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Abstract. The aggregate message authentication code (aggregate
MAC) is a cryptographic primitive which can compress MAC tags on
multiple messages into a short aggregate MAC tag. Furthermore, the
sequential aggregate MAC can check not only the validity of multiple
messages but also the (sequential) order of messages. In this paper, we
introduce a new model of sequential aggregate MACs where an aggrega-
tion algorithm generates a sequential aggregate tag depending only on
any multiple and independent MAC tags with no secret-key, and we for-
mally define security in this model. We also propose a generic construc-
tion of sequential aggregate MACs starting from various MACs without
changing the structure of the MACs. This property is useful to make the
existing networks more efficient by combining the aggregation algorithm
with various MAC schemes already existing in the networks.
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1 Introduction

The message authentication code (MAC) is one of the most fundamental cryp-
tographic primitives. Furthermore, Katz and Lindell [8] proposed the aggregate
MAC that can compress multiple MAC tags on multiple messages generated
by different signers into a single aggregate tag. The advantage of the aggregate
MAC lies in that the size of an aggregate tag is much smaller than total sizes
of MAC tags, and hence it will be useful in applications in mobile networks or
IoT (Internet of Things) networks where many devices sending messages are
connected. The model and security of aggregate MACs were introduced by Katz
and Lindell [8], and they proposed the simple construction satisfying the security
by using exclusive-or of MAC tags.

Furthermore, there is another line of research about compressing MAC tags,
called the sequential aggregate MACs. In sequential aggregate MACs, we can
check not only the validity of multiple messages (like the aggregate MACs) but
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also the (sequential) order of messages. This property is required in applica-
tions including networks of resource-constrained devices such as IoT networks
and mobile ad-hoc networks (MANET). Eikemeier et al. [5] formally defined
the model and security for sequential aggregate MACs. They also introduced
history-freeness which is a property depending only on a local message of each
sender and the prior aggregate tag (aggregate-so-far tag), and they proposed
history-free sequential aggregate MAC schemes. Ma and Tsudik [9] gave a sim-
ple construction by using hash functions for sequential aggregate MACs with
forward security, however, they did not give a formal security proof to show
that their construction met the security. Hence, Hirose and Kuwakado [6] for-
mally defined the forward security in sequential aggregate MACs, and proposed
a construction satisfying the security property with a formal security proof.
Tomita et al. [10] gave a model of sequential aggregate authentication codes in
the information-theoretic security setting, and they proposed constructions along
with their model. The model in [10] focuses the one-time information-theoretic
security which is different from those of [5,6,9].

Our motivation is to make the existing networks using MACs more efficient
than the present state of affairs, however, it is not realistic to replace the cur-
rently existing network protocols with other ones entirely in general. Instead, we
consider to simply embed a new node for improvement of efficiency (by aggregat-
ing MAC-tags sequentially) into the existing network without changing input-
formats or structures of the existing MACs in the networks. In this paper, we call
such a node an aggregate node whose role is to sequentially compress any mul-
tiple MAC-tags into a short tag without managing secret keys. The prior work
for sequential aggregate MACs [5,6,9] does not satisfy our targeted property,
namely, the prior work needs a new system setting (e.g., changing composition
of MACs or setting an aggregate algorithm with a secret-key) or needs to change
input-formats of the underlying MAC schemes (e.g., additional information with
the local message would be required as input of MACs).

In this paper, we introduce a new model of sequential aggregate MACs where
an aggregation algorithm generates a sequential aggregate tag depending only
on multiple and independent MAC tags without any secret-key, and we formally
define security in this model in Sect. 3. Our model and security are quite different
from those of previous works. In addition, we propose two generic constructions
of sequential aggregate MACs, called SAMAC1 and SAMAC2, starting from any
MAC schemes (e.g., HMAC [2,3] and CMAC [1]) in Sect. 4.1, and we formally
prove that our constructions meet the security in Sect. 4.2. We also show an
application of our sequential aggregate MACs in Sect. 5: we consider a case
where a device transmits long data by data-partitioning in a wireless network.
Furthermore, it is shown in Sect. 6 that we can transform our construction into
history-free sequential aggregate MACs [5]. Hence, ours can also be used as the
prior sequential aggregate MACs.

To clarify the (dis)advantage of our constructions, we compare ours (i.e.,
SAMAC1 and SAMAC2) and the existing ones (i.e., MT [9], EFG+ [5], and
HK [6]) in terms of universal applicability, security, and efficiency in Tables 1,
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2 and 3, where we do not compare TWS [10] with others, since the security of
TWS is information-theoretic and quite different from others. In the following,
we explain differences among them by using Tables 1, 2 and 3.

(i) Universal Applicability. We consider applicability of embedding an
aggregate node into the existing MAC protocols without changing the
input-formats or network connections of underlying MACs. We also con-
sider whether an aggregate algorithm can be executed without secret keys.
Table 1 summarizes information about this. In previous works [5,6], each
sender has to use not only a local message but also an aggregate-so-far
tag to generate an aggregate tag, which means that we need to change
the input-formats or structure of the underlying MACs. In addition, the
constructions in [5,6,9] require other primitives except for MACs, such as
a collision-resistant hash function [9], a pseudorandom permutation [5], or
a pseudorandom generator [6]. On the other hand, our two constructions,
SAMAC1 and SAMAC2, need not to change the input-formats or network
connections of underlying MACs, and can generate an aggregate tag from
MAC-tags without a secret key. While SAMAC1 requires only a MAC as a
primitive, SAMAC2 needs a cryptographic hash function in addition to a
MAC.

(ii) Security. We summarize provable security in Table 2. We note that a secu-
rity proof of MT is not given, while other ones have provable security. We
also note that the security proof of SAMAC2 is given in the random oracle
model (ROM) while the security of HK, EFG+, and SAMAC1 are proved
in the standard model (i.e., without random oracles).

(iii) Efficiency. Table 3 shows efficiency for the constructions. The number of
function-calls, denoted by #Func.-call, shows how many times the required
primitives are invoked in generating an aggregate tag. The number of
function-calls in our constructions is smaller than those of the existing ones,
which indicates that communication among senders and an aggregation
node in our constructions is more efficient. Parallel computation in Table 3
means whether we can compute an aggregate tag in parallel. Although MT,
HK, and EFG+ need to transmit an aggregate tag in a sequential way from
a sender to another sender due to the order of messages, ours can compute
an aggregate tag in parallel since each sender can compute a MAC-tag in
parallel and then an aggregation node aggregates them into an aggregate
tag following the order of messages. Parallel computability leads to less time
complexity and avoids delay of sending messages in a network. Time com-
plexity in Table 3 means the number of operations required for computing
an aggregate tag. Our constructions do not need to compute MAC-tags N
times owing to parallel computation of MAC-tags, while we need (N − 1)
matrix multiplications in SAMAC1. It is not easy to strictly compare time
complexity of SAMAC1 with those of MT, HK, and EFG+, since quite
different operations are used. Anyway, we can say that our second con-
struction SAMAC2 is best in time complexity since its time complexity
does not depend on N . All of the constructions have the same bit-length of
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aggregate tags. The reduction loss being small implies that the gap between
the resulting constructions and the underlying MACs in the security proof
is small. From this viewpoint, SAMAC1 and SAMAC2 are superior to HK
and EFG+. In total, we see that SAMAC2 is best among all ones in terms
of efficiency.

(iv) Summary. In order to make the existing networks using MACs more effi-
cient with slight change, universal applicability shown in Table 1 is impor-
tant in a real world. In addition, we require provable security for the con-
structions, and we desire more efficiency than the current situation of the
network that is our goal in this paper. From the viewpoints, we consider
SAMAC2 is superior to others, though the security proof is given in the
random oracle model. It is interesting to consider SAMAC1 as well in the
standard model, and it is also interesting in versatility since it can be trans-
formed into a history-free sequential aggregate MAC in the model of [5]
without changing the input-formats of the MAC or adding any other prim-
itive except for the MAC.

Table 1. Universal Applicability: CRH means a collision-resistant hash function, PRP
means a pseudorandom permutation, PRG means a pseudorandom generator, and HF
is a cryptographic hash function. MAC’s input means the input-format required for
the underlying MAC, m is a message, e is the end-marker in a time period, and τ̃ is a
previous aggregate tag.

Construction Keyless aggregation Primitive MAC’s input

MT [9] � MAC and CRH m

HK [6] MAC and PRG m‖e‖τ̃

EFG+ [5] MAC and PRP m

SAMAC1 � MAC m

SAMAC2 � MAC and HF m

Table 2. Security: UF means unforgeability. ROM means the random oracle model,
and Standard Model means the model without any random oracles.

Construction Security level Provable security Standard model

MT [9] Forward UF n/a

HK [6] Forward UF � �
EFG+ [5] UF � �
SAMAC1 UF � �
SAMAC2 UF � ROM
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Table 3. Efficiency: Let N be the number of senders, let q be the number of queries to
the tagging oracle, and let L be the maximum number of ID/message pairs in submit-
ted queries. #Func.-call means the number that primitives are invoked in generating an
aggregate tag. For a primitive P ∈ {MAC,CRH,PRG,PRP,HF}, TP means time com-
plexity for computing P , and TMUL means time complexity for computing multiplication
of two matrices. Agg.-tag size means bit-length of aggregate tags, and n is bit-length
of the underlying MAC. Reduction loss means the ratio ε/ε′, where ε and ε′ are the
success probabilities of adversaries’ attacks against the corresponding construction and
the underlying MAC, respectively.

Construction #Func.-call Parallel
computation

Time
complexity

Agg.-tag
size

Reduction
loss

Primitive #Call

MT [9] MAC N N · TMAC +
(N −1)TCRH

n n/a

CRH N

HK [6] MAC N N · TMAC +
U · TPRG

n O(Nq2)

PRG U

EFG+ [5] MAC N N · TMAC +
N · TPRP

n O(Nq2L)

PRP N

SAMAC1 MAC N � TMAC +
(N −1)TMUL

n O(N(1 −
2− n

4 )−N )

SAMAC2 MAC N � TMAC + THF n O(N)

HF 1

2 Preliminaries

In this paper, we use the following notations. For a positive integer n, let [n] :=
{1, 2, . . . , n}. If we write a negligible function ε in λ, it means a function ε : N →
[0, 1] where ε(λ) < 1/g(λ) for any polynomial g and a sufficiently large λ. We
describe {xi}i∈[n] := {x1, x2, . . . , xn} as a set of values xi for all i ∈ [n], and
(xi)i∈[n] := (x1, x2, . . . , xn) as a sequence of values xi for all i ∈ [n]. We denote
a polynomial in n by poly(n). Probabilistic polynomial time is abbreviated as
PPT.

We define a deterministic message authentication code (MAC) as follows: A
MAC scheme consists of three polynomial-time algorithms (KGen, Tag, Vrfy).

– k ← KGen(1λ): KGen is a randomized algorithm which, on input a security
parameter λ, outputs a secret key k ∈ K.

– t ← Tag(k,m): Tag is a deterministic algorithm which, on input a secret key
k and a message m ∈ M, outputs a tag t ∈ T .

– 1/0 ← Vrfy(k,m, t): Vrfy is a deterministic algorithm which, on input a secret
key k, a message m, and a tag t, outputs 1 (acceptance) or 0 (rejection).

Let K be a key-space, let M be a message-space, and let T be a tag-space.
It is required that, for all k ← KGen(1λ) and all m ∈ M, we have 1 ←
Vrfy(k,m,Tag(k,m)).
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We next define security notions of unforgeability against chosen message
attacks (UF-CMA) and pseudorandomness for the MACs as follows: Let MAC
= (KGen, Tag, Vrfy) be a MAC scheme.

UF-CMA. MAC meets UF-CMA, if for any PPT adversary A against MAC,
the advantage of Advuf-cma

MAC,A(λ) := Pr[A wins] is negligible, where [A wins] is
an event that A wins, in the following game:
Setup: A challenger generates k ← KGen(1λ) and sets LTag = ∅.
Tagging: The tagging oracle Tagk(·) takes a query m ∈ M, returns t ←

Tag(k,m), and sets LTag ← LTag∪{m}. The number of queries submitted
by A is at most Q = poly(λ).

Output: When A outputs a forgery (m∗, t∗), A wins if the following holds:
1 ← Vrfy(k,m∗, t∗), and m∗ �= m for any m ∈ LTag.

Pseudorandomness. MAC meets pseudorandomness, if the following holds:
Advpr

MAC,D(λ) :=
∣
∣Pr[DTagK(·)(1λ) = 1] − Pr[Df(·)(1λ) = 1]

∣
∣ is negligible.

Here, D is a PPT algorithm which, on input an oracle either Tagk(·) or f(·),
determines which oracle is given; Tagk(·) is the tagging oracle which, on input
m ∈ M, returns t = Tag(k,m); and f(·) is an oracle which, on input m ∈ M,
returns f(m) for a random function f : M → T .

3 Sequential Aggregate MACs: Our Model and Security

We introduce a new model of sequential aggregate MACs where an aggregation
algorithm generates a sequential aggregate tag depending only on multiple and
independent MAC tags without any secret-key, and we formally define security
in this model.

Let MAC=(KGen, Tag, Vrfy) be a MAC scheme. Then, a sequential aggre-
gate MAC scheme consists of a tuple of five polynomial-time algorithms (KGen,
Tag, Vrfy, SeqAgg, SAVrfy) as follows, where N is the number of senders, ID
is an ID-space, K is a key-space, M is a message-space, T is a tag-space, and
Tagg is an aggregate tag-space. Let S := {(id�1 , id�2 , . . . , id�

̂N
) | N̂ ≤ N ∧ idi �=

idj if i �= j}, which means the set of all different sequences of IDs with length
at most N :

– kid ←KGen(1λ, id): KGen is a randomized algorithm which, on input a secu-
rity parameter λ and an ID id ∈ ID, outputs a secret key kid ∈ K. Note that
this is the same as KGen of the underlying MAC except for adding id.

– t ←Tag(kid,m): Tag is a deterministic algorithm which, on input a secret key
kid and a message m, outputs a tag t ∈ T . This is the same as Tag of the
MAC.

– 1/0 ←Vrfy(kid,m, t): Vrfy is a deterministic algorithm which, on input a
secret key kid, a message m ∈ M, and a tag t, outputs 1 (acceptance) or 0
(rejection). This is the same as Vrfy of the MAC.

– τ ←SeqAgg(T ): SeqAgg is a deterministic algorithm which, on input a
sequence of tags T = ((id�i

, ti))i∈[ ̂N ] such that (id�1 , . . . , id�
̂N
) ∈ S, outputs

an aggregate tag τ ∈ Tagg.
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– 1/0 ←SAVrfy(K,M, τ): SAVrfy is a deterministic algorithm which, on input
a set of key/id pairs K = {(kidi

, idi)}i∈[N ], a sequence of message/id pairs
((mi, id�i

))i∈[ ̂N ] for any (id�1 , . . . , id�
̂N
) ∈ S, and an aggregate tag τ , outputs

1 (acceptance) or 0 (rejection).

We require that the following condition (i.e., correctness) holds:

– For all id ∈ ID, all kid ← KGen(1λ, id) and all m ∈ M, we have 1 ←
Vrfy(kid,m,Tag(kid,m)).

– For all id ∈ ID, all kid ← KGen(1λ, id) and all m ∈ M, for any K =
{(kidi

, idi)}i∈[N ] and any M = ((mi, id�i
))i∈[ ̂N ] such that (id�1 , . . . , id�

̂N
) ∈ S,

we have 1 ← SAVrfy(K,M, τ), where T = ((id�i
,Tag(kid�i

,mi)))i∈[ ̂N ] and
τ = SeqAgg(T ).

We define the following relation for sequences of message/ID pairs in order
to define security of sequential aggregate MACs in our model.

Definition 1. For two sequences of message/ID pairs M (1) = ((m(1)
i ,

id
(1)
i ))i∈[N(1)] and M (2) = ((m(2)

i , id
(2)
i ))i∈[N(2)], we define (M (1))i1,i2 ≡

(M (2))i′
1,i′

2
for i1, i2, i

′
1, i

′
2 such that i1 < i2 ≤ N (1) and i′1 < i′2 ≤ N (2), if

the following holds:

((m(1)
i1

, id
(1)
i1

), · · · , (m(1)
i2

, id
(1)
i2

)) = ((m(2)
i′
1

, id
(2)
i′
1

), · · · , (m(2)
i′
2

, id
(2)
i′
2

)).

If not, we denote (M1)i1,i2 �≡ (M2)i′
1,i′

2
.

We next define a security notion of C-aggregate unforgeability against chosen
message attacks (C-aggUF-CMA) in our model.

Definition 2 (C-aggUF-CMA). A sequential aggregate MAC scheme
SAMAC = (KGen, Tag, Vrfy, SeqAgg, SAVrfy) meets C-aggUF-CMA, if for
any PPT adversary A against SAMAC, the advantage Advagg-uf

SAMAC,A(λ) :=
Pr[A wins] of A is negligible, where [A wins] is an event that A wins, in the
following game:

Setup: A challenger generates a set of secret-key/ID pairs K = {(kidi
, idi)}i∈[N ]

by using the KGen algorithm. Then, it sets lists LCor = ∅ and LSA = ∅.
Corrupt: The corrupt oracle Corrupt(·) takes an ID id ∈ ID as input and returns

the secret key kid and sets LCor ← LCor ∪ {id}, where LCor means a list of
IDs whose corresponding secret keys are known by an adversary. The number
of queries submitted by A is at most C.

Tagging: The sequential aggregate tagging oracle SATagK(·) takes a sequence of
message/ID pairs M = ((mi, id�i

))i∈[ ̂N ] such that (id�1 , . . . , id�
̂N
) ∈ S and

the number of not corrupted tags is at least N − C, where without loss of
generality, we assume that id�1 /∈ LCor and id�

̂N
/∈ LCor. Then, it does the

following:
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1. Compute ti ← Tag(kid�i
,mi) for all i ∈ [N̂ ],

2. Output τ ← SeqAgg(((id�i
, ti))i∈[ ̂N ]),

3. Set LSA ← LSA ∪ {M}.
The number of queries which A submits is at most Q = poly(λ). A is not
allowed to access Corrupt(·) after accessing SATagK(·). In addition, A is not
allowed to query M such that for any M ′ ∈ LSA, it holds that (M)1,1+� ≡
(M ′)1,1+� or (M)

̂N−�, ̂N ≡ (M ′)
̂N ′−�, ̂N ′ , where � := min(N̂ − 1, N̂ ′ − 1) and

N̂ ′ is the number of message/ID pairs in M ′.

Output: When A outputs M∗ = ((m∗
i , id�∗

i
))i∈[ ˜N ] and τ∗, A wins if the following

holds:

– 1 ← SAVrfy(K,M∗, τ∗),
– (id�∗

1
, . . . , id�∗

˜N
) ∈ S such that id�∗

1
/∈ LCor and id�∗

˜N
/∈ LCor, and the number

of not corrupted IDs is at least N − C,
– M∗ /∈ LSA, and M∗ is not any concatenation of queries in LSA and a tag

generated by a secret key of corrupted entities in LCor.

In principle, it is impossible in our model to guarantee the unforgeability
against an adversary who can observe each MAC-tag before the aggregation. This
reason is that, if the adversary obtains a sequence {(mi,Tag(kidi

,mi))}i∈[ ̂N ] by
accessing the tagging oracle, he can generate an aggregate tag for any sequential
messages (m�i

)i∈[N ] because SeqAgg algorithm is keyless. Thus, we consider
the attacking model where an adversary makes a forgery by only accessing the
sequential aggregate tagging oracle.

We next show a condition for a SeqAgg algorithm to achieve C-aggUF-CMA.
For simplicity, we view a SeqAgg algorithm as a function F : T N → Tagg, where
T is a MAC tag-space and Tagg is an aggregate tag-space. Then, the following
proposition states that, for given y ∈ Tagg, the equation F (x) = y should not be
correctly solved in polynomial time for achieving C-aggUF-CMA.

Proposition 1. Let SAMAC = (KGen, Tag, Vrfy, SeqAgg, SAVrfy) be a
sequential aggregate MAC scheme, and we identify SeqAgg with F : T N → Tagg.
If we can compute a sequence of tags (ti)i∈[N ] from F ((ti)i∈[N ]) in polynomial
time, then SAMAC does not meet C-aggUF-CMA.

Proof. Let A be a PPT adversary against SAMAC. If A gets an aggregate tag
τ on a sequence of messages (mi)i∈[N ] by accessing the sequential aggregate
tagging oracle, A can compute each MAC-tag ti on mi for all i ∈ [N ]. For
a message sequence (m�i

)i∈[N ] different from (mi)i∈[N ], A can make a forgery
τ∗ = F ((t�i

)i∈[N ]) on (m�i
)i∈[N ]. ��

4 Construction of Sequential Aggregate MACs

4.1 Our Construction

We propose a generic construction of sequential aggregate MACs (SAMACs)
in our model such that our SAMAC consists of any MAC scheme MAC =
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(MAC.KGen, MAC.Tag, MAC.Vrfy) and a sequential aggregation algorithm-pair
(SA.SeqAgg, SA.SAVrfy). This is well explained by the following construction of
sequential aggregate MACs, GSAMAC = (KGen, Tag, Vrfy, SeqAgg, SAVrfy):

– kid ← KGen(1λ, id): Generate kid ← MAC.KGen(1λ) and output kid.
– t ← Tag(kid,m): Output a MAC-tag t ← MAC.Tag(kid,m).
– 1/0 ← Vrfy(kid,m, t): Output b ← MAC.Vrfy(kid,m, t) ∈ {0, 1}.
– τ ← SeqAgg(T ): Take a sequence of MAC tags T = ((id�i

, ti))i∈[ ̂N ] as input
and output τ ← SA.SeqAgg(T ).

– 1/0 ← SAVrfy(K,M, τ): Take K = {(kidi
, idi)}i∈[N ], M = ((mi, id�i

))i∈[ ̂N ],
and τ as input, and output a bit b ← SA.SAVrfy(K,M, τ).

Therefore, it is enough to construct only a sequential aggregation algorithm-pair
(SA.SeqAgg, SA.SAVrfy), and we propose two constructions called SA1 and
SA2 for it. Consequently, we will obtain two constructions of SAMACs called
SAMACi (i = 1, 2) starting from any MAC scheme and the aggregate algorithm-
pair SAi.

We construct two aggregation algorithm-pairs SA1 and SA2. First, we
describe the basic processes of SA1 informally as follows.

– SeqAgg algorithm:
1. Each MAC-tag ti is transformed into a matrix Ti,
2. Output the product of these matrices T1T2 · · · T

̂N as an aggregate tag τ .
– SAVrfy algorithm:

1. Compute an aggregate tag τ ′ from K = {(kidi
, idi)}i∈[N ] and M =

((mi, id�i
))i∈[ ̂N ] following the SeqAgg algorithm,

2. Output 1 (accept) if τ ′ = τ , or output 0 (reject) otherwise.

Our idea is based on non-commutativity of matrix multiplications. And, the
order of messages is regarded as invalid, if the order of MAC-tags’ matrices are
changed. From this, we can construct sequential aggregate MAC schemes from
any MAC schemes by transforming each MAC-tag into a matrix, and can give a
security proof in the standard model. Also, we provide a simple construction SA2
by using hash functions, and give a security proof in the random oracle model.
Furthermore, based on SA1, we can construct a history-free sequential aggregate
MAC scheme from any MACs in Sect. 6. Although the existing construction
[5] uses not only MACs but also pseudorandom permutations for constructing
history-free sequential aggregate MACs, our construction requires only MACs.

Besides, it should be noted that we cannot achieve the security under con-
sideration even if we slightly change inputs of the underlying MACs as follows:
Suppose that, for each i ∈ [N ], the i-th sender computes ti ← Tag(kidi

, i ‖ mi)
and the resulting aggregate tag is τ = t1 ⊕ · · · ⊕ tN . However, it is easy to
generate a valid forgery in the case where some IDs are corrupted. Actually,
for an aggregate tag τ = t1 ⊕ · · · ⊕ tN on (mi)i∈[N ], an adversary can compute
t′i ← Tag(kidi

, i ‖ m′
i) with a corrupted ID’s (i.e., idi) secret key kidi

and can
generate a forgery τ ′ = τ ⊕ ti ⊕ t′i without accessing the tagging oracle. Fur-
thermore, even if an adversary does not corrupt any secret keys, he can break
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aggUF-CMA by submitting queries to the tagging oracle and receiving the fol-
lowing aggregate-tags:

τ1 = Tag(kid1 , 1 ‖ m1) ⊕ Tag(kid2 , 2 ‖ m2) ⊕ Tag(kid3 , 3 ‖ m3) ⊕ · · · ,

τ2 = Tag(kid1 , 1 ‖ m′
1) ⊕ Tag(kid2 , 2 ‖ m2) ⊕ Tag(kid3 , 3 ‖ m3) ⊕ · · · ,

τ3 = Tag(kid1 , 1 ‖ m1) ⊕ Tag(kid2 , 2 ‖ m′
2) ⊕ Tag(kid3 , 3 ‖ m3) ⊕ · · · .

Then, he computes τ1 ⊕ τ2 ⊕ τ3 = Tag(kid1 , 1 ‖ m′
1) ⊕ Tag(kid2 , 2 ‖ m′

2) ⊕
Tag(kid3 , 3 ‖ m3) ⊕ · · · , which is a valid forgery since the sequence ((m′

1, id1),
(m′

2, id2), (m3, id3), . . .) has never been queried. Therefore, this construction
does not meet the security of sequential aggregate MACs in our model.

Construction 1. We propose a construction SA1 by transforming each MAC-
tag ti into a matrix as follows: Let n be bit-length of MAC-tag and we separate
a MAC-tag ti ∈ {0, 1}n into (ti,1 ‖ ti,2 ‖ ti,3 ‖ ti,4) ∈ ({0, 1}n

4 )4. Then, we
regard each ti,j ∈ {0, 1}n

4 (1 ≤ j ≤ 4) as an element of the finite field GF (2
n
4 ),

and set Ti :=
[
ti,1 ti,2
ti,3 ti,4

]

. Here, we note that such a matrix Ti is invertible with

an overwhelming probability if the MAC meets pseudorandomness. Based on
this transformation, SA1 = (SA1.SeqAgg, SA1.SAVrfy) is constructed in the
following way.

– τ ← SA1.SeqAgg(((id�i
, ti))i∈[ ̂N ]): Generate an aggregate tag as follows:

1. For each i ∈ [N̂ ], let Ti :=
[
ti,1 ti,2
ti,3 ti,4

]

be a matrix transformed from ti as

mentioned above.
2. Output τ := T1T2 · · · T

̂N .
– 1/0 ← SA1.SAVrfy(K,M, τ): For K = {(kidi

, idi)}i∈[N ] and M =
((mi, id�i

))i∈[ ̂N ], verify (M, τ) as follows:

1. For each i ∈ [N̂ ], compute t′i ← MAC.Tag(kid�i
,mi) and

τ ′ ← SA1.SeqAgg(((id�i
, t′i))i∈[ ̂N ]).

2. Output 1 if τ ′ = τ , or output 0 otherwise.

Then, we show the following lemma.

Lemma 1. Given two aggregate tags τ1 ← SA1.SeqAgg((id�1 , t1), . . . , (id�i
, ti))

and τ2 ← SA1.SeqAgg((id�i+1 , ti+1), . . . , (id�j
, tj)), if MAC meets pseudoran-

domness, the probability that τ1τ2 = τ2τ1 holds is negligible.

Proof. We denote the matrices τ1 and τ2 by

τ1 =
[
a1 b1
c1 d1

]

, τ2 =
[
a2 b2
c2 d2

]

,

where ai, bi, ci, di ∈ GF (2
n
4 ) for i ∈ {1, 2}. We have

τ1τ2 =
[
a1a2 + b1c2 a1b2 + b1d2
a2c1 + c2d1 b2c1 + d1d2

]

, τ2τ1 =
[
a1a2 + b2c1 a2b1 + b2d1
a1c2 + c1d2 b1c2 + d1d2

]

.
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Then, τ1τ2 = τ2τ1 is equivalent to the conditions:

b1c2 = b2c1, (1)
a1b2 + b1d2 = a2b1 + b2d1, (2)
a2c1 + c2d1 = a1c2 + c1d2. (3)

Hence, the number of the equations that must hold is three, while the number
of variables ai, bi, ci, di (i = 1, 2) is eight. Therefore, if ai, bi, ci, di (i = 1, 2)
are chosen uniformly at random, the probability that the Eqs. (1)–(3) hold is
(2− n

4 )3 = 2− 3
4n. Therefore, if the MAC meets pseudorandomness, the probability

that the Eqs. (1)–(3) hold is negligible. ��

Construction 2. We construct SA2 = (SA2.SeqAgg, SA2.SAVrfy) by using
hash functions in a simple way, and this construction is provably secure in the
random oracle model. SA2 is given as follows: Let H be a random function
H : {0, 1}∗ → T , where T is the tag space of a MAC scheme.

– τ ← SA2.SeqAgg(((id�i
, ti))i∈[ ̂N ]): Output τ := H(t1, . . . , t ̂N ).

– 1/0 ← SA2.SAVrfy(K,M, τ): Output 1 if τ = H(t′1, . . . , t
′
̂N
), where t′i :=

MAC.Tag(kid�i
,mi) for all i ∈ [N̂ ], and output 0 otherwise.

By definition of random functions, we can see that the order of messages is
guaranteed.

4.2 Security of Our Constructions

The following theorems show the security of our constructions.

Theorem 1. If MAC meets pseudorandomness, SAMAC1 meets (N − 2)-
aggUF-CMA.

Theorem 2. If MAC meets UF-CMA, SAMAC2 meets (N − 2)-aggUF-CMA.

Proof of Theorem 1. We prove that SAMAC1 meets (N − 2)-aggUF-CMA. Let
A be a PPT adversary against SAMAC1. We define the following events:

– Succ: An event that A outputs a forgery breaking aggUF-CMA.
– New: An event that for a new message which is never queried, A makes a

forgery against a MAC scheme which is not corrupted.
– Pre: An event that A makes a forgery against SAMACi without generating

any forgeries against MACs.
– Cor: An event that A does not break any MAC schemes, but uses new MAC-

tags generated by using corrupted ID’s keys.
– Replace: An event that A replaces the sequence of messages queried to the

tagging oracle.
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Because the events New and Pre are exclusive, we have

Advagg-uf
SAMAC,A(λ) := Pr[Succ] ≤ Pr[Succ ∧ New] + Pr[Succ ∧ Pre]

≤ Pr[Succ ∧ New] + Pr[Succ ∧ Pre ∧ Replace]

+ Pr[Succ ∧ Pre ∧ Cor | Replace] + Pr[Succ ∧ Pre ∧ Cor | Replace].

Therefore, it is sufficient to prove the following:

– Pr[Succ ∧ New] ≤ N
Pinv

· Advuf-cma
MAC,F (λ) for a function Pinv of N .

– Pr[Succ ∧ Pre ∧ Replace] ≤ ε(λ) for a negligible function ε.
– Pr[Succ ∧ Pre ∧ Cor | Replace] ≤ (N−C)

Pinv
· Advpr

MAC,D(λ) + 1
2n .

– Pr[Succ ∧ Pre ∧ Cor | Replace] ≤ (N−C)
Pinv

· Advpr
MAC,D(λ) + 1

2n .

Event [Succ∧New]: In this case, an adversary generates a forgery against a MAC
scheme which the ID id fulfills id /∈ LCor. By using A breaking aggUF-CMA,
we construct a PPT algorithm F breaking UF-CMA of MACs as follows.

Setup: Given the tagging oracle of a MAC, do the following.
1. Choose idi ∈ ID for all i ∈ [N ],
2. Generate kidi

← KGen(1λ, idi) for all i ∈ [N ],
3. Set lists LCor = ∅ and LSA = ∅.

Corrupt: When A submits an ID id ∈ ID to the oracle Corrupt(·), return kid

and set LCor ← LCor ∪ {id}. When A stops accessing Corrupt and moves to
the Tagging phase, choose an ID id∗ /∈ LCor uniformly at random.

Tagging: For each query M = ((mi, id�i
))i∈[ ̂N ] to the oracle SATagK(·) where

K := {(kidi
, idi)}i∈[N ], do the following for all i ∈ [N̂ ].

– If id�i
�= id∗, compute ti = Tag(kid�i

,mi),
– If id�i

= id∗, submit a message query mi to the MAC oracle and receive the
tag ti.
Return τ = SeqAgg((id�i

, ti)i∈[ ̂N ]) to A and set LSA ← LSA ∪ {M}.

Output: When A outputs M∗ = ((m∗
i , id�∗

i
))i∈[ ˜N ] and τ∗, do the following.

1. Move to the next step if the output of A meets the conditions of the
security game except for 1 ← SAVrfy(K,M∗, τ∗), or abort this game
otherwise.

2. For i ∈ [Ñ ] and id�i
except for id∗, compute τ∗

i = MAC.Tag(kid�∗
i
,m∗

i ).
3. Let i∗ be the order of the ID id∗ in M∗ and compute Ti∗ in the following

way: Ti∗ = T ∗−1
i∗−1 · · · · · T ∗−1

1 · τ · T ∗−1
˜N

· · · · · T ∗−1
i∗+1 ∈ GF (2n).

4. Recover a MAC-tag ti∗ from the matrix Ti∗ .
5. Output (mi∗ , ti∗) as a forgery of the MAC.
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F simulates the environment of A completely. In Step 3 of Output phase, the
probability that all matrices are invertible is at most Pinv := (1− 1

2n/4 )N−1. For
all IDs id�∗

i
(i ∈ [Ñ ]) except for id∗, MAC tags t∗i generated by using kid�∗

i
are

valid. Therefore, ti∗ is also a valid MAC tag. Therefore, the success probability
of F is at least Pinv

N · Pr[Succ ∧ New].

Event [Succ ∧ Pre ∧ Replace]: From Lemma 1, Pr[Succ ∧ Pre ∧ Replace] is 2− 3
4n

in SAMAC1.

Event [Succ∧Pre∧Cor | Replace]: In this case, we consider the following adver-
saries: We assume that for a query M , there exists a corrupted pair (id,m, t)
between not corrupted pairs (idi1 ,mi1 , ti1) and (idi2 ,mi2 , ti2) such that i1 is the
first order among not corrupted IDs and i2 is the last order among not corrupted
IDs, in M . An adversary tries to replace the message/tag pair (m, t) with (m∗, t∗)
such that m∗ �= m and t∗ = Tag(kid,m

∗). He cannot replace the message/tag
pair without knowing ti1 and ti2 . We show that the probability that the event
happens is negligible if MACs meet pseudorandomness.

Let Game-0 be the standard security game and let C be the number of
corrupted IDs. For X ∈ [N − C], we define Game-X where for one of IDs
id /∈ LCor, the MAC’s tagging algorithm is replaced with a random function
fid : M → T . Then, we show that in Game-(X −1) and Game-X, the difference
between the success probabilities of them is negligible from pseudorandomness
of MACs. We construct a PPT algorithm D breaking pseudorandomness of a
MAC scheme. D can be constructed in the same way as in the above F except
for the process of Output phase. We describe the process of D at Output phase
as follows: When A outputs M∗ = ((m∗

i , id�∗
i
))i∈[ ˜N ] and τ∗, do the following.

1. Move to the next step if the output of A meets the conditions of the security
game except for 1 ← SAVrfy(K,M∗, τ∗), or abort this game otherwise.

2. For each id�∗
i

(i ∈ [Ñ ]) except for id∗, compute t∗i by using the key kid�∗
i
.

3. Compute the MAC-tag tid∗ of id∗ from τ∗ and the other tags computed in
Step 2.

4. Submit m∗ to the tagging oracle and receive the tag t.
5. Output 1 if tid∗ = t and (m∗, id∗) has never been queried, or output 0 other-

wise.

In Game-(N − C), all outputs of fid and MAC tags are hidden statistically.
Therefore, the probability is at most (N−C)

Pinv
· Advpr

MAC,D(λ) + 1
2n .

Event [Succ ∧ Pre ∧ Cor | Replace]: In the same way as event [Succ ∧ Pre ∧ Cor |
Replace], we obtain Pr[Succ∧ Pre∧ Cor | Replace] ≤ (N−C)

Pinv
· Advpr

MAC,D(λ) + 1
2n .

From the discussion above, we have

Advagg-uf
SAMAC1,A(λ) ≤ N

Pinv
· Advuf-cma

MAC (λ) +
1

2
3
4n

+ 2
(N − C)

Pinv
· Advpr

MAC(λ) +
1

2n−1

≤ 3
N

Pinv
· Advpr

MAC(λ) +

(
N

Pinv
+ 2

)
1

2n
+

1

2
3
4n

.
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We note that Advuf-cma
MAC (λ) ≤ Advpr

MAC(λ) + 1
2n holds (see [4]), and Pinv is

(

1 − 1
2n/4

)N−1. Therefore, the proof is completed. ��
Proof of Theorem 2. Let A be a PPT adversary against SAMAC2. Let LH

be the list of the query/answer pairs of H(·). Let Forge be an event that A
breaks SAMAC2 by making a forgery of the underlying MAC, and let Coll
be an event that A finds a collision of the random oracle H. Then, we have
Advagg-uf

SAMAC2,A(λ) := Pr[Forge] ≤ Pr[Coll] + Pr[Forge ∧ Coll].
In the event Coll, an adversary tries to find a collision of H. We note that this

case includes an attack that he replaces MAC-tags queried to H. The success
probability is at most Q2

h

2n+1 .
Next, we consider the event [Forge ∧ Coll]. We construct a PPT algorithm

F breaking UF-CMA as in the proof of Theorem1 except for the process of
Output phase. In this phase, when A outputs ((mi, id�∗

i
))i∈[ ˜N ] and τ∗, F does

the following process.

1. Move to the next step if the output of A meets the conditions of the security
game except for 1 ← SAVrfy(K,M∗, τ∗), or abort this game otherwise.

2. Compute t∗i = MAC.Tag(kid�∗
i
,mi) except for id∗,

3. Find a pair ((t∗i )i∈[ ˜N ], τ
∗) except for a tag of id∗ from LH . Abort this game

if there exists no such pair in LH .
4. Output the id∗’s pair (m∗, t∗).

The pair (t∗1, . . . , t
∗
˜N
, τ∗) is in LH with overwhelming probability because the

probability that it outputs τ∗ such that τ∗ = H(t∗1, . . . , t
∗
˜N
) is negligible without

accessing to the random oracle H(·). Thus, F ’s output is a valid forgery breaking
a MAC scheme. Therefore, we have Pr[Forge ∧ Coll] ≤ N · Advuf-cma

MAC,F (λ).

From the above, we obtain Advagg-uf
SAMAC2,A(λ) ≤ N · Advuf-cma

MAC,F (λ) + Q2
h

2n+1 ,
and the proof is completed. ��

5 Application: Sending Long Data by Data-Partitioning

Suppose that a device wants to send a long message in a wireless network, but the
message is too long to directly transmit because of restrictions in the network. In
this case, we usually utilize a data partitioning method to transmit the long data:
We first divide a long message M into (at most) N pieces m1,m2, . . . ,mN (e.g.,
each piece may be called a packet); For each divided part mj (1 ≤ j ≤ N), the
device generates a MAC tag tj ←Tag(k, (mj , j)); The device sends ((mj , j), tj)
for j = 1, 2, . . . , N by possibly different paths in the network; A receiver obtains
{(mj , tj)}j∈[N ], where we assume that divided parts m1,m2, . . . ,mN do not
necessarily reach with the correct order (e.g., some of which may delayed in the
network) and he will check the validity of both divided data and their ordering
to correctly recover the message M . In this situation, we note that N tags are
transmitted in the wireless network, which may cause a traffic problem if there
are an enormous number of devices connected to the network and each device
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wants to send a long message. Our idea is to apply a sequential aggregate MAC
under consideration in the previous sections in order to reduce the numbers of
tags for divided data, so that we resolve the problem by reducing the amount
of tags with the aggregation technique without changing the structure of the
underlying MACs.

Formally, suppose that an existing authentication protocol utilizes a MAC
scheme MAC=(KGen, Tag, Vrfy) as follows, where a secret key k ←KGen(1λ)
is already generated and installed in a device and such secret keys are generally
different in devices:

– Transmission by Data-Partitioning:
1. For a long message M , generate divided messages (m1, 1), (m2, 2), . . . ,

(mN , N) from M by a data partitioning technique.
2. For each (mj , j), generate its tag tj ←Tag(k, (mj , j)).
3. It transmits ((mj , j), tj) for j = 1, 2, . . . , N by possibly different paths in

the network.
– Verification: On receiving {((mj , j), tj)}j∈[N ], it checks both the validity of

both divided data and their ordering: If 1 ←Vrfy(K, (mj , j), tj) for every
j ∈ [N ], M is recovered by the sequential data (m1,m2, . . . ,mN ); otherwise,
it rejects the data.

In order to resolve a traffic problem, we consider to embed a SeqAgg algo-
rithm into a device and a SAVrfy algorithm into an verification protocol/system
as an application of our sequential MACs. Then, we propose the following:

– Transmission by Data-Partitioning:
1 and 2. The same in the above protocol.
3. Compute τ ←SeqAgg(((ti, i))i∈[N ]), and then transmit N pieces

((m1, 1), T ), (m2, 2), . . . , (mN , N) by possibly different paths in the net-
work, where we note that a tag is attached only to (m1, 1).

– Verification: On receiving ((m1, 1), T ) and {((mj , j), tj)}2≤j≤N , it checks both
the validity of both divided data and their ordering: If 1 ←SAVrfy(k, M̃ , τ)
where M̃ = ((m1, 1), (m2, 2), . . . , (mN , N)), M is recovered by the sequential
data (m1,m2, . . . ,mN ); otherwise, it rejects the data.

Here, we note that in each device, the same key k is used for generating N
tags t1, t2, . . . , tN . Therefore, if a device keeps the key secure, it is sufficient to
apply C-aggUF-CMA secure sequential aggregate MACs with C = 0.

6 Our Construction of HF Sequential Aggregate MAC

We construct a partial invertible MAC scheme meeting computational almost
universal from MAC schemes. By applying this construction to Construction
6.10 of [5], we can obtain a history-free (hf) sequential aggregate MAC scheme.

Let MAC = (KGen, Tag, Vrfy) be a MAC scheme. First, we define the
following property of the MAC.
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Partial Inversion. MAC meets partial inversion if there exists the following
polynomial time algorithm: For any secret key k and any message m, and a tag
τ given as input, the algorithm returns m′ such that τ ← Tag(k, (m ‖ m′)) for
some m′ ∈ {0, 1}poly(λ).

Next, we construct a scheme meeting partial inversion and pseudorandomness
from our SA1. Let MAC = (KGen, Tag, Vrfy) be the underlying MAC. Then,
PIMAC = (PIMAC.KGen, PIMAC.Tag, PIMAC.Vrfy) is constructed as follows.

– k ← PIMAC.KGen(1λ): Output k ← KGen(1λ).
– τ ← PIMAC.Tag(k,m ‖ τ ′): On input a secret key k and a message (m ‖

τ ′) ∈ M × Tagg where any τ ′ ∈ Tagg is a matrix of SA1, generate a tag τ in
the following way.
1. Compute t ← Tag(k,m) and let T be a matrix for t based on SA1.
2. Output τ := T · τ ′ · T ∈ Tagg.

– 1/0 ← PIMAC.Vrfy(k,m ‖ τ ′, τ): On input a secret key k, a message m ‖ τ ′,
and a MAC tag τ , verify the message/tag pair (m ‖ τ ′, τ) as follows.
1. Compute τ̄ ← PIMAC.Tag(k,m‖τ ′).
2. Output 1 if τ̄ = τ , or output 0 otherwise.

Then, we show the following lemma.

Lemma 2. PIMAC meets partial inversion. Furthermore, if MAC meets pseu-
dorandomness, PIMAC also meets pseudorandomness.

Proof. First, we prove that PIMAC meets partial inversion by constructing the
following partial inversion algorithm: It takes a secret key k, a message m, and
τ as input, and does the following.

1. Compute t ← Tag(k,m) and let T be a matrix transformed from t.
2. Output τ ′ := T−1 · τ · T−1 ∈ Tagg.

Then, we can see that the output τ ′ is valid.
Second, we prove that PIMAC meets pseudorandomness. Let A be a PPT

adversary breaking the pseudorandomness of PIMAC. We construct a PPT algo-
rithm B breaking the pseudorandomness of the underlying MAC as follows: It
is given the oracle of a MAC or a random function. When A submits a message
query m‖τ ′, it submits m to the given oracle and receives the value t. Then, it
computes τ following PIMAC.Tag algorithm and returns it. When A outputs
the guessing bit b′ ∈ {0, 1}, B also outputs b′.

If A breaks the pseudorandomness of PIMAC, B also breaks the pseudoran-
domness of MAC. This completes the proof. ��

Let HF-SAMAC be a sequential aggregate MAC obtained by applying
PIMAC to Construction 6.10 of [5]. Then, by Theorem 6.11 of [5], we have:

Proposition 2. If PIMAC meets pseudorandomness and partial inversion, HF-
SAMAC meets the aggregate unforgeability of Definition 5.4 in [5].
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7 Conclusion

In this paper, we introduced a new model of sequential aggregate MACs where
an aggregation algorithm generates a sequential aggregate tag depending only
on multiple and independent MAC tags without any secret-key, and we formally
defined security in this model. Our model and security are quite different from
those of previous works [5,6,9]. In addition, we proposed two generic construc-
tions, SAMAC1 and SAMAC2, starting from any MACs, with formal security
proofs. And, we compared the existing ones and ours in terms of universal appli-
cability, security, and efficiency. As a result, SAMAC2 is superior to others from
all aspects of evaluation items, though the security proof is given in the ran-
dom oracle model. It is interesting to consider SAMAC1 as well in the standard
model, and it can be transformed into a history-free sequential aggregate MAC
in the model of [5] without changing the input-formats of MACs or adding any
other primitives except for MACs.

We note that, if a sequence of messages are rejected in our sequential aggre-
gate MACs, we cannot identify which message has been invalid (e.g., some of
them was forged, or their order was wrong). Hirose and Shikata [7] recently
proposed (non-sequential) aggregate MACs in which we could identify which
message was invalid, if a set of messages are rejected in their aggregate MACs.
Our future work includes extension of [7] for sequential aggregate MACs.
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