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Abstract. Double-authentication preventing signatures (DAPS) are a
variant of digital signatures which have received considerable attention
recently (Derler et al. EuroS&P 2018, Poettering Africacrypt 2018).
They are unforgeable signatures in the usual sense and sign messages
that are composed of an address and a payload. Their distinguishing
feature is the property that signatures on two different payloads with
respect to the same address allow to publicly extract the secret signing
key. Thus, they are a means to disincentivize double-signing and are a
useful tool in various applications.

DAPS are known in the factoring, the discrete logarithm and the lat-
tice setting. The majority of the constructions are ad-hoc. Only recently,
Derler et al. (EuroS&P 2018) presented the first generic construction that
allows to extend any discrete logarithm based secure signature scheme
to DAPS. However, their scheme has the drawback that the number of
potential addresses (the address space) used for signing is polynomially
bounded (and in fact small) as the size of secret and public keys of the
resulting DAPS are linear in the address space. In this paper we over-
come this limitation and present a generic construction of DAPS with
constant size keys and signatures. Our techniques are not tailored to a
specific algebraic setting and in particular allow us to construct the first
DAPS without structured hardness assumptions, i.e., from symmetric
key primitives, yielding a candidate for post-quantum secure DAPS.
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1 Introduction

Digital signatures are an important cryptographic primitive used to provide
strong integrity and authenticity guarantees for digital messages. Among many
other applications, they are used to issue digital certificates for public keys within
public-key infrastructures, to guarantee the origin of executable code, to sign
digital documents such as PDF documents (in a legally binding way), as well as
in major cryptographic protocols such as TLS. Recently, signatures also emerged
to be a cornerstone of distributed cryptocurrencies such as Bitcoin, i.e., are used
to bind coins to users (by means of public keys) and to sign transactions.

Double-authentication preventing signatures (DAPS) are a variant of digital
signatures used to sign messages of the form m = (a, p) with a being the so
called address and p the payload. They provide unforgeability guarantees in the
sense of conventional signatures but have the special property that signing two
different payloads p �= p′ using the same address a allows to publicly extract the
secret signing key from the respective signatures. In the literature, various com-
pelling applications for DAPS have been proposed. Those applications include
penalizing double spending attacks in cryptocurrencies [27] or penalizing certi-
fication authorities for issuing two certificates with respect to the same domain
name, but for two different public keys [25], for example. In this work we purely
focus on DAPS constructions and we refer the reader to [25,26] for a comparison
with other types of self-enforcing digital signatures.

Currently, DAPS are known in the factoring [6,25,26], the discrete loga-
rithm [16,24,27] and the lattice setting [10]. The majority of the constructions
(the only exception being [16]) are ad-hoc. Unfortunately, such an approach
yields very specific constructions, whose security may not be well understood.
Having generic DAPS constructions, in contrast, yields much more flexibility, as
it allows to plug in building blocks whose security is well understood. In addi-
tion, this yields simplicity and modularity in the security analysis. Only recently,
Derler et al. (EuroS&P 2018) presented the first generic construction that allows
to extend any discrete logarithm based EUF-CMA secure signatures scheme to
DAPS. However, their scheme has the drawback that the number of potential
addresses (the address space) used for signing is polynomially bounded (and in
fact small) as the size of secret and the public keys of the resulting DAPS are
linear in the address space. We ask whether we can come up with a generic
construction without this drawback.

Somewhat orthogonal to the motivational discussion above, our work is also
driven by the question whether it is possible to construct DAPS without relying
on structured hardness assumptions, i.e., solely from symmetric key primitives
(following up on a very recent line of work [9,12,15,22]). This is interesting,
because symmetric key primitives are conjectured to remain secure in the advent
of sufficiently powerful quantum computers. Such quantum computers would
break all discrete log and RSA based public key cryptosystems [30].
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1.1 Existing DAPS Constructions

DAPS have been introduced by Poettering and Stebila [25,26] in a factoring-
based setting. Ruffing, Kate and Schröder later introduced the notion of account-
able assertions (AS) in [27], being a related but weaker primitive than DAPS.
In addition they present one AS that also is a DAPS (RKS henceforth). The
RKS construction is based on Merkle tress and chameleon hash functions in the
discrete logarithm setting. Very recently, Bellare, Poettering and Stebila [6] pro-
posed new factoring-based DAPS from trapdoor identification-schemes using an
adaption and extension of a transform from [5]. Their two transforms applied
to the Guillou-Quisquater (GQ) [20] and Micali-Reyzin (MR) [23] identification
scheme yield signing and verification times as well as signature sizes comparable
(or slightly above) standard RSA signatures. Boneh et al. [10] propose construc-
tions of DAPS from lattices. They consider DAPS as a special case of what they
call predicate-authentication-preventing signatures (PAPS). In PAPS one con-
siders a k-ary predicate on the message space and given any k valid signatures
that satisfy the predicate reveal the signing key. Consequently, DAPS are PAPS
for a specific 2-ary predicate. Derler, Ramacher and Slamanig (DRS henceforth)
in [16] recently provided the first black-box construction of DAPS from digital
signatures schemes and demonstrate how this approach can be used to con-
struct N -times-authentication-preventing signatures (NAPS) (a notion called
k-way DAPS in [10]). In addition, they introduced weaker extraction notions,
where the focus of the extraction is on the signing key of the underlying sig-
nature scheme only. A drawback of their work is that the constructions have
O(n) secret and public key size where n is the size of the address space. So
their constructions are only suitable for small message spaces. In a follow up
work Poettering [24], also focusing on DAPS for small address spaces, showed
how for a certain class of signature schemes (obtained via Fiat-Shamir from
certain identification schemes), the DRS approach can be improved by reduc-
ing the signature size by a factor of five and the size of the secret key from
O(n) to O(1). However, this comes at the cost of no longer being able to do a
black-box reduction to the underlying signature scheme. In Table 1 we provide a
comparison of existing DAPS approaches with the ones presented in this paper
regarding address space, extraction capabilities, algebraic setting as well as their
characteristic as either being tailored to a specific setting or generic.

1.2 Contribution

Our contributions can be summarized as follows:

– We propose a generic DAPS, respectively NAPS, construction building upon
DRS’ secret-sharing approach, which resolves the address-space limitation in
the DRS construction, and, in particular, supports an exponentially large
address space. This improvement is achieved by deriving the coefficients of
the secret sharing polynomial from the address using a carefully chosen pseu-
dorandom function with an output domain being compatible with the secret
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Table 1. Overview of DAPS constructions

Approach Address space Extraction Setting Generic

[25,26] Exponential DSE Factoring ×
[27] Exponential DSE DLOG ×
[6] Exponential DSE Factoring ×
[10] Exponential DSE Lattices ×
[16] Small wDSE∗ DLOG �
[24] Small DSE DLOG ×
Construction 1 Exponential wDSE Symmetric �
Construction 2 Exponential DSE Any �

key space of the underlying signature scheme. Consequently, the overhead
in the public-key reduces to a constant factor. Like the DRS approach, our
generic approach satisfies a relaxed notion of extractability. Interestingly, we
can instantiate this construction solely from symmetric-key primitives, yield-
ing a candidate for post-quantum secure DAPS/NAPS.

– While the aforementioned construction thus closes an important gap in the
literature, the signature sizes are somewhat large compared to signatures in
the discrete log or RSA setting. To this end, we additionally follow a differ-
ent direction which basically targets the extension of any digital signature
scheme (such as ECDSA or EdDSA, for example) to a DAPS. Essentially,
we present a compiler which uses an arbitrary DAPS scheme to extend any
given signature scheme to a DAPS. While this might sound somewhat odd
at first sight, we want to stress that all existing DAPS which have compact
keys and exponentially large address space are ad-hoc constructions, whereas
practical applications most likely will use standardized signature schemes.
Using our construction it is possible to generically bring extraction to any
signature scheme. Hence we obtain more efficient DAPS being compatible
with standardized signature schemes such as ECDSA or EdDSA.

2 Preliminaries

In this section we firstly present a formal model for the security of signature
and DAPS schemes, recall non-interactive zero-knowledge proof systems and
Shamir’s secret sharing.

2.1 Digital Signature Schemes

Subsequently we formally recall the notion of digital signature schemes.

Definition 1 (Signature Scheme). A signature scheme Σ is a triple (KGenΣ,
SignΣ,VerifyΣ) of PPT algorithms, which are defined as follows:
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KGenΣ(1κ): This algorithm takes a security parameter κ as input and outputs
a secret (signing) key skΣ and a public (verification) key pkΣ with associated
message space M (we may omit to make the message space M explicit).

SignΣ(skΣ,m): This algorithm takes a secret key skΣ and a message m ∈ M as
input and outputs a signature σ.

VerifyΣ(pkΣ,m, σ): This algorithm takes a public key pkΣ, a message m ∈ M
and a signature σ as input and outputs a bit b ∈ {0, 1}.

We require a signature scheme to be correct and to provide existential unforge-
ability under adaptively chosen message attacks (EUF-CMA security). For cor-
rectness we require that for all κ ∈ N, for all (skΣ, pkΣ) ← KGenΣ(1κ) and for all
m ∈ M it holds that

Pr [VerifyΣ(pkΣ,m,SignΣ(skΣ,m)) = 1] = 1.

Definition 2 (EUF-CMA). For a PPT adversary A, we define the advantage
function in the sense of EUF-CMA as

AdvEUF-CMA
A,Σ (κ) = Pr

[
ExpEUF-CMA

A,Σ (κ) = 1
]

where the corresponding experiment is depicted in Fig. 1. If for all PPT adver-
saries A there is a negligible function ε(·) such that

AdvEUF-CMA
A,Σ (κ) ≤ ε(κ)

we say that Σ is EUF-CMA secure.

ExpEUF-CMA
A,Σ (κ):

(skΣ, pkΣ) ← KGenΣ(1κ)
Q ← ∅
(m∗, σ∗) ← ASign′

Σ(skΣ,·)(pk)
where oracle Sign′

Σ on input m:
σ ← SignΣ(skΣ, m), Q ← Q ∪ {m}
return σ

return 1, if VerifyΣ(pkΣ, m∗, σ∗) = 1 ∧ m∗ /∈ Q
return 0

Fig. 1. EUF-CMA security.

2.2 Double-Authentication-Preventing Signatures

Double-authentication-preventing signatures (DAPS) are signature schemes
being capable of signing messages from a message space M of the form A × P.
Each message m = (a, p) ∈ M thereby consists of an address a in address space
A and a payload p from payload space P. In addition to the algorithms provided
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by conventional signature schemes, a DAPS scheme provides a fourth algorithm
ExD that extracts the secret key from signatures on two colliding messages, i.e.,
two different messages sharing the same address. Formally, a pair of colliding
messages is defined as follows:

Definition 3 (Colliding Messages). We call two messages m1 = (a1, p1) and
m2 = (a2, p2) colliding if a1 = a2, but p1 �= p2.

Below, we now formally define DAPS following [25,26].

Definition 4 (DAPS). A double-authentication-preventing signature scheme
DAPS is a tuple (KGenD,SignD,VerifyD,ExD) of PPT algorithms, which are
defined as follows:

KGenD(1κ) : This algorithm takes a security parameter κ as input and outputs
a secret (signing) key skD and a public (verification) key pkD with associated
message space M (we may omit to make the message space M explicit).

SignD(skD,m) : This algorithm takes a secret key skD and a message m ∈ M as
input and outputs a signature σ.

VerifyD(pkD,m, σ) : This algorithm takes a public key pkD, a message m ∈ M
and a signature σ as input and outputs a bit b ∈ {0, 1}.

ExD(pkD,m1,m2, σ1, σ2) : This algorithm takes a public key pkD, two colliding
messages m1 and m2 and signatures σ1 for m1 and σ2 for m2 as inputs and
outputs a secret key skD.

Note that the algorithms KGenD, SignD, and VerifyD match the definition of
the algorithms of a conventional signature scheme. For DAPS one requires
a restricted but otherwise standard notion of unforgeability [25,26], where
adversaries can adaptively query signatures for messages but only on distinct
addresses. Figure 2 details the unforgeability security experiment.

Definition 5 (EUF-CMA [25]). For a PPT adversary A, we define the advan-
tage function in the sense of EUF-CMA as

AdvEUF-CMA
A,DAPS (κ) = Pr

[
ExpEUF-CMA

A,DAPS (κ) = 1
]

where the corresponding experiment is depicted in Fig. 2. If for all PPT adver-
saries A there is a negligible function ε(·) such that

AdvEUF-CMA
A,DAPS (κ) ≤ ε(κ)

we say that DAPS is EUF-CMA secure.

The interesting property of a DAPS scheme is the notion of double-signature
extractability (DSE). It requires that whenever one obtains signatures on two
colliding messages, one should be able to extract the signing key using the extrac-
tion algorithm ExD. We present the security definition denoted as DSE in Fig. 3.
Thereby, we consider the common notion which requires extraction to work if
the key pair has been generated honestly. In this game, the adversary is given a
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ExpEUF-CMA
A,DAPS (κ):

(skD, pkD) ← KGenD(1κ)
Q ← ∅, R ← ∅
(m∗, σ∗) ← ASign′

D(skD,·)(pkΣ)
where oracle Sign′

D on input m:
(a, p) ← m
if a ∈ R, return ⊥
σ ← SignD(skD, m), Q ← Q ∪ {m}, R ← R ∪ {a}
return σ

return 1, if VerifyD(pkD, m∗, σ∗) = 1 ∧ m∗ /∈ Q
return 0

Fig. 2. EUF-CMA security for DAPS.

key pair and outputs two colliding messages and corresponding signatures. The
adversary wins the game if the key produced by ExD is different from the signing
key, although extraction should have succeeded, i.e., the messages were colliding
and their signatures were valid.

Definition 6 (DSE [25]). For a PPT adversary A, we define the advantage
function in the sense of double-signature extraction (DSE) as

AdvDSE
A,DAPS(κ) = Pr

[
ExpDSE

A,DAPS(κ) = 1
]

where the corresponding experiment is depicted in Fig. 3. If for all PPT adver-
saries A there is a negligible function ε(·) such that

AdvDSE
A,DAPS(κ) ≤ ε(κ),

then DAPS provides DSE.

ExpDSE
A,DAPS(κ):

(skD, pkD) ← KGenD(1κ)
(m1, m2, σ1, σ2) ← A(skD, pkD)
return 0, if m1 and m2 are not colliding
return 0, if VerifyD(pkD, mi, σi) = 0 for any i ∈ [2]
sk′

D ← ExD(pkD, m1, m2, σ1, σ2)
return 1, if sk′

D �= skD

return 0

Fig. 3. DSE security for DAPS.

In the full version we recall the strong variant of extractability under mali-
cious keys (denoted as DSE∗), where the adversary is allowed to generate the key
arbitrarily. The DSE∗ notion is very interesting from a theoretical perspective,
but no practically efficient DAPS construction can achieve this notion so far.
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DRS in [16] argue that when DAPS are constructed by extending a con-
ventional signature scheme Σ, extraction of the part of the signing key corre-
sponding to Σ is already sufficient to disincentivizes double-authentication for
many applications. Hence, Derler et al. [16] defined two weaker double-signature
extraction notions that cover extraction of the signing key of the underlying sig-
nature scheme for honestly and maliciously generated DAPS keys. The security
games for weak double-signature extraction (wDSE) and weak double-signature
extraction under malicious keys (wDSE∗) are depicted in Figs. 4 and 5. DSE and
DSE∗ imply their weaker counterparts and wDSE∗ implies wDSE.

Definition 7 (T ∈ {wDSE,wDSE∗}). For a PPT adversary A, we define the
advantage function in the sense of weak double-signature extraction (T = wDSE)
and weak double-signature extraction under malicious keys (T = wDSE∗), as

AdvT
A,DAPS(κ) = Pr

[
ExpT

A,DAPS(κ) = 1
]

where the corresponding experiments are depicted in Figs. 4 and 5 respectively.
If for all PPT adversaries A there is a negligible function ε(·) such that

AdvT
A,DAPS(κ) ≤ ε(κ),

then DAPS provides T .

ExpwDSE
A,DAPS(κ):

(skD, pkD) ← KGenD(1κ) with skD = (skΣ, . . . )
(m1, m2, σ1, σ2) ← A(skD, pkD)
return 0, if m1 and m2 are not colliding
return 0, if VerifyD(pkD, mi, σi) = 0 for any i ∈ [2]
sk′

D ← ExD(pkD, m1, m2, σ1, σ2) where sk′
D = (sk′

Σ, . . . )
return 1, if sk′

Σ �= skΣ

return 0

Fig. 4. wDSE security for DAPS.

ExpwDSE∗
A,DAPS(κ):

(pkD, m1, m2, σ1, σ2) ← A(1κ) where pkD = (pkΣ, . . . )
return 0, if m1 and m2 are not colliding
return 0, if VerifyD(pkD, mi, σi) = 0 for any i ∈ [2]
sk′

D ← ExD(pkD, m1, m2, σ1, σ2) where sk′
D = (sk′

Σ, . . . )
return 1, if sk′

Σ is not the secret key corresponding to pkΣ

return 0

Fig. 5. wDSE∗ security for DAPS.
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Finally, for our constructions we may sometimes require a very mild addi-
tional property of DAPS which we call verifiability of secret keys. Informally it
requires that there is an additional efficient algorithm VKey which, given a key
pair, outputs 1 if the given secret key is the key corresponding to the given public
key. Formally we define verifiability of keys as follows:

Definition 8 (Verifiability of Keys). We say that a DAPS scheme DAPS =
(KGenD,SignD,VerifyD,ExD) provides verifiability of keys, if it provides an addi-
tional efficient algorithm VKey so that for all κ ∈ N, for all (sk, pk) it holds
that

VKey(sk, pk) = 1 =⇒ (sk, pk) ∈ KGenD(1κ).

2.3 Non-interactive ZK Proof Systems (NIZK)

We recall a standard definition of non-interactive zero-knowledge proof systems.
Let L ⊆ X be an NP-language with associated witness relation R so that L =
{x | ∃w : R(x,w) = 1}.

Definition 9 (Non-Interactive Zero-Knowledge Proof System). A non-
interactive proof system Π is a tuple of algorithms (SetupΠ,ProofΠ,VerifyΠ),
which are defined as follows:

SetupΠ(1κ) : This algorithm takes a security parameter κ as input, and outputs
a common reference string crs.

ProofΠ(crs, x, w) : This algorithm takes a common reference string crs, a state-
ment x, and a witness w as input, and outputs a proof π.

VerifyΠ(crs, x, π) : This algorithm takes a common reference string crs, a state-
ment x, and a proof π as input, and outputs a bit b ∈ {0, 1}.

From a non-interactive zero-knowledge proof system we require completeness,
soundness and adaptive zero-knowledge and simulation-sound extractability. In
the full version we recall formal definitions of those properties.

NIZK from Σ-protocols. A Σ-protocol for language L is an interactive three move
protocol between a prover and a verifier, where the prover proves knowledge of
a witness w to the statement x ∈ L. We recall the formal definition of Σ-
protocols in the full version. One can obtain a non-interactive proof system
with the above properties by applying the Fiat-Shamir transform [17] to any Σ-
protocol where the min-entropy μ of the commitment a sent in the first message
of the Σ-protocol is so that 2−μ is negligible in the security parameter κ and its
challenge space C is exponentially large in the security parameter. Essentially,
the transform removes the interaction between the prover and the verifier by
using a hash function H (modelled as a random oracle) to obtain the challenge.
That is, the algorithm Challenge obtains the challenge as H(a, x). Due to the
lack of space we postpone a formal presentation to the full version.

Efficient NIZK Proof Systems for General Circuits. Over the last few years NIZK
proof systems for general circuits have seen significant progress improving their
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overall efficiency. Based on the MPC-in-the-head paradigm by Ishai et al. [21],
ZKBoo [19] and the optimized version ZKB++ [12] are zero-knowledge proof
systems covering languages over arbitrary circuits. They roughly work as follows:
The prover simulates all parties of a multiparty computation (MPC) protocol
implementing the joint evaluation of some function, say y = SHA-3(x), and
computes commitments to the states of all players. The verifier then randomly
corrupts a subset of the players and checks whether those players performed the
computation correctly. Following the same paradigm, Katz et al. [22] recently
proposed to use a MPC protocol with a preprocessing phase, which allows to sig-
nificantly reduce the proof sizes. This proof system, denoted as KKW, allows one
to choose a larger number of players then in the case of ZKBoo and ZKB++,
where larger numbers lead to smaller proofs. For all three proof systems, the
number of binary multiplication gates is the main factor influencing the proof
size, as the proof size grows linearly with the number of those gates.

Finally, Ames et al. [4] introduced Ligero, which offers proofs of logarithmic
size in the number of multiplication gates if the circuit is represented using a
prime field. When considering binary circuits, the number of addition respec-
tively XOR gates has also to be accounted for in the proof size. But, as noted
by Katz et al. in [22], especially for large circuits with more than 100,000 gates
Ligero beats ZKBoo, ZKB++ and KKW in term of proof size.

2.4 Shamir’s Secret Sharing

Shamir’s (k, �)-threshold secret sharing [29] is a secret sharing scheme which
allows to information-theoretically share a secret s among a set of � parties so
that any collection of at least k shares allow to reconstruct s. Let s be the
constant term of an otherwise randomly chosen k − 1 degree polynomial

f(X) = ρk−1X
k−1 + · · · + ρ1X + s

over a finite field F. A share is computed as f(i) for party i, 1 ≤ i ≤ �. Let S be
any set of cardinality at least k of these � shares and let IS be the set of indices
corresponding to shares in S. Using Lagrange interpolation one can then can
reconstruct the secret s by computing s = f(0) as

s =
∑
j∈IS

λjf(j) with λj =
∏

i∈IS\{j}

j

j − i
.

As long as only k − 1 or less shares are available the secret s is information-
theoretically hidden.

3 DAPS Without Structured Hardness Assumptions

For our first construction we follow the basic idea of Derler et al. [16] and build
DAPS by including secret shares of the signing key in the signatures. To resolve
the address space limitation of their approach, however, we derive the coefficients
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KGenD(1κ) : Fix a signature scheme Σ = (KGenΣ, SignΣ, VerifyΣ), a value-key-binding
PRF : S × D → R with respect to β ∈ D. Let skPRF ←R S, and crs ← SetupΠ(1

κ).
Let c = (skPRF, β). Set skD ← (skΣ, skPRF), pkD ← (pkΣ, crs, β, c).

SignD(skD, m) : Parse skD as (skΣ, skPRF) and m as (a, p).
1. ρ ← (skPRF, a)
2. z ← ρp + skΣ

3. π ← ProofΠ(crs, (pkΣ, β, c, a, z, m), (skΣ, skPRF, ρ))
4. Return (z, π).

VerifyD(pkD, m, σ) : Parse pkD as (pkΣ, crs, β, c), m as (a, p) and σ as (z, π).
1. Return VerifyΠ(crs, (pkΣ, β, c, a, z, m), π).

ExD(pkD, m1, m2, σ1, σ2) : Parse σi as (zi, ·), mi as (ai, pi).
1. If m1 and m2 are not colliding, return ⊥
2. if VerifyD(pkD, mi, σi) = 0 for any i, return ⊥
3. let skΣ ← z1p2−z2p1

p2−p1
4. return skΣ

Scheme 1. Generic DAPS from Σ.

of the sharing polynomial using a pseudorandom function (PRF). By then addi-
tionally proving the correct evaluation of the PRF, it is no longer necessary to
store encrypted versions of the coefficients in the public key. The only issue which
remains, is to additionally prove consistency with respect to a “commitment”
to the PRF secret key contained in the public key (we commit to it using a
fixed-value key-binding PRF as defined in Appendix A). To bind the message to
the proof, we use a signature-of-knowledge style methodology [14].

More precisely, we start from a one-way function f : S → P , which we use
to define the relation between public and secret keys, i.e., so that pkΣ = f(skΣ).
In addition we carefully choose a PRF F , which maps to the secret key space S.
At the core of our DAPS construction we use a NIZK proof to prove consistency
of the secret signing key, as well as the correctness of the secret sharing. For this
proof we define an language L with associated witness relation R in the following
way:

((pkΣ, β,c, a, z), (skΣ, skPRF, ρ)) ∈ R ⇐⇒
ρ = F(skPRF, a) ∧ z = ρp + skΣ ∧ c = F(skPRF, β) ∧ pkΣ = f(skΣ)

In this statement we cover three aspects: First, we prove that the polynomial for
Shamir’s secret sharing is derived from the address and that the secret share is
correctly calculated. Second, we prove the relation between the secret and public
key of the signature scheme. Third, we “commit” to the PRF secret key using a
fixed-value key-binding PRF. The full scheme is depicted in Scheme 1.

It is important to note that the PRF needs to be compatible with the signa-
ture scheme, in the sense that secret-key space of Σ, i.e., S, and R match. For
simplicity, we assume that R = S. Additionally, the domain and codomain of
the PRF also define the message space of the DAPS. In the following theorem
we prove that Scheme 1 is an EUF-CMA-secure DAPS.
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Theorem 1. If the NIZK proof system Π is simulation-sound extractable, F is
a PRF, and f is an OWF, then Scheme 1 provides EUF-CMA security.

Proof We prove this theorem using a sequence of games. We denote the winning
event of game Gi as Si. We let QΣ be the number of signing oracle queries.

Game 0: The original game.
Game 1: As before, but we modify KGenD as follows:

KGenD(1κ) : As before, but let (crs, τ) ← S1,Π(1κ) and store τ .
Transition 0 ⇒ 1: Both games are indistinguishable under adaptive zero-knowl-

edge of the proof system, i.e. |Pr[S0] − Pr[S1]| ≤ AdvSim
A,S,Π(κ).

Game 2: As Game 1, but we modify SignD as follows:
SignD(sk,m) : As before, but let π ← S2,Π(crs, τ, (pkΣ, β, c, a, z,m)) .

Transition 1 ⇒ 2: Both games are indistinguishable under adaptive zero-knowl-
edge of the proof system, i.e. |Pr[S1] − Pr[S2]| ≤ AdvZK

A,S,Π(κ).
Game 3: As before, but we modify KGenD and SignD as follows.

KGenD(1κ) : As before, but let c ←R R .

SignD(skD,m) : As before, but let ρ ←R R .
Transition 2 ⇒ 3: We engage with a PRF challenger C against F . We modify

SignD as follows:
KGenD(1κ) : As before, but let c ←R C(β) .

SignD(skD,m) : As before, but let ρ ←R C(a) .
Thus an adversary distinguishing the two games also distinguishes the PRF
from a random function, i.e. |Pr[S4] − Pr[S3]| ≤ AdvD,F (κ).

Game 4: As before, but we modify SignD as follows.
SignD(skD,m) : As before, but track all (a, ρ) pairs in Q.

We abort if there exists (a1, ρ), (a2, ρ) ∈ Q such that a1 �= a2.
Transition 3 ⇒ 4: Both games proceed identically, unless the abort event hap-

pens. The probability of the abort event is bounded by 1/|R|, i.e. |Pr[S5] −
Pr[S4]| ≤ QΣ/|R|.

Game 5: As before, but we modify SignD as follows.
SignD(skD,m) : As before, but let z ←R R .

Transition 4 ⇒ 5: This change is conceptional. Note that ρ is uniformly random
and not revealed, and thus z is uniformly random.

Game 6: As before, but we modify KGenD as follows:
KGenD(1κ) : As before, but let (crs, τ, ξ) ← E1,Π(1κ) and store (τ, ξ) .

Transition 5 ⇒ 6: Both games are indistinguishable under simulation-sound
extractability of the proof system, i.e. |Pr[S6] − Pr[S5]| ≤ AdvExt1

A,E,Π(κ).
Game 7: As before, but we now use the extractor to obtain sk∗

Σ ← E2,Π(crs, ξ,
(pkΣ, β, c, a, z,m), π) and abort in case the extraction fails.

Transition 6 ⇒ 7: Both games proceed identically, unless we abort. The proba-
bility of that happening is bounded by the simulation-sound extractablity of
the proof system, i.e. |Pr[S7] − Pr[S6]| ≤ AdvExt2

A,E,Π(κ).
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Reduction. Now we are ready to present a reduction which engages with an OWF
challenger C. In particular, we obtain a challenge and embed it in the public key,
i.e.

KGenD(1κ) : As before, but pkΣ ← C .

Once the adversary returns a forgery, we extract sk∗
Σ and forward the solution

to the OWF challenger. Hence Pr[S7] ≤ AdvOWF
A,f (κ), which concludes the proof.

�
We now show that Scheme 1 also provides wDSE security. We note that in

the proof of Theorem 2 we do not need to simulate proofs, so a weaker extrac-
tion notion would suffice. The proof of Theorem 1, however, already requires
simulation-sound extractability which is why we directly resort to simulation-
sound extractability.

Theorem 2. If the NIZK proof system Π is simulation-sound extractable and
the PRF F is computationally fixed-value-key-binding, then Scheme 1 provides
wDSE security.

Proof We prove this theorem using a sequence of games. We denote the winning
event of game Gi as Si. Let m1,m2, σ1, σ2 denote the output of A. For simplicity
we write mj = (a, pj), σj = (zj , πj) for j ∈ [2]. Now, we have proofs attesting
that zj = ρpj + skΣ for j ∈ [2].

Game 0: The original game.
Game 1: As before, but we modify KGenD as follows:

KGenD(1κ) : As before, but let (crs, τ) ← S1,Π(1κ) and store τ .
Transition 0 ⇒ 1: Both games are indistinguishable under adaptive zero-knowl-

edge of the proof system, i.e. |Pr[S0] − Pr[S1]| ≤ AdvSim
A,S,Π(κ).

Game 2: As before, but we modify KGenD as follows:
KGenD(1κ) : As before, but let (crs, τ, ξ) ← E1,Π(1κ) and store ξ .

Transition 1 ⇒ 2: Both games are indistinguishable under simulation-sound
extractability of the proof system, i.e. |Pr[S2] − Pr[S1]| ≤ AdvExt1

A,E,Π(κ).
Game 3: As before, but we now use the extractor to obtain (sk∗

Σ,j , sk
∗
PRF,j) ←

E2,Π(crs, ξ, (pkΣ, β, c, a, zj ,mj), π) for j ∈ [2] and abort if the extraction fails.
Transition 2 ⇒ 3: Both games proceed identically, unless we abort. The prob-

ability of that happening is bounded by the simulation-sound extractablity
of the proof system, i.e. |Pr[S3] − Pr[S2]| ≤ 2 · AdvExt2

A,E,Π(κ).
Game 4:] As before, but we abort if skPRF �= sk∗

PRF,j for any j ∈ [2].
Transition 3 ⇒ 4: Both games proceed identically, unless we abort. Let j ∈ [2]

be such that skPRF �= sk∗
PRF,j . We bound the abort probability using F . Let C

be a computational fixed-value-key-binding challenger. We modify KGenD as
follows:
KGenD(1κ): As before, but let (skPRF, β) ← C.

Then we have that F(skPRF, β) = F(sk∗
PRF,j , β), hence we forward sk∗

PRF,j to
C. Thus we built an adversary B against fixed-value-key-binding of F , i.e.
|Pr[S4] − Pr[S3]| ≤ AdvcFKVB

B,F (κ) = ε(κ).
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As we have now ensured that the correct PRF secret key was used to generate ρ
from a, skΣ is now uniquely determined via the secret sharing. Thus the adversary
can no longer win, i.e. Pr[S4] = 0. �
Extension to NAPS. Following the ideas outlined in [16], Scheme 1 can be
extended to an N -time authentication-preventing signature scheme by chang-
ing the sharing polynomial ρX + skΣ to a polynomial of degree N − 1 with
coefficients ρ1, . . . , ρN−1 obtained from the PRF via ρi = F(skPRF, a‖i).

Instantiations. The requirement on the signature scheme are very weak, yet
finding a suitable combination of primitives can be difficult. Thus we discuss
some possible instantiations. One candidate scheme on top of which the DAPS
extension can be applied is Picnic [12,13]. In Picnic the public key pkΣ is the
image of the secret key skΣ under a one-way function built from LowMC [2,
3]. Signatures are then generated by proving this relation using a NIZK from
ZKB++ made non-interactive. In this case it is straight forward to use the block
cipher LowMC (denoted by E) as PRF by setting F(s, x) = E(s, x)⊕x. We argue
that this PRF can also be considered a computational fixed-value-key-binding
PRF, since it is reasonable to assume that finding a new key which maps one
particular input to one particular output is no easier than generic key search.
Furthermore, when increasing the block size of LowMC relative to the key size,
the existence of second key mapping to the same output becomes increasingly
unlikely.

The circuit for the secret sharing can either be implemented using a binary
circuit realizing the required arithmetic, or, more efficiently, by computing the
sharing bit-wise. For the latter, we consider ρ, p and skΣ as n bit values, and
compute secret shares zi = ρipi + skΣ,i for each bit i ∈ [n]. Thus only n ANDs
are required to implemented the secret sharing. All in all Picnic signatures can
be easily extended to a DAPS without requiring extensive changes. We also
note that the Fiat-Shamir transformed ZKB++ is in fact simulation-sound
extractable NIZK proof systems as confirmed in [15]. Using the signature size for-
mulas, we can estimate DAPS signatures sizes at around 408 KB, meaning there
is a overhead of 293 KB compared to Picnic signatures requiring roughly 115 KB
in the ROM targeting 256 bit classical security. Analogously to the QROM secu-
rity of Picnic, Unruh’s transform [31–33] can be used to obtain QROM security
for the DAPS construction.

Also hash-based signatures such as SPHINCS [8] are well suited for this
construction. Similar to the case of Picnic, the PRF can be instantiated using
LowMC. However, the consistency proof is more expensive, as computing the
public key requires multiple evaluations of hash functions.

Relying on Structured Hardness Assumptions. The situation is different for signa-
ture schemes relying on structured hardness assumptions, e.g., those in the dis-
crete logarithm setting such as Schnorr signatures [28], ECDSA and EdDSA [7].
While they would fulfill the requirement for the secret-key-to-public-key rela-
tion, i.e., here working in a group G with generator g the OWF is of the form
f(x) := gx, the problem is finding an efficient NIZK proof system to prove state-
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ments over Zp and in a prime order group G simultaneously. Furthermore the
NIZK proof system would also need to support statements over binary circuits
for the PRF evaluation. Recently, Agrawal et al. [1] made progress in this direc-
tion, enabling non-interactive proofs of composite statements for relations over
multiple groups and binary circuits. Using these techniques to construct DAPS
is an interesting open problem.

4 Extending Any Signature Scheme Using DAPS

Finally, we follow a different direction for our second approach. Here we start
from an already existing DAPS and use it to extend any unforgeable signature
scheme to a DAPS. Interestingly, both the unforgeability and extraction fol-
low in a black-box way from the signature scheme and the underlying DAPS,
respectively. In this construction, the secret key consists of the secret keys of
the underlying DAPS and signature scheme. To guarantee extraction of the full
secret key, we apply the technique of Bellare et al. [6] and encrypt the key of the
signature scheme using a one-time pad derived from the secret key of the DAPS
scheme. The public key then consists of that encrypted key and the public keys
of the underlying DAPS and signature scheme. However, for extraction of mali-
ciously generated keys, i.e., DSE∗-security, this means that public keys need to
be extended with a NIZK proof that the encryption was performed correctly. For
the sake of simplicity, we thus concentrate on the DSE security of the scheme.
We present the compiler in Scheme 2.

KGenD(1κ) : Fix some signature scheme Σ = (KGenΣ, SignΣ, VerifyΣ) and some DAPS
DAPS = (KGenD, SignD, VerifyD, ExD) with verifiability of keys. Let (skΣ, pkΣ) ←
Σ.KGenΣ(1κ), (sk, pk) ← DAPS.KGenD(1κ), Y ← skΣ ⊕ H(sk), and return
(skD, pkD) := ((skΣ, sk), (pkΣ, pk, Y )).

SignD(skD, m) : Parse skD as (skΣ, sk).
1. σ0 ← Σ.SignΣ(skΣ, m)
2. σ1 ← DAPS.SignD(sk, m)
3. Return σ = (σ0, σ1)

VerifyD(pkD, m, σ) : Parse pkD as (pkΣ, pk, ·), and return 1 if all of the following checks
hold and 0 otherwise:
– Σ.VerifyΣ(pk, (a, p)) = 1
– DAPS.VerifyD(pkD, (a, p)) = 1

ExD(pkD, m1, m2, σ1, σ2) : Parse pkD as (pkΣ, pk, Y ), obtain sk ← DAPS.ExD(pk, m1, m2,
σ1, σ2) and skΣ ← Y ⊕ H(sk), and return skD = (skΣ, sk).

Scheme 2. Black-Box Extension of any Signature Scheme to DAPS.

In the following theorem we formally state that the DAPS construction in
Scheme 2 yields an EUF-CMA-secure DAPS.
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Theorem 3. If Σ is unforgeable, DAPS is unforgeable and provides verifiability
of keys, then the DAPS construction in Scheme 2 is unforgeable in the ROM.

The theorem above is proven in the full version. Additionally, Scheme 1 provides
DSE-security if the underlying DAPS provides it as well.

Theorem 4. If DAPS provides DSE-security, then the construction of DAPS in
Scheme 2 provides DSE-security as well.

The theorem above is proven in the full version.

5 Conclusion

In this work, we close two important gaps in the literature on DAPS. First, we
present a generic DAPS construction, which, in contrast to [16], does not come
with the drawback of a polynomially bounded address space. Our construction
only relies on assumptions related to symmetric key primitives, which is why
we also obtain a candidate for a post-quantum DAPS construction. Second,
we also present an alternative generic construction of DAPS which basically
shows how to bring DAPS features to any signature scheme. This is of particular
practical importance, as it allows to extend arbitrary signature schemes with
double signature extraction features. As our compiler works by using an arbitrary
DAPS scheme to extend a given signature scheme in a black-box way, this yields
more efficient DAPS than previously known for standardized and widely used
signature schemes such as ECDSA or EdDSA.

A One-Way Functions and Pseudorandom Function
Families

We recall the definitions of one-way functions and pseudorandom function (fam-
ilies).

Definition 10 (OWF). Let f : S → P be a function. For a PPT adversary A
we define the advantage function as

AdvOWF
A,f (κ) = Pr

[
x ←R S, x∗ ← A(1κ, f(x)) : f(x) = f(A∗)

]
.

The function f is one-way function (OWF) if it is efficiently computable and for
all PPT adversaries A there exists a negligible function ε(·) such that

AdvOWF
A,f (κ) ≤ ε(κ).

Definition 11 (PRF). Let F : S × D → R be a family of functions and let
Γ be the set of all functions D → R. For a PPT distinguisher D we define the
advantage function as

AdvPRF
D,F (κ) =

∣∣∣Pr
[
s ←R S,DF(s,·)(1κ)] − Pr[f ←R Γ,Df(·)(1κ)

]∣∣∣ .
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F is a pseudorandom function (family) if it is efficiently computable and for all
PPT distinguishers D there exists a negligible function ε(·) such that

AdvPRF
D,F (κ) ≤ ε(κ).

Below, we provide a slightly stronger variant of a definition of a notion introduced
in [11,18].

Definition 12 (Fixed-Value-Key-Binding PRF). A PRF family F : S ×
D → R and a β ∈ D, is fixed-value-key-binding if for all adversaries A

Pr
[
s ←R S, s′ ← A(s, β) : F(s, β) = F(s′, β) ∧ s �= s′] = 0.

Moreover, we present a relaxed (computational) version of the above definition.

Definition 13 (Computational Fixed-Value-Key-Binding PRF). For a
PRF family F : S × D → R and a β ∈ D, we define the advantage function of a
PPT adversary A as

AdvcFKVB
A,F (κ) = Pr

[
s ←R S, s′ ← A(1κ, s, β) : F(s, β) = F(s′, β) ∧ s �= s′] .

F is computationally fixed-value-key-binding if for all PPT adversaries there
exists as negligible function ε(·) such that

AdvcFKVB
A,F (κ) = ε(κ).
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