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Abstract. In this paper, we put forward the notion of a token-based
multi-input functional encryption (token-based MIFE) scheme – a notion
intended to give encryptors a mechanism to control the decryption of
encrypted messages, by extending the encryption and decryption algo-
rithms to additionally use tokens. The basic idea is that a decryptor
must hold an appropriate decryption token in addition to his secrete
key, to be able to decrypt. This type of scheme can address security con-
cerns potentially arising in applications of functional encryption aimed
at addressing the problem of privacy preserving data analysis. We firstly
formalize token-based MIFE, and then provide two basic schemes based
on an ordinary MIFE scheme and a public key encryption scheme and a
pseudorandom function (PRF), respectively. Lastly, we extend the latter
construction to allow decryption tokens to be restricted to specified set
of encryptions, even if all encryptions have been done using the same
encryption token. This is achieved by using a constrained PRF.

1 Introduction

1.1 Background and Motivation

Nowadays, large amounts of data is constantly being collected, and data analy-
sis has become an indispensable tool for extracting value from this data. How-
ever, central data collection and processing, which is typically at the heart of
the data collection, potentially leads to security or privacy issues, as the stor-
age and processing provider, such as a cloud environment, is often not fully
trusted to keep the data or the extracted information private. This is especially
a concern, if the collected data contains sensitive information. As a potential
solution, homomorphic encryption (HE) and functional encryption (FE) have
attracted attention. Especially, multi-key homomorphic encryption (MKHE) or
multi-input functional encryption (MIFE) is expected to be suitable for the case
where the data is collected by different entities and will be processed by an entity
which is not fully trusted. Recently, MIFE for inner products has been stud-
ied [BLR+14,ARW16,LL16,KLM+16,ABDP15,DOT18] since the inner prod-
uct operation frequently appears in various statistical computation.
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Let us consider the following data analysis scenario using HE or FE. A data
analyst wants to analyze users’ data stored on a cloud server, but is only trusted
with the result of the analysis, and not the individual data of the users. In
order to achieve this securely, users might encrypt their own data by using the
HE or FE public key of the data analyst, and the store the ciphertexts in the
cloud. Here, we refer to each user’s ciphertext stored in the cloud as the original
ciphertext. In the HE case, the data analyst might request the cloud to perform
homomorphic evaluations of the original ciphertexts corresponding to the desired
analysis, and will then be able to obtain the result by decrypting the evaluated
ciphertext using his own (master) secret key. In the FE case, the data analyst
can obtain the result of the data analysis by merely decrypting the original
ciphertext(s) under his own secret key which embeds a function corresponding
to the desired analysis.

The above approach might seem to be a secure way for the analyst to obtain
the desired result. However, this might not be the case in all scenarios. For exam-
ple, in the HE case, the analyst might be able to instruct the cloud environment
to do a different type of processing or to limit the data which is being processed
such that additional details regarding the data of individual users are leaked. In
the extreme case, the analyst gains access to the original ciphertexts, in which
case he can directly obtain the data of the individual users. In the FE case, ana-
lysts will often be required to have access to many different keys implementing
various functions, and decrypting the user data with all of these will potentially
leak unintended information regarding the user data. Furthermore, and perhaps
more importantly, a different analysts holding a key corresponding to a differ-
ent function might gain access the original ciphertexts and decrypt these using
his key. As the data was intended for the original analyst holding a key for the
original function, this might lead to unintended data leaks. This problem might
be amplified if the key of one data analyst is compromised, as this will put all
existing and future data at risk. Hence, in these scenarios, additional security
measures might be warranted.

1.2 Our Contributions

In this paper, we attempt to address the above described problem, and focus on
reducing the power of the master or user secret key. We propose a new encryp-
tion primitive, called token-based encryption, which provides the encryptor with
additional means to control the decryption possible with the user secret key or
the master secret key. Our token-based multi-input functional encryption (token-
based MIFE) uses tokens both in the encryption and decryption processes, in
addition to secret keys. Roughly speaking, in token-based MIFE, both an appro-
priate decryption token and the secret key are required to decrypt, and as the
encryptors control the tokens, this provides an additional mechanism to address
the above discussed issues. The purpose of this paper it to formalize token-based
MIFE.

Token-Based MIFE. In this paper, we focus on multi-input functional
encryption in the private key setting [GGG+14,BLR+14,ARW16,LL16,BKS16,
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KLM+16,ABDP15,DOT18]. In token-based MIFE, we introduce new parame-
ters – encryption tokens etk and decryption tokens dtk – which are output by a
token generation algorithm GenToken. Informally speaking, token-based MIFE
scheme is similar to ordinary MIFE scheme, except that (1) an encryption token
etk is added to the input of encryption algorithm Enc, and (2) decryption algo-
rithm Dec takes as input a decryption token in addition to the user secret key
(and ciphertext). The encryption and decryption tokens are intended to be gen-
erated by the users encrypting the data in question, and the generation can be
done independently of the key generation server holding the master secret key.
Furthermore, new tokens can be generated as frequently as desired, which allow
the user to partition the data they encrypt. By only distributing the relevant
decryption tokens to the relevant decryption servers/analysts, the users can con-
trol what part of the data is accessible. For example, by encrypting data for two
different analysts using different tokens, the user can ensure that one analyst
cannot access data intended for the other.

In principle, users could generate a new set of tokens for each encryption
done, which would correspond to a very fine-grained partitioning. However, the
overhead of generating and managing tokens might make this undesirable. Fur-
thermore, at the time of encryption, it might not be clear how the data should
be partitioned. To address this, we additionally consider the ability to restrict
decryption tokens to only work for a specified set of encryptions, even if all
encryptions have been done using the same encryption token.

Specific Token-Based MIFE Schemes. In this paper, we present three spe-
cific token-based MIFE schemes. Firstly, we construct a simple scheme by com-
bining a MIFE scheme and an ordinary public key encryption (PKE) scheme. In
this scheme, the encryption and decryption tokens etk and dtk correspond to a
public and private key of the PKE scheme, and encryptions simply correspond
to double encryptions, using the MIFE scheme as the inner encryption. This
scheme allows the entity generating the tokens, e.g. a chosen user, to broadcast
the encryption token to the other users over a public channel.

The second token-based MIFE is constructed from a pseudorandom function
(PRF) and a MIFE scheme. In this scheme, the ciphertexts of the underlying
MIFE scheme are masked with masks generated using the PRF. However, to
ensure security, the scheme is required to be stateful. In contrast to the first
scheme, the token generation can be run in a distributed manner in the sense
that each user can run the corresponding part of the token generation indepen-
dently of the other users, but is then required to send the generated part of the
decryption token to the decryption server.

Lastly, the third construction is an extension of the second one using a con-
strained PRF as opposed to an ordinary one. This allows the scheme to sup-
port decryption token restriction. Furthermore, using the GGM tree-based PRF
[GGM84] as a constrained PRF, allows an efficient instantiation.
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1.3 Paper Organization

The rest of the paper is organized as follows: In Sect. 2 we review the cryp-
tographic preliminaries. In Sect. 3, we introduce the formal syntax and security
definitions of token-based MIFE. In Sect. 4, we show our specific stateless scheme
and it’s security. In Sects. 5 and 6, we show our specific efficient stateful schemes
and their security.

2 Preliminaries

In the following, we introduce the notion used in the paper, as well as the primi-
tives our constructions are based on. In addition to the primitives in this section,
we make use of a standard public key encryption scheme, which is defined in
AppendixA.

2.1 Notation

Throughout the paper we will use λ ∈ N to denote the security parameter and
will sometimes suppress the dependency on λ, when λ is clear from the context.
We denote by y ← x the assignment of y to x, and by s ← S we denote the
selection of an element s uniformly at random from the set S. The notation
[n] represents the set {1, 2, . . . , n}, and for n1 < n2, [n1;n2] represents the set
{n1, n1 + 1, . . . , n2}. For an algorithm A, we denote by y ← A(x) that A is run
with input x, and that the output is assigned to y.

2.2 Pseudorandom Function

A pseudorandom function (PRF) F : K × D → R with keyspace K, domain D,
and range R, is given by the following two algorithms.

F.KeyGen(1λ) This is the key generation algorithm which, on input the security
parameter 1λ, returns a key k ∈ K.

F.Eval(k, x) This is the evaluation algorithm which, given key k ∈ K and input
x ∈ D, returns an output value y ∈ R.

Security is defined via the security game shown in Fig. 1.

Definition 1. Let the advantage of an adversary A playing the security game
in Fig. 1 with respect to a pseudorandom function F = (KeyGen, Eval) be defined
as

AdvPRFF,A(λ) = 2
∣
∣
∣
∣
Pr[PRFF

A(λ) ⇒ 1] − 1
2

∣
∣
∣
∣
.

F is said to be secure if for all PPT adversaries A, AdvPRFF,A(λ) is negligible in the
security parameter λ.
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PRFF
A(λ):

k ← F.KeyGen(1λ)
b ←$ {0, 1}
F ← ∅
b′ ← AEval(1λ)
return (b = b′)

proc. Eval(x):
if b = 1

y ← F.Eval(k, x)
else

if F [x] = ⊥, then F [x] ←$ R
y ← F [x]

return y

Fig. 1. Game defining security of a pseudorandom function.

PRFF
A(λ):

(S, st) ← A(1λ)
k ← F.KeyGen(1λ)
kS ← F.Constrain(k, S)
b ←$ {0, 1}
F ← ∅
b′ ← AEval(st, kS)
return (b = b′)

proc. Eval(x):
if x ∈ S return ⊥
if b = 1

y ← F.Eval(k, x)
else

if F [x] = ⊥, then F [x] ←$ R
y ← F [x]

return y

Fig. 2. Game defining security of a constrained pseudorandom function.

Constrained Pseudorandom Function. A constrained PRF is an extension
of an ordinary PRF that allows PRF keys to be constrained to only be usable
for certain inputs. Specifically, besides the algorithms KeyGen and Eval defined
for an ordinary PRF, a constrained PRF additionally includes the following
algorithm:

Constrain(k, S) Given a key k ∈ K and a set S ⊂ D, this constraining algorithm
returns a constrained key kS .

For correctness, it is required that for all security parameters λ, all keys k ←
KeyGen(1λ), all sets S ⊂ D, all constrained keys kS ← Puncture(k, S), it holds
that

Eval(kS , x) =

{

Eval(k, x) if x ∈ S

⊥ otherwise

We define (selective) security for a constrained PRF F via the game shown in
Fig. 2.

Definition 2. Let the advantage of an adversary A playing the security game
in Fig. 1 with respect to a pseudorandom function F = (KeyGen, Eval) be defined
as

AdvPRFF,A(λ) = 2
∣
∣
∣
∣
Pr[PRFF

A(λ) ⇒ 1] − 1
2

∣
∣
∣
∣
.

F is said to be secure if for all PPT adversaries A, AdvPRFF,A(λ) is negligible in the
security parameter λ.
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Note the the above defined security notion for a constrained PRF is slightly
weaker than the notion considered by [BW13], as the adversary is only given
access to a challenge evaluation oracle returning real or random values, as
opposed to both an ordinary evaluation oracle alway returning Eval(k, x) and a
challenge evaluation oracle which can be evaluated on distinct inputs. However,
the above defined notion is sufficient to guarantee security for in our construction
based on a constrained PRF.

2.3 Symmetric-Key Multi-input Functional Encryption

A symmetric-key multi-input functional encryption (MIFE) scheme M for a func-
tion f is given by the following algorithms [BLR+14].

Setup(1λ) Given the security parameter λ, this setup algorithm returns public
parameters mpk and a private master key msk.

KeyGen(msk, y) Given msk and value y, this key generation algorithm returns
a secret key sky.

Enc(msk, x) Given the master key msk, an index i, and a message xi, this
encryption algorithm returns a ciphertext ci.

Dec(sky, c1, . . . , cn) Given sky and ciphertexts (c1, . . . , cn) encrypting message
vectors x1, . . . , xn, this decryption algorithm returns either f(x1, . . . , xn, y)
or the error symbol ⊥.

Correctness is defined in the obvious way. Adaptive security of a MIFE scheme
M is defined via the following security game.

INDβ
M,A(λ):

(mpk,msk) ← Setup(1λ)
b ← AKeyGen,Enc(mpk)
return b

proc. KeyGen(y):
sky ← KeyGen(msk, y)
return sky

proc. Enc(i, x0
i , x

1
i ):

c ← Enc(msk, i, xβ
i )

return c

In the above game it is required that for all j1, . . . , jn ∈ [Q1] × · · · × [Qn],
where for all i ∈ [n], Qi denotes the number of encryption queries for index i, A
only makes queries y to KeyGen satisfying

f(xj1,0
1 , . . . , xjn,0

n , y) = f(xj1,1
1 , . . . , xjn,1

n , y)

where (xj,0
i , xj,1

i ) denotes the values submitted by A in its jth query to Enc for
index i.

Definition 3. A scheme MIFE M is said to be IND secure, if for all PPT algo-
rithms A, the advantage

AdvINDM,A(λ) =
∣
∣Pr[IND0

M,A(λ) ⇒ 1] − Pr[IND1
M,A(λ) ⇒ 1]

∣
∣

is negligible in the security parameter λ.
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3 Token-Based MIFE

3.1 Functionality

A token-based MIFE extends the functionality of an ordinary MIFE as defined
in Sect. 2.3, by including an additional algorithm GenToken which, on input the
parameters mpk of the scheme, generates encryption tokens etk1, . . . , etkn and
a decryption token dtk. Each user i will then use encryption token etki as an
additional input to the encryption algorithm, while the decryption server will use
dtk as an additional input to the decryption algorithm. For simplicity, we will in
our formalization consider a setup in which the evaluation of the functionality
f implemented by the token-based MIFE is done over values x1, . . . , xn where
xi is encrypted by user i using encryption token etki. Lastly, our formalization
considers token-based MIFE schemes supporting restricting decryption tokens to
only work for specific ciphertexts. This is captured via the Restrict algorithm,
which takes as input a decryption token dtk and a set S consisting of index pairs
(i, j) referring to the jth encryption of the ith input, and outputs a decryption
token dtkS that only works for ciphertexts specified by S.

More formally, a token-based MIFE scheme for functionality f : X1 × . . . ×
Xn ×Y → R and a class S ⊆ 2[n]×N of supported restriction sets, is given by the
following algorithms.

Setup (1λ) Given the security parameter λ, this setup algorithm returns a secret
master key msk and public parameters mpk.

KeyGen (msk, y) Given msk and value y, this key generation algorithm returns
a secret key sky.

GenToken (mpk) Given the public parameters mpk, this token generation algo-
rithm returns encryption tokens etk1, . . . , etku and a decryption token dtk.

Enc (msk, i, etki, xi) Given the master key msk, a slot index i, a corresponding
encryption token etki, and a message xi, this encryption algorithm returns a
ciphertext ci and an updated encryption token etk′

i.
Restrict (dtk, S) Given dtk and a set S of index pairs, each pair (i, j) ∈ S

referring to the jth ciphertext encrypted for slot i, this algorithm returns a
restricted decryption token dtkS .

Dec(dtk, sky, c1, . . . , cn) Given dtk, sky, and ciphertexts c1, . . . , cn encrypting
messages x1, . . . , xn, this decryption algorithm returns either f(x1, . . . , xn, y)
or the error symbol ⊥.

Stateful/Stateless Schemes. Note that the above definition allows the encryp-
tion algorithm Enc to be stateful in the sense that, in addition to the ciphertext
c, Enc returns an updated encryption token etk′

i. The premise is that user i will
use the updated token etk′

i (as opposed to the old encryption token etki) in
the following encryption. We refer to this type of scheme as a stateful scheme.
However, we will additionally consider stateless schemes in which the encryption
token is not updated, that is, for (ci, etk

′
i) ← Enc(msk, i, etki, xi) it holds that

etk′
i = etki regardless of the other inputs msk, i, and xi.
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Support for Decryption Token Restriction. While the above definition
allows decryption tokens to be restricted via the Restrict algorithm, we will
also consider scheme that essentially do not support this. In this case, we simply
set the supported class of restriction sets S to be ∅ and let Restrict return
an empty string. In particular note that for a stateless scheme, the input to
the encryption algorithm besides xi will remain the same, which implies that
decryption tokens cannot be meaningfully restricted, assuming the ability to
decrypt is independent of xi. Hence, we will only consider decryption token
restriction for stateful schemes.
Correctness for Stateless Schemes. For a token-based MIFE scheme T for
function f , we require that for all security parameters λ, any input x1, . . . , xn ∈
X , any y ∈ Y, any (mpk,msk) ← T.Setup(1λ), any sky ← T.KeyGen(msk, y),
any (etk1, . . . , etku, dtk) ← T.GenToken(mpk), any i ∈ [n], and any ci ←
T.Enc(msk, i, etki, xi), it holds that

T.Dec(sky, dtk, c1, . . . , cn) = f(x1, . . . , xn, y).

Correctness for Stateful Schemes. For a token-based MIFE scheme T for function
f , we require that for all security parameters λ, any set of n values s1, . . . , sn

polynomial in λ, any set of n(s1 + · · · + sn) inputs, namely, x
(1)
1 , . . . , x

(s1)
1 ∈

X1; . . . ;x
(n)
1 , . . . , x

(sn)
n ∈ Xn, any y ∈ Y, any (mpk,msk) ← T.Setup(1λ),

any sky ← T.KeyGen(msk, y), any set of encryption/decryption tokens
(etk1, . . . , etku, dtk) ← T.GenToken(mpk), any set of ciphertexts (c(j1)1 , . . . ,

c
(jn)
n ) obtained by, for each i ∈ [n], iteratively computing (c(j)i , etk

(j+1)
i ) ←

T.Enc(msk, i, etk
(j)
i , x

(j)
i ), j ∈ [si], where etk

(1)
i = etki, it holds that

T.Dec(sky, dtk, c
(s1)
1 , . . . , c(sn)

n ) = f(x(s1)
1 , . . . , x(sn)

n , y)

and for all sets S ∈ S for which (1, j1), . . . , (n, jn) ∈ S, and all dtkS ←
T.Restrict(dtk, S), it likewise holds that

T.Dec(sky, dtkS , c
(s1)
1 , . . . , c(sn)

n ) = f(x(s1)
1 , . . . , x(sn)

n , y)

Remark 1. Note that correctness for stateless schemes is in fact captured as a
special case of correctness for stateful schemes. However, we explicitly included
the former for readability, since it is simpler than the latter.

3.2 Security

FE-IND Security. Firstly, we consider security against a malicious decryp-
tion server who attempts to derive additional information regarding plaintexts
xi beyond what is revealed by f(x1, . . . , xn, y) obtained in an honest decryption.
This is captured by the security notion functional encryption indistinguishability
(FE-IND) defined via the following game for a scheme T. In the game, the adver-
sary will be given an unrestricted decryption token, a key generation oracles, as
well as a (stateful) challenge encryption oracle. The FE-IND notion mirrors the
IND notion defined for an ordinary MIFE (see Sect. 2.3).
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FE-INDβ
T,A(λ):

(mpk,msk) ← Setup(1λ)
(etk1, . . . , etkn, dtk) ← GenToken(mpk)
b ← AKeyGen,Enc(mpk, dtk)
return b

proc. KeyGen(y):
return sky ← KeyGen(msk, y)

proc. Enc(i, x0
i , x

1
i ):

(c, etk′
i) ← Enc(msk, etki, i, x

β
i )

etki ← etk′
i

return c

In the above game it is required that for all j1, . . . , jn ∈ [Q1] × · · · × [Qn],
where for all i ∈ [n], Qi denotes the number of encryption queries for index i, A
only makes queries y to KeyGen satisfying

f(xj,0
1 , . . . , xj,0

n , y) = f(xj,1
1 , . . . , xj,1

n , y)

where (xj,0
i , xj,1

i ) denotes the values submitted by A in its jth query to Enc for
index i.

Definition 4. A scheme token-based MIFE T is said to be FE-IND secure, if for
all PPT algorithms A, the advantage

AdvFE−IND
T,A (λ) =

∣
∣Pr[FE − IND0

T,A(λ) ⇒ 1] − Pr[FE − IND1
T,A(λ) ⇒ 1]

∣
∣

is negligible in the security parameter λ.

TK-IND Security. We additionally consider security against a malicious
decryption server who attempts to learn any information regarding plaintexts
xi without possessing the appropriate decryption token. This is captured by
the security notion token-based indistinguishability (TK-IND) defined via the
following game for scheme T. Note that in the security game, the adversary A
is given the master secret key msk as input, and hence captures a malicious
decryption server colluding with the key generation server. Furthermore, A is
given a restricted decryption token dtkS for a set S of his own choice, but is
required to submit challenge queries that are not covered by S. This captures
that dtkS does not leak information that would assist decryption of ciphertexts
not covered by S. Note that our notion is selective in terms of the choice of S,
as A is required to commit to S before interacting with the challenge encryption
oracle. Lastly note that for a scheme not supporting decryption token restriction,
the Restrict algorithm is implicitly defined to always return an empty string,
which implies that A would only receive msk as input.

TK-INDβ
T,A(λ):

(mpk,msk) ← Setup(1λ)
(S, st) ← A(mpk,msk)
(etk1, . . . , etkl, dtk) ← GenToken(mpk)
j1, . . . , jn ← 0
dtkS ← Restrict(dtk,S)
b ← AEnc(st, dtkS)
return b

proc. Enc(i, x0
i , x

1
i ):

if (i, ji) ∈ S
return ⊥

(c, etk′
i) ← Enc(msk, etki, i, x

β
i )

ji ← ji + 1
etki ← etk′

i

return c
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Definition 5. A token-based MIFE scheme T is said to be TK-IND secure, if for
all PPT algorithms A, the advantage

AdvTK−IND
T,A (λ) =

∣
∣Pr[TK − IND0

T,A(λ) ⇒ 1] − Pr[TK − IND1
T,A(λ) ⇒ 1]

∣
∣

is negligible in the security parameter λ.

Besides the above, we consider a slightly stronger security notion which cap-
tures schemes in which the encryption tokens are broadcast to the users over a
public channel. We will refer to this notion as public token-based indistinguisha-
bility (pTK-IND). More specifically, we denote by pTK-IND a security game
identical to the TK-IND game defined above, except that in the second invoca-
tion of the adversary A, etk1, . . . , etkn will be given as input to A in addition to
st and dtkS . Based on this game, pTK-IND security is defined as follows.

Definition 6. A token-based MIFE scheme T is said to be pTK-IND secure, if
for all PPT algorithms A, the advantage

AdvpTK−IND
T,A (λ) =

∣
∣Pr[pTK − IND0

T,A(λ) ⇒ 1] − Pr[pTK − IND1
T,A(λ) ⇒ 1]

∣
∣

is negligible in the security parameter λ.

4 A Stateless Scheme

We will now present a simple stateless token-based MIFE scheme based on a
standard MIFE scheme and a public key encryption scheme. The construction
uses a single public key for the encryption tokens, and simply constructs a dou-
ble encryption of messages, using the public key encryption as the outer layer.
This leads to a scheme in which e.g. a chosen user can generate the encryp-
tion/decryption tokens on behalf of all users, and then simply broadcast the
encryption token to the remaining users (as well as provide the decryption token
to the decryption server fi/when appropriate). However, as this is a stateless
scheme, it will not support decryption token restriction.

Concretely, we construct a token-based MIFE scheme T for function f using
an ordinary public-key encryption scheme PKE = (KeyGen, Enc, Dec) and a multi-
input functional encryption scheme M = (Setup, KeyGen, Enc, Dec) for f as fol-
lows.

Setup (1λ) Return (mpk,msk) ← M.Setup(1λ).
KeyGen (msk, y) Return sky ← M.KeyGen(msk, y).
GenToken (λ) Compute (pk, sk) ← PKE.KeyGen(1λ), set etk1 = · · · = etkl ← pk

and dtk ← sk. Finally return (etk1, . . . , etkl, dtk).
Enc (msk, i, etki, xi) Compute c′ ← M.Enc(msk, i, xi); c ← PKE.Enc(etki, c

′).
Return (c, u).

Dec (dtk, sky, c1, . . . , cn) For each i ∈ [n], compute c′
i ← PKE.Dec(dtk, ci).

Return M.Dec(sky, c′
1, . . . , c

′
n).
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4.1 Security

The security of the above construction is established via the following two the-
orems. The corresponding proofs can be found in AppendixB.

Theorem 1. Assume the MIFE scheme M is IND secure. Then the above scheme
T is FE-IND secure. Specifically, for every PPT adversary A against the FE-IND
security of T, there exists a PPT adversary B against the IND security of M such
that AdvFE−IND

T,A ≤ AdvINDM,B.

Theorem 2. Assume PKE is IND-CPA secure. Then the above scheme T is pTK-
IND secure. Specifically, for every PPT adversary A against the pTK-IND secu-
rity of T, there exists a PPT adversary B against the IND-CPA security of PKE
such that AdvTK−IND

T,A ≤ n · AdvIND−CPA
PKE,B .

5 A Stateful Scheme

We will now present a stateful token-based MIFE scheme based on a standard
MIFE scheme and a PRF. Compared to the stateless scheme in the previous
section, the computational overhead of making the MIFE scheme token-based is
much lower, as a PRF can be implemented much more efficiently compared to a
PKE. Furthermore, the scheme allows the GenToken algorithm to be computed
in a distributed manner; each user will be able to independently generate his
own encryption token etki and the corresponding part of the decryption token
dtki. For the decryption server to be able to decrypt, it is then required that
each user sends dtki to the server, which will then form the full decryption token
dtk = (dtk1, . . . , dtkn). Like the stateless scheme, the construction idea is simple;
the ciphertexts of the MIFE are simply masked with a mask generated using the
PRF evaluated. To guarantee security, the scheme must be stateful, as it must
be ensured that the same mask is never used twice.

Concretely, we construct a token-based MIFE scheme T using a PRF
PRF = {KeyGen, Eval} with range {0, 1}l, and a MIFE scheme M =
{Setup, KeyGen, Enc, Dec} with ciphertext space C ⊂ {0, 1}l as follows.

Setup (1λ) Return (mpk,msk) ← M.Setup(1λ).
KeyGen (msk, y) Return sky ← M.KeyGen(msk, y).
GenToken (λ) For i ∈ [n] compute ki ← PRF.KeyGen(1λ), and set etki ← (ki, 0).

Finally set dtk ← (k1, . . . , kn), and return (etk1, . . . , etkn, dtk).
Enc (msk, i, etk, xi) Parse etk → (k, j), and compute m ← PRF.Eval(k, j). Then

compute c′ ← M.Enc(msk, i, xi), and set c ← (c′ ⊕ m, j), j′ ← j + 1, and
etk′ ← (k, u, j′). Finally return (c, etk′).

Dec (dtk, sky, c1, . . . , cn) Parse dtk → (k1, . . . , kl) and ci → (c′
i, ji) for i ∈ [n].

For each i ∈ [n], compute mi ← PRF.Eval(ki, ji) and c′′
i ← c′

i ⊕ mi. Finally
return z ← M.Dec(sk′

y, c′′
1 , . . . , c′′

n).
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5.1 Security

The security of the above construction is established via the following two the-
orems.

Theorem 3. Assume the MIFE scheme M is IND secure. Then the above scheme
T is FE-IND secure. Specifically, for every PPT adversary A against the FE-IND
security of T, there exists a PPT adversary B against the IND security of M such
that AdvTK−IND

T,A ≤ AdvINDM,B.

Proof. The proof is a simple and straightforward reduction. Given adversary A
against the FE-IND security of T, we construct adversary B against the IND
security of M as follows.

Initially, B is given parameters mpk which B simply forwards to A. Further-
more, B will compute PRF keys ki ← P.KeyGen(1λ) and set variables ji ← 0
for i ∈ [n]. When A submits a key generation query y, B simply forwards y to
his own KeyGen oracle, and returns the response sky to A. When A makes an
encryption query (u, i, x0

i , x
1
i ), B forwards (i, x0

i , x
1
i ) to his own Enc oracle to

obtain ciphertext c′. Then B computes m ← P.Eval(ki, ji), sets c ← (c′ ⊕ m, ji)
and ji ← ji + 1, and lastly returns c to A. Eventually A will terminate with
output b, which B forwards as his own output.

By inspection, it should be clear that B provides a perfect simulation of the
FE-IND game for A, and that B wins the IND game for M (i.e. correctly guesses
the challenge bit β) whenever A wins the FE-IND game for T. Hence the theorem
follows.

Theorem 4. Assume the PRF P is secure. Then the above scheme T is TK-IND
secure. Specifically, for every PPT adversary A against the TK-IND security of
T, there exists a PPT adversaries B1, . . . ,Bl against the PRF security of P such
that AdvTK−IND

T,A ≤ AdvPRFP,B1
+ . . . + AdvPRFP,B2l

.

Proof. The proof is a series of simple game hops, firstly replacing the output of
the PRF P with random values for each user, then changing the challenge bit
β used by the encryption oracle, and finally replacing the output of P back to
the real values. Note that since the scheme does not support decryption token
restrictions, the restricted decryption token dtkS will correspond to ⊥ regardless
of the set S, and we can ignore this input to A (as well as S output by A).

More concretely, let G0 denote the TK − IND0
T,A game, and let Gt, t ∈ [n],

denote modifications of this game in which the encryption done in response to
encryption queries (i, x0

i , x
1
i ), is modified as follows: if i ≤ t, set m ← {0, 1}t,

otherwise set m ← P.Eval(ki, ji). Furthermore, let Gn+1 denote a modification of
Gn in which the encryption oracle uses β = 1. Finally, let Gt for t ∈ [n+2; 2n+1]
denote modifications of Gn+1 corresponding to reversing the changes introduced
in games G1, . . . , Gn i.e. the random masks m used in the response to encryption
queries are replaced with m ← P.Eval(ki, ji) for each user i in turn, starting from
user 1. It should be clear the game G2n+1 is identical to TK − IND1T,A.

Via a simple reduction, we bound the difference between the probability that
A outputs 1 in game Gt and in game Gt+1, t ∈ {0, . . . , n− 1}, with AdvPRFP,Bt

for a
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PPT algorithm Bt. Specifically, Bt is constructed as follows. Initially, Bt generates
(mpk,msk) ← M.Setup(1λ), sets j1, . . . , jn ← 0, computes ki ← P.KeyGen(1λ) for
all i �= t and i ∈ [n], and forwards (mpk,msk) to A (note that (ki, ji) corresponds
to the encryption token etki for user i). For encryption queries (i, x0

1, x
1
i ) where

i ≤ t, Bt responds by using a randomly chosen mask mi ← {0, 1}l. For queries
where i > t+1, Bt responds using mi ← P.Eval(ku, i||j) and updating ji ← ji+1.
However, for queries where i = t + 1, Bt forwards ji to his own Eval oracle to
obtain mi, and sets ji ← ji + 1. Finally, when A returns a bit b′, Bt forwards
this as his own output.

From the above description, it should be clear that Bt provides a perfect
simulation of game Gt for A if the challenge bit β in the PRF security game
played by Bt is 0. On the other hand, if β = 1, Bt provides a perfect simulation of
game Gt+1. Hence, it directly follows that |Pr[Gt ⇒ 1]−Pr[Gt+1 ⇒]| ≤ AdvPRFP,Bt

,
t ∈ [0; l − 1]. Furthermore, since in game Gn and Gn+1, the masks used in the
response to encryption queries are picked uniformly at random, the distributions
of (mi⊕c′

i, ji) in the two games are identical, even though c′
i encrypts x0

i in game
Gn and x1

i in game Gn+1. Finally, using an identical argument to the above, it
follows that |Pr[Gi ⇒ 1] − Pr[Gi+1 ⇒]| ≤ AdvPRFP,Bi

, i ∈ [l + 1; 2l + 1].
Combining the above bounds, we obtain

AdvTK−IND
T,A = |Pr[TK − IND0

T,A ⇒ 1] − TK − IND1
T,A ⇒ 1]|

≤
2l∑

t=0

|Pr[Gt ⇒ 1] − Pr[Gt+1 ⇒ 1]|

≤ AdvPRFP,B0
+ . . . + AdvPRFP,Bl−1

+ AdvPRFP,Bl+1
+ . . . + AdvPRFP,B2l

�

6 A Stateful Scheme Supporting Decryption Tokens
Restriction

We will now present an extension of the scheme from Sect. 5 that allows restrict-
ing decryption tokens. First observe that the stateful scheme from Sect. 5 actually
supports a simple form of decryption token restriction. Specifically, note that the
decryption server is required to recover the masks mi to be able to decrypt, which
is possible as the decryption token dtk contains the PRF keys ki used to gener-
ate these. To restrict dtk to only be usable for a set of ciphertext specified by a
given set S, e.g. S = {(1, j1), . . . , (n, jn)}, it is possible to simply use the rele-
vant masks as a restricted decryption token i.e. dtkS = {mi = Eval(ki, ji)}i∈[n].
It is not difficult to see that security for ciphertexts not described by S will
be preserved. However, the disadvantage of this solution is that the size of the
decryption token will equal the size of S.

To obtain a more efficient solution, we will make use of a constrained PRF to
limit the ability of the decryption server to only be able to generate the masks
required to decrypt the ciphertexts described by S. By choosing an appropriate
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instantiation of the constrained PRF, the size of the decryption token can be
reduced. We discuss the details of the instantiation below.

The scheme rT is based on a MIFE M = {Setup, KeyGen, Enc, Dec} and a
constrained PRF cP = {KeyGen, Eval, Restrict}. The algorithms rT.Setup,
rT.KeyGen, rT.GenToken, rT.Enc, and rT.Dec are identical to the stateless scheme
T in Sect. 4, but for clarity, all algorithms are described below.

Setup (1λ) Return (mpk,msk) ← M.Setup(1λ).
KeyGen (msk, y) Return sky ← M.KeyGen(msk, y).
GenToken (λ) For i ∈ [n] compute ki ← cP.KeyGen(1λ), and set etki ← (ki, 0).

Finally set dtk ← (k1, . . . , kn), and return (etk1, . . . , etkn, dtk).
Enc (msk, i, etk, xi) Parse etk → (k, j), and compute m ← cP.Eval(k, j). Then

compute c′ ← M.Enc(msk, i, xi), and set c ← (c′ ⊕ m, j), j′ ← j + 1, and
etk′ ← (k, u, j′). Finally return (c, etk′).

Restrict (dtk, S) Parse dtk → (k1, . . . , kn) and let Si = {j|(i, j) ∈ S}. Set
k′

i ← cP.Restrict(ki, Si) for i ∈ [n], and return dtkS ← (k′
1, . . . , k

′
n).

Dec (dtk, sky, c1, . . . , cn) Parse dtk → (k1, . . . , kl) and ci → (c′
i, ji) for i ∈ [n].

For each i ∈ [n], compute mi ← cP.Eval(ki, ji) and c′′
i ← c′

i ⊕ mi. Finally
return z ← M.Dec(sk′

y, c′′
1 , . . . , c′′

n).

It is relatively straightforward to confirm that the scheme is correct.

6.1 Security

Theorem 5. Assume the MIFE scheme M is IND secure. Then the above scheme
rT is FE-IND secure. Specifically, for every PPT adversary A against the FE-
IND security of rT, there exists a PPT adversary B against the IND security of
M such that AdvTK−IND

rT,A ≤ AdvINDM,B.

The proof of the above theorem is identical to the proof of Theorem3

Theorem 6. Assume the PRF P is secure. Then the above scheme T is TK-IND
secure. Specifically, for every PPT adversary A against the TK-IND security of
T, there exists a PPT adversaries B1, . . . ,Bl against the PRF security of P such
that AdvTK−IND

T,A ≤ AdvcPRFP,B1
+ . . . + AdvcPRFP,B2l

.

(Proof Sketch). The proof is almost identical to the proof of Theorem4, so we will
just highlight the differences. In fact, the only difference is that the adversary A
will have to be given a correctly formed restricted decryption token dtkS corre-
sponding to the set S output by A. Following the description of the scheme, this
implies that in all games Gt, i ∈ [2l + 1], A will be given dtkS = (kS1 , . . . , kSn

),
where Si = {j|(i, j) ∈ S} and kSi

← cP.Restrict(dtk, Si). Note that the adver-
sary Bt constructed to bound the difference between games Gt and Gt+1, for
t ∈ 0, . . . , l − 1, will have access to all keys ki for i �= t+1 i ∈ [n], and can hence
directly compute kSi

← P.Constrain(ki, Si). Furthermore, Bt will initially be
given S and can derive St+1 = {j|(t+1, j) ∈ S}, and since Bt will be interacting
in the security game of the constrained PRF cP , Bt will be able to submit this
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as the initial step, and obtain kSt+1 ← cP.Restrict(kt+1, St+1) for the chal-
lenge key kt+1. The remaining part of the simulation is exactly as in the proof
of Theorem 4, and a an identical bound on the advantage of A is obtained. �

6.2 Efficient Instantiation of a Constrained PRF

As also observed in several other works [BW13,BGI14,KPTZ13], a selective
secure constrained PRF can be obtained directly from the GGM tree-based
construction of a PRF [GGM84]. More precisely, the secret key ks at an internal
node associated with the string s in the tree, allows the PRF to be evaluated on
strings with the prefix s i.e. ks is a constrained key for the set of strings with
prefix s. Using this construction in combination with the above token-based
MIFE, leads to restricted decryption tokens dtkS consisting of PRF keys ks such
that all values j in the set S is captured by a prefix s, but no value j′ ∈ S is.
This construction is particularly efficient when the values j in S are consecutive
values.

A Public Key Encryption

A public key encryption (PKE) scheme PKE is defined by three algorithms with
the following functionality:

PKE.KeyGen(1λ) This is the key generations algorithm, which on input the secu-
rity parameter 1λ, returns a public/private key pair (pk, sk).

PKE.Enc(par, pk,m) This is the encryption algorithm, which on input a public
key pk and a message m, returns an encryption c of m under pk.

PKE.Dec(par, sk, c) This is the decryption algorithm, which on input a private
key sk and a ciphertext c, returns either a message m or the error symbol ⊥.

We require that a PKE scheme satisfies perfect correctness, that is,
for all λ, all (pk, sk) ← PKE.KeyGen(1λ), and all m, it holds that
PKE.Dec(sk, PKE.Enc(pk,m)) = m.

IND-CPAPKE
A (λ):

(pk∗, sk∗) ← PKE.KeyGen(1λ)
b ←$ {0, 1};
(m0, m1, st) ← A(pk∗)
c∗ ← PKE.Enc(pk∗, mb)
b′ ← A(st, c∗)
return (b = b′)

Fig. 3. Game defining indistinguishability under chosen plaintext attacks (IND-CPA)
for a PKE scheme.

The standard IND-CPA security notion for PKE scheme is defined via the
game shown in Fig. 3.
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Definition 7. Let the advantage of an adversary A playing the IND-CPA game
with respect to a PKE scheme PKE, be defined as:

AdvIND−CPA
PKE,A (λ) = 2

∣
∣
∣
∣
Pr[IND-CPAPKE

A (λ) ⇒ 1] − 1
2

∣
∣
∣
∣
.

A scheme PKE is said to be IND-CPA secure, if for all PPT adversaries A,
AdvIND−CPA

PKE,A (λ) is negligible in the security parameter λ.

B Security Proofs for Stateless Scheme

Theorem 7. Assume the MIFE scheme M is IND secure. Then the above scheme
T is FE-IND secure. Specifically, for every PPT adversary A against the FE-IND
security of T, there exists a PPT adversary B against the IND security of M such
that AdvFE−IND

T,A ≤ AdvINDM,B.

Proof. The proof is a simple and straightforward reduction. Given adversary A
against the FE-IND security of T, we construct adversary B against the IND
security of M as follows.

Initially, B is given parameters mpk which B simply forwards to A. Fur-
thermore, B will compute (pk, sk) ← PKE.KeyGen(1λ). When A submits a key
generation query y, B simply forwards y to his own KeyGen oracle, and returns
the response sky to A. When A makes an encryption query (i, x0

i , x
1
i ), B for-

wards (i, x0
i , x

1
i ) to his own Enc oracle to obtain ciphertext c′. Then B computes

c ← PKE.Enc(pk, c′), and returns c to A. Eventually A will terminate with output
b′, which B forwards as his own output.

By inspection, it should be clear that B provides a perfect simulation of the
FE-IND game for A, and that B wins the IND game for M (i.e. correctly guesses
the challenge bit b) whenever A wins the FE-IND game for T. Hence the theorem
follows.

Theorem 8. Assume PKE is IND-CPA secure. Then the above scheme T is pTK-
IND secure. Specifically, for every PPT adversary A against the pTK-IND secu-
rity of T, there exists a PPT adversary B against the IND-CPA security of PKE
such that AdvTK−IND

T,A ≤ n · AdvIND−CPA
PKE,B .

Proof. Again, the proof is a simple and straightforward reduction. In the fol-
lowing, we will for convenience make use of the standard extension of IND-CPA
security to the multi-challenge setting.

Given adversary A against the TK-IND security of T, we construct adversary
B against the IND-CPA security of PKE as follows.

Initially, B is given parameters pk. B computes (mpk,msk) ← M.Setup(1λ).
and forwards (mpk,msk) to A. When A submits a key generation query y,
B simply computes sky ← M.KeyGen(msk, y) and returns sky to A. When A
makes an encryption query (i, x0

i , x
1
i ), B computes c′

i
(0) ← M.Enc(msk, i, x0

i )
and c′

i
(1) ← M.Enc(msk, i, x1

i ). B then submits (c′
1
(0)

, c′
1
(1)), . . . , (c′

n
(0)

, c′
n
(1)) to
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the multi-challenge IND-CPA challenge oracle to obtain the challenge vector
(c1, . . . , cn). B then returns it to A. Eventually A will terminate with output b′,
which B forwards as his own output.

By inspection, it should be clear that B provides a perfect simulation of
the TK-IND game for A, and that B wins the multi-challange IND-CPA game
for M (i.e. correctly guesses the challenge bit b) whenever A wins the TK-IND
game for T. Furthermore, since the multi-challenge IND-CPA security reduces to
the normal IND-CPA security with reduction n, the number of challenges, the
theorem follows. �
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