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Abstract. Secure two-party computation provides a way for two par-
ties to compute a function, that depends on the two parties’ inputs,
while keeping them private. Known since the 1980s, Yao’s garbled circuits
appear to be a general solution to this problem, in the semi-honest model.
Decades of optimizations have made this tool a very practical solution.
However, it is well known that a malicious adversary could modify a
garbled circuit before submitting it. Many protocols, mostly based on
cut-&-choose, have been proposed to secure Yao’s garbled circuits in the
presence of malicious adversaries. Nevertheless, how much an adversary
can modify a circuit and make it still executable has not been studied
yet. The main contribution of this paper is to prove that any modifica-
tion made by an adversary is equivalent to adding/removing NOT gates
arbitrarily in the original circuit, otherwise the adversary can get caught.
Thereafter, we study some evaluation functions for which, even without
using cut-&-choose, no adversary can gain more information about the
inputs by modifying the circuit. We also give an improvement over most
recent cut-&-choose solutions by requiring that different circuits of the
same function are used instead of just one.

Keywords: Garbled circuits · Malicious adversaries
Corruption of garbled circuits · Cut-and-choose

1 Introduction

The pioneering work of Yao [19], known as garbled circuits, is a general solution
to the secure two-party computation problem, with a generator that builds the
garbled circuit to be evaluated, and the evaluator that executes it on its inputs. It
was originally designed in the semi-honest model and it was clear that a malicious
generator could modify the logic gates of the garbled circuit before sending it
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to the evaluator for execution. Applying cut-&-choose to garbled circuits soon
appeared to fix this issue, but requires to generate and evaluate a large number
of garbled circuits.

Since then, a lot of work has been made to optimize the garbled circuits on the
one hand [2,8,13,20], and the cut-&-choose on the other hand [1,9–12,16–18].
The best of these approaches requires s garbled circuits for statistical security
2−s. Other interesting solutions based on a gate-level cut-&-choose have emerged
[4,14,15]. While these protocols have good asymptotic performances, their imple-
mentations still have a higher running time in practice than the best circuit-level
cut-&-choose protocols. However, all these techniques aim at avoiding any kind
of modification on the circuit. Nevertheless, it has never been studied which
modifications a malicious generator can make to a single garbled circuit, still
leading to an accepted execution, and then why the cut-&-choose is necessary.

Before the most recent general optimization of semi-honest garbling schemes
of Zahur, Rosulek and Evans [20], such a study would have been meaningless.
Indeed, it was obvious that an adversary could apply any modification of his
choice as long as the topology of the circuit remains the same. In other terms,
any binary gate could be turned into any other binary gate and the resulting
corrupted garbled circuit would be still executable for any input. However, the
recent improvement [20] manages to reduce the size of a garbled gate to only two
ciphers (instead of three since the work of Naor et al. [13], or even four before
that). Whereas this improvement can be seen as just a nice improvement for an
honest party, it is clearly an extra constraint for a malicious party, given that
he can now change only two variables instead of three or four. Since then, it is
not clear which modifications can actually be made, and we prove in this paper
that it is much more limited than suggested in the previous state-of-the-art.

More specifically, our first contribution is to show that an adversary is only
able to add NOT gates to a circuit or to allow abortion of the protocol. The
latter case is already known in the state-of-the-art as selective failure attacks.
This result leads to our second contribution: we show some evaluation functions
for which no such addition of NOT gates can help an adversary to learn more
information about the inputs than the honest circuit. For such functions, this
shows that a single circuit, without any cut-&-choose, is the best solution even
against malicious adversaries (under the assumption that learning more infor-
mation is not worth being caught). These results hold for the generic garbling
scheme presented in [20].

When one of the parties does not have any inputs, privacy-free garbling
schemes should be used instead. Privacy-free garbling schemes were used by
Jawurek et al. [6] to build very efficient zero-knowledge proof of knowledge pro-
tocols. In this context, a prover has a secret, that satisfies some given statement,
and wants to convince a verifier about his knowledge without revealing it. The
works of [5] and later [20] showed that in this setting, the size of garbled circuits
can be drastically reduced. Our results also hold for the optimal privacy-free
scheme of [20], and thus limit a malicious verifier to add NOT gate or to make
selective failure attacks.
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Table 1. Garbled truth table
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Table 2. Commitments of outputs
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The next section is a reminder of how to garble a circuit with the most recent
optimizations. Then, we show in Sect. 3 how an adversary can add NOT gates
to a circuit or make selective failure attacks. The main contribution of our paper
comes in Sect. 4: we prove that no other modification can be made for a large
class of circuits that we define. Section 5 gives a construction of garbled circuits
that reduces the possible deviations. Finally, we study in Sect. 6 the impact of
our contribution on some real-case circuits and show that some of them do not
require cut-&-choose based solutions to ensure privacy, and that for the others,
cut-&-choose can be improved for free by recommending that different circuits
of the same function are used instead of just one.

2 A Reminder of the Garbled Circuit Optimizations

Let us remind how garbled circuits are designed. The point-and-permute tech-
nique [2], the 25-%-row reduction [13] and the free-XOR [8] are briefly explained
in the beginning of this section. We refer the reader to these papers for details.

2.1 The Basic Construction

We assume both parties agree on the function to evaluate and the circuit repre-
sentation of it. One party, called the generator (noted G), randomly chooses two
garbled keys k0

i and k1
i for each wire wi of the circuit, representing respectively

0 and 1. Then, for the Boolean gate g taking as input the wires wA and wB and
returning the output in wC , G computes the garbled truth table as shown in
Table 1, using a hash function H and a symmetric encryption function E.

The rows of this table are randomly shuffled before they are sent to the
other party, the evaluator (noted E). Then, with the keys ka

A and kb
B , E is able

to compute k
g(a,b)
C . G sends the keys corresponding to his inputs, whereas the

keys of E are exchange through oblivious transfers. That way, E evaluates the
circuit and obtains output garbled keys. G also provides commitments of the
garbled keys of the output of the circuit (shown in Table 2) that allow E to get
an exploitable result, and check the correct evaluation. If E is not supposed to
learn the result, these commitments can be randomly shuffled and sent to E . If
the result does not match any commitment, then a misbehavior in the generation
of the garbled circuit may have occurred.
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2.2 The Point-and-Permute Trick

The point-and-permute trick of Beaver, Micali and Rogaway [2] allows to get
rid of the two input columns of Table 1. For every wire wi, G picks a random
bit pi, called permute bit. The least significant bit of a garbled key (later called
select bit) is now the clear value masked with the permute bit. For example, the
select bit of ka

A is a ⊕ pA. Remark that the select bit of every garbled key is
arranged so that the two garbled keys of a wire have opposite select bits. Then,
the garbled truth table can be arranged by these select bits, as shown in Table 3.
Then, E uses the select bit of the garbled keys to determine which row he should
decrypt.

In the rest of the paper, we call s() the function that takes a garbled key as
input and outputs the select bit of that key. It tells E which line of Table 3 he
should use while executing: s(ka

A) = a ⊕ pA, s(kpA

A ) = 0, and s(k0
A) = pA.

2.3 The 25%-Row Reduction

The 25%-row reduction of Naor, Pinkas and Sumner [13] allows to reduce the
number of ciphertexts per garbled gate. The main idea is to choose one of the
output keys so that the first ciphertext is nullified. Then, one less ciphertext has
to be transmitted. For example, in Table 4, k

g(pA,pB)
C is the decryption of zero.

2.4 The Free-XOR Trick

The free-XOR trick of Kolesnikov and Schneider [8] allows to garble XOR gates
for free. The idea is to choose a global offset Δ that will be used to differentiate
the two garbled keys of a same wire. In other words, for any wire, the bitwise
XOR of the two garbled keys is Δ. That way, when the evaluator has to evaluate
a XOR gate, he just bitwise XOR the two input garbled keys to obtain the
output garbled key. Note that, in order to make it compatible with the point-
and-permute technique, Δ has to be odd.

Table 3. Garbled truth table with
permute bit
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Table 4. 25% reduced garbled truth
table
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2.5 The Two Half-Gates Technique

We now describe how to garble an AND gate using only two ciphertexts. As
noticed in the original paper of Zahur, Rosulek and Evans [20]:

∀γ ∈ F2, a ∧ b = (a ∧ γ)
︸ ︷︷ ︸

First half-gate

⊕ (a ∧ (b ⊕ γ))
︸ ︷︷ ︸

Second half-gate

a a ∧ b

γ

b γ

k0
A; k

1
A; pA

k0
Bγ ; k

1
Bγ

k0
X ; k1

X

k0
Y ; k1

Y

Fig. 1. The two half-gates of an AND gate

Then, an AND gate is replaced by the sub-circuit shown in Fig. 1 with the
bit γ randomly chosen by G. A half-gate is defined as a gate for which one of the
inputs is known by one of the parties. In the first half-gate, γ is known by G,
whereas in the second, b ⊕ γ can be revealed to E without leaking b (by revealing
the permute bit of the corresponding wire). Using this knowledge, each half-gate
can be reduced to one ciphertext (called G and E). G computes these ciphertexts
as described in Table 5 and send them to E . We note i and j two distinct and
public indexes used as salts for hash function, as detailed in [20].

Table 5. Garbling the half-gates

First half-gate Second half-gate

Garbled table if γ = 0 Garbled table if γ = 1 b ⊕ γ Garbled table

k0
X ⊕ H(kpA

A |i) = 0 kpA
X ⊕ H(kpA

A |i) = 0 0 k0
Y ⊕ H(k0

Bγ |j) = 0

k0
X ⊕ H(kpA

A |i) = G kpA
X ⊕ H(kpA

A |i) = G 1 k0
Y ⊕ k0

A ⊕ H(k1
Bγ |j) = E

To simplify notations, we will omit the salts i and j unless they are neces-
sary to our proofs. Then, E executes the garbled gate using the garbled inputs.
Table 6 shows the four different algorithms of evaluation, depending on the gar-
bled inputs the evaluator has. Of course, three of them output the same garbled
key (for an output 0 to the AND gate). Knowing the clear value of b ⊕ γ and
the select bit of ka

A, the evaluator is able to choose the correct algorithm.
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Table 6. Evaluating the half-gates

Inputs First half-gate Second half-gate Garbled output key

k
pA
A k0

Bγ H(k
pA
A ) H(k0

Bγ) K1 = H(k
pA
A ) ⊕ H(k0

Bγ)

k
pA
A k1

Bγ H(k
pA
A ) E ⊕ H(k1

Bγ) ⊕ k
pA
A K2 = E ⊕ H(k

pA
A ) ⊕ H(k1

Bγ) ⊕ k
pA
A

k
pA
A k0

Bγ G ⊕ H(k
pA
A ) H(k0
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A

2.6 Linear and Non-linear Gates

The two half-gates technique works for “any gate whose truth table contains an
odd number of ones (e.g. AND, NAND, OR, NOR, etc.)” [20]. Let’s call them
non-linear gates in F2. For these gates, the garbling scheme of Table 5 is slightly
different, but the evaluation scheme of Table 6 is identical. By opposition, we
call linear gates in F2 the eight others (e.g., XOR, XNOR, True, False, etc.).
Only non-linear gates are garbled, since linear gates are free.

2.7 The Case of Privacy-Free Garbled Circuits

Jawurek et al. [6] demonstrated that garbled circuits can be used as a practical
solution to zero-knowledge proof protocols. The evaluator (i.e. the prover) can
prove any statement “∃x : f(x) = 1” without revealing x, using a single garbled
circuit for f .

Frederiksen et al. [5] showed that in this context, the size of the garbled
circuits can be significantly reduced. Since the evaluator knows the entire input,
he also knows the value of each intermediate wire. The work of [20] provides
an optimal garbling scheme in this context. Since the evaluator knows every
value, the non-linear gates can be viewed as half-gates, and thus require a single
ciphertext.

Although only the general case is presented in this paper, our results also
hold for the privacy-free garbling scheme of [20].

3 Corruption of a Garbled Circuit

Now that we have seen how to garble a circuit, let us see how the generator G
can cheat. We consider two kinds of corruptions: those that can not be detected,
since the evaluation always succeeds, and those that may lead the adversary to
get caught, because of an invalid output (inconsistent with the commitments).

3.1 Selective Failure Attacks

We first consider the latter category, that leads to the so-called selective failure
attacks. These are corruptions of the garbled circuit that make it executable
only if a condition on internal values is met. If not, the protocol aborts: E does
not obtain a correct output and thus can not send back a result to G. Then G
learns whether the condition is met, but, if not, E detects the corruption and



On the Leakage of Corrupted Garbled Circuits 9

G gets caught. More specifically, the malicious G could use inconsistent keys to
construct a garbled gate or to exchange inputs during the OT phasis.

Let us see two examples, first, with the modification of an internal gate, and
then with a corrupted OT during the initialization phasis.

Alteration of an Internal Garbled Gate. We consider an internal gate garbled as
in Table 5. Suppose a key k1∗

Bγ has been used for the garbling instead of k1
Bγ .

During the evaluation, if E gets k1
Bγ , then after this corrupted gate, he will get

an inconsistent key, that will be used to evaluate the rest of the circuit. It will
not be detected until the last gate of the circuit, the output of which will not
match any commitment. An example of this corrupted garbled gate is shown in
the full version [3].

Because he can not return a valid output, E is forced to abort the protocol. If
the protocol aborts, G learns that k1

Bγ should have been used and E detects the
attack. But if the protocol runs correctly, G learns the normal output, plus an
internal bit k0

Bγ , and the E does not detect it. In the previous works, as any other
corruption of the circuit, this attack is prevented by cut-&-choose solutions.

Corruption During the OT. We now consider E has some input bit b and G
generates honestly the circuit using k0

B and k1
B . However, during the OT phasis,

G uses k0
B and k1∗

B . Then, if b = 1, E gets an inconsistent key and the leakage of
information is just as before. Note that the circuit itself is not modified, meaning
that cut-&-choose does not solve this issue. More specific and efficient solutions
have been designed, such as s-probe-resistant matrices [10,17].

Information vs. Detection. In both above cases, the malicious generator can get
detected since the failure is part of the way to learn information. Hence, the
adversary must make the protocol fail with non-negligible probability to learn
something. In the rest of the paper, we restrict the study to context where the
potential gain of information is not worth the risk of getting caught by the
honest party. Moreover, if the garbled circuit and the inputs were signed by the
generator, the evaluator could easily prove to some authority that the garbled
circuit is indeed non-executable. This seems reasonable in many real-life cases.
We thus limit alterations to the protocol that do never lead to a failure.

3.2 Undetectable Corruptions

In order to be undetectable, the corrupted circuit must keep the same topology
and the outputs must match the commitments. We later prove that this limits
modifications to turning any non-linear gate into any other non-linear gate.

But before showing this is the only possible alteration, let us show how such
an alteration can work: if G garbles the half-gates by switching some garbled
keys, as shown in Table 7, it is easy to prove that the resulting gate computes
ā ∧ b, and that the execution algorithm of E remains unchanged. Moreover, this
modified garbled truth table is actually the correct way of garbling ā ∧ b.
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Table 7. Turning a ∧ b into ā ∧ b

First half-gate Second half-gate

Garbled table if γ = 0 Garbled table if γ = 1 b ⊕ γ Garbled table

k0
X ⊕ H(kpA

A ) = 0 kpA
X ⊕ H(kpA

A ) = 0 0 k0
Y ⊕ H(k0

Bγ) = 0

k0
X ⊕ H(kpA

A ) = G kpA
X ⊕ H(kpA

A ) = G 1 k0
Y ⊕ k1

A ⊕ H(k1
Bγ) = E

With similar modifications, we obtain (in the full version [3]) a correct gar-
bling of a ∧ b̄ and a ∧ b from a corrupted AND gate. Combining these three
modifications, one can turn a AND gate into any of the eight non-linear gates.
Note that other ways exist to obtain the same results, but we chose these ones
because they represent the honest ways of garbling ā ∧ b, a ∧ b̄ and a ∧ b.

These modifications can be made arbitrarily by the generator and it will not
be detected by the evaluator, unless some cut-&-choose solution is used. In the
rest of the paper, we are proving that no other modification can be made by
a probabilistic polynomial-time adversary, or the protocol may abort, but the
adversary does not want to take the risk of getting caught.

4 Delimitation of the Corruption

Let us now prove that the above modifications and their combinations are the
only ones that can be made by an adversarial generator G, if it does not want
to get detected. We call f the function to evaluate and Cf a Boolean circuit
representation of it.

We assume in this section that the (possibly corrupted) garbled circuit is
executable for all inputs, since the adversary does not want to get detected.

Let us start with the obvious limitations. First, as already noticed, the topol-
ogy of the Boolean circuit to evaluate is public, which ensures that G can not
cheat on the number of gates or the way they are connected. Second, because
of the free-XOR trick [8], XOR gates have no garbled truth tables to transmit,
then they can not be corrupted either.

But G can still garble “correctly” another circuit Cf ′ (computing some other
function f ′ instead of f). By correct garbling, we mean that G garbles Cf ′ in
accordance with the garbling algorithm (and its optimizations), and keeps the
number of gates and the way they are connected to each other unchanged, as if
f ′ was the correct function to evaluate. XOR gates of Cf must also be present
in Cf ′ . More specifically, we have the following restrictions:

1. Only two ciphers are sent for each non-linear gates.
2. XOR gates are not transmitted.
3. There is a global offset that differentiates the two garbled keys of each wire

of Cf ′ (in accordance with the free-XOR trick [8]) and this offset is odd (as
required by the point-and-permute technique [2]).

4. Cf ′ is Boolean: for every wire of the circuit, there are two garbled keys.
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It is obvious that the first two requirements are met. Otherwise, E will refuse
to evaluate the circuit. In this section, we show that if the input wires of Cf are
correctly garbled (i.e. have a common odd offset), then the rest of the circuit
is also correctly garbled, or the protocol may abort. Thereafter, we provide a
construction to ensure that input wires are correct. This will help to prove that
the adversary is only able to turn a non-linear gate into another non-linear gate.

For the sake of simplicity, we consider that the original circuit is only com-
posed of XOR and AND gates and we show later that the same result applies
for the other gates.

4.1 Impossibility of Reducing the Number of Garbled Keys to One

The first thing to prove is that, for any garbled gate, there are at least two output
garbled keys. Consider the case where an adversary wants to alter an AND gate
(w.l.o.g.) so that it always outputs True (or always False), whatever the inputs
are. Then, he must choose E and G in Table 6, so that the four garbled output
keys are equal. Then, we have the following system of equations:

⎧

⎨

⎩

K2 = K1

K3 = K1

K4 = K1

⇐⇒
⎧

⎨

⎩

E = H(k0
Bγ) ⊕ H(k1

Bγ) ⊕ kpA

A

G = H(kpA

A ) ⊕ H(kpA

A )
kpA

A = kpA

A

Lemma 1. For any garbled gate, if the first operand has two garbled keys with
an odd offset, then the output wire has at least two possible garbled keys.

Proof. If we indeed have kpA

A ⊕ kpA

A = Δ that is odd, then the four keys can not
be equal. �

4.2 Impossibility of Three-Key Wires - Part 1

In the last part, we showed that if the input wires are correct, there are at least
two garbled keys per wire. In this section, we aim to prove there is no wire having
more than two possible garbled keys, while the circuit remains evaluable. As
described in Sect. 2, the garbled circuit is considered to have two commitments
on the garbled keys of its output wires. This ensures that output wires have
at most two possible keys, or the protocol aborts when a third key is obtained.
Then, if some wire of the circuit has three possible keys or more, then there must
be a gate that reduces it to only two. We show that such a gate is impossible.

As defined in Sect. 2, s() refers to the function that takes a garbled key as
input and outputs the select bit of that key. This function tells the evaluator
what line of Table 6 he should use while evaluating: s(kpA

A ) = 0 and s(k0
A) = pA.

Since the previous notations are irrelevant, if there are more than two keys
or if the point-and-permute trick is not followed, we now call kX , k′

X the two
distinct garbled key of a wire, and k′′

X a third garbled key when needed.
We remind that H() is a hash function that is assumed to behave like a

random function from F2N to F2N and we expect the following problems to be
computationally unfeasible by any polynomially bounded adversary:
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a

b γ

kA; k′
A; k

′′
A

kBγ ; k′
Bγ

k; k′

Fig. 2. Reducing the number of keys of
the first operand: impossible

a

b γ

k0
A ⊕ k1

A = Δ

k0
Bγ ⊕ k1

Bγ = Δ
k ⊕ k′  = Δ

Fig. 3. Modification of the offset:
impossible

1. Finding distinct k1, k
′
1 ∈ F2N , so that H(k1) = H(k′

1) requires 2N/2 evalua-
tions of H() on average (Birthday paradox).

2. Finding distinct k1, k
′
1 ∈ F2N , so that H(k1) ⊕ k1 = H(k′

1) ⊕ k′
1 requires 2N/2

evaluations of H() on average (Equivalent to the birthday paradox).
3. For given i and j, finding k1, k

′
1, k2, k

′
2 ∈ F2N , so that k1 	= k

′
1, k2 	= k

′
2 and

H(k1|i) ⊕ H(k
′
1|i) ⊕ H(k2|j) ⊕ H(k

′
2|j) = 0 requires 2N/4 evaluation of H()

on average.
4. For given i and j, finding k1, k

′
1, k2, k

′
2 ∈ F2N , so that k1 	= k

′
1, k2 	= k

′
2 and

H(k1|i)⊕k1 ⊕H(k
′
1|i)⊕k

′
1 ⊕H(k2|j)⊕H(k

′
2|j) = 0 requires 2N/4 evaluations

of H() on average.

All these properties can be proven if H is modeled as a random oracle, using
the birthday paradox bound. Note that in the definition of these problems, the
adversary can freely choose the garbled keys k1, k

′
1, k2 and k

′
2, whereas for gar-

bled gates, they are constrained by the garbling of the previous gates. Intuitively,
solving these problems requires a lot more evaluations than listed above. These
properties lead to the following lemma, which proof can be found in the full
version [3], illustrated in Fig. 2:

Lemma 2. For any garbled gate, if the first operand has at least three possible
garbed keys, and the second has at least two, then the output wire has at least
three garbled keys.

4.3 Impossibility of Three-Key Wires - Part 2

In this part, we study the opposite problem, where the second operand has at
least three garbled keys and the first has at least two. The proof being more
tricky, we need Lemma 3 as a preliminary step:

Lemma 3. For any gate, if the operands have two garbled keys and have the
same odd offset, then the output wire has the same offset or at least three keys.

The proof of Lemma 3 is given in the full version [3]. We now aim at con-
cluding the last case with the following lemma:

Lemma 4. If the input wires of the circuit have garbled keys with an odd global
offset, then the garbled circuit cannot have a gate such that the second operand
has at least three possible garbed keys, and the first has at least two, while the
output wire has only two garbled keys.



On the Leakage of Corrupted Garbled Circuits 13

a

b γ

kA; k′
A

kBγ ; k′
Bγ ; k

′′
Bγ

k; k′

Fig. 4. Reducing the number of keys of the second operand: impossible

Proof. From Lemma 2, we know this is true if the two operands have at least
three keys. We thus focus to the case where the first operand has two keys and
the second operand has three keys, as illustrated in Fig. 4. For this proof, we
consider that the input wires of the circuit are correctly garbled: these wires
have two garbled keys and they have an odd global offset Δ. We study the case
of the first gate, called F , of the circuit (in topological order) that has two
garbled inputs for the first operand and three (or more) for the second.

Since F is the first of its kind in the circuit and because of Lemma 2, the
sub-circuit that links the inputs of the circuit to the first operand wire of F have
only wires with exactly two garbled keys. Moreover, since all input wires of this
sub-circuit have the global offset Δ and because of Lemma 3, all wires of the
sub-circuit, including the first operand of F , have this same odd offset Δ.

Remark that an input wire of the circuit can not have three keys. Then the
three keys (or more) of the second operand of F come from a corrupted gate F ′

that outputs three distinct keys (or more). However, the two operand wires of
F ′ have two possible garbled keys, and, with a similar approach, we can show
that they have the same offset Δ as the first operand of F . Then, the three keys
of the second operand engages the choice of Δ. Using this fact and Table 6, we
show in the full version that no such gate can exist. �

4.4 Impossibility of Turning a Non-linear Gate into a Linear Gate

In Sect. 3, we showed how to turn a non-linear gate into any other non-linear
gate. We will now prove that, since an adversarial generator is limited to Boolean
circuits and can not deviate from the global offset, he can not turn a non-linear
gate into a linear gate. We focus on the case of an AND gate.

Lemma 5. For any non-linear gate, if the two operands have two garbled keys
and have the same odd offset, then it can not be turned into a linear gate.

Proof. We already demonstrated that an AND gate can not be corrupted into
a gate that always outputs True (or False). All other cases are proven to be
impossible in the full version [3]. �

Two particular cases of this lemma clearly reduce the possibilities of a mali-
cious generator. First, an adversary can not force the output of a non-linear gate,
and thus can not trivially force the output of the entire garbled circuit. More-
over, the adversary can not alter a gate so that it always outputs the first input
a (K1 = K2 and K3 = K4). This last example is interesting: it actually means
that the malicious generator cannot modify the circuit so that the evaluator’s
inputs go directly to the output through the circuit.
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4.5 About Other Non-linear Gates

We showed in Sect. 3 how to turn a ∧ b into ā ∧ b, a ∧ b̄ and a ∧ b. It appears
that these deviations and their combinations are identical to the honest ways of
garbling these respective gates, described in [20].

Then, an honest garbling of a ∧ b (or any other non-linear gate) can be
obtained from a corruption of a ∧ b. Thus, there is no modification that can
be made on a ∧ b and that cannot be made on a ∧ b. Therefore, any non-linear
gate can only be turned into another non-linear gate.

4.6 Fitting Everything Together

Assembling the lemmata previously proved, we obtain Theorem 6, which is the
main contribution of this paper.

Theorem 6. If all the operands of the first garbled gates can take the two values
according to the evaluator’s inputs (while the generator’s inputs are fixed), and if
there are output commitments, then the adversarial generator is limited to turn
any non-linear gates into other non-linear gates.

This theorem means that if we can guarantee that the first garbled gates (the
non-linear gates that are the closest to the input wires) can take the two possible
inputs, independently on each wire, according to the evaluator’s choice, then all
the garbled gates can only be altered into any non-linear gates.

Proof. Using Lemma 1, if the input wires of the first garbled gates all have two
possible garbled keys, then there is no wire in the rest of the circuit that has
only one possible key. Combining Lemmata 2 and 4, if the input wires of the first
garbled gates of the circuit all have the same odd global offset and if the circuit
has output commitments, then no wire of the rest of the circuit has more than
two possible garbled keys. Moreover, with the same conditions, Lemma 3 shows
that all wires share the same odd global offset. Then, Lemma 5 comes last and
shows that non-linear gates can only be turned into other non-linear gates, and
that this is the only possible corruption. �

It remains to study the conditions so that the starting point of this theorem is
satisfied: all the inputs of the first garbled gates have two possible garbled keys.
How to guarantee some wires to have two possible garbled keys, with the same
global odd offset? We will show below that it is possible to make sure that all
the evaluator’s inputs are converted into garbled keys with a common global odd
offset. But there is no way to do the same for the generator’s inputs. Indeed,
he can not be forced to choose his inputs after generating the garbled circuit.
On the other hand, XOR gates can not be corrupted, and so a XOR gate with
an evaluator’s input will necessarily have two distinct outputs. Hence, here are
some interesting cases that will meet our above requirements:

– one wants to evaluate f(y), for a public function f , so that the evaluator
chooses y, but the generator will get the result;
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Fig. 5. Overview of the sub-circuit
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Fig. 6. Implementation of the MUX

– one evaluates f(x, y), and any input wires of the first non-linear gates is either
an yj chosen by the evaluator, or xi ⊕yj , where xi is chosen by the generator.
Indeed, in both cases, yj or xi ⊕ yj , when xi is fixed, the inputs of the first
gates can take the two possible values according to yj .

The latter case applies to a large class of circuits, including the addition, the
greater-than, the equality test, combination of those, or even more complex cir-
cuits, such as AES. The former case is known as privacy-free garbled circuits [5]
and was shown to be efficient zero-knowledge proof protocols [6]. As mentioned
in Sect. 2, there are more efficient garbling schemes in this context. The work of
[20] also provides an optimal garbling scheme for this purpose. Our results also
hold with this garbling scheme.

5 Ensuring the Correct Garbling of Input Wires

In this section, we describe a construction to guarantee that input wires of the
evaluator E are correctly garbled by the generator G. Rather than modifying the
garbling scheme, we propose to modify the circuit representation of the function
to evaluate, by adding a sub-circuit in front of the original circuit. This sub-
circuit is illustrated in Fig. 5. Figure 6 gives details of the multiplexer, but is not
required for the correctness. We call x the input of G, and y the input of E .

5.1 Construction

The main idea is that rather than transmitting the input garbled keys of E
through an oblivious transfer, the inputs are now connected to the outputs of
this sub-circuit. The sub-circuit has the same number of inputs of E as the
original circuit plus one: a bit r that is randomly chosen by E . For each input
yi of the original circuit, the sub-circuit has an input ỹi = yi ⊕ r and an output
yi. The new inputs are transmitted as usual through an oblivious transfer.

We also give restrictions on some permute bits: the permute bit of wR (the
wire carrying r) and wỸi

(carrying ỹi) must be zero. Also the permute bit of wYi

(the wire carrying yi) must be public. This is to ensure that G does not force
the inputs of E during the oblivious transfer phase.

Because of r and of those permute bits, the protocol has to be slightly mod-
ified, as suggested by the following sketch:
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1. G garbles the concatenation of the two circuits using the usual garbling scheme
and sends it to E , along with his garbled input keys for x and the permute
bit for wYi

, for all i;
2. E randomly picks a bit r;
3. E and G perform oblivious transfers in order E to obtain the garbled keys of

ỹi and r, and E checks that the select bits of these keys match the clear values
or aborts. This ensures two possible keys for the evaluator’s inputs;

4. E evaluates the sub-circuit and checks if the select bits of the keys for the
input y match the clear value, or aborts;

5. E evaluates the rest of the circuit and returns the result.

Since the functionality of the circuit is not changed by the sub-circuit (as long
as the new input ỹ is chosen according to r), the correctness is preserved.

5.2 Analysis

Our security goal is to ensure that all output wires of the sub-circuit (i.e. inputs
of the rest of the circuit) share the same odd global offset, or the protocol aborts
for some specific inputs. To prove it, we need two more lemmata.

Lemma 7. For any garbled gate, if the two operands have distinct but odd off-
sets, then the offset of the first operand is propagated to the output wire.

Proof. The proof of this lemma is identical to the proof of Lemma 3. Indeed,
in the proof of Lemma 3, the offset of the second operand (k0

Bγ ⊕ k1
Bγ) never

appears. �

Lemma 8. For any XOR gate, if the offsets of the operands are different or
if one of the operands has more than two garbled keys, there are at least four
distinct garbled keys at the output.

Proof. The proof of this lemma is trivial since the output keys of a XOR gate
are the input keys XORed together. �

Let us analyze the propagation of offsets in one of the multiplexer of the
sub-circuit. Remark that there can not be only one possible garbled key for
wYi

. Indeed, since the permute bit of this wire is known by the evaluator, then
there must be at least two possible keys with opposite select bits. We consider the
multiplexer illustrated in Fig. 6. We stress that the order of the operands matters.
Let w1 and w2 refer to the output wires of the AND gates noted respectively 1
and 2. We also note Δ the offset of wire wr carrying r and ΔỸi

the offset of the
wire carrying ỹi. We can enumerate the different corruption cases:

1. The offsets Δ and ΔỸi
are different but odd.

2. Δ is even and ΔỸi
is odd.

3. Δ is odd and ΔỸi
is even.

4. Both offsets are even (distinct or not).
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Consider the first case. According to Lemma 7, the different offsets propagate so
that w1 has offset ΔỸi

and w2 has offset Δ, or one of them two wires have more
than two keys. In either case, using Lemma 8, the output of the XOR gate gives
at least three different keys. Given that these three (or more) keys engages the
value of Δ, we can show that it can not be reduced back to two in the rest of
the circuit, using the same method as for Lemma 4.

Consider the second case, if Δ is even, then the garbled keys of wR have equal
select bits. In other words, the select bit of one of the garbled keys does not match
the clear value of r. Since r is known to evaluator and since the permute bit must
be set to zero, this situation is detected and leads the evaluator to abort. The
exact same reasoning works for the third and fourth cases.

We can now conclude that the output wires of the sub-circuit have exactly
two possible garbled keys with the same odd global offset, or the protocol aborts
for some inputs of the evaluator or some r.

6 Applications to Real Circuits

In the previous sections, we have defined precisely how a malicious generator can
corrupt a garbled circuit. Turning non-linear gates into other non-linear gates is
equivalent at adding NOT gates to the circuit. Then, we consider in this section
that the adversary is able to add a NOT gate to any wire of the circuit. An
important consequence is that a circuit can not be modified so that the inputs
of the evaluator’s inputs go trivially through the gates to the outputs of the
circuit. Thus, the question “does a corrupted circuit leak more information than
the original circuit?” turns out to be trickier than suggested in the previous
works.

In this section, we don’t provide a general answer, but we see the impact
of corruptions on some real circuits. We measure this impact with the Shannon
entropy of the evaluator’s input. We call x and y the respective inputs of the
generator and the evaluator. Let z = f(x, y) be the function to evaluate and Cf

a boolean circuit computing it. We note Cf the set of all circuits that can be
obtained by corrupting Cf (i.e. by adding NOT gates to Cf ). In other words,
there exists a corruption of Cf that leads to Cf ′ , that computes some other
function f ′, if and only if Cf ′ ∈ Cf . We formalize the problem as follows:

Problem: For a circuit Cf does it exist a corrupted circuit Cf ′ ∈ Cf , such
that the obtained function f ′ leaks more information on the evaluator’s input:
H(Y |X = x,Z = f(x, y)) > H(Y |X = x′, Z = f ′(x′, y))?

Remark that in the entropy equation, the generator knows x since this is his
input. In our computations, we consider that the adversarial generator chooses
his input in order to increase the leakage.

To help us answer that question, we implemented a tool to exhaustively
compute all corruptions Cf ′ of a circuit Cf and check if one of them leaks more
information. More details about this tools are given in the full version [3].
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6.1 The Greater-Than Function

Let us now see a practical example: the greater-than function, that returns a
single bit (1 if x > y, 0 otherwise). Assuming the adversary takes the middle of
the set as input (which leaks the most information), the original function leaks
one bit of entropy. Since there is a single output wire, whatever the modification
made on the circuit, it does not leak more than one bit of entropy on y. But
it is interesting to see that the adversary is limited in the choice of that bit.
For example, if we consider the greater-than circuit defined in [7], it can not be
modified to output the parity bit of y. This can be proven exhaustively for the
3-bit greater-than circuit and then recursively.

In the particular case of greater-than circuit, remark that the best strategy
of an adversarial G, willing to retrieve the input y, consists in not modifying the
circuit. If y is �-bit long, then it would require � evaluations for G to find y, and
it can not be reduced by corrupting it. Thus, in this context, using cut-&-choose
based solutions does not enhance privacy (but ensures the correctness).

6.2 The Addition Function

Let us study now the addition function f , the circuit Cf of which is defined and
optimized in [7]. Consider that E has two inputs y, y′ ∈ F

�
2 and the generator

none. This circuit computes the addition of y and y′ in F
�
2 (the carry bit is not

returned). The original function f does not leak any information on y (or on
y′). Up to � = 10, we exhaustively demonstrated that no modification leaks any
information on y: H(Y |Z = f ′(y, y′)) = H(Y |Z = f(y, y′)) = � This result can
be extended recursively for larger values of �.

6.3 The Equality-Test Function

Unfortunately, it is not the case for all circuit. Consider now the equality-test
function, that returns 1 if and only if x = y. The Boolean circuit we study for
the 4-bit case is shown in Fig. 7. Inputs are 4-bit long and after the evaluation of
the original function, it remains 3.66 bits of entropy. This circuit is vulnerable to
the addition of NOT gates. Indeed, we demonstrated exhaustively that the best
corruption required to add a single NOT gate, as shown in red in Fig. 7. Now,
the remaining entropy is H(Y |X = x′, Z = f ′(x′, y)) = 3.01 bits. Consequently,
almost 1 bit is leaked by this function f ′. Actually, f ′ returns x3 ⊕ y3 if x0−2

and y0−2 are different and 0 otherwise. Clearly, this same attack would work for
larger equality-test circuits.

But note that this attack is entirely based on the topological representa-
tion of the function. If we inverted the direction of the cascade of AND gates
(as shown in Fig. 8), the leaked bit would be x0 ⊕ y0. Based on this fact, we
propose a generic solution to reduce the leakage of a circuit in the full version.
Unfortunately, this fix also requires to increase the size of the circuit.
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6.4 Trade-Off with Cut-&-Choose

Then, for some classes of circuits, there exist corrupted circuits that leak more
information than the original function. In such cases, cut-&-choose remains nec-
essary if we want to avoid this leakage. Based on the fact that this leakage
depends on the topology of the circuit, our results still allow to improve for free
any cut-&-choose based solutions since [9].

Since several garbled circuits are generated, we recommend to use differ-
ent circuits of the same function (with different topologies). Then, even if the
adversary manages to guess correctly which circuits are opened, he is limited to
corruptions that can be obtained from all unopened circuits and their respec-
tive topologies. Indeed, if different corrupted circuits do not compute the same
(corrupted) function, then they may output different results, which allows the
evaluator to learn the adversarial inputs thanks to [1,9].

For example, let us consider the two circuits of Figs. 7 and 8 of the same
function. Say that cut-&-choose is used with half of the circuits with the first
topology and the other half with the second. Assume that at least one circuit
of each is unopened. Then, we demonstrated exhaustively that any corrupted
function that can be obtained from both topologies does not leak any information
on the evaluator’s inputs more than the original function already does.

7 Conclusion

The main contribution of this paper is to show that, for a large class of circuits,
a malicious generator can corrupt a garbled circuit by only two ways. He can
add NOT gates arbitrarily in the circuit, or make selective failure attacks on
inputs/outputs of a non-linear gate. This is drastically lower than the previous
state-of-the-art suggests. We believe this work can lead to some more optimized
secure solutions in the malicious setting, more efficient than the regular cut-&-
choose schemes.

The second contribution is the analysis of the impact of NOT gates in real-life
circuits. We show that some circuits do not leak more information when NOT
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gates are added, and thus cut-&-choose solutions are unnecessary to enhance
the privacy security property. However, for some other circuits, the addition of
NOT gates can lead them to reveal more information, but in that case we give
recommendations to improve cut-&-choose solutions for free.
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