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Abstract. In this paper, we introduce a novel and robust body pose
estimation method with single depth image, whereby it is possible to
provide the skeletal configuration of the body with significant accuracy
even in the condition of severe body deformations. In order for the precise
identification, we propose a novel feature descriptor based on a geodesic
path over the body surface by accumulating sequence of characters corre-
spond to the path vectors along body deformations, which is referred to
as GPS (Geodesic Path Sequence). We also incorporate the length of each
GPS into a joint entropy-based objective function representing both class
and structural information, instead of the typical objective considering
only class labels in training the random forest classifier. Furthermore,
we exploit a skeleton matching method based on the geodesic extrema
of the body, which enhances more robustness to joints misidentification.
The proposed solutions yield more spatially accurate predictions for the
body parts and skeletal joints. Numerical and visual experiments with
our generated data confirm the usefulness of the method.
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1 Introduction

3D body pose estimation, whose goal is to recover the poses of body parts and
joints with naturally articulated movements, plays a key role and is a well investi-
gated problem in variety of areas such as computational vision, human-computer
interface, and computer animations, and so on. Especially, in the works of Shot-
ton et al. [1,2], random forest algorithm proposed by [3] is employed to predict
body poses from single depth image. The random forest is an ensemble learning
method, which has proven fast and effective multi-class classifiers for various
works such as image classification, object tracking, facial expression recognition,
pose estimation and so on [4-6]. The solution proposed by Shotton et al. [1] is
embedded within the commercial product ‘Microsoft Kinect sensor™, which
is readily available off-the-shelf gaming system. Moreover, the depth compari-
son proposed by [1] is popularly used in many works [2,7] as learning features
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for the random forest classifier. Within the framework of body pose estimation
based on the classified body parts [1], the accuracy and reliability of the body
parts classification are important because they might influence the consequent
learning process to infer the positions of 3D body joints. Furthermore, although
the depth comparison features proposed by [1] are easy to compute and efficient
in characterizing the change in body parts, the features themselves encode the
only local information for the body parts not a global information such as the
deformed whole body or the skeletal structure of the body joints. The depth
comparison features are insufficient to empower the discriminative ability of the
classifier.
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Fig. 1. Systematic overview of our system and our ground-truth samples (normalized
to the depth [0,1]): from the top row, forward walking (T2), hand wavingl (T3.a), hand
waving?2 (T3.b), sitting (T4), and upstanding (T5) motions.
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Our approach for 3D body pose estimation from a single depth-map is related
to the previous works from [8,9] as they exploit a geodesic distance graph of the
body depth image to localize the skeletal joints of the body.

In works [10], a variety of objective functions with the geodesic distance
transforms based features for identifying interest objects in the semantic image
segmentation with random forest. Moreover, in the context of a decision for-
est, a joint objective function for pixel classification and shape regression is
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introduced in [11], which yields more spatially consistent predictions than results
from the typical objective function only considering the data labels.

Motivated by existing works [1,8,11], we propose a new feature descriptor
based on a geodesic path over the body surface, referred to as GPS (Geodesic
Path Sequence), which is derived by concatenating sequence of characters corre-
spond to the vectors along deformation paths. In order for the body parts clas-
sification, we also incorporate the length of each GPS descriptor into the joint
entropy-based objective function involving both the body parts labels them-
selves and their geodesic structural information, leading to more accurate pre-
dictions. The geodesic descriptors reflect a geometry of body surface well, which
is expected to improve our body parts classification performance. In addition, we
exploit a skeleton matching method based on the geodesic extrema of the body,
thereby reducing the misidentification problems for the joints and their bones
in the skeletal configuration. As with the step in [1], we develop a ground-truth
generator and cheaply create varied realistic data by synthesizing an avatar 3D
body model with some interesting poses sampled from a large motion capture
data set, which consists of five different motions: standing (T1), walking (T2),
hand wavingl (T3.a), hand waving2 (T3.b), sitting (T4), and upstanding (T5)
(see Fig. 1, samples similar to standing (T1) set are included in the other sets).
In this paper, our final goal is to predict an accurate skeletal configuration of
the body pose rather than the standard anatomic positions of the body joints.

2 Geodesic Path Sequence Descriptor

We show how well our GPS provides significant patterns with discriminative
information across anatomically different body parts, through the empirical com-
parison of affinity matrices derived from two different types of features (i.e.,
our GPS and depth values). Then, we describe how to incorporate our GPS
descriptors into the joint entropy-based objective in learning the random forest
classifier.

In order to take the human body manifold structure into account, we exploit
the geodesic distances and their paths among all points over the body surface and
a their barycenter point as feature descriptors for the random forest classifier.
At first, we construct an undirected weighted graph G = (V,€) from the body
points set {p,} €V, where V and £ denote a set of vertices and a set of edges
with pairwise distances being assigned as edge weights, and each p,. is a 3D
position vector consisting of a 2D coordinate x; and its depth dp(x;) in the
body depth image. The set of edges are defined as:

& ={dp(Ps;:Ps,;) €V XV | ([[Pz; = P, ll2 <9)
A ([l = zjllec < 1)}, (1)

Each edge dg(p,,,P,,) € € is stored as a weight w(dg), where a 3D
FEuclidean distance of less than 6. The Dijkstra geodesic distance dg is then
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computed along the shortest path P between Pz, and Pz, which is defined as:

do(Py,Pe,) = >, w(dp) (2)

dEEP(pzp 7pzq)

The graph based geodesic descriptors are invariant to large motion defor-
mations and geometric transforms as long as the local connection relationships
remain, which well reflect the local body structure [8,12]. We then generate
a body-centric geodesic map by measuring the Dijkstra geodesic distances for
all N points on the body, {d¢(p,,,Ps,)} i :. Each Dijkstra geodesic distance,
dc(Py,> Ps, ), 18 associated with the sum of edge weights along a shortest path
between a point, x;, over the body surface and a barycenter of the body, x,
under an assumption that points on anatomically similar body parts maintain
a nearly constant geodesic distance. From the body-centric geodesic map, we
finally define a descriptor based on the geodesic path which is represented by
accumulating sequences of characters correspond to the vectors along the body’s
deformation path. The GPS for a point «; is defined as:

dg(xl) = [ClaCQ; co aCi]a (3)

where ¢; is a character indicating the direction of between p,.  and p,,..
Dynamic time warping (DTW) is a powerful algorithm for measuring similar-
ity between two time series by finding an optimal alignment. In here, we employ
the fast DTW algorithm [13] in order to compute the similarity between two GPS
descriptors in the binary test function of random forest within linear time. Fig. 2
shows that affinities between the inter- and intra- body parts for data aligned
in the parts. All distance values for the affinities are normalized between 0 and
1. The more the affinity matrix has well-formed block diagonal structure, the
better the partitioning of different parts. As shown in Fig.2, the simple depth
comparison features empirically do not provide enough discriminative power in
learning the classifier. In case of two points having similar depth values, but
located at different parts of the body, the features likely lead to erroneous pre-
dictions in the classification problem. Meanwhile, our proposed GPS is robust to
large motion deformation, and it is effectively discriminative for different body

LN

a)l.hand(13)-r.hand(10) )r.leg(15)-r.chest(5 ¢)l.foot(19)-1.thigh(17)

Fig. 2. From the left, each pair of affinity matrices are depth-based and GPS-based
similarities between two different body parts for data in Fig. 1’s overview.
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3 Joint Entropy-Based Body Parts Classification

For formulation of the body parts classification from single depth image, we
assume that a set of N training samples Q = {(fy,,l;)}; is given. The input
variable f,, corresponds to a feature for an individual pixel x;. The output
variable is a discrete label I; € C, where C is a finite set of body labels.

In a given pixel @ in depth image D, we propose a GPS comparison feature
similar to the existing depth comparison feature [1], which is defined as:

fo(D,z) = dy (dg <x+|dg§w)>,dg <m+|dgj(m)|)> (4)

where dw (dg(xg;), dg(x9;)) is a warp path distance between d,(xg;) and
dy(xg;) descriptors. 6 = (4,7) is a pair of offsets to the pixel «, and the scale
invariance of depth is considered through the normalized by the length of dg4(x).
Each node in tree is trained over a set of splitting candidates ¢ = {(6, 7)}, where
feature parameter # and partition threshold 7. The split candidates ¢ are ran-
domly sampled from uniform distribution. For each ¢ (m = |¢|), the subsets
Q1 and Qp partitioned from the original set of data Q are evaluated with our
various energy functions at the current node. The partitioning is performed as
follows:

91(¢) ={(D,z) | fo(D,z) <7}
Qr(¢) =Q\ Qr(¢) (5)

For the forest training procedure, the goal is to find optimal splitting param-
eters of each node and build partitioning binary tree which minimizes the objec-
tive function J defined as follows:

¢ = argmin, J(Q, ). (6)

An optimal criteria ¢* = {6*,7*} is defined as the split parameters of the
node, and later used for prediction of new input data. The entropy is the expected
value of the information contained in each message. The Shannon’s entropy is
generally used for training forests. Our goal is now to learn the joint proba-
bility p:(l,g|f,), where new variable g € R3 is a continuous regression vari-
able for describing the relative 2D offsets between the depth pixel  and a
barycenter of the body x, and the geodesic distance dg(p,, P, ). By using the
chain rule, we rewrite the joint distribution as pi(l, g|fs) = p:(l| fo)pe(g|fo,1),
where we assume that p:(g|fy,l) is a multivariate normal distributions. That
is, pt(g|fa,l) ~ N(ug‘l,)_}g‘”g,fg,l) is one distribution per class label 1. We
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actually define the joint objective function J as follows:

g@o= ¥ ¥ e, (7)

pe{L,R}x€Q,

vp.9:Q) ==Y [ millglfy) logtoull gl )i

leC QGRS

= Zpt(l|f0)log(pt(”fa))

leC

YE(5Qp)

£ 3 pult15) (Gloa((2me)| Syul)). (8)

lec

YE(9;Qpll)

where | Y| denotes the determinant of a matrix.

Finally, the models of random forest are achieved by optimizing the joint
objective function Eq. (8), including the conventional objective ¥ g(l; Q,) for a
discrete label I as well as the objective ¥g(g; Qp|l) for a continuous variable g
given f, and I variables. In here, the posterior that we are interested in is about
the body parts classification. The overall prediction of the forest with T' trees
is estimated by averaging the individual predictions together and the output is
predicted by inferring:

T

. 1

1 = argmaxeep(l| fo) = argmaxice 7 > pe(llfy)- 9)
t=1

4 Body Joints and Skeleton Identification

Given a body-centric geodesic map, as with the way in [8,9,12], the extreme
points are computed by incrementally maximizing geodesic distances on the body
surface. Based on the classified body parts and the geodesic paths between the
body’s barycenter and its geodesic extrema (i.e., end-nodes of the human skeletal
graph), we localize and identify the joint candidates lying on the paths. The joint
candidates are selected with /(Zy_1@, Trxry1) > €). Here, Z(xp_1Th, TuTri1)
is an angle between two vectors xy_ix; and xpTyi41, where the three points
(Tr—1, Tk, Tp41) being around the point xy, are on the same GPS dy(xy). € is
a threshold depending on the body type, and it is empirically set to about 30 in
our experiments. After obtaining the joint candidates set {x;}, the representative

label ' is evaluated as Eq. (10) from the local window at each joint candidate,
where the local patches are based on the already classified body parts. Fig. 3
describes the meta-examples generated at each step.

l;i —argmax Z Zé 1,0, (10)

ueW;, leC
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Fig. 3. (a) Geodesic extrema (blue points in red regions); (b) joint candidates (red
points) on five GPSs (black lines); (c) color-labeled patches on joint candidates; (d)
labels set {l/} classified into five sub-skeletons (i.e., each skeleton for four limbs and
one trunk). (Color figure online)

where I is the label for the position u € R? being in the local window W,,
centered at x;. d is a kronecker delta function. Our main idea is to match two
graphs by comparing the labeled sets of ordered points on the paths between
the body center and the geodesic extrema of the skeletal configuration under the
assumption that there are meaningful joints for the human skeletal structure in
the set of joint candidates. In here, the body center and the geodesic extrema
labels are defined as 7 (center), 0 (head), 10 (right hand), 13 (left hand), 16
(right foot), and 19 (left foot), respectively. All joint candidates are identified and
clustered as in Fig. 3(d) by matching with a given template graph as Fig.4(a).
In order to match the sub-skeletons (i.e., each skeleton for limbs and trunk) with
the template graph, we consider a weighted bipartite graph such as illustrated
in Fig.4(b), which is with two vertex sets, a set of sub-skeleton labels and a
set of joint labels, and the weight of each edge is defined as a DTW distance
between two consecutive joint labels. Given the bipartite graph, the matching is
performed by using the Hungarian method [14]. Finally, the skeletal graph with
15 labeled nodes is extracted, which correspond to the whole body skeleton (see
Fig.5(b)).

5 Numerical Experiments

We show the usefulness of our method, through the empirical comparison to
different objective functions based on different types of features (i.e., our GPS
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Fig. 4. (a) Template skeleton model consisting of four limb sub-skeletons and one trunk
sub-skeleton; (b) bipartite graph with two vertex sets (s#: set of joint labels for each
sub-skeleton in the template; c#: set of candidate joint labels for each geodesic path).

and depth comparison feature [1]). We applied our method to samples from our
ground-truth data sets, consisting of five types of motions: forward/backward
walking, hand wavingl, hand waving2, sitting, and standing; each motion group
has approximately 100 frames. As in a conventional leave-one-out training
scheme, the sequences for each model is evaluated with the trained model from
other models. For quantitative evaluation of estimated joint positions and skele-
ton accuracy, we present three different types of measurements: (a) we estimate
the mean absolute error (MAE) Eq. (11) in order for the training error eval-
uation of the classified body parts; (b) the mean average precision (mAP) is
evaluated by averaging the precision of the estimated 15 joints on each frame,
which is to determine whether the position of the estimated joint is within a
given threshold relative to the ground-truth (in here, the threshold is fixed to
max({|s;|}}_y)/10); (c) the other is a new measurement of similarity between
the estimated skeletons and the ground-truth skeleton by comparing their DTW
score, which is referred to as mean average matching (mAM) and defined as
Eq. (12).

1 * G

i leC

where 17 and 1Y represent the predicted label of data @; and the corresponding
ground-truth label, respectively.

1 d (dg(S*i)»dg(SGi))
Z w (f !

AM (i) = W {Isil}izo)

2 ar €10,1], (12)
where AM (i) is an average matching score between the estimated sub-skeleton
s¢ and the corresponding ground-truth sub-skeleton s, one body skeleton has
five sub-skeletons, {s}}?_,, and the mean matching score is normalized by the
maximum length of the five sub-skeletons. F is a set of target frames.

In [1,2], they apply a local mode-finding approach based on mean-shift with a
weighted Gaussian kernel for each classified body part to infer the final positions

of 3D skeletal joints. However, as shown in Fig.5(a) and 6, the local modes
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Fig. 5. Performance comparison: (top) APs for each joint at depth level 30, based
on ours (blue) and [1] (red) with Training (T4)+Testing (T2, T5) sets; (mid) the
predicted body parts for data in Fig.1 and its skeletons with ground-truth (black
lines); (bot) mAM values with different data sets, using [1] (a, ¢) and ours (b, d)
methods, repectively. (Color figure online)
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Fig. 6. Experimental results of estimated skeletons for forward-walking samples in
Fig. 1: from the left, body depth, color-labeled patches on the joint candidates, identi-
fied & clustered joint candidates, body skeleton overlapping with the depth, skeletons
from our method, and (the last two) skeletons from Shotton2011lcvpr with ground-truth
(black lines). (Color figure online)
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Table 1. MAE, mAP, and mAM results for data sets used in Fig. 5(c, d) at depth level
30.

Method |vygr(,g;9,)+GPS | ¥r(l; Q,)+Depth
MAE | 0.0338(+0.0033) | 0.0788(+0.0047)
mAP 0.6463(40.0855) | 0.6700(40.0513)
mAM 0.8560(+0.0206) | 0.8011(+£0.0218)

obtained from the misclassified outlying parts such as the left hand (label 13)
and the right foot (label 16) cause failing skeleton results. Meanwhile, as shown in
Fig. 5(b) and the MAE in Table 1, our method provides well-classified body parts
as well as well-matched body skeletons through our GPS based-joint entropy and
skeletal matching methods. As shown in Fig. 5 and Table 1, although our method
is slightly less accurate than [1] in the mAP, our method offers the advantage
of more accurately matching the body skeleton. In our method, the position of
a target joint to be predicted depends on its GPS, geodesic distance, and the
inclination angle between its neighboring joint candidate vectors on the GPS.
Because of this assumption, it can be seen that the measured mAP value at the
anatomical joint position reference is slightly lower. On the other hand, the mAM
value makes us confirm that our proposed method well reflects not only the local
features in the body depth data, but also the global structures in the skeletal
configuration. Figure 6 shows a visual comparison of the predicted results.

6 Conclusions

We have presented a novel geodesic path sequence (GPS) descriptor, joint
entropy-based objective with the GPS, and skeleton matching method for 3D
body pose estimation based on the body parts classification, whereby it is pos-
sible to robustly predict the skeleton’s position under severe body deformations.
We also incorporate the GPS descriptor into a joint entropy-based objective func-
tion for learning both class and structural information about the body parts. Use-
ful aspects of our proposed method could be summarized as follows: (a) The GPS
descriptors can be widely used in variety of fields as a descriptor for deformable
object representation; (b) The joint entropy objective function based on our
GPS comparison features well reflects geodesic structural information over the
body surface, leading to more accurate predictions in the random forest classi-
fier; (c) The skeleton matching & identificaton based on the geodesic extrema of
the body, which enhance more robustness to joints mis-identification. Empirical
comparison with the conventional solution, single entropy-based objective with
depth comparison features, confirmed the high performance of our method.

Acknowledgments. This research is supported by Ministry of Culture, Sports and
Tourism (MCST) and Korea Creative Content Agency (KOCCA) in the Culture Tech-
nology (CT) Research & Development Program R2016030043.



Robust Geodesic Skeleton Estimation from Body Single Depth 353

References

10.

11.

12.

13.

14.

Shotton, J., et al.: Real-time human pose recognition in parts from a single depth
image. In: Cipolla, R., Battiato, S., Farinella, G. (eds.) Proceedings of International
Conference on Computer Vision and Pattern Recognition, pp. 1297-1304. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-28661-2_5

Shotton, J., et al.: Efficient human pose estimation from single depth images. IEEE
Trans. Pattern Anal. Mach. Intell. 35, 2821-2840 (2013)

Breiman, L.: Random forests. J. Mach. Learn. 45, 5-32 (2001)

Gall, J., Lempitsky, V.: Class-specific hough forests for object detection. In: Crim-
inisi, A., Shotton, J. (eds.) Proceedings of International Conference on Computer
Vision and Pattern Recognition, pp. 1022-1029. Springer, London (2009). https://
doi.org/10.1007/978-1-4471-4929-3_11

Tan, D.J., Ilic, S.: Multi-forest tracker: a chameleon in tracking. In: Proceedings of
International Conference on Computer Vision and Pattern Recognition, pp. 1202—
1209 (2014)

Dapogny, A., Bailly, K., Dubuisson, S.: Pairwise conditional random forests for
facial expression recognition. In: Proceedings of International Conference on Com-
puter Vision and Pattern Recognition, pp. 3783-3791 (2015)

Girshick, R., Shotton, J., Kohli, P., Criminisi, A., Fitzgibbon, A.: Efficient regres-
sion of general-activity human poses from depth images. In: Proceedings of Inter-
national Conference on Computer Vision, pp. 415422 (2011)

Schwarz, L., Mkhitaryan, A., Mateus, D., Navab, N.: Estimating human 3d pose
from time-of-flight images based on geodesic distances and optical flow. In: Pro-
ceedings of International Conference on Automatic Face and Gesture Recognition,
Santa Barbara, CA, pp. 700-706 (2011)

Baak, A., Miiller, M., Bharaj, G., Seidel, H., Theobalt, C.: A data-driven approach
for real-time full body pose reconstruction from a depth camera. In: Proceedings
of International Conference on Computer Vision, pp. 1092-1099 (2011)
Kontschieder, P., Kohli, P., Shotton, J., Criminisi, A.: GeoF: geodesic forests for
learning coupled predictors. In: Proceedings of International Conference on Com-
puter Vision and Pattern Recognition, pp. 65-72 (2013)

Glocker, B., Pauly, O., Konukoglu, E., Criminisi, A.: Joint classification-regression
forests for spatially structured multi-object segmentation. In: Proceedings of Euro-
pean Conference on Computer Vision, Florence, Italy, pp. 870-881 (2012)
Plagemann, C., Ganapathi, V., Koller, D., Thrun, S.: Real-time identification and
localization of body parts from depth images. In: Proceedings of International
Conference on Robotics and Automation, pp. 3108-3113 (2010)

Salvador, S., Chan, P.: FastDTW: toward accurate dynamic time warping in linear
time and space. In: KDD Workshop on Mining Temporal and Sequential Data, pp.
70-80 (2004)

Kuhn, H.: The hungarian method for the assignment problem. Nav. Res. Logist.
Q. 2, 83-97 (1955)


https://doi.org/10.1007/978-3-642-28661-2_5
https://doi.org/10.1007/978-1-4471-4929-3_11
https://doi.org/10.1007/978-1-4471-4929-3_11

	Robust Geodesic Skeleton Estimation from Body Single Depth
	1 Introduction
	2 Geodesic Path Sequence Descriptor
	3 Joint Entropy-Based Body Parts Classification
	4 Body Joints and Skeleton Identification
	5 Numerical Experiments
	6 Conclusions
	References




