/Sqrt(2))
if basisRawArray==1，rawKeyArray==1，
ketEncArray=ket(1/Sqrt(2),-1/Sqrt(2))
Generate KetEncArray {|0>,|1>,|+>,|->}

Measument

Generate measureRawArray {0,1}
Generate measureRawArray {0,1}
If measureRawArray[i]=0, Measurement
using{|0>,|1>}
If measureRawArray[i]=1,Measurement
using{|+>,|->}

Compare

Generate correctBroadArray{0,1}
If measureRawArray[i]==basisRawArray,
correctBroadArray[i]=1;
else correctBroadArray[i]=0
Generate FinalALiceKey

Final

Generate finalBobKey

Fig. 7. Simple BB84 protocol

– If the basisRawArray[i] in position [i] is 0 and the rawKeyArray[i] in
position [i] is 1, KetEncArray[i] would be |1〉.

– If the basisRawArray[i] in position [i] is 1 and the rawKeyArray[i] in
position [i] is 0, KetEncArray[i] would be |+〉.

– If the basisRawArray[i] in position [i] is 1 and the rawKeyArray[i] in
position [i] is 1, KetEncArray[i] would be |−〉.

4. Alice sends the KetEncArray through a quantum channel. In this case, she
sends it through the I channel.

5. Bob receives the KetEncArray through the quantum channel.
6. Bob randomly generates a sequence of classical bits called measureRawArray

to indicate the chosen basis to be used in next step.
7. Bob generates a sequence of classical bits called tempResult, using quantum

measurement according to the rules:
– If the measureRawArray[i] in [i] position is a classical bit 0, Bob uses

a {|0〉 , |1〉} basis to measure the KetEncArray[i] while a classical bit 1
indicates using a {|+〉 , |−〉} basis.

8. Bob broadcasts the measureRawArray to Alice using a classical channel.
9. Alice generates a sequence of classical bits called correctBroadArray, by

comparing Bob’s basis measureRawArray and her basis basisRawArray. If
the position [i] is correct, the correctBroadArray[i] would be 1; otherwise, it
would be 0.

10. Alice sends the sequence correctBroadArray to Bob.
11. Alice generates a sequence of classical bits called FinalALiceKey using the

rule:
– If position [i] in correctBroadArray[i] is 1, she keeps rawKeyArray[i] and

copies it to FinalALiceKey , else she discards rawKeyArray[i].
12. Bob generates a sequence of classical bits called FinalBobKey using the

rule:

158 S. Liu et al.

– If position [i] in correctBroadArray[i] is 1, he keeps tempResult[i] and
copies it to FinalBobKey[i], else he discards tempResult[i].

13. GlobalView: We use a function compare whether every position [i] in
FinalALiceKey and FinalBobKey[i] are the same.

This case shows some useful features,

– Client-server mode. The process uses a client-server model to simulate the
BB84 protocol. The model includes many implicit features, such as wait-
ing threads and concurrent communications which are also used in the next
example.

– Measurement. According to theory, choosing a random measurement basis
may arrive at half of the correct result. As a result, the agreement of classical
shared bits should be almost half the length of the raw keys.

C.2 BB84 Case, Multi-client

The multi-client BB84 model offers a more attractive and practical example.
In this model, one Alice generates the raw keys while many Bobs construct an
agreement key with Alice.

In this case, users can specify the number of clients. Also, a typical BB84
flow path would occur for every client-server pair of this model.

This case highlights:

– The threads model. Many clients are generated and communicate with Alice.
Each of them finally reaches an agreement.

– Measurement threads. In this case, Alice generates raw keys, and Bob mea-
sures the quantum bits. However, this raises a serious question that about
clients generate raw keys while a server conducts the measurement: How can
we ensure the server correctly and fairly conducts the measurement for the
client.

C.3 BB84 Case with Noise

A practical topic for the Q|SI〉 to consider is the BB84 model with noisy quantum
channels. Noisy quantum operations are the key tools for describing the dynamics
of open quantum systems.

In this example, different channels such as bit flip, depolarizing, amplitude
damping and I-identity channels are described by quantum operations performed
as the evolution of quantum systems in a wide variety of circumstances. Alice
and Bob use these quantum channels to communicate with each other via the
BB84 protocol as Fig. 7 shows. However, during communication, verification
steps also need to be considered.

Input and output In this example, the basic quantum channels are defined as
follows:

Q|SI〉 : A Quantum Programming Environment 159

a deplarizing channel with a noise parameter of p = 0.5,

E :=

{[√
5√
8

0

0
√
5√
8

]
,

[
0 1√

8
1√
8

0

][
0 −i√

8
i√
8

0

][
1√
8

0
0 − 1√

8

]}
;

an amplitude damping channel with a noise parameter of γ = 0.5,

E :=
{[

1 0
0 1√

2

]
,

[
0 1√

2

0 0

]}
;

a bit flip channel with a noise parameter of p = 0.25,

E :=

{[
1
2 0
0 1

2

]
,

[
0

√
3
2√

3
2 0

]}
;

a bit flip channel with a noise parameter of p = 0.5,

E :=

{[
1√
2

0
0 1√

2

]
,

[
0 1√

2
1√
2

0

]}
;

bit flip channel with noise parameter p = 0.75,

E :=

{[√
3
2 0
0

√
3
2

]
,

[
0 1

2
1
2 0

]}
.

The flow path follows the simple BB84 protocol shown in Fig. 7. The only
differences are in Step 4 and the addition of a sampling step.

– Alice sends the KetEncArray through a quantum channel. In this case, it is
one of the channels mentioned above.

– Sampling check step: Alice randomly publishes some sampling positions with
the bits against these positions in her key string. Bob checks these bits against
his key strings. If all the bits in these sampling strings are the same, he believes
the key distribution is a success; otherwise, the connection fails.

To use a statistical quantity to characterize success in a channel with the
BB84 protocol, we executed a 100-shot experiment for each channel. In every
shot for every channel, different sampling percentages and package lengths were
considered. The results provided in Fig. 8 shows the trade-off between success
times, different sampling proportions and package lengths for each of the quan-
tum channels.

160 S. Liu et al.

Results. Success times for different sampling percentages in different channels
over 100 shots (see Fig. 8).

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Sample Percentage

0

10

20

30

40

50

60

S
uc

ce
ss

 T
im

es

Bit Flip Channel, p=0.25, 100 loops

32 Bits Raw Key
64 Bits Raw Key
128 Bits Raw Key
256 Bits Raw Key
512 Bits Raw Key

(a) Bit Flip Channel, p 0.25, loops 100

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Sample Percentage

0

10

20

30

40

50

60

70

80

S
uc

ce
ss

 T
im

es

Bit Flip Channel, p=0.5, 100 loops

32 Bits Raw Key
64 Bits Raw Key
128 Bits Raw Key
256 Bits Raw Key
512 Bits Raw Key

(b) Bit Flip Channel, p 0.5, loops 100

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Sample Percentage

0

10

20

30

40

50

60

70

80

90

S
uc

ce
ss

 T
im

es

Bit Flip Channel, p=0.75, 100 loops

32 Bits Raw Key
64 Bits Raw Key
128 Bits Raw Key
256 Bits Raw Key
512 Bits Raw Key

(c) Bit Flip Channel, p 0.75, loops 100

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Sample Percentage

0

10

20

30

40

50

60

70

80
S

uc
ce

ss
 T

im
es

Depolarizing Channel, p=0.5, 100 loops

32 Bits Raw Key
64 Bits Raw Key
128 Bits Raw Key
256 Bits Raw Key
512 Bits Raw Key

(d) Depolarizing Channel, p 0.5, loops 100

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Sample Percentage

99

99.2

99.4

99.6

99.8

100

100.2

100.4

100.6

100.8

101

S
uc

ce
ss

 T
im

es

I Channel, 100 loops

32 Bits Raw Key
64 Bits Raw Key
128 Bits Raw Key
256 Bits Raw Key
512 Bits Raw Key

(e) I-channel, loops 100

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Sample Percentage

0

10

20

30

40

50

60

70

80

90

S
uc

ce
ss

 T
im

es

Amplitude Damping Channel, p=0.5, 100 loops

32 Bits Raw Key
64 Bits Raw Key
128 Bits Raw Key
256 Bits Raw Key
512 Bits Raw Key

(f) Amplitude Damping Channel, p 0.5, loops 100

Fig. 8. Statistics of success communication via BB84 with channels

Features and Analysis’. The example generates some ‘erroneous’ bits dur-
ing communication due to quantum channels which cause a connection failure.
Additionally, not all error bits can be found in the sampling step because, in
theory, almost half the bits are invalid in the measurement step. Further, the
sampling step is also a probability verification step which means it does not use
all the agreed bits to verify the communication procedure.

Subfigures (a), (b) and (c) in Fig. 8 are bit flip channels with different prob-
abilities. Overall, the number of successful shots increases as p increases and

Q|SI〉 : A Quantum Programming Environment 161

the raw key length shortens. This is because p is a reflection of the percentage
of information that remains in the bit flip channel and an increase in p means
fewer errors in communication. A shorter raw key length ensures fewer bits are
sampled. Sub-figure (d),(e) and (f) illustrate the communication capacity of the
BB84 protocol in the other three channels. Note that the I-identity channel
has a 100% success rate, which means it is a noiseless channel and can keep
information intact during the transfer procedure.

D Grover’s Search Algorithm

Grover’s search algorithm is a well-known quantum algorithm. It solves searching
problems in databases consisting of N elements, indexed by number 0, 1, . . . , N −
1 with an oracle provides the answer as a position. This algorithm can find
solutions with a probability of O(1) within O(

√
N) steps.

D.1 A Simple Grover’s Search Algorithm

In this example, we assume there is only one answer to the question, i.e., the
oracle will only reverse one position at a time. Further, the oracle is assumed to be
working as a black box and can reverse the correct position of the answer. After
querying the oracle r = π

4

√
N times with the corresponding phase rotations, the

quantum state contains the correct information to answer the question.

Input and output. Input:

– The total number of spaces N . For convenience, we have restricted N = 2n.
– The correct position of the search that is used to construct the oracle.

Output:

– The final position of the measurement result.
– Oracle time r.

Results. The simple Grover’s search algorithm has only one result, and the final
measurement result shows the correct answer to the searching problem.

Features and analysis. Suppose |α〉 = 1√
N−1

∑′′

x |x〉 is not the solution but

rather |β〉 =
∑′

x |x〉 is the solution where
∑′

x indicates the sum of all the solu-
tions. The initial state |ψ〉 may be expressed as

|ψ〉 =

√
N − 1

N
|α〉 +

√
1
N

|β〉 .

Every rotation makes the θ to the solution where

sin θ =
2
√

N − 1
N

.

When N is larger, the gap between the measurement result and the real position
number is less than θ = arcsin 2

√
N−1
N ≈ 2√

N
. Therefore, it is almost impossible

to generate the wrong answer within r times.

162 S. Liu et al.

D.2 Multi-object Grover’s Search Algorithm

This experiment considers a more general Grover’s search algorithm: a multi-
object Grover’s search algorithm. This case supposes that there may be more
than one correct answer (position) for the oracle to find. We use a strategy that
adds a blind box to reverse the proper position of the answer. This experiment
reveals that Grover’s algorithm leads to an avalanche of error in a multi-object
setting, indicating that algorithm needs to be modified in some way.

A new blind box (a unitary gate) is added, which reverses the proper position
of the answer. In short, the oracle is a matrix where all the diagonal elements
are 1, but all the answer positions are −1. Thus, the blind box is a diagonal
matrix where all elements are 1, and all the answer position that have been
found are −1. When these two boxes are combined, we create a new oracle with
the answers to all the questions except for the ones that were found in previous
rounds.

Input and output The input is

– The total number of spaces N . For convenience, we have restricted N = 2n.
– All correct positions of the search.

The output is

– The final position of the measurement result.
– Oracle time r.

Results The measurement shows different probabilities of the final result. The
theory holds that if we have multiple-answers, the state after r times oracles
and phase gates becomes a state near to both. For example, if the answers are
|2〉 , |14〉 ∈ H64, the state before the measurement is expected to be almost
1√
2
(|2〉 + |14〉). We should get |2〉 or |14〉 the first time and the other one the

next time. However, we get results other than |2〉 and |14〉 with high probability,
which indicates that the multi-object search algorithm is not very good.

Features and analysis It worth noting that due to multi-objects, the real state
after using Grover’s search algorithm becomes a(|2〉 + |14〉) + b(|1〉 + |3〉 + |4〉 +
|5〉 +) where a, b ∈ C and |a|2 + |b|2 = 1. However, b cannot be ignored even
if it is very small. An interesting issue occurs when the wrong position index is
found. If the wrong index is measured, the algorithm creates an incorrect blind
box and reverses the wrong position of the oracle, i.e., it adds a new answer to the
questions. In next round, the proportion of correct answers is further reduced. In
the last example, we would measured an incorrect answer, say |5〉. After the new
procedure, the state would become: a(|2〉+ |14〉+ |5〉)+b(|1〉+ |3〉+ |4〉+ |5〉+),
making it even harder to find the correct answer.

References

1. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P.,
Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computa-
tion. Phys. Rev. A 52(5), 3457 (1995)

Q|SI〉 : A Quantum Programming Environment 163

2. Beals, R., Brierley, S., Gray, O., Harrow, A.W., Kutin, S., Linden, N., Shepherd,
D., Stather, M.: Efficient distributed quantum computing. In: Proc. R. Soc. A. vol.
469, p. 20120686. The Royal Society (2013)

3. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

4. Bettelli, S., Calarco, T., Serafini, L.: Toward an architecture for quantum program-
ming. Eur. Phys.J. D-Atomic, Mol. Opt. Plasma Phys. 25(2), 181–200 (2003)

5. Dawson, C.M., Nielsen, M.A.: The solovay-kitaev algorithm. arXiv preprint quant-
ph/ arXiv:0505030 (2005)

6. Devroye, L.: Sample-based non-uniform random variate generation. In: Proceedings
of the 18th conference on Winter simulation, pp. 260–265 (1986)

7. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a
scalable quantum programming language. In: ACM SIGPLAN Notices, vol. 48,
pp. 333–342. ACM (2013)

8. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pp. 212–219. ACM (1996)

9. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of
equations. Phys. Rev. Lett. 103(15), 150502 (2009)

10. Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient conversion
of quantum circuits to a linear nearest neighbor architecture. Q. Inf. Comput.
11(1&2), 142–166 (2011)

11. qubit backend: IBM QX team,: ibmqx3 backend specification. Retrieved from
https://ibm.biz/qiskit-ibmqx3 (2017)

12. qubit backend: IBM QX team,: ibmqx2 backend specification. Retrieved from
https://ibm.biz/qiskit-ibmqx2 (2017)

13. JavadiAbhari, A., et al.: Scaffcc: a framework for compilation and analysis of quan-
tum computing programs. In: Proceedings of the 11th ACM Conference on Com-
puting Frontiers, p. 1 (2014)

14. JavadiAbhari, A., Patil, S., Kudrow, D., Heckey, J., Lvov, A., Chong, F.T.,
Martonosi, M.: Scaffcc: scalable compilation and analysis of quantum programs.
Parallel Comput. 45, 2–17 (2015)

15. Jones, C., Gyure, M.F., Ladd, T.D., Fogarty, M.A., Morello, A., Dzurak, A.S.:
A logical qubit in a linear array of semiconductor quantum dots. arXiv preprint
arXiv:1608.06335 (2016)

16. Liu, T., Li, Y., Wang, S., Ying, M., Zhan, N.: A theorem prover for quantum hoare
logic and its applications. arXiv preprint arXiv:1601.03835 (2016)

17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2010)

18. Ömer, B.: A procedural formalism for quantum computing (1998)
19. Sanders, J.W., Zuliani, P.: Quantum programming. In: Backhouse, R., Oliveira,

J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 80–99. Springer, Heidelberg (2000).
https://doi.org/10.1007/10722010 6

20. Selinger, P.: A brief survey of quantum programming languages. In: Kameyama, Y.,
Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 1–6. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24754-8 1

21. Shende, V., Bullock, S., Markov, I.: Synthesis of quantum-logic circuits. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 25(6), 1000–1010 (2006)

22. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

http://arxiv.org/abs/0505030
https://ibm.biz/qiskit-ibmqx3
https://ibm.biz/qiskit-ibmqx2
http://arxiv.org/abs/1608.06335
http://arxiv.org/abs/1601.03835
https://doi.org/10.1007/10722010_6
https://doi.org/10.1007/978-3-540-24754-8_1

164 S. Liu et al.

23. Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distri-
bution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

24. Smelyanskiy, M., Sawaya, N.P., Aspuru-Guzik, A.: qhipster: the quantum high
performance software testing environment. arXiv preprint arXiv:1601.07195 (2016)

25. Smith, R.S., Curtis, M.J., Zeng, W.J.: A practical quantum instruction set archi-
tecture. arXiv preprint arXiv:1608.03355 (2016)

26. Svore, K.M., Aho, A.V., Cross, A.W., Chuang, I., Markov, I.L.: A layered software
architecture for quantum computing design tools. IEEE Comput. 39(1), 74–83
(2006)

27. Veldhorst, M., Yang, C., Hwang, J., Huang, W., Dehollain, J., Muhonen, J., Sim-
mons, S., Laucht, A., Hudson, F., Itoh, K., et al.: A two-qubit logic gate in silicon.
Nature 526(7573), 410–414 (2015)

28. Wecker, D., Svore, K.M.: Liquid: A software design architecture and domain-
specific language for quantum computing. arXiv preprint arXiv:1402.4467 (2014)

29. Ying, M.: Floyd-hoare logic for quantum programs. ACM Trans. Program. Lang.
Syst. (TOPLAS) 33(6), 19 (2011)

30. Ying, M.: Foundations of Quantum Programming. Morgan Kaufmann, Burlington
(2016)

31. Ying, M., Feng, Y.: Quantum loop programs. Acta Inf. 47(4), 221–250 (2010)
32. Ying, M., Feng, Y.: A flowchart language for quantum programming. IEEE Trans.

Soft. Eng. 37(4), 466–485 (2011)
33. Ying, M., Ying, S., Wu, X.: Invariants of quantum programs: characterisations and

generation. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, pp. 818–832. ACM (2017)

34. Ying, M., Yu, N., Feng, Y., Duan, R.: Verification of quantum programs. Sci.
Comput. Program. 78(9), 1679–1700 (2013)

http://arxiv.org/abs/1601.07195
http://arxiv.org/abs/1608.03355
http://arxiv.org/abs/1402.4467

The Demon, the Gambler, and the
Engineer

Reconciling Hybrid-System Theory with Metrology

Martin Fränzle and Paul Kröger(B)

Department of Computing Science, Carl von Ossietzky Universität Oldenburg,
26111 Oldenburg, Germany

{martin.fraenzle,paul.kroeger}@informatik.uni-oldenburg.de

Abstract. Hybrid discrete-continuous system dynamics arises when dis-
crete actions, e.g. by a decision algorithm, meet continuous behaviour,
e.g. due to physical processes and continuous control. Various flavours
of hybrid automata have been suggested as a means to formally analyse
such dynamical systems, among them deterministic automata models
facilitating reasoning about their normative behaviour, nondeterministic
automata under a demonic interpretation supporting worst-case analysis,
and stochastic variants enabling quantitative verification. In this article,
we demonstrate that all these variants provide imprecise, in the sense of
either overly pessimistic or overly optimistic, verdicts for engineered sys-
tems operating under uncertain observation of their environment due to,
e.g., measurement error. We argue that even the most elaborate models of
hybrid automata currently available ignore wisdom from metrology and
game theory concerning environmental state estimation to be pursued
by a rational player, which a control system obviously ought to consti-
tute. We consequently suggest a revised formal model, called Bayesian
hybrid automata, that is able to represent state tracking and estimation
in hybrid systems and thereby enhances precision of verdicts obtained
from the model.

1 Introduction

Hybrid systems and their associated hybrid discrete-continuous dynamic
behaviour are the result of connecting discrete and continuous dynamic pro-
cesses, as in the case of embedded computers and their physical environment.
An increasing number of the technical artefacts shaping our ambience are relying
on such cyber-physical interaction. Within these artefacts, embedded computing

For their work on this subject, the authors received funding from Deutsche
Forschungsgemeinschaft under grant number DFG GRK 1765, covering the Research
Training Group SCARE: System Correctness under Adverse Conditions.

M. Fränzle dedicates this article to Zhou Chaochen in grateful remembrance of
Zhou introducing him to the field of formal models for hybrid-system dynamics a
quarter of a century ago.

c© Springer Nature Switzerland AG 2018
C. Jones et al. (Eds.): Zhou-Festschrift, LNCS 11180, pp. 165–185, 2018.
https://doi.org/10.1007/978-3-030-01461-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01461-2_9&domain=pdf

166 M. Fränzle and P. Kröger

interfaces to physical environments via sensors and actuators, and these entities
interact in a complex and often safety-critical manner, having sensitive variables
of the environment in their sphere of control. Everyday examples include process
control at all scales, ranging from household appliances over chemical processing
to nuclear power plants, or embedded systems in the transportation domain, such
as highly automated driving in automotive, aircraft collision avoidance protocols
in avionics, or automatic train control applications on high-speed tracks.

The behaviour of such hybrid discrete-continuous systems cannot be fully
understood without explicitly modelling and analysing the tight interaction of
their discrete switching behaviour and their continuous dynamics, as mutual
feedback confines fully separate analysis to limited cases. Tools for building such
integrated models and for simulating their approximate dynamics are commer-
cially available, e.g. Simulink with the Stateflow extension1. Simulation is, how-
ever, inherently incomplete and has to be complemented by verification, which
amounts to showing that the coupled dynamics of the embedded system and
its environment is well-behaved, regardless of the actual disturbance and the
influences of the application context, as entering through the open inputs of the
system under investigation. Basic notions of being well-behaved demand that
the system under investigation may never reach an undesirable state (safety),
that it will converge to a certain set of states (stabilisation), or that it can be
guaranteed to eventually reach a desirable state (progress).

To facilitate such formal verification, corresponding mathematical models of
the dynamics of hybrid systems have been proposed. The prototypical mathe-
matical abstraction is the hybrid automaton [1,2] coupling a finite-state control
skeleton with a continuous state-space spanned by real-valued variables. The
continuous state has its dynamics governed by differential equations depend-
ing on the control-skeleton state (often called a discrete mode), and vice versa
state dynamics of the control skeleton is controlled by predicates on the con-
tinuous state. Various flavours of hybrid automata have been suggested as a
means to formally analyse different aspects of hybrid-state dynamical systems,
among them deterministic hybrid automata models facilitating reasoning about
their normative behaviour, nondeterministic hybrid automata under a demonic
interpretation supporting worst-case analysis with respect to disturbances and
measurement error, and stochastic hybrid automata variants enabling quantita-
tive verification [3–8].

Encoding an actual hybrid system in one of the aforementioned modelling
frameworks is in general considered a tedious, yet mostly straightforward activ-
ity: it is assumed that they are rich enough to accommodate adequate models
of standard components, like sensors measuring physical quantities and actua-
tors modifying such quantities, as well as standard models of physical dynamics,
continuous control, and mode-switching control. All that would then be required
would first be to model the particular physical system under consideration, which
may involve ordinary or stochastic differential equations, second to design con-
tinuous control and model it by means of differentio-integral equations, third to

1 http://www.mathworks.com/products.

The Demon, the Gambler, and the Engineer 167

design discrete control and model it by means of automata, and finally to instan-
tiate sensor and actuator models. Building the concurrent, time-synchronous
composition of the aforementioned model components completes the modelling
effort. After this effort, the hybrid-automaton model could then be used to derive
reliable and—if enough modelling effort was invested—accurate verdicts about
the system dynamics.

In this article, we demonstrate that contrary to the intuition underlying the
above modelling pragmatics, the quest for precise verdicts cannot be satisfied
by even the most expressive of the aforementioned hybrid automata variants.
All these variants are bound to provide safe yet inherently imprecise, in the
sense of being either overly pessimistic or overly optimistic, verdicts for engi-
neered systems operating under uncertain observation of their environment due
to, e.g., measurement error. We identify the state spaces underlying the tra-
ditional hybrid automata models as the source of this deficiency, as they are
spanned by a finite-dimensional vector space being the product of IR and a finite
set of control modes. Such a state space is finite-dimensional and thus cannot
incorporate functions over the IRn as state components, which would be neces-
sary for representing distributions, as pertinent in metrology for state estimation
from uncertain measurements. We argue that consequently even the most elabo-
rate models of hybrid automata currently available ignore wisdom from metrol-
ogy and game theory concerning environmental state estimation to be pursued
by a rational player, which a control system obviously ought to constitute. We
consequently suggest a revised formal model, called Bayesian hybrid automata
(BHA), that is able to represent state tracking and estimation in hybrid sys-
tems. Both the inherent imprecision of the classical automata models, i.e., their
substantial pessimism or optimism in the verdicts attainable, and the enhanced
precision of the revised model of BHA are rigorously demonstrated on a running
example.
Organisation of the paper. In the subsequent section, we discuss related work
in order to identify a current lack of models for hybrid dynamics being able to
directly accommodate inference mechanisms about uncertain state observation.
This would, however, not necessarily imply that current models are too weak
for producing concise verdicts of system correctness, as an encoding of perti-
nent methods for fusing measurements could well be possible within the existing
models. In Sect. 3, we therefore demonstrate by means of a running example that
traditional hybrid system models are bound to fail in providing the expected ver-
dicts. This in turn motivates us to introduce a revised model of hybrid systems,
called Bayesian hybrid automata, in Sect. 4, where we also demonstrate that it
is able to yield the expected verdicts. Section 5 concludes our paper.

2 Related Work

An essential characteristic of hybrid discrete-continuous systems, or hybrid sys-
tems (HS) for short, is the combination of a continuous state space that evolves
over time with a number of discrete modes determining the dynamics of the

168 M. Fränzle and P. Kröger

continuous evolution. Modelling such systems as hybrid automata has a long
tradition [1,2]. In their qualitative form, these automata can be either deter-
ministic or nondeterministic in their evolution over time and in the choice of
a discrete successor mode, thereby supporting qualitative reasoning over the
normative behaviour or the worst-case behaviour of the system.

The aforementioned qualitative models do not allow to derive quantitative
figures about the satisfaction of safety targets, e.g., the likelihood of eventu-
ally reaching an undesirable operational state. Probabilistic or stochastic exten-
sions of hybrid automata, so-called stochastic hybrid automata [9], enable such
a quantification by considering probability distributions over (not necessarily
all) uncertain choices. Several variants of such a quantification have been stud-
ied, e.g. hybrid automata with discrete [3,5] or continuous [6] distributions over
discrete transitions as well as stochastic differential dynamics within a discrete
mode [7].

These models support the qualitative and quantitative analysis of systems
subject to noise, yet do assume that control decisions are taken based on perfect
knowledge about the current system state, as they lack pertinent means for
expressing the effects of state estimation and filtering known to be central to
rational strategies in games of incomplete information [10, Chaps. 9–11] and
thus in optimal control under uncertainty.

Formal modelling of such systems taking rational decisions based on best
estimates of the uncertain and only partially observable state of other agents
inherently requires to incorporate two levels of probabilism: first, in the model
of system dynamics as probabilistic occurrences of sequences of observations; sec-
ond, as distributions representing the best estimations the embedded controller
can make about the state of its environment based on the observations available.
Consequently, such a model has to accommodate distributions over state esti-
mations, which are themselves distributions, rather than just distributions over
scalar state.

While distributions over sequences of observations can be handled by tra-
ditional stochastic automata in terms of probabilistic occurrences of execution
paths, the aforementioned modelling frameworks are not yet able to reflect deci-
sions and thus changes of behaviour based on best estimations made according
to those sequences. Such a model first requires the estimations to be explic-
itly available in the state space for evaluations underlying decisions (e.g., in the
evaluation of a transition guard) and secondly correlated observations have to be
fused to obtain best estimations, e.g. in form of Bayes filters [11–13]. Such prob-
abilistic filters are widely used in robotics, e.g. for the estimation of occupancy
grids [14,15], in robust fault detection under noisy environments [16], or for
estimating parameters of stochastic processes in biological tissues or molecular
structures [17].

Aiming at approximating Maximum Likelihood Estimates for parameters of
non-linear systems with non-Gaussian noise, Murphy [18] considers state esti-
mation with switching Kálmán filters in presence of multiple linear dynamic
models. In his setting, the time instances at which a certain linear dynamics is

The Demon, the Gambler, and the Engineer 169

switched in are unknown up to a known stochastic distribution. In combination
with stochastic state observations, this gives rise to state estimations in form of
joint distributions, approximated by mixtures of Gaussian distributions, similar
to the desired estimations. However, in addition to limited dynamics, switching
between modes is based on Markovian dynamics, i.e. it is not possible to model
switching based on probabilistic constraints on state estimations as necessary to
model rational decisions about changing a mode as a response to the estimated
behaviour of the observed state.

The consequential necessity of applying Bayesian filtering within hybrid sys-
tems implementing optimal control was already discovered by Ding et. al. [19].
They present a theoretical approach to derive optimal control policies for par-
tially observable discrete time stochastic hybrid systems, where optimality is
defined in terms of achieving the maximum probability that the system remains
in a set of safe states. In order to be able to apply dynamic programming in search
for an optimal solution, Ding et al. replace the partially observable system by an
equivalent perfect information system via a sufficient statistics in form of a Bayes
filter. This is very close to our approach in mindset, as a sufficient statistics about
a Bayesian estimate of the imperfectly known actual system state is at the heart
of rational decisions in control under uncertainty. The main difference is that we
are trying to formulate a general model facilitating the behavioural analysis of
such optimal hybrid control systems, while Ding et al. aim at the construction of
such controllers wrt. a given safety goal. The latter facilitates a decomposition
of the design problem into obtaining a Bayesian filtering process and develop-
ing a—then scalar-valued—control skeleton. This renders a direct integration, as
pursued in this article, of state distributions and Bayesian inference mechanisms
into the state space of an analytical model unnecessary.

3 Traditional Hybrid Automata Models

Hybrid automata traditionally span a finite-dimensional state space over the
product of the reals and a finite set of discrete modes. This base model comes in
various flavours, which are distinguished by the form of dynamics supported in
both discrete transitions and continuous evolutions. In the sequel, we will employ
three typical variants, namely hybrid automata with deterministic transitions,
with nondeterministic transitions, and with stochastically branching transitions
for modelling environmental sensing in a running example representing a sim-
ple driving scenario from the automotive domain. In all cases, we will confine
the continuous dynamics in the example to piecewise constant derivatives, as its
exact shape is not really relevant to the effects observed. For all three automata
variants, we will analyse the verdicts that can be obtained for two typical func-
tional requirements, one dealing with safety, the other with liveness.

3.1 Running Example

Consider the extremely simplified traffic situation depicted in Fig. 1. The ego
vehicle, labelled by E, is driving along a road while another uncontrolled vehicle,

170 M. Fränzle and P. Kröger

Fig. 1. Simplified traffic situation: ego vehicle E tries to pass obstacle O whenever
possible while staying in its lane, or shall otherwise halt to avoid a collision.

labelled by O, is parked at some distance on the roadside. Car O possibly overlaps
the lane of car E, i.e., car E is in danger of colliding with car O.

We assume that car E cannot perform a lateral evasive manoeuvre, possi-
bly due to dense oncoming traffic. Our small system thus comprises three rigid
variables yE, xO, and yO describing the geometric situation as well as a con-
tinuously evolving variable xE representing the longitudinal position of the ego
car. All values except yO are exactly known to the ego car E. The value of yO,
however, has to be determined by sensing the environment via a possibly inac-
curate measurement yielding an estimate ŷO for yO. For the sake of providing
a concrete instance, we assume a normally distributed measurement error, i.e.,
ŷO ∼ N

(

yO, σ2
)

, though our findings do not hinge on that particular distribu-
tion. As a further non-critical simplification we assume that car E will either
drive with a pre-defined speed (ẋE = 1) or stand still (ẋE = 0) and that it can
switch between these two modes instantaneously.

The overall goal is to prove that the ego car is safe and live. Liveness in this
context means that car E eventually passes car O whenever yE > yO. Safety is
defined as the exclusion of the possibility of a collision, i.e., that xE < xO is
invariant over time whenever yE ≤ yO. These two properties can be formalised
as follows using a straightforward extension of CTL featuring relational atoms
over continuous signals akin to Signal Temporal Logic [20]:

safe := (yE ≤ yO) ⇒ AG (xE < xO) (1a)
live := (yE > yO) ⇒ AF (xE ≥ xO) (1b)

In the remainder of this section, we compare different classes of hybrid
automata by creating a corresponding automaton for our example and analysing
the resulting models wrt. the system properties above. In this comparison, our
focus will be on the handling of the inaccuracy induced by the sensor system, i.e.,
we employ deterministic, nondeterministic, or stochastic transitions as a model
of environmental sensing.

The Demon, the Gambler, and the Engineer 171

3.2 Deterministic Environmental Sensing

Initial phases of control system design address normative behaviour of the over-
all system in order to get the control logic right. Following this rationale, a
lot of hybrid-system modelling and verification ignores implementation effects
and employs idealised models of the feedback loop between controller and envi-
ronment. This entails exclusion of measurement error from the analytic model,
instead assuming identity between environmental variables and the variables
used inside the controller for drawing decisions. In fact, it is common practice in
hybrid-system modelling and verification to not even distinguish between envi-
ronmental variables and their representation in the controller-internal real-time
image of the world, like we do with yO vs. ŷO, and instead directly refer to
environmental variables in guards etc.

Before we formalise such a model for our running example, we briefly intro-
duce hybrid automata formally akin to the definition of Kowalewski et al. [9]:

Definition 1 (Hybrid Automaton). A hybrid automaton is a tuple HA =
(M,V,d, i, T ,g,u, I) where

– M = {m0,m1, · · · ,mk} is a finite set of discrete control modes,
– V = {v0, v1, · · · , vn} is a finite set of continuous variables,
– d : M × IRn → IRn is a mode-dependent vector field defining the evolution

of the continuous variables in reation to the control mode,
– i : M → 2IR

n

is a function describing the invariants per control mode, i.e.
the part of the continuous state space for which the system may remain in the
corresponding control mode,

– T ⊆ M × M is the transition relation between discrete modes,
– g : T → 2IR

n

is the guard function assigning each transition a subset of the
continuous state space for which the transition is enabled, i.e. the transition
can be taken iff the current continuous state is an element of that subset,

– u : T × IRn → 2IR
n

is the update function that updates the continuous state
space when the transition is taken, and

– I ⊆ M × IRn is the set of valid initial states.

A tuple (m,v) ∈ M×IRn is a state of the automaton HA whenever v ∈ i(m).
The vector v represents the continuous part of the state space.

Such a hybrid automaton starts from an initial state in I and then engages
in an alternating sequence of continuous evolutions δ−→⊆ (M× IRn)2, for δ ≥ 0,
and instantaneous jumps τ−→⊆ (M × IRn)2, for τ ∈ T . A continuous evolution
(m,x) δ−→ (m′,x′) is possible iff m′ = m and there is a solution y : [0, δ] → i(m)
to the ordinary differential equation dx

dt = d(m,x) with y(0) = x and y(δ) = x′.
A jump (m,x) τ−→ (m′,x′) is possible iff τ = (m,m′) and x ∈ g(τ) ∩ i(m) and
x′ ∈ u(τ,x).

In order to model our exemplary system as a hybrid automaton, we freely
choose the initial positions of the vehicles as illustrated in Fig. 1. In addition, we
introduce a clock c serving as a timer that initiates a measurement. We obtain
the following automaton of which the graphical representation is shown in Fig. 2:

172 M. Fränzle and P. Kröger

Fig. 2. Hybrid automaton formalising the dynamics of the running example under the
assumption of ideal measurement. The ego vehicle switches between modes based on
measurements that accurately reflect the true position of car O.

– M = {run, stop}
– V = {xE, yE, xO, ŷO, c}
– d((m,v)) =

v̇m(t) =
(

ẋE(t) , ẏE(t) , ẋO(t) , ˙̂yO(t) , ċ(t)
)T

m
=

{

(0, 0, 0, 0, 1)T iff m = stop
(1, 0, 0, 0, 1)T otherwise

– i(m) =

{

yE > ŷO ∧ c < 1 iff m = run
yE ≤ ŷO ∧ c < 1 otherwise

– T = M × M

– g(u) =

⎧

⎪

⎨

⎪

⎩

c ≥ 1 iff u = (run, run) ∨ u = (stop, stop)
yE ≤ ŷO iff u = (run, stop)
yE > ŷO otherwise

– u(u,v) =

{
{

(xE, yE, xO, yO, 0)T
}

iff u = (run, run) ∨ u = (stop, stop)

{v} otherwise

– I =
{(

run, (0, 0.6875, 73.75, yO, 0)T
)}

Note that the discrete transitions from mode run to mode run or from mode stop
to mode stop, resp., represent taking a measurement. As measurement error is
excluded from the model, this amounts to just copying the value of yO to the
variable ŷO representing the measured quantity.

Analysing the above model wrt. the desired properties (1a) and (1b) yields
the following results also summarised in Table 1a:

– Safety results: For yE > yO, the safety property (1a) is trivially satisfied. For
yE ≤ yO, the analysis finds the system to be safe: under the assumption of
perfect knowledge, it is not possible to reach an unsafe state because the
system immediately switches to stop and cannot switch to run again.

– Liveness results: For yE > yO, the liveness property (1b) is found to be sat-
isfied: due to the assumption of perfect knowledge, it is not possible that the
system switches to stop. Thus, the ego vehicle will eventually pass car O. For
yE ≤ yO, the liveness property is trivially satisfied.

The Demon, the Gambler, and the Engineer 173

The analysis promises a perfect system that is safe and live. But due to
the assumption of perfect knowledge, this model does not represent the true
behaviour of the system and thus the results of the analysis are possibly inaccu-
rate verdicts wrt. the real system.

It is easy to see that this is indeed the case: the verdict obtained on the ide-
alised model obviously is optimistic. Remember that the sensor system actually
is bound to yield inexact measurements. Therefore the result for the safety prop-
erty for yE ≤ yO is wrong: due to the normally distributed measurement error,
always eventually a measurement yE > ŷO will arise s.t. car E can return to
mode run if currently in mode stop. Hence, whenever car E detects the obstacle
and stops, it will eventually continue driving until the obstacle is re-detected. For
unbounded runs of the system, a collision is therefore guaranteed while for step-
bounded runs a collision occurs with some positive probability which depends
on the actual distances xO − xE and yO − yE as well as the variance of the error
distribution and the number of steps. Therefore, the safety property is satis-
fied with some probability only, which is strictly less than 1 for bounded and 0
for unbounded runs. The unconditional safety attested by the idealised model
consequently is severely optimistic.

3.3 Demonic Modelling

Responsible engineers will possibly not adopt an as optimistic perspective as
above and instead refine their model. A frequent suggestion is to exploit the
power of demonic nondeterminism for obtaining a safe model. In such a setting
the existence of measurement errors is represented in a qualitative manner by
means of nondeterministically disturbed assignments of environmental quantities
to their real-time images in the controller. The systems are then rendered safe
by introducing appropriate safety margins around unsafe areas of the state space
into the control design.

Definition 1 of hybrid automata already incorporates nondeterminism and
thus readily provides the possibility to model such a system. In order to anal-
yse the system wrt. safety and liveness, the nondeterminism has to be resolved
demonically which yields a worst case analysis. The qualitative character of the
measurement error requires that the safety margin covers all possible errors.

Table 1. Analysis results for the different models. The symbol → denotes a probability
converging to the given value in the long run, yet staying properly between 0 and 1 for
any bounded run-length.

safe live
yE > yO sat sat

yE ≤ yO sat sat

(a) idealised model

safe live
yE > yO + ε +max(e) sat sat

yO + ε +max(e) ≥ yE > yO sat unsat

yE ≤ yO ∧ ε ≥ max(e) sat sat

yE ≤ yO ∧ ε < max(e) unsat sat

(b) demonic model

p(safe) p(live)
yE > yO 1 → 1
yE ≤ yO → 0 1

(c) stochastic model

174 M. Fränzle and P. Kröger

Fig. 3. Demonic hybrid automaton for the running example. The ego vehicle switches
to the run mode only when progressing is safe even under worst-case measurement
error.

Hence, we widen the condition for stopping by a safety margin at least as large
as the maximum measurement error. This in turn requires that we confine the
carrier of the measurement interval to a finite range, simply suppressing in the
model the exceptionally high measurement deviations due to their low proba-
bility of occurrence. It should be noted that this constitutes an uncontrolled
modelling error of its own. But even if we ignore that optimistic inaccuracy in
the demonic model, the verdicts obtained from the demonic model are not fully
satisfactory.

Before we discuss the verdicts, we provide the demonic model for our running
example. Let e ∈ [−ε, ε] be the measurement error. We assume the worst case
value of e, i.e. -ε, to define an appropriate safety margin (see also Fig. 3):

– i(m) =

{

yE > ŷO + ε ∧ c < 1 iff m = run
yE ≤ ŷO + ε ∧ c < 1 otherwise

– g(u) =

⎧

⎪

⎨

⎪

⎩

c ≥ 1 iff u = (run, run) ∨ u = (stop, stop)
yE ≤ ŷO + ε iff u = (run, stop)
yE > ŷO + ε otherwise

– u(u,v) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{

(xE, yE, xO, yO + e, 0)T | −ε ≤ e ≤ ε
}

iff u = (run, run)

∨ u = (stop, stop)
{v} otherwise

– I =
{(

run, (0, 0.6875, 73.75, yO + e, 0)T
)

| −ε ≤ e ≤ ε
}

Table 1b presents the results of the analysis of the demonic model wrt. the
requirement properties:

– Safety results: Again, for yE > yO, the safety property (1a) is trivially satis-
fied. Given yE ≤ yO and ε ≥ max(e), the analysis finds the system to be safe:
the safety margin is considered sufficient to always prevent car E from switch-
ing to mode run when this is unsafe. This constitutes an optimistic verdict
neglecting the possibility of actual stochastic measurement errors sometimes
exceeding ε.

The Demon, the Gambler, and the Engineer 175

If we had chosen ε < max(e) instead, the system would be considered to be
unsafe: the exclusion of errors from the safety margin yields a possibility of
switching to run after each measurement. Thus, a collision will eventually
happen, which is detected in this framework.

– Liveness results: For yE ≤ yO, the liveness property (1b) is trivially sat-
isfied. For yE > yO, the liveness property is found to be satisfied only if
yE − yO > ε + max(e). For all yE ∈]yO, yO + ε + max(e)], a measurement
outcome blocking progress is possible. Qualitative modelling permits this out-
come infinitely often in sequence, which obviously is probabilistically impos-
sible in the original stochastic formulation of the measurement process. The
demonic model thus is pessimistic with respect to liveness.

The above analysis reveals that the demonic model conditionally (depending
on the safety margin chosen) is optimistic for safety and always is pessimistic for
liveness. Neither problem can be resolved in a purely qualitative setting:2 increas-
ing the safety margin in relation to the error margin increases the pessimism
concerning liveness while stabilising the optimism concerning safety, whereas
even decreasing the safety margin to zero will not resolve pessimism wrt. live-
ness while additionally becoming pessimistic on safety. The natural suggestion
thus is to advance to stochastic modelling in order to faithfully represent the
stochastic nature of the repeated measurement process.

3.4 Stochastic Modelling

The aforementioned two qualitative models suffer from a lack of knowledge about
the error distribution as well as about 0-1 effects in iterated stochastic trials.
Therefore they cannot reconcile accurate verdicts for safety with accurate ver-
dicts for liveness.

Stochastic hybrid automata, however, allow to consider the error distribu-
tion explicitly and thus enable the engineer to scale down the safety margin
by excluding rare errors. As suggested in Sect. 2, there are different types of
stochastic models. For our running example, we consider a measurement to be
represented as a randomised update function copying a noisy image of yO to ŷO.
The probability distribution of the noise term corresponds to the error distribu-
tion in measurement.

Before we proceed to the actual model of our running example, we define a
stochastic hybrid automaton by adding a stochastic transition kernel akin to [6]
as follows:

Definition 2 (Stochastic Hybrid Automaton). A stochastic hybrid
automaton is a tuple SA = (M,V,d, i, T ,g,u, I), where M, V, d, i, T , and
g are defined as in Definition 1 and

2 An accurate verdict for liveness could actually be achieved if fairness conditions were
part of the automaton model, but hybrid automata tend to omit such.

176 M. Fränzle and P. Kröger

Fig. 4. Stochastic hybrid automaton for the running example. Measurements are dis-
turbed by a noise distribution.

– u : T × IRn → P(IRn), with P(IRn) representing the set of probability dis-
tributions over IRn, is the update function that updates the continuous state
space according to a probability distribution when the transition is taken, and

– I ⊆ M × P(IRn) is the set of valid initial states.

A tuple (m,v) ∈ M × IRn is a state of the automaton SA as in Definition 1.

The semantics is mostly identical to that of qualitative hybrid automata
put forward in Sect. 3.2. The only difference is that the updates in jumps are
now assigned a stochastic interpretation. A jump (m,x) τ−→ (m′,x′) is possible
iff τ = (m,m′) and x ∈ g(τ) ∩ i(m). The density associated to its continuous
successor states is u(τ,x). This induces a density on finite runs by multiplication
of the step-wise densities for the individual jumps in the run; for infinite runs, a
standard cylinder construction can be applied.

We create an instance of such an automaton for our example by modifying
the demonic automaton as follows (see also Fig. 4):

– u(u,v) =

{

(xE, yE, xO, ŷ′
O, 0)T iff m = (run, run) ∨ m = (stop, stop)

v otherwise
where the (partially deterministic) joint distribution over the continuous
states is represented by single vectors using ŷ′

O ∼ N
(

yO, σ2
)

– I =
{(

run, (0, 0.6875, 73.75, ŷO, 0)T
)}

with ŷO ∼ N
(

yO, σ2
)

Note that we do not require max(e) ≤ ε in this setup. On the contrary,
we have max(e) > ε s.t. we may progress on rare measurements featuring an
exceptional error and obtain a non-paralysed system with a controlled, negligible
collision probability.

In contrast to the previous model, the stochastic model enables to quantify
the probability that a certain execution path of the system occurs. Hence, the
probability of reaching an unsafe state can be quantified which means that our
analysis is about the probability that the desired properties are satisfied.

For the stochastic hybrid automaton model, the graphs in Figs. 7 and 8 show
simulation results for the probabilities of bounded liveness and safety, resp., in

The Demon, the Gambler, and the Engineer 177

terms of run length (watch for label “SHA” in the graphics). Table 1c presents
the analysis results for runs of unbounded length.

Again, these formal verdicts are not convincing: Despite simplicity of the
problem, the analysis would claim that it is perfectly impossible to build a safe
system, as the probability of being safe is zero in the long run for each critical
instance yE ≤ yO. To the contrary, we will demonstrate in the next section
that it is well possible to construct a quantitatively safe system, for any strictly
positive safety target, by standard engineering means. The model of stochastic
hybrid automata thus again fails to provide a reasonable representation of the
design space. The repeated failure of classical hybrid automata models to provide
pertinent verdicts motivates us to suggest a revised hybrid-automaton model in
the next section.

4 Bayesian Hybrid Automata

In the previous section, we illustrated by means of an example that classical
types of hybrid automata are inapt of adequately reflecting the behaviour of
hybrid control under uncertainty. A key issue is that crucial elements of rational
decision under uncertainty are not part of the model: an optimal decision, e.g.
about a driving manoeuvre, would have to be based on an optimal estimation of
the environmental situation, e.g. the obstacle position. In a setting of noisy mea-
surements, such an estimate cannot be obtained from single measurements, but
from a correlation of multiple stochastically independent measurements plus—
if measurements are taken at different times—the system dynamics translating
the measurements to other time instances. This is the field of state estimation
and filtering, e.g. Kálmán filtering [21]. Such filtering, where sequences of mea-
surements are combined in order to improve the precision of the estimate, is
standard in control and robotics [13–15,22]. That such filtering also is essential
to optimal hybrid control under uncertainty should thus come as no surprise and
has indeed earlier been observed by Ding et al. [19]. The objective of this section
is to provide a general model of such systems.

Many estimation techniques are based on Bayes filters [11], which, for
instance, can be implemented for linear dynamics and normally distributed noise
as Kálmán filters [21]. The main idea behind those probabilistic filters is to com-
pute a weighted average of multiple measurements, which will converge to the
true value due to the law of large numbers if the observed value is not afflicted
by any dynamics, i.e., stays constant over multiple measurements. If (possibly
noisy) dynamics must be considered, the idea is to compute an optimal estimate
for the next measurement based on the knowledge from the last measurements by
applying the dynamics on the last estimation. The prediction is then interpreted
as a noisy measurement and charged against the new, again noisy, measurement.

In order to tackle the drawbacks of traditional hybrid models illustrated in
Sect. 3, we suggest a new theory for stochastic hybrid systems that includes
such probabilistic filters: we will extend the continuous state space of hybrid
automata by distribution variables incorporating probability distributions that

178 M. Fränzle and P. Kröger

represent the estimation of a datum. Distribution variables will evolve over time
according to the dynamics of the estimated datum while discrete updates will
be performed in terms of a Bayes filter. Thereby, we expect an increase of the
precision of data estimation over time within the model, thus reflecting data
estimation techniques implemented in actual cyber-physical systems.

Based on the optimised data estimation, we then allow to model decisions,
viz. guards of discrete transitions, that are optimal in the sense of using as much
information as is available from such optimal state estimates: we will introduce
transition guards which are satisfied if a certain constraint on the estimated
datum holds with some probability, i.e., reliability. Definition 3 presents the
suggested model.

Definition 3 (Bayesian Hybrid Automaton). A Bayesian hybrid automa-
ton is a tuple BA = (M,V,S,d, i, T ,g,u, I) where

– M = {m0,m1, · · · ,mk} is a finite set of discrete control modes,
– V = {v0, v1, · · · , vn} is a finite set of continuous variables. The continuous

state space spanned by it occurs in two copies: we have system variables vi

spanning the space IRn and we have a second variable v̂i representing an
estimate for the value vi, i.e., spanning a probability distribution in P(IRn),
where P(X) denotes the set of density functions over X. The state space
spanned by the BHA thus is Σ = M × IRn × P(IRn).

– S ⊂ ({1, . . . , n} × (IR → P(IR))) represents a set of measurement actions,
where i in such a pair (i, f) represents the variable vi to be measured and f
the mapping of vi’s values to measurements,

– d : M× IRn → IRn is a mode-dependent vector field defining the evolution of
the continuous variables per control mode, which applies to system variables
vi and estimates v̂i equally,

– i : M → ((2IR
n

)2 × [0, 1]) is a function describing the invariants per control
mode, which is interpreted classically wrt. system variables, yet probabilisti-
cally wrt. estimates v̂i: only if S2 ⊆ IRn in ((S1, S2), ε) = i(m) is assigned a
probability mass larger than ε by x̂ can the mode be held,

– T ⊆ M × M is the transition relation between discrete modes,
– g : T →

(

(2IR
n

)2 × [0, 1]
)

is the guard function, which is interpreted clas-
sically wrt. system variables, yet probabilistically wrt. estimates v̂i: only if
S2 ⊆ IRn in ((S1, S2), ε) = g(τ) is assigned a probability mass larger than ε
by the estimates v̂ can the transition be taken,

– u : T ×IRn →
(

P(IRn) × 2S)

is the update function that stochastically updates
the continuous state space and potentially takes measurements when the tran-
sition is taken, thereby updating the estimates also, and

– I ⊆ Σ is the set of valid initial states.

Such a hybrid automaton starts from an initial state in I and then engages
in an alternating sequence of continuous evolutions δ−→⊆ Σ2, for δ ≥ 0, and
instantaneous jumps τ−→⊆ Σ2, for τ ∈ T .

A continuous evolution (m,x, x̂) δ−→ (m′,x′, x̂′) is possible iff m′ = m and
has consistent effect on both the state variables xi and their estimates x̂i. I.e.,

The Demon, the Gambler, and the Engineer 179

there is a solution y : [0, δ] → i(m) to the ordinary differential equation dx
dt =

d(m,x) with y(0) = x and y(δ) = x′. Likewise, x̂′ is the distribution resulting
from an initial distribution x̂ by following the evolution dx

dt = d(m,x) for δ
time units. We obviously also require that the invariant is respected as follows:
First, the system variables xi respect the invariant S1 in ((S1, S2), ε) = i(m),
i.e., ∀t ∈ [0, δ] : y(t) ∈ S1. Second, the estimate variables x̂i invariantly assign a
likelihood of at least ε to the required invariant set S2 by demanding ∀t ∈ [0, δ] :
∫

χS2dŷ(t) ≥ ε, where χS2 is the characteristic function of S2.
A jump (m,x, x̂) τ−→ (m′,x′, x̂′) is possible iff τ = (m,m′) and x ∈ S1 and

∫

χS2dx̂ ≥ ε, where ((S1, S2), ε) = g(τ) and χS2 is the characteristic function of
S2. Thus, a transition is enabled only if the guard condition applies to the system
variables xi in the sense of (x1, . . . , xn) ∈ S2 and, furthermore, a probability
evaluation of the guard condition S2 on the estimates provides sufficient evidence,
namely likelihood ε at least, for the guard condition (x̂1, . . . , x̂n) ∈ S2. Note that
S1 need not—and in general will not—coincide. The transition effect then is to
pursue an update (P,R) = u(τ,x) as follows: x′ is drawn according to the density
P and x̂′ =

∧

(i,f)∈R BayesianUpdate(x̂, f(x̂i)), where BayesianUpdate(A,B)
denotes a Bayesian update of the prior distribution A by the likelihood function
B obtained via the measurement taken on x̂i.

Note that Bayesian hybrid automata introduce an additional dimension of
randomness: first, there is a probability distribution over the assignment effect
to system variables, as for stochastic hybrid automata. The second dimension
of randomness lies in the distribution variables: they incorporate probability
distributions representing data estimations.

Such a model thus comprises distributions over estimations where each esti-
mation is a distribution over the domain of the estimated datum. Traditional
stochastic automata, in contrast, incorporate distributions over scalar values
only. Even Ding et al. [19] employ this kind of traditional models although they
use filter techniques to estimate the state of a partially observable hybrid system
in order to generate an optimal control policy. Being focused on synthesizing an
optimal rational control policy in a particular setting rather than trying to verify
an existing, potentially not completely rational policy, they avoid the problem
of having to incorporate a general model of state estimation into their system
description.

When instantiating our setting of Bayesian hybrid automata to our running
example, we note that due to the lacking (and thus trivially linear) dynamics
of yO, optimal Bayesian state inference can be obtained by Kálmán filtering.
We exploit the fact that a normal distribution, as underlying Kálmán filtering,
can be fully described by its mean value and variance and model our exemplary
system as Bayesian hybrid automaton with such a filter as follows (see Fig. 5 for
the graphical representation):

– M = {run, stop}
– V = {v0 = (xE, x̂E) , v1 = (yE, ŷE) , v2 = (xO, x̂O) , v3 = (yO, ŷO) , v4 = (c, ĉ)}

where each v̂i is represented as a pair (μ(v̂i), σ
2
(v̂i)

) that represents the mean
μ and the variance σ2 of a normal distribution

180 M. Fränzle and P. Kröger

Fig. 5. Bayesian hybrid automaton for the running example. The notation v ← d,
where d is a distribution representing the result of a measurement process, denotes a
Bayesian update to the state estimation represented by estimation variables ŷO, · · ·
based on a measurement taken.

– S = {(3,N (yO, 10))}
– d((m,v)) =

v̇m(t) = (ẋE(t) , ẏE(t) , ẋO(t) , ẏO(t) , ċ(t))T
m =

{

(0, 0, 0, 0, 1)T iff m = stop
(1, 0, 0, 0, 1)T otherwise

– i(m) =

{

p(yE > yO) ≥ ε ∧ c < 1 iff m = run
p(yE ≤ yO) ≥ ε ∧ c < 1 otherwise

where p
(

yE � yO
)

is the probability mass that yE � yO holds according to
ŷE and ŷO

– T = M × M

– g(u) =

⎧

⎪

⎨

⎪

⎩

c ≥ 1 iff u = (run, run) ∨ u = (stop, stop)
p(yE ≤ yO) ≥ ε iff u = (run, stop)
p(yE > yO) ≥ ε otherwise

where p is defined as for the invariants

– u(u,v) =

⎧

⎪

⎨

⎪

⎩

(

(xE, yE, xO, yO, 0)T
,
{(

3, yO �→ N
(

yO, 102
))}

)

iff u = (run, run) ∨ u = (stop, stop)
(v, ∅) otherwise

where the function BayesianUpdate introduced in the description of the
semantics of u above is defined as a single-dimensional Kálmán filter updating
the marginal distribution ŷO and the distribution over the system variables
is a Dirac-distribution abbreviated in form of a single value according to the
deterministic update of those variables in our example

– I =
{(

run, (0, 0.6875, 73.75, 8.1, 0)T
, v̂

)}

where v̂ spans a distribution over

IRn with the marginal ŷO = N
(

8.1, 102
)

Figure 6 illustrates how our model works for a situation where yE < yO, i.e.
the ego vehicle has to stop in order to avoid a collision. The precision of the esti-
mation of yO, viz. the variance of the distribution ŷO, correlates to the accuracy
of the sensing system after a first measurement. After this initial measurement,
the ego vehicle is in mode stop since probability mass

∫ yE

−∞ ŷO < ε. Figure 6b
indicates the estimation after several measurements. Due to the Kálmán filter,

The Demon, the Gambler, and the Engineer 181

Fig. 6. Graphical illustration of filtered data-estimation for the running example. The
distribution ŷO represents the current estimation of yO while the error distribution illus-
trates the measurement error. The ε threshold indicates the probability mass defined
as threshold for switching the mode: as long as the plotted line is above yE, the ego
vehicle will remain in mode stop. Thus, the shaded probability mass above that line
represents the admissable probability of an estimation error regarding yE > yO.

the precision of the estimation increased and the mean of the estimation con-
verged towards yO.

Note that still every measurement can comprise an error that is sufficient to
switch to mode run. The shaded area under ŷO above the ε threshold indicates
the admissable probability that the estimation is wrong enough to continue trav-
elling. However, the higher the precision of the estimation becomes, the higher is
the measurement error that is required to continue travelling. Due to the normal
distribution, the larger the error is, the smaller is the probability that such an
error occurs. This implies that the probability of further movements—and thus,
of a future collision—decreases over time when yE < yO. In contrast, the prob-
ability of moving forward in the stochastic hybrid-automaton model depends
on the current measurement only and thus is constant, which implies that the
probability of a collision is 1 in the long run when yE < yO.

We did a statistical evaluation of the suggested model in comparison to a
traditional stochastic model by simulating runs of the BHA and the SHA for
our running example. The minimum degree of belief in a safe state was chosen
as ε = 0.9 for the BHA. For the SHA, we chose a safety margin ε that meets
the same requirements, i.e., a measurement has to satisfy p(yE > yO) ≥ 0.9 in
order to force the system to switch to or stay in mode run. Measurements were
performed according to the normal distribution N

(

8.1, 102
)

. Each sequence of
measurement outcomes was applied to a run of a BHA and a run of a SHA.

We created two scenarios for which we carried out the comparison. In the first
scenario, we set yE > yO such that a collision is impossible. In this scenario, we
compared the models regarding the liveness property. For the second scenario,
we chose to compare models regarding the safety property by setting yE < yO.

We simulated each model instance 3000 times for each scenario. For the
simulation, time was discretised s.t. the discrete time instance td refers to the
continuous time instance t just before the td-th continuous evolution is carried
out, i.e. after each measurement and—if executed—mode change. At each dis-
crete time instance td, we observed whether the ego vehicle moved forward or
stopped as well as whether car E collided with car O or passed it, respectively.

182 M. Fränzle and P. Kröger

Fig. 7. Experimental evaluation by simulation of the stochastic and the Bayesian model
in a safe situation (yE > yO). The Bayesian hybrid automaton allows car E to pass
car O much earlier than in the traditional stochastic model, i.e., performs better wrt.
the liveness property (dashed vs. dash-dotted line). It also permits smoother movement
once enough evidence for safety of the situation has been accumulated (dotted vs. solid
line).

Figures 7 and 8 present the results of the simulations in form of an average
over the 3000 simulation runs.

For the stochastic hybrid-automaton model, both scenarios yield an almost
constant positive rate of continuing movement for each time instant (solid
graphs). This rate is the average (

∑3000
i=1 1i,td)/(3000) where 1i,td = 1 iff car

E moved at time td and 0 otherwise. The constancy of the rate is a result of the
memoryless decision making of the traditional models: for each time instance td,
the decision to continue driving is made based on the current measurement and
the constant sensor precision only. The difference of those probabilities between
Figs. 7 and 8 is a result of the different distance |yO − yE| between the ego
vehicle and car O. The dash-dotted graphs show the average rate of passing
(Fig. 7) and colliding (Fig. 8) with car O at time td. The constant rate of moving
results in surely eventually passing car O for the first scenario as well as surely
eventually colliding with car O for the second scenario. Note that the distance
|xO − xE| = 73.75 and the “driving speed” is 1. Thus, it takes about 6 to 10
times longer than necessary to pass car O in case of yE > yO.

The BHA shows a different behaviour: for the yE > yO setting, we observed
a fast-growing movement rate while we observed a rapidly decreasing move-
ment rate in the second setting (dotted graphs). This behaviour results from

The Demon, the Gambler, and the Engineer 183

Fig. 8. Experimental evaluation by simulation of the stochastic and the Bayesian model
in an unsafe situation (yE < yO). In the Bayesian hybrid automaton, the collision
probability stabilises at a low level, whereas it diverges to 1 in the stochastic (dashed
vs. dash-dotted line). The reason is that movements are blocked in the BHA once
enough evidence has been accumulated, while the SHA permits a constant positive
rate of movement due to the stochastic independence of measurements (dotted vs.
solid line).

the filtering algorithm, which yields an increasing precision of the estimation
ŷO by accumulating knowledge from the history of measurements. This preci-
sion is taken into account for decisions. The increase of the precision is reflected
by the increasing/decreasing movement rate: the more precise the estimation,
i.e. the more measurements are already taken, the larger has the measurement
error to be in order to manipulate the estimation s.t. a “wrong” decision is
made. Since the measurement error is normally distributed, large errors occur
less frequently than small ones. Thus, the more measurements are taken, i.e.,
the further time has proceeded, the more likely is a “correct” decision, i.e. the
more likely is that car E continues driving in case of yE > yO and stops in case
of yE ≤ yO, respectively. As a result, for the first scenario, the ego vehicle passes
the obstacle substantially earlier (dashed graph)—often almost at the earliest
time possible—than in the stochastic model. In the second scenario, the collision
probability remains negligible small over the whole observation period instead
of rapidly converging to 1.

184 M. Fränzle and P. Kröger

5 Summary

The purpose of the new model of Bayesian hybrid automata (BHA) put forward
in this paper is to reconcile fundamental inconsistencies between the perfor-
mance guarantees obtainable from existing formal models of hybrid systems and
those actually guaranteed by hybrid control systems employing standard forms
of filtering and state estimation in contexts of inexact environmental sensing. We
have demonstrated how traditional hybrid automata of various flavours drasti-
cally fail to capture the exact behaviour of such an engineered system and sug-
gest BHA as an alternative model. The semantics of BHA is rather complex, as
BHA incorporate estimation variables alongside the state variables. While state
variables accommodate scalar values, estimation variables carry distributions.
It remains to be investigated under which special conditions such BHA remain
analysable. In the running example of this paper, this certainly is the case, as
the Bayesian inference mechanisms in there boil down to Kálmán filtering due
to linear dynamics, such that the distributions carried by the estimator variables
actually can be encoded by pairs of scalars (median and variance), facilitating
a reduction to standard stochastic hybrid automata. This would, however, not
employ in more general cases like, e.g., non-linear continuous dynamics. Auto-
matic analysis techniques for BHA are therefore subject of further research. Due
to the complexity of the state space, we aim for statistical analysis first, while
planning for exploring the possibilities for closed-form analysis in the long.

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.: Hybrid automata: an algo-
rithmic approach to the specification and verification of hybrid systems. In: [23],
pp. 209–229 (1993)

2. Nerode, A., Kohn, W.: Models for hybrid systems: automata, topologies, control-
lability, observability. In: [23], pp. 317–356 (1993)

3. Sproston, J.: Decidable model checking of probabilistic hybrid automata. In:
Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 31–45. Springer, Heidel-
berg (2000). https://doi.org/10.1007/3-540-45352-0 5

4. Davis, M.: Markov Models and Optimization. Chapman & Hall, London (1993)
5. Fränzle, M., Hermanns, H., Teige, T.: Stochastic satisfiability modulo theory: a

novel technique for the analysis of probabilistic hybrid systems. In: Egerstedt, M.,
Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 172–186. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78929-1 13

6. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability
and safety verification for stochastic hybrid systems. In Caccamo, M., Frazzoli,
E., Grosu, R. (eds.) Proceedings of the 14th ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2011, 12–14 April 2011, pp.
43–52. ACM, Chicago (2011)

7. Hu, J., Lygeros, J., Sastry, S.: Towards a theory of stochastic hybrid systems. In:
Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 160–173. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-46430-1 16

https://doi.org/10.1007/3-540-45352-0_5
https://doi.org/10.1007/978-3-540-78929-1_13
https://doi.org/10.1007/3-540-46430-1_16

The Demon, the Gambler, and the Engineer 185

8. Bujorianu, L., Lygeros, J.: Toward a general theory of stochastic hybrid systems.
Stochastic Hybrid Systems: Theory and Safety Critical Applications. LNCIS, vol.
337, pp. 3–30. Springer, Berlin (2006)

9. Kowalewski, S., et al.: Hybrid Automata, pp. 57–86. Cambridge University Press,
Cambridge (2009)

10. Maschler, M., Solan, E., Zamir, S.: Game Theory. Cambridge University Press,
Cambridge (2013)

11. Barber, D.: Bayesian Reasoning and Machine Learning. Cambride University Press,
Cambridge (2012)

12. Langseth, H., Nielsen, T.D., Rum, R., Salmern, A.: Inference in hybrid Bayesian
networks. Reliab. Eng. Syst. Saf. 94(10), 1499–1509 (2009)

13. Mahler, R.P.S.: Multitarget bayes filtering via first-order multitarget moments.
IEEE Trans. Aerosp. Electron. Syst. 39(4), 1152–1178 (2003). October

14. Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Com-
puter 22(6), 46–57 (1989). June

15. Coué, C., Pradalier, C., Laugier, C., Fraichard, T., Bessiere, P.: Bayesian occupancy
filtering for multitarget tracking: an automotive application. Int. J. Robot. Res.
25(1), 19–30 (2006). voir basilic : http://emotion.inrialpes.fr/bibemotion/2006/
CPLFB06/

16. Combastel, C.: Merging kalman filtering and zonotopic state bounding for robust
fault detection under noisy environment. IFAC-PapersOnLine 48(21) (2015) 289–
295; In: 9th IFAC Symposium on Fault Detection, Supervision andSafety for Tech-
nical Processes SAFEPROCESS 2015

17. Sherlock, C., Golightly, A., Gillespie, C.S.: Bayesian inference for hybrid discrete-
continuous stochastic kinetic models. Inverse Probl. 30(11), 114005 (2014). Novem-
ber

18. Murphy, K.P.: Switching kalman filters. Technical report (1998)
19. Ding, J., Abate, A., Tomlin, C.: Optimal control of partially observable discrete

time stochastic hybrid systems for safety specifications. In: 2013 American Control
Conference, pp. 6231–6236 (2013)

20. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

21. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans.
ASME-J. Basic Eng. 82(Series D), 35–45 (1960)

22. Thrun, S.: Probabilistic robotics. Commun. ACM 45(3), 52–57 (2002). March
23. Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.): HS 1991-1992. LNCS,

vol. 736. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57318-6

http://emotion.inrialpes.fr/bibemotion/2006/CPLFB06/
http://emotion.inrialpes.fr/bibemotion/2006/CPLFB06/
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/3-540-57318-6

Linking Theories of Probabilistic
Programming

He Jifeng(B)

Shanghai Key Laboratory of Trustworthy Computing, East China
Normal University, Shanghai, China

jifeng@sei.ecnu.edu.cn

Abstract. Formal methods advocate the critical role played by the alge-
braic approach in specification and implementation of programs. Tradi-
tionally, a top-down approach (with denotational model as its origin)
links the algebra of programs with the denotational representation by
establishment of the soundness and completeness of the algebra against
the given model, while a bottom-up approach (a journey started from
operational model) introduces a variety of bisimulations to establish the
equivalence relation among programs. This paper follows up a new way
presented in [1] to handle probabilistic programming. Our approach takes
an algebra of probabilistic programs as its foundation, and then gener-
ates both denotational model and transition system, and explores the
consistency among three types of representations.

1 Introduction

Formal methods [4,5,9] advocate the critical role played by the algebra of pro-
grams in specification and implementation of programs [6,8]. Study leads to the
conclusion that both the top-down approach (with denotational model as its ori-
gin) [2,3,11] and the bottom-up approach (a journey started from operational
model) [10] can meet in the middle.

This paper proposes a new roadmap for linking theories of probabilistic pro-
gramming. Our new journey consists of the following steps:

Step 1: First we present an algebraic framework for a probabilistic programming
language, which provides a set of algebraic laws for probabilistic programs, and
introduces the concept of finite normal form. This paper then defines the refine-
ment relation �A, and demonstrates how to reduce finite programs into finite
normal form, and to transform an infinite program into an ascending chain of
finite normal forms.

Step 2: Within the given program algebra we discuss the algebraic properties
of the test operator T which composes test case tc and testing program P in

T (tc, P) =df (tc;P)

c© Springer Nature Switzerland AG 2018
C. Jones et al. (Eds.): Zhou-Festschrift, LNCS 11180, pp. 186–210, 2018.
https://doi.org/10.1007/978-3-030-01461-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01461-2_10&domain=pdf

Linking Theories of Probabilistic Programming 187

where tc is represented by a total constant assignment

x, y, .., z := a, b, .., c

Based on the algebra of test, this paper identifies a probabilistic program P as
a binary relation [P] which relates the test case with the final observation

[P] =df {(tc, obs) | T (tc, P) �A obs}

and selects the set inclusion as the refinement relation �rel

P �rel Q =df ([P] ⊇ [Q])

We establish the consistency of the denotational model against the algebraic
framework by proof of

�rel =�A

Step 3: We propose an algebraic definition of the consistency of step relation
of the transition system of programs such that any consistent transition system
(O, �O) satisfies

�O =�A

The paper is organised in the following way:

Section 2 is devoted to the algebraic framework of a probabilistic programming
language with a collection of algebraic laws. Section 3 shows the normal forms
of the finite and infinite probabilistic programs and proves that any probabilis-
tic program can be converted into normal form with algebraic laws. Section 4
presents a test-based model, where each program is identified as a binary rela-
tion between test case and visible observation recorded during the execution
of the test. It is shown that the refinement relation �rel in the test model is
equivalent to the algebraic refinement �A. Section 5 proposes a formal defini-
tion for the consistency of step relation of transition system against the algebra
of programs. Moreover, it provides a transition system for the probabilistic pro-
gramming language, and establishes its correctness. The paper ends with a short
summary.

2 Probabilistic Programming Language

This section is going to construct an algebraic framework for the probabilistic
programming language introduced in [12]

P ::= ⊥ | skip | var := exp
| P � bexp � P
| P ; P
| ⊕ {G}
| μX • P (X)

188 H. Jifeng

⊕(G) denotes the probabilistic choice with a list of weighted alternatives G as
its argument

G ::=<> | α(v) : P, G
where the expression α(v) maps any given value of program variable v to a non-
negative real number.

2.1 Probabilistic Choice

This section presents the algebraic properties of the probabilistic choice, which
plays a crucial role in construction of normal form for the probabilistic language,
and provides an elegant representation for finite observation. Later we are also
going to use these algebraic laws to show that any finite program can be con-
verted into a probabilistic choice.

The probabilistic choice is commutative.

(⊕-1) ⊕{β1 : P1, ..., βm : Pm} =A ⊕{βρ(1) : P1, ..., βρ(m) : Pm}

where ρ is an arbitrary permutation of the list < 1, ...,m >.

The alternative (1 − β) : ⊥ can be added to the probabilistic choice construct
where β =df Σiβi.

(⊕-2) ⊕{β1 : P1, ..., βm : Pm} =A ⊕{β1 : P1, ..., βk : Pk, (1 − β) : ⊥}

The probabilistic choice operator becomes void whenever it contains an alterna-
tive with the probability 1.

(⊕-3) ⊕{1 : Q} =A Q

Corollary. ⊕{} =A ⊥

Proof. From ⊕-2 and ⊕-3.

The next law shows how to eliminate the nested choices.

(⊕-4) Let P = ⊕{β1 : P1, ..., βm : Pm}, then

⊕{α : P, G}
=A ⊕ {(α · β1) : P1, ..., (α · βk) : Pk, G}

The probabilistic choice operator distributes over sequential composition.

Linking Theories of Probabilistic Programming 189

(⊕-5) ⊕{β1 : P1, ..., βm : Pm} ; Q
=A ⊕ {β1 : (P1;Q), ..., βk : (Pk;Q)}

Assignment distributes through the probabilistic choice.

(⊕-6) (v := e) ; ⊕{β1 : P1, ..., βm : Pm}

=A ⊕ {β1[e/v] : (v := e;P1), ..., βk[e/v] : (v := e;Pk)}

Two alternatives with the same guarded program can be merged.

(⊕-7) ⊕{α : Q, β : Q, G} =A ⊕ {(α + β) : Q, G}

Any alternative with zero probability can be removed.

(⊕-8) ⊕{0 : Q, G} =A ⊕ {G}

2.2 Conditional Choice

Conditional choice can be seen as a special form of probabilistic choice.

cond-1 (P � b � Q) =A ⊕ {(1 � b � 0) : P, (0 � b � 1) : Q}

From Law cond-1 and the laws of probabilistic choice presented in the previous
section, we can derive the following set of well-known properties of conditional
choice:

Theorem 2.1.
(1) P � b � P =A P
(2) P � b � Q =A Q � ¬b � P
(3) (P � b � Q) � c � R =A P � b ∧ c � (Q � c � R)
(4) P � b � (Q � c � R) =A (P � b � Q) � c � (P � b � R)
(5) P � true � Q =A P =A Q � false � P
(6) (P � b � Q);R =A (P ;R) � b � (Q;R)
(7) (v := e); (P � b � Q) =A ((v := e);P) � b[e/v] � ((v := e);Q)

Proof.
For any finite program P :
(1) P � b � P {cond − 1}
=A ⊕{(1 � b � 0) : P, (0 � b � 1) : P} {⊕ − 7}
=A ⊕{1 : P} {⊕ − 3}
=A P

(2) P � b � Q {cond − 1}
=A ⊕{(1 � b � 0) : P, (0 � b � 1) : Q} {⊕ − 1}
=A ⊕{(1 � ¬b � 0) : Q, (0 � ¬b � 1) : P} {cond − 1}
=A Q � ¬b � P

190 H. Jifeng

(3) (P � b � Q) � c � R {cond − 1}

=A ⊕
{
(1 � c � 0) : ⊕{(1 � b � 0) : P, (0 � b � 1) : Q),

(0 � c � 1) : R

}
{⊕ − 4}

=A ⊕

⎧⎨
⎩

(1 � b ∧ c � 0) : P,

Let(1 � ¬b ∧ c � 0) : Q,

(1 � ¬c � 0) : R

⎫⎬
⎭ {⊕ − 4}

=A ⊕
{
(1 � b ∧ c � 0) : P,

(0 � b ∧ c � 1) : ⊕{(1 � c � 0) : Q, (0 � c � 1) : R}

}
{cond − 1}

=A P � b ∧ c � (Q � c � R)

(4) P � b � (Q � c � R) {cond − 1}

=A ⊕
{
(1 � b � 0) : P,

(0 � b � 1) : ⊕{(1 � c � 0) : Q, (0 � c � 1) : R}

}
{⊕ − 4}

=A ⊕

⎧⎨
⎩

(1 � b � 0) : P,

(1 � ¬b ∧ c � 0) : Q,

(1 � ¬b ∧ ¬c � 0) : R

⎫⎬
⎭ {⊕ − 7}

=A ⊕

⎧⎪⎪⎨
⎪⎪⎩

(1 � b ∧ c � 0) : P,

(1 � b ∧ ¬c � 0) : P,

(1 � ¬b ∧ c � 0) : Q,

(1 � ¬b ∧ ¬c � 0) : R

⎫⎪⎪⎬
⎪⎪⎭

{⊕ − 1 and cond − 1}

=A ⊕
{
(1 � c � 0) : (P � b � Q),

(0 � ¬c � 1) : (P � b � R)

}
{cond − 1}

=A (P � b � Q) � c � (P � b � R)

(5) P � true � Q {cond − 1}
=A ⊕{(1 � true � 0) : P, (1 � true � 1) : Q} {⊕ − 8}
=A ⊕{1 : P} {⊕ − 3}
=A P {⊕ − 1, 3 and 8}
=A ⊕{0 : Q, 1 : P} {calculation}
=A ⊕{(1 � false � 0) : Q, (0 � false � 1) : P} {cond − 1}
=A Q � false � P

(6) From cond-1 and ⊕-5.

(7) From cond-1 and ⊕-6.

The probabilistic choice operator distributes over conditional.

Theorem 2.2.
Let P = ⊕{β1 : P1, ..., βm : Pm}, then
(P � b � Q) =A ⊕ {β1 : (P1 � b � Q), ..., βk : (Pk � b � Q)}
provided that Σiβi = 1

Proof.
P � b � Q {cond − 1}

=A ⊕{(1 � b � 0) : P, (0 � b � 1);Q} {⊕ − 4}

=A ⊕

⎧
⎪⎪⎨

⎪⎪⎩

(β1 � b � 0) : P1,
....,
(βm � b � 0) : Pm,
(0 � b � 1) : Q

⎫
⎪⎪⎬

⎪⎪⎭

{(⊕ − 7) and assumption:σiβi = 1}

Linking Theories of Probabilistic Programming 191

=A ⊕

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(β1 � b � 0) : P1,
....,
(βm � b � 0) : Pm,
(0 � ¬b � β1) : Q,
.....,
(0 � b � βm) : Q

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

{cond − 1}

=A ⊕

⎧
⎨

⎩

β1 : (P1 � b � Q),
....,
βm : (Pm � b � Q)

⎫
⎬

⎭

2.3 Sequential Composition

Sequential composition in the probabilistic programming language inherits the
algebraic laws of its counterpart in the conventional programming language. It
is associative, and has ⊥ as its zero, and skip as its unit.
seq-1. P ; (Q;R) =A (P ;Q);R
seq-2. ⊥;Q =A ⊥ =A P ;⊥
seq-3. skip;Q =A Q =A Q; skip

2.4 Total Assignment

An assignment is a total one if all the variables of the program appear on the
left hand side in some standard order

x, y, .., z := e, f, ..., g

A non-total assignment x := e can be transformed to a total assignment by
addition of identity assignments

asgn-1. (x := e) =A (x, y, .., z := e, y, ..., z)

For the notational simplicity we will use v to stand for the list x, y, .., z of
program variables and v := e for a total assignment.
The list of variables may be sorted into any desired order, provided that the
right hand side is subject tote same permutation.

asgn-2. (x, y, .. := e, f, ..) =A (y, x, .. := f, e, ..)

The following law enables us to eliminate sequential composition between total
assignments

asgn-3. (v := e ; v := f(v)) =A (v := f(e))

where the expression f(e) is easily calculated by substituting the expression in
the list e for the corresponding variables in the list v.

192 H. Jifeng

The following law deals with the conditional of total assignments

asgn-4. ((v := e) � b � (v := f)) =A (v := (e � b � f))

where the conditional expression e � b � f is defined mathematically:

e � b � f

{
=df e if b
=df f if ¬b

Finally, we need a law that determines when two total assignments are equal.

asgn-5. (v := f) =A (v := g) iff ∀v • f(v) = g(v)

3 Normal Form Reduction

This section is devoted to the concept of normal form. It will deal with the
following issues:

– Transform a finite program into a finite normal form based on the algebraic
laws of the previous section.

– Introduce the least upper bound operator for an ascending chain of finite
normal forms.

– Establish the continuity of programming combinators.
– Verify the continuity of the recursion operator.
– Convert an infinite program into an ascending chain of finite normal forms.

First we introduce the concept of finite normal form.

3.1 Finite Normal Form

Definition 3.1 (finite normal form).
A finite normal form is a probabilistic choice with total assignments as its alter-
natives:

⊕{β1 : (v := e1), ... , βk : (v := ek)}

Theorem 3.2. Let S1 = ⊕ {β1 : (v := e1), .., βm : (v := em)}
and S2 = ⊕ {α1 : (v := f1), .., αn : (v := fn)}.
Then

(1) S1;S2 =A ⊕

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(β1 · α1) : (v := f1(e1)),
...,
(β1 · αn) : (v := fn(e1)),
...
(βm · α1) : (v := f1(em)),
...,
(βm · αn) : (v := fn(em))

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

Linking Theories of Probabilistic Programming 193

(2) S1 � b � S2 =A ⊕

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(β1 � b � 0) : (v := e1),
......,
(βm � b � 0) : (v := em),
(α1 � ¬b � 0) : (v := f1),
......,
(αn � ¬b � 0) : (v := fn)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Proof.
(1) S1;S2 {⊕ − 5}
=A ⊕{β1 : (v := e1;S2), .., βm : (v := em;S2)} {⊕ − 6}

=A ⊕

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 : ⊕

⎧
⎨

⎩

α1[e1/v] : (v := e1; v := f1),
...,
αn[e1/v] : (v := e1; v := fn)

⎫
⎬

⎭
,

......,

βm : ⊕

⎧
⎨

⎩

α1[em/v] : (v := em; v := f1),
...,
αn[em/v] : (v := em; v := fn)

⎫
⎬

⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

{asgn − 3}

=A ⊕

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

β1 : ⊕
{

α1[e1/v] : (v := f1(e1)),
..., αn[e1/v] : (v := fn(e1))

}

,

......,

βm : ⊕

⎧
⎨

⎩

α1[em/v] : (v := f1(em)),
...,
αn[em/v] : (v := fn(em))

⎫
⎬

⎭

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

{⊕ − 4}

=A ⊕

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(β1 · α1) : (v := f1(e1)),
...,
(β1 · αn) : (v := fn(e1)),
...
(βm · α1) : (v := f1(em)),
...,
(βm · αn) : (v := fn(em))

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2) S1 � b � S2 {cond − 1}
=A ⊕{(1 � b � 0) : S1, (1 � ¬b � 0) : S2} {⊕ − 4}

=A ⊕

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(β1 � b � 0) : (v := e1),
......,
(βm � b � 0) : (v := em),
(α1 � ¬b � 0) : (v := f1),
......,
(αn � ¬b � 0) : (v := fn)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Theorem 3.3. Assume that Si = ⊕ {αi, 1 : (v := ei, 1), ..., αi, ki
: (v := ei, ki

)}
for 1 ≤ i ≤ n. Then

194 H. Jifeng

⊕{β1 : S1, ..., βn : Sn} =A ⊕

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(β1 · α1,1) : (v := e1, 1),
......,
(β1 · α1, k1) : (v := e1, k1),
......,
(βn · αn, 1) : (v := en, 1),
......,
(βn · αn, kn

) : (v := en, kn
)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

Proof: Similar to Theorem 3.2(1).

Theorem 3.4 (finite normal reduction).
Any finite program can be converted into a finite normal form.

Proof.
Basic case:
(1) From ⊕-3, we have (v := e) =A ⊕ {1 : (v := e)}
(2) From Corollary of ⊕-3, it follows that ⊥ =A ⊕{}

induction: The conclusion follows from Theorems 3.2 and 3.3.
The following law permits comparison of finite normal forms
norm-1. Let S1 = ⊕{β1(v) : (v := e1(v)), .., βm(v) : (v := em(v))}
and S2 = ⊕{α1(v) : (v := f1(v)), ..., αn(v) : (v := fn(v))}.
Then S1 �A S2 iff
∀c, d • (Σi{βi(c) | ei(c) = d} ≤ Σj{αj(c) | fj(c) = d})

Theorem 3.5. S1 �A S2 iff for all constants c

((v := c);S1) �A ((v := c);S2)

Proof. From ⊕-6 and norm-1.

Corollary. Assume that

T1 = ⊕{β1 : (v := c1), .., βn : (v := cm)}
T2 = ⊕{α1 : (v := d1), .., αn : (v := dn)}

where all βi and αj are constants, and furthermore both {c1, .., cm} and
{d1, .., dn} are lists of distinct constants.
Then T1 �A T2 iff there exists an injective mapping φ from {1, ..,m} to {1, .., n}
such that

∀i • (ci = dφ(i)) ∧ (βi ≤ αφ(i))

The next theorem shows that all programming combinators F satisfy

F (S1) �A F (S2)

whenever both S1 and S2 are finite normal forms, and S1 �A S2

Linking Theories of Probabilistic Programming 195

Theorem 3.6.
If S1 and S2 are finite normal forms satisfying S1 �A S2, then
(1) (S1 � b � R) �A (S2 � b � R)
provided that R is a finite program.
(2) ⊕{γ : S1, G} �A ⊕{γ : S2, G}
where G = ξ1 : R1, .., ξn : Rn and all Ri are finite.
(3) (S1;R) �A (S2;R) provided that R is a finite program.
(4) (R;S1) �A (R;S2) provided that R is a finite program.

Proof. From ⊕-6 we can transform (v := c);S1 and (v := c);S2 into the follow-
ing form

(v := c);S1 =A ⊕{β1 : (v := c1), .., βm : (v := cm)}
(v := c);S2 =A ⊕{α1 : (v := d1), ..., αn : (v := dn)}

where all βi and αj are constants, and furthermore both {c1, .., cm} and
{d1, .., dn} are lists of distinct constants. From Corollary of Theorem3.5 it follows
that there exists an injective mapping φ from {1, ..,m} to {1, .., n} satisfying

∀i • (ci = dφ(i)) ∧ (βi ≤ αφ(i))

Proof of (1).

Case 1:b[c/v] = true
(1) (v := c); (S1 � b � R) {Theorem 2.1(5)}
≡A (v := c);S1 {Theorem 3.5}
�A (v := c);S2 {Theorem 2.1(5)}
=A (v := c); (S2 � b � R)

Case 2: b[c/v] = false. From Theorem 2.1 it follows that

(v := c); (S1 � b � R) =A (v := c);R =A (v := c); (S2 � b � R)

The conclusion follows from Theorem 3.5.

Proof of (2). From Theorem 3.4 it follows that all Ri can be transformed into
finite normal forms:

Ri =A ⊕ {ρi, 1(v) : (v := fi, 1), ..., ρi, ki
(v) : (v := fi, ki

)}

for i ∈ {1, .., n}.
From Theorem 3.3 it follows that
(v := c);⊕{γ : S1, G} =A

⊕

⎧
⎪⎪⎨

⎪⎪⎩

(γ(c) · β1) : (v := c1),, (γ(c) · βm) : (v := cm),
(ξ1(c) · ρ1, 1(c)) : (v := f1, 1(c)),, (ξ1(c) · ρ1, k1(c)) : (v := f1, k1(c)),
.....,
(ξn(c) · ρn, 1(c)) : (v := fn, 1(c)),, (ξn(c) · ρn, kn

(c)) : (v := fn, kn
(c))

⎫
⎪⎪⎬

⎪⎪⎭

(v := c);⊕{γ : S2, G} =A

196 H. Jifeng

⊕

⎧
⎪⎪⎨

⎪⎪⎩

(γ(c) · α1) : (v := d1),, (γ(c) · αn) : (v := dn),
(ξ1(c)ρ1, 1(c)) : (v := f1, 1(c)),, (ξ1(c) · ρ1, k1(c)) : (v := f1, k1(c)),
.....,
(ξn(c) · ρn, 1(c)) : (v := fn, 1(c)),, (ξn(c) · ρn, kn

(c)) : (v := fn, kn
(c))

⎫
⎪⎪⎬

⎪⎪⎭

Then for any constant r

Σ

(
{(γ(c) · βi) | (ci = r)}
∪ {(ξi(c) · ρi, j(c)) | (fi, j = r)}

)

{∀i • (ci = dφ(i))}

= Σ

(
{(γ(c) · βi) | (dφ(i) = r)}
∪ {(ξi(c) · ρi, j(c)) | (fi, j = r}

)

{∀i • (βi ≤ αφ(i))}

≤ Σ

(
{(γ(c) · αφ(i)) | (dφ(i) = r)}
∪ {(ξi(c) · ρi, j(c)) | (fi, j = r)}

)

{(ΣX) ≤ (Σ (X ∪ Y))}

≤ Σ

(
{(γ(c) · αl) | (dl = r)}
∪ {(ξi(c) · ρi, j(c)) | (fi, j = r)}

)

which leads to the conclusion

(v := c);⊕{γ : S1, G} �A (v := c);⊕{γ : S2, G}

Proof of (3). From Theorem 3.4 we can convert R into a finite normal form

R =A ⊕ {ρ1(v) : (v := f1), ..., ρn(v) : (v := fn)}

From ⊕-5 and 6 we obtain
(v := c);S1;R =A

⊕

⎧
⎨

⎩

β1 · ρ1(c1) : (v := f1(c1)),, β1 · ρn(c1) : (v := fn(c1)),
.....,
βm · ρ1(cm) : (v := f1(cm)),, βm · ρn(cm) : (v := fn(cm))

⎫
⎬

⎭

(v := c);S2;R =A

⊕

⎧
⎨

⎩

(α1 · ρ1(d1)) : (v := f1(d1)),, (α1 · ρn(d1)) : (v := fn(d1)),
.....,
(αn · ρ1(dn)) : (v := f1(dn)),, (αn · ρn(dn)) : (v := fn(dn))

⎫
⎬

⎭

Then for any constant r we have
Σi, j{βi · ρj(ci) | fj(ci) = r} {∀i • (ci = dφ(i))}

= Σi, j{βi · ρj(dφ(i)) | fj(dφ(i)) = r} {∀i • (βi ≤ αφ(i))}
≤ Σi, j{αφ(i) · ρj(dφ(i)) | fj(dφ(i)) = r} {ΣX ≤ Σ(X ∪ Y)}
≤ Σi, j{αi · ρj(di) | fj(di) = r}

which leads to the conclusion that

(v := c);S1;R �A (v := c);S2;R

3.2 Infinite Normal Form

Definition 3.2 (infinite normal form).
An infinite normal form is represented by an infinite sequence of finite normal
forms

S = {Si | i ∈ Nat}
where each Si+1 is a more accurate description than its predecessor

(Si+1 �A Si) for all i ∈ Nat

Linking Theories of Probabilistic Programming 197

This is called ascending chain condition. It is this type of chain that will be taken
as the normal form for programs that contains recursion. The exact behaviour
of the normal form is captured by the least upper bound of the whole sequence,
written ⊔

S

The least upper bound operator is characterised by two laws:

norm-2.
⊔

S �A Q iff ∀i • (Si �A Q)
norm-3. If P is a finite normal form, then P �A

⊔
T iff

∀c, ∃j • ((v := c);P) �A ((v := c);Tj)

The following theorem states that
⊔

S is actually the least upper bound of the
ascending chain with respect to the refinement order �A.

Theorem 3.7.
(1) Si �A

⊔
S for all i ∈ Nat.

(2) If Si �A Q for all i ∈ Nat then
⊔

S �A Q

Proof. (1) From norm-3.
(2) From norm-2.

3.3 Continuity

This section deals with the continuity of programming combinators (including
recursion) before we show how to transform a program into an ascending chain
of finite normal form.

Definition 3.3 (continuity).
An operator is continuous if it distributes through least upper bound of descend-
ing chains.

The following laws explore the continuity of finite programming combinators.

norm-4. (
⊔

S) � b � P =A

⊔
i(Si � b � P)

norm-5. (
⊔

S);P =A

⊔
i(Si;P)

norm-6. P ; (
⊔

S) =A

⊔
i(P ;Si)

provided that P is a finite normal form.
norm-7. ⊕{α : (

⊔
S), G} =A

⊔
i ⊕{α : Si, G}

The next concern is how to eliminate the nested least upper bound operators.
norm-8.

⊔
k(

⊔
l Sk, l) =A

⊔
i Si, i

provided that (Sk, i+1 �A Sk, i) and (Si+1, l �A Si, l) for all i, k and l.

Law norm-8 lays down the foundation for computation of normal forms by
eliminating programming operators.

198 H. Jifeng

Theorem 3.8 (Continuity of finite programming combinators).
(1) (

⊔
S) � b � (

⊔
T) =df

⊔
i(Si � b � Ti)

(2) (
⊔

S) ; (
⊔

T) =df

⊔
i(Si ; Ti)

(3) ⊕{α : (
⊔

S), .., β : (
⊔

T)} =df

⊔
i ⊕{α : Si, ..., β : Ti)

Proof.
(2) (

⊔
S); (

⊔
T) {norm − 5}

=A

⊔
i(Si;

⊔
T) {norm − 6}

=A

⊔
i

⊔
j(Si;Tj) {norm − 8}

=A

⊔
i(Si;Ti)

The continuity theorem ensures that ascending chains constitute a valid normal
form for all the combinators of our probabilistic language, and the stage is set
for treatment of recursion.

3.4 Recursion

Consider first an innermost recursive program

μX • P (X)

where P (X) contains X as its only free identifier. Because X is certainly not in
normal form, it is impossible to express P (X) in normal form. However, all other
components of P (X) are expressible in finite normal form, and all its combina-
tors permit reduction to finite normal form. So if X were replaced by ⊥, P (⊥)
can be reduced to finite normal form, and so on P (⊥), P 2(⊥),.., Furthermore
from Theorem 3.6 it follows that P is monotonic, this constitutes an ascending
chain of finite normal forms.

rec-1. μX • P (X) =A

⊔
n Pn(⊥) provided that P is continuous.

where P 0(X) =df ⊥ and Pn+1(X) =df P (Pn(⊥)).
Finally we are going to show that the μ operator is also continuous.

Theorem 3.9 (Continuity of the recursion operator).
If Si(X) contains X as its only free recursive identifier for all i,
and that all Si are continuous and they form an ascending chain for all finite
normal forms X:

Si+1(X) �A Si(X) for all i ∈ Nat

then μX •
⊔

i Si(X) =A

⊔
i μX • Si(X)

Proof. Let P (X) =df

⊔
i Si(X). By induction we are going to establish for all

n ∈ Nat
Pn(⊥) =A

⊔

i

Sn
i (⊥) (∗)

Base case: n = 0

P 0(⊥) =A ⊥ =A

⊔

i

⊥ =A

⊔

i

S0
i (⊥)

Linking Theories of Probabilistic Programming 199

Induction:
Pn+1(⊥) {Def of Pn+1}

=A

⊔
i Si(Pn(⊥)) {induction hypothesis}

=A

⊔
i Si(

⊔
j Sn

j (⊥)) {Si is continuous}
=A

⊔
i

⊔
j Si(Sn

j (⊥)) {norm − 8}
=A

⊔
i Si(Sn

i (⊥)) {Def of Sn+1
i }

=A

⊔
i Sn+1

i (⊥)
which leads to the conclusion:

μX • P (X) {rec − 1}
=A

⊔
n Pn(⊥) {Conclusion (∗)}

=A

⊔
n(

⊔
i Sn

i (⊥)) {norm − 8}
=A

⊔
i(

⊔
n Sn

i (⊥)) {rec − 1}
=A

⊔
i μX • Si(X)

Now we reach the stage to eliminate the recursion operator.

Theorem 3.10.
Any recursive program μX • F (X) can be converted into the least upper

bound of an ascending chain.

Proof.
μX • F (X, μY.G1(Y), ..., μY • Gm(Y)) {rec − 1}

=A μX • F (X,
⊔

n Gn(⊥), ..,
⊔

n Gn
m(⊥)) {Theorem 3.8}

=A μX •
⊔

n(F (X, Gn(⊥), .., Gn
m(⊥))) {Theorem 3.9}

=A

⊔
n μX • F (X, Gn, .., Gn

m(⊥))
{

rec − 1 and let
Fn =df F (X, Gn(⊥), .., Gn

m(⊥))

}

=A

⊔
n

⊔
m Fm

n (⊥) {norm − 8}
=A

⊔
n Fn

n (⊥)

Theorem 3.11.
(1) If P �A Q, then
(a) (P � b � R) �A (Q � b � R)
(b) (P ;R) �A (Q;R)
(c) ⊕{γ : P, ξ1 : U1, ..., ξl : Ul} �A ⊕{γ : Q, ξl : Ul}
(d) (R;P) �A (R;Q)
(2) If P (S) �A Q(S) for any finite normal form S, then

μX • P (X) �A μX • Q(X)

Proof: From Theorems 3.4 and 3.10 we can transform P , Q and R into descend-
ing chain of finite normal forms:

P =A

⊔

i

Pi, Q =A

⊔

j

Qj R =A

⊔

k

Rk

From Definition 3.2 it follows that for any constant c there exists a mapping ψc

satisfying ∀i • (i ≤ ψc(i)), and

∀i • ((v := c);Pi) �A ((v := c);Qψc(i)) (∗)

200 H. Jifeng

Proof of 1.(a): From (∗) and Theorem 3.6(1) we reach the conclusion

∀i • ((v := c); (Pi � b � Ri)) �A ((v := c); (Qψc(i) � b � Rψc(i)))

which implies
(P � b � R) {Theorem 3.8}

=A

⊔
i(Pi � b � Ri) {norm 2 and 3}

�A

⊔
j(Qj � b � Rj) {Theorem 3.8}

=A (Q � b � R)

Proof of 1.(b): From (∗) and Theorem 3.6(3)(4) we reach the conclusion

∀i • ((v := c); (Pi;Ri)) �A ((v := c); (Qψc(i);Rψc(i)))

which implies
(P ;R) {Theorem 3.8}

=A

⊔
i(Pi;Ri) {norm 2 and 3}

�A

⊔
j(Qj ;Rj) {Theorem 3.8}

=A (Q;R)

Proof of 1.(c): From Theorems 3.4 and 3.10 there exists a family {{Ui, n n ∈
Nat} | 1 ≤ i ≤ l} of ascending chains such that for all i, Ui =A

⊔
j Ui, j . Then

we have

(v := c);⊕

⎧
⎪⎪⎨

⎪⎪⎩

γ : Pi,
ξ1 : U1,i,
..,
ξl : Ul, i

⎫
⎪⎪⎬

⎪⎪⎭

{⊕ − 6}

=A ⊕

⎧
⎪⎪⎨

⎪⎪⎩

γ(c) : ((v := c);Pi)),
ξ1(c) : ((v := c);U1, i),
...,
ξl(c) : ((v := c);Ul, i)

⎫
⎪⎪⎬

⎪⎪⎭

{Theorem 3.6}

�A ⊕

⎧
⎪⎪⎨

⎪⎪⎩

γ(c) : ((v := c);Qψc(i)),

ξ1(c) : ((v := c);U1, i),
...,
ξl(c) : ((v := c);Ul, i)

⎫
⎪⎪⎬

⎪⎪⎭

{(i ≤ ψc(i)) =⇒ ∀j • (Uj, i �A Uj, ψc(i)}

�A ⊕

⎧
⎪⎪⎨

⎪⎪⎩

γ(c) : ((v := c);Qψc(i)),

ξ1(c) : ((v := c);U1, ψc(i)),

...,
ξl(c) : ((v := c);Ul, ψc(i))

⎫
⎪⎪⎬

⎪⎪⎭

{⊕ − 6}

=A (v := c);⊕

⎧
⎪⎪⎨

⎪⎪⎩

γ : Qψc(i),

ξ1 : U1,ψc(i),

...,
ξl : Ul, ψc(i)

⎫
⎪⎪⎬

⎪⎪⎭

which leads to the conclusion.

Proof of 1.(d): Assume that

Ri =A ⊕{ξi, 1 : (v := ei, 1), ..., ξi, ni
: (v := ei, ni

: (v := ei, ni
)}

Linking Theories of Probabilistic Programming 201

Define Φc(i) =df max(ψei, 1(c)(i), ..., ψei, ni
(c)(i)). Then we have

(v := c);Ri;Pi {⊕ − 5 and 6}

=A ⊕

⎧⎨
⎩

xi, 1(c) : (v := ei, 1(c));Pi),

....,

xi, ni : (v := ei, ni ;Pi)

⎫⎬
⎭ {Conclusion 1(c)}

�A ⊕

⎧⎪⎨
⎪⎩

xi, 1(c) : (v := ei, 1(c));Qψei, 1(c)(i)
,

....,

xi, ni : (v := ei, ni ;Qψei, ni
(c)(i),

⎫⎪⎬
⎪⎭ {Def of Φ and Conclusion 1(c)}

�A ⊕

⎧⎨
⎩

xi, 1(c) : (v := ei, 1(c));QΦc(i),

....,

xi, ni : (v := ei, ni ;QΦc(i),

⎫⎬
⎭ {⊕ − 6}

=A (v := c);Ri;QΦc(i) {i ≤ Φc(i)}
�A (v := c);RΦc(i);QΦc(i)

which leads to the conclusion.

4 Testing Programs

An operational approach usually defines the relationship between a program and
its possible execution by machine. In an abstract way, a computation consists of
a sequence of individual steps with the following features:

– each step takes the machine from one state to a closely similar state;
– each step is drawn from a very limited repertoire.

In a stored program computer, the machine states are represented as pairs

(s, P)

where
(1) s is a text, defining the data state as an assignment of constant to all variables
of the alphabet

x, y, ..., z := a, b, ..., c

(2) P is a program text, representing the rest of the program that remains to be
executed. When this becomes the empty text ε, there is no more program to be
executed. The machine state

(t, ε)

is the last state of any execution sequence that contains it, and t presents the
final value of the variables in the end of execution.
The following lemma indicates that data states are the best programs.

Lemma 4.1.
(s �A P) implies (s =A P).

Definition 4.1 (Probabilistic state).
Let Si =,⊕{ξi, 1 : (v := ci, 1), .. ξi, mi

: (v := ci, mi
)} be a finite normal form for

all i ∈ Nat in which all ξi, j and ci, j are constants,

202 H. Jifeng

and ci, l, �= ci, m for all l �= m.
If Si �A Si+1 for all i ∈ Nat, then

⊔

i

Si

is called a probabilistic state.

The execution of program (s;P) can be seen as a test on P with the test case s.
The result of such a testing gives rise to a set of possible outcomes. We are then
able to compare the behaviours of two programs based on testing.
Formally, the test operator for our probabilistic programming language is defined
by

T (s, P) =df (s;P)

When ⊥ is taken as the test case, we obtain

T (⊥, P) =A ⊥

Execution of a test will deliver a probabilistic state.

Theorem 4.1. For any test T (s, P), there exists a probabilistic state t such
that

T (s, P) =A t

Proof. From Theorem 3.4 it follows that any finite program P can be converted
into a finite normal form:

P =A ⊕{β1 : (v := e1), ..., βm : (v := em)}

The conclusion is derived from ⊕ − 6.
For any program P there exists an ascending chain S = {Si | i ∈ Nat} of finite
normal form such that

P =A

⊔
S

The conclusion follows from norm − 6.

Corollary.
P �A Q iff for all test case s

T (s, P) �A T (s, Q)

Definition 4.2.
A program P can be identified as a binary relation [P] between test case s and
a final probabilistic data state t it may enter in the end of testing

[P] =df {(s, t) | T (s, P) �A t}

As usual we define the refinement relation �rel on the relational model by the
set inclusion

P �rel Q =df ([P] ⊇ [Q])

Linking Theories of Probabilistic Programming 203

Theorem 4.2.
�rel =�A

Proof.
P �A Q {Corollary of Theorem 4.1}

≡ ∀s • T (s, P) �A T (s, Q) {Theorem 4.1}
≡ ∀s, t • (T (s, Q) �A t) =⇒ (T (s, P) �A t) {Definition 4.2}
≡ [Q] ⊆ [P] {Definition of �rel}
≡ P �rel Q

Theorem 4.3.
(1) [P � b � Q](v := c) = [P](v := c) � b[c/v] � [Q](v := c)

(2) [⊕{β1 : P1, .., βm : Pm}](v := c) =
{

⊕{β1[c/v] : t1, .., βm[c/v] : tm} |
∀i • ti ∈ [Pi](v := c)

}

(3) [P ;Q] = [P] ◦ [Q] ↑
where [Q] ↑ is defined inductively:

[Q] ↑ (v := c) =df [Q](v := c)

[Q] ↑ (⊕{ρ1 : (v := c1), .., ρm : (v := cm)}) =df

{
⊕{ρ1 : t1, .., ρm : tm} |
∀i • ti ∈ [Q] ↑ (v := ci)

}

[Q] ↑ (
⊔

i

ti) =df {
⊔

i

ui | ∀i • ui ∈ [Q] ↑ (ti)}

(4) [μX • P (X)] =
⋂

n[Pn(⊥)]

Proof of (3)
(s, t) ∈ [P ;Q] {Definition 2.1}

≡ T (s, (P ;Q)) �A t {Theorem 4.1}
≡ ∃u • T (s, P) =A u ∧ (u;Q) �A t {Def of [Q] ↑}
≡ ∃u • T (s, P) =A u ∧ (u, t) ∈ [Q] ↑ {Theorem 3.11}
≡ ∃u • (T (s, P) �A u) ∧ (u, t) ∈ [Q] ↑ {Definition 4.2}
≡ ∃u • ((s, u) ∈ [P] ∧ (u, t) ∈ [Q] ↑) {Def of relational composition}
≡ (s, t) ∈ ([P] ◦ [Q] ↑)

5 Operational Approach

This section provides an operational semantics for our probabilistic programming
language. We will introduce the concept of the consistency of an operational
framework with respect to the algebra of programs, and present a transition sys-
tem for the probabilistic language. This section also explores the link between
the consistent transition system with the normal form representation of proba-
bilistic programs.
There are two types of transitions for our language
(1) Transition (s, P) → (t, Q) means P transfers to Q with the data state s
replaced by t.
We define the concept of divergence, being a machine state that can lead to an
infinite execution

divergence(s, P) =df ∀n∃t, Q • ((s, P) →n (t, Q))

204 H. Jifeng

where →0 =df id, and →n+1 =df (→ ;→n).
(2) Transition (s, P) r→ (s, Q) (where 0 < r ≤ 1 means Q is chosen by P to be
executed with the probability r, whereas the data state remains unchanged.
We examine the concept of finitary, being a machine state that can only engage
in finite number of probabilistic choices

finitary(s, P) =df ∃n∀t,Q, r,m •
(

(s, P) r→m (t, Q) ∧ m > n
=⇒ divergence(t, Q)

)

where r→1=df
r→

and r→n+1=df (→ ; r→n) ∪ {(r1→; r2→n) | r1 · r2 = r}
and r→∗=df

⋃
n

r→n

Definition 5.1. A transition system is consistent with respect to the algebraic
semantics if for all machine states (s, P)
(1) divergence(s, P) implies T (s, P) =A ⊥, and
(2) finitary(s, P) if P does not contain μ operator.
(3) T (s, P) =A ⊕ {r : T (t, Q) | (s, P) r→ (t, Q)},
where we extend the definition of the test operator to deal with the empty
program text ε by

T (s, ε) =df s

Theorem 5.1. Let → be a consistent transition system.
If finitary(s, P), then there exists n such that

T (s, P) =A ⊕ {r : t | ∃m • (m ≤ n) ∧ (s, P) r→m (t, ε)}

Otherwise

T (s, P) =A

⊔

n

⊕{r : t | ∃m • (m ≤ n) ∧ (s, P) r→m (t, ε)}

Proof. (1) Assume that finitary(s, P). For k > 0 define

finitaryk(s, P) =df ∀(t, Q), ∀r, m •
(

(s, P) r→m (t, Q) ∧ m > k
=⇒ divergence(t, Q)

)

The following inductive proof is based on the length of transition sequences
Basic case: finitary1(s, P).
The conclusion directly follows from (1) and (3) of Definition 5.1.
Induction step: finataryk+1(s, P).
From the definition of finitaryn+1 it follows that

(s, P) r→ (t, Q) =⇒ finitaryk(t, Q) (∗)

Linking Theories of Probabilistic Programming 205

T (s, P) {Def 5.1(3)}
=A ⊕ {r : T (u, Q) | (s, P)

r→ (u, Q)} {(∗) and inductive hypothesis}

=A ⊕
{

r : ⊕ {λ : t | ∃m • (m ≤ n)∧
(s, P)

r→ (u, Q) ∧ (u, Q)
λ→m (t, ε)}

}

{⊕ − 4 Let l = n + 1}

=A ⊕ {β : t | ∃m ≤ l • (s, P)
β→ (t, ε)}

(2) Consider the case where ¬finitary(s, P).
First we are going to establish the inequality

T (s, P) �A

⊔

n

⊕{r : t | ∃m ≤ n • (s, P) r→m (t, ε)

By norm-2 we are required to prove for all n

T (s, P) �A ⊕{r : t | ∃m • (m ≤ n) ∧ (s, P) r→m (t, ε)}

Basic case: n = 1.
T (s, P) {Def 5.1(3)}

=A ⊕
{

{λ : T (t, Q) | (s, P) λ→ (t, Q)} ∪
{β : t | (s, P)

β→ (t, ε)}

}

{Theorem 3.11(c)}

�A ⊕
{

{λ : ⊥ | (s, P) λ→ (t, Q)} ∪
{β : t | (s, P)

β→ (t, ε)}

}

{⊕ − 2}

=A ⊕{r : t | (s, P) r→ (t, ε)}
Induction:

T (s, P) {Def 5.1(3)}

=A ⊕
{

{λ : T (t, Q) | (s, P) λ→ (t, Q)} ∪
{β : t | (s, P)

β→ (t, ε)}

}

{inductive hypothesis}

�A ⊕

⎧
⎪⎨

⎪⎩

{λ : ⊕{ γ : u | (s, P) λ→ (t, Q) ∧
∃m ≤ n • (t, Q)

γ→m (u, ε)}} ∪
{β : t | (s, P)

β→ (t, ε)}

⎫
⎪⎬

⎪⎭
{Def r→n}

=A ⊕{r : t | ∃m ≤ n + 1 • (s, P) r→m (t, ε)}
Now we are going to prove the inequality

T (s, P) �A

⊔

n

⊕{r : t | ∃m • (m ≤ n) ∧ (s, P) r→m (t, ε)}

From Definition 5.1 (2) we conclude that P must contain μ operator. Let us
begin with the simplest case:

P = μX • F (X)

where F (X) does not refer to μ operator. Clearly from Definition 5.1(2) we have
for all n
(i) finitary(Fn(⊥))
By induction it can be shown that
(ii) (s, Fn(⊥)) λ→m (t, ε) =⇒ ∃k ≤ n • (s, μX • F (X)) λ→m+k (t, ε)
From (i) it follows that for all n there exists kn such that

206 H. Jifeng

T (s, F n(⊥)) {finitary(F n(⊥))}

=A ⊕ {r : t |
(

∃m • (m ≤ kn)∧
(s, F n(⊥))

r→m (t, ε)

)
} {(ii) and Corollary of norm − 1}

�A ⊕ {r : t |
(

∃m • (m ≤ (kn + n))∧
(s, μX • F (X))

r→m (t, ε)

)
} {norm − 3}

�A

⊔
n ⊕ {r : t |

(
∃m • (m ≤ n)∧
(s, μX • F)

r→m (t, ε)

)
}

which leads to the conclusion
T (s, μX • F (X)) {Theorem 3.8 and rec − 1}

=A

⊔
n T (s, F n(⊥)) {previous conclusion}

�A

⊔
n ⊕ {r : t |

(
∃m • (m ≤ n)∧
(s, μX • F)

r→m (t, ε)

)
}

Finally let us examine the case where

P = F (μX • Q(X), .., μX • R(X))

In a similar way we can prove
• T (s, F (μX • Q(X), .., μX • R(X))) {Theorem 3.8}

=A

⊔
n T (s, F (Qn(⊥), .., Rn(⊥))) {finitary(F (Qn(⊥), .., Rn(⊥)))}

=A

⊔
n ⊕ {r : t |

⎛
⎝ ∃m • (m ≤ nk)∧

(s, F (Qn(⊥), ...))
r→m (t, ε)

⎞
⎠} {proof for (P = μX • F (X))}

�A

⊔
n ⊕ {r : t |

⎛
⎝ ∃m • (m ≤ n)∧

(s, P)
r→m (t, ε)

⎞
⎠}

We propose the following transition system for our probabilistic programming
language.

Definition 5.2.
(1) Assignment
((v := c), v := e) → ((v := e[c/v]), ε).
(2) Probabilistic Choice

(a) ((v := c), ⊕ {r1 : P1, .., rm;Pm})
rk[c/v]−→ ((v := c), Pk)

provided that rk[c/v] > 0

(b) ((v := c), ⊕ {r1 : P1, .., rm;Pm})
1−∑

k rk[c/v]−→ ((v := c), ⊥)
provided that

∑
k rk[c/v] < 1.

(3) Conditional
(a) ((v := c), P � b � Q) → ((v := c), P) if b[c/v] = true
(b) ((v := c), P � b � Q) → ((v := c), Q) if b[c/v] = false
(4) Composition
(a) (s, P ;Q) r→ (t, R;Q) if (s, P) r→ (t, R)
(b) (s, P ;Q) → (t, R;Q) if (s, P) → (t, R)
(c) (s, P ;Q) r→ (t, Q) if (s, P) r→ (t, ε)
(d) (s, P ;Q) → (t, Q) if (s, P) → (t, ε)
(5) Recursion
(s, μX • P (X)) → (s, P (μX • P (X)))
(6) Chaos
(s, ⊥) → (s, ⊥)

Linking Theories of Probabilistic Programming 207

We are going to show that Definition 5.2 gives a consistent transition system.
First, we show that the given transition system satisfies Definition 5.1(3)

Lemma 5.2. T (s, P) =A ⊕{r : T (t, Q) | (s, P) r→ (t, Q)}

Proof. Direct from the following properties of the test operator T :
(1) From ⊕-6 it follows that
T ((v := c), ⊕{r1 : P1, .., rn : Pn} =A ⊕ {r1[c/v] : T ((v := c), P1), ..., rn[c/v] :
T ((v := c), Pn)}
(2) From Theorem 2.1(7) we obtain
T ((v := c), (P � b � Q)) =A T ((v := c), P) � b[c/v] � T ((v := c), Q)
(3) From Theorem 4.1 we have
T ((v := c), (P ;Q)) =A ⊕ {r1 : T ((v := d1), Q), ..., rm : T ((v := dm), Q)}
provided that T ((v := c), P) =A ⊕ {r1 : (v := d1), .., rm : (v := dm}
(4) T (s, μX • P (X)) =A T (s, P (μX • P (X)))
Next we deal with the condition (1) of Definition 5.1.

Lemma 5.3. If P is a finite program, then

divergence(s, P) =⇒ T (s, P) =A ⊥

Proof. We give an induction proof based on the structure of program text P :
Base case: Clearly the conclusion holds for the case P = v := e and P = ⊥
Inductive step:

divergence((v := c), (P � b � Q)) {Rule (3) in Definition 5.2}

=⇒

⎛
⎝divergence((v := c), P)

�b[c/v]�
divergence((v := c), Q)

⎞
⎠ {Induction hypothesis}

=⇒

⎛
⎝ (T ((v := c), P) =A ⊥)

�b[c/v]�
(T ((v := c), Q) =A ⊥)

⎞
⎠ {Theorem 2.1(7)}

=⇒ T ((v := c), (P � b � Q)) =A ⊥
divergence((v := c), ⊕ {r1 : P1, .., rn : Pn}) {Rule (2) in Definition 5.2}

=⇒ Σ{(rk[c/v])|divergence((v := c), Pk)} = 1 {Induction hypothesis}
=⇒ Σ{(rk[c/v])|T ((v := c), Pk) =A ⊥} = 1 {⊕ − 3 and 6}
=⇒ T ((v := c), ⊕ {r1 : P1, .., rn : Pn}) =A ⊥

Finally we are going to tackle infinite programs.

Lemma 5.4. If (s, G(Q)) →∗ (t, ε),
then either divergence(s, G(⊥)) or (s, G(⊥)) →∗ (t, ε).

Proof. Induction on the structure of G
Base case. G(Q) = Q From Rule (6)

(s, ⊥) → (s, ⊥)

in Definition 5.2.
Inductive step:
(1) G(Q) = G1(Q) � b � G2(X)

208 H. Jifeng

(s, G(Q)) →∗ (t, ε) {Rule (3) in Def 5.2}

=⇒

⎛

⎝
(s, G1(Q)) →∗ (t, ε)
�(s; b)�
(s, G2(Q)) →∗ (t, ε)

⎞

⎠ {Induction hypothesis}

=⇒

⎛

⎝
divergence(s, G1(⊥)) ∨ (s, G1(⊥)) →∗ (t, ε)

�(s; b)�
divergence(s, G2(⊥)) ∨ (s, G2(⊥)) →∗ (t, ε)

⎞

⎠ {Rule (3) in Def 5.2}

=⇒ divergence(s. G(⊥)) ∨ (s, G(⊥)) →∗ (t, ε)
(2) G(Q) = ⊕{α1 : G1(Q), ... αk : Gk(Q)}. Similar to Case (1).

(3) G(Q) = G1(Q);G2(Q)
(s, G(Q)) →∗ (t, ε) {Rule (4) in Def 5.2}

=⇒ ∃u •
(
(s, G1(Q)) →∗ (u, ε) ∨
(u, G2(Q)) →∗ (t, ε)

)

{Induction hypothesis}

=⇒ ∃u •

⎛

⎜
⎜
⎝

divergence(s, G1(⊥)) ∨
(s, G1(⊥)) →∗ (u, ε) ∨
divergence(u, G2(⊥)) ∨
(u, G2(⊥)) →∗ (t, ε)

⎞

⎟
⎟
⎠ {Rule (4) in Def 5.2}

=⇒ divergence(s. G(⊥)) ∨ (s, G(⊥)) →∗ (t, ε)
(4) G(Q) = μX • P (Q, X)

(s, μX • P (Q, X)) →∗ (t, ε) {Rule (5) in Def 5.2}
=⇒ (s, P (Q, μX • P (Q, X))) →∗ (t, ε) {Induction hypothesis}

=⇒
(
divergence(s, P (⊥, μX • P (⊥, X))) ∨
(s, P (⊥, μX • P (⊥, X))) →∗ (t, ε)

)

{Rule (5) in Def 5.2}

=⇒
(
divergence(s, μX • P (⊥, X)) ∨
(s, μX • P (⊥, X)) →∗ (t, ε)

)

Lemma 5.5.
(1) divergence(s, F (P)) =⇒ divergence(s, F(⊥))
(2) divergence(s, F (μX • P (X)) =⇒ divergence(s, F (P (μX • P (X))))

Proof. (1) Based on induction on the structure of F .
Base case: F (X) = X. The conclusion follows from the Rule (6) in Definition 5.2.
Inductive Step:

divergence(s, F1(Q) � b � F2(Q)) {Rule (3) in Def 5.2}

=⇒

⎛

⎝
divergence(s, F1(Q))
�(s; b)�
divergence(s, F2(Q))

⎞

⎠ {induction hypothesis}

=⇒

⎛

⎝
divergence(s, F1(⊥))
�(s; b)�
divergence(s, F2(⊥))

⎞

⎠ {Rule (3) in Def 5.2}

=⇒ divergence((s, (F1(⊥) � b � F2(⊥))))

divergence(s, F1(Q);F2(Q)) {Rule (4) in Def 5.2}
=⇒ divergence(s, F1(Q))∨

∃t • (s, F1(Q)) →∗ (t, ε) ∧ divergence(t, F2(Q)) {Lemma 5.4}

=⇒
(
divergence(s, F1(⊥))∨
(s, F1(⊥)) →∗ (t, ε) ∧ divergence(t, F2(⊥))

)

{Rule (4) in Def 5.2}

=⇒ divergence(s, F1(⊥);F2(⊥))

Lemma 5.6.
divergence(s, F (μX • P (X)) =⇒ T (s, F (μX • P (X))) =A ⊥

Linking Theories of Probabilistic Programming 209

Proof.
divergence(s, F (μX • P (X))) {Lemma 5.5(2)}

=⇒ ∀n • divergence(s, F (Pn(μX • P (X)))) {Lemma 5.5(1)}
=⇒ ∀n • divergence(s, F (Pn(⊥))) {Lemma 5.3}
=⇒ ∀n • T (s, F (Pn(⊥))) =A ⊥ {Theorem 3.8}
=⇒ T (s, F (μX • P (X))) =A ⊥

Lemma 5.7.
If P is finite, then fnitary(s, P) holds for all states s

Proof. On structural induction

Combining Lemmas 5.2, 5.6 and 5.7 we conclude

Theorem 5.8.
The transition system defined in Definition 5.2 is consistent.

6 Conclusions

This paper begins with an algebraic framework for our probabilistic program-
ming language, and then shows how to deliver the corresponding denotational
and operational representations consistently. The main contributions include:

– Clarify the type of observations we are able to record during the execution of
a probabilistic programs:

• The behaviour of a program cannot simply be modelled as a relation
between the initial data state and a finite distribution on the possible
final data states.

• The normal approach permits us to distinguish a program which can
terminate and deliver a final distribution function from a program which
can only generate an approximate distribution function during its ever-
lasting execution.

– The test algebra lays down the foundation for construction of a denotational
framework for our probabilistic programming language.

– The consistency of an operational approach against the algebra of programs
can be formalised and validated within the algebra of programs.

The language we put forward in this paper has not included the nondeterministic
choice operator given in the traditional programming languages. As a result, we
lose the case where the probabilistic choice can be identified as a refinement of
the nondeterministic choice. Moreover, the refinement order in the conventional
languages was directly induced from the choice operator, whereas we were forced
to adopt an inductive definition in Sects. 1 and 2 based on finite and infinite nor-
mal forms. Consequently, it makes the proof of monotonicity of programming
combinators in this paper look cumbersome.
In future, we will investigate a language armed with both probabilistic and non-
deterministic choice operators, and follow up the algebraic approach advocated
in this paper to explore the links among various programming presentations for
the probabilistic languages.

210 H. Jifeng

References

1. Jifeng, H., Qin, L.: A new roadmap for linking theories of programming and its
applications on GCL and CSP. Sci. Comput. Program. Elsevier 162, 3–34 (2018)

2. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge Press,
Cambridge (1996)

3. Abrial, J.-R.: Modelling in Event-B: System and Software Engineering. Cambridge
Press, Cambridge (2010)

4. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

5. Hehner, E.C.R.: A more complete model of communicating processes. Theor. Com-
put. Sci. 26, 105–120 (1983)

6. Hehner, E.C.R.: Predicative programming, part 1 and 2. Commun. ACM 27(2),
134–151 (1984)

7. Hennessy, M.C.: Algebraic Theory of Process. The MIT Press, Cambridge (1988)
8. Hoare, C.A.R., et al.: Laws of programming. Commun. ACM 30(8), 672–686 (1987)
9. Jones, C.B.: Systematic Software Development Using VDM. Prentice Hall, New

York (1986)
10. Plotkin, G.D.: A structural approach to operational semantics. Technical Report,

DAIMI-FN-19, Aarhus University, Denmark (1981)
11. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall, New York (1992)
12. Jifeng, H., Seidel, K., McIver, A.: Probabilistic models for the guarded command

language. Sci. Comput. Program. 28(2–3), 171–192 (1997)

Space for Traffic Manoeuvres: An
Overview

Ernst-Rüdiger Olderog(B)

Department of Computing Science, University of Oldenburg, Oldenburg, Germany
olderog@informatik.uni-oldenburg.de

Abstract. Dense traffic on roads is calling for advanced driver assis-
tance systems or even autonomous driving to increase the safety (colli-
sion freedom). How can we prove that such systems guarantee safety?
Realising that safety on roads is a primarily spatial property, we started
an approach to car safety that decomposes spatial from dynamic reason-
ing; it is based on a dedicated Multi-lane Spatial Logic (MLSL) [1], which
abstracts from the continuous car dynamics, and controllers using MLSL
formulas. The paper gives an overview of recent results in pursuing this
approach.

1 Introduction

The news are full of reports on automation of car driving, ranging from advanced
driver assistance systems to self-driving cars. This poses the challenge of prov-
ing safety (collision freedom) of traffic manoeuvres performed according to such
automated systems. Different types of roads pose different challenges. On motor-
ways all cars drive in the same direction, on country roads opposing traffic can
occur, and in urban traffic complex road topologies like crossings have to be
considered. Since cars have a dynamic behaviour that interacts with discrete
controllers, they represent hybrid, i.e., mixed discrete-continuous systems. Thus
safety is a hybrid system verification problem:

(1) car dynamics + car controllers + assumptions |= safety.

Many approaches apply therefore methods of hybrid system verification to prove
safety of traffic manoeuvres.

Early examples can be found in the context of the California PATH (Part-
ners for Advanced Transit and Highways) project on automated highway sys-
tems. Here cars driving in groups called platoons are considered [2], and the
manoeuvres include joining and leaving the platoon, and lane change. Lygeros
et al. [3] sketch a safety proof for car platoons taking car dynamics into account,
but admitting safe collisions, i.e., collisions at a low speed. Jula et al. [4] provide
calculations of safe longitudinal distances between cars based on car dynamics.

More recent is the work of Platzer et al. [5,6], who represent traffic applica-
tions in a differential dynamic logic dL. This logic is well suited for specifying

c© Springer Nature Switzerland AG 2018
C. Jones et al. (Eds.): Zhou-Festschrift, LNCS 11180, pp. 211–230, 2018.
https://doi.org/10.1007/978-3-030-01461-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01461-2_11&domain=pdf

212 E.-R. Olderog

and verifying hybrid systems, and it is supported by the dedicated interactive
theorem prover KeYmaera [7].

The problem is how to conquer the complexity of hybrid system verification.
Abstraction, design patterns, and separation are concepts that are employed.

Althoff et al. [8] propose a bottom-up strategy, where a given hybrid model
is gradually abstracted to Markov chains, for which the set of reachable states
is analysed. Controller design patterns are exploited in Damm et al. [9], where a
proof rule for collision freedom of two traffic agents based on criticality functions
is proposed. This proof rule has been applied to verify a distance controller for
cars. However, it is not clear how to extend this approach to deal with arbitrarily
many cars on a motorway.

Our key observation was that safety is a spatial property : cars behave safely
(avoid collisions) if at every moment they occupy disjoint spaces on the road. We
first explicated this idea in [1] by introducing an abstract model of multi-lane
motorway traffic based on spatial properties of local views of cars. The properties
are expressed in a new dedicated Multi-Lane Spatial Logic (MLSL). Thus our
approach replaces (1) by

(2) spatial logic + abstract car controllers + assumptions |= safety,

thereby hiding the car dynamics. The spatial logic provides a discrete model of
the traffic. In [10] we showed how it is linked to the underlying dynamic model.

Thus our approach is in line with work on controller design for hybrid sys-
tems that separate the dynamics from the control layer. Raisch et al. [11,12]
introduce abstraction and refinement to support a hierarchical design of hybrid
control systems. Van Schuppen et al. [13] introduce synthesis of control laws
for piecewise-affine hybrid systems based on simplices. Novel is our emphasis on
spatial properties at the control layer.

The definition of MLSL was inspired by work in and following up the ProCoS
project. ProCoS stands for “Provably Correct Systems”, a basic research project
funded by the European Commission from 1989 to 1995 [14,15]. In ProCoS the
universities of Oxford, Kiel, and Oldenburg, and the Technical University of
Denmark at Lyngby collaborated. Its goal was to develop a mathematical basis
for the development of embedded, real-time computer systems.

The research in ProCoS was much influenced by the work of two Chinese
scientists contributing to the project at Lyngby and Oxford: Zhou Chaochen
and He Jifeng. Zhou Chaochen and A.P. Ravn initiated a major conceptual
development of ProCoS: the Duration Calculus (DC), an interval-based logic
for specifying real-time requirements inspired by Moskowski’s (discrete) interval
temporal logic [16], The first paper on it was published by Zhou Chaochen,
C.A.R. Hoare and A.P. Ravn in 1991 [17].

DC formulae are evaluated on intervals of the time domain, which is usually
given by the set R≥0 of non-negative real numbers (continuous time). Addition-
ally, discrete DC is investigated, where the time domain is given by the set N of
natural numbers. Central to DC is the integral operator to measure the duration
of a state and the chop operator (denoted by ;) from interval logic: a DC formula

Space for Traffic Manoeuvres: An Overview 213

F1;F2 holds on an interval [b, e] if there exists a chop point m ∈ [b, e] such that
the formula F1 holds on the initial subinterval [b,m] and the formula F2 on the
final subinterval [m, e].

The challenge to extend DC to cope also with spatial aspects has first been
addressed by A. Schäfer, who developed the Shape Calculus (SC) [18,19]. SC
formulae are evaluated on n-dimensional polyhedras in R

n for n ≥ 2. Typically,
one dimension represents time, the others space. SC has an extended chop oper-
ator, which takes a vector d ∈ R

n as a parameter. Instead of chopping intervals
at a chop point, SC chops polyhedra by an (n − 1)-dimensional hyperplane that
is orthogonal to d. Schäfer showed how to reason about the safety of movements
of robots in time and space in his calculus [20]. However, the calculations are
quite complicated.

Traffic on roads is restricted to two-dimensional movements. Therefore MLSL
is a two-dimensional spatial logic for specifying properties of multi-lane traffic.
The dimension modelling the direction of the traffic flow is continuous given by
the real numbers R, whereas the other dimension modelling the number of lanes
is discrete given by a finite subset of the natural numbers N. So we will only
specify whether or not a car is occupying (part of) a lane, but not how much of
it. However, in the direction of traffic flow we can distinguish real-valued lengths
of an occupied space.

MLSL formulae are evaluated on local views, which contain finite two-dimen-
sional parts of the infinite multi-lane road. Central for the practical expressive-
ness are two chop operators, one in each dimension. An MLSL formula φ1 � φ2

expresses that the current view V can be divided into two horizontally adjacent
subviews V1 and V2 such that φ1 holds in V1 and φ2 in V2. An MLSL formula
φ2

φ1
expresses that the current view V can be divided into two vertically adjacent

subviews V1 and V2 where φ1 holds in V1 and φ2 in V2.
Our paper is organised as follows. In the subsequent Sect. 2, we recall our

abstract model of multi-lane traffic on motorways and define the basic version
of MLSL. In Sect. 3, we recall the basic lane change controller for safe lane
changes. In Sect. 4, we state the Safety Theorem. In Sect. 5, we describe how
formally link the abstract spatial to the underlying dynamic model of cars. In
Sect. 6, we review results that have been obtained for (un)decidability and tool
support for MLSL. In the final Sect. 7, we briefly discuss the challenges of traffic
on country roads and in urban settings, and indicate some future work.

2 Model

In [1], we introduced an abstract model of multi-lane highway traffic. Cars
have unique identifiers drawn from an infinite set I = {A,B, . . .}. The road
is considered infinite in length with positions represented by real numbers in R

and finite in width with lanes represented by a finite set of natural numbers,
L = {0, . . . , N}. On a highway, all traffic proceeds in one direction, with increas-
ing position values, in pictures shown from left to right: see Fig. 1. Assuming an

214 E.-R. Olderog

claim ED F

C A

BE spd(E)

pos(E)

1

2

0

Fig. 1. Multi-lane highway with lanes 0,1,2 and cars A, . . . , F driving to the right. The
rectangular box around each car identifier indicates the size of the car. The extension
to the right with the angle represents the braking distance of the car at its current
speed. The reservation of a car at its current position is the space comprising its size
plus its braking distance. A claim of a car is represented by a space of the same size as
a reservation, but surrounded by dashed lines. For example, car E at position pos(E)
and with speed spd(E) is preparing for a lane change manoeuvre by claiming space on
its neighbouring lane 2.

infinite length of the road frees us from distinguishing the beginning and end of
the road.

A traffic snapshot describes where at a certain moment cars are positioned
on the road and what their current speed is. The latter determines how much
space a car reserves or claims because the length of a reservation or claim is
taken as the size of the car plus the braking distance of the car. Formally, it is
a structure T = (pos, spd, res, clm), where

– pos : I → R records the car positions (measured at their back),
– spd : I → R records the current speeds,
– res : I → P(L) records the reserved lanes,
– clm : I → P(L) records the claimed lanes.

The evolution of the traffic is modelled by transitions T α−→ T ′ between traffic
snapshot, where α is an action of the following type:

T t−→ T ′ – time passes and all cars proceed in their current lane,

T c(C,n)−−−−→ T ′ – car C puts a claim on lane n,

T wd c(C)−−−−−→ T ′ – car C withdraws its claim,

T r(C)−−−→ T ′ – car C converts its claim into a reservation,

T wd r(C,n)−−−−−−→ T ′ – car C withdraws all reservations, except for lane n.

Although the road itself is considered as infinite, at each moment only a
finite view for each car is relevant: see Fig. 2. Formally, a view is a structure
V = (L,X,E), where

Space for Traffic Manoeuvres: An Overview 215

size

D

BE

view of E

A

safety envelope

Fig. 2. The large rectangle shows the view of car E. Thus E cannot see car B.

– L is a subinterval of L,
– X is a finite subinterval of R,
– E ∈ I is the identifier of the car under consideration.

2.1 Multi-Lane Spatial Logic

Formulae of the Multi-Lane Spatial Logic MLSL describe the properties of traffic
snapshots that we need to safeguard traffic manoeuvres. In its basic form, the
syntax of MLSL [1] uses car variables c, d, among them a special variable ego,
and is defined by the following set of formulae φ:

φ:: = true | c = d | free | re(c) | cl(c) (atoms)

| φ1 ∧ φ2 | ¬φ1 | ∃c : φ1 (first-order logic)

| φ1 � φ2 | φ2

φ1
(spatial chop operators)

The formal semantics of MLSL is given by a satisfaction relation |= between
models and formulae. A model M = (T , V, ν) comprises a traffic snapshot T ,
a view V , and valuation ν of the car variables. The definition of M |= φ is by
induction on the structure of φ [1].

Informally, the atoms free, re(c), and cl(c) express that in the considered
traffic snapshot T the (space in the) view V is free of any car, that V is reserved
by the car C denoted by ν(c), and that it is claimed (for a forthcoming lane
change) by that car C, respectively. The informal meaning of the two spatial
operators is as follows: the horizontal chop φ1 �φ2 expresses that the current
view V can be divided into two horizontally adjacent subviews V1 and V2 such

that φ1 holds in V1 and φ2 in V2, the vertical chop
φ2

φ1
expresses that the current

view V can be divided into two vertically adjacent subviews V1 and V2 where φ1

holds in V1 and φ2 in V2. We use juxtaposition for the vertical chop to have a
correspondence to the visual layout in traffic snapshots.

216 E.-R. Olderog

E C

Fig. 3. The shaded area show a collision, i.e., an overlap of the reservations of car E
and C.

We highlight the derived operator 〈φ〉, pronounced somewhere φ, that com-
bines the two chop operators and is essential when applying MLSL:

〈φ〉 ≡ true�

⎛
⎝

true
φ

true

⎞
⎠ � true.

Example 1 (Collision check). Consider Fig. 3 of a traffic snapshot. To refer to the
shaded area, we use the formula 〈re(ego) ∧ re(c)〉. Assuming that the valuation
ν yields ν(ego) = E and ν(c) = C, the formula expresses that somewhere there
is a space where the reservations of the cars E and C overlap. The collision
check can now be expressed by existentially quantifying over all cars different
from ego: cc ≡ ∃c : c
= ego ∧ 〈re(ego) ∧ re(c)〉. Finally, the safety from ego’s
perspective is expressed by its negation: ¬cc. ��

3 Controller

To safeguard lane change manoeuvres, every car will be equipped with a suit-
able controller. In general, we consider a variant of Timed Automata with data
variables, called Automotive Controlling Timed Automata (ACTA). In ACTA
guards and invariants are given by MLSL formulae and constraints on clocks and
data. The actions of ACTA are those that appear in the transitions on traffic
snapshots (see Sect. 2) or updates of clocks and data.

For defining the controller for a car E, we have to be explicit what E knows
of other cars. Formally, we employ a sensor function describing what a car E
can see of the spaces of other cars. In this paper, we assume perfect knowledge:
E sees the full safety envelope of every other car D in its view, i.e., the size of
D plus the safety space needed for braking to come to a complete standstill. In
Fig. 2, car E sees (part of the safety envelope of) car D under the assumption of
perfect knowledge. In reality, each car will have only limited knowledge of the
other cars due to restrictions of its sensors. For example, a car E may see the
size of other cars in its neighbourhood. Then car E cannot see car D in the view
shown in Fig. 2.

Space for Traffic Manoeuvres: An Overview 217

Controller LCP: Lane Change under Perfect Knowledge. The controller LCP [1]
of each car, referred to by the car variable ego, uses the following protocol cycle
with four states q0, . . . , q3 when performing a successful lane change: see Fig. 4.

– In the initial state q0, car ego drives on its current lane, stored in the variable
n, such that no collision occurs, i.e., the collision check fails (cf. Example 1).
This is expressed by ¬cc ≡ ¬∃c : c
= ego ∧ 〈re(ego) ∧ re(c)〉 stating that
there is no other car c such that somewhere the reservations of ego and c
overlap. At any moment, car ego may claim a new lane, say to its left, by
proceeding to state q1 with the action c(ego, n + 1).

– In state q1, the controller of car ego checks for a potential collision. This is
expressed by pc ≡ ∃c : c
= ego∧〈cl(ego) ∧ (re(c) ∨ cl(c))〉 stating that there is
another car c such that somewhere the claim of ego overlaps with a reservation
or claim of c. If pc holds, car ego withdraws its claim by performing the action
wd c(ego) and returning to the initial state q0. If ¬pc holds, car ego proceeds
to state q2.

– In state q2, the controller of car ego continues to check ¬pc up to a time-out
to. If another car claims the same lane, pc holds and car ego withdraws its
claim by performing the action wd c(ego) and returning to the initial state q0.
If by the time-out ¬pc still holds, car ego reserves the new lane by proceeding
to state q3 with the action r(ego).

– In state q3, car ego changes lanes by gradually moving to the new lane. We
assume that this lane change is completed within an upper time bound tlc.
Then car ego withdraws the reservation of the old lane by proceeding to state
q0 with the action wd r(ego, l), where l records the new lane n + 1.

This protocol is implemented by the ACTA shown in Fig. 4. It uses a clock
variable x and data variables n, l for storing lane numbers. The states q0, q2, q3
have the invariants ¬cc, ¬pc∧x ≤ to, x ≤ tlc, respectively. Transitions between
states q and q′ have the form

q
g/a;r−−−→ q′

for a guard g, an action a, and a clock reset r.

4 Safety

A traffic snapshot is safe if it satisfies the property

Safe ≡ ∀c, d : c
= d ⇒ ¬ 〈re(c) ∧ re(d)〉 .

We can prove that the lane-change controller LCP guarantees safety under the
following assumptions:

A1. There is an initial safe traffic snapshot T0.
A2. Every car E has a distance controller DC keeping the property

¬cc ≡ ¬∃c : c
= ego ∧ 〈re(ego) ∧ re(c)〉

invariant under time transitions, i.e., while E is driving on its current lane
without changing lanes.

218 E.-R. Olderog

q0 : ¬cc q1 q2 :
¬pc

x ≤ to

q3 : x ≤ tlc

n+ 1 ≤ N/
c(ego, n+ 1);
l := n+ 1

pc/
wd c(ego)

¬pc/
x := 0

pc/
wd c(ego)

¬pc/
r(ego);x := 0

x ≥ tlc/
wd r(ego, l);n := l

Fig. 4. The lane change controller LPC.

A3. Every car E is equipped with the controller LCP.

Theorem 1 (Safety of DC and LCP). Under the assumptions A1–A3, every
traffic snapshot T S that is reachable from T0 by transitions allowed by the con-
trollers DC and LPC is safe.

Proof. The proof proceeds by induction on the number of transitions needed to
reach T from T0 and can be found in [1,10]. ��

5 Linking

In Sects. 2 and 3 we have introduced an abstract spatial model for reasoning
about safety of traffic manoeuvres. It hides the underlying car dynamics by leav-
ing the lengths of reservations and claims of cars uninterpreted. These lengths
depend on the speeds and resulting braking distances of the cars.

b1

b2

v

vref

T

s
d4 d2

d1

d5 d3

Fig. 5. The sensors and actuators assumed for each car.

In [10] we linked the spatial and dynamic model of traffic. Whereas the spatial
model uses MLSL formulae built up from atoms like

free, re(c), cl(c),

Space for Traffic Manoeuvres: An Overview 219

the dynamic model is built up from differential equations for the car dynamics
as well as sensors and actuators assumed for each car as shown in Fig. 5 from
[10]. We assume that each car is equipped with the following observers:

– v gives its own velocity,
– d1 gives the distance to the car ahead in the same lane,
– d2 (d3) give the distance to the car ahead in the left (right) neighboring lane,
– d4 (d5) give the distance to the car behind in the left (right) neighboring lane,

and
– b1 (b2) tell whether a car on the lane next to the left (right) one is “blinking”,

indicating a desired lane change to the left (right) neighboring lane.

Using Fig. 6, where a car E follows a car C, we outline the dynamic model
from [10]. Differential equations describe the motion of car E:

ḋ1(t) = vC(t) − vE(t)

v̇E(t) = −a(d1(t), vC(t)) vE(t)2 + u(t),

where u(t) ∈ [u, u] and a is an auxiliary function. The safety distance ds of car
E with initial velocity v0

E can be calculated from these equations.

C E vE C v

d

ds

1

Fig. 6. Cars E and C with their velocities vE and vC , the distance d1 between them,
and the safety distance (extension of the safety envelope) ds of E.

5.1 Linking: Distance Controller DC

DC keeps the property “no collision”

¬cc ≡ ¬∃c : c
= ego ∧ 〈re(ego) ∧ re(c)〉

invariant under time transitions, i.e., when the car moves in its current lane
and does not initiate or perform any lane change. Note that “no collision” is
a symmetric property, looking forward and backward from car E at cars C as
shown in Fig. 7.

We replace this symmetric property by the property “no collision forward”:

¬ccf ≡ ¬∃c : c
= ego ∧ 〈re(ego) ∧ re(c)〉 ∧ 〈c ahead ego〉

220 E.-R. Olderog

EC

E C

Fig. 7. Car E looking forward and backward for a car C on its lane.

The idea is that if each car is looking forward to prevent collisions then the
symmetric property “no collision” is satisfied. The linking predicate is now

¬ccf ⇐ ds < d1

stating that whenever the safety distance ds is below the distance to the front
car, the spatial property ccf is satisfied.

5.2 Linking: Lane-Change Controller LPC

The only safety critical transition of the controller LPC is the one from state q2
to state q3 that turns a claim into a reservation. This transition is guarded by
the spatial formula “no potential collision”:

¬pc ≡ ¬∃c : c
= ego ∧ 〈cl(ego) ∧ (re(c) ∨ cl(c))〉 .

For linking it with the dynamic model, we distinguish two cases:
Case 1 : φre ≡ ¬∃c : c
= ego ∧ 〈cl(ego) ∧ re(c)〉

E

C C

d s, max

d s

d t
d b

Fig. 8. Potential collision check of car E w.r.t. other reservations.

The formula φre states that no (other) car c on ego’s target lane has a
reservation overlapping with ego’s claim. The car c may be (i) ahead of ego (or
aligned with ego) or (ii) behind ego. In subcase (i), the concrete controller looks
forward using the observables ds giving the safety distance needed for car ego at
its current speed and dt (with t either 2 or 3) measuring the distance to the next
car c in front of ego on the target lane of its lane change maneuver. The concrete
controller checks the inequality ds < dt. In subcase (ii), the concrete controller
looks backward using the observables db (with b either 4 or 5) measuring the

Space for Traffic Manoeuvres: An Overview 221

distance to the next car behind ego on the target lane and ds,max, the maximal
braking distance of any car, i.e., an overapproximation of the actual braking
distance of that car. The concrete controller checks the inequality ds,max < db.
The subcases are summarised in Fig. 8. The linking predicate is here φre ⇐ ds <
dt ∧ ds,max < db.
Case 2 : φcl ≡ ¬∃c : c
= ego ∧ 〈cl(ego) ∧ cl(c)〉

The formula φcl states that no other car c has a claim on ego’s target lane
overlapping with ego’s claim. Such a car c may only be in a lane next to ego’s
target lane. In this case, the concrete controller checks with its sensor bt (with
t either 1 or 2) on the side of the target lane for a turn signal of some car c on
the lane next to the target lane. The formula φcl is satisfied if ¬bt holds. This
case is summarised in Fig. 9. The linking predicate is here φcl ⇐ ¬bt.

C

E
bt

Fig. 9. Potential collision check of car E w.r.t. other claims: car E and C put claims
on the same target lane.

6 Tool Support

When the foundations of an approach are laid, the search for tool support starts.
We first report about negative results, dealing with undecidability.

6.1 Satisfiability Problem

The Satisfiability Problem for MLSL is defined as follows.

Given: an MLSL formula φ.

Question: ∃ M = (T , V, ν) : M |= φ ?

Thus we look for a model M consisting of a traffic snapshot T , a view V and
a valuation ν that satisfies the formula φ. Two undecidability results have been
established.

The first undecidability result is inspired by the undecidability proof for
the satisfiability problem of the Duration Calculus (DC) by Zhou, Hansen and
Sestoft [21,22], where the authors show that the Halting Problem of two-counter

222 E.-R. Olderog

machines can be reduced to the satisfiability problem of Duration Calculus. The
key idea is that in a time interval of fixed length 4 the current configuration of
a given two-counter machine consisting of the control state and the arbitrarily
large values of the two counters can be encoded by DC formulae. The first part
of length 1 encodes the control state, the second part of length 1 the value of
the first counter, the third part of length 1 a separator symbol, and the forth
part of length 1 the second counter.

The encoding exploits that in DC with a continuous time domain arbitrarily
many value changes of an observable (time-dependent state variables) can occur
within a time interval of fixed length 1. Thus the arbitrarily large value of a
counter can be represented within such a time interval. Also, it is convenient
that in DC observables can range over arbitrary finite domains, here the set of
control states plus some extra separator symbols. Further DC formulae specify
how for each given time interval of length 4 the next time interval of length 4
encoding the next configuration can be obtained. The computation of the two-
counter machine consisting of a sequence of configurations is then encoded by a
corresponding sequence of DC formulae connected by the chop operator, where
each formula specifies the relevant configuration on a time interval of length 4.

Inspired by this DC result, the following reduction has been shown in [23,24]:

Halting Problem Problem for two-counter machines

≤ Satisfiability Problem for MLSL with length measurement �.

Here the symbol ≤ denotes reducibility. The idea is that in a spatial interval of
fixed length 5 the current configuration of a given two-counter machine consist-
ing can be encoded by an MLSL formulae with length measurement. Instead of
DC observables, MLSL has only its three atoms free, re(c) and cl(c) for encod-
ing the control states and the values of the counters. Since in traffic snapshots
each car c can have only one reserved or claimed space in each lane, existential
quantification is used. For example, the sequence of spatial length 1

(∃c : cl(c)� ∃c : re(c)� free� ∃c : re(c)� ∃c : cl(c)) ∧ � = 1

with two existential reservations separated by a free space and framed by an
initial and final existential claim encodes the second control state. The formula
without the two embracing existential claims encodes the value 2 of one of the
counters. A configuration of a given two-counter machine is then encoded by an
MLSL formula with length measurement as follows. The first part of length 1
encodes the control state, the second part of length 1 the value of the first
counter, the third part of length 1 an existential claim as separator, the forth part
of length 1 the second counter, and the fifth part of length 1 an existential claim
as final marker. The encoding exploits that reservations of cars can be arbitrarily
short. Further MLSL formulae specify how for each given spatial interval of

Space for Traffic Manoeuvres: An Overview 223

length 5 the next spatial interval of length 5 encoding the next configuration
can be obtained.

In [25], a second undecidability result has been established for MLSL. The
proof shows the reduction

Empty Intersection Problem for context-free languages

≤ Satisfiability Problem for MLSL.

The idea is that an MLSL formula describes that each of the given two
context-free grammars GD and GU have one derivation producing that same
word of terminal symbols. The different terminal and nonterminal symbols of the
grammars are encoded by sequences of reservations of different cars. Adjacent
symbols are separated by free space. A derivation in grammar GD is growing
downwards from the top lane, using one lane for each (intermediate) sentential
form, and a derivation in grammar GU is growing upwards from the bottom
lane, also using one lane for each (intermediate) sentential form. The encoding
exploits that the width of the road can initially be chosen arbitrarily large. MLSL
formulae express how a derivation step in one of the two grammars proceeds,
thereby relating the reservations and free spaces of two adjacent lanes. These
MLSL formulae are finally combined into one MLSL formula that is satisfied
if and only if the context-free grammars GD and GU can produce the same
terminal word.

As indicated above, the undecidability results for DC and MLSL exploit some
artefacts of the models. In DC the time-dependent observables can change their
values arbitrarily often within a given finite time interval. In MLSL cars can be
arbitrarily small or roads may have arbitrarily many lanes. These assumptions
enable the reductions to given undecidable problems. However, in the real world
these assumptions are not met. What can be shown under more realistic assump-
tions? For MLSL, this is only partially explored. In the following we report on
positive results in our search for tool support.

6.2 Search for Tool Support: Positive Results

One approach due to S. Linker is based on EMLSL, an extension of MLSL with
modalities, that allows for an abstract formalisation of controllers and formal
interactive proofs either manual in a formal proof system or mechanised inside
Isabelle/HOL: see Sect. 6.3.

A second approach deals with checking MLSL formulae on specific given
traffic snapshots. This would be needed when evaluating a guard or an invari-
ant in a controller for the current traffic snapshot. Here two translations have
been pursued. One translation by C. Bischopink in his BSc thesis (2016) is
from MLSL into Quantified differential Dynamic Logic (QdL) developed by A.
Platzer [26]. Another translation by M. Fränzle, M.R. Hansen and H. Ody [27] is

224 E.-R. Olderog

from a variant of MLSL with so-called scopes into Quantified Linear Integer-Real
Arithmetic (QLIRA): see Sect. 6.4.

A third approach connects our work on MLSL and controllers based on it with
the model checker UPPAAL for timed automata. In [28], we consider a hazard
warning protocol that combines spatial and timed properties. The verification
of the timing conditions for a chain of cars communicating with each other
requires an induction where the inductive step involving only the controllers
of two cars has been checked by translation into and use of UPPAAL. In [29],
liveness properties of an extended lane change controller maintaining MLSL
invariants are checked with UPPAAL.

6.3 EMLSL with Modalities

In [24], S. Linker developed an extended version of MLSL, called EMLSL, that
contains the following modalities to be able to reason about transitions inside
the logic:

� c(d) - after all claims of car d,

� r(d) - after all reservations of car d,

�wd c(d) - after all withdrawals of claims of car d,

�wd r(d) - after all withdrawals of reservations of car d,

� τ - after all time transitions,

G - globally, i.e. after all sequences of transitions.

Example 2 (Formal Safety Specification). Using EMLSL, Linker [24] expresses
the safety requirements for a car e and the properties of the distance controller
and the lane change controller as follows:

Local safety of a car e : safe(e) ≡ ∀c : c �= e ∧ ¬ 〈re(c) ∧ re(e)〉

Global safety: Safe ≡ ∀e : G safe(e)

Distance Controller: DC ≡ G ∀c, d : c �= d →
(¬ 〈re(c) ∧ re(d)〉 →

�τ ¬ 〈re(c) ∧ re(d)〉)

Potential collision check: pc(c, d) ≡ c �= d ∧ 〈cl(d) ∧ (re(c) ∨ cl(c))〉

Lane Change controller: LC ≡ G ∀d : (∃c : pc(c, d) → �r(d) ⊥)

Space for Traffic Manoeuvres: An Overview 225

The formula DC expresses that for different cars c and d when their reservations
are disjoint they stay so under time transitions. The formula LC expresses that
for all cars d whenever there is a potential collision with another car c then d
does not perform any reservation action. Based on these specifications, Linker
conducts formal safety proofs in two different ways. The first approach uses
a system of labelled natural deduction for EMLSL introduced in [24]. Natural
deduction allows for proofs from assumptions that can be eliminated later. For
each logical operator the system contains an introduction and an elimination
rule as known from first-order logic [30]. The labels refer to information about
the semantics of EMLSL formulae that is available in the proof system. These
are the labels ts for traffic snapshot and v for view. A labelled formula is then
of the form ts, v : φ, where φ is an EMLSL formula. Using this proof system for
EMLSL, Linker [24] proved manually the following deduction:

{ts, v : DC, ts, v : LC, ts, v : ∀e : safe(e)}
� ts, v : ∀e : G safe(e).

The second approach uses a formalisation of the semantics of EMLSL in
Isabelle/HOL to conduct a fully mechanised proof of an analogous safety
result [31].

6.4 MLSL with Scopes

In [27], M. Fränzle, M.R. Hansen and H. Ody develop the idea that the sat-
isfiability of MLSL becomes decidable if inside MLSL formulae car quantifiers
∃c and the atom free refer only to finite set of cars. To this end, the authors
introduce the set MLSLS of MLSL formulae (prefixed) with scopes. The scopes
are motivated by sensors allowing only for a limited knowledge of other cars (cf.
Sect. 3). The changes in the syntax and semantics of MLSLS are as follows:

– Syntax: a scoped formula is of the form cs : φ for a finite set cs ⊆ CV ar.

– Semantics: models M = (CS, T , V, ν) contain now a finite set CS ⊆ I of
car identifiers. The inductive definition of the satisfaction relation |= has the
following new core cases:

M |= cs : φ iff ({ν(c) | c ∈ cs}, T , V, ν) |= φ,

M |= ∃c : φ iff (CS, T , V, ν ⊕ {c �→ C}) |= φ for some C ∈ CS,

M |= free iff no car C ∈ CS is in one-lane view V.

An MLSLS formula φ0 is well-scoped iff every subformula ∃c : φ and every atom
free occurs inside a scoped formula cs : φ′. Thus for checking the satisfiability of
well-scoped MLSLS formulas only models M with finitely many cars need to be
considered.

226 E.-R. Olderog

M. Fränzle, M.R. Hansen and H. Ody show in [27] that this can be exploited
for a decidability result. The idea is to establish a reduction to the satisfiabil-
ity problem of Quantified Linear Integer-Real Arithmetic (QLIRA), which is
decidable:

Satisfiability Problem for well-scoped MLSLS

≤ Satisfiability Problem for QLIRA.

The reduction uses the set N of natural numbers for encoding car identifiers and
lanes and the set R of real numbers for encoding positions and spacing.

7 Conclusion

So far our presentation concentrated on motorways. There analysis is simplified
by the fact that all cars drive in one direction. Other types of roads have also
been investigated.

d

A

2. Pass 3. CB

CE

claim E

1. LC
max

b

Fig. 10. Country roads: overtaking manoeuvre of car E in the presence of opposing
traffic represented by car A.

In [32], we studied overtaking manoeuvres on country roads: see Fig. 10.
This manoeuvre comprises lane change (LC), passing the car ahead (Pass), and
changing back (CB). The challenge is opposing traffic. Thus a car E overtaking
another car C has to check for enough space on the target lane (despite of
opposing traffic, here A, for which an extra space dmax is added to absorb the
movement of A while E is overtaking) and for enough space on the original lane
(to reenter in front of C). The latter point is safeguarded in [32] by a suitable
communication att (for attention) of E that asks C to help E when reentering
the original lane in front of C: see Fig. 11. In particular, C will deny car D to
perform a lane change in front of C.

To this end, each car has an additional helper controller HC, as shown in
Fig. 12. for car C in the role of ego. With the transition from q0 to q1 car E
behind C informs C that it has the intention of overtaking C. The transition
from q1 to the urgent state q2 takes a request from car D that indicates with a

Space for Traffic Manoeuvres: An Overview 227

C

A

att

Dreq

noE

b

Fig. 11. Via communications car C helps car E to reenter in front of C.

claim the desire to change its lane and move in front of C. This request is denied
immediately by answering “no” to C. With the transition from q1 to q0, the
helper controller of C returns to its initial state when the car E has completed
its overtaking manoeuvre and is thus in front of E.

q0 q1 q2 : U

att?e ∧ 〈re(e)� free � re(ego)〉 /
h := e

〈re(ego)� free � re(h)〉

req?d ∧ 〈re(ego)� free� cl(d)〉 /
c := d

no!c

Fig. 12. The helper controller HC inside car C.

In [33], M.Schwammberger and M. Hilscher study the safety of car manoeu-
vres at crossings in urban traffic. There disjointness of curved spaces needs to
be guaranteed. In Fig. 13, car E has the shaded curved space as its view. Along
this view (extended) MLSL formulae are used to express spatial properties.

In all cases, adapted versions of the spatial logic MLSL served to establish
the safety of traffic manoeuvres. For future work we leave the following topics:

– Imperfect knowledge. If cars do not know the extension of reservations of other
cars, explicit communication between them is needed. For motorways this has
been discussed in [1]. For country roads, S. Lampe studied this setting in his
BSc thesis (2017).

– Dense traffic. For simplicity the extension of a reservation of a car includes
the full braking distance needed to come to a complete standstill. This is safe
but unrealistic in dense traffic. We can reduce the extension of reservations
by taking the speed of the previous car into account.

– Automatisation. Clearly, more research on automatisation and tool support is
desirable. First steps towards synthesis of controllers for lane change manoeu-
vres are reported in [34].

228 E.-R. Olderog

0

F

1

2

3
C

D

D

4

C

5

B

6 A
B

7 E c0 c1

c2
C

c3
B

Fig. 13. Urban traffic: a planned turn left by car E at a crossing.

Acknowledgements. My interest in the safety of traffic manoeuvres arose in the
Project H3 (Cooperating Traffic Agents) of the collaborative research center AVACS
(Automatic Verification and Analysis of Complex Systems, 2004–2015). In particular,
I thank Werner Damm, Andre Platzer, and Jan-David Quesel for inspiring discussions.

The following colleagues and students helped to shape the results on the spatial
approach to traffic safety, many of them reported in this paper: Anders P. Ravn, Rafael
Wisniewsky, Gregor v. Bochmann, Martin Fränzle, Michael R. Hansen, Sven Linker,
Martin Hilscher, Heinrich Ody, Maike Schwammberger, Christopher Bischopink, Lasse
Hammer, Christian Harken, and Sven Lampe. Many thanks to all of them!

We also thank the anonymous reviewers for their helpful comments that improved
the presentation.

References

1. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving
safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24559-6 28

2. Varaija, P.: Smart cars on smart roads: problems of control. IEEE Trans. Autom.
Control AC–38, 195–207 (1993)

3. Lygeros, J., Godbole, D.N., Sastry, S.S.: Verified hybrid controllers for automated
vehicles. IEEE Trans. Autom. Control 43, 522–539 (1998)

4. Jula, H., Kosmatopoulos, E.B., Ioannou, P.A.: Collision avoidance analysis for lane
changing and merging. Technical report UCB-ITS-PRR-99-13, California Partners
for Advanced Transit and Highways (PATH), University of California at Berkeley
(1999)

5. Arechiga, N., Loos, S.M., Platzer, A., Krogh, B.H.: Using theorem provers to guar-
antee closed-loop system properties. In: American Control Conference (ACC) 2012,
pp. 3573–3580. IEEE (2012)

https://doi.org/10.1007/978-3-642-24559-6_28
https://doi.org/10.1007/978-3-642-24559-6_28

Space for Traffic Manoeuvres: An Overview 229

6. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: hybrid, distributed,
and now formally verified. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol.
6664, pp. 42–56. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21437-0 6

7. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Spinger, Berlin (2010)

8. Althoff, M., Stursberg, O., Buss, M.: Safety assessment of autonomous cars using
verification techniques. In: American Control Conference (ACC) 2007, pp. 4154–
4159. IEEE (2007)

9. Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents.
Int. J. Control 79, 395–421 (2006)

10. Olderog, E.R., Ravn, A.P., Wisniewski, R.: Linking discrete and continuous models,
applied to traffic manoeuvres. In: Hinchey, Mike G., Bowen, Jonathan P., Olderog,
Ernst-Rüdiger (eds.) Provably Correct Systems. NASA Monographs in Systems
and Software Engineering, pp. 95–120. Springer, Berlin (2017). https://doi.org/10.
1007/978-3-319-48628-4

11. Moor, T., Raisch, J., O’Young, S.: Discrete supervisory control of hybrid systems
based on l-complete approximations. Discret. Event Dyn. Syst. 12, 83–107 (2002)

12. Moor, T., Raisch, J., Davoren, J.: Admissiblity criteria for a hierarchical design of
hybrid systems. In: Proceedings of the IFAD Conference on Analysis and Design
of Hybrid Systems, pp. 389–394. St. Malo (2003)

13. Habets, L.C.G.J.M., Collins, P., van Schuppen, J.: Reachability and control synthe-
sis for piecewise-affine hybrid systems on simplices. IEEE Trans. Autom. Control
51, 938–948 (2006)

14. He, J., et al.: Provably correct systems. In: Langmaack, H., de Roever, W.-P.,
Vytopil, J. (eds.) FTRTFT 1994. LNCS, vol. 863, pp. 288–335. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58468-4 171

15. Hinchey, M.G., Bowen, J.P., Olderog, E.R.: Provably Correct Systems. NASA
Monographs in System and Software Engineering, 328 p. Springer, Berlin (2017).
ISBN 978-3-319-48627-7

16. Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. Com-
puter 18, 10–19 (1985)

17. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process.
Lett. 40, 269–276 (1991)

18. Schäfer, A.: A calculus for shapes in time and space. In: Liu, Z., Araki, K. (eds.)
ICTAC 2004. LNCS, vol. 3407, pp. 463–477. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31862-0 33

19. Schäfer, A.: Axiomatisation and decidability of multi-dimensional duration calcu-
lus. Inf. Comput. 205, 25–64 (2007)

20. Schäfer, A.: Specification and verification of mobile real-time systems. Ph.D thesis,
Department of Computing, University of Oldenburg (2006)

21. Chaochen, Z., Hansen, M.R., Sestoft, P.: Decidability and undecidability results
for duration calculus. In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds.) STACS
1993. LNCS, vol. 665, pp. 58–68. Springer, Heidelberg (1993). https://doi.org/10.
1007/3-540-56503-5 8

22. Chaochen, Z., Hansen, M.R.: Duration calculus: a formal approach to real-time sys-
tems. Monographs in Theoretical Computer Science. An EATCS Series. Springer,
Berlin (2004)

23. Linker, S., Hilscher, M.: Proof theory of a multi-lane spatial logic. Log. Methods
Comput. Sci. 11 (2015)

https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1007/978-3-319-48628-4
https://doi.org/10.1007/978-3-319-48628-4
https://doi.org/10.1007/3-540-58468-4_171
https://doi.org/10.1007/978-3-540-31862-0_33
https://doi.org/10.1007/978-3-540-31862-0_33
https://doi.org/10.1007/3-540-56503-5_8
https://doi.org/10.1007/3-540-56503-5_8

230 E.-R. Olderog

24. Linker, S.: Proofs for traffic safety: combining diagrams and logics. Ph.D thesis,
Department of Computing, University of Oldenburg (2015)

25. Ody, H.: Undecidability results for multi-lane spatial logic. In: Leucker, M., Rueda,
C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp. 404–421. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25150-9 24

26. Platzer, A.: Quantified differential dynamic logic for distributed hybrid systems.
In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 469–483. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15205-4 36

27. Fränzle, M., Hansen, M.R., Ody, H.: No need knowing numerous neighbours. In:
Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol.
9360, pp. 152–171. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23506-6 11

28. Olderog, E.-R., Schwammberger, M.: Formalising a hazard warning communication
protocol with timed automata. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir,
A., Legay, A., Mardare, R. (eds.) Models, Algorithms, Logics and Tools. LNCS,
vol. 10460, pp. 640–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63121-9 32

29. Schwammberger, M.: Introducing liveness into multi-lane spatial logic lane con-
trollers using uppaal. In: Gleirscher, M., Kugele, S., Linker, S., (eds.) Proceedings
of the Safe Control of Autonomous Vehicles (SCAV). EPTCS (2018), to appear

30. van Dalen, D.: Logic and Structure. Universitext, 3rd edn. Springer, Berlin (1994)
31. Linker, S.: Spatial reasoning about motorway traffic safety with Isabelle/HOL.

In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 34–49.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1 3

32. Hilscher, M., Linker, S., Olderog, E.-R.: Proving safety of traffic manoeuvres on
country roads. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming
and Formal Methods. LNCS, vol. 8051, pp. 196–212. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39698-4 12

33. Hilscher, M., Schwammberger, M.: An abstract model for proving safety of
autonomous Urban traffic. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS,
vol. 9965, pp. 274–292. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46750-4 16

34. Bochmann, G.V., Hilscher, M., Linker, S., Olderog, E.R.: Synthesizing and verify-
ing controllers for multi-lane traffic maneuvers. Form. Asp. Comput. 29, 583–600
(2017)

35. Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Safe and optimal adaptive cruise
control. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design.
LNCS, vol. 9360, pp. 260–277. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23506-6 17

36. Xu, B., Li, Q.: A spatial logic for modeling and verification of collision-free control
of vehicles. In: Wang, H., Mokhtari, M., (eds.) 21st International Conference on
Engineering of Complex Computer Systems (ICECCS), pp. 33–42. IEEE Computer
Society (2016)

https://doi.org/10.1007/978-3-319-25150-9_24
https://doi.org/10.1007/978-3-642-15205-4_36
https://doi.org/10.1007/978-3-319-23506-6_11
https://doi.org/10.1007/978-3-319-23506-6_11
https://doi.org/10.1007/978-3-319-63121-9_32
https://doi.org/10.1007/978-3-319-63121-9_32
https://doi.org/10.1007/978-3-319-66845-1_3
https://doi.org/10.1007/978-3-642-39698-4_12
https://doi.org/10.1007/978-3-319-46750-4_16
https://doi.org/10.1007/978-3-319-46750-4_16
https://doi.org/10.1007/978-3-319-23506-6_17
https://doi.org/10.1007/978-3-319-23506-6_17

Cloud Robotics: A Distributed Computing
View

Wang Huaimin1, Ding Bo1(&), and Jie Xu2

1 College of Computer, National University of Defense Technology, Hunan
410073, China

{hmwang,dingbo}@nudt.edu.cn
2 School of Computing, University of Leeds, Leeds LS29JT, UK

J.Xu@leeds.ac.uk

Abstract. As an interdiscipline of distributed computing and robots, cloud
robotics concerns augmenting robot capabilities by connecting them to the
powerful backend cloud computing infrastructure. It is a field of great potential,
and most recent discussions on this topic are from the point of view of robotics.
In this paper, we discuss this field mainly from the aspect of distributed and
cloud computing, i.e., “what distributed computing technologies can contribute
to cloud robotics?” and “what challenges does cloud robotics bring to distributed
computing?” This paper also presents our early experience towards a cloud
robotic software infrastructure which is based on the newly-emerged edge
computing model and supports the direct deployment of existing ROS (Robot
Operating System) packages.

Keywords: Distributed computing � Cloud robotics � Collective intelligence
Quality of service

1 Introduction

“Connecting” is the eternal theme of distributed computing. In the past half-century, we
have witnessed the continuous evolution of devices to be connected, from a few
terminals on the ARPANET to numerous ubiquitous computing devices on the Internet.
The driven forces behind this amazing evolution were two-fold. Firstly, “the whole is
greater than the sum of the parts”, thus connections inside the cyberspace are always
strongly encouraged. This is also the primary source of strength of distributed com-
puting. Secondly, connections among computation nodes also imply the connections
among their human users. Thus, crowd intelligence [1] in the human society can be
exploited on an unprecedented scale with distributed computing. It is beyond all doubt
that these two forces, i.e., connecting entities in the cyberspace and connecting the
human intelligence, will continue to drive the prosperity of distributed computing.

However, the above-mentioned two forces will not be the only ones at work in the
future. Today, more and more computing devices are able to interact with the world
directly by physical sensors and actuators instead of only reside in the cyberspace.

© Springer Nature Switzerland AG 2018
C. Jones et al. (Eds.): Zhou-Festschrift, LNCS 11180, pp. 231–245, 2018.
https://doi.org/10.1007/978-3-030-01461-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01461-2_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01461-2_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01461-2_12&domain=pdf

Along with this trend, distributed computing is starting a new journey of connecting the
entities in the physical space. Cloud robotics [2], a recently-emerged cross discipline of
robotics and cloud computing, is an effort towards this goal with far-reaching
significance.

The word “cloud robotics” was first coined by the roboticist in 2010 [3]. In a cloud
robotic system, robots, which perform complex tasks in the physical space, are
seamlessly connected to the cloud, which acts as a back-end support center in the cyber
space. The entities in the cyber and physical space achieve complementary advantages
with the help of the network. In the field of robotics, cloud robotics has been regarded
as “a key to the next generation robots” [2] and interests have grown dramatically in
recent years. For example, “Robots that teach each other”, being realized on cloud
robotics, was ranked as a breakthrough technology of the year 2016 by the MIT
Technology Review1; A major concern of the US NRI (National Robotic Initiative) 2.0
published in 2017 is how robots can learn to perform more effectively and efficiently
using large pools of information from the cloud2.

Up to now, discussions on cloud robotics are mostly conducted from the point of
view of robotics. However, we can foresee that the “cloud in the cyber space + robots
in the physical space” architecture is also a paradigm which has a far-reaching impact
on the development of distributed computing. It is a key to enable the next-generation
distributed system which can not only connect the cyber-space entities (as well as its
users) but also connect the entities in the physical world. In this paper, we discuss cloud
robotics from this aspect, focusing on two sides of a coin: “What distributed computing
technologies can contribute to the development of cloud robotics?” and “what chal-
lenges does cloud robotics bring to distributed computing research?”

The remainder of this paper is organized as follows. In Sect. 2, we will focus on the
driven forces of the emergence of cloud robotics, mainly from the aspect of computing
techniques. Section 3 focuses on the roles of cloud in this novel computing paradigm.
Section 4 discusses the challenges to the traditional distributed computing technology
brought by cloud robotics. Section 5 presents our early experience in this field.

2 From Backend Computer to Cloud

Roboticists have long been plagued by the limited capability of onboard computers.
Take SLAM (Simultaneous Localization and Mapping), a problem being regarded as a
“holy grail” in the field of robotics which provides the means to make a robot truly
Autonomous [4]. It aims at simultaneously drawing a surrounding map and locating a
mobile robot itself. Although related algorithms have been improved largely in the past
three decades, the huge memory and CPU footprint still limits its usage in large-scale
scenarios. On the common embedded computing boards without a GPU accelerator, the

1 10 Breakthrough Technologies, https://www.technologyreview.com/lists/technologies/2016/
2 National Robotics Initiative 2.0: Ubiquitous Collaborative Robots (NRI-2.0), https://www.nsf.gov/
pubs/2017/nsf17518/nsf17518.htm

232 W. Huaimin et al.

https://www.technologyreview.com/lists/technologies/2016/
https://www.nsf.gov/pubs/2017/nsf17518/nsf17518.htm
https://www.nsf.gov/pubs/2017/nsf17518/nsf17518.htm

3D dense SLAM algorithm can only achieve a performance of 5.5 fps at most even
with a very low-resolution visual data input (256 pixels on each dimension) [5].

A straightforward way to address this challenge is connecting the robot with high-
performance back-end computer(s). It is common in traditional robotic research. As
early as the 1960s, attempts have been made to connect robots with time-shared
computers [6]. Although they have some similarities to cloud robotic systems, there
exist essential differences. A “robot + backend computer” system is usually designed
for a dedicated task with a tightly-coupled structure and closed boundary. However, the
following recent achievements in distributed computing make things different:

– Computing as utilities. With the development of distributed computing, people can
get massive computing capabilities by loosely connecting a lot of computers
together instead of building a dedicated and expensive monolith. Moreover, with
the cloud technology, computing capabilities can be accessed like other on-demand
utilities such as water and electricity. A recent record of this kind of practice is
made in June 2017: On a dynamically-formed, short-lived virtual machine cluster
which has 580,000 cores based on the Google Compute Engine, 300 CPU-years of
computation is completed in several hours3.

– Big data as services. According to IDC, approximately 80 billion devices will be
connected and the amount of data created worldwide annually will hit 180 zetta-
bytes by 2025. These big datasets contain knowledge missing in traditional small-
scale datasets, which are most likely to contribute to robot’s intelligence. Moreover,
mining the potential of such large-scale data requires powerful infrastructure and
well-designed software. The development of cloud computing makes it possible to
store, analyze, and access them in a service-oriented style conveniently.

– Network as ubiquitous facility. Another significant progress in the past decades is
the development and popularity of network infrastructure, from high-speed global
backbones to various “last-mile” access methods, such as Wi-Fi, satellite and the
upcoming 5G communication. It makes it possible for the robots to seamlessly
access the cyber-space entities.

These three aspects in distributed computing jointly contribute to the emergence of
cloud robotics: “Computing as utilities” enables robots to obtain computation support
in a loosely-coupled and on-demand style, “Big data as services” enables robots to
break their native knowledge limitations by mining the potential of big data, and
“Network as ubiquitous infrastructure” enables the former two actions can be done
anytime anywhere. They also differentiate cloud robotic systems with previous “robot +
backend computer” systems, which only focus on computation support and have a
fixed structure with a closed boundary.

3 220,000 cores and counting. https://cloudplatform.googleblog.com/2017/04/220000-cores-and-
counting-MIT-math-professor-breaks-record-for-largest-ever-Compute-Engine-job.html

Cloud Robotics: A Distributed Computing View 233

https://cloudplatform.googleblog.com/2017/04/220000-cores-and-counting-MIT-math-professor-breaks-record-for-largest-ever-Compute-Engine-job.html
https://cloudplatform.googleblog.com/2017/04/220000-cores-and-counting-MIT-math-professor-breaks-record-for-largest-ever-Compute-Engine-job.html

3 Cloud Roles

As shown in Fig. 1, a cloud robotic system is an open and loosely-coupled distributed
system involving the robots which can directly interact with the physical space and the
cloud computing infrastructure in the cyber space which provides computation, data
and coordination support to the former. This section focuses on the roles of the cloud in
cloud robotics and discusses these three aspects of support in depth. A set of cases are
chosen from existing cloud robotic practices to illustrate the driven forces to introduce
cloud and related distributed computing techniques into robotics.

3.1 Computation Support

To achieve autonomy in complex settings, many robot algorithms are computationally
intensive. Most of them are even inherently parallelized, such as visual data processing,
high-dimensional motion planning, and machine learning by neural networks. In the
past, because of the limitation of available resources, robotic engineers have to adopt
compromised solutions or to introduce expensive, dedicatedly-designed hardware. The
emergence of cloud robotics points out another way, that is, part of the computation can
be offloaded to the cloud on necessary. The aforementioned SLAM problem is a typical
example of computation offloading and also a case which has been intensively studied
by the cloud robotic community.

– (Case1: Cloud-supported SLAM) Robotic vision-based SLAM involves heavy and
continuously-iterated computation, such as raw sensor data processing, feature
extraction and matching, loop closure detection, etc. This process also exhibits a
high degree of parallelism and are an excellent source for GPU accelerators and
cluster computing. In a seminal work presented in [7], the performance of Fas-
tSLAM, a classic SLAM algorithm, is proved to be increased by orders of mag-
nitude after being migrated to a Hadoop cluster and connecting the robot with this
cluster.

Computation
Support

Data
Support

Coordination
Support

Cloud
infrastructure
& Services

Other Information
System

Human

Ubiquitous
Network

Fig. 1. Architecture of cloud robotic systems

234 W. Huaimin et al.

3.2 Data Support

As an autonomous entity acts in the real world, robots need a large volume of data, in
particular, the knowledge hidden in the data, to support their appropriate decision and
action. Traditionally, they can only rely on the very little prebuilt-in data as well as its
prebuilt-in knowledge acquiring algorithms with limited capabilities. With the cloud,
robots can access a huge amount of data being not possible to be maintained by its
onboard computer. And a large computational infrastructure is also the foundation to
the successful processing, analysis and knowledge mining of various data at runtime.
The following two cases are both related to robotic grasping, a task aims at enabling a
robot arm to grasp a specific object. It is a seemingly simple but actually quite complex
action which has been studied for several decades [8].

– (Case2: Grasping with big data-based services) In the traditional robotic grasping
research, the planning of a grasp heavily relies on the knowledge of the target
object. Accurate object recognition is the premise. Today, there are already a set of
cloud services on the Internet which can provide object recognition function. Based
on big data from the Internet, it can easily achieve the accuracy that a robot cannot
achieve while only relying on its local data. In [9], an example which utilize an
early cloud recognition engine, Google goggles, to facilitate robot grasping is
presented.

– (Case3: Learning from robot’s experience) People can grasp an object even without
knowing its name. They just try and then learn from their experience. Google’s
hand-eye coordination experiment [10] is a mimetic of this data-driven method: By
collecting the gripper and camera data from over 800,000 “trial and error” attempts
and train a large convolutional neural network in the backend, robots successfully
learn how to grasp a wide range of different objects, including novel objects not
seen during training.

The above two cases illustrate two kinds of cloud data that can contribute to robots:
(1) Datasets existed on the Internet and human world, which are collected by human
crowdsourcing (e.g., image datasets with tags), recorded from real-life (e.g., human
driving data) or gathered by other entities (e.g., the data from a smart traffic system). By
accessing these data or the cloud services based on these data (e.g., image or voice
recognition service), robots can learn from human intelligence or other information
systems. (2) Datasets accumulated by the robot itself. The dataset in Case 3 is a typical
example. By introducing the cloud computing infrastructure, it is possible to collect,
store and process such data on an amazing scale. By leveraging machine learning and
other data mining techniques, the robot’s intelligence can be lifted to a new level.

3.3 Coordination Support

In a cloud robotic system, the cloud infrastructure is usually supposed to provide
support for multiple robots instead of a single one. Therefore, the cloud can not only
augment the individual capabilities but also facilitate the coordination among these
robots. In concrete, the coordination support from the cloud can be divided into two
layers: knowledge sharing and behavior coordination.

Cloud Robotics: A Distributed Computing View 235

Knowledge sharing is the basis of robot coordination. Contrary to human, robots
can instantaneously transmit the data they get over the network. It makes knowledge
sharing much more easy to be realized, especially while a common repository, i.e., the
cloud, exists in the backend. Each robot can contribute its data incrementally to the
cloud and access the accumulated data when necessary. In this manner, robots are no
longer insulated individuals but a collective whose knowledge can grow over time
continuously. The following case illustrated this idea.

– (Case4: Million object challenge) The million object challenge4 aims at collecting a
corpus of robotic manipulation experiences for one million real-world objects. It is
realized by knowledge sharing among the robots all over the world through the
cloud robotic paradigm. As indicated in its webpage, “If we had all 300 research
Baxters (a robot type) working, we could reach our goal of one million objects in
just eleven days.”

– Furthermore, the cloud can easily form a global view by aggregating data from a
large number of robots and get knowledge on the global scale. Based on this global
view and knowledge, it can act as an efficient coordinator for multi-robot behavior
as shown in the following case. This is similar to many collective coordination
actions in the human society, which is much more efficient while there exists a
powerful backend command/support center.

– (Case5: Cloud-based robot task control) RoboEarth, an early project in cloud
robotics, aims at building a World Wide Web for robots. As part of this project, a
centralized task control system for multi-robot operations is presented in [11]. In
this system, the task-required knowledge, such as environment knowledge, can be
collected on the global scale, being most complete and up-to-date. And then, based
on acquired information, the task planning layer allows multiple robots to coop-
eration by spreading duties.

4 Challenges to Distributed Computing

In the field of distributed computing, cloud robotics is not the first attempt to integrate
cloud computing with frontend devices. A typical early attempt in this trend is the
mobile cloud computing [5], a computing paradigm mainly concerns offloading
computation of mobile devices (e.g., smartphones) to the cloud to save the processing
capability, storage resources and battery lifetime. Another ongoing practice is the cloud
of things [6], in which the cloud is similarly introduced to break the resource limitation
of IoT (Internet of Things) devices. The cloud can also support the running of the
whole IoT system, performing complex tasks such as large-scale data analysis.

Cloud robotics subsumes a portion of research issues of these predecessors in
distributed computing. However, in contrast with traditional computing devices, robots

4 Million object challenge. http://h2r.cs.brown.edu/million-object-challenge/

236 W. Huaimin et al.

http://h2r.cs.brown.edu/million-object-challenge/

possess two unique features, which opens up a set of new challenges unique to cloud
robotics (Fig. 2): (1) Deep cyber-physical integration. Robots are able to percept the
physical world and, more importantly, manipulate it directly. Thus, QoS (Quality of
Service), such as real-time assurance which is not a major concern in traditional cloud
computing, becomes a key factor. (2) Autonomy. Robots exhibit autonomous or even
human-like behavior as a whole. It implies heavy computation, a great demand for data
and powerful machine learning algorithms for each individual. The coordination on the
collective level has to be considered as well. These issues are barely touched in existing
“cloud + terminal” research.

4.1 QoS-Awarness

Since robots directly manipulate the physical world, various constraints in the physical
world will be mapped into robotic software in the form of Quality of Service, such as
request response time and software reliability. For example, if an object recognition
engine does not return a result before a time deadline, it just causes poor human user
experience in mobile cloud computing. In contrast, it may lead to a catastrophic traffic
accident on an auto-pilot vehicle if an obstacle is not recognized appropriately in time.
However, a cloud robotic system is an open system. While we adding the remote cloud
to the backend of robots, the introduction of uncertainty (e.g., unpredictable network
latency) is inevitable. This situation gets worse while many services on the Internet and
even the Internet itself are designed based on the “best-effort” model. To address this
challenge, the following questions should be studied.

Differentiated QoS levels. Not all robotic tasks have strict QoS requirements.
Some of them only need relaxed QoS, and in many cases even “a result is better than no
result”. Therefore, in a cloud robotic system, it is unnecessary to guarantee QoS at any
time as strictly as robot’s native software, which is also nearly impossible in practice.
Instead, the platform should be able to provide flexible QoS guarantee on different
levels and a concrete task can select from them with the tradeoff between capability
augmentation and QoS. For instance, a hard real-time controller may have to run on the
robot’s onboard computer, but tasks with soft real-time requirement such as machine
learning can chose to run on the cloud.

QoS-friendly cloud models. A prominent advantage of cloud computing is the low
marginal management cost by concentrating and intensifying the resources (Fig. 3.a).
However, it also means broad network access with a high degree of unpredictability
and unforeseeable resource competition with other clients on the cloud. In addition,
with a remote cloud being not fully under control, availability and privacy may have to
be sacrificed. All these aspects have serious effects on the QoS assurance. Therefore,
the traditional cloud model needs enhancement to be more QoS-friendly for robots.

In the newly-emerged edge computing paradigm (Fig. 3.b), on-demand services are
provided by small-scale “edge” clouds instead of a centralized cloud being thousands
of miles away. Since the resources and the network link to clients are easier to be
controlled, edge clouds can provide highly-responsive services, support scalability via
edge analytics and enforce privacy policies [12]. This kind of cloud can be placed in
UAV operating centers or on robot command vehicles, and the powerful backbone

Cloud Robotics: A Distributed Computing View 237

cloud in the large-scale datacenter intervenes only when it is really necessary. Another
potential variant of traditional cloud model is the self-organized cloud (Fig. 3.c). It
consolidates idle resources of multiple robots themselves by virtualization and other
cloud techniques. Since there is no need for continuous connection to a real cloud, it is
useful under certain circumstances.

Network and End-to-End QoS. Appropriate network QoS, such as message
priority and latency budget, is critical to the operation of cloud robotic systems. For
instance, in a multiple UAV system, control commands issued from the backend should
be delivered in a high priority while other data such as non-essential video captured by
the UAV’s camera can be delayed or even dropped if the network is overly congested.
There already exist some studies on the management of packet loss, link delay, jitter
and other network QoS properties in traditional distributed applications. They should
be adapted and enhanced to fulfill the more stringent QoS requirement of robot sys-
tems. Furthermore, in order to gain end-to-end QoS and avoid unwanted situations such

Qos Awareness

Autonomy Promotion

Collective Intelligence

Ecosystem Evolution

Differentiated QoS levels
QoS-friendly cloud models

Network and End-to-End QoS.

Computation partitioning and migrating
Task-specific parallelization and optimization

Cloud-supported robot learning.

Collective intelligence architecture
Interoperability and scalability

Human in loop

Cross-discipline software reuse

Evolution and co-evolution

Challenges to
Distributed Computing

Fig. 2. Challenges to Distributed Computing

(c) Self-Organized Cloud

(a) General Cloud (b) Edge Cloud

Cloud

Backbone
Cloud

Edge
Cloud

Edge
Cloud

Fig. 3. Different cloud models in cloud robotics

238 W. Huaimin et al.

as priority inversion, the specified QoS properties should be propagated and inherited
among each link in the “robot-network-cloud” chain. Only in this way, the system-level
and end-to-end QoS property can be assured.

4.2 Autonomy Promotion

A robot is an intelligent machine that performs complex tasks in the physical world
without explicit and continuous human control. As regarding each individual robot, the
introduction of the cloud is supposed to promote such kind of autonomy. A similar
concept named “computation offloading” [13], which concerns statically or dynami-
cally migrating compute-intensive tasks from front-end devices with poor resources to
the cloud, has been thoroughly studied in mobile cloud computing in the past decade.
However, traditional research did not take the characteristics of robot tasks, such as
QoS and computation parallelization, into account. And what is s more, the promotion
of autonomy not only means heavy computation but also the great demand for data and
knowledge. Therefore, while subsuming a portion of research issues of its predecessor,
the autonomy promotion opens up a set of unique challenges to cloud robotics.

Computation partitioning and migrating. For a specific task, which part should
be performed on the cloud need to be well thought out in a cloud robotic system.
Existing works in partitioning mainly concern how to trade off between benefits and
costs, achieving the goal of improving human user experience or saving local resources
such as the battery life. However, for a robotic task, the impact on QoS should be taken
into account as well, such as real-time property degradation and the risk of losing
connection with the cloud. In addition, apart from the preconfigured partitioning model
(i.e., computing-intensive codes are encapsulated as cloud services in advance and
robots invoke them at runtime), there are already some initial attempts towards adaptive
and on-demand offloading such as [14] and [15]. In this model, the cloud provides an
environment that allows the robot to dynamically manage and run its compute-
intensive code. Its realization needs a unified “cloud-robot” software architecture and
the infrastructure which allows the flexible computation migration between robots and
the cloud.

Task-specific parallelization and optimization. The pursuit of robot autonomy
(e.g., promotion of perception precision and optimization of decision) is nearly endless.
It means that the “ceiling” of computation requirement is much higher than that of
traditional frontend devices such as smartphones. For example, robots are being
expected to operate in ever-larger environments. However, the computation in SLAM
algorithms based on EKF (Extended Kalman Filter) increases in quadratic time in the
scale of the map. To cope with the amazing computation complexity, simply migrating
robotic algorithms to the cloud server is far from adequate. Aggressive modifications
are necessary to take advantage of multiple CPUs, rich memory, GPU accelerators and
other cloud resources. Algorithms with the potential to exploit the above-mentioned
features should be given priority in practice. Besides, to accommodate the distributed
computing environment, existing algorithms may have to be enhanced to cope with
time-varying network latency, limited bandwidth and QoS degradation.

Cloud Robotics: A Distributed Computing View 239

Cloud-supported robot learning. A revolution driven by machine learning,
especially deep learning, is taking place in the field of robotics. Deep learning has
reached great success in complicated perception tasks (e.g., object recognition) highly
related to robot autonomy. Some subfields, such as deep reinforcement learning [10],
also exhibits great potential in robot control problems such as navigation and grasping.
Since the training and prediction process is extremely compute-intensive and can be
naturally parallelized, introducing the cloud into robot learning is a practicable choice.
Take object recognition as an example. The state-of-the-art deep neural network
algorithm [3] can only achieve a very poor performance (� 1 Hz) on a common
desktop CPU. In contrast, with the powerful GPU-based parallel computing acceler-
ation on the server, its performance can easily meet the real-time control requirements
of many mobile robots. Another reason making the cloud indispensable in robot
learning is the data support as we have discussed in Sect. 3.2, since deep learning is
also extremely data-intensive.

4.3 Collective Intelligence

Collective intelligence is another challenge brought by robot autonomy. As a concept
stems from the social science, collective intelligence emerges from the collaboration,
cooperation, and competition of a group of individuals5. Recently, the development of
distributed computing, such as the prosperity of the Internet and cloud computing, has
promoted human social collective intelligence to a new level by connecting people on
an unprecedented scale. As robots are also autonomous individuals and they can nat-
urally coordinate through means in the cyber space, the cloud also has great potential to
promote the emergence of robot collective intelligence. As illustrated in Sect. 3.3, there
are already some initial attempts towards enabling robotic knowledge sharing and
behavior coordination. However, a lot of challenges remains.

Collective intelligence architecture. The two major architecture styles having
been thoroughly discussed in distributed computing are centralized (hierarchical) and
peer-to-peer. However, both of them are not suitable for cloud-supported collective
intelligence: The former one has to enforce stringent control from cloud to autonomous
robots and the peer-to-peer one neglects the great potential of the backend cloud. An
ideal architecture may be a mixture of these two ones, in which the cloud acts as an
orchestrator instead of a controller. The role of the cloud can be analogous to that of a
government in a market economy. Although this idea sounds very attractive, it is of
great challenge in realization, especially in substantiating this style to be computable.

Interoperability and scalability. In classical cloud computing, the cloud only acts
as a service provider that responds to requests passively. However, in a cloud robotic
system, the cloud has to proactively send command or update information to the robots.
Thus, firstly, the traditional “clients-to-cloud” interaction model is not enough and a
well-defined “cloud-to-clients” model should be introduced. Secondly, the interoper-
ation on the semantic level of both robotic data and robot behavior should be con-
sidered, especially while different robots are following different technical systems

5 Wikipedia: Collective Intelligence. https://en.wikipedia.org/wiki/Collective_intelligence

240 W. Huaimin et al.

https://en.wikipedia.org/wiki/Collective_intelligence

today. Thirdly, for small-scale collective, the intelligence can be engineered, usually by
introducing the cloud as a powerful backend with a global view and a vast amount of
knowledge. However, for large-scale collectives, it is difficult to engineering every-
thing. We may have to learn from complex systems and introduce related techniques
such as mechanism design, behavior emergence and conflict resolution among multi-
scale goals. The cloud provides an ideal base for substantiating these techniques.

Human in loop. Robotic tasks and robots themselves are highly associated with
human. In cloud-supported collective intelligence, the role of human cannot be ignored.
Basically, it can be divided into the following three categories: (1) human as an
administrator of a robotic collective, (2) human as a call center, who is responsible for
provide support when the robot’s request is beyond the cloud capability, and (3) human
as robot’s partners, for example, as the recipients of robotic services or equal entities
who can contribute to collective intelligence equally. For each kind of role, there exist a
group of open issues have to be addressed. For example, human computation such as
Amazon Mechanical Turk can provide support when the robot’s request is beyond the
cloud capability. However, the costs of human intervention with the cost of robot
failure should be cautiously balanced [2].

4.4 Ecosystem Evolution

Another challenge to distributed computing society, not only on the technology level
but also on the methodology level, is to lay the foundation of cloud robotic software
ecosystem. A valuable lesson learned from existing practices is that complex dis-
tributed computing systems, like cloud robotic systems discussed in this paper, should
not be built entirely from scratch and its construction is an ever-lasting growing
procedure.

Cross-discipline software reuse. On the one hand, software reuse on the infras-
tructure level should be promoted. In traditional distributed systems, middleware and
framework can significantly promote software reuse by encapsulating solutions of
common problems. Similarly, there are many common problems in cloud robotics,
which can be encapsulated into infrastructure and significantly simplify the develop-
ment of cloud robotic system. On the other hand, the established development method
in the robotic community, such as the broad adoption of ROS (Robot Operating
System) [16] and the existing open-source software accumulation based on it, should
be encouraged in building the cloud robotic software system. These two aspects both
need the joint effort of the fields of distributed computing and robotics.

Evolution and co-evolution. A cloud robotic system should be able to adapt and
evolve at runtime. For example, a collective should be able to learn from its experience
and its capability can grow along with environmental and task changes. Furthermore,
from the point of view of distributed computing, robots can be regarded as the tentacles
of the cyber-space entities (such as cloud services and existing information systems) to
the physical world. While the cyber-space entities evolve, which are very common
today, a set of theory and technical means should be introduced to support the co-
evolution of the cloud robotic systems.

Cloud Robotics: A Distributed Computing View 241

5 Our Early Experience

Based on the observations on future directions, we started our research and practices. In
this section, the overall architecture of micROS-Cloud, a cloud robotic software
infrastructure towards the edge cloud model in Fig2, is presented. Some of the initial
achievements towards its realization are also introduced.

5.1 MicROS-Cloud Architecture

As we have mentioned, micROS-cloud is expected to run on the “edge” cloud which is
in the proximity of a group of robots. It is supposed to be connected to the robots
directly and provide support to the robots seamlessly. Its underlying implementation is
based on a modified version of ROS, a widely-adopted software infrastructure in the
robotic community without cloud robotic supports. As shown in Figure 4, it is made up
of the following parts:

– Interoperability protocol. It is responsible for the interoperation between robots and
cloud, which can be chosen from WebSocket, DDS (Data Distribution Service for
Real-time Systems) [17], and the ROS original protocol. All of them allows the
“cloud to clients” reversed interaction.

– Service container. It provides PaaS (Platform as a Service) environment for cloud
services. There are two kinds of service containers: Proprietary Service Framework
and Cloudroid. The former supports the cloud services design dedicatedly to run on
micROS-cloud, and the latter allows existing ROS packages being deployed as
cloud services, whose details will be presented in the next subsection.

– Knowledge base. It stores knowledge highly related to the robotic mission. The
knowledge can be stored in the backend database explicitly or in trained neural
networks (such as CNNs) implicitly.

– Management portal. It enables the human operator to manage the deployed cloud
services as well as the knowledge data.

– Cloud phase transition. It is the kernel component to enable the interaction between
the edge cloud and the existing cloud services on the Internet. Its implementation is
highly task-specific, and an example will be shown in the next subsection.

5.2 Initial Results

With the architecture presented in Fig.3, we have carried out a set of initial practices.
All of them are open sourced in public for further investigation by other researchers in
this field6.

MicROS-drt. As discussed in Sect. 4.1, the dissemination of data with QoS
assurance is an essential issue for distributed robotic systems. MicROS-drt [18] is an

6 The code of micROS-drt can be accessed https://github.com/cyberdb/micROS-drt, the code of
Cloudroid can be accessed at https://github.com/cyberdb/Cloudroid, and the code of object recog-
nition with the support of the public cloud can be accessed at https://github.com/liyiying/cloudrobot-
semantic-map

242 W. Huaimin et al.

https://github.com/cyberdb/micROS-drt
https://github.com/cyberdb/Cloudroid
https://github.com/liyiying/cloudrobot-semantic-map
https://github.com/liyiying/cloudrobot-semantic-map

infrastructure to achieve this goal. It elaborately adapting and encapsulating a mature
data distribution standard, DDS, into ROS, the widely-adopted robotic software
infrastructure. Evaluation results in terms of scalability, latency jitter and transport
priority, as well as the experiment on real robots, have been validated the advantages of
DDS over the original ROS protocols.

Cloudroid. Cloudroid [15] is a QoS-aware container for cloud services, which
supports the direct deployment of existing ROS packages onto the cloud, transparently
transforming them into cloud services which can be accessed in an on-demand style.
Four fundamental mechanisms are deliberately designed to support the transparent
transformation from the ROS package model to the general cloud service model,
including (1) self-contained VM encapsulation, (2) cloud bridging, (3) on-demand
servant instantiation and (4) service stub automatic generation. Besides, the QoS
mechanisms built in the client-side stub and the resource scheduling/isolation mech-
anisms on the cloud side can do their best to maintain the desirable QoS property
cooperatively. A set of experiments based on ROS packages being widely used in real-
life robot practices show that robot’s capability can be transparently and significantly
enhanced with the cloud robotic architecture and the Cloudroid infrastructure, and
specific QoS objectives can be guaranteed in this process. In some tasks, the intro-
duction of cloud shows orders of magnitude performance promotion.

Semantic mapping service. This cloud service illustrates the feasibility of the
cooperation of the edge cloud and the public cloud [19]. The cloud has great potential
in supporting robotic semantic mapping because of its rich computing resources.
However, how to utilize the vast knowledge on the Internet is still an open problem. In
this work, we design a set of mechanisms to enable the edge cloud to seek help from
the public cloud, such as CloudSight and Goolge Cloud Vision API, while it
encounters an object that it cannot recognize in semantic mapping. In this way, we can
minimize the recognition latency of objects which can be predicted while not sacri-
ficing the ability to recognize strange and unexpected objects.

Management Portal

Proprietary Service Framework
TCPROS

(Official ROS)

DDS
(micROS-drt)

WebSocket

D
ocker Sw

arm

ROS environment

General Service
Servants

(ROS packages)

Object
Recognition

Semantic
Mapping

Coordinated Path
Scheduling

Coordinated
SLAM

Cloud Phase Transition

Software Repository
(Based on Docker Registry)

Knowledge Repository
(Maps, objects...)

Trained
Neural

Networks

Edge Cloud
(Mission Cloud)

Public Cloud General PaaS & SaaS Services Robot-Oriented Cloud Services

Service Portal

Protocols Services Knowledge

Fig. 4. MicROS-cloud software infrastructure architecture

Cloud Robotics: A Distributed Computing View 243

6 Conclusion

Cloud robotics is still in its early stage. Most recent discussions on cloud robotics are
from the robotics point of view. However, this emerging field is also a significant
frontier of distributed computing. In this paper, we discussed it mainly from the aspect
of distributed and cloud computing. Its motivation and the cloud roles in cloud robotics
are described with a set of real cases. And then we outlined the challenges and future
directions in our vision, focusing on the problems “What kind of existing distributed
computing technology can be used?” And “what challenges does cloud robotics bring
to distributed computing?”. We also described our early experience towards a robotic
software infrastructure based on the edge cloud model.

Acknowledgements. This work is partially supported by the National Natural Science Foun-
dation of China (No. 61751208), the Advanced Research Program (No. 41412050202) and the
special program for the applied basic research of the National University of Defense Technology
under Grant No.ZDYYJCYJ20140601

References

1. Li, W., et al.: Crowd intelligence in AI 2.0 era. Front. Inf. Technol. Electron. Eng. 18(1), 15–
43 (2017)

2. Kehoe, B., Patil, S., Abbeel, P., Goldberg, K.: A survey of research on cloud robotics and
automation. IEEE Trans. Autom. Sci. Eng. 12(2), 398–409 (2015)

3. Kuffner, J.J.: Cloud-enabled robots. In: Proceedings of IEEE-RAS International Conference
on Humanoid Robotics (2010)

4. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. Robot.
Autom. Mag. 13(2), 99–110 (2006)

5. Nardi, L., et al.: Introducing SLAMBench, a performance and accuracy benchmarking
methodology for SLAM. In: Proceedings of IEEE International Conference on Robotics and
Automation (2015)

6. McCarthy, J., Earnest, L.D., Reddy, D.R., Vicens, P.J.: A computer with hands, eyes, and
ears. In: Proceedings of Joint Computer Conference (1968)

7. Arumugam, R., et al.: DAvinCi: a cloud computing framework for service robots. In:
Proceedings of IEEE International Conference on Robotics and Automation (2010)

8. Sahbani, A., El-Khoury, S., Bidaud, P.: An overview of 3D object grasp synthesis
algorithms. Robot. Auton. Syst. 60(3), 326–336 (2012)

9. Kehoe, B., Matsukawa, A., Candido, S., Kuffner, J., Goldberg, K.: Cloud-based robot
grasping with the google object recognition engine. In: Proceedings of IEEE International
Conference on Robotics and Automation (2013)

10. Levine, S., Pastor, P., Krizhevsky, A., Quillen, D.: Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data collection. In: Proceedings of
International Symposium on Experimental Robotics (2016)

11. Janssen, R., van de Molengraft, R., Bruyninckx, H., Steinbuch, M.: Cloud based centralized
task control for human domain multi-robot operations. Intell. Serv. Robot. 9(1), 63–77
(2016)

12. Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39 (2017)

244 W. Huaimin et al.

13. Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing:
architecture, applications, and approaches. Wirel. Commun. Mob. Comput. 13(18), 1587–
1611 (2013)

14. Mohanarajah, G., Hunziker, D., D’Andrea, R., Waibel, M.: Rapyuta: a cloud robotics
platform. IEEE Trans. Autom. Sci. Eng. 12(2), 481–493 (2015)

15. Hu, B., Wang, H., Zhang, P., Ding, B., Che, H.: Cloudroid: a cloud framework for
transparent and QoS-aware robotic computation outsourcing. In: Proceedings of IEEE 10th
International Conference on Cloud Computing (2017)

16. Quigley, M., et al.: ROS: an open-source robot operating system. In: Proceedings of ICRA
Workshop on Open Source Software (2009)

17. Pardo-Castellote, G.: OMG data-distribution service: architectural overview. In: Proceedings
of Distributed Computing Systems Workshops (2003)

18. Ding, B., Wang, H., Fan, Z., Zhang, P., Liu, H.: MicROS-drt: supporting real-time and
scalable data distribution in distributed robotic systems. Robot. Biomim. 3(1), 1–8 (2016)

19. Yiying, L., Huaimin, W., Bo, D., Wei, Z.: RoboCloud: augmenting robotic visions for open
environment modeling using Internet knowledge. Sci. China Inf. Sci. 61(5), 050102 (2018)

Cloud Robotics: A Distributed Computing View 245

Analyzing Interrupt Handlers via
Interprocedural Summaries

Xueguang Wu2, Liqian Chen2(B), and Ji Wang1,2

1 State Key Laboratory of High Performance Computing, Changsha, China
wj@nudt.edu.cn

2 School of Computer, National University of Defense Technology, Changsha, China
{xueguangwu,lqchen}@nudt.edu.cn

Abstract. Interrupts are a commonly used facility to guarantee real-
time response in embedded systems, and thus are frequently encountered
in embedded software. Modeling interrupt preemption as function calls, is
a natural choice for analyzing or verifying programs involving interrupts.
Therefore, interprocedural analysis of interrupt handlers is highly desired
when analyzing programs with interrupts. In this paper, we present two
interprocedural analysis approaches specifically for analyzing interrupt
handlers. One is based on tabulation of procedure summaries, while the
other is based on procedure summaries that are built by partitioning
inputs. These two approaches fit for interrupt handlers with different
features. Finally, we show preliminary experimental results obtained by
our prototype implementation.

Keywords: Interprocedural analysis · Interrupts
Abstract interpretation

1 Introduction

Interrupts are a commonly used facility to guarantee real-time response of high-
priority events in embedded systems, and thus are frequently encountered in
embedded software. In a program consisting of tasks and interrupts, during the
running of a task, an interrupt handler (also known as interrupt service routine
or ISR) is invoked once an interrupt is triggered. The task is preempted and
resumes only when the interrupt handler has terminated. Such kind of programs
are often called interrupt-driven programs (IDPs). In IDPs, interrupts may cause
unexpected interleaving executions and even unexpected erroneous behaviors,
of which programmers may be unaware. Interrupt related bugs are difficult to
detect using testing techniques, due to the fact that the triggering of an interrupt
depends largely on the underlying hardware as well as environment and it may
occur at any time. Therefore, it is highly desired to leverage the analysis and
verification techniques to ensure the correctness of programs in the presence of
interrupts.

c© Springer Nature Switzerland AG 2018
C. Jones et al. (Eds.): Zhou-Festschrift, LNCS 11180, pp. 246–262, 2018.
https://doi.org/10.1007/978-3-030-01461-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01461-2_13&domain=pdf

Analyzing Interrupt Handlers via Interprocedural Summaries 247

In general, when an interrupt is triggered, the task (or the handler of a
preempted lower-priority interrupt) will not resume until the handler of that
(higher-priority) interrupt has terminated. In other words, the task and inter-
rupt handlers in an IDP can be viewed as sharing a same stack. It means that, in
IDPs, interrupt preemption can be modelled as a function call. Hence, one pre-
dominant approach to analyze IDPs is to first sequentialize IDPs into sequential
programs and then leverage the existing techniques for sequential programs to
analyze the sequentialized programs [29–31]. However, since an interrupt may be
triggered at any time, function calls to the interrupt handler could be inserted
to the original program after each atomic instruction. Hence, after modelling
interrupt preemption as functions calls, the resulting programs may involve a
large amount of function calls to interrupt handlers. To effectively analyze such
programs, interprocedural analysis techniques are of great desire. However, com-
pletely context-sensitive approaches (e.g., those implemented based on syntactic
or semantic inlining techniques) may be too costly, while completely context-
insensitive methods may be too imprecise.

In this paper, we first discuss the features of interrupt handlers in practice.
Then we propose two interprocedural analyses that are designed specifically to
deal with interrupt handlers with different features. One approach is based on
tabulated procedure summaries. The other approach is based on the procedure
summaries that are built by partitioning inputs. Finally, we show preliminary
experimental results on a set of benchmark and industry programs.

The rest of this paper is organized as follows. Section 2 discusses the features
of the real-world IDPs in embedded systems. Section 3 presents the approach
based on tabulation of procedure summaries. In Sect. 4, we show the approach
based on procedure summaries that are built by partitioning inputs. Section 5
presents our implementation together with preliminary experimental results.
Section 6 discusses some related work. Finally, conclusions as well as suggestions
for future work are given in Sect. 7.

2 Features of Interrupt Handlers

In this section, we discuss the features of interrupt handlers in IDPs. First of
all, interrupt handlers usually do not involve calls to recursive functions, for
the consideration of guaranteeing real time response. Hence, for sequentialized
IDPs, one can always inline all the calls to the invoked ISRs to derive a simple
context sensitive analysis. However, the sequentialized IDPs often involve a large
amount of calls to ISRs after sequentialization [29,30]. Thus, we need to consider
more interprocedural analysis methods to improve the efficiency, especially for
large-scale IDPs.

Looking to the IDPs in practice, we may simply classify interrupt handlers
into two kinds by their scale, i.e., small ISRs and large ISRs. The large ISRs often
contain complicate event processing routine inside, e.g., involving a complicate
process of collecting and processing the data received by sensors or hardware
buses. The small ISRs often contain a very simple event processing routine, e.g.,

248 X. Wu et al.

setting an interrupt-happening flag or increasing a counter. Sometimes, it is
required to keep ISRs small because there exists strict real time constraints. If
an ISR is too complicated, it is very hard to guarantee the real-time constraints of
the whole system. In practice, for a low-priority interrupt which does not respond
to very urgent event, to shorten the ISR, developers often play the following
trick: set a flag variable in the ISR to indicate that the interrupt has already
been fired, and move the complex event processing routine into tasks. Then
during the running of tasks, tasks will check regularly the interrupt-happening
flag and perform the complex event processing routine when needed. Some small
ISRs may also include very simple event processing routine. For example, ISRs
used in the serial communication interface receive and send one byte each time.

Take practical IDPs from industry as examples. The 1553-bus [1] and the
CAN-bus [2] interrupts are widely used in aerospace industry. The embedded
systems (or subsystems) involving 1553-bus interrupt often have strict real time
constraints. Hence, the interrupt handlers of 1553-bus interrupts are often very
simple, usually only setting an interrupt-happening flag, while letting the tasks
deal with most of the event processing routines. On the other hand, the embed-
ded systems (or subsystems) involving CAN-bus interrupt are often not so strict
over the real time constraints. Hence, the interrupt handlers of CAN-bus inter-
rupts often perform the event processing routine inside the ISRs, while the tasks
in such a system are usually simple. Large and small ISRs are also encountered
in many other industry control systems. The widely used TI 2833x series digital
signal processors (DSP) also support these kinds of interrupts.

Considering the different features of these two kinds of interrupt handlers,
we propose to use different inter-procedural analysis methods to analyze them.
For large ISRs, we propose to use the analysis based on tabulated procedure
summaries, which will be introduced in Sect. 3. For small ISRs, we propose to
use the analysis utilizing procedure summaries via partitioning inputs, which
will be introduced in Sect. 4.

3 Tabulation of Procedure Summaries

The main idea of tabulating procedure summaries is to store the input con-
texts and the corresponding output results that have been encountered for a
procedure in a tabular manner. During the analysis, when encountering a new
function calling, we check first whether the input context of this calling already
exists in the tabulated procedure summaries. If it exists, we could simply reuse
the corresponding stored output result in the tabulated summaries, with no need
to re-analyze the function body. Hence, based on the tabulated procedure sum-
maries, we can avoid re-analyzing some function calls to improve the analysis
efficiency.

The concrete semantics of a function calling can be viewed as a mapping
from a calling context to an output context, i.e., τ [[f]] def= C → C, where C ⊆
℘(Σ) wherein Σ represents a set of environments (taking into account both the
local and global variables). The abstract semantics of a function calling can be

Analyzing Interrupt Handlers via Interprocedural Summaries 249

defined as a mapping from an abstract context to another abstract context, i.e.,
τ [[f]]� def= D� → D�, where D� represents a set of abstract contexts represented by
abstract elements in an abstract domain. During the analysis of a program, we
store for each function the new encountered pairs of inputs and outputs. Then
when we encounter a new function calling, we first determine whether we need to
analyze the function body, by comparing the current input calling context with
the previous stored input calling contexts in the tabulated summary. Different
scenarios are shown in Fig. 1.

Fig. 1. Interprocedural analysis based on tabulated procedure summaries

The interprocedural analysis based on tabulated procedure summaries can
be formalized as follows:

τ [[f]]�(X�) def=

{
F �(f,X�) if F �(f,X�) ↓
τ [[body(f)]]�(X�) otherwise

(1)

where F � is a partial mapping: F × D� → D�, and f ∈ F , F �(f,X�) returns
the corresponding output result O� under the given input abstract context X�,
if (X�, O�) is stored in the tabulated summary for f . We use F �(f,X�) ↓ to
denote that F �(f,X�) is defined in the tabulated summary (otherwise, denoted as
F �(f,X�) ↑). We call such a function F � a tabulation function. τ [[body(f)]]�(X�)
analyzes the function body of f given the input X�, stores the result in the

250 X. Wu et al.

tabulated summary, and then returns the output result. At the beginning, the
tabulation function F � is empty. A new entry will be added to the tabulated
summary for f when the encountered input context has never been met, as shown
in Fig. 1(b). This process can be formalized as F �(f,X�) ← τ [[body(f)]]�(X�). If
the input calling context exists in the tabulated summary (i.e., having been met
before), the output stored in the tabulated summary can be directly returned as
the analysis result, as show in Fig. 1(c).

Since the abstract transfer function is monotone, it is safe to use an over-
approximation of the current input context to check with the entries of the
tabulated summary. Suppose (Y �, O�) is stored in the tabulated summary for
function f , and X� is the current input abstract state. If X� �� Y �, the stored
O� can be returned as the result for X�, which is a sound. Figure 1(d) shows this
idea. The idea of using an over-approximation of the current input context can
be formalized as follows:

τ [[f]]�(X�) def=

{
F �(f, Y �) if X� � Y � ∧ F (f, Y �) ↓ ∧F (f,X�) ↑
τ [[body(f)]]�(X�) otherwise

(2)

The optimization via using an over-approximation of the current input con-
text will improve the hit rate in tabulated summary. However, note that this
optimization may degrade the precision of the analysis, due to the use of over-
approximation. On the other hand, the calling contexts of a function are often
different. During the fixpoint iteration, even the calling contexts of the same call-
ing point may be different. If the tabulated summary stores all of these calling
contexts, the size of the tabulated summary may become quite large. In order to
control the growing of the tabulated summary, we may consider some strategies
to limit the size of tabulated summary, such as introducing a threshold for the
size of tabulated summary that is allowed for one function. When the number
of the entries for a function in the tabulated summary reaches the threshold,
we may use some replacement strategy to control the size, such as least recently
used (LRU) replacement strategy, random replacement strategy and least used
on average replacement strategy, etc. The replacement strategy is quite similar
to the Cache replacement strategy. The simplest replacement strategy would be
using a
� as the input context to analyze a function when the threshold is met.
Due to the fact that all the input contexts are smaller than
� in partial order,
the analysis result is always sound.

Example 1. The IDP shown in Fig. 2 consists of one task (main() function),
one interrupt (isr() function), and two shared variables x and y. The main()
function is sequentialized by invoking isr() function after each atomic statement
(we assume that the program syntax allows atomic parallel assignment). We
use brandom() function to denote non-deterministic branch condition. For the
program in Fig. 2, we use interprocedural analysis based on tabulated procedure
summaries, on top of the box abstract domain. The results of tabulated analysis
are as follows:

Analyzing Interrupt Handlers via Interprocedural Summaries 251

Fig. 2. An example of a sequentialized IDP

F � =

⎧⎪⎨
⎪⎩

(isr, {x ∈ [0, 90], y ∈ [0, 9]}) �→ {x = 0, y = 10}
(isr, {x = 10, y = 0}) �→ {x = 0, y = 10}
(isr, {x ∈ [99, 110], y ∈ [5, 10]}) �→ {x ∈ [0, 120], y = 10}

Note that the calling contexts of the three different locations are all different. If
we use the tabulation function defined in (1), the analysis efficiency will not be
improved by the tabulated summary. The analysis results are the same as the
results given by the context sensitive analysis.

However, if we use the tabulation function defined in (2), for the function
isr(), the tabulated analysis get the following tabulated summary at ③:

F � =

{
(isr, {x ∈ [0, 90], y ∈ [0, 9]}) �→ {x = 0, y = 10}
(isr, {x ∈ [99, 110], y ∈ [5, 10]}) �→ {x ∈ [0, 120], y = 10}

The first input calling context for function isr() is X1 = {x ∈ [0, 90], y ∈ [0, 9]}.
The second input calling context for function isr() is X2 = {x = 10, y = 0},
which satisfies X2 � X1. And thus the analysis will directly reuse the analysis
results of the first function calling (at ①) as the result for the second function
calling (at ②), i.e., {x = 0, y = 10}. The analysis based on the tabulated sum-
mary improves the analysis efficiency by avoiding re-analyzing function isr()
at ②.

Note that the analysis based on tabulated procedural summaries defined via
(1) will not cause precision loss compared with context sensitive interprocedural
analysis, since it always uses exactly the input calling context to compare with
those stored in the tabulated summaries. On the other hand, when the new
encountered input calling contexts are often different (when using (1)) with or
not under-approximations (when using (2)) of those stored in the tabulated
summaries, the analysis based on the tabulated procedural summaries may not
improve the analysis efficiency and even degrade the efficiency due to extra
tabulation costs.

252 X. Wu et al.

4 Procedure Summary Based on Partitioning Inputs

As we mentioned before, the tabulated procedure summary may not improve the
analysis efficiency under some situations. To this end, we propose another app-
roach for constructing procedure summaries, by pre-partitioning the inputs. The
main idea to first analyze the input-output relation of the function body using
abstract domains, without considering any input contexts. However, since the
precise input-output relation of the function body may be very complicated and
hard to compute, we pre-partition the inputs of the function according to the
disjunctive information associated with the function body. Then for each par-
tition of the inputs, we analyze the input-output relation of the function body
using abstract domains, taking into account the constraints associated with that
partition (i.e., as precondition). After that, we get the input-output relations for
each input partition, which compose together the procedure summary for the
function. When encountering a function calling, our analysis directly makes use
of the pre-analysis results stored in the summary to compute the output, accord-
ing to the relations between the current input context and the pre-partitioned
inputs.

How to get the pre-partitioned input context is the key point to this approach,
which directly affects the precision of the analysis results. Since different input
contexts will drive the function under analysis to take different execution paths,
we need to consider the path conditions. Enumerating all the path conditions
to pre-partition the input context will make procedure summary more precise.
However, this will also make the procedure summary grow exponentially. Our
main idea is to choose a small set of branch conditions to partition the inputs,
e.g., to choose those branch conditions that appear earlier in the program traces
during execution. We use variables with subscript 0 to denote the values of
those input shared variables at the beginning of the function body, such as
x0, y0, z0, etc. And we use symbolic execution to compute the values of variables
in those considered branch conditions, such that those branch conditions can be
all represented in terms of symbolic variables denoting the initial values of shared
variables (i.e., in terms of x0, y0, z0, etc.). We use P to denote the finite set of
predicates (over symbolic variables denoting initial values of shared variables)
drawn from the considered branch conditions.

In this paper, we use binary decision tree (BDT) [5] to encode the procedure
summary based on partitioning inputs. BDT is a kind of directed acyclic graph.
In this paper, each branch node in BDT denotes a predicate in P. Each branch
node has two outcoming edges, which represent whether the predicate is true or
false. Each path from the root to a leaf defines a partition over the input. The
combination of the evaluation values of the predicates along the path, which we
call a path condition, describes the restriction of the partition. We use PC to
denote the set of path conditions derived from a binary decision tree. Each leaf
node stores the input-output relations (in terms of abstract values in an abstract
domain) of the function when the input satisfies the partition restriction defined

Analyzing Interrupt Handlers via Interprocedural Summaries 253

by the path condition from the root to this leaf node. We denote the binary
decision tree in parenthesized form

[[p1 : [[p2 : (a1), (a2)]], [[p2 : (a3), (a4)]]]]

where p1, p2 are predicates in P, and aj(1 ≤ j ≤ 4) is an abstract value in an
abstract domain (that is used to encode the input-output relations of a function).
It means that if p1 and p2 are true then a1 holds, if p1 is true and p2 is false
then a2 holds, if p1 is false and p2 is true then a3 holds, otherwise, a4 holds.

We use leaf : PC → D� to represent the process of analyzing the function
body and getting the input-output relation denoted by an abstract value in D�,
under the partition restriction described by a path condition pc ∈ PC. The
meaning of leaf can be formalized as follows:

leaf(pc) def= τ [[pc ∧ body(f)]]�(
�)

Based on the constructed BDT, during the analysis, if encountering a function
calling, the analysis will combine those involved results stored in BDT and get
the output results. In more details, we first find out which paths in the BDT
are feasible for the current input context of function f , by checking whether the
intersection of the current input context and the path condition is not empty.
Then, for each feasible path, we make use of the input-output relation stored
in the leaf of that path and the current input context, to compute the output
results. Lastly, we use the join operator in the abstract domain to compute the
over-approximation of the output results of all feasible paths. This process can
be formalized as follows:

τ [[f]]�(X�) def=
⊔�{leaf(pc)
� X�

0
� pc | pc ∈ PC,X�
0
� pc �= ⊥�}

where X�
0 denotes the abstract value of X� by renaming all variables in X� into

those with the subscript 0.
Figure 3 depicts an example of interprocedural analysis based on procedure

summaries by partitioning inputs. Figure 3(a) shows the BDT summary for
function f , where only two predicates in branch conditions are considered. In
Fig. 3(b), there are two calls to function f , for each of which only one path is
feasible. For the first calling, the stored f �(b1 ∧ b2) in the BDT summary is
returned. For the second calling, the stored f �(¬b1 ∧ ¬b2) in the BDT summary
is returned. Note that the situation shown in Fig. 3(b) is only a special case. In
general, several paths in BDT may be feasible for a given input context. In such
case, we need to compute an over-approximation of all results given by those
feasible paths.

Example 2. For the sequentialized IDP in Fig. 4, if we directly inline all the
function calls and use the box abstract domain to analyze the program, we will
get the following results: { ① �→ {x = 0, y = 10}, ② �→ {x = 190, y = 10}, ③ �→
{x = [0, 120], y = 10} }.

254 X. Wu et al.

Fig. 3. Inter-procedural analysis based on the BDT procedure summary

As shown in Fig. 5, to compute for isr() the procedure summaries via par-
titioning inputs, we first get a set of predicates {x0 < 100, y0 < 10} (we
remind that the variables v0 with subscript 0 denote the initial values of vari-
ables v at the entry of the function). Using this predicate set to partition the
inputs, we get 4 partitions. Then we analyze the interrupt handler isr() for
each partition. The resulting BDT summary on top of the box abstract domain
is shown in Fig. 5(a). During the analysis of the main function, for the call-
ings to function isr(), we make use of the BDT summary. The input calling
context at ① is {x = −1, y = 0}, which implies the only feasible path condi-
tion x0 < 100 ∧ y0 < 10. Then we directly return as the analysis result at ① the
abstract value stored in the corresponding leaf, i.e., {x = 0, y = 10}. The analysis
for the function calling at ② is similar, which results in {x ∈ [110,+∞], y = 10}.
For the function calling at ③, all the four paths shown in Fig. 5(a) are feasible.
Hence, the output result is the join of the abstract values stored at the four
leaves, and we get {x ∈ [0,+∞], y ∈ [10,+∞]}. Compared with the results given
by analysis inlining all function calls, we get less precise results at ② and ③.

Figure 5(b) shows the BDT summary on top of the octagon abstract domain,
where x0 (x) and y0 (y) represent the values of variables at the entry (exit) of the
function. The analysis based on the BDT summary will give the following results:

Analyzing Interrupt Handlers via Interprocedural Summaries 255

{ ① �→ {x = 0, y = 10}, ② �→ {x = 190, y = 10}, ③ �→ {x = [0, 120], y = 10} },
which is as precise as that given by the analysis inlining all function calls.

Fig. 4. Another example of sequentialzed IDP

In practice, some results stored in the BDT summary may never be used in
any calling contexts. Therefore, if we compute all the input-output relations for
all partitions, we may perform some extra computation which will not benefit
the analysis. Hence, we could construct the BDT summary on-the-fly. In other
words, we could compute input-output relations for a partition only when the
current calling context implies the feasibility of this partition, and then store the
results in the BDT summary. Through this optimization, we can relieve some
unnecessary computation of the BDT summary. Note that, due to the abstraction
involved in the BDT summary, analysis based on the BDT summary may cause
imprecise analysis results, compared with the analysis based on the tabulated
summary or the analysis inlining all function calls.

5 Implementation and Experiments

We have implemented a prototype tool for analyzing sequentialized IDPs [30],
which use Fixpoint [9] as its fix-point iteration engine, Apron [10] as its abstract
domain and CIL [17] as its front-end. Our tool supports both context-insensitive
analysis [9] and context-sensitive analysis (by inlining). By default, we inline
all function calls by utilizing the CIL supported inline tool, and then perform
numerical static analysis over the resulting program after inlining. In this paper,
we have implemented further the two interprocedural analysis methods respec-
tively described in Sects. 3 and 4. During the experiments, we assume that all
function callings to normal functions except interrupt handlers have already been
inlined.

Our experiments were conducted on a selection of benchmarks and real-
world programs. Some test cases come from open source web sites for embedded
systems, e.g., Nxt gs, UART, iRobot3 and HBM. Some test cases come from
embedded control software in industry, e.g., Ping pong, ADC Ctl, Dev Ctl, as
well as those programs with “DSP ” prefix.

256 X. Wu et al.

Fig. 5. The BDT procedure summary on top of abstract domains

Experimental results for different interprocedural analyses. We first utilize the
box abstract domain to evaluate different interprocedural analysis methods. The
results are shown in Table 1. “Ctx” and “in-Ctx” represent context sensitive
and insensitive analysis respectively, “Tabul.” represents the analysis based on
tabulated procedure summary, “#Warns” represents the number of warnings.

From the analysis results in Table 1, we can see that context sensitive analy-
sis is more precise than context insensitive analysis. On the other hand, the time
consumption of the analysis based on tabulated procedure summary is in most
cases between that of the context sensitive and insensitive analysis. Note that
during the experiments, we use the tabulated procedure summary defined via
(1). Hence, the precision of the analysis based on tabulated procedure summary
is the same as the context sensitive analysis. Moreover, we find that the analysis
time of context insensitive analysis for some industry applications is much less
than context sensitive analysis, e.g., the case of ADC Ctl. And for some other
industry applications, the time of context insensitive analysis is between the
context sensitive analysis and the tabulated analysis, e.g., the case of Dev Ctl.
We find that there is a large infinite loop in the main task of ADC Ctl and all
the event process routines are implemented in that infinite loop, while Dev Ctl

Analyzing Interrupt Handlers via Interprocedural Summaries 257

Table 1. Experimental results for different inter-procedural analyses

Program Analysis of Ctx Analysis of in-Ctx Analysis of Tabul.

Name #Vars LOC Time (s) #Warns Time (s) #Warns Time (s) #Warns

Nxt gs 27 552 0.040 2 0.034 5 0.035 2

UART 47 1215 0.128 0 0.123 9 0.228 0

iRobot3 55 793 0.069 2 0.056 2 0.070 2

HBM 36 1312 0.112 4 0.102 4 0.083 4

Ping pong 21 842 0.054 0 0.104 11 0.098 0

ADC Ctl 334 404K 343.5 70 3.72 104 184.7 70

Dev Ctl 1352 534K 5325 538 549 663 183.6 538

does not have such feature. During analyzing ADC Ctl, context insensitive anal-
ysis will accelerate the fix-point iteration process, which will greatly reduce the
iteration time of analyzing the large infinite loop.

Experimental results for analysis based on tabulated procedure summary. In order
to evaluate the analysis based on the tabulated procedure summary, we analyze
all the industry applications. Table 2 shows the analysis results, where “Mem”
represents the memory consumption, “#Hit” represents the hit rate of tabulated
summary, i.e., the number of hits to the number of all function callings. Note
that we use the tabulated procedure summary defined via (1), and thus the
warning numbers are the same as that of the context sensitive analysis.

Table 2. Experiments for analysis based on tabulated procedure summary

Program Analysis of Ctx Analysis of Tabul. #Warns

Name #Vars LOC Time (s) Mem (GB) Time (s) #Hit Mem (GB)

ADC Ctl 334 404K 343.5 1.63 184.7 864/11474 1.54 70

Dev Ctl 1352 534K 5325 3.37 183.6 858/1141 3.12 538

DSP Ctl1 1240 58K 206.9 1.47 219.0 14/9309 1.44 155

DSP Ctl2 640 98K 299.1 1.53 275.0 568/7708 1.43 150

DSP Ctl3 1074 142K 1823.6 2.51 1523.1 1819/11349 2.11 439

DSP Ctl4 978 82K 1068.3 1.02 962.5 1543/9490 1.05 203

From Table 2, we find that the analysis time is negatively correlated with the
hit rate to the tabulated summary. E.g., the hit rate of the Dev Ctl is almost
upper to 75%, while the analysis time of using tabulated procedure summary is
only 3% of that of the context sensitive analysis. On the other hand, we find that
when the hit rate is quite low, tabulated analysis may be slower than context
sensitive analysis, e.g., the case of DSP Ctl1. This is due to the fact that the
tabulated analysis needs to maintain the tabulated summary and search the
calling context in the tabulated summary, which will introduce extra time costs.

258 X. Wu et al.

Note that the number of calling contexts in #Hit is the number of function
callings during the iterations, not the function calling number appearing in pro-
gram syntax. Moreover, we find that the memory consumption for the analysis
based on the tabulated summary is not more than the context sensitive analy-
sis method. This is due to the fact that for context sensitive analysis method,
we need to store all the analysis results at each program point of the program
after inlining, while for tabulated analysis, if the analysis context is hit in the
tabulated summary, we do not need to store the intermediate analysis results,
but only store the analysis results at the exit point of function.
Experimental results for analysis using the BDT procedure summary. The results
are shown in Table 3, where BDT-oct and BDT-box represent respectively anal-
yses using the octagon and the box abstract domain. The time of the analysis
based on the BDT summary consists of two parts: the time to build the BDT
summary and the static analysis time. The results in #Time show the total time
(and the time of building the BDT summary). For large programs, we only chose
several branch conditions in functions as the predicates to partition the inputs.

Table 3. Experimental results for analysis based on the BDT summary

Program Analysis of Ctx Analysis of BDT-box Analysis of BDT-oct

Name #Vars LOC Time (s) #Warns Time (s) #Warns Time (s) #Warns

Nxt gs 27 552 0.040 2 0.004(0.016) 5 0.022(0.035) 5

UART 47 1215 0.128 0 0.139(0.003) 9 0.192(0.005) 9

iRobot3 55 793 0.069 2 0.035(0.009) 2 0.270(0.152) 2

HBM 36 1312 0.112 4 0.098(0.006) 4 0.103(0.008) 3

Ping pong 21 842 0.054 0 0.056(0.018) 10 0.155(0.085) 10

ADC Ctl 334 404K 343.5 70 184(5.5) 88 262(29.8) 83

Dev Ctl 1352 534K 5325 538 216(4.8) 640 282.7(30.9) 531

We find that when using the box abstract domain that cannot represent the
relationship between variables, the precision of the analysis based on the BDT
summary is almost the same as the context-insensitive analysis results. On the
other hand, when using the octagon abstract domain, the precision of the analysis
based on the BDT summary may be even better than that of context sensitive
analysis method, e.g., the case of Dev Ctl. Moreover, in most cases, especially
for small IDPs, the time of the analysis based on the BDT summary may be
more than that of the context sensitive analysis. This is due to the fact that
we need to analyze the function for each partition and also need to compute an
over-approximation of the results when the current input calling context implies
the feasibility of many paths in BDT.

6 Related Work

Analysis of interrupt-driven programs. There exist a variety of techniques
targeting at analyzing and verifying IDPs, including program transformation

Analyzing Interrupt Handlers via Interprocedural Summaries 259

[11,14,31], abstract interpretation [16,18,23,25,29,30], model checking [4,13,26,
31], symbolic execution [27,28], etc. We now briefly review some of those that
are closely related to our techniques.

Kidd et al. [11] propose a sequentialization method for priority preemptive
scheduling systems, wherein the main idea is to use a single stack for all tasks
and to model preemptions by function calls. Inspired by this work, our previous
works [29–31] first sequentialize IDPs into sequential programs, and then lever-
age existing analysis and verification techniques to analyze the sequentialized
programs, including techniques of numeric abstract interpretation and bounded
model checking. Monniaux [16] proposes a numerical static analysis method for
a concurrent USB driver, which dynamically invokes interrupts for each access
to the shared memory in tasks. Ouadjaout et al. [18] present a static analysis
by abstract interpretation to verify functional properties of device drivers in the
TinyOS operating system. They perform a modular analysis to analyze every
interrupt independently and then aggregate their results to over-approximate
the effect of preemption, which avoids reanalyzing interrupts in every context.

Recently, Liang et al. [13] propose a new symbolic partial-order encoding
that can capture more precisely the interleaving semantics of nested interrupts
than native threads, via SAT/SMT formula. Based on this new encoding, they
develop a tool i-CBMC, as an extension of CBMC, to support verification of
IDPs. Sung et al. [25] present an iterative abstract interpretation framework
for verifying IDPs, which first analyzes each interrupt handler in isolation and
then propagates the results to other interrupt handlers. The iterative process
continues until results on all interrupt handlers stabilize.

Interprocedural analysis. Interprocedural analysis of sequential programs has
received much attention in the literature [3,6,22,24]. In general, many of the
existing approaches can be classified as one of the two predominant approaches:
the summary-based (or functional) approach and the call-strings (or k-CFA)
approach [15,24].

For concurrent programs with recursive procedures, the context-sensitive and
synchronization-sensitive interprocedural analysis problem is known to be unde-
cidable [21], even for programs with finite-domain variables. Qadeer et al. [19]
propose the first notion of procedure summaries for multithreaded programs,
i.e., summaries of transactions within a procedure. The summary of a procedure
then comprises the summaries of all transactions within the procedure. They
also provide a method to compute transactional summaries in the presence of
multiple threads. To sidestep the undecidability issue, bounding the number of
context switches is a good choice often adopted [12,20], which essentially allows
reducing the concurrent program to a sequential one. However, the technique
of bounding number of context switches is not sound, but very useful for bug
finding, because many bugs can be found after a few context switches.

Recently, Jeannet [8] generalizes the relational interprocedural analysis of
sequential programs to the concurrent case. They propose a general interproce-
dural analysis method that combines stack and data abstractions, for concur-
rent programs, even in the presence of unbounded recursion and infinite-state

260 X. Wu et al.

variables like integers. Based on this method, an interprocedural analyzer Con-
curInterproc [7] is developed for concurrent programs.

7 Conclusion and Future Work

We have presented two interprocedural analysis approaches for analyzing inter-
rupt handlers in IDPs. One is based on tabulation of procedure summaries,
which stores the input contexts together with the corresponding output results
that have been encountered for a procedure in a tabular manner and is more like
context-sensitive interprocedural analysis. The other is based on procedure sum-
maries that are built by partitioning inputs and can be encoded via binary deci-
sion tree. The two approaches fit for different features of the interrupt handlers.
The preliminary experimental results show that both approaches are promising
for certain interrupt handlers.

For future work, we will consider designing more interprocedural analyses
that fit for analyzing interrupt handlers and conducting more experiments on
large realistic IDPs.

Acknowledgments. We thank Antoine Miné for his helpful discussions on this
work. This work is supported by the National Key R&D Program of China (No.
2017YFB1001802), and the NSFC Program (Nos. 61872445, 61532007).

References

1. https://en.wikipedia.org/wiki/MIL-STD-1553
2. https://en.wikipedia.org/wiki/CAN bus
3. Bourdoncle, F.: Interprocedural abstract interpretation of block structured lan-

guages with nested procedures, aliasing and recursivity. In: Deransart, P.,
Maluszyński, J. (eds.) PLILP 1990. LNCS, vol. 456, pp. 307–323. Springer, Hei-
delberg (1990). https://doi.org/10.1007/BFb0024192

4. Brylow, D., Damgaard, N., Palsberg, J.: Static checking of interrupt-driven soft-
ware. In: ICSE 2001, pp. 47–56. IEEE (2001)

5. Chen, J., Cousot, P.: A binary decision tree abstract domain functor. In: Blazy,
S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 36–53. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48288-9 3

6. Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive
procedures. In: IFIP Conference on Formal Description of Programming Concepts,
pp. 237–277. North-Holland (1977)

7. Jeannet, B.: The ConcurInterproc Analyzer. http://pop-art.inrialpes.fr/interproc/
concurinterprocweb.cgi

8. Jeannet, B.: Relational interprocedural verification of concurrent programs. Softw.
Syst. Model. 12(2), 285–306 (2013)

9. Jeannet, B.: The fixpoint solver. http://pop-art.inrialpes.fr/∼bjeannet/bjeannet-
forge/fixpoint/

10. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 52

https://en.wikipedia.org/wiki/MIL-STD-1553
https://en.wikipedia.org/wiki/CAN_bus
https://doi.org/10.1007/BFb0024192
https://doi.org/10.1007/978-3-662-48288-9_3
http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi
http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi
http://pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/fixpoint/
http://pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/fixpoint/
https://doi.org/10.1007/978-3-642-02658-4_52

Analyzing Interrupt Handlers via Interprocedural Summaries 261

11. Kidd, N., Jagannathan, S., Vitek, J.: One stack to run them all - reducing concur-
rent analysis to sequential analysis under priority scheduling. In: van de Pol, J.,
Weber, M. (eds.) SPIN 2010. LNCS, vol. 6349, pp. 245–261. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16164-3 18

12. Lal, A., Touili, T., Kidd, N., Reps, T.W.: Interprocedural analysis of concurrent
programs under a context bound. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 282–298. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78800-3 20

13. Liang, L., Melham, T., Kroening, D., Schrammel, P., Tautschnig, M.: Effective
verification for low-level software with competing interrupts. ACM Trans. Embed.
Comput. Syst. 17(2), 36:1–36:26 (2017)

14. Liu, H., Jiang, Y., Zhang, H., Gu, M., Sun, J.: Taming interrupts for verifying
industrial multifunction vehicle bus controllers. In: Fitzgerald, J., Heitmeyer, C.,
Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 764–771. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-48989-6 48

15. Mangal, R., Naik, M., Yang, H.: A Correspondence between two approaches to
interprocedural analysis in the presence of join. In: Shao, Z. (ed.) ESOP 2014.
LNCS, vol. 8410, pp. 513–533. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54833-8 27

16. Monniaux, D.: Verification of device drivers and intelligent controllers: a case study.
In: EMSOFT 2007, pp. 30–36. ACM (2007)

17. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language
and tools for analysis and transformation of C programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45937-5 16

18. Ouadjaout, A., Miné, A., Lasla, N., Badache, N.: Static analysis by abstract inter-
pretation of functional properties of device drivers in TinyOS. J. Syst. Softw. 120,
114–132 (2016)

19. Qadeer, S., Rajamani, S.K., Rehof, J.: Summarizing procedures in concurrent pro-
grams. In: POPL 2004, pp. 245–255. ACM (2004)

20. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1 7

21. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst. 22(2), 416–430 (2000)

22. Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL 1995, pp. 49–61. ACM Press (1995)

23. Schwarz, M.D., Seidl, H., Vojdani, V., Lammich, P., Müller-Olm, M.: Static analy-
sis of interrupt-driven programs synchronized via the priority ceiling protocol. In:
POPL 2011, pp. 93–104. ACM (2011)

24. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis.
In: Program Flow Analysis: Theory and Applications, Chapter 7, pp. 189–233.
Prentice-Hall (1981)

25. Sung, C., Kusano, M., Wang, C.: Modular verification of interrupt-driven software.
In: ASE 2017, pp. 206–216. IEEE Computer Society (2017)

26. Vörtler, T., Höckner, B., Hofstedt, P., Klotz, T.: Formal verification of software for
the Contiki operating system considering interrupts. In: DDECS 2015, pp. 295–298.
IEEE Computer Society (2015)

27. Wang, Y., Shi, J., Wang, L., Zhao, J., Li, X.: Detecting data races in interrupt-
driven programs based on static analysis and dynamic simulation. In: Internetware
2015, pp. 199–202. ACM (2015)

https://doi.org/10.1007/978-3-642-16164-3_18
https://doi.org/10.1007/978-3-540-78800-3_20
https://doi.org/10.1007/978-3-540-78800-3_20
https://doi.org/10.1007/978-3-319-48989-6_48
https://doi.org/10.1007/978-3-642-54833-8_27
https://doi.org/10.1007/978-3-642-54833-8_27
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/978-3-540-31980-1_7

262 X. Wu et al.

28. Wang, Y, Wang, L., Yu, T., Zhao, J., Li, X.: Automatic detection and validation
of race conditions in interrupt-driven embedded software. In: ISSTA 2017, pp.
113–124. ACM (2017)

29. Wu, X., Chen, L., Miné, A., Dong, W., Wang, J.: Numerical static analysis of
interrupt-driven programs via sequentialization. In: EMSOFT 2015, pp. 55–64.
IEEE Press (2015)

30. Wu, X., Chen, L., Miné, A., Dong, W., Wang, J.: Static analysis of runtime errors
in interrupt-driven programs via sequentialization. ACM Trans. Embed. Comput.
Syst. 15(4), 70 (2016)

31. Wu, X., Wen, Y., Chen, L., Dong, W., Wang, J.: Data race detection for interrupt-
driven programs via bounded model checking. In: SERE 2013 (Companion), pp.
204–210. IEEE (2013)

Author Index

Bjørner, Dines 61
Bo, Ding 231
Bu, Lei 85

Chen, Liqian 246
Chen, Xin 85

Dong, Yunwei 105
Duan, Runyao 133

Fan, Wenfei 1
Fränzle, Martin 165

Guan, Ji 133

He, Yang 133
Hou, Lei 1
Huaimin, Wang 231

Jiang, Hui 85
Jifeng, He 186
Jones, Cliff B. 26

Kröger, Paul 165

Li, Dongze 1
Li, Xuandong 85

Li, Yinan 133
Liu, Muyang 1
Liu, Shusen 133
Liu, Xinxin 116

Meng, Zizhong 1

Olderog, Ernst-Rüdiger 211

Tang, Enyi 85

Wang, Ji 246
Wang, Lingtai 44
Wang, Xin 133
Wei, Xiaomin 105
Wu, Xueguang 246

Xiao, Mingrui 105
Xu, Jie 231
Xu, Ruiqi 1

Ying, Mingsheng 133

Zhan, Naijun 44
Zhang, Wenhui 116
Zhou, Li 133

	Preface
	Organization
	Contents
	Think Sequential, Run Parallel
	1 Introduction
	2 From Think Parallel to Think Sequential
	2.1 Graphs and Graph Partition
	2.2 Programming Model
	2.3 Parallel Computation Model
	2.4 Features of GRAPE

	3 Programming with GRAPE
	3.1 Graph Traversal
	3.2 Graph Simulation
	3.3 Graph Connectivity
	3.4 Minimum Spanning Tree

	4 Experimental Study
	5 Concluding Remarks
	References

	Concurrency: Handling Interference Formally
	1 Introduction
	2 Model-Oriented Formal Semantics
	2.1 SOS of Concurrency
	2.2 Granularity
	2.3 Operational Semantics: A Little Context
	2.4 Denotational Semantics and Interference

	3 Axiomatic View
	3.1 Separation Logic
	3.2 Rely/Guarantee

	4 Conclusions
	References

	Decidability of the Initial-State Opacity of Real-Time Automata
	1 Introduction
	2 Preliminaries
	2.1 Finite-State Automata and Regular Expressions
	2.2 Real-Time Automata
	2.3 Initial-State Opacity of Real-Time Automata

	3 Correspondence Between NFAs and Real-Time Automata
	4 Decidability
	4.1 Calculating Time Between Observable Events
	4.2 Constructing Real-Time Automata Aobs, Aobs,s and Aobs,ns
	4.3 Building Trace-Equivalent NFAs

	5 Conclusion
	References

	Domain Science and Engineering A Review of 10 Years Work and a Laudatio The ZCC Fest, 20 October 2017, Changsha, China
	1 Introduction
	1.1 Recent Papers and Reports
	1.2 Recent Experiments
	1.3 My Emphasis on Software Systems
	1.4 How Did We Get to Domain Science and Engineering?
	1.5 Preliminaries
	1.6 The Papers
	1.7 Structure of This Paper

	2 Manifest Domains: Analysis & Description BjornerDAADL2018
	2.1 A Domain Ontology
	2.2 From Manifest Parts to Domain Behaviours
	2.3 Contributions of BjornerDAADL2018 – and Open Problems

	3 Related Papers
	3.1 Domain Facets: Analysis & Description BjornerFAoCFacets,dines:facs:2008
	3.2 From Domains to Requirements BjornerFAoC2015Req,dines:ugo65:2008
	3.3 Formal Models of Processes and Prompts BjornerFAoCProcesses,2013daspsjaist
	3.4 To Every Manifest Domain Mereology a CSP Expression BjornerMereologyCSP2017

	4 Domain Science & Engineering: A Philosophy Basis 2018:Bjorner:philo
	5 The Experiments BjornerUrbanPlanningProcesses2017,Clem84,RSL,RaiseMethod,Kant,Haff87,CCITT81,Hoare85sps2004,lexicon,Oest86,db02spsamorespsmaint,kaisorlander1994,kaisorlander1997,kaisorlander2002,kaisorlander2016,db02spsamorespsros
	6 Summary
	7 Laudatio
	8 Bibliography
	8.1 Bibliographical Notes

	References

	HAT: Analyzing Linear Hybrid Automata as Labelled Transition System
	1 Introduction
	2 Notations
	2.1 Linear Hybrid Automata
	2.2 Labelled Linear Transition System
	2.3 LTS Semantic for LHA

	3 Quantifier-Free LTS Construction for LHA
	4 Implementation and Experiment
	4.1 Tool Implementation
	4.2 Case Studies

	5 Related Works
	5.1 Reachability Analysis
	5.2 Invariant Generation
	5.3 Termination Analysis
	5.4 TS Construction for HA

	6 Conclusion
	References

	Overview: System Architecture Virtual Integration based on an AADL Model
	1 Introduction
	2 SAVI Virtual Integration for Safety-Critical Systems
	2.1 Modelling Complex Safety-Critical Systems
	2.2 Model Transformation-Based Integration
	2.3 Model Bus-Based Integration

	3 Non-functional Properties Analysis for SAVI
	3.1 Safety Analysis
	3.2 Dynamic Reconfiguration
	3.3 Reliability Analysis
	3.4 Schedulability Analysis

	4 A Tool for Non-functional Properties Analysis
	5 Challenges
	6 Conclusions
	References

	Characterization and Verification of Stuttering Equivalence
	1 Introduction
	2 Stuttering Equivalence and -Bisimulation
	3 Stuttering Bisimulation with Induction
	4 Well-Founded Bisimulation
	5 Related Works
	6 Conclusion
	References

	Q|SI"526930B : A Quantum Programming Environment
	1 Introduction
	2 Quantum while-Language
	3 The Structure of Q|SI"526930B
	3.1 Basic Features of Q|SI"526930B
	3.2 Main Components of Q|SI"526930B
	3.3 Implementation of Q|SI"526930B

	4 The Quantum Compiler
	4.1 f-QASM
	4.2 Decomposition of a General Unitary Transformation

	5 The Quantum Simulator
	5.1 Quantum Types

	6 Experiments
	7 Conclusions
	A Setup and Configuration of Q|SI"526930B
	B Experiment-Qloop Case
	B.1 Input and Output
	B.2 Results
	B.3 Features and Analysis

	C BB84 Case
	C.1 Simple BB84 Case
	C.2 BB84 Case, Multi-client
	C.3 BB84 Case with Noise

	D Grover's Search Algorithm
	D.1 A Simple Grover's Search Algorithm
	D.2 Multi-object Grover's Search Algorithm

	References

	The Demon, the Gambler, and the Engineer
	1 Introduction
	2 Related Work
	3 Traditional Hybrid Automata Models
	3.1 Running Example
	3.2 Deterministic Environmental Sensing
	3.3 Demonic Modelling
	3.4 Stochastic Modelling

	4 Bayesian Hybrid Automata
	5 Summary
	References

	Linking Theories of Probabilistic Programming
	1 Introduction
	2 Probabilistic Programming Language
	2.1 Probabilistic Choice
	2.2 Conditional Choice
	2.3 Sequential Composition
	2.4 Total Assignment

	3 Normal Form Reduction
	3.1 Finite Normal Form
	3.2 Infinite Normal Form
	3.3 Continuity
	3.4 Recursion

	4 Testing Programs
	5 Operational Approach
	6 Conclusions
	References

	Space for Traffic Manoeuvres: An Overview
	1 Introduction
	2 Model
	2.1 Multi-Lane Spatial Logic

	3 Controller
	4 Safety
	5 Linking
	5.1 Linking: Distance Controller DC
	5.2 Linking: Lane-Change Controller LPC

	6 Tool Support
	6.1 Satisfiability Problem
	6.2 Search for Tool Support: Positive Results
	6.3 EMLSL with Modalities
	6.4 MLSL with Scopes

	7 Conclusion
	References

	Cloud Robotics: A Distributed Computing View
	Abstract
	1 Introduction
	2 From Backend Computer to Cloud
	3 Cloud Roles
	3.1 Computation Support
	3.2 Data Support
	3.3 Coordination Support

	4 Challenges to Distributed Computing
	4.1 QoS-Awarness
	4.2 Autonomy Promotion
	4.3 Collective Intelligence
	4.4 Ecosystem Evolution

	5 Our Early Experience
	5.1 MicROS-Cloud Architecture
	5.2 Initial Results

	6 Conclusion
	Acknowledgements
	References

	Analyzing Interrupt Handlers via Interprocedural Summaries
	1 Introduction
	2 Features of Interrupt Handlers
	3 Tabulation of Procedure Summaries
	4 Procedure Summary Based on Partitioning Inputs
	5 Implementation and Experiments
	6 Related Work
	7 Conclusion and Future Work
	References

	Author Index

