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Abstract. Currently, the Simple Password-Based Encrypted Key
Exchange (SPAKE2) protocol of Abdalla and Pointcheval (CT-RSA
2005) is being considered by the IETF for standardization and inte-
gration in TLS 1.3. Although it has been proven secure in the Find-
then-Guess model of Bellare, Pointcheval and Rogaway (EUROCRYPT
2000), whether it satisfies some notion of forward secrecy remains an
open question.

In this work, we prove that the SPAKE2 protocol satisfies the so-
called weak forward secrecy introduced by Krawczyk (CRYPTO 2005).
Furthermore, we demonstrate that the incorporation of key-confirmation
codes in SPAKE2 results in a protocol that provably satisfies the stronger
notion of perfect forward secrecy. As forward secrecy is an explicit require-
ment for cipher suites supported in the TLS handshake, we believe this
work could fill the gap in the literature and facilitate the adoption of
SPAKE2 in the recently approved TLS 1.3.
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1 Introduction

1.1 SPAKE2 Protocol

Password Authenticated Key Exchange (PAKE) protocols allow two users, who
only share a password, to agree on a high-entropy session key over a hostile
network. The goal is to use the established session key to build a secure channel
between the involved parties. The nature of passwords makes PAKEs vulnerable
to on-line dictionary attacks, where an adversary tries to impersonate a user
by guessing his password, engaging in a protocol execution and verifying if its
guess was correct. An offline dictionary attack occurs when the protocol execu-
tion allows an adversary to launch an exhaustive offline search of the password.
The intuition of security requires PAKEs to be vulnerable to online dictionary
attacks only. The seminal work in this area is the Encrypted Key Exchange
(EKE) protocol of Bellovin and Merritt [1]. Since then, various PAKE protocols
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have been proposed: PPK and PAK [2,3], J-PAKE [4,5], SRP [6], SPEKE [7]
and SPAKE2 [8]. In parallel, prominent complexity-theoric security models for
PAKEs have been proposed to get assurance on the claimed security properties
by performing a rigorous analysis of the protocol in question [2,9–12].

The SPAKE2 protocol, proposed by Abdalla and Pointcheval [8], is a one-
round PAKE protocol proven secure in the Find-then-Guess (FtG) model of
Bellare et al. [9] without considering forward secrecy. It is a simple, yet efficient
protocol that, in addition to the pre-shared password, requires the protocol par-
ticipants to share two Common Reference Strings (CRS) prior to the execution of
the protocol. The adoption of the CRS yields to an elegant construction that does
not require full domain hash functions, which are hard to implement efficiently
in practice. On the other side, the CRS requires extra security assumptions that
might be easy to satisfy in some scenarios but may be very restrictive in oth-
ers [13]. Also, as it is a one-round protocol, only implicit authentication can
be satisfied. Fortunately, the incorporation of key-confirmation codes allows the
protocol participants to explicitly authenticate each other [14] and [15, Chap.
40].

Recently, the Internet Engineering Task Force (IEFT) community has revis-
ited the deployment of SPAKE2 protocol: (i) as stand alone specification [16],
(ii) its usage as pre-authentication mechanism in Kerberos protocol [17] and (iii)
its adoption in TLS 1.3 protocol, specifically in the handshake when pre-shared
keys for authentication are available [18,19]. The discussion of forward secrecy
in SPAKE2 has been a common factor in the aforementioned Internet Drafts.

1.2 PAKEs Adoption in TLS

Nowadays, the Transport Layer Security (TLS) is the de-facto standard to pro-
tect internet communications. It consists of two stages: the Handshake protocol
where two parties agree on a session key, and the Record protocol where the com-
munication is protected using the previously negotiated keys. Most of the TLS
implementations provide only unilateral authentication, where client C authenti-
cates server S during the handshake by means of public-key infrastructure (PKI),
therefore identity disclosure of client to server is usually not supported.

While the unilateral server-authenticated approach might be sufficient for
scenarios like internet surfing, it is certainly inadequate for real-world applica-
tions including email access, internet banking and social media, where client
C needs to authenticate to server S to gain access to resources in S. In prac-
tice, the common approach for authenticating the client asks the client to send
his user/password protected through a server-authenticated TLS channel. This
approach protects the password against eavesdroppers but not against phish-
ing attacks: An adversary can clone a legitimate website and fool the client to
visit the fake website where he input his credentials. To make things worse, the
adversary can manage to obtain a valid public-key certificate from a certifica-
tion authority (CA) for his illegitimate web page. Indeed, the client may see on
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his web browser “secure connection” as a TLS connection may be established
between the client and the cloned website controlled by the adversary.1

Fortunately, PAKEs stand as a strong candidate for scenarios where two
parties require to mutually authenticate each other while intrinsically protecting
their shared password. In fact, the Secure Remote Password (SRP) protocol
[6] has been incorporated in previous versions of TLS and standardized in the
form of RFC5054 [20]. Specifically, the SRP protocol was made available as
cipher suite in the TLS handshake. Similarly, the IETF is currently considering
the adoption of SPAKE2 in TLS 1.3 handshake [18], in particular in the TLS
handshake, for scenarios where authentication is made using pre-shared password
available between the Client and Server.

In the recently approved TLS 1.3, it has explicitly been a design goal to
provide forward secrecy for the session keys used to construct the TLS chan-
nel. In particular, static RSA and Diffie-Hellman cipher suites were removed to
favor public-key based key-exchange mechanism that guarantee forward secrecy.
Therefore, formally proving that SPAKE2 satisfies some significant notion of
forward secrecy would increase its possibilities of acceptance into TLS 1.3.

Remark: While PAKEs adoption in web authentication is a good approach to
protect user’s password during the authentication phase, there are still usability
concerns that slow down the implementation of PAKEs in TLS to properly
prevent phishing attacks. This implementation requires an easy to identify “safe
area” available in the web browser where the passwords should be entered [21].

1.3 Forward Secrecy

Forward secrecy is a desirable property which has been explicitly a design goal
in relevant AKE and PAKE protocols [3,4,22,23], and more recently in TLS
1.3 [19].2 Roughly speaking, it ensures the protection of session keys even if the
long-term secret of the participants gets later compromised [24]. For instance:
(i) the password file at the server could be leaked or (ii) via phishing attacks a
client could reveal his password to some malicious entity.

The notion of forward secrecy appeared first in [24] and was later formalized
in [23,25–27] for AKE and in [9,28] for PAKE protocols. We distinguish weak
forward secrecy (wFS) from perfect forward secrecy (PFS): The former protects
session keys after compromise of long-term key material, but only those sessions
created without the active participation of the attacker [23], while the latter
protects all session keys which were negotiated before corruption, i.e. even those
created with the active intervention of the adversary. It is generally accepted that
PFS is difficult to satisfy in protocols which only guarantee implicit authentica-
tion. For instance, Krawczyk [23] states that PFS cannot be satisfied by two-flow
protocols using public-key as authentication mechanism. Therefore Krawczyk
proposed the notion of weak Forward Secrecy (wFS) as an attempt to satisfy
1 A typical client should not be expected to verify the certificate details.
2 However, in TLS 1.3, there still remains some configurations that do not satisfy

forward secrecy.
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some notion of security when long-term material is compromised but only for
those sessions without the active participation of the adversary.

PFS and Key-Confirmation: The authors in [3,9,25] demonstrated that PFS
can be satisfied when explicit authentication is added to protocols that initially
satisfy only wFS. The idea is the following: Suppose P is a 2-flow PAKE protocol
satisfying only implicit authentication. The adversary sends the first message to
Bob masquerading as Alice, Bob computes the session key, sends back the sec-
ond message and finishes his protocol execution. Then the adversary waits for
the leakage of the long-term key and that could possibly help her to compute
the same session key as Bob. For this scenario, the notion of PFS requires the
adversary not to learn Bob’s session key, which can be easily avoided by requir-
ing key-confirmation, since then Bob will not accept the session key before he
authenticates his communication partner.

1.4 Our Contribution

We propose a new version of SPAKE2 which we name PFS-SPAKE2. This is
essentially SPAKE2 but with key-confirmation codes incorporated into the pro-
tocol. This well known approach allowed us to meet the PFS requirement in a
provably secure way even in the case of active adversaries, making it a suitable
candidate for standardization and adoption in the TLS 1.3 protocol. In addition,
we prove that the original SPAKE2 satisfies weak forward secrecy.

2 Security Model with Forward Secrecy

Notation. We use calligraphic letters to denote adversaries, typically A and B.
We write s

$←− S for sampling uniformly at random from set S and |S| to denote
its cardinality. The output of a probabilistic algorithm A on input x is denoted
by y ← A(x), while y := F (x) denotes a deterministic assignment of F (x) to
the variable y. Let {0, 1}∗ denote the bit string of arbitrary length while {0, 1}l

stands for those of length l. Let λ be the security parameter, negl(λ) denote a
negligible function and PPT stand for probabilistic polynomial time.

Next we describe the well-known security model of Bellare, Pointcheval and
Rogaway [9], which we use to prove the security of PFS-SPAKE2 and SPAKE2
protocol. Frequently referred as the Find-then-Guess (FtG) model, it is an exten-
sion of [29,30] to the password setting. We assume the reader is familiar with
the model.
PAKE PROTOCOL. A PAKE protocol is defined by a pair of algorithms
(Gen,P). Gen is the password generation algorithm. It takes as input the dic-
tionary D, a probability distribution Q and initializes the protocol participants
with some password. The protocol description P defines how honest participants
behave.
PROTOCOL PARTICIPANTS. Each participant is either a client C ∈ C or a
server S ∈ S. Let U = C ∪ S denote the set of all (honest) users and C ∩ S = ∅.
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LONG-TERM SECRETS. Each client C holds a password πC and server S holds
a vector of passwords for all clients i.e. πS =< πC >C∈C s.t. for each client C
πS [C] = πC . We consider the client-server scenario where there is a single server
S. The passwords are assumed to be independent and uniformly distributed.
PROTOCOL EXECUTION. P is a probabilistic algorithm that defines how
users respond to signals from the environment. We assume the presence of a
PPT adversary A with full control of the network and an unlimited number of
user instances. Specifically, let Πi

U denote the instance i-th of user U ∈ U . In
cases where distinction matters, let Πi

C and Πj
S denote the i-th and j-th instance

of client C ∈ C and server S respectively.
Security is defined via a game played between the challenger CH and adver-

sary A whose goal is to break the semantic security of the established session
keys. A controls the oracle user instances with the following queries:

– Send(U, i,m): A message m is sent to instance Πi
U and processed according

to the protocol description P. Its output is given to A.
– Execute(C, i, S, j): This query causes an honest run of protocol P between

Πi
C and Πj

S , the transcript of execution is given to A.
– Reveal(U, i): The session key ski

U held at Πi
U is given to A. It requires the

ski
U to be already computed, i.e. Πi

U must be on terminate state.
– Corrupt(U). The adversary obtains the password of user U. If U = C ∈ C,

then A receives πC , else if U = S, then A receives πS =< πC >C∈C .
– Test(U, i): CH flips a bit b and answers the query as follows: if b = 1 A gets

the session key ski
U , otherwise she receives r

$←− {0, 1}κ, where {0, 1}κ denotes
the length of the session key space.

2.1 Definitions

Partnering. Two instances, Πi
C and Πj

S , are partnered if both accept, holding
(ski

C , sidi
C , pidi

C) and (skj
S , sidj

S , pidj
S) respectively and also:

1. ski
C = skj

S , sidi
C = sidj

S , pidi
C = S, pidj

S = C and
2. no other instance accepts with the same session identifier sid, except with

negligible probability.

The notion of freshness avoids scenarios where an adversary could trivially
win the security experiment. Next we define two notions of freshness depending
on the desired of forward secrecy guarantee: The first flavour models PFS, where
the intuition is to consider as legitimate targets of a Test query those instances
which session keys were negotiated before the corruption of any principal. The
second variant models wFS, which does not guarantee the secrecy of those ses-
sions keys which were negotiated with the active intervention of an adversary
(determined via partnering) whenever some user has been corrupted.

PFS-Freshness. An instance Πi
U is PFS-fresh unless:

– A Reveal query was made to Πi
U or its partner or
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– There was a Corrupt(U’) and a Send(U, i,m) query, Πi
U does not have a

partner and the corruption of any user U ′ occurs before the Test query.

wFS-Freshness. An instance Πi
U is wFS-fresh unless:

– A Reveal query was made to Πi
U or its partner or

– There was a Corrupt(U ′) and a Send(U, i,m) query, Πi
U does not have a

partner and the corruption of any user U ′ occurs at any time.

Advantage of the Adversary. Let SuccPFS-FtG
P be the event where A asks

a single Test query directed to a PFS-fresh instance that has terminated, A
outputs his guess b′ and wins i.e. b′ = b. The advantage of A attacking protocol
P is:

AdvPFS-FtG
P (A) = 2 · Pr

[
SuccFtG

P (A)
] − 1 (1)

Definition 1 (PFS-FtG security). Protocol P is FtG secure and satisfies perfect
forward secrecy if for all PPT adversaries there exists a negligible function ε(·)
such that:

AdvPFS-FtG
P (A) ≤ nse/|D| + ε(λ),

where nse is the number of Send queries and D is the password dictionary.

We similarly define FtG security with weak forward secrecy, the only change is
in the advantage function, where the Test query must be made to a wFS-fresh
instance. From inspection, it is easy to see that PFS-FtG → wFS-FtG security.

2.2 Cryptographic Hardness Assumptions

Let G be a multiplicative a group, with generator g and |G| = q. For X = gx

and Y = gy, let DH(X,Y ) = gxy, where {gx, gy, gxy} ∈ G.

Definition 2 (Computational Diffie-Hellman (CDH) Problem). Given (g, gx,

gy) compute gxy, where {gx, gy, gxy} ∈ G and (x, y) $←− Z
2
q. Let the advantage of

an algorithm A in solving the CDH problem be:

AdvCDH
G (B) = Pr [(x, y) $←− Z

2
q,X = gx, Y = gy : B(X,Y ) = DH(X,Y )].

Under the CDH assumption there exist sequences of cyclic groups G indexed by
λ s.t. ∀B running in time t polynomial in λ, AdvCDH

G (B) is a negligible function.

3 PFS-SPAKE2

Inspired by MacKenzie’s work [3], we propose to incorporate key-confirmation
codes into the SPAKE2 protocol [8] to achieve PFS in a provably secure manner.
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Client C Server S
Initialization

Public: G, g, M ∈ G; H1, H2, H3 : {0, 1}∗ → {0, 1}k

Secret: π ∈ Zq, π �= 0

x ← Zq, X := gx

X∗ := X · Mπ C, X∗
abort if X∗ /∈ G

y ← Zq, Y := gy

σ := ( X∗
Mπ )y

abort if Y /∈ G Y, k k := H1(C, S, X∗, Y, σ, π)

σ := Y x

verify k
?= H1(C, S, X∗, Y, σ, π)

k′ := H2(C, S, X∗, Y, σ, π)

sk := H3(C, S, X∗, Y, σ, π) k′
verify k′ ?= H2(C, S, X∗, Y, σ, π)

sk := H3(C, S, X∗, Y, σ, π)

Fig. 1. PFS-SPAKE2 protocol.

3.1 Protocol Description

In Fig. 1 we provide the technical description of the proposed PFS-SPAKE2
protocol. Before the protocol is executed, public parameters must be chosen and
published. These parameters include the description of group G, hash functions
H1, H2, H3 and a CRS M – which we require to be choosen at random from
G and its discrete logarithm to be kept secret. These constraints on the CRS
can be achieved either by having a third trusted party or by assuming a public
source of randomness to publicly derive M . Our protocol is instantiated over
group G, a q order subgroup of Z

∗
p where CDH assumption holds and p, q are

safe prime numbers. The protocol requires that passwords are encoded in Zq.

Comparison to Existing PAKEs. The efficiency of a PAKE protocol is
defined by (i) the number of communication rounds until the protocol termi-
nates, (ii) the total number messages exchanged and (iii) the computational cost
of the protocol. Compared to the original SPAKE2, the proposed PFS-SPAKE2
protocol benefits from explicit authentication and strong security guarantees for
PFS. It is also slightly less computationally expensive, as it requires the client
to compute only three exponentiations instead of four, i.e. no need to compute
Nπ ∈ G. These improvements usually come at the cost of increasing the number
of rounds and message flows and unfortunately our protocol is not an exception
[3,23].
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Table 1. Comparison with existing PAKEs for Client-Server scenarios.

Protocola Commn.b Computationc Rounds/

Flows

Hardness

Asm.d
Forward

Secrecy

Key

Confirm.

EKE [1,9] 2 × G 4 exp., 2 enc. 1/2 CDH wFS No

SPEKE [7,32] 2 × G + 2κ 4 exp. 2/4 DIDH - Yes

PPK [3] 2 × G 6 exp. 1/2 CDH - No

PAK [3] 2 × G + 2κ 5 exp. 3/3 CDH PFS Yes

J-PAKEd [4] 12 × G + 6 × Zq 28 exp. 2/4 DSDH PFS No

J-PAKE∗ [4] 12 × G + 6 × Zq 28 exp. 3/6 DSDH PFS Yes

SPAKE2 [8] 2 × G 6 exp. 1/2 CDH wFS No

PFS-SPAKE2 2 × G + 2κ 5 exp. 3/3 CDH PFS Yes
aJ-PAKE∗ is simply J-PAKE but with an extra round for key-confirmation.
bCommunication. G denotes a group element, Zp a scalar and κ a κ-bit string.
cExp. denotes an exponentiation in G and enc. an encryption and decryption operation.
dDSDH and DIDH stand for Decision Square and Decision Inverted-Additive Diffie-Hellman.

In Table 1 we summarize the comparison of PFS-SPAKE2 with other rele-
vant PAKE protocols with full security proofs.3 Notably J-PAKE satisfies PFS
and requires only two communication rounds; however, it is computationally
more expensive than PFS-SPAKE2 as the former requires 28 exponentiations
while the latter only 5. Furthermore, J-PAKE with key-confirmation requires
the same number of communication rounds as PFS-SPAKE2. Alternatively, PAK
and PFS-SPAKE2 are similar in terms of efficiency, PFS and key confirmation
guarantees, yet the usage of CRS in the latter allowed us to achieve tighter
security reductions to the CDH assumption than the original results for PAK
[3,31].

3.2 Security of PFS-SPAKE2

Theorem 1 (Security in the PFS-FtG Model). Let P be the protocol specified
in Fig. 1, instantiated in group G and with passwords uniformly distributed over
dictionary D. Let A be an adversary that runs in time t polynomial in λ, makes
at most nex, nse, nro queries of type execute, send and random oracle. Then:

AdvPFS-FtG
P (A) ≤ nse

|D| + O
(

(nse + nex)(nse + nex + nro)
q

+

nro · AdvCDH
G (BA) + nsenro · AdvCDH

G (B̃A) + n2
ro · AdvCDH

G (B̂A)
)

,

where BA, B̃A and B̂A are CDH-solver algorithms running in time t′ = O(t +
(nse + nex + nro) · texp), where texp is the time for an exponentiation in G.

3 The server usually stores some function f(·) of the password while the clients needs
to compute f(π) for every protocol run. This difference is relevant in (i) PPK, PAK
and (ii) SPAKE2 and PFS-SPAKE2, as f(·) requires hashing into groups in (i) and
group exponentiations in (ii).
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To prove the security of PFS-SPAKE2, we introduce a sequence of protocols
P0 . . . P7, where P0 is the original protocol and P7 allows only online dictio-
nary attacks. Let Gi be the security game associated to Pi. We borrow from [3]
the structure and the nomenclature to prove the security of our PFS-SPAKE2
protocol and refer to AppendixA for the necessary terminology.

The security proof requires the random oracle model: each new random oracle
query Hl for l ∈ {1, 2, 3} is answered with a fresh random output, however, if
the query has been previously made, it is answered consistenly with previous
queries. In cases where it is clear enough, we write Hl(·) to refer to query of
the form Hl(C,S,X∗, Y, σ, π). For easiness of the proof we assume that for each
Hl(C,S,X∗, Y, σ, π) query made by A, with l ∈ {1, 2, 3}, the corresponding Hl′(·)
and Hl′′(·) are also made, with l′, l′′ ∈ {1, 2, 3}\{l} and l′ 	= l′′. The simulator

sets M := gm ∈ G, where m
$←− Zq.

In the following games, we simply write SuccFtG
Pi

instead of SuccPFS-FtG
Pi

to
denote the success probability of A winning in game Gi.

Game G0: Execution of original protocol.
Game G1: Uniqueness of honest sessions.

During the interaction with adversary A, the challenger needs to simulate honest
instances and generate the X∗ and Y terms according to the protocol description.
Let F1 be the event where there is a collision between either an X∗ or Y value,
with previously seen X∗ or Y values. If F1 occurs, the challenger draws random
values again until he arrives at a X∗ or Y term that has not been previously
seen. It is easy to show that the probability of F1 occurring is bounded by the
birthday paradox. Then for all A:

Pr
[
SuccFtG

P0
(A)

] ≤ Pr
[
SuccFtG

P1
(A)

]
+ O

(
(nse + nex)(nse + nex + nro)

q

)
.

Game G2: Prevent Lucky Guesses on Hash Outputs.
This game forces A to query the random oracle whenever she needs to compute
any hash H(·)l. As a result, this game rules out the possibility of A to output
correct values k, k′ or sk without calling the corresponding random oracle.

Let P2 be a protocol identical to P1, except that honest instances respond
to Send and Execute queries without making any random oracle queries and
subsequent random oracle queries made by A are backpatched to be consistent
with previous queries. Next we detail the changes in P2.

– In an Execute(C, i, S, j) query set X∗ = gτ [C,i] and Y = gτ [S,j], where τ [·] $←−
Zq, k, k′ $←− {0, 1}κ and skj

S ← ski
C

$←− {0, 1}κ, where {0, 1}κ denotes the
session key space.

– In a CLIENT ACTION 0 query to Πi
C , set X∗ = gτ [C,i], where τ [C, i] $←− Zq.

– In a SERVER ACTION 1 query to Πj
S , set Y = gτ [S,j] and k

$←− {0, 1}κ,

where τ [S, j] $←− Zq.
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– In a CLIENT ACTION 1 query to Πi
C proceed as follows:

• If Πi
C is paired with Πj

S then set k′, ski
C

$←− {0, 1}κ.
• Else if this query triggers a testpw(C, i, S, πc, l) event, for some l ∈

{1, 2, 3}, then set k′ and ski
C to the associated value of the event testpw

(C, i, S, πc, 2) and testpw(C, i, S, πc, 3) respectively.
• Else Πi

C aborts.

– In a SERVER ACTION 2 query to Πj
S proceed as follows:

• If Πj
S is paired with Πi

C after some CLIENT ACTION 1 query to Πi
C ,

then set skj
S ← ski

C .
• Else this query triggers a testpw(S, j, C, πc, l), with l ∈ {1, 2, 3}, set skj

S

to the associated value of the event testpw(S, j, C, πc, 3).
• Else instance Πj

S aborts.
– In an Hl(C,S,X∗, Y, σ, π) query made by A, if it triggers a testpw

(C, i, S, πC , l), testpw(S, j, C, πC , l) or testexecpw(C, i, S, j, πC) event, then
output the associated event of the corresponding event. Otherwise output
v

$←− {0, 1}κ.

Claim 1. For all adversaries A, Pr
[
SuccFtG

P1
(A)

] ≤ Pr
[
SuccFtG

P2
(A)

]
+ nse

2κ .

Proof. In SERVER ACTION 2 to Πj
S , the input k′ determines whether the

instance Πj
S should terminate or abort. Let F1 be the event where in a SERVER

ACTION 2 to Πj
S , it terminates such that (i) Πj

S is not paired with Πi
C and

(ii) testpw(S, j, C, πC , l) event does not occur, for l ∈ {1, 2, 3}, i.e. A luckily
guessed the correct k′ value. Then Pr [F1 ] ≤ nse/2κ. 
�
Game G3: Do not backpatch Hl(·) queries against Execute queries.
This game shows that there is no need to backpatch Hl(·) queries to maintain
consistent views against Execute queries. More formally, let P3 be identical to
P2 except that, in a Hl(C,S,X∗, Y, σ, πC) query made by A, the simulator does
not verify whether the testexec(C, i, S, j, πC) event occurs or not. Let F2 and
F3 denote the testexec(C, i, S, j, πC) event occurring in P2 and P3 respectively.

Claim 2. For all adversaries A, |Pr
[
SuccFtG

P2
(A)

] − Pr
[
SuccFtG

P3
(A)

]| ≤
Pr [F2 ].

Proof. P2 and P3 are identical protocols until the testexec(C, i, S, j, πC) event
occurs. The observation is that the events F2 and F3 are triggered as result of
some interaction CH2 vs A and CH3 vs A respectively, however by definition
they are identical. Then it follows that Pr [F2 ] = Pr [F3 ] and to conclude the
proof we simply apply Shoup’s Difference Lemma [33]. 
�
Claim 3. Given A, there exists a CDH-solver BA with running time t′ = O(t+
(nse + nex + nro) · texp) such that:

Pr
[
SuccFtG

P2
(A)

] ≤ Pr
[
SuccFtG

P3
(A)

]
+ nro · AdvCDH

G (BA),
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Proof. Let ε be the probability that testexec(C, i, S, j, π) event occurs in P2. We
build an adversary BA whose goal is to solve the CDH problem using adversary A
as a subroutine and with success probability ε/nro. On input (A = gα, B = gβ),
BA simulates P2 to A with the following changes:

1. For every Execute(C, i, S, j) query made by A, the simulator BA sets X∗ =

A · gr1 , Y = B · gr2 , k, k′ $←− {0, 1}κ and skj
S ← ski

C
$←− {0, 1}κ, where

r1, r2
$←− Zq are known to the simulator.

2. For every Hl(C,S,X∗, Y, σ, πC) query, where l ∈ {1, 2, 3}, X∗ and Y are
generated via an Execute(C, i, S, j) query, add γ to the set S-DH, where:

γ = σ · Bm·πC · Mr2·πC /Br1 · Ar2 · gr1r2

3. When A finishes, the set S-DH contains at most nro elements, where each
item a possible solution to DH(gα, gβ). Then BA outputs γ

$←− L-DH.

The adversary A can only distinguish P2 from P3 once testexec(C, i, S, j, π)
has occurred, but this happens with probability ε ≤ nro · AdvCDH

Gq
(t′). We make

the observation that G3 guarantees forward secrecy for session keys established
via Execute queries. 
�
Game G4: Check for successful password guesses.
Let P4 be identical to P3, except that if correctpw event occurs, the protocol
stops and the adversary automatically wins.

Claim 4. For all PPT adversaries A, Pr
[
SuccFtG

P3
(A)

] ≤ Pr
[
SuccFtG

P4
(A)

]
.

Proof. Obvious. 
�
This game simply counts for an adversary who is successful in an online dic-
tionary attack by impersonating either a Client or the Server. The implication
is that from P4, until either correctpw event or a Corrupt query occurs, no
unpaired client or server instance will terminate.
Game G5: Randomized session keys for paired instances.
Let P5 be identical to P4 except that if the pairedpwguess event occurs the
protocol stops and the adversary fails.

In this game we will demonstrate that an adversary A who (i) may actively
corrupt any Client or Server, i.e. A knows the corresponding correct password
πC and (ii) manages to compute k, k′ or sk for paired instances Πi

C and Πj
S , is

also a CDH-solver. Let F4 and F5 denote the pairedpwguess event occurring
in P4 and P5 respectively.

Claim 5. For all adversaries A, |Pr
[
SuccFtG

P4
(A)

] − Pr
[
SuccFtG

P5
(A)

]| ≤
Pr [F4 ].

Proof. Identical to Claim 2. 
�
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Claim 6. Given A, there exists CDH-solver B̃A with running time t′ = O(t +
(nse + nex + nro) · texp) such that:

Pr
[
SuccFtG

P4
(A)

] ≤ Pr
[
SuccFtG

P5
(A)

]
+ nse · nro · AdvCDH

G (B̃A),

Proof. Let ε be the probability of pairedpwguess event happening. We build
BA, a CDH-solver with success probability ε/(nse ·nro). On input (A = gα, B =

gβ), B̃A sets M = gm ∈ G for m
$←− Zq, chooses d ∈ {1...nse} at random –

a session target of the Test query – and simulates P4 to A with the following
changes:

1. In a CLIENT ACTION 0 query to Πd
C with input S, set X∗ ← A, where Πd

C

is the client instance that B̃A hopes it remains PFS-fresh.
2. In a SERVER ACTION 1 query to Πj

S with input 〈C,m〉, where there was
previous a CLIENT ACTION 0 query to Πd

C with input S and output 〈C,m〉,
set Y = B · grS,j , where rS,j

$←− Zq.
3. In a CLIENT ACTION 1 query to Πd

C , if Πd
C is unpaired then it aborts an

also B̃A stops the simulation.
4. In a SERVER ACTION 2 query to Πj

S , if it was paired with Πd
C after its

SERVER ACTION 1 but now is not paired, then Πj
S aborts. However, the

simulation continues as the instance Πd
C may still be target of the Test query.

5. When A finishes, then for every Hl(C,S,X∗, Y, σ, πC), made by A, with l ∈
{1, 2, 3} and where (i) X∗ and Y were generated by Πd

C and Πj
S respectively,

(ii) Πj
S was paired with Πd

C after its SERVER ACTION 1 and (iii) Πd
C was

paired with Πj
S , then add γ to the set S-DH, where:

γ = σ · Bm·πC · MrS,j ·πC · A−rS,j

6. The set S-DH contains at most nro elements, where each one is a possible
solution to DH(gα, gβ). Then B̃A picks γ

$←− L-DH as its output.

In this reduction the simulator B̃A has to guess the client instance target
of the Test query, say Πd

C . The freshness requirement guarantees that a Cor-
rupt query is only possible after the Test query, directed to Πd

C (or its part-
ner), has been placed. Following the reductionist approach, we showed that the
pairedpwguess event occurs at most with probability ε ≤ nse · nro · AdvCDH

Gq

(B̃A). 
�
Game G6: Prevent testing more two passwords per server instance.
In P6 we restrict an adversary, who tries to masquerade as a client, from testing
two passwords per session, say π1 and π2, in an online dictionary attack. Con-
cretely, let P6 be identical to P5 except that if doublepwserver event occurs,
the protocol stops and the adversary fails.

Let F5 and F6 denote the doublepwserver event occurring in P5 and P6

respectively. By definition it follows that SuccFtG
P5

(A)∧¬F5 ⇔ SuccFtG
P6

(A)∧¬F6.

Claim 7. For all adversaries A, |Pr
[
SuccFtG

P5
(A)

] − Pr
[
SuccFtG

P5
(A)

]| ≤
Pr [F6 ].
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Proof. Identical to Claim 2. 
�
Claim 8. Given A, there exists a CDH-solver B̂A with running time t′ = O(t+
(nse + nex + nro) · texp) such that:

Pr
[
SuccFtG

P5
(A)

] ≤ Pr
[
SuccFtG

P6
(A)

]
+ n2

ro · AdvCDH
G (B̂A),

Proof. We construct an algorithm B̂A that solves the CDH problem probability
ε/n2

ro, where ε is the probability of pairedpwguess event occurring. On input
(A = ga, B = gb), B̂A simulates G5 to A with the following changes:

1. Set M := A
2. In a SERVER ACTION 1 to Πj

S with input 〈C,X∗〉 set Y ← B ·gy, where y
$←−

Zq, and sends back 〈Y, k〉. From P4 it holds that no unpaired instances can
terminate. Specifically, unpaired client and server instances abort in CLIENT
ACTION 1 and SERVER ACTION 2 respectively.

3. When A terminates, for every pair of queries Hl(C,S,X∗, Y, σ1, π1) and
Hl(C,S,X∗, Y, σ2, π2), where π1 	= π2, add γ to the S-DH, where:

γ = A−y · (σ1/σ2)
(π2−π1)

4. The set S-DH contains at most (nro)2 elements and each element in the set

is a possible solution to DH(A,B). Then B̂A outputs γ
$←− S-DH.

P6 and P5 are identical unless the doublepwserver event occurs, however,
this only occurs with probability ε ≤ n2

ro · AdvCDH
Gq

(B̂A). The quadratic degra-
dation factor is due to B̂A having to guess two queries Hl(C,S,X∗, Y, σ1, π1)
and Hl(C,S,X∗, Y, σ2, π2) such that σ1 = DH (X∗/Mπ1 , Y ) and σ2 = DH
(X∗/Mπ2 , Y ). 
�
Game G7: Internal password oracle.
In protocol P7, we consider an internal password oracle Oπ who handles every
password request and is only available to the challenger. Specifically, the chal-
lenger queries the Oπ to (i) assign passwords to users, (ii) answer Corrupt queries
and (iii) determine if the correctpw event occurs.

Claim 9. For all adversaries A, Pr
[
SuccFtG

P6
(A)

]
= Pr

[
SuccFtG

P7
(A)

]
.

Proof. It follows from inspection. 
�
Claim 10. For all adversaries A, Pr

[
SuccFtG

P7
(A)

] ≤ 1
2 + nse

2·|D| .

Proof.

Pr
[
SuccFtG

P7
(A)

]
= Pr

[
SuccFtG

P7
(A) | correctpw

] · Pr [ correctpw ]

+ Pr
[
SuccFtG

P7
(A) | ¬correctpw

] · Pr [¬correctpw ] (2)

We know from P6 that A can test at most one password per instance in an
active attack, then Pr [ correctpw ] ≤ nse/|D|. We examine the second term of
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Eq. 2. The security experiment requires the adversary to make a Test query to
some PFS-fresh instance Πi

U of his choice. It is easy to show that the view of
A is independent of the sk on which she is challenged: (i) P1 prevents two or
more instances accepting with the same sid, which would violate the partnering
definition allowing A to trivially win, (ii) it follows from P4 that, before any
Corrupt query, only instances that are paired instances can reach terminate
state – and therefore be target of a Test query – and (iii) from P5 it holds that
for such paired instances, the view of A is independent of sk for the session
target of the Test query. Then Pr

[
SuccFtG

P7
(A) | ¬correctpw

]
= 1/2. �

4 The SPAKE2 Protocol

4.1 Security of SPAKE2

SPAKE2 protocol is already proven secure in the FtG model [8] without consid-
ering any notion of forward secrecy. Here, we show that SPAKE2 also satisfies
weak forward secrecy in the FtG model assuming the CDH problem is hard in G.
The security proof of SPAKE2 is similar to that of PFS-SPAKE2 protocol; the
biggest difference is game G6, where A is prevented from testing two different
passwords when she masquerades as C but also when masquerading as S. The
later scenario does not occur in PFS-SPAKE2 since a client instance aborts the
protocol whenever it receives an invalid key-confirmation code k.

Theorem 2. Let P be the protocol specified in Fig. 2 instantiated in group G and
with passwords uniformly distributed over dictionary D. Let A be an adversary
that runs in time t polynomial in λ, makes at most nex, nse, nro queries of type
execute, send and random oracle. Then:

Client C Server S
Initialization

Public: G, g, M, N ∈ G; H : {0, 1}∗ → {0, 1}k

Secret: π ∈ Zq, π �= 0

x ← Zq, X := gx y ← Zq, Y := gy

X∗ := X · Mπ Y ∗ = Y · Nπ

X∗

Y ∗

σ := ( Y ∗
Nπ )x σ := ( X∗

Mπ )y

sk := H(C, S, X∗, Y ∗, σ, π) sk := H(C, S, X∗, Y ∗, σ, π)

Fig. 2. SPAKE2 protocol.
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AdvwFS-FtG
P (A) ≤ nse

|D| + O
(

(nse + nex)(nse + nex + nro)
q

+

nro · AdvCDH
G (BA) + nsenro · AdvCDH

G (B̃A) + n2
ro · AdvCDH

G (B̂A)
)

,

where BA, B̃A and B̂A are CDH-solver algorithms running in time t′ = O(t +
(nse + nex + nro) · texp), where texp is the time for an exponentiation in G.

Next we provide a sketch of the proof, where we simply write SuccFtG
Pi

instead
of SuccwFS-FtG

Pi
to denote the success probability of A winning in game Gi:

Game G0: Execution of original protocol.

Game G1: Force uniqueness of honest instances.
If honest instances generate X∗ or Y ∗ terms equals those seen in previous exe-
cutions of the protocol, the the protocol stops and A fails.

SuccFtG
P0

≤ SuccFtG
P1

+ O
(

(nse + nex)(nse + nex + nro)
q

)
.

Game G2: Simulation without password.
The protocol is simulated without using password information, subsequent ran-
dom oracle queries made by A are backpatch to generate consistent views. Also,
A is forced to query the random oracle to compute sk = H(·).

SuccFtG
P1

(A) ≤ SuccFtG
P2

(A) + O(nse/2κ).

Game G3: No need to backpatchHl(·) queries against Execute queries.
We can show that the view of an A running in time t against P2 is computa-
tionally indistinguishable from that of P3 via a CDH reduction.

SuccFtG
P2

(A) = SuccFtG
P3

(A) + nro · AdvCDH
G (BA).

where BA is a CDH-solver algorithm running in time t′ = O(t + (nse + nex +
nro) · texp) and texp the time for an exponentiation in G.
Game G4: Check for successful password guesses.
If before any Corrupt query, the adversary is successful on a password guess
against a client or server instance, the protocol stops and the adversary wins.

SuccFtG
P3

(A) ≤ SuccFtG
P4

(A).

Game G5: Randomized session keys for paired instances. We build a
CDH-solver algorithm from an adversary who manages to compute the sk estab-
lished at paired instances Πi

C and Πj
S , even if A obtains πC by adaptively cor-

rupting any of the instances.

Pr
[
SuccFtG

P4
(A)

] ≤ Pr
[
SuccFtG

P5
(A)

]
+ nse · nro · AdvCDH

G (B̃A).
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Game G6: Prevent testing more than one passwords per instance.
If before any Corrupt query, A manages to test more than one passwords per
client or server instance, the protocol stops and the adversary fails. Via a CDH
reduction, we show this may happend only with negligible probability.

Pr
[
SuccFtG

P4
(A)

] ≤ Pr
[
SuccFtG

P5
(A)

]
+ 2n2

ro · AdvCDH
G (B̂A).

Game G7: Internal password oracle.
By inspection P6 is statistically indistinguishable from P7. Additionally, let Πi

U

be any instance that remains wFS-fresh and is the target of a Test query. In
P7, provided that A has not successfully guessed the password, the view of the
adversary is independent of the ski

U . Then:

Pr
[
SuccFtG

P7
(A)

]
=

1
2

+
nse

2 · |D|

5 Conclusion and Future Work

We proved that SPAKE2 protocol satisfies weak forward secrecy. Note that prov-
ing perfect forward secrecy for unmodified SPAKE2 seems to be a harder task.
Consider the following scenario: A masquerades as a client and sends an arbi-
trary message X∗ to a server instance Πj

S , the latter computes Y ∗, its session
key, answers back with Y ∗ and terminates. Now A makes a Test(S, j) query,
receives the challenge and then corrupts the tested server instance (as corrup-
tion occurred after the Test query the instance Πj

S remains PFS-fresh). The
difficulty is that, even though the proof shows that A cannot test two passwords
per instance, in this particular scenario the simulator cannot determine the pass-
word to which A committed in X∗ as she has not asked any random oracle query.
Given the difficulty in proving perfect forward secrecy for SPAKE2, we modified
the protocol by incorporating key-confirmation codes into it. We proved that
the modified protocol satisfies perfect forward secrecy and therefore we called it
PFS-SPAKE2.

In future work, we would like to study if the SPAKE2 and PFS-SPAKE2
protocols compose securely with symmetric-key encryption schemes. This ques-
tion has practical relevance, as in TLS 1.3 the aforementioned primitives would
be used not in stand alone operation but as a combined system.

Acknowledgements. The authors are especially grateful to the Luxembourg
National Research Fund for supporting this work under CORE project AToMS.

A Terminology from [3]

We introduce the terminology necessary to refer to adversary’s actions.
We say “in a CLIENT ACTION k query to Πi

C” to refer to “in a Send query
directed to the client instance Πi

C that results in CLIENT ACTION k procedure
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being executed” and “in a SERVER ACTION k” to refer to “in a Send query
directed to the server instance Πj

S that results in SERVER ACTION k procedure
being executed”.

A client instance Πi
C is paired with server instance Πj

S if there was a CLIENT
ACTION 0 query to Πi

C with output 〈C,X∗〉, a SERVER ACTION 1 to Πj
S with

input 〈C,X∗〉 and output 〈S, Y, k〉 and a CLIENT ACTION 1 to Πi
C with input

〈S, Y, k〉. A server instance Πj
S is paired with client instance Πi

C if there was a
CLIENT ACTION 0 query to Πi

C with output 〈C,X∗〉 and a SERVER ACTION
1 to Πj

S with input 〈C,X∗〉 and output 〈Y, k〉, additionally, if there is a SERVER
ACTION 2 query with input k′, then there was a previous CLIENT ACTION 1
to Πi

C with input 〈Y, k〉 and ouput k′.
Next we define the events that will allow us to proof the security of the

protocol by sequence of games.
testpw(C, i, S, π, l): Adversary A makes (i) an Hl(C,S,X∗, Y, σ, π) query for
some l ∈ {1, 2, 3}, (ii) a CLIENT ACTION 0 to Πi

C with output 〈S,X∗〉 and
(iii) a CLIENT ACTION 1 to Πi

C with input 〈C, Y, k〉, where X∗ = X ·Mπ and
σ = DH(X,Y ). The associated value to this event is the output of the Hl(·)
query, or the k, k′, ski

C values, respectively for l = 1, 2, 3, whichever is set first.
testpw(S, j, C, π, l): A makes an Hl(C,S,X∗, Y, σ, π) for some l ∈ {1, 2, 3} and
a SERVER ACTION 1 to Πj

S with input 〈S,X∗〉 and output 〈C, Y, k〉, where
X∗ = X · Mπ and σ = DH(X,Y ). The associated value to this event is the
output of the Hl(·) query, or the k, k′, skj

S values, respectively for l = 1, 2, 3,
whichever is set first.
testpw!(C, i, S, π): In a CLIENT ACTION 1 query with input 〈μ, k〉, causes a
testpw(C, i, S, π, 2) event to occurs, with associated value k.
testexecpw(C, i, S, j, π): A makes (i) an Hl(C,S,X∗, Y, σ, π) for some l ∈
{1, 2, 3}, where X∗ = X · Mπ and σ = DH(X,Y ) and (ii) previously an
Execute(C, i, S, j) which produces X∗, Y . The associated value to this event is
the output of the Hl(·) query, or the k, k′, skj

S values, respectively for l = 1, 2, 3,
whichever is set first.
correctpw: Before any Corrupt query, either a testpw!(C, i, S, πc) event occurs,
for some C, i, S, or a testpw(S, j, C, πc, l) event occurs for some S, j, C and l ∈
{1, 2, 3}, where πc is the correct password.
pairedpwguess: For some client and server instance Πi

C and Πj
S respectively,

both testpw(C, i, S, πc, l) and testpw(S, j, C, π, l) event occurs for l ∈ {1, 2, 3},
where Πi

C is paired with Πj
S , and Πj

S is paired with Πi
C after its SERVER

ACTION 1.
doublepwserver: Before any Corrupt query, both a testpw(S, j, C, π1, l) and a
testpw(S, j, C, π2, l) event occurs, for some S, j, π1 and π2, with π1 	= π2 and
l ∈ {1, 2, 3}.
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