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Preface

This volume contains the papers presented at ProvSec 2018 – the 12th International
Conference on Provable Security held during October 25–28, 2018, in Jeju, Republic
of Korea. The conference was organized by the Institute of Cybersecurity and Cryp-
tology at the University of Wollongong and the Laboratory of Mobile Internet Security
at Soonchunhyang University.

The first ProvSec conference was held in Wollongong, Australia, in 2007. The series
of ProvSec conferences continued successfully in Shanghai, China (2008), Guangzhou,
China (2009), Malacca, Malaysia (2010), Xi’an, China (2011), Chengdu, China (2012),
Malacca, Malaysia (2013), Hong Kong, SAR China (2014), Kanazawa Japan (2015),
Nanjing, China (2016) and Xi’an, China (2017). This was the first ProvSec held in
Korea.

This year we received 48 submissions of high quality from 23 countries. Each
submission was allocated to at least three Program Committee members. The sub-
mission and review process was conducted through the EasyChair conference man-
agement system. In the first phase of the review process, the submitted papers were
evaluated by the Program Committee members. In the second phase, the papers were
scrutinized through extensive discussions. This phase includes the “shepherding”
process, which gives a few authors the chance to address issues raised by some
reviewers. Finally, the committee decided to accept 21 regular papers and four short
papers. The review process was conducted anonymously to make sure that the sub-
missions receive fair marks and comments.

Among the accepted regular papers, the paper that received the highest weighted
review mark was given the Best Paper Award:

• “Security Notions for Cloud Storage and Deduplication” by Colin Boyd,
Gareth T. Davies, Kristian Gjøsteen, Håvard Raddum, and Mohsen Toorani

The program also included an invited talk presented by Prof. Jung Hee Cheon from
Seoul National University, Korea, titled “Recent Development of Homomorphic
Encryptions and Their Applications.”

We thank all the authors of the submitted papers. We also greatly appreciate the time
and effort that the Program Committee members and external reviewers put in to
evaluate and select the papers for the program. Our gratitude extends to our sponsors –
Jeju National University, Korea, and Innovation Information Science and Technology
Research Group, Korea. We are also grateful to the team at Springer for their con-
tinuous support of the conference and for their assistance in the production of the
conference proceedings.

October 2018 Joonsang Baek
Willy Susilo
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On the Leakage of Corrupted Garbled
Circuits

Aurélien Dupin1,2(B), David Pointcheval3,4, and Christophe Bidan2

1 Thales Communications & Security, Gennevilliers, France
dupin.aurelien@gmail.com

2 CentraleSupélec, Rennes, France
3 DIENS, École normale supérieure, CNRS, PSL University, Paris, France

4 INRIA, Paris, France

Abstract. Secure two-party computation provides a way for two par-
ties to compute a function, that depends on the two parties’ inputs,
while keeping them private. Known since the 1980s, Yao’s garbled circuits
appear to be a general solution to this problem, in the semi-honest model.
Decades of optimizations have made this tool a very practical solution.
However, it is well known that a malicious adversary could modify a
garbled circuit before submitting it. Many protocols, mostly based on
cut-&-choose, have been proposed to secure Yao’s garbled circuits in the
presence of malicious adversaries. Nevertheless, how much an adversary
can modify a circuit and make it still executable has not been studied
yet. The main contribution of this paper is to prove that any modifica-
tion made by an adversary is equivalent to adding/removing NOT gates
arbitrarily in the original circuit, otherwise the adversary can get caught.
Thereafter, we study some evaluation functions for which, even without
using cut-&-choose, no adversary can gain more information about the
inputs by modifying the circuit. We also give an improvement over most
recent cut-&-choose solutions by requiring that different circuits of the
same function are used instead of just one.

Keywords: Garbled circuits · Malicious adversaries
Corruption of garbled circuits · Cut-and-choose

1 Introduction

The pioneering work of Yao [19], known as garbled circuits, is a general solution
to the secure two-party computation problem, with a generator that builds the
garbled circuit to be evaluated, and the evaluator that executes it on its inputs. It
was originally designed in the semi-honest model and it was clear that a malicious
generator could modify the logic gates of the garbled circuit before sending it

D. Pointcheval—This work was supported in part by the European Research Council
under the European Community’s Seventh Framework Programme (FP7/2007-2013
Grant Agreement no. 339563 – CryptoCloud).

c© Springer Nature Switzerland AG 2018
J. Baek et al. (Eds.): ProvSec 2018, LNCS 11192, pp. 3–21, 2018.
https://doi.org/10.1007/978-3-030-01446-9_1
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4 A. Dupin et al.

to the evaluator for execution. Applying cut-&-choose to garbled circuits soon
appeared to fix this issue, but requires to generate and evaluate a large number
of garbled circuits.

Since then, a lot of work has been made to optimize the garbled circuits on the
one hand [2,8,13,20], and the cut-&-choose on the other hand [1,9–12,16–18].
The best of these approaches requires s garbled circuits for statistical security
2−s. Other interesting solutions based on a gate-level cut-&-choose have emerged
[4,14,15]. While these protocols have good asymptotic performances, their imple-
mentations still have a higher running time in practice than the best circuit-level
cut-&-choose protocols. However, all these techniques aim at avoiding any kind
of modification on the circuit. Nevertheless, it has never been studied which
modifications a malicious generator can make to a single garbled circuit, still
leading to an accepted execution, and then why the cut-&-choose is necessary.

Before the most recent general optimization of semi-honest garbling schemes
of Zahur, Rosulek and Evans [20], such a study would have been meaningless.
Indeed, it was obvious that an adversary could apply any modification of his
choice as long as the topology of the circuit remains the same. In other terms,
any binary gate could be turned into any other binary gate and the resulting
corrupted garbled circuit would be still executable for any input. However, the
recent improvement [20] manages to reduce the size of a garbled gate to only two
ciphers (instead of three since the work of Naor et al. [13], or even four before
that). Whereas this improvement can be seen as just a nice improvement for an
honest party, it is clearly an extra constraint for a malicious party, given that
he can now change only two variables instead of three or four. Since then, it is
not clear which modifications can actually be made, and we prove in this paper
that it is much more limited than suggested in the previous state-of-the-art.

More specifically, our first contribution is to show that an adversary is only
able to add NOT gates to a circuit or to allow abortion of the protocol. The
latter case is already known in the state-of-the-art as selective failure attacks.
This result leads to our second contribution: we show some evaluation functions
for which no such addition of NOT gates can help an adversary to learn more
information about the inputs than the honest circuit. For such functions, this
shows that a single circuit, without any cut-&-choose, is the best solution even
against malicious adversaries (under the assumption that learning more infor-
mation is not worth being caught). These results hold for the generic garbling
scheme presented in [20].

When one of the parties does not have any inputs, privacy-free garbling
schemes should be used instead. Privacy-free garbling schemes were used by
Jawurek et al. [6] to build very efficient zero-knowledge proof of knowledge pro-
tocols. In this context, a prover has a secret, that satisfies some given statement,
and wants to convince a verifier about his knowledge without revealing it. The
works of [5] and later [20] showed that in this setting, the size of garbled circuits
can be drastically reduced. Our results also hold for the optimal privacy-free
scheme of [20], and thus limit a malicious verifier to add NOT gate or to make
selective failure attacks.
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Table 1. Garbled truth table

H(k0
A) H(k0

B) Ek0
A

(Ek0
B

(k
g(0,0)
C ))

H(k0
A) H(k1

B) Ek0
A

(Ek1
B

(k
g(0,1)
C ))

H(k1
A) H(k0

B) Ek1
A

(Ek0
B

(k
g(1,0)
C ))

H(k1
A) H(k1

B) Ek1
A

(Ek1
B

(k
g(1,1)
C ))

Table 2. Commitments of outputs

H(k0
D)

H(k1
D)

The next section is a reminder of how to garble a circuit with the most recent
optimizations. Then, we show in Sect. 3 how an adversary can add NOT gates
to a circuit or make selective failure attacks. The main contribution of our paper
comes in Sect. 4: we prove that no other modification can be made for a large
class of circuits that we define. Section 5 gives a construction of garbled circuits
that reduces the possible deviations. Finally, we study in Sect. 6 the impact of
our contribution on some real-case circuits and show that some of them do not
require cut-&-choose based solutions to ensure privacy, and that for the others,
cut-&-choose can be improved for free by recommending that different circuits
of the same function are used instead of just one.

2 A Reminder of the Garbled Circuit Optimizations

Let us remind how garbled circuits are designed. The point-and-permute tech-
nique [2], the 25-%-row reduction [13] and the free-XOR [8] are briefly explained
in the beginning of this section. We refer the reader to these papers for details.

2.1 The Basic Construction

We assume both parties agree on the function to evaluate and the circuit repre-
sentation of it. One party, called the generator (noted G), randomly chooses two
garbled keys k0

i and k1
i for each wire wi of the circuit, representing respectively

0 and 1. Then, for the Boolean gate g taking as input the wires wA and wB and
returning the output in wC , G computes the garbled truth table as shown in
Table 1, using a hash function H and a symmetric encryption function E.

The rows of this table are randomly shuffled before they are sent to the
other party, the evaluator (noted E). Then, with the keys ka

A and kb
B , E is able

to compute k
g(a,b)
C . G sends the keys corresponding to his inputs, whereas the

keys of E are exchange through oblivious transfers. That way, E evaluates the
circuit and obtains output garbled keys. G also provides commitments of the
garbled keys of the output of the circuit (shown in Table 2) that allow E to get
an exploitable result, and check the correct evaluation. If E is not supposed to
learn the result, these commitments can be randomly shuffled and sent to E . If
the result does not match any commitment, then a misbehavior in the generation
of the garbled circuit may have occurred.
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2.2 The Point-and-Permute Trick

The point-and-permute trick of Beaver, Micali and Rogaway [2] allows to get
rid of the two input columns of Table 1. For every wire wi, G picks a random
bit pi, called permute bit. The least significant bit of a garbled key (later called
select bit) is now the clear value masked with the permute bit. For example, the
select bit of ka

A is a ⊕ pA. Remark that the select bit of every garbled key is
arranged so that the two garbled keys of a wire have opposite select bits. Then,
the garbled truth table can be arranged by these select bits, as shown in Table 3.
Then, E uses the select bit of the garbled keys to determine which row he should
decrypt.

In the rest of the paper, we call s() the function that takes a garbled key as
input and outputs the select bit of that key. It tells E which line of Table 3 he
should use while executing: s(ka

A) = a ⊕ pA, s(kpA

A ) = 0, and s(k0
A) = pA.

2.3 The 25%-Row Reduction

The 25%-row reduction of Naor, Pinkas and Sumner [13] allows to reduce the
number of ciphertexts per garbled gate. The main idea is to choose one of the
output keys so that the first ciphertext is nullified. Then, one less ciphertext has
to be transmitted. For example, in Table 4, k

g(pA,pB)
C is the decryption of zero.

2.4 The Free-XOR Trick

The free-XOR trick of Kolesnikov and Schneider [8] allows to garble XOR gates
for free. The idea is to choose a global offset Δ that will be used to differentiate
the two garbled keys of a same wire. In other words, for any wire, the bitwise
XOR of the two garbled keys is Δ. That way, when the evaluator has to evaluate
a XOR gate, he just bitwise XOR the two input garbled keys to obtain the
output garbled key. Note that, in order to make it compatible with the point-
and-permute technique, Δ has to be odd.

Table 3. Garbled truth table with
permute bit

Ek
pA
A

(Ek
pB
B

(kg(pA,pB)
C ))

Ek
pA
A

(E
k
pB
B
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C ))

E
k
pA
A

(Ek
pB
B

(kg(pA,pB)
C ))

E
k
pA
A

(E
k
pB
B

(kg(pA,pB)
C ))

Table 4. 25% reduced garbled truth
table

Ek
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A
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B

(kg(pA,pB)
C )) = 0

Ek
pA
A

(E
k
pB
B

(kg(pA,pB)
C ))

E
k
pA
A

(Ek
pB
B

(kg(pA,pB)
C ))

E
k
pA
A

(E
k
pB
B

(kg(pA,pB)
C ))
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2.5 The Two Half-Gates Technique

We now describe how to garble an AND gate using only two ciphertexts. As
noticed in the original paper of Zahur, Rosulek and Evans [20]:

∀γ ∈ F2, a ∧ b = (a ∧ γ)
︸ ︷︷ ︸

First half-gate

⊕ (a ∧ (b ⊕ γ))
︸ ︷︷ ︸

Second half-gate

a a ∧ b

γ

b γ

k0
A; k

1
A; pA

k0
Bγ ; k

1
Bγ

k0
X ; k1

X

k0
Y ; k1

Y

Fig. 1. The two half-gates of an AND gate

Then, an AND gate is replaced by the sub-circuit shown in Fig. 1 with the
bit γ randomly chosen by G. A half-gate is defined as a gate for which one of the
inputs is known by one of the parties. In the first half-gate, γ is known by G,
whereas in the second, b ⊕ γ can be revealed to E without leaking b (by revealing
the permute bit of the corresponding wire). Using this knowledge, each half-gate
can be reduced to one ciphertext (called G and E). G computes these ciphertexts
as described in Table 5 and send them to E . We note i and j two distinct and
public indexes used as salts for hash function, as detailed in [20].

Table 5. Garbling the half-gates

First half-gate Second half-gate

Garbled table if γ = 0 Garbled table if γ = 1 b ⊕ γ Garbled table

k0
X ⊕ H(kpA

A |i) = 0 kpA
X ⊕ H(kpA

A |i) = 0 0 k0
Y ⊕ H(k0

Bγ |j) = 0

k0
X ⊕ H(kpA

A |i) = G kpA
X ⊕ H(kpA

A |i) = G 1 k0
Y ⊕ k0

A ⊕ H(k1
Bγ |j) = E

To simplify notations, we will omit the salts i and j unless they are neces-
sary to our proofs. Then, E executes the garbled gate using the garbled inputs.
Table 6 shows the four different algorithms of evaluation, depending on the gar-
bled inputs the evaluator has. Of course, three of them output the same garbled
key (for an output 0 to the AND gate). Knowing the clear value of b ⊕ γ and
the select bit of ka

A, the evaluator is able to choose the correct algorithm.



8 A. Dupin et al.

Table 6. Evaluating the half-gates

Inputs First half-gate Second half-gate Garbled output key

k
pA
A k0

Bγ H(k
pA
A ) H(k0

Bγ) K1 = H(k
pA
A ) ⊕ H(k0

Bγ)

k
pA
A k1

Bγ H(k
pA
A ) E ⊕ H(k1

Bγ) ⊕ k
pA
A K2 = E ⊕ H(k

pA
A ) ⊕ H(k1

Bγ) ⊕ k
pA
A

k
pA
A k0

Bγ G ⊕ H(k
pA
A ) H(k0

Bγ) K3 = G ⊕ H(k
pA
A ) ⊕ H(k0

Bγ)

k
pA
A k1

Bγ G ⊕ H(k
pA
A ) E ⊕ H(k1

Bγ) ⊕ k
pA
A K4 = E ⊕ G ⊕ H(k

pA
A ) ⊕ H(k1

Bγ) ⊕ k
pA
A

2.6 Linear and Non-linear Gates

The two half-gates technique works for “any gate whose truth table contains an
odd number of ones (e.g. AND, NAND, OR, NOR, etc.)” [20]. Let’s call them
non-linear gates in F2. For these gates, the garbling scheme of Table 5 is slightly
different, but the evaluation scheme of Table 6 is identical. By opposition, we
call linear gates in F2 the eight others (e.g., XOR, XNOR, True, False, etc.).
Only non-linear gates are garbled, since linear gates are free.

2.7 The Case of Privacy-Free Garbled Circuits

Jawurek et al. [6] demonstrated that garbled circuits can be used as a practical
solution to zero-knowledge proof protocols. The evaluator (i.e. the prover) can
prove any statement “∃x : f(x) = 1” without revealing x, using a single garbled
circuit for f .

Frederiksen et al. [5] showed that in this context, the size of the garbled
circuits can be significantly reduced. Since the evaluator knows the entire input,
he also knows the value of each intermediate wire. The work of [20] provides
an optimal garbling scheme in this context. Since the evaluator knows every
value, the non-linear gates can be viewed as half-gates, and thus require a single
ciphertext.

Although only the general case is presented in this paper, our results also
hold for the privacy-free garbling scheme of [20].

3 Corruption of a Garbled Circuit

Now that we have seen how to garble a circuit, let us see how the generator G
can cheat. We consider two kinds of corruptions: those that can not be detected,
since the evaluation always succeeds, and those that may lead the adversary to
get caught, because of an invalid output (inconsistent with the commitments).

3.1 Selective Failure Attacks

We first consider the latter category, that leads to the so-called selective failure
attacks. These are corruptions of the garbled circuit that make it executable
only if a condition on internal values is met. If not, the protocol aborts: E does
not obtain a correct output and thus can not send back a result to G. Then G
learns whether the condition is met, but, if not, E detects the corruption and
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G gets caught. More specifically, the malicious G could use inconsistent keys to
construct a garbled gate or to exchange inputs during the OT phasis.

Let us see two examples, first, with the modification of an internal gate, and
then with a corrupted OT during the initialization phasis.

Alteration of an Internal Garbled Gate. We consider an internal gate garbled as
in Table 5. Suppose a key k1∗

Bγ has been used for the garbling instead of k1
Bγ .

During the evaluation, if E gets k1
Bγ , then after this corrupted gate, he will get

an inconsistent key, that will be used to evaluate the rest of the circuit. It will
not be detected until the last gate of the circuit, the output of which will not
match any commitment. An example of this corrupted garbled gate is shown in
the full version [3].

Because he can not return a valid output, E is forced to abort the protocol. If
the protocol aborts, G learns that k1

Bγ should have been used and E detects the
attack. But if the protocol runs correctly, G learns the normal output, plus an
internal bit k0

Bγ , and the E does not detect it. In the previous works, as any other
corruption of the circuit, this attack is prevented by cut-&-choose solutions.

Corruption During the OT. We now consider E has some input bit b and G
generates honestly the circuit using k0

B and k1
B . However, during the OT phasis,

G uses k0
B and k1∗

B . Then, if b = 1, E gets an inconsistent key and the leakage of
information is just as before. Note that the circuit itself is not modified, meaning
that cut-&-choose does not solve this issue. More specific and efficient solutions
have been designed, such as s-probe-resistant matrices [10,17].

Information vs. Detection. In both above cases, the malicious generator can get
detected since the failure is part of the way to learn information. Hence, the
adversary must make the protocol fail with non-negligible probability to learn
something. In the rest of the paper, we restrict the study to context where the
potential gain of information is not worth the risk of getting caught by the
honest party. Moreover, if the garbled circuit and the inputs were signed by the
generator, the evaluator could easily prove to some authority that the garbled
circuit is indeed non-executable. This seems reasonable in many real-life cases.
We thus limit alterations to the protocol that do never lead to a failure.

3.2 Undetectable Corruptions

In order to be undetectable, the corrupted circuit must keep the same topology
and the outputs must match the commitments. We later prove that this limits
modifications to turning any non-linear gate into any other non-linear gate.

But before showing this is the only possible alteration, let us show how such
an alteration can work: if G garbles the half-gates by switching some garbled
keys, as shown in Table 7, it is easy to prove that the resulting gate computes
ā ∧ b, and that the execution algorithm of E remains unchanged. Moreover, this
modified garbled truth table is actually the correct way of garbling ā ∧ b.
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Table 7. Turning a ∧ b into ā ∧ b

First half-gate Second half-gate

Garbled table if γ = 0 Garbled table if γ = 1 b ⊕ γ Garbled table

k0
X ⊕ H(kpA

A ) = 0 kpA
X ⊕ H(kpA

A ) = 0 0 k0
Y ⊕ H(k0

Bγ) = 0

k0
X ⊕ H(kpA

A ) = G kpA
X ⊕ H(kpA

A ) = G 1 k0
Y ⊕ k1

A ⊕ H(k1
Bγ) = E

With similar modifications, we obtain (in the full version [3]) a correct gar-
bling of a ∧ b̄ and a ∧ b from a corrupted AND gate. Combining these three
modifications, one can turn a AND gate into any of the eight non-linear gates.
Note that other ways exist to obtain the same results, but we chose these ones
because they represent the honest ways of garbling ā ∧ b, a ∧ b̄ and a ∧ b.

These modifications can be made arbitrarily by the generator and it will not
be detected by the evaluator, unless some cut-&-choose solution is used. In the
rest of the paper, we are proving that no other modification can be made by
a probabilistic polynomial-time adversary, or the protocol may abort, but the
adversary does not want to take the risk of getting caught.

4 Delimitation of the Corruption

Let us now prove that the above modifications and their combinations are the
only ones that can be made by an adversarial generator G, if it does not want
to get detected. We call f the function to evaluate and Cf a Boolean circuit
representation of it.

We assume in this section that the (possibly corrupted) garbled circuit is
executable for all inputs, since the adversary does not want to get detected.

Let us start with the obvious limitations. First, as already noticed, the topol-
ogy of the Boolean circuit to evaluate is public, which ensures that G can not
cheat on the number of gates or the way they are connected. Second, because
of the free-XOR trick [8], XOR gates have no garbled truth tables to transmit,
then they can not be corrupted either.

But G can still garble “correctly” another circuit Cf ′ (computing some other
function f ′ instead of f). By correct garbling, we mean that G garbles Cf ′ in
accordance with the garbling algorithm (and its optimizations), and keeps the
number of gates and the way they are connected to each other unchanged, as if
f ′ was the correct function to evaluate. XOR gates of Cf must also be present
in Cf ′ . More specifically, we have the following restrictions:

1. Only two ciphers are sent for each non-linear gates.
2. XOR gates are not transmitted.
3. There is a global offset that differentiates the two garbled keys of each wire

of Cf ′ (in accordance with the free-XOR trick [8]) and this offset is odd (as
required by the point-and-permute technique [2]).

4. Cf ′ is Boolean: for every wire of the circuit, there are two garbled keys.
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It is obvious that the first two requirements are met. Otherwise, E will refuse
to evaluate the circuit. In this section, we show that if the input wires of Cf are
correctly garbled (i.e. have a common odd offset), then the rest of the circuit
is also correctly garbled, or the protocol may abort. Thereafter, we provide a
construction to ensure that input wires are correct. This will help to prove that
the adversary is only able to turn a non-linear gate into another non-linear gate.

For the sake of simplicity, we consider that the original circuit is only com-
posed of XOR and AND gates and we show later that the same result applies
for the other gates.

4.1 Impossibility of Reducing the Number of Garbled Keys to One

The first thing to prove is that, for any garbled gate, there are at least two output
garbled keys. Consider the case where an adversary wants to alter an AND gate
(w.l.o.g.) so that it always outputs True (or always False), whatever the inputs
are. Then, he must choose E and G in Table 6, so that the four garbled output
keys are equal. Then, we have the following system of equations:

⎧

⎨

⎩

K2 = K1

K3 = K1

K4 = K1

⇐⇒
⎧

⎨

⎩

E = H(k0
Bγ) ⊕ H(k1

Bγ) ⊕ kpA

A

G = H(kpA

A ) ⊕ H(kpA

A )
kpA

A = kpA

A

Lemma 1. For any garbled gate, if the first operand has two garbled keys with
an odd offset, then the output wire has at least two possible garbled keys.

Proof. If we indeed have kpA

A ⊕ kpA

A = Δ that is odd, then the four keys can not
be equal. �

4.2 Impossibility of Three-Key Wires - Part 1

In the last part, we showed that if the input wires are correct, there are at least
two garbled keys per wire. In this section, we aim to prove there is no wire having
more than two possible garbled keys, while the circuit remains evaluable. As
described in Sect. 2, the garbled circuit is considered to have two commitments
on the garbled keys of its output wires. This ensures that output wires have
at most two possible keys, or the protocol aborts when a third key is obtained.
Then, if some wire of the circuit has three possible keys or more, then there must
be a gate that reduces it to only two. We show that such a gate is impossible.

As defined in Sect. 2, s() refers to the function that takes a garbled key as
input and outputs the select bit of that key. This function tells the evaluator
what line of Table 6 he should use while evaluating: s(kpA

A ) = 0 and s(k0
A) = pA.

Since the previous notations are irrelevant, if there are more than two keys
or if the point-and-permute trick is not followed, we now call kX , k′

X the two
distinct garbled key of a wire, and k′′

X a third garbled key when needed.
We remind that H() is a hash function that is assumed to behave like a

random function from F2N to F2N and we expect the following problems to be
computationally unfeasible by any polynomially bounded adversary:
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a

b γ

kA; k′
A; k

′′
A

kBγ ; k′
Bγ

k; k′

Fig. 2. Reducing the number of keys of
the first operand: impossible

a

b γ

k0
A ⊕ k1

A = Δ

k0
Bγ ⊕ k1

Bγ = Δ
k ⊕ k′  = Δ

Fig. 3. Modification of the offset:
impossible

1. Finding distinct k1, k
′
1 ∈ F2N , so that H(k1) = H(k′

1) requires 2N/2 evalua-
tions of H() on average (Birthday paradox).

2. Finding distinct k1, k
′
1 ∈ F2N , so that H(k1) ⊕ k1 = H(k′

1) ⊕ k′
1 requires 2N/2

evaluations of H() on average (Equivalent to the birthday paradox).
3. For given i and j, finding k1, k

′
1, k2, k

′
2 ∈ F2N , so that k1 	= k

′
1, k2 	= k

′
2 and

H(k1|i) ⊕ H(k
′
1|i) ⊕ H(k2|j) ⊕ H(k

′
2|j) = 0 requires 2N/4 evaluation of H()

on average.
4. For given i and j, finding k1, k

′
1, k2, k

′
2 ∈ F2N , so that k1 	= k

′
1, k2 	= k

′
2 and

H(k1|i)⊕k1 ⊕H(k
′
1|i)⊕k

′
1 ⊕H(k2|j)⊕H(k

′
2|j) = 0 requires 2N/4 evaluations

of H() on average.

All these properties can be proven if H is modeled as a random oracle, using
the birthday paradox bound. Note that in the definition of these problems, the
adversary can freely choose the garbled keys k1, k

′
1, k2 and k

′
2, whereas for gar-

bled gates, they are constrained by the garbling of the previous gates. Intuitively,
solving these problems requires a lot more evaluations than listed above. These
properties lead to the following lemma, which proof can be found in the full
version [3], illustrated in Fig. 2:

Lemma 2. For any garbled gate, if the first operand has at least three possible
garbed keys, and the second has at least two, then the output wire has at least
three garbled keys.

4.3 Impossibility of Three-Key Wires - Part 2

In this part, we study the opposite problem, where the second operand has at
least three garbled keys and the first has at least two. The proof being more
tricky, we need Lemma 3 as a preliminary step:

Lemma 3. For any gate, if the operands have two garbled keys and have the
same odd offset, then the output wire has the same offset or at least three keys.

The proof of Lemma 3 is given in the full version [3]. We now aim at con-
cluding the last case with the following lemma:

Lemma 4. If the input wires of the circuit have garbled keys with an odd global
offset, then the garbled circuit cannot have a gate such that the second operand
has at least three possible garbed keys, and the first has at least two, while the
output wire has only two garbled keys.
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a

b γ

kA; k′
A

kBγ ; k′
Bγ ; k

′′
Bγ

k; k′

Fig. 4. Reducing the number of keys of the second operand: impossible

Proof. From Lemma 2, we know this is true if the two operands have at least
three keys. We thus focus to the case where the first operand has two keys and
the second operand has three keys, as illustrated in Fig. 4. For this proof, we
consider that the input wires of the circuit are correctly garbled: these wires
have two garbled keys and they have an odd global offset Δ. We study the case
of the first gate, called F , of the circuit (in topological order) that has two
garbled inputs for the first operand and three (or more) for the second.

Since F is the first of its kind in the circuit and because of Lemma 2, the
sub-circuit that links the inputs of the circuit to the first operand wire of F have
only wires with exactly two garbled keys. Moreover, since all input wires of this
sub-circuit have the global offset Δ and because of Lemma 3, all wires of the
sub-circuit, including the first operand of F , have this same odd offset Δ.

Remark that an input wire of the circuit can not have three keys. Then the
three keys (or more) of the second operand of F come from a corrupted gate F ′

that outputs three distinct keys (or more). However, the two operand wires of
F ′ have two possible garbled keys, and, with a similar approach, we can show
that they have the same offset Δ as the first operand of F . Then, the three keys
of the second operand engages the choice of Δ. Using this fact and Table 6, we
show in the full version that no such gate can exist. �

4.4 Impossibility of Turning a Non-linear Gate into a Linear Gate

In Sect. 3, we showed how to turn a non-linear gate into any other non-linear
gate. We will now prove that, since an adversarial generator is limited to Boolean
circuits and can not deviate from the global offset, he can not turn a non-linear
gate into a linear gate. We focus on the case of an AND gate.

Lemma 5. For any non-linear gate, if the two operands have two garbled keys
and have the same odd offset, then it can not be turned into a linear gate.

Proof. We already demonstrated that an AND gate can not be corrupted into
a gate that always outputs True (or False). All other cases are proven to be
impossible in the full version [3]. �

Two particular cases of this lemma clearly reduce the possibilities of a mali-
cious generator. First, an adversary can not force the output of a non-linear gate,
and thus can not trivially force the output of the entire garbled circuit. More-
over, the adversary can not alter a gate so that it always outputs the first input
a (K1 = K2 and K3 = K4). This last example is interesting: it actually means
that the malicious generator cannot modify the circuit so that the evaluator’s
inputs go directly to the output through the circuit.



14 A. Dupin et al.

4.5 About Other Non-linear Gates

We showed in Sect. 3 how to turn a ∧ b into ā ∧ b, a ∧ b̄ and a ∧ b. It appears
that these deviations and their combinations are identical to the honest ways of
garbling these respective gates, described in [20].

Then, an honest garbling of a ∧ b (or any other non-linear gate) can be
obtained from a corruption of a ∧ b. Thus, there is no modification that can
be made on a ∧ b and that cannot be made on a ∧ b. Therefore, any non-linear
gate can only be turned into another non-linear gate.

4.6 Fitting Everything Together

Assembling the lemmata previously proved, we obtain Theorem 6, which is the
main contribution of this paper.

Theorem 6. If all the operands of the first garbled gates can take the two values
according to the evaluator’s inputs (while the generator’s inputs are fixed), and if
there are output commitments, then the adversarial generator is limited to turn
any non-linear gates into other non-linear gates.

This theorem means that if we can guarantee that the first garbled gates (the
non-linear gates that are the closest to the input wires) can take the two possible
inputs, independently on each wire, according to the evaluator’s choice, then all
the garbled gates can only be altered into any non-linear gates.

Proof. Using Lemma 1, if the input wires of the first garbled gates all have two
possible garbled keys, then there is no wire in the rest of the circuit that has
only one possible key. Combining Lemmata 2 and 4, if the input wires of the first
garbled gates of the circuit all have the same odd global offset and if the circuit
has output commitments, then no wire of the rest of the circuit has more than
two possible garbled keys. Moreover, with the same conditions, Lemma 3 shows
that all wires share the same odd global offset. Then, Lemma 5 comes last and
shows that non-linear gates can only be turned into other non-linear gates, and
that this is the only possible corruption. �

It remains to study the conditions so that the starting point of this theorem is
satisfied: all the inputs of the first garbled gates have two possible garbled keys.
How to guarantee some wires to have two possible garbled keys, with the same
global odd offset? We will show below that it is possible to make sure that all
the evaluator’s inputs are converted into garbled keys with a common global odd
offset. But there is no way to do the same for the generator’s inputs. Indeed,
he can not be forced to choose his inputs after generating the garbled circuit.
On the other hand, XOR gates can not be corrupted, and so a XOR gate with
an evaluator’s input will necessarily have two distinct outputs. Hence, here are
some interesting cases that will meet our above requirements:

– one wants to evaluate f(y), for a public function f , so that the evaluator
chooses y, but the generator will get the result;
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r

ỹi yi

MUX

˜yi+1 yi+1

MUX

Fig. 5. Overview of the sub-circuit

r

ỹi 1 yi

2

Fig. 6. Implementation of the MUX

– one evaluates f(x, y), and any input wires of the first non-linear gates is either
an yj chosen by the evaluator, or xi ⊕yj , where xi is chosen by the generator.
Indeed, in both cases, yj or xi ⊕ yj , when xi is fixed, the inputs of the first
gates can take the two possible values according to yj .

The latter case applies to a large class of circuits, including the addition, the
greater-than, the equality test, combination of those, or even more complex cir-
cuits, such as AES. The former case is known as privacy-free garbled circuits [5]
and was shown to be efficient zero-knowledge proof protocols [6]. As mentioned
in Sect. 2, there are more efficient garbling schemes in this context. The work of
[20] also provides an optimal garbling scheme for this purpose. Our results also
hold with this garbling scheme.

5 Ensuring the Correct Garbling of Input Wires

In this section, we describe a construction to guarantee that input wires of the
evaluator E are correctly garbled by the generator G. Rather than modifying the
garbling scheme, we propose to modify the circuit representation of the function
to evaluate, by adding a sub-circuit in front of the original circuit. This sub-
circuit is illustrated in Fig. 5. Figure 6 gives details of the multiplexer, but is not
required for the correctness. We call x the input of G, and y the input of E .

5.1 Construction

The main idea is that rather than transmitting the input garbled keys of E
through an oblivious transfer, the inputs are now connected to the outputs of
this sub-circuit. The sub-circuit has the same number of inputs of E as the
original circuit plus one: a bit r that is randomly chosen by E . For each input
yi of the original circuit, the sub-circuit has an input ỹi = yi ⊕ r and an output
yi. The new inputs are transmitted as usual through an oblivious transfer.

We also give restrictions on some permute bits: the permute bit of wR (the
wire carrying r) and wỸi

(carrying ỹi) must be zero. Also the permute bit of wYi

(the wire carrying yi) must be public. This is to ensure that G does not force
the inputs of E during the oblivious transfer phase.

Because of r and of those permute bits, the protocol has to be slightly mod-
ified, as suggested by the following sketch:
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1. G garbles the concatenation of the two circuits using the usual garbling scheme
and sends it to E , along with his garbled input keys for x and the permute
bit for wYi

, for all i;
2. E randomly picks a bit r;
3. E and G perform oblivious transfers in order E to obtain the garbled keys of

ỹi and r, and E checks that the select bits of these keys match the clear values
or aborts. This ensures two possible keys for the evaluator’s inputs;

4. E evaluates the sub-circuit and checks if the select bits of the keys for the
input y match the clear value, or aborts;

5. E evaluates the rest of the circuit and returns the result.

Since the functionality of the circuit is not changed by the sub-circuit (as long
as the new input ỹ is chosen according to r), the correctness is preserved.

5.2 Analysis

Our security goal is to ensure that all output wires of the sub-circuit (i.e. inputs
of the rest of the circuit) share the same odd global offset, or the protocol aborts
for some specific inputs. To prove it, we need two more lemmata.

Lemma 7. For any garbled gate, if the two operands have distinct but odd off-
sets, then the offset of the first operand is propagated to the output wire.

Proof. The proof of this lemma is identical to the proof of Lemma 3. Indeed,
in the proof of Lemma 3, the offset of the second operand (k0

Bγ ⊕ k1
Bγ) never

appears. �

Lemma 8. For any XOR gate, if the offsets of the operands are different or
if one of the operands has more than two garbled keys, there are at least four
distinct garbled keys at the output.

Proof. The proof of this lemma is trivial since the output keys of a XOR gate
are the input keys XORed together. �

Let us analyze the propagation of offsets in one of the multiplexer of the
sub-circuit. Remark that there can not be only one possible garbled key for
wYi

. Indeed, since the permute bit of this wire is known by the evaluator, then
there must be at least two possible keys with opposite select bits. We consider the
multiplexer illustrated in Fig. 6. We stress that the order of the operands matters.
Let w1 and w2 refer to the output wires of the AND gates noted respectively 1
and 2. We also note Δ the offset of wire wr carrying r and ΔỸi

the offset of the
wire carrying ỹi. We can enumerate the different corruption cases:

1. The offsets Δ and ΔỸi
are different but odd.

2. Δ is even and ΔỸi
is odd.

3. Δ is odd and ΔỸi
is even.

4. Both offsets are even (distinct or not).
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Consider the first case. According to Lemma 7, the different offsets propagate so
that w1 has offset ΔỸi

and w2 has offset Δ, or one of them two wires have more
than two keys. In either case, using Lemma 8, the output of the XOR gate gives
at least three different keys. Given that these three (or more) keys engages the
value of Δ, we can show that it can not be reduced back to two in the rest of
the circuit, using the same method as for Lemma 4.

Consider the second case, if Δ is even, then the garbled keys of wR have equal
select bits. In other words, the select bit of one of the garbled keys does not match
the clear value of r. Since r is known to evaluator and since the permute bit must
be set to zero, this situation is detected and leads the evaluator to abort. The
exact same reasoning works for the third and fourth cases.

We can now conclude that the output wires of the sub-circuit have exactly
two possible garbled keys with the same odd global offset, or the protocol aborts
for some inputs of the evaluator or some r.

6 Applications to Real Circuits

In the previous sections, we have defined precisely how a malicious generator can
corrupt a garbled circuit. Turning non-linear gates into other non-linear gates is
equivalent at adding NOT gates to the circuit. Then, we consider in this section
that the adversary is able to add a NOT gate to any wire of the circuit. An
important consequence is that a circuit can not be modified so that the inputs
of the evaluator’s inputs go trivially through the gates to the outputs of the
circuit. Thus, the question “does a corrupted circuit leak more information than
the original circuit?” turns out to be trickier than suggested in the previous
works.

In this section, we don’t provide a general answer, but we see the impact
of corruptions on some real circuits. We measure this impact with the Shannon
entropy of the evaluator’s input. We call x and y the respective inputs of the
generator and the evaluator. Let z = f(x, y) be the function to evaluate and Cf

a boolean circuit computing it. We note Cf the set of all circuits that can be
obtained by corrupting Cf (i.e. by adding NOT gates to Cf ). In other words,
there exists a corruption of Cf that leads to Cf ′ , that computes some other
function f ′, if and only if Cf ′ ∈ Cf . We formalize the problem as follows:

Problem: For a circuit Cf does it exist a corrupted circuit Cf ′ ∈ Cf , such
that the obtained function f ′ leaks more information on the evaluator’s input:
H(Y |X = x,Z = f(x, y)) > H(Y |X = x′, Z = f ′(x′, y))?

Remark that in the entropy equation, the generator knows x since this is his
input. In our computations, we consider that the adversarial generator chooses
his input in order to increase the leakage.

To help us answer that question, we implemented a tool to exhaustively
compute all corruptions Cf ′ of a circuit Cf and check if one of them leaks more
information. More details about this tools are given in the full version [3].
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6.1 The Greater-Than Function

Let us now see a practical example: the greater-than function, that returns a
single bit (1 if x > y, 0 otherwise). Assuming the adversary takes the middle of
the set as input (which leaks the most information), the original function leaks
one bit of entropy. Since there is a single output wire, whatever the modification
made on the circuit, it does not leak more than one bit of entropy on y. But
it is interesting to see that the adversary is limited in the choice of that bit.
For example, if we consider the greater-than circuit defined in [7], it can not be
modified to output the parity bit of y. This can be proven exhaustively for the
3-bit greater-than circuit and then recursively.

In the particular case of greater-than circuit, remark that the best strategy
of an adversarial G, willing to retrieve the input y, consists in not modifying the
circuit. If y is �-bit long, then it would require � evaluations for G to find y, and
it can not be reduced by corrupting it. Thus, in this context, using cut-&-choose
based solutions does not enhance privacy (but ensures the correctness).

6.2 The Addition Function

Let us study now the addition function f , the circuit Cf of which is defined and
optimized in [7]. Consider that E has two inputs y, y′ ∈ F

�
2 and the generator

none. This circuit computes the addition of y and y′ in F
�
2 (the carry bit is not

returned). The original function f does not leak any information on y (or on
y′). Up to � = 10, we exhaustively demonstrated that no modification leaks any
information on y: H(Y |Z = f ′(y, y′)) = H(Y |Z = f(y, y′)) = � This result can
be extended recursively for larger values of �.

6.3 The Equality-Test Function

Unfortunately, it is not the case for all circuit. Consider now the equality-test
function, that returns 1 if and only if x = y. The Boolean circuit we study for
the 4-bit case is shown in Fig. 7. Inputs are 4-bit long and after the evaluation of
the original function, it remains 3.66 bits of entropy. This circuit is vulnerable to
the addition of NOT gates. Indeed, we demonstrated exhaustively that the best
corruption required to add a single NOT gate, as shown in red in Fig. 7. Now,
the remaining entropy is H(Y |X = x′, Z = f ′(x′, y)) = 3.01 bits. Consequently,
almost 1 bit is leaked by this function f ′. Actually, f ′ returns x3 ⊕ y3 if x0−2

and y0−2 are different and 0 otherwise. Clearly, this same attack would work for
larger equality-test circuits.

But note that this attack is entirely based on the topological representa-
tion of the function. If we inverted the direction of the cascade of AND gates
(as shown in Fig. 8), the leaked bit would be x0 ⊕ y0. Based on this fact, we
propose a generic solution to reduce the leakage of a circuit in the full version.
Unfortunately, this fix also requires to increase the size of the circuit.
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Fig. 7. Circuit for the 4-bit-equality
test and its best corrupted circuit in
red (Color figure online)
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Fig. 8. Another circuit for the 4-bit-
equality test

6.4 Trade-Off with Cut-&-Choose

Then, for some classes of circuits, there exist corrupted circuits that leak more
information than the original function. In such cases, cut-&-choose remains nec-
essary if we want to avoid this leakage. Based on the fact that this leakage
depends on the topology of the circuit, our results still allow to improve for free
any cut-&-choose based solutions since [9].

Since several garbled circuits are generated, we recommend to use differ-
ent circuits of the same function (with different topologies). Then, even if the
adversary manages to guess correctly which circuits are opened, he is limited to
corruptions that can be obtained from all unopened circuits and their respec-
tive topologies. Indeed, if different corrupted circuits do not compute the same
(corrupted) function, then they may output different results, which allows the
evaluator to learn the adversarial inputs thanks to [1,9].

For example, let us consider the two circuits of Figs. 7 and 8 of the same
function. Say that cut-&-choose is used with half of the circuits with the first
topology and the other half with the second. Assume that at least one circuit
of each is unopened. Then, we demonstrated exhaustively that any corrupted
function that can be obtained from both topologies does not leak any information
on the evaluator’s inputs more than the original function already does.

7 Conclusion

The main contribution of this paper is to show that, for a large class of circuits,
a malicious generator can corrupt a garbled circuit by only two ways. He can
add NOT gates arbitrarily in the circuit, or make selective failure attacks on
inputs/outputs of a non-linear gate. This is drastically lower than the previous
state-of-the-art suggests. We believe this work can lead to some more optimized
secure solutions in the malicious setting, more efficient than the regular cut-&-
choose schemes.

The second contribution is the analysis of the impact of NOT gates in real-life
circuits. We show that some circuits do not leak more information when NOT
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gates are added, and thus cut-&-choose solutions are unnecessary to enhance
the privacy security property. However, for some other circuits, the addition of
NOT gates can lead them to reveal more information, but in that case we give
recommendations to improve cut-&-choose solutions for free.
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Abstract. Location-based services are quite popular. Their variety and
their numerous users show it clearly. However, these applications rely on
the persons’ honesty to use their real location. If they are motivated to
lie about their position, they can do so. A location-proof system allows
a prover to obtain proofs from nearby witnesses, for being at a given
location at a given time. Such a proof can be used to convince a verifier
later on. Many solutions have been designed in the last decade, but none
protects perfectly the privacy of their participants. Indeed, provers and
witnesses may want to keep their identity and location private. In this
paper, a solution is presented in which a malicious adversary, acting as
a prover, cannot cheat on his position. It relies on multi-party compu-
tations and group-signature schemes to protect the private information
of both the prover and the witnesses against any semi-honest partici-
pant. Additionally, this paper gives a new secure multi-party maximum
computation protocol requiring O(n log(n)) computations and commu-
nications, which greatly improves the previously known solutions having
O(n2) complexities. Although it is designed for our location-proof sys-
tem, it can be applied to any scenario in which a small information
leakage is acceptable.

Keywords: Location proof
Secure multi-party maximum computation
Secure two-party comparison computation · Privacy preserving

1 Introduction

Location-based services are now ubiquitous, mostly through our phones and vehi-
cles. These services generally rely on the persons’ honesty to use their real loca-
tion. Hence, they are limited to situations in which the persons do not have any
motivation to lie. However, for some services such as electronic voting, location-
based access control, and law enforcement investigation, this is not the case.
These services must be based on a location-proof system that allows a partici-
pant, called prover, to obtain proofs from nearby participants, called witnesses,
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asserting that he has been at a given location at a given time. Such a proof can
be used later on to convince a service provider, called verifier.

Any location-proof system based on the interaction between a prover and
his neighbors has some privacy issues. The prover may not want to broadcast
his identity every time he needs location proofs. Similarly, witnesses may want
to hide their identity and location. Hence, private information must be kept
secret from all the participants but not from an independent trusted third-party,
called judge. Indeed, the judge must be allowed to retrieve the identities of
the participants, in order to detect malicious collusions among them. An ideal
location-proof system must then have the following properties [5].

1. Correctness: location proofs generated honestly by a prover with the col-
laboration of honest witnesses must always be accepted by the verifier.

2. Unforgeability: a prover cannot obtain/modify valid location proofs for a
location where he is not, or at a different time.

3. Non-transferability: location proofs are valid only for the prover who gen-
erated them. They cannot be exchanged.

4. Traceability: given a proof, the judge must be able to retrieve the identity
of the witness who signed it. New property - not in [5].

5. Location and identity privacy: the location and the identity of the wit-
nesses and the prover must be kept secret from other participants.

6. Unlinkability: given two distinct location proofs, a participant cannot guess
whether they have been generated by the same witness, nor whether they
concern the same prover. This obviously does not stand for the judge.

7. Storage sovereignty: the prover is responsible for storing his own location
proofs. No one is able to access them without the prover’s agreement.

Several solutions that partially fulfill these objectives were proposed. Unfor-
tunately, most of them require that the participants broadcast their identity
and/or location. Sastry et al. [15] introduced the notion of secure location verifi-
cation. Their solution relies on the deployment of impersonal local access points
to locate participants in a given region, using distance-bounding protocols. Fur-
thermore, the identity and location of the prover have to be transmitted to allow
access points to grant access to nearby location-based services. In [14], Saroiu et
al. introduced the notion of location proofs. The prover can now ask access points
to generate proofs that he can store until he has to convince a verifier. However,
it still requires an infrastructure to be deployed and does not ensure privacy.
Later, other approaches based on impersonal access points (Luo et al. [10,11]
and Pham et al. [13]) start answering the privacy issues using hash functions and
pseudonyms. Although the most recent of these schemes achieve a high level of
privacy, it is still limited to regions where access points are already deployed.

A complete different approach has been used by Singelee et al. [16]. Instead of
deploying impersonal devices, they have suggested to involve nearby users. These
users, called witnesses, can run distance-bounding protocols with the prover
to certify his location. Unfortunately, the scheme still does not provide any
privacy property. The solution of Graham et al. [6] is somehow similar, but
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the verifier has to choose himself the witnesses among the nearby volunteers.
It reduces the probability of collusion among the participants. Later, Zhu et al.
proposed a new solution APPLAUS [18] that protects identities through a set
of pseudonyms. This allows the witnesses to generate location proofs without
leaking their identity. However, all proofs (including pseudonyms and locations)
are stored in a centralized authority, raising some privacy and efficiency issues.
The protocol Link of Talasila et al. [17] is also based on centralized system.

Finally, Gambs et al. [5] proposed a solution to get rid of the central authority
and to ensure most privacy properties. Identities are protected with a group-
signature scheme instead of pseudonyms and the positions of the witnesses are
not transmitted. Unfortunately, the location of the prover is still learned by the
witnesses. A comparison of all these schemes is provided in Table 1.

Table 1. Comparison of existing protocols

Echo

[15]

[16] SLVPGP

[6]

[14] [10] Veriplace

[11]

Applaus

[18]

Link

[17]

[3] Props

[5]

SecureRun

[13]

Our

work

Prover anonymity

P: pseudonyms

G: group signatures

H: hash function

H H G P G

Witness anonymity

P: pseudonyms

G: group signatures

NA: not applicable

NA NA NA NA P H G NA G

Prover location

privacy

� � � � ∼ � �

Witness location

privacy

NA NA NA NA � � NA �

Storage sovereignty � � � �
No infrastructure

requirement

� � � � � � �

Traceability NA � NA NA NA � � � � �

In this paper, we propose a privacy-aware location-proof system that fulfills
all these properties. It relies on two protocols: a location-proof gathering protocol
(allowing a prover to obtain proofs from witnesses) and a location-proof verifying
protocol (allowing a verifier to validate the correctness of a proof). The first one
ensures that both the prover and the witnesses keep their identity and their
location secret. Once the location proofs have been obtained from witnesses, a
prover must keep them securely and may use them later on to convince verifiers.
For efficiency reasons, no centralized server is used during the gathering protocol.

Our scheme relies on multi-party computations and group signature schemes
to protect the identity and the location of all participants. It assumes that the
participants have phones/vehicles with directional antenna to locate their neigh-
bors. Such a solution can complement classical distance-bounding protocols [1].

The security of our solution is analyzed against malicious and semi-honest
adversaries. The former is a prover trying to obtain invalid location proofs,
whereas the later is any participant (prover, witness or verifier) trying to obtain
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the private information on other participants. Static collusions between a prover
and some of the witnesses against other witnesses are also considered.

As already mentioned, our scheme relies on multi-party computations, more
specifically a multi-party maximum protocol. Although any existing protocol
would be sufficient for our scheme. We design a new multi-party maximum pro-
tocol in Sect. 4 requiring O(n log(n)) computations and communications. All pre-
viously known results have their complexity in O(n2). However, our construction
is based on a trade-off between efficiency and privacy, but can be generalized to
any scenario where a small information leakage is acceptable.

2 Problem Statement

Let us suppose the participants have devices (phone or vehicle) equipped with
directional antennas, allowing to locate a transmitting device in 90◦-quadrants
with respect to their position and orientation. Depending on his location and
orientation, a witness would be able to locate a prover in one of the four reference
orthogonal half-planes (North, East, South, West), as shown in Fig. 1.

Our location problem can therefore be stated as follows. Consider n witnesses
having located a prover P in half-planes with respect to their position. Look-
ing for a location proof, P wants to obtain an authenticated description of the
intersection of these half-planes, as shown in Fig. 2, while the witnesses want to
protect their identity and private information. This can be reduced to find the
maximum (or minimum) of the private x- or y-coordinates of the witnesses.

(b)(a)

Wi

Wi

Fig. 1. Half-planes from 90◦-quadrants

W1

W2

W3

W5

W4

W7P

Fig. 2. Intersecting half-planes

2.1 Location-Proof Generation Protocol Outline

Protocol 1 presents the outline of our approach. After sharing among all partic-
ipants the ephemeral additive homomorphic public keys, and the directions in
which the prover is located for all witnesses (Step 1), the idea is to find the inter-
section of the witness-defined orthogonal half-planes approximating the prover’s
position (Steps 2–3), and generate a location proof from it (Steps 4–5).



26 A. Dupin et al.

Input: Each participant U knows his position (xi, yi) and his group signature
key gskU . The encryption function of the verifier EV (·) is public.

Output: P obtains an authenticated location proof from his neighbor witnesses.
Step 1 : Initialization

P broadcasts a request: “I’d like location proofs at time τ”.
forall the accepting witness Wi do

Find the direction di of P (N, S, W or E) and generate an ephemeral
public key NWi (Protocol 4).
Send back (di, NWi) to P.

P broadcasts to all witnesses μ = (τ, NP , (di, NWi)1≤i≤n) and GS(gskP , μ).
NP is his ephemeral public key (Protocol 4).
forall the accepting witness Wi do

Find his key NWi in the properly signed message. If not, abort.
Return the signature GS(gskWi , μ).

P broadcasts {GS(gskWi , μ)|1 ≤ i ≤ n}.
forall the accepting witness Wi do

Find if all the signatures are valid and different. If not, abort.

Step 2 : forall the accepting witness Wi do
Run a min/max computation protocol with all witnesses (Protocol 3).

Step 3 : P gets EV (ximin), EV (ximax), EV (yimin) and EV (yimax) (Protocol 5).
Step 4 : P transfers these encrypted results to all witnesses.
Step 5 : All Wi sign the proof, using gskWi , and send it to P (Protocol 2).

Protocol 1: Location proof generation

Our method relies on an additive homomorphic encryption scheme, such as
Paillier’s cryptosystem [12], and a unique group-signature scheme [4], that pos-
sesses the following properties: correctness, unforgeability, anonymity, traceabil-
ity, unlinkability and uniqueness. The last property ensures that two signatures
on the same message by a given group member share a lot of common bits,
breaking the unlinkability property in this very particular case. The uniqueness
property prevents that an accomplice of the prover P, or P himself, simulates
the presence of multiple witnesses (Sybil attack).

In our scheme, groups can be dynamically managed and each participant U
has a signing key gskU . Let GS(gskU ,m) denote the private signature function
of the message m with gskU , and GV(gv,m, σ) the public verification function
that allows anyone to verify the signature σ of m with the public group key gv.

2.2 Adversary Models

The following definitions of adversary models are extracted from [8]:

Definition 1 (semi-honest adversary model). A semi-honest adversary fol-
lows the protocol specification exactly, but it may try to learn more information
than allowed by looking at the messages that it received and its internal state.
This model is also known as the passive or honest-but-curious adversary model.
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Definition 2 (malicious adversary model). A malicious adversary may use
any efficient attack strategy and thus may arbitrarily deviate from the protocol
specification. This model is also known as the active adversary model.

In this paper, we stress that there are two different motivations for the prover.
First, the main motivation of a malicious prover is to obtain a valid proof that he
is at a given location at a given time, when in fact he is somewhere else. In this
case, the prover has to deviate from the protocol, while remaining undetected.
Otherwise, legitimate witnesses would abort and alert the judge.

On the other hand, a curious prover may be interested in getting information
about his neighbors (identity or precise location). Since the identity of a witness
relies on the security of the group-signature scheme used, the potential risk is
low. At best, the prover can expect to get the location of an unknown participant.

The witnesses could be interested in discovering more information on their
neighbors. However, since a witness has far less possibilities than a prover, a
malicious witness would be better to act as a prover with his neighbors.

Similarly, the verifier does not participate in the gathering location protocol
and thus can only follow the semi-honest adversary model to try to get more
information about the witnesses and the prover.

Finally, notice that a prover can always obtain a valid but faked location
proof from accomplices. The verifier and the judge can always determine the
number of witnesses having participated in the protocol. If they determine that
this number is too low, they may reject the valid proof anyway.

To sum up, our scheme is secure against the following adversaries:

– A malicious prover willing to obtain fake location proofs.
– A semi-honest prover, witness or verifier trying to violate other participants’

privacy.

In the rest of the paper, Sect. 3 presents how to build encrypted location
proofs against a malicious adversary, and how to verify them. In Sect. 4, a new
solution to the secure multi-party maximum computation problem is described.
It relies on a modified version of a classical two-party comparison protocol pre-
sented in Sect. 5 and is optimized in the context of our location-proof system.

3 Location-Proof Gathering and Verifying

Let us first assume that the prover P has obtained somehow the four encrypted
optimum values EV (ximin

), EV (ximax
), EV (yimin

) and EV (yimax
) describing the

rectangle in which he lies. Sect. 4 presents how to obtain them from his neighbor-
ing witnesses. Unfortunately, nothing proves that he has not chosen these values
himself and encrypted them with the verifier public key. The goal of Steps 4–5
of Protocol 1 is specifically to prevent this malicious behavior. In this section,
we design a protocol allowing the witnesses to certify these optimum values. In
this section, we will focus only on one of these values, say EV (ximax

).
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Input: P knows EV (ximax). Each witness Wi has his value xi and his
signature key gskWi . Each witness knows the number of participants n,
GS(gskP , μ), and the verifier semi-homomorphic encryption function
EV (·).

Output: P obtains a location proof from each witness.
Step 1 : P broadcasts the randomized version of EV (ximax).
Step 2 : forall the witness Wi do

Choose randomly ki ∈R

[[
2lx+1; 2lk − 1

]]
and ri ∈R

[[−2lx + 1; 2lx − 1
]]

.

Compute EV (ki(ximax − xi) + ri) = (EV (ximax) · EV (−xi))
ki · EV (ri).

Send EV (ki(ximax − xi) + ri) to P.
Step 3 : P broadcasts {EV (ki(ximax − xi) + ri)|1 ≤ i ≤ n}.
Step 4 : forall the witness Wi do

Check the presence of EV (ki(ximax − xi) + ri). If not, abort.
Define ν = ((EV (ki(ximax − xi) + ri))1≤i≤n, EV (ximax), n, GS(gskP , μ)).
Sign σi = GS(gskWi , ν) and send it to P.

Step 5 : P stores ν, GS(gskP , ν) and all witness signatures σi.

Protocol 2: Location-proof gathering protocol

3.1 Location-Proof Gathering

Let us assume w.l.o.g. that the public key NV of the verifier is 2048-bit long and
that the witnesses are at most at one kilometre from the prover. If the scale of
the grid system is one meter, the difference ximax

−xi ≤ 210 uses at most lx = 10
bits. We define lk = |NV | − (lx + 1). Our method for generating the location
proofs is presented in Protocol 2. If a witness follows the protocol, the verifier
would be able to retrieve the value ki(ximax

− xi) + ri, which is such that:

ki(ximax
− xi) + ri > 2lx iff xi < ximax

(1)
−2lx < ki(ximax

− xi) + ri < 2lx iff xi = ximax
(2)

ki(ximax
− xi) + ri < −2lx iff xi > ximax

(3)

If all the participants follow the protocols, Case (2) must happen at least once
and Case (3) never. This can be confirmed by the verifier V . Thus, V can detect
if a malicious prover deviates in Step 1 and uses an invalid value. On the other
hand, if a malicious prover deviates in Step 3 and drops (or alters) some values,
at least one witness can abort the protocol and alert the judge, by sending him
any value signed by the prover (such as GS(gskP , μ) of Protocol 1), which the
judge can trace thanks to the properties of the group-signature scheme. Finally,
the prover cannot deviate in Step 5 due to the unique group-signature scheme.

3.2 Security Properties of the Overall Process

We have now to argue that the overall process to obtain the location proofs
respects all the security properties listed in the introduction.

Since the unique group signature scheme [4] is unforgeable, the prover P
cannot forge new proofs, except with his own key. In Step 5 of Protocol 1, such
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an opportunity is impossible. P would have to generate two distinct signatures
on the same message, contradicting the uniqueness property of the signature
scheme. In fact, the judge would identify any transgressing participant in this
step, due to the traceability property of the signature scheme. Thus, the unforge-
ability and traceability properties of our location-proof protocol are ensured.

In Step 1 of Protocol 1, the prover broadcasts a message μ and its signature
GS(gskP , μ). This links the timestamp and the n ephemeral keys of the witnesses.
Since this signature is included in the final proofs signed by the witnesses, the
location proof is valid only for the participant able to produce the valid signature
GS(gskP , μ), confirming the non-transferability property of the protocol.

Due to the unlinkability property of the group signature scheme, the location
proof associated to GS(gskP , μ) would not be linkable with another location
proof associated to a different signature GS(gskP , μ′) done by the same prover.
Similarly, the signatures of the witnesses in Protocol 2 would also not be linkable.
Thus, the unlinkability property of our location-proof protocol is guaranteed.

The privacy of the identities follows from the property of group signature
scheme. Similarly, the privacy of the positions (xi, yi) relies on the semantic
property of the encryption scheme and the randomization process (see Sect. 5.2).
Unfortunately, the last step of Protocol 2 leaks some information through
EV (ki(ximax

− xi) + ri). The verifier can guess some bits of xi. However, we
can show that the Shannon entropy H(X|Y = ki(ximax

− xi) + ri) is still close
to H(X|X ≤ ximax

).
The prover obtains his location proofs during Step 5. Then, he stores them

until he needs to convince the verifier, ensuring the storage sovereignty property.

3.3 Location-Proof Verifying

Finally, the correctness property has to be shown. The prover P wants to con-
vince the verifier V that EV (ximax

) is indeed the maximum value. So, he sends:

– His position x, the message μ and his signature GS(gskP , μ). The message
contains the timestamp τ and the number of witnesses n (Protocol 1).

– The randomized value of maximum EV (ximax
) (Protocol 5).

– The n proofs EV (ki(ximax
− xi) + ri) and the witness signatures σi of ν =

((EV (ki(ximax
− xi) + ri))1≤i≤n, EV (ximax

), n,GS(gskP , μ)) (Protocol 2).

The verifier proceeds to several verifications. He first decrypts EV (ximax
)

and checks if ximax
< x. Then, he checks that the n proofs are generated by n

distinct participants, different from P. This verification is based on the unique-
ness property of the group signature scheme. All the signatures of the message
ν must be different. The verifier also asks the judge to check that GS(gskP , μ)
was generated using gskP , ensuring that P took place in the proof generation
protocol. The final step is to make sure that EV (ximax

) is indeed the maximum
value of the witnesses. From the values of EV (ki(xmax − xi) + ri) in ν, the
verifier can check that there is an index j s.t. −2lx < kj(ximax

− xj) + rj < 2lx ,
and that there is no index j s.t. kj(ximax

− xj) + rj < −2lx .
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Input: The witnesses S1 = {W1, W2, · · · , Wn}. Each Wi has a private value xi.
Output: P determines imax = arg max{xi|1 ≤ i ≤ n}.
for i = 1 to �log(n)� do

for j = 2i−1 to 2i − 1 do
Step 1 : P does the following steps :

S = ∅
if |Sj | is odd then

Select Single ∈R Sj s.t. Single is not marked.
Mark the witness Single and add it to S.

Pair the elements of Sj \ S − pair the marked witnesses.
Step 2 : Each pair of witnesses uses Protocol 4, and P obtains the
index of the owner of the greater value.
Step 3 : P selects k ∈R {0, 1} and computes the following sets:

S2j+k = S ∪ {the set of the losing witnesses}
S2j+k = S ∪ {the set of the winning witnesses}

Step 4 : P determines the index Set imax of this witness.

Protocol 3: Secure maximum computation based on binary tree

If all the verifications succeed, the verifier should be convinced that P was
indeed at the east of ximax

at the given time. If any of these steps fails, it reveals
a malicious action by either the prover or a witness. But unlike the prover,
witnesses do not have any incentive to cheat. If some proofs are missing, the
prover might have deleted them on purpose, or a witness may have aborted
because of a deviation of the prover.

4 Secure Multi-party Maximum Protocol

In this section, we introduce a new approach for a secure multi-party maximum
protocol. The main purpose is to enable a third party (the prover) to determine
the owner of the maximum value among a set of n participants (or witnesses).
The prover is the only party who gets a result from this protocol.

The basic idea is to use iteratively a dedicated secure two-party compari-
son protocol, that (i) enables the prover P to know which one of the two wit-
nesses owns the greater private value without having to know this value, and
(ii) guarantees that if one of the witnesses has already lost a comparison against
another witness, the prover would not get any further information. This protocol
(Protocol 4) is presented in Sect. 5.

4.1 The Protocol Description

Protocol 3 presents our approach for maximum computations. The prover gathers
subsets of witnesses in a binary tree. In each node, the witnesses of the associ-
ated subset are paired and the dedicated secure two-party comparison protocol
(Protocol 4) is used. At the end of each round, the prover gets the results of these
comparisons and can eliminate half of the remaining witnesses. If a witness does
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not participate in any further comparison, he can deduce that he was farther
away from the prover than his latest paired witness. Similarly, if one keeps partic-
ipating in the protocol, he knows he has won every previous comparisons. Thus,
the protocol should be adapted to ensure that witnesses keep participating in
the protocol even if they have been eliminated. However, the comparisons with
eliminated witnesses must be randomized and meaningless for the prover.

First assume that the number of witnesses is a power of 2. In the initial
round, the prover pairs the 2k witnesses all together. Each of these pairs runs
the two-party comparison protocol. At the end of the round, the winners and
the losers are gathered independently. This process is then applied recursively on
each subset. Hence, two witnesses would never be paired twice together. After
i iterations, there would be 2i subsets of 2k−i witnesses. One of these subsets
would contain only winners and all the others would contain only losers.

Consider now the general case of n witnesses. The prover pairs the witnesses.
If there is an odd number of witnesses in a subset, one of them (called Single in
Protocol 3) would be doubled, and considered as both a winner and a loser.

Finally, notice that the witnesses do not communicate with each other
directly. Otherwise, it would be simple to find out which one is closer to the
prover due to the directional antennas. Thus, communications must go through
P.

4.2 The Protocol Security

The security of our maximum computation protocol relies on these objectives:

1. the prover cannot get any information from the two-party comparison proto-
col if at least one of the witnesses has been already eliminated previously,

2. the prover cannot get any information on the value of any witness, and
3. the witnesses cannot get any information from the comparison protocol.

The prover does the pairing and acts as the intermediary for the two-party
comparison protocol. He can then observe all the messages exchanged between
the witnesses. Thus, Objectives (1) and (2) rely on the security of the two-party
comparison protocol. This will be addressed in Sect. 5.

Objective (3) relies on the indistinguishability of the subsets Sj in the round
i of Protocol 3, for 2i−1 ≤ j ≤ 2i − 1. If the two-party comparison protocol is
secure, the only way for a semi-honest witness to get any information on the
comparisons is to find if he is in the subset of the winners. Since the indices of
the subset are chosen randomly, any of them can be the subset of the winners.

4.3 The Protocol Analysis

The maximum computation problem has already been studied (e.g., [2,7]). How-
ever, the computational and communication complexities of these solutions are
in O(n2). Such complexities are not suitable for portable or embedded devices.
In comparison, our method only requires O(n log(n)) two-party comparisons, at
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the cost of leaking n − 1 comparison results involving winning witnesses. This
follows directly from the underlying binary tree orchestrating the comparisons.
The leaked information is not sufficient to order the witnesses.

In order to determine the complexity of Protocol 3, few facts must be proven.
Since some witnesses may be doubled, they may be compared at least twice in
any given round. We consider that the comparisons of a marked witness are
resolved sequentially. In that case, two consecutive stages of comparisons are
required for a round. The first step is to show that in any subset of witnesses
at any round, there are at most two marked witnesses. This can be seen as an
invariant of the protocol. Let us assume that a subset Sj contains at most two
marked witnesses at the beginning of the round. If |Sj | is even, the subsets S2j

and S2j+1 may contain at most one marked element. Otherwise, if |Sj | is odd,
one new witness would be marked, and the subsets S2j and S2j+1 may contain at
most two marked elements - the new one and an old one. Hence, for any subset
of odd cardinality in a non-final round, there are at least one unmarked witness
that can be marked and doubled if needed. Marking twice the same witness is
unnecessary. As a corollary of this analysis, we have the following fact:

Fact 1. Sets having two marked witnesses at the end of a round would contain
one previously marked witness and a newly doubled witness.

The second step is to show that any combination of comparisons can always
be split into at most two stages in any given round. Consider the hypothetical
cycle {Wi1 ,Wi2}, {Wi2 ,Wi3}, · · · , {Wik ,Wi1} of comparisons between marked
witnesses in a given round. Each of these pairs belongs to a different subset
of witnesses. If k is even, these comparisons can be split into two independent
stages. This is optimal since a marked witness may have to be compared with
two other witnesses. Now, if k is odd, alternate witnesses would have been just
doubled in the round. By Fact 1, this is impossible since the length of the cycle
is odd. Hence, no cycle of comparisons of odd length may exist. Two stages per
round are enough to orchestrate the comparisons. As a result, the total number
of stages is greater than �log(n)� and lower than 2�log(n)�. One can prove that
no cycle can actually exist, but it does not improve the complexity further.

5 Secure Two-Party Comparison Protocol

In this section, we propose a specific two-party comparison protocol (Protocol 4)
that enables a third party (the prover P) to know which one of the two partic-
ipants (the witnesses A and B) owns the greater private value without having
to know this value explicitly. This can be used iteratively, so that if one of
the participants has already lost a comparison against another participant, he
should not give any further information to the third party. Such a protocol can
be obtained by adapting the protocol of Lin and Tzeng [9], chosen for efficiency.

Given an integer x, let us define the following sets for our comparison proto-
col: T x

0 = {x1x2...xi−11|xi = 0} and T x
1 = {x1x2...xi|xi = 1}. Let T x

j [i] denote
the ith element of T x

j , if it exists. Lin and Tzeng’s protocol relies on this lemma:
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Lemma 1 [9]. For x, y ∈ N, x > y if and only if T x
1 ∩ T y

0 �= ∅.
Our comparison protocol has been developed to be used in our multi-party

maximum protocol presented in the previous section. It relies heavily on a prob-
abilistic additive encryption scheme such as Paillier’s cryptosystem [12]. The
participants uses their ephemeral encryption keys broadcast in Protocol 1. These
keys are signed by the prover and verified by all the nearby witnesses. This asso-
ciates the keys to a particular session of the protocol. As mentioned earlier, there
should be no direct communication between the participants.

5.1 The Protocol Correctness

Let us first assume that the private values sA and sB have been initialized to
zero by A and B, respectively. To simplify the notations, let us assume w.l.o.g.
that the permutation functions are the identity function. At the end of Step 2,
there is an index i∗ such that δi∗ = rB , iff a > b. This follows from Lemma 1
and the fact that the hash function is collision-free. Consequently, at the end
of Step 3, if sA and sB are both still equal to 0, there would be an element
μi∗ = rAi∗ ·r−1

Ai∗ = 1, iff a > b. Thus, P would know the result of the comparison.
On the other hand, if at least one of the participants has randomized his private
value EP(s∗), due to a previous comparison, no element of the vector μ would
be equal to 1, except if δi − rB + sA + sB ≡ 0 mod ZP . In any case, the result
would be meaningless.

5.2 The Protocol Security

To prove the security of Protocol 4 w.r.t. semi-honest polynomially-bounded
adversaries trying to get more information on other participants, we have to
show that these objectives are achieved: (1) A cannot find b, (2) B cannot find
a, (3) P cannot find neither a nor b, (4) the result of the comparison is known
only to P, (5) no one knows the first index i∗ that differentiates a and b, (6) P
eliminates A or B, (7) there is no information leaking if A or B has been already
discarded, and (8) P cannot simulate A or B and have a coherent result.

First, consider the information sent by A in Step 1. T a
1 gives a bit-encoding

of a. Due to the semantic security of Paillier’s cryptosystem, P and B cannot
get any information on a (Objectives (2) and (3)). Notice that the exact same γ
(including random values) must be produced by A at any iteration. Otherwise,
a collusion of P and B can set EA(δi) = EA(γi) ·EA(γ′

i)
−1 and have an encoding

of a. Either δi would be equal to 0, if ai = 1, or be a random value, if ai = 0.
We demonstrate in Annex B that the vector δ in Step 2 is uniformly random

in Z
l
NA

and independent of b, and thus does not leak any information on b to
A (Objectives (1)). We also prove in the same Annex B that the elements of
the vector μ in Step 3 are uniformly random in Z

l
NP and independent of a

and b, except one element that may be 1. Then, the vector μ does not leak any
information about a or b, except whether a > b (Objective (3)).
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Input: The l-bit private values a and b of A and B. The encryption functions
EA(·), EB(·) and EP(·), with keys NA, NB and NP . The private values
EP(sA) and EP(sB) of A and B, respectively. The hash function h(·).

Output: P determines whether a > b or a ≤ b.
Step 1 : A does the following steps :

Compute T a
1 and the l-element vector γ, so that γi = h(T a

1 [i]) if it exists,
otherwise, γi is simply a random value.
Pick a random c ∈R ZNB .
Return (EA(γ1), · · · , EA(γl)) and EB(c) to B through P.

Step 2 : B does the following steps after decrypting EB(c):

Compute T b
0 and the l-element vector δ

EA(δi) = EA(ki(h(T a
1 [i]) − h(T b

0 [i])) + rB)
= (EA(γi) · EA(−h(T b

0 [i])))ki · EA(rB)
where ki, rB ∈R ZNA s.t. (ki, NA) = 1. Otherwise, δi is a random value.
Pick randomly a permutation πB(·) and α, β ∈R ZNP s.t. (α, NP) = 1.
Return EP(sB − rB + c), EA(α), EA(β) and
(EA(δ∗

1), · · · , EA(δ∗
l )) = πB(EA(δ1), · · · , EA(δl)) to A through P.

Step 3 : A does the following steps :
Decrypt the elements EA(δ∗

i ) and compute the vector μ homomorphically
EP(μi) = EP((δ∗

i − rB + sB + sA + rA,i) · rA,i
−1)

= (EP(δ∗
i + rA,i) · EP(sA) · EP(sB − rB + c) · EP(−c))rA,i

−1

where rA,i ∈R ZNP s.t. (rA,i, NP) = 1.
Return (EP(μ∗

1), · · · , EP(μ∗
l )) = πA(EP(μ1), · · · , EP(μl)),

where πA(·) is a random permutation, to P.
Step 4 : P decrypts the cyphertexts EP(μ∗

i ).
If one of the elements of μ∗ is equal to 1, then a > b and P sets s′

A = 0.
Otherwise, a ≤ b and P sets s′

A = 1. P returns EP(s′
A) to A.

Step 5 : A does the following steps, once α and β have been retrieved :

Update EP(sA) ← EP(sA + kA · s′
A) using EP(sA) · EP(s′

A)kA , where
kA ∈R ZNP .
Return EP(αs′

B + β) = (EP(1) · EP(s′
A)−1)α · EP(β) to B through P,

since s′
B = 1 − s′

A.
Step 6 : B does the following steps :

Retrieve EP(s′
B) = (EP(αs′

B + β) · EP(−β))α−1
.

Update EP(sB) ← EP(sB + kB · s′
B) using EP (sB) · EP (s′

B)kB , where
kB ∈R ZNP .

Protocol 4: Secure two-party comparison protocol determining which partic-
ipant has the greater private value.

Due to the permutations, no information on the index differentiating a and
b can be inferred (Objective (5)).

The semantic security of Paillier’s cryptosystem ensures that A cannot
retrieve neither the values of rB nor μ∗

i in Step 3 as well as A and B can-
not retrieve the value of s′

A in Step 4 (Objective (4)).
In the last two steps, sA and sB are updated. Since P cannot infer the values

of α and β in Step 2, it cannot manipulate the value of s′
B in Step 6 in such
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a way that s′
B = 0. At least one of the participants would then have his value

s∗ �= 0, achieving Objective (6). Finally, notice that once sA or sB is a random
number different than 0, μ∗ follows an independent uniform distribution of Zl

NP .
Hence, no conclusion follows from the value of μ∗ in Step 4 (Objective (7)).

Finally, note that δ and c are necessary to obtain the result and that they
are encrypted respectively with A’s and B’s public keys. Assuming that these
keys have been properly exchanged and have not been tampered with by P, a
polynomially-bounded P cannot simulate A or B successfully. In such a case,
the result of the protocol would then be meaningless (Objective (8)).

Let us briefly consider the collusion between A and P against B. In such a
case, A and P accept to exchange all their private information. Due to πB(·), A
and P cannot obtain the index of the bit that differentiates a and b. Moreover,
due to the multiplication of each element of μ by a distinct ki, A and P cannot
compute h(T a

1 [i∗]) − h(T b
0 [i∗]), except if the hashes are equal, which has been

discarded anyhow. Thus, P does not discover more information with the help
of A. Similarly, B and P do not gain more information neither. The index of
the bit that differentiates a and b is hidden by the permutation πA(·), and it is
impossible to compute δ∗ without knowing the values rA,i generated by A.

5.3 The Protocol Complexity

Following the fact that communications are made through P, any message sent
between A and B is counted twice. The size of a public key N is denoted by |N |.
Notice that ciphertexts are 2|N |-bit long in Paillier’s cryptosystem.

For any iteration, there are eight communications and (10l + 22)|N | bits
transferred. A maximum of 4l + 6 cryptographic operations are computed by A,
2l + 8 by B and only l + 1 by P. By cryptographic operations, we mean encryp-
tion, decryption and modular exponentiation. If either A or B was eliminated,
P does not have to decrypt the result in Step 4: only one encryption is needed.

5.4 The Maximum Transfer

Using Protocols 3 and 4, the prover P knows the index imax of the witness
that has the maximum value. However, P needs to obtain EV (ximax

), which
corresponds to the maximum value encrypted with the verifier’s public key. P
does not want to inform which witness has been selected, but the discarded
witnesses do not want to provide their location uselessly. Protocol 5 manages to
reach both objectives. It relies on the fact that Wimax

ends up with the internal
value EP(sWimax

) = EP(0) at the end of Protocol 4 (which correspond to sA or
sB in Protocol 4). The other witnesses have a random sWi

.
The security of Protocol 5 is easy to show. The security of all encrypted

messages relies on the semantic security of the cryptosystem. In Step 1, P
receives only random values from the witnesses. In Step 2, he picks one of them
and broadcasts it back to all witnesses encrypted with the verifier’s public key.
A witness would return a meaningful value in Step 3 if and only if his internal
random value αi is the additive inverse of the value sent by P. In this case,
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Input: P knows imax. Each witness Wi has his values xi and EP(sWi). Public
keys NP and NV with functions EP(·) EV (·).

Output: P obtains EV (ximax).
Step 1 : forall the witness Wi do

Generate a random number αi ∈R ZNP .
Compute EP(αi + sWi) = EP(αi) · EP(sWi) and return it to P.

Step 2 : P does the following steps:
Compute αimax from EP(αimax + sWimax

) received from Wimax .
Broadcast to all witnesses EV (αimax).

Step 3 : forall the witness Wi receiving EV (αimax) do
Compute EV (αimax − αi + xi) = EV (αimax) · EV (−αi) · EV (xi).
and return it to P, only if it is the first request for that proof generation.

Step 4 : P does the final steps:
Receive EV (ximax) from Wimax .

Randomize it EV (ximax) ← EV (ximax) · rNV , for r ∈R Z
∗
NV

.

Protocol 5: Maximum transfer protocol

the witness would return his encrypted position. Otherwise, he would return a
random encrypted value. Finally, EV (ximax

) is randomized to conceal it from
the witness Wimax

. In term of complexity, if broadcasting generates only one
communication, 2n+1 messages of 2|N | bits are exchanged during the protocol.

This concludes our secure multi-party maximum protocol and allows to build
our location-proof system more efficiently than with previous existing works. The
complexity of the full location-proof system and of each sub-protocol is given in
Annex A.

6 Conclusion

We have presented a privacy-aware location-proof system, allowing a prover to
generate location proofs with the cooperation of nearby witnesses. Our solution
is the first of its kind to provide both identity and location privacy. Our scheme
relies on secure multi-party computations, allowing the prover to learn which
participant is the closest, and thus to approximate more accurately the region in
which he is. The proofs are then signed with a group signature scheme, protecting
the identity of the participants and allowing the detection of any adversary
trying to impersonate multiple witnesses. However, our scheme assumes that
participants’ devices are equipped with directional antennas. Although this is
not a technological challenge, obtaining a similar level of privacy without these
antennas is still an open problem.

As a second contribution, we also designed a new multi-party maximum
computation based on a trade-off between efficiency and privacy. We showed
that by leaking a few intermediate values, we can reduce the asymptotic cost
to O(n log(n)) instead of O(n2). Although it was originally designed specifically
for our location-proof system, it can be applied to any scenario in which this
leakage is acceptable.
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A Complexity of the Overall System

We have detailed the computational and communication complexity in each sub-
protocols, but we are now interested in the complexity of the overall location-
proof system (Protocol 1), depending on the number of witnesses. For simplicity,
let us assume there are m = 4n witnesses, i.e. n in each direction. Let |N | denote
the size of the keys (the size of a ciphertext is simply 2|N | with the Paillier’s
cryptosystem) and |S| denote the size of group signatures. We consider that the
encryption, decryption functions and homomorphic operations are in O(1).

Table 2. Complexity of the system

Cryptographic operations Communication cost

Each witness Prover Communications Bits sent

Protocol 1

(overall system)

negl negl 2m + 3 (2m + 1)(|N| + |S|)

+Protocols 2, 3, 5 +4 × Protocols 2, 3, 5

Protocol 2 negl negl 2n + 2 (4n + 2)|N| + m|S|
Protocol 3 <2�log n� × Protocol 4 ≈ n

2 �log n� × Protocol 4

Protocol 4 ≤4l + 6 l + 1 or 1 ≤8 ≤ (10l + 22)|N|
Protocol 5 negl negl 2n + 1 (4n + 2)|N|

Table 2 presents the number of cryptographic operations processed by the
prover and by each witness, the number of communications and the bits
exchanged during the different protocols. We only deal with the worst case sce-
nario: a marked witness for the computational complexity in Protocol 3, and
only a witness A in Protocol 4. This can obviously be optimized by giving role
B to marked witnesses as often as possible. The complexity of Protocol 3 is an
approximation of the total number of comparisons. An exact formula is given in
Sect. 4.3. In Protocol 4, it has been shown that P runs l + 1 operations in n − 1
comparisons, and only 1 otherwise. Thus, the number of operations done by the
prover in Protocol 3 and 4 is approximately (n − 1)l + n

2 �log n�.
To summarize, the global complexity, both in terms of computations and

communication, is in O(n log n) for the prover and O(log n) for a witness. In
comparison, most previous location-based systems have a complexity for the
prover in O(n), and O(1) for a witness. This is due to the fact that witnesses
do not need to interact with each other. However, location-privacy requires such
interactions, and thus we do not reach the same objectives.

B Security Proofs of the Two-Party Comparison Protocol

In this annex, we give more details about some security goals of Protocol 4:
(1) A cannot find b, (3) P cannot find neither a nor b and (4) the result of the
comparison is known only to P.
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Proof (Objective (1)). At the beginning of Step 3, A learns πB(δ1, · · · , δl) with

δi = ki(h(T a
1 [i]) − h(T b

0 [i])) + rB

Remember that h(T b
0 [i]) can be seen as an encoding of b. Let us prove that the

vector δ does not leak any information about b.
W.l.o.g. assume that πB(·) is the permutation identity. Let us take any value

b′ �= b and show that the same vector δ can be obtained from b′ and thus does
not leak any information.

If a > b′, let i∗ be the index such that T a
1 [i∗] = T b′

0 [i∗] and take rB = δi∗ . On
the other hand, if a ≤ b′, we can choose arbitrarily rB . Now if we take:

ki = (δi − rB) · (h(T a
1 [i]) − h(T b′

0 [i]))−1 ∀i �= i∗

then we obtain the same vector δ.
This can be generalized to permutation πB(·). Hence, δ can be obtained

from any value of b′ with the same probability, and does not therefore leak any
information about b.

It remains to prove that A does not learn the result of the comparison (part
of Objective (4)) which would leak partial information about b. The result of
the comparison (either in the vector μ, the value sA or sB) is always encrypted
under the public key of P. We assume the cryptosystem is semantically secure,
which ends the proof of Objective (1). �
Proof (Objective (3)). At the beginning of Step 4, P learns πA(μ1, · · · , μl)
where

μi = (δ∗
i − rB + sB + sA + rA,i) · rA,i

−1

and δ∗
i = δπB(i). To simplify notations, assume that πA(·) and πB(·) are the

identity permutation. If sA or sB is different from 0, this case is simple (Objective
(7)): the vector μ follows an independent uniform distribution of Zl

NP . Thus, we
only study the case:

μi = (ki(h(T a
1 [i]) − h(T b

0 [i])) + rA,i) · rA,i
−1

Knowing that a > b, we will now show that for any couple (a′, b′) such that
a′ > b′, we can obtain the same vector μ with the same probability. In this case,
let i∗ be the index such that T a′

1 [i∗] = T b′
0 [i∗]. In this case, ki∗ can be chosen

arbitrarily. For all other value i �= i∗, rA,i can be chosen arbitrarily, and ki can
be defined as:

ki = (μi · rA,i − rA,i) · (h(T a′
1 [i]) − h(T b′

0 [i]))−1.

Finally, if a ≤ b, this is simpler. In this case, the index i∗ is not defined, and
the values of all rA,i and ki are defined as above.

Thus, the same vector μ can be obtained. This can be done for any values
of a′ and b′, as long as the result remains unchanged, and for any permutation
πA(·) and πB(·). Therefore, the vector μ does not leak any information about a
or b except whether a > b or not, which ends the proof.

�
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Abstract. In this paper, we explore the multi-server (i.e., multiple
servers are employed to perform computations) and multi-client (i.e.,
multiple clients outsource joint computations on their joint inputs) sce-
nario that avoids single points of failure and provides higher security
and privacy guarantees. More precisely, we introduce the notion of veri-
fiable homomorphic secret sharing (VHSS) for multi-input, that allows n
clients to outsource joint computations on their joint inputs to m servers
without requiring any communication between the clients or the servers;
while providing the verifiable capability to any user to confirm that the
final output (rather than each share) is correct. Our contributions are
two-fold: (i) we provide a detailed example for casting Shamir’s secret
sharing scheme over a finite field F as an n-client, m-server, t-secure
perfectly secure, additive HSS scheme for the function f that sums n
field elements, and (ii) we propose an instantiation of an n-client, m-
server, t-secure computationally secure, multiplicative VHSS scheme for
the function f that multiplies n elements under the hardness assumption
of the fixed inversion problem in bilinear maps.

Keywords: Function secret sharing · Homomorphic secret sharing
Verifiable computation

1 Introduction

The emergence of ubiquitous computing has led to multiple heterogeneous
devices with increased connectivity and have formed the Internet of Things
(IoT). These IoT devices are often constrained regarding resources (i.e., mem-
ory, bandwidth and computational resources) and thus, require the assistance of
more powerful but often untrusted servers in order to store, process and perform
computations on the collected data, leading to what is known as cloud-assisted
computing. An important challenge in this cloud-assisted computing paradigm
is how to protect the security and privacy of the participants considering the
clients’ resource-constraints, especially in the multi-client setting. Although the
classical cloud-computing paradigm traditionally involves one client, we argue
that a multi-client setting is more realistic since often an aggregator has to per-
form computations from data collected from multiple users. This is, for instance,
the case when it is required to compute statistics for data collected from multi-
ple users in order to monitor electricity consumption via smart metering, clinical
c© Springer Nature Switzerland AG 2018
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data or even the safety of buildings or environmental conditions from data col-
lected from multiple sensors.

Although a major part of existing work focuses on the single client, sin-
gle server setting (i.e., a single client outsourcing a computation to a sin-
gle server) [2,10,11,13,17,18,21], we argue that not only the multi-client set-
ting [12,15] is more realistic but also the multi-server setting (i.e., multiple
servers are employed in order to perform the computations) [1] provides better
security guarantees and avoids single points of failure. The multi-server setting
could also be adopted in multiple online services when users need to perform
queries (e.g., statistics on available data) to service providers, while at the same
time have guarantees that no information can be inferred from the users’ queries
by the servers. For instance, a user (client) may split her query into multiple
shares and send each share to a different server [22]. Similarly, in a smart elec-
tricity consumption application setting, multiple servers could be employed to
collect data for the electricity consumption from multiple sensors (clients). As
long as at least one of the servers is honest and does not collude with the others,
the servers cannot recover any sensitive information. However, given responses
from all the servers, the user can compute the answer to her query. This multi-
server paradigm provides higher security guarantees since single points of failures
are avoided.

In this paper, we consider the problem of outsourcing computations and
providing strong security and privacy guarantees when: (i) multiple-clients out-
source joint computations on their joint secret inputs, (ii) multiple-servers are
employed for the computations, and (iii) anyone can verify that the combination
of the shares is correct. More precisely, we investigate how we may outsource
computations from multiple clients to multiple untrusted servers without requir-
ing any communication between the clients or the servers i.e., all information
required for the computations are shared publicly and thus no communication
overhead is required. We consider functional secret sharing schemes that can be
employed to compute a function (addition or multiplication) of multiple secrets.
This is achieved by enabling the servers to locally convert the shares of the
different secrets into a (multiplicative or additive) function of their shares. Fur-
thermore, the servers are able to locally generate shares of a proof that guaran-
tees that the product of all the shares is correct. We focus on specific functions,
the addition and the multiplication, and we employ, as building tools, verifiable
homomorphic secret sharing schemes. The result is the definition and the first
concrete construction of a verifiable multiplicative homomorphic secret sharing
scheme.

Homomorphic Secret Sharing. A threshold secret sharing scheme [20] allows
a dealer to randomly split a secret x into m shares, (x1, . . . , xm), such that
certain subsets of the shares can be used to reconstruct the secret and others
reveal nothing about it. Motivated by the powerful cryptographic functionality
of fully homomorphic encryption (FHE) [14,19] which supports arbitrary com-
putations on encrypted inputs, Boyle et al. [8] introduced the natural notion
of homomorphic secret sharing (HSS) that achieves some of the functionality
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offered by FHE [6]. An HSS scheme supports computations on shared inputs
based on local computations on their shares. More concretely, there is a local
evaluation algorithm Eval and a decoder algorithm Dec satisfying the following
homomorphism requirement. Given a description of a function F , the algorithm
Eval(F, xj) maps an input share xj to a corresponding output share yj , such that
Dec(y1, . . . , ym) = F (x). Analogously to the output compactness requirement of
FHE, in HSS the output shares are compact in the sense that the output length
of Eval, and hence the complexity of Dec, depends only on the output length of
F and the security parameter, but not on the input length of F . The simplest
type of HSS is the additive HSS, where the Dec algorithm computes F (x) as the
sum y1+ . . .+ym in some finite Abelian group, which is the first instance of HSS
considered in the literature by Benaloh [4]. Boyle et al. [9] naturally consider a
multi-input variant of HSS, where inputs x1, . . . , xn are independently shared,
Eval locally maps the j-th shares of the n inputs to the j-th output share, and
Dec outputs F (x1, . . . , xn).

Our Contributions. In this paper, we introduce the notion of verifiable homo-
morphic secret sharing (VHSS) for multi-input. We call a multi-input homo-
morphic secret sharing (HSS) scheme verifiable if the scheme enables the clients
(users) to locally generate shares of a proof which confirms that the combination
of the shares (rather than each share) is correct. We expect that the verifiability
property can be employed for making multi-party computations (MPC) secure
in the presence of an active adversary by accepting the output only if the cor-
rectness is verified.

Firstly, we provide a detailed example for casting Shamir’s secret sharing
scheme [20] over a finite field F as a n-client, m-server, t-secure perfectly secure,
additive HSS scheme for the function f that sums n field elements. Such a scheme
exists if and only if m > n·t. Secondly, we propose an instantiation of an n-client,
m-server, t-secure computationally secure, multiplicative VHSS scheme for the
function f that multiplies n elements under the hardness assumption of the fixed
inversion problem in bilinear maps. More precisely, we present a scheme where
there are n clients c1, . . . , cn each of whom shares its secret input xi to m servers
s1, . . . , sm. Each server’s share of xi is denoted as xij . For each j ∈ {1, . . . , m},
the server sj that possesses n shared inputs x1j , . . . , xnj generates a share yj

as well as a share σj of a proof that the product of m shares is correct. In our
multiplicative VHSS instantiation, each client ci has xi but also x̃i such that
gx̃i = xi where g denotes a generator of the multiplicative group of F.

1.1 Related Work

Multiplicative Secret Sharing. A multiplicative secret sharing scheme allows
two parties to multiply two secret-shared field elements by locally converting
their shares of the two secrets into an additive sharing of their product. Barkol et
al. [3] consider a different natural extension of the basic multiplication property
of secret sharing that is called d-multiplication. The d-multiplication property
generalizes standard multiplication by considering a multiplication of d (rather
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than two) secrets. Specifically, a secret sharing with d-multiplication allows mul-
tiplying d secret-shared field elements by enabling the players to locally convert
shares of d different secrets into an additive sharing of their product. They also
proved that d-multiplicative schemes exist if and only if no d unauthorized sets
of players cover the whole set of players. In particular, t-private d-multiplicative
secret sharing among m players is possible only if m > d·t where t-private means
that every set of t players is unauthorized.

In fact, d-multiplicative secret sharing (d-multiplicative SS) among m players
is a specific case of Boyel et al.’s [9] multi-input variant of HSS, where the Eval
algorithm of HSS can be specified as the MULT algorithm of d-multiplicative
SS, while the Dec algorithm of HSS can be specified as the summation operation
on the outcomes of the m local computations.

Verifiable Multiplicative Secret Sharing. Following Barkol et al.’s [3] work
on d-multiplicative secret sharing, Yoshida et al. [23] introduced the notion of
verifiably d-multiplicative SS, which enables the players to locally generate an
additive sharing of a proof that the sum of shares (rather than each share) is
correct. Actually, our verifiable HSS for multi-input is a more general notion for
verifiably d-multiplicative SS, since we generalize the reconstructing operation
on local outcomes and local proofs, e.g., using the algorithms FinalEval and
FinalProof respectively.

We need to note that in both works of d-multiplicative SS [3] and verifi-
ably d-multiplicative SS [23], no instantiation of a verifiable multiplicative HSS
scheme was proposed. On the contrary, the authors assume that the local com-
putation algorithms MULT and pf on d shares exist without though providing
any instantiation. In this paper, we instantiate for the first time the MULT and
pf algorithms of a verifiable multiplicative secret sharing scheme as a product
on the d shares and bilinear map operations respectively.

Verifiable Functional Secret Sharing. Boyle et al. [5] after introducing the
notion of functional secret sharing (FSS), they have also introduced the notion
of verifiable FSS [7], where on the one hand a function f is split into m func-
tions f1, . . . , fm, described by the corresponding keys k1, . . . , km, such that for
any input x we have that f(x) = f1(x) + . . . + fm(x) and every strict subset of
the keys hides f ; on the other hand, there is an additional m-parties interactive
protocol Ver for verifying that the keys (k∗

1 , . . . , k
∗
m), generated by a potentially

malicious client, are consistent with some f . Compared to Boyle et al.’s notion
of verifiable FSS which is applied to the one client (one input) and multi-server
setting, our VHSS works on the multi-client (multi-input) and multi-server set-
ting. Furthermore, by employing a verification algorithm, Boyle et al.’s VFSS
goal is to convince all involved parties that the function effectively shared by
the client is consistent with some f . However, in our proposed notion of VHSS,
the verification algorithm is employed to enable the servers to locally generate
shares of a proof that guarantees that the combination (such as the product) of
all shares (rather than each share) is correct.
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Organization. The paper is organized as follows. In Sect. 2, we present the
general definitions for the homomorphic secret sharing (HSS) and the verifiable
homomorphic secret sharing (VHSS) schemes. In Sect. 3, we provide a concrete
construction for the additive HSS scheme as well as a proof of its correctness and
the corresponding security proof. In Sect. 4, we present our proposed multiplica-
tive VHSS scheme as well as the assumption it relies on, the proposed concrete
multiplicative VHSS construction and the corresponding proofs of correctness,
verifiability, and security.

2 General Definitions for the HSS and the VHSS

In this section, we will formulate a general definition of homomorphic secret
sharing (HSS) inspired by Boyle et al.’s [9] definition, which is the base of our
verifiable homomorphic secret sharing (VHSS) definition that will follow.

We consider n clients c1, c2, . . . , cn that split their inputs x1, . . . , xn between
m servers using the algorithm ShareSecret, in such a way that each xi is hidden
from any t servers that could be corrupted. Each server sj , having its share of
the n inputs, applies the algorithm PartialEval in order to get and publish the
partial share yj . Finally, any user may apply the algorithm FinalEval in order
to obtain f(x1, x2, . . . , xn) where f is a function such that f : X �→ Y for X to
be a domain and Y be a target set respectively.

The verifiable homomorphic secret sharing (VHSS) scheme is based on the
HSS, and it provides additionally the notion of verifiability. Most precisely, each
server sj applies the algorithm PartialEval to obtain the partial share yj but
also it applies the algorithm PartialProof to compute σj , where the latter is
the share of the proof that the final computation is correct. Furthermore, any
user that would like to get y by running the algorithm FinalEval is also able
to run the algorithm FinalProof which gives the proof σ that the value y is
correct. By employing the algorithm Verify, each user is able to check that what
she gets is actually the output that corresponds to f(x1, x2, . . . , xn).

We will now give the definitions of a general homomorphic secret sharing
(HSS) scheme and a verifiable homomorphic secret sharing scheme (VHSS).

Definition 1. An n-client, m-server, t-secure homomorphic secret sharing
(HSS) scheme for a function f : X �→ Y, is a 3-tuple of PPT algorithms
(ShareSecret, PartialEval, FinalEval) which are defined as follows:

– (xi1, xi2, . . . , xim) ← ShareSecret(1λ, i, xi): On input 1λ, where λ is the
security parameter, i ∈ {1, . . . , n} which is the index for the client ci and
xi ∈ X which is her secret input, the algorithm ShareSecret outputs m
shares for the corresponding secret input xi.

– yj ← PartialEval(j, (x1j , x2j , . . . , xnj)): On input j ∈ {1, . . . , m} which
denotes the index of the server sj, and x1j , x2j , . . . , xnj which are the shares
of the n secret inputs that the server sj has, the algorithm PartialEval out-
puts yj ∈ Y.



Verifiable Homomorphic Secret Sharing 45

– y ←FinalEval(y1, y2, . . . , ym): On input y1, y2, . . . , ym, which are the shares
of f(x1, x2, . . . , xn) that the m servers have, the algorithm FinalEval outputs
y, the final result for f(x1, x2, . . . , xn).

The algorithms (ShareSecret, PartialEval, FinalEval) should satisfy the
following correctness and security requirements:

• Correctness: For any n secret inputs x1, . . . , xn, for all (xi1, xi2, . . . , xim)
computed for all i ∈ [n] from the algorithm ShareSecret, for all yj computed
for all j ∈ [m] from the algorithm PartialEval, the scheme should satisfy
the following correctness requirement:

Pr
[

FinalEval(y1, y2, . . . , ym) = f(x1, x2, . . . , xn)
]

= 1.

• Security: Let T be the set of the corrupted servers with |T | < m. Consider
the following semantic security challenge experiment:
1. The adversary A gives (i, xi, x

′
i) ← A(1λ) to the challenger where i ∈ [n],

xi �= x′
i and |xi| = |x′

i|.
2. The challenger picks a bit b ∈ {0, 1} uniformly at random and computes

(x̂i1, x̂i2, . . . , x̂im) ← ShareSecret(1λ, i, x̂i) where x̂i =
{xi, if b = 0

x′
i, otherwise .

3. The adversary outputs a guess b′ ← A((xij)j|sj∈T ), given the shares from
the corrupted servers T .

Let Adv(1λ,A, T ) := Pr[b = b′] − 1/2 be the advantage of A in guessing b
in the above experiment, where the probability is taken over the random-
ness of the challenger and of A. The scheme (ShareSecret, PartialEval,
FinalEval) is t-secure if for all T ⊂ {s1, . . . , sm} with |T | ≤ t, and all PPT
adversaries A, it holds that Adv(1λ,A, T ) ≤ ε(λ) for some negligible ε(λ).

Definition 2. An n-client, m-server, t-secure verifiable homomorphic secret
sharing (VHSS) scheme for a function f : X �→ Y, is a 6-tuple of PPT algo-
rithms (ShareSecret, PartialEval, PartialProof, FinalEval, FinalProof,
Verify) which are defined as follows:

– (xi1, xi2, . . . , xim, τi) ← ShareSecret(1λ, i, xi): On input 1λ, where λ is the
security parameter, i ∈ {1, . . . , n} which is the index for the client ci and
xi ∈ X which is her secret input, the algorithm ShareSecret outputs m
shares for the corresponding secret input xi as well as a publicly available
encoded value τi related to the secret xi.

– yj ← PartialEval(j, (x1j , x2j , . . . , xnj)): On input j ∈ {1, . . . , m} which
denotes the index of the server sj, and x1j , x2j , . . . , xnj which are the shares of
the n secret inputs that the server sj has, the algorithm PartialEval outputs
yj ∈ Y.

– σj ←PartialProof(j, (x1j , x2j , . . . , xnj)): On input j (the server’s index)
and the n shares x1j , x2j , . . . , xnj, the algorithm PartialProof outputs σj.
This output is the share of the proof that the final output is correct.
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– y ←FinalEval(y1, y2, . . . , ym): On input y1, y2, . . . , ym which are the shares
of f(x1, x2, . . . , xn) that the m servers have, the algorithm FinalEval outputs
y, the final result for f(x1, x2, . . . , xn).

– σ ←FinalProof(σ1, σ2, . . . , σm): On input the shares σ1, σ2, . . . , σm, the
algorithm FinalProof outputs σ which is the proof that y is the correct value.

– 0/1 ←Verify(τ1, . . . , τn, σ, y): On input the final result y together with its
proof σ, as well as the encoded values τ1, . . . , τn the algorithm Verify outputs
either 0 or 1.

The algorithms (ShareSecret, PartialEval, PartialProof, FinalEval,
FinalProof, Verify) should satisfy the following correctness, verifiability and
security requirements:

• Correctness: For any n secret inputs x1, . . . , xn, for all (xi1, xi2, . . . ,
xim, τi) computed for all i ∈ [n] from the algorithm ShareSecret, for all
yj and σj computed for all j ∈ [m] from the algorithms PartialEval and
PartialProof respectively, and for y and σ generated by the algorithms
FinalEval and FinalProof respectively, the scheme should satisfy the fol-
lowing correctness requirement:

Pr
[

Verify(τ1, . . . , τn, y, σ) = 1
]

= 1.

• Verifiability: Consider n secret inputs x1, x2, . . . , xn ∈ F, T the set of
corrupted servers with |T | � m and a PPT adversary A. Any PPT adversary
who modifies the shares of the secret inputs for any j such that sj ∈ T , can
cause a wrong value to be accepted as f(x1, x2, . . . , xn) with negligible prob-
ability. We define the following experiment:

ExpVerif.
VHSS(x1, x2, . . . , xn, T,A):

1. For all i ∈ [n], generate (xi1, xi2, . . . , xim, τi) ← ShareSecret(1λ, i, xi)
and publish τi, i ∈ [n].

2. For all j such that sj ∈ T , give

⎛

⎜

⎜

⎜

⎝

x1j

x2j

...
xnj

⎞

⎟

⎟

⎟

⎠

to the adversary.

3. The adversary A outputs modified multiplicative shares yj ′ and σj ′

for j such that sj ∈ T. For j such that sj /∈ T , we define the mul-
tiplicative shares yj ′ = PartialEval(j, (x1j , x2j , . . . , xnj)) and σj ′ =
PartialProof(j, (x1j , x2j , . . . , xnj)).

4. Compute the modified final value y′ = FinalEval(y1′
, y2′

, . . . , ym′) and
the modified final proof σ′ = FinalProof(σ1′

, σ2′
, . . . , σm′).

5. If y′ �= f(x1, x2, . . . , xn) and Verify(τ1, . . . , τn, σ′, y′) = 1, then output 1
else 0.

We require that for any n secret inputs x1, x2, . . . , xn ∈ F, any set T of
corrupted servers and any PPT adversary A it holds:

Pr[ExpVerif.
VHSS(x1, x2, . . . , xn, T,A) = 1] ≤ ε.
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• Security: Let T be the set of the corrupted servers with |T | < m. Consider
the following semantic security challenge experiment:
1. The adversary A gives (i, xi, x

′
i) ← A(1λ) to the challenger where i ∈ [n],

xi �= x′
i and |xi| = |x′

i|.
2. The challenger picks a bit b ∈ {0, 1} uniformly at random and computes

(x̂i1, x̂i2, . . . , x̂im, τ̂i) ← ShareSecret(1λ, i, x̂i) where τ̂i is an encoded

value related to x̂i and x̂i =
{

xi, if b = 0
x′

i, otherwise .

3. The adversary outputs a guess b′ ← A((xij)j|sj∈T , (τi)i∈[n]), given the
shares from the corrupted servers T and the encoded values τ1, . . . , τn.

Let Adv(1λ,A, T ) := Pr[b = b′] − 1/2 be the advantage of A in guessing b
in the above experiment, where the probability is taken over the random-
ness of the challenger and of A. The VHSS scheme is t-secure if for all
T ⊂ {s1, . . . , sm} with |T | ≤ t, and all PPT adversaries A, it holds that
Adv(1λ,A, T ) ≤ ε(λ) for some negligible ε(λ).

3 Additive Homomorphic Secret Sharing Scheme

In this chapter, we present a detailed example of the additive HSS scheme. There-
fore, we consider n clients c1, . . . , cn, their secret inputs x1, x2, . . . , xn respec-
tively and one or more users that would like to compute the sum of these secret
inputs, that is, they want to compute f(x1, x2, . . . , xn) = x1 + x2 + . . . + xn

without knowing x1, . . . , xn.

3.1 Construction of the Additive HSS

We consider m servers s1, . . . , sm. Let F be a finite field with |F| > m, λ be the
security parameter, let, ∀i ∈ [n], θi1, . . . , θim be distinct nonzero field elements,
and let, for any i ∈ {1, . . . , n}, λi1, λi2, . . . , λim be field elements such that for
any univariate polynomial pi of degree t over F we have pi(0) =

∑m
j=1 λijpi(θij).

Each client ci will distribute her secret’s share to the servers so that the latter
will compute the partial sum yi and then, any user can easily compute the final
sum by adding the partial sums that the servers have computed without having
any information about the secret inputs. More precisely, we have the following
algorithms:

1. ShareSecret(1λ, i, xi): Pick a polynomial pi of the form pi(X) = xi +a1X +
a2X

2 + . . . + atX
t where {ai}i∈{1,...,t} ∈ F are elements selected uniformly

at random and t denotes the degree of the polynomial with t · n < m.
Notice that the free coefficient of pi is the secret input xi. Then, output
(xi1, xi2, . . . , xim) = (λi1 · pi(θi1), λi2 · pi(θi2), . . . , λim · pi(θim)).

2. PartialEval(j, (x1j , x2j , . . . , xnj)): For the given j and for all i ∈ [n], com-
pute the sum of all xij = λij · pi(θij) . Output yj = λ1j · p1(θ1j) + λ2j ·
p2(θ2j) + . . . + λnj · pn(θnj) =

∑n
i=1 λij · pi(θij).
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3. FinalEval(y1, y2, . . . , ym): Add the partial shares together and output y =
y1 + . . . + ym.

Now, each client ci runs ShareSecret and gives λij · pi(θij) to each server
sj . Table 1 shows how each client ci distributes her secret input xi to the servers.
Then, each server sj has the shares λ1j · p1(θ1j), λ2j · p2(θ2j), . . . , λmj · pm(θmj),
thus, she computes the partial sum yj after running PartialEval and she pub-
lishes it. Finally, any user is able to get the total sum y by running FinalEval.

Table 1. Additive Homomorphic Secret Sharing

Secret inputs Servers

s1 s2 . . . . . . sm

x1 λ11 · p1(θ11) λ12 · p1(θ12) . . . . . . λ1m · p1(θ1m)

x2 λ21 · p2(θ21) λ22 · p2(θ22) . . . . . . λ2m · p2(θ2m)

. . . .

. . . .

. . . .

xn λn1 · pn(θn1) λn2 · pn(θn2) . . . . . . λnm · pn(θnm)

Partial sum y1 y2 . . . . . . ym

Total sum y

3.2 Correctness of the Additive HSS

We may now confirm that even though the clients in the additive HSS do not
reveal their secret inputs x1, . . . , xn, it is still possible for a user to compute the
total sum with probability 1. It suffices to show that

y = x1 + . . . + xn.

We can get to this as follows: By construction, it holds that y =
∑m

j=1 yj and
yj =

∑n
i=1 λij · pi(θij). This implies that

y =
m

∑

j=1

n
∑

i=1

λij · pi(θij) =
n

∑

i=1

m
∑

j=1

λij · pi(θij).

However, it is also true that pi(0) =
∑m

j=1 λijpi(θij) which implies that y =
∑n

i=1 pi(0). Now, by construction (see ShareSecret), pi(0) = xi which gives

y =
n

∑

i=1

xi = x1 + x2 + . . . + xn

as we wished.
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3.3 Security of the Additive HSS

Theorem 1. For all T ⊂ {s1, . . . , sm} with |T | ≤ m−1 and all PPT adversaries
A, the additive HSS scheme (ShareSecret, PartialEval, FinalEval) is (m −
1)-secure. It holds that Adv(1λ,A, T ) ≤ ε(λ) for some negligible ε(λ).

Proof. Let |T | = m − 1, that is, there are m − 1 corrupted servers.
The adversary A has (m − 1)n shares from the corrupted servers and no infor-
mation that any (m − 1)-tuple is related either to xi or to x′

i. Consider, without
loss of generality, that the first m − 1 servers are the corrupted ones.

If we denote the shares for any i ∈ [n] by x̂i1, . . . , x̂im, it is true that
∑m

j=1 x̂ij = x̂i for some i. We may also see this equality as x̂im = x̂i −
∑m−1

j=1 x̂ij .
Then, any PPT adversary has no information whether x̂im ∈ Y is the m-th share
of xi or xi

′ and thus, may guess whether x̂m corresponds to xi or xi
′ with prob-

ability 1/2. That gives that the adversary can guess whether x̂i is xi or xi
′ with

probability 1/2 as well. Therefore, it holds that Adv(1λ,A, T ) ≤ ε(λ) for some
negligible ε(λ).

4 Multiplicative Verifiable Homomorphic Secret Sharing
Scheme

In this chapter, we present a concrete instantiation of the multiplicative verifiable
homomorphic secret sharing (VHSS) scheme for which we use the notion of the
bilinear maps. A bilinear map is a function that is defined as follows:

Definition 3. Let G1,G2 and Gk be cyclic groups of the same order. A bilinear
map from G1 × G2 to Gk is a function e : G1 × G2 → Gk such that for all
u ∈ G1, v ∈ G2, a, b ∈ Z,

e(ua, vb) = e(u, v)ab.

In our instantiation, however, we consider the bilinear map e : G × G → Gk

where G,Gk are cyclic groups of the same order.
For the security of the multiplicative VHSS, we need that the inversion of

the bilinear map when one of the inputs is fixed does not exist. We call such an
inversion by the fixed inversion problem (FI). More formally, the FI problem is
defined as follows:

Definition 4 [16]. For a fixed g ∈ G and any given h ∈ Gk, the problem which
finds an inverse image g′ such that e(g, g′) = h is called fixed inversion problem
(FI).

In order to meet the multiplicative VHSS’s security requirement, we yield
the following assumption:

Assumption 1. Given the bilinear map e : G1 × G2 → Gk and the values
g ∈ G1, g

′ ∈ G2 and h ∈ Gk, we assume that the fixed inversion problem (FI) is
hard.
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What is more, assuming that the FI problem is hard implies that the discrete
logarithm problem (DLP) is hard. More precisely, we give what the discrete
logarithm problem is as well as the relation between FI and DLP:

Definition 5. For any given two values g and ga in a group G the problem
which computes a is called the discrete logarithm problem (DLP).

Observation 1 [16]. If the fixed inversion (FI) problem is hard, then the dis-
crete logarithm problem (DLP) in Gk is hard.

4.1 Construction of the Multiplicative VHSS

Let us consider n clients c1, . . . , cn who will again split their secret inputs
x1, x2, . . . , xn to m servers s1, . . . , sm, F to be a finite field with |F| > m and λ
be the security parameter. The clients (users) are able to compute their secret
inputs’ product by multiplying the partial products that have been computed by
each server. In other words, a user can compute f(x1, x2, . . . , xn) = x1 ·x2 ·. . .·xn

without knowing x1, . . . , xn.

In this setting, each client ci has xi but also x̃i such that gx̃i = xi where g
denotes a generator of the multiplicative group of F. Furthermore, each server
will not only publish the partial product but also a share of a proof. As a result,
any user is able to use the shares of the proof in order to obtain the proof and
verify that the final product is correct.

Let, for any i ∈ {1, . . . , n}, θi1, . . . , θim be distinct nonzero field elements
and λi1, λi2, . . . , λim be field elements (“Lagrange coefficients”) such that for
any univariate polynomial pi of degree t over F we have pi(0) =

∑m
j=1 λijpi(θij).

For any j ∈ {1, . . . , m}, the share of the proof that will be published by the
server sj is denoted by σj . We consider the following algorithms:

1. ShareSecret(1λ, i, x̃i): Pick a polynomial pi of the form pi(X) = x̃i +a1X +
a2X

2 + . . . + atX
t where ai, i ∈ {1, . . . , n} are elements selected uniformly

at random, t denotes the degree of the polynomial with t · n < m and
x̃i its free coefficient. Then, the algorithm outputs (xi1, xi2, . . . , xim, τi) =
(gλi1·pi(θi1), gλi2·pi(θi2), . . . , gλim·pi(θim), e(g, gx̃i)). Note that τi = e(g, gx̃i).

2. PartialEval(j, (x1j , x2j , . . . , xnj)): For the given j and for all i ∈ [n], multiply
all xij , that is, compute x1j · x2j · . . . · xnj = gλ1j ·p1(θ1j) · gλ2j ·p2(θ2j) · . . . ·
gλnj ·pn(θnj) =

∏n
i=1 gλij ·pi(θij) = yj . Output yj .

3. PartialProof(j, (x1j , x2j , . . . , xnj)): For the given j and x1j , x2j , . . . , xnj ,
compute the partial proof, that is, the share of the proof, σj = e(g, x1j ·
x2j · . . . · xnj) = e(g, yj) where e : G × G → Gk. Output σj .

4. FinalEval(y1, y2, . . . , ym): Multiply the partial products yj for j ∈ [m], that
is, compute y1 · y2 · . . . · ym = y. Output y.

5. FinalProof(σ1, σ2, . . . , σm): Multiply the partial proofs to get σ1 · . . . ·σm =
σ. Output σ.

6. Verify(τ1, . . . , τn, σ, y): Check that
∏n

i=1 τi = σ and
∏n

i=1 τi = e(g, y). Out-
put: 1 if both are satisfied or 0 otherwise.
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Each client ci splits her secret input xi by running ShareSecret for x̃i and
give to each server sj the share xij = gλij ·pi(θij). ShareSecret also outputs the
encoded value τi, i ∈ [n] which will be published by the client ci. Table 2 shows
how the secret inputs are distributed. Then, the server sj runs PartialEval
to compute and publish the partial product yj =

∏n
i=1 gλij ·pi(θij). Each server

sj applies also the algorithm PartialProof to compute and publish a partial
proof σj = e(g, yj). Now, any user, not having any secret input x1, . . . , xn,
applies FinalEval to get the value y = f(x1, x2, . . . , xn) = x1 · x2 · . . . · xn

and FinalProof to get the proof σ = σ1 · . . . · σm that y is correct. Any user
may now run the algorithm Verify to confirm that y is actually the product of
x1, x2, . . . , xn, which will be the case if Verify outputs 1.

Table 2. Multiplicative Homomorphic Secret Sharing

Secret inputs Public Servers

value s1 s2 . . . . . . sm

x1 τ1 gλ11·p1(θ11) gλ12·p1(θ12) . . . . . . gλ1m·p1(θ1m)

x2 τ2 gλ21·p2(θ21) gλ22·p2(θ22) . . . . . . gλ2m·p2(θ2m)

. . . . .

. . . . .

. . . . .

xn τn gλn1·pn(θn1) gλn2·pn(θn2) gλnm·pn(θnm)

Partial product y1 y2 ym

Partial proof σ1 σ2 . . . . . . σm

(Product, proof) (y, σ)

4.2 Correctness of the Multiplicative VHSS

To confirm the correctness of the multiplicative VHSS, it suffices to show that
∏n

i=1 τi = σ and
∏n

i=1 τi = e(g, y). In fact,

σ = σ1 · . . . · σm = e(g, y1) · e(g, y2) · . . . · e(g, ym)

= e(g,
n

∏

i=1

gλi1·pi(θi1)) · e(g,
n

∏

i=1

gλi2·pi(θi2)) · . . . · e(g,
n

∏

i=1

gλim·pi(θim))

= e(g, g
∑n

i=1 λi1·pi(θi1)) · e(g, g
∑n

i=1 λi2·pi(θi2)) · . . . · e(g, g
∑n

i=1 λim·pi(θim))

= e(g, g)
∑n

i=1 λi1·pi(θi1) · e(g, g)
∑n

i=1 λi2·pi(θi2) · . . . · e(g, g)
∑n

i=1 λim·pi(θim)

= e(g, g)
∑m

j=1
∑n

i=1 λij ·pi(θij) = e(g, g
∑m

j=1
∑n

i=1 λij ·pi(θij))

= e(g, g
∑n

i=1 λi1·pi(θi1) · g
∑n

i=1 λi2·pi(θi2) · . . . · g
∑n

i=1 λim·pi(θim))

= e(g, y1 · y2 · . . . · ym) = e(g, y)
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and
n

∏

i=1

τi = τ1 · . . . · τn = e(g, gx̃1) · e(g, gx̃2) · . . . · e(g, gx̃n)

= e(g, g)x̃1 · e(g, g)x̃2 · . . . · e(g, g)x̃n = e(g, g)
∑n

i=1 x̃i

= e(g, g
∑n

i=1 x̃i) = e(g, gx̃1 · gx̃2 · . . . · gx̃n)
= e(g, x1 · x2 · . . . · xn) = e(g, y)

(1)

Combining the two results we obtain that
∏n

i=1 τi = σ and
∏n

i=1 τi = e(g, y)
which imply that the algorithm Verify will output 1.

4.3 Verifiability of the Multiplicative VHSS

Theorem 2. For any n secret inputs x1, x2, . . . , xn ∈ F and any set T of cor-
rupted servers with |T | � m in the multiplicative VHSS, it holds that any PPT
adversary who modifies the shares of the secret inputs for any j such that sj ∈ T ,
can cause a wrong value to be accepted as x1 ·x2 ·. . .·xn with negligible probability.
It holds that

Pr[ExpVerif.
VHSS(x1, x2, . . . , xn, T,A) = 1] ≤ ε.

Proof. Consider that y′ �= f(x1, x2, . . . , xn) where f(x1, x2, . . . , xn) = x1 · x2 ·
. . . · xn = y and Verify(τ1, . . . , τn, σ′, y′) = 1.
Then:

Verify(τ1, . . . , τn, σ′, y′) = 1

=⇒
n

∏

i=1

τi = σ′ and
n

∏

i=1

τi = e(g, y′)

=⇒
n

∏

i=1

τi = e(g, y′) (see equation (1))

=⇒ e(g, y) = e(g, y′)
=⇒ e(g, gr1) = e(g, gr2) for some r1, r2 ∈ F

=⇒ e(g, g)r1 = e(g, g)r2 for some r1, r2 ∈ F

=⇒ r1 = r2 in F

=⇒ gr1 = gr2 in G

=⇒ y = y′

=⇒ f(x1, x2, . . . , xn) = y′

which is a contradiction!

4.4 Security of the Multiplicative VHSS

Theorem 3. For all T ⊂ {s1, . . . , sm} with |T | ≤ m − 1 and all PPT adver-
saries A, the multiplicative VHSS scheme (ShareSecret, PartialEval, Par-
tialProof, FinalEval, FinalProof, Verify) is (m − 1)-secure. It holds that
Adv(1λ,A, T ) ≤ ε(λ) for some negligible ε(λ).
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Proof. Let |T | = m − 1, that is, there are m − 1 corrupted servers.

Consider, without loss of generality, that the first m−1 servers are the corrupted
ones. The adversary A has (m − 1)n shares from the corrupted servers and no
additional information.

Then, if we denote the shares by x̂i1, . . . , x̂im with i ∈ {1, . . . , n}, we know
that

∏m
j=1 x̂ij = x̂i for some i and it holds that:

m−1
∏

j=1

x̂ij · x̂im = x̂i

⇐⇒ x̂im = (
m−1
∏

j=1

x̂ij)−1 · x̂i

given the (
∏m−1

j=1 x̂ij)−1. Now, x̂im ∈ Y is just a value which gives nothing to
the adversary regarding whether it is related to xi or xi

′. Therefore, any PPT
adversary has probability 1/2 to decide whether x̂i is xi or xi

′ .
What is more, the adversary is also able to see the public encoded values τ1 =

e(g, gx̃1), . . . , τn = e(g, gx̃n). It holds that the adversary cannot obtain neither
gx̃i (Assumption 1) nor x̃i (Observation 1) from τi. Therefore, the adversary gets
no additional information from τi.

Finally, it holds that Adv(1λ,A, T ) ≤ ε(λ) for some negligible ε(λ).

5 Conclusion

In this paper, we introduced the notion of verifiable homomorphic secret sharing
(VHSS) for multi-input which is based on the general notion of homomorphic
secret sharing (HSS). The VHSS scheme enables the clients (users) to locally
generate shares of a proof which confirms that the combination of the shares
is correct. We provided a detailed example for casting Shamir’s secret sharing
scheme [20] over a finite field F for the function f that sums n field elements.
Such a scheme exists if and only if m > n · t. Furthermore, we proposed an
instantiation of the multiplicative verifiable homomorphic secret sharing (multi-
plicative VHSS) scheme for the function f that multiplies n elements under the
hardness assumption of the fixed inversion problem in bilinear maps.
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Abstract. This paper discusses the security of identity-based cryptog-
raphy with multiple private-key generators (mPKG-IBC). Most mPKG-
IBC schemes and protocols are statically secure where private-key gener-
ators (PKGs) cannot control a binding between a party and its PKG. We
propose adaptive security notions for identity-based key encapsulation
mechanism with multiple private-key generators, identity-based signa-
ture with multiple private-key generators, and identity-based authenti-
cated key exchange with multiple private-key generators, respectively.
In additions, we provide their generic constructions of those from
identity-based key encapsulation mechanism, identity-based signature,
and identity-based authenticated key exchange which are secure in a
single PKG model, respectively.

Keywords: Identity-based cryptography
Multiple private-key generators · Adaptive security
Identity-based key encapsulation mechanism
Identity-based signature · Identity-based authenticated key exchange

1 Introduction

It is well known that identity-based cryptography (IBC) has several advantages
than public-key cryptography (PKC). One of the advantages is that IBC does
not need a mechanism to ensure an identity and its public key such as public-key
infrastructure (PKI).

However, IBC requires an additional authority, private-key generator (PKG).
Upon a request, a PKG generates a private key for a entity using on a string
which identifies the entity, and the string is called identity (ID). It is worth to
note that in conventional IBC, a single PKG manages all entities belong to a
domain.

Although many researches on IBC have been investigated [1,3,11], most of
them assume that there exists a single PKG in the system. It may be unrealistic
that a single PKG manages all.
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Here, consider a PKI system. An ideal PKI system assumes the existence of
a single root CA. However, several root CAs exist in a real PKI system. Thus,
it is natural to consider the multi-authority situation in IBC, also. It is common
that some E-mail address such as a Gmail address can be used as a login ID
for other services like Facebook, LinkedIn, and so on. In such situation, an user
who is indicated with a mail address obtains different private keys from Google,
Facebook and LinkedIn, respectively. Therefore, this leads us to a multiple PKG
scenario.

1.1 Related Works

Several schemes and protocols in IBC with multiple PKG (mPKG-IBC) have
been researched in literature: identity-based encryption with multiple PKG [10,
12], identity-based signcryption with multiple PKG [9,13], and identity-based
authenticated key exchange with multiple PKG (mPKG-IBAKE) [2,4,5,8].

In those schemes and protocols, a PKG manages a domain and another PKG
manages a different domain. Even in such situation, a entity can securely com-
municate or establish a key with each other.

However, most of the above assume a security model that a party is statically
bound to its PKG. Therefore, an adversary cannot control the binding between
a party and its PKG, that is, the domain which the party belongs to.

In the previous works of [4,5], Fujioka discusses the following security models
in mPKG-IBAKE:

– When we assume that there is a binding between an identifier and its PKG,
we call this static binding model.

– When an adversary adaptively indicates a binding between an identifier and
its PKG, we call this adaptive binding model.

– When an adversary can get the private key of an user only once, we call this
separated domain model.

– When an adversary is allowed to obtain several private keys from different
PKGs, we call this overlapped domain model.

Roughly speaking, a mPKG-IBAKE protocol is statically secure when its
security is proven in the static binding and separated domain model, and a
mPKG-IBAKE protocol is adaptively secure when its security is proven in the
adaptive binding and overlapped domain model. Fujioka proposes a dedicated
mPKG-IBAKE protocol and proves that it is adaptively secure [5].

It is worth to note here that schemes and protocols in mPKG-IBC can be
classified into two types: common parameter type and independent parameter
type. In a scheme of common parameter type (e.g., [2]), each PKG can generates
master keys based on the same parameter (e.g., groups, generators, a pairing
function, and so on) used in the scheme, and in a scheme of independent param-
eter type (e.g., [8]), each PKG can generates not only master keys but also the
parameter used in the scheme.
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1.2 Our Contributions

This paper formally defines adaptive security notions in identity-based key encap-
sulation mechanism with multiple PKG (mPKG-IBKEM) and identity-based sig-
nature with multiple PKG (mPKG-IBS), respectively. In addition, we provide
another adaptive security notion in mPKG-IBAKE different from the id(m)-
eCK model defined in [5] as the former is based on the id-CK+ model [6] and
the latter is on the id-eCK model [7].

Roughly speaking, a scheme/protocol is said to be multiple private-key gen-
erators secure (mPKG secure) when it is adaptively secure in the above sense.
It is worth to note there that a scheme/protocol is said to be single private-key
generators secure (sPKG secure) when it is secure in the single PKG model, i.e.,
for conventional IBC.

We propose generic constructions from a conventionally secure IBC scheme,
called single private-key generator secure IBC scheme, to a multiple private-key
generators secure one for identity-based key encapsulation mechanism (IBKEM),
identity-based signature (IBS), and identity-based authenticated key exchange
(IBAKE), respectively. Precisely,

– When there exists a IBKEM scheme which is secure in the single PKG model,
i.e., satisfies indistinguishablity against a attack, we have a mPKG-IBKEM
scheme which is mPKG secure against the attack.

– When there exists a IBS scheme which is secure in the single PKG model,
i.e., satisfies unforgeability against a attack, we have a mPKG-IBS scheme
which is mPKG secure against the attack.

– When there exists a IBAKE protocol which is secure in the single PKG model,
i.e., satisfies indistinguishablity, we have a mPKG-IBAKE protocol which is
mPKG secure.

Regarding to generation of a system parameter, we describe the schemes
and constructions in the independent parameter type. You may feel that it is
a drawback of our approach. However, the master key generation algorithm
in most of conventional IBC schemes and protocols, i.e., with a single PKG,
can be divided into two parts: parameter generation one and exact master key
generation one. Thus, we may use the parameter generation part to generate the
global parameter, and we can assume that such algorithm exists.

2 mPKG Secure IBKEM from sPKG Secure IBKEM

In this section, we show that mPKG secure IBKEM can be generically con-
structed from sPKG secure IBKEM.

2.1 Our Model for mPKG-IBKEM

We propose a security model for mPKG-IBKEM. Besides the ordinary security
model for sPKG-IBKEM, we can also consider some variants according to the
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selection timing of the target ID (i.e., selective ID (sID) or full adaptive ID
(aID)) and the target PKG’s ID (i.e., selective PKG’s ID (sPID) or full adaptive
PKG’s ID (aPID)) and the usage of the decryption oracle (i.e., CPA or CCA).
Hence, we define eight variants of security notions for mPKG-IBKEM.

sPKG-IBKEM. First, we recall the syntax and security notions for sPKG-
IBKEM. In this paper, we suppose that the global parameter (e.g., groups, gen-
erators, and the order) of IBKEM is already determined outside the master
public key if necessary.

Definition 2.1 (Syntax of sPKG-IBKEM Schemes). An sPKG-IBKEM
scheme consists of the following four algorithms, sKEM.KeyGen, sKEM.KeyDer,
sKEM.EnCap, and sKEM.DeCap:

(mpk, msk) ← sKEM.KeyGen(1λ; rg): a key generation algorithm which on
inputs 1λ and rg ∈ RSG, where λ is the security parameter and RSG is
a randomness space, outputs master public key and secret key (mpk, msk).

dki ← sKEM.KeyDer(mpk, msk, idi; rk) : a key derivation algorithm which
on inputs master public and secret keys (mpk, msk), identity string idi and
rk ∈ RSK , where RSK is a randomness space, outputs decapsulation key dki

corresponding to idi.
(K, ct) ← sKEM.EnCap(mpk, idi, re): an encapsulation algorithm which on

inputs master public key mpk, identity string idi, and re ∈ RSE, outputs
session key K ∈ KS, and ciphertext ct ∈ CS, where RSE is a randomness
space, KS is a session key space, and CS is a ciphertext space.

K ← sKEM.DeCap(mpk, dki, ct, idi) : a decapsulation algorithm which on inputs
master public key mpk, decapsulation key dki, ciphertext ct ∈ CS, and identity
string idi, outputs session key K ∈ KS.

Definition 2.2 (IND-{sID/aID}-{CPA/CCA} Security for sPKG-
IBKEM). A sPKG-IBKEM scheme, Σ, is (ρ, ε)-IND-id-atk-secure for sPKG-
IBKEM if the following property holds for security parameter λ; For any
adversary A = (A1, A2) with a time-complexity at most ρ, advantage
Advind-id-atk

Σ (A) = |Pr[rg ← RSG; (mpk,msk) ← sKEM.KeyGen(1λ; rg); (id∗
T ,

state) ← AO(·,·),O′(·)
1 (1λ, input); b ← {0, 1}; re ← RSE ; (K∗

0 , ct∗) ←
sKEM.EnCap(mpk, id∗

T ; re); K∗
1 ← KS; b′ ← ADO(·,·),KO(·)

2 (mpk, K∗
b , ct∗,

state); b′ = b] − 1/2| ≤ ε, where KO(idi) is the key derivation oracle, and
state is state information which A wants to preserve from A1 to A2,

if id = sID then input = ∅, O = ∅ and O′ = ∅,
if id = aID then input = mpk, O = DO and O′ = KO,
if atk = CPA then DO(ct, idi) outputs ⊥, and
if atk = CCA then DO(ct, idi) is the decryption oracle.

A can neither make query DO(ct∗, id∗
T ) nor KO(id∗

T ).
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mPKG-IBKEM. Next, we introduce a syntax and security notions for mPKG-
IBKEM. In mPKG-IBKEM, we suppose that there are a polynomial number of
PKGs in the security parameter. Each PKG has a particular master key pair,
and each user can obtain decapsulation keys for his/her ID from multiple PKGs.
The sender chooses a PKG to encapsulate a session key, and the receiver can
decapsulate the ciphertext with the decapsulation key obtained from that PKG.

Definition 2.3 (Syntax of mPKG-IBKEM Schemes). An mPKG-IBKEM
scheme consists of the following four algorithms, mKEM.KeyGen, mKEM.KeyDer,
mKEM.EnCap, and mKEM.DeCap:

(mpkι, mskι) ← mKEM.KeyGen(1λ, pidι; rg): a key generation algorithm which
on inputs 1λ, PKG’s identity string pidι and rg ∈ RSG, where λ is the
security parameter and RSG is a randomness space, outputs master public
key and secret key (mpkι, mskι).

dki,ι ← mKEM.KeyDer(mpkι, mskι, idi; rk): a key derivation algorithm which
on inputs master public and secret keys (mpkι, mskι), identity string idi and
rk ∈ RSK , where RSK is a randomness space, outputs decapsulation key
dki,ι corresponding to idi on PKG pidι.

(K, ct, pidι) ← mKEM.EnCap(mpkι, idi, pidι; re): an encapsulation algorithm
which on inputs master public key mpkι, identity string idi, PKG’s identity
string pidι, and re ∈ RSE, outputs session key K ∈ KS, ciphertext ct ∈ CS,
and pidι, where RSE is a randomness space, KS is a session key space, and
CS is a ciphertext space.

K ← mKEM.DeCap(mpkι, dki,ι, ct, idi, pidι): a decapsulation algorithm which
on inputs master public key mpkι, decapsulation key dki,ι, ciphertext ct ∈ CS,
identity string idi, and PKG’s identity string pidι, outputs session key K ∈
KS.

Definition 2.4 (IND-{sID/aID}-{sPID/aPID}{CPA/CCA} Security
for mPKG-IBKEM). An mPKG-IBKEM scheme, Σ, is (ρ, ε)-IND-id-pid-atk-
secure for mPKG-IBKEM if the following property holds for security parameter
λ; For any adversary A = (A1, A2, A3) with a time-complexity at most ρ,
Advind-id-pid-atk

Σ (A) = |Pr[rg,α ← RSG; . . . ; rg,ζ ← RSG; (mpkα, mskα) ←
mKEM.KeyGen(1λ, pidα; rg,α); . . . ; (mpkζ , mskζ) ← mKEM.KeyGen(1λ, pidζ ;

rg,ζ); (output1, state1) ← AO1(·,·,·),O′
1(·,·)

1 (1λ, input1); (output2, state2) ←
AO2(·,·,·),O′

2(·,·)
2 (1λ, input2, state1); b ← {0, 1}; re ← RSE ; (K∗

0 , ct∗, pid∗
τ ) ←

mKEM.EnCap(mpkτ , id∗
T , pid∗

τ ; re); K∗
1 ← KS; b′ ← ADO(·,·,·),KO(·,·)

3 ({mpkα,
. . . , mpkζ},K∗

b , ct∗, pid∗
τ , state2); b′ = b] − 1/2| ≤ ε, where KO(pidι, idi) is

the key derivation oracle, statei is state information which A wants to preserve
from Ai to Ai+1,

if id = sID and pid = sPID then input1 = input2 = ∅,
output1 = id∗

T , output2 = pid∗
τ ,

O1 = O′
1 = ∅ and O2 = O′

2 = ∅,
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if id = sID and pid = aPID then input1 = ∅, input2 = {mpkα, . . . , mpkζ},
output1 = id∗

T , output2 = pid∗
τ ,

O1 = ∅, O′
1 = ∅, O2 = DO and O′

2 = KO,
if id = aID and pid = sPID then input1 = ∅, input2 = {mpkα, . . . , mpkζ},

output1 = pid∗
τ , output2 = id∗

T ,
O1 = ∅, O′

1 = ∅, O2 = DO and O′
2 = KO,

if id = aID and pid = aPID then input1 = input2 = {mpkα, . . . , mpkζ},
output1 = id∗

T , output2 = pid∗
τ ,

O1 = O2 = DO and O′
1 = O′

2 = KO,
if atk = CPA then DO(ct, idi, pidι) outputs ⊥, and
if atk = CCA then DO(ct, idi, pidι) is the decryption oracle.

A can neither make query DO(ct∗, id∗
T , pid∗

τ ) nor KO(pid∗
τ , id∗

T ).

2.2 Generic Transformation from sPKG-IBKEM to mPKG-IBKEM

The algorithms in sPKG-IBKEM can be used as the algorithms in mPKG-
IBKEM just as they are. Hence, the transformation just replaces terms in sPKG-
IBKEM to terms in mPKG-IBKEM. The protocol for an mPKG-IBKEM scheme,
Σ′ = (mKEM.KeyGen, mKEM.KeyDer, mKEM.EnCap, mKEM.DeCap), using
an sPKG-IBKEM scheme, Σ = (sKEM.KeyGen, sKEM.KeyDer, sKEM.EnCap,
sKEM.DeCap), is as follows:

mKEM.KeyGen(1λ, pidι; rg): Generate (mpk, msk) ← sKEM.KeyGen(1λ; rg),
and output mpkι = mpk and mskι = msk for pidι.

mKEM.KeyDer(mpkι, mskι, idi; rk): Derive dki ← sKEM.KeyDer(mpkι, mskι,
idi; rk), and output dki,ι = dki.

mKEM.EnCap(mpkι, idi, pidι; re): Encapsulate (K, ct) ← sKEM.EnCap(mpkι,
idi, re), and output K, ct and pidι.

mKEM.DeCap(mpkι, dki,ι, ct, idi, pidι): Decapsulate K ← sKEM.DeCap(mpkι,
dki,ι, ct, idi), and output K.

Security. We show the security of the transformed mPKG-IBKEM based on
the security of the underlying sPKG-IBKEM.

The intuitive reason why the security for sPKG is sufficient to the security
for mPKG is independence of the key generation procedures of multiple PKGs.
Let us consider the case that an adversary breaks the security of mPKG by using
information of PKGs other than the target PKG. In this case, we can easily show
that the security of sPKG is also broken. Specifically, the adversary in sPKG-
IBKEM can generate all master keys other than the target master key because
the key generation algorithm does not require any secret information. Hence, the
adversary in sPKG-IBKEM has at most the same capacity as the adversary in
mPKG-IBKEM. Thus, if the adversary in mPKG-IBKEM can break the security
of mPKG by using information of PKGs, then the adversary in sPKG-IBKEM
can also break the security of sPKG. Therefore, if sPKG-IBKEM is secure, then
mPKG-IBKEM cannot broken by using information of PKGs other than the
target PKG because of independence of the key generation procedures.
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sPKG-IBKEM mPKG-IBKEM

sID

aID

sID-sPID
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Theorem 2.1

Theorem 2.2

Theorem 2.3

Theorem 2.4

Fig. 1. Implication results for IBKEM

Figure 1 shows our implication results for IBKEM. Note that broken lines
mean trivial implications.

Theorem 2.1 (sID-sPID-mPKG from sID-sPKG for IBKEM). When
the underlying sPKG-IBKEM scheme, Σ, satisfies (ρ, ε)-IND-sID-atk-security,
then the transformed mPKG-IBKEM scheme, Σ′, satisfies (ρ′, ε′)-IND-sID-
sPID-atk-security, where

ε = ε′,

ρ = ρ′ + (N − 1)tRG + (N − 1)tKG + (qK + qD)tKD + qDtDC,

N is the number of PKGs, qK and qD are the numbers of queries to KO and
DO, respectively, tRG is the running time of randomness generation, tKG is the
running time of sKEM.KeyGen, tKD is the running time of sKEM.KeyDer, and
tDC is the running time of sKEM.DeCap.

Proof. We construct an adversary A = (A1, A2) breaking IND-sID-atk-security
of Σ by assuming the adversary A′ = (A′

1, A′
2, A′

3) breaking IND-sID-sPID-atk-
security of Σ′. Here, we show the case of atk = CCA. The case of atk = CPA
can be similarly proved. The construction of A is as follows:

Procedure of A1. When A1 receives 1λ, A1 sends 1λ to A′
1, and receives (id∗

T ,
state′

1) from A′
1. Next, A1 sends (1λ, state′

1) to A′
2, and receives (pid∗

τ ,
state′

2) from A′
2. Then, A1 sets state = (state′

2, id∗
T , pid∗

τ ), and outputs
(id∗

T , state).

Procedure of A2. When A2 receives (mpk, K∗
b , ct∗, state), parses state

to state = (state′
2, id∗

T , pid∗
τ ). A2 generates rg,α ← RSG, . . . , rg,ζ ←

RSG and (mpkα, mskα) ← sKEM.KeyGen(1λ; rg,α), . . . , (mpkζ , mskζ) ←
sKEM.KeyGen(1λ; rg,ζ) except for pid∗

τ , and sets mpkτ = mpk. Then, A2 sends
({mpkα, . . . , mpkζ}, K∗

b , ct∗, state′
2) to A′

3, and receives b′ from A′
3. Finally,

A2 outputs b′.

Simulation of KO(idi, pidι) by A2. If pidι �= pid∗
τ , then A2 generates rk ←

RSK , derive dki,ι ← sKEM.KeyDer(mpkι, mskι, idi; rk), and output dki,ι. Else
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if idi �= id∗
T , then pose idi to KO, receives dki, and outputs dki,τ = dki.

Otherwise, A2 rejects the query.

Simulation of DO(ct, idi, pidι) by A2. If pidι �= pid∗
τ , then A2 generates rk ←

RSK , derive dki,ι ← sKEM.KeyDer(mpkι, mskι, idi; rk), decapsulate K ←
sKEM.DeCap(mpkι, dki,ι, ct, idi), and output K. Else if idi �= id∗

T , then pose
idi to KO, receives dki, decapsulate K ← sKEM.DeCap(mpkι, dki, ct, idi), and
output K. Else if ct �= ct∗, then pose (ct, id∗

T ) to DO, receives K, and output
K. Otherwise, A2 rejects the query.
Estimation of advantage of A. A perfectly simulates the attack environment of
A′. Hence, the advantage of A is ε = ε′.

Estimation of running time of A. In addition to ρ′, A runs (N − 1) randomness
generations, (N − 1) master key generations, at most (qK + qD) key derivations
and at most qD decapsulations. Hence, the running time ρ of A is at most
ρ′ + (N − 1)tRG + (N − 1)tKG + (qK + qD)tKD + qDtDC. �	
Theorem 2.2 (sID-aPID-mPKG from sID-sPKG for IBKEM). When
the underlying sPKG-IBKEM scheme, Σ, satisfies (ρ, ε)-IND-sID-atk-security,
then the transformed mPKG-IBKEM scheme, Σ′, satisfies (ρ′, ε′)-IND-sID-
aPID-atk-security, where

ε = ε′/N,

ρ = ρ′ + (N − 1)tRG + (N − 1)tKG + (qK + qD)tKD + qDtDC,

N is the number of PKGs, qK and qD are the numbers of queries to KO and
DO, respectively, tRG is the running time of randomness generation, tKG is the
running time of sKEM.KeyGen, tKD is the running time of sKEM.KeyDer, and
tDC is the running time of sKEM.DeCap.

Theorem 2.3 (aID-sPID-mPKG from aID-sPKG for IBKEM). When
the underlying sPKG-IBKEM scheme, Σ, satisfies (ρ, ε)-IND-aID-atk-security,
then the transformed mPKG-IBKEM scheme, Σ′, satisfies (ρ′, ε′)-IND-aID-
sPID-atk-security, where

ε = ε′,

ρ = ρ′ + (N − 1)tRG + (N − 1)tKG + (qK + qD)tKD + qDtDC,

N is the number of PKGs, qK and qD are the numbers of queries to KO and
DO, respectively, tRG is the running time of randomness generation, tKG is the
running time of sKEM.KeyGen, tKD is the running time of sKEM.KeyDer, and
tDC is the running time of sKEM.DeCap.

Theorem 2.4 (aID-aPID-mPKG from aID-sPKG for IBKEM). When
the underlying sPKG-IBKEM scheme, Σ, satisfies (ρ, ε)-IND-aID-atk-security,
then the transformed mPKG-IBKEM scheme, Σ′, satisfies (ρ′, ε′)-IND-aID-
aPID-atk-security, where

ε = ε′/N,

ρ = ρ′ + (N − 1)tRG + (N − 1)tKG + (qK + qD)tKD + qDtDC,
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N is the number of PKGs, qK and qD are the numbers of queries to KO and
DO, respectively, tRG is the running time of randomness generation, tKG is the
running time of sKEM.KeyGen, tKD is the running time of sKEM.KeyDer, and
tDC is the running time of sKEM.DeCap.

The above theorems can be proved in a similar way to Theorem 2.1.

3 mPKG Secure IBS from sPKG Secure IBS

In this section, we show that mPKG secure IBS can be generically constructed
from sPKG secure IBS.

3.1 Our Model for mPKG-IBS

We propose a security model for mPKG-IBS. As the security model for mPKG-
IBKEM, we consider variants according to selective ID (sID) or full adaptive ID
(aID), selective PKG’s ID (sPID) or full adaptive PKG’s ID (aPID), and exis-
tentially unforgeable (EUF) or strong existentially unforgeable (sEUF). Hence,
we define eight variants of security notions for mPKG-IBS.

sPKG-IBS. First, we recall the syntax and security notions for sPKG-IBS. As
IBKEM, we suppose that the global parameter of IBS is already determined
outside the master public key if necessary.

Definition 3.1 (Syntax of sPKG-IBS Schemes). An sPKG-IBS scheme
consists of the following 4-tuple (sSig.KeyGen, sSig.KeyDer, sSig.Sign, sSig.Ver):

(mpk, msk) ← sSig.KeyGen(1λ; rg): a key generation algorithm which on inputs
1λ and rg ∈ RSG, where λ is the security parameter and RSG is a random-
ness space, outputs master public key and secret key (mpk, msk).

ski ← sSig.KeyDer(mpk, msk, idi; rk): a key derivation algorithm which on
inputs master public and secret keys (mpk, msk), identity string idi and
rk ∈ RSK , where RSK is a randomness space, outputs signing key ski cor-
responding to idi.

σ ← sSig.Sign(mpk, ski, m; rs): a signing algorithm which on inputs master
public key mpk, signing key ski, message m and rs ∈ RSS, outputs signature
σ ∈ SS, where RSS is a randomness space, and SS is a signature space.

0/1 ← sSig.Ver(mpk, idi, m, σ): a verification algorithm which on inputs master
public key mpk, identity string idi, message m, and signature σ, outputs 1
for the valid signature, or 0 for invalid signatures.

Definition 3.2 ({sID/aID}-{EUF/sEUF}-CMA Security for sPKG-
IBS). A sPKG-IBS scheme, Σ, is (ρ, ε)-id-atk-CMA secure for sPKG-IBS if
the following property holds for security parameter λ; For any forger F = (F1,
F2) with a time-complexity at most ρ, Advid-atk-cma

Σ (F) = Pr[rg ← RSG;
(mpk, msk) ← sSig.KeyGen(1λ; rg); (output, state) ← F1(1λ); (id∗

T , m∗,
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σ∗) ← FSO(·,·),KO(·)
2 (mpk, state); 1 ← sSig.Ver(mpk, id∗

T , m∗, σ∗)] ≤ ε,
where KO(idi) is the key derivation oracle, SO(idi,m) is the signing oracle,
and state is state information which F wants to preserve from F1 to F2,

if id = sID then output = id∗
T which must be the same as the output of F2,

if id = aID then output = ⊥,
if atk = EUF then SO(id∗

T ,m∗) is never posed, and
if atk = sEUF then σ∗ is never outputted by query SO(id∗

T ,m∗).
F runs in at most ρ steps. F cannot make query KO(id∗

T ).

mPKG-IBS. Next, we introduce a syntax and security notions for mPKG-
IBS. As mPKG-IBKEM, each user can obtain signing keys for his/her ID from
multiple PKGs. The signer chooses a PKG to sign a message, and the verifier
can verify the signature with signer’s ID.

Definition 3.3 (Syntax of mPKG-IBS Schemes). An mPKG-IBS scheme
consists of the following 4-tuple (mSig.KeyGen, mSig.KeyDer, mSig.Sign,
mSig.Ver):

(mpkι, mskι) ← mSig.KeyGen(1λ, pidι; rg): a key generation algorithm which on
inputs 1λ, PKG’s identity string pidι and rg ∈ RSG, where λ is the security
parameter and RSG is a randomness space, outputs master public key and
private key (mpkι, mskι).

ski,ι ← mSig.KeyDer(mpkι, mskι, idi; rk): a key derivation algorithm which on
inputs master public and secret keys (mpkι, mskι), identity string idi and
rk ∈ RSK , where RSK is a randomness space, outputs signing key ski,ι

corresponding to idi on PKG pidι.
(σ, pidι) ← mSig.Sign(mpkι, ski,ι, pidι m; rs): a signing algorithm which on

inputs master public key mpkι, signing key ski,ι, PKG’s identity string pidι,
message m and rs ∈ RSS, outputs signature σ ∈ SS and pidι, where RSS

is a randomness space, and SS is a signature space.
0/1 ← mSig.Ver(mpkι, idi, pidι, m, σ): a verification algorithm which on inputs

master public key mpkι, identity string idi, PKG’s identity string pidι, mes-
sage m, and signature σ, outputs 1 for the valid signature, or 0 for invalid
signatures.

Definition 3.4 ({sID/aID}-{sPID/aPID}-{EUF/sEUF}-CMA Secu-
rity for mPKG-IBS). An mPKG-IBS scheme, Σ, is (ρ, ε)-id-pid-atk-
CMA secure for mPKG-IBS if the following property holds for security
parameter λ; For any forger F = (F1, F2) with a time-complexity at
most ρ, Advid-pid-atk-cma

Σ (F) = Pr[rg,α ← RSG; . . . ; rg,ζ ← RSG;
(mpkα, mskα) ← mSig.KeyGen(1λ, pidα; rg,α); . . . ; (mpkζ , mskζ) ←
mSig.KeyGen(1λ, pidζ ; rg,ζ); (output, state) ← F1(1λ); (id∗

T , pid∗
τ , m∗,

σ∗) ← FSO(·,·,·),KO(·,·)
2 ({mpkα, . . . , mpkζ}, state); 1 ← mSig.Ver(mpkτ , id∗

T ,
pid∗

τ , m∗, σ∗)] ≤ ε, where KO(pidα, idi) is the key derivation oracle, SO(pidα,
idi,m) is the signing oracle, and state is state information which F wants to
preserve from F1 to F2,
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if id = sID and pid = sPID then output = (id∗
T , pid∗

τ )
which must be the same as the output of F2,

if id = sID and pid = aPID then output = id∗
T

which must be the same as the output of F2,
if id = aID and pid = sPID then output = pid∗

τ

which must be the same as the output of F2,
if id = aID and pid = aPID then output = ⊥,
if atk = EUF then SO(id∗

T , pid∗
τ , m∗) is never posed, and

if atk = sEUF then σ∗ is never outputted by query SO(id∗
T , pid∗

τ , m∗).

F runs in at most ρ steps. F cannot make query KO(id∗
T , pid∗

τ ).

3.2 Generic Transformation from sPKG-IBS to mPKG-IBS

As IBKEM, the algorithms of sPKG-IBS can be used as the algorithms of
mPKG-IBS just as they are. The protocol for an mPKG-IBS scheme, Σ′ =
(mSig.KeyGen, mSig.KeyDer, mSig.Sign, mSig.Ver), using an sPKG-IBS scheme,
Σ = (sSig.KeyGen, sSig.KeyDer, sSig.Sign, sSig.Ver), is as follows:

mSig.KeyGen(1λ, pidι; rg): Generate (mpk, msk) ← sSig.KeyGen(1λ; rg), and
output mpkι = mpk and mskι = msk for pidι.

mSig.KeyDer(mpkι, mskι, idi; rk): Derive ski ← sSig.KeyDer(mpkι, mskι, idi;
rk), and output ski,ι = ski.

mSig.Sign(mpkι, ski,ι, pidι,m; rs): Generate σ ← sSig.Sign(mpkι, ski,ι,m; rs),
and output (σ, pidι).

mSig.Ver(mpkι, idi, pidι, m, σ): Verify sSig.Ver(mpkι, idi, m, σ), and output
the verification result.

Security. We show the security of the transformed mPKG-IBS based on the
security of the underlying sPKG-IBS. The intuition is the same as mPKG-
IBKEM in Sect. 2.2.

Figure 2 shows our implication results for IBS. Note that broken lines mean
trivial implications.

sPKG-IBS mPKG-IBS

sID

aID

sID-sPID

aID-sPID

sID-aPID

aID-aPID

Theorem 3.1

Theorem 3.2

Theorem 3.3

Theorem 3.4

Fig. 2. Implication results for IBS
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Theorem 3.1 (sID-sPID-mPKG from sID-sPKG for IBS). If the under-
lying sPKG-IBS scheme, Σ, satisfies (ρ, ε)-sID-atk-CMA security, then the
transformed mPKG-IBS scheme, Σ′, satisfies (ρ′, ε′)-sID-sPID-atk-CMA secu-
rity, where

ε = ε′,

ρ = ρ′ + (N + qS − 1)tRG + (N − 1)tKG + (qK + qS)tKD + qStSig,

N is the number of PKGs, qK and qS are the numbers of queries to KO and
SO, respectively, tRG is the running time of randomness generation, tKG is the
running time of sSig.KeyGen, tKD is the running time of sSig.KeyDer, and tSig is
the running time of sSig.Sign.

Proof. We construct a forger F = (F1, F2) breaking sID-atk-CMA security of
Σ by assuming the forger F ′ = (F ′

1, F ′
2) breaking sID-sPID-atk-CMA security

of Σ′. Here, we show the case of atk = sEUF. The case of atk = EUF can be
similarly proved. The construction of F is as follows:

Procedure of F1. When F1 receives 1λ, F1 sends 1λ to F ′
1, and receives (id∗

T ,
pid∗

τ , state′) from F ′
1. Then, F1 sets state = (state′, id∗

T , pid∗
τ ), and outputs

(id∗
T , state).

Procedure of F2. When F2 receives (mpk, state), parses state to state =
(state′, id∗

T , pid∗
τ ). F2 generates rg,α ← RSG, . . . , rg,ζ ← RSG and (mpkα,

mskα) ← sKEM.KeyGen(1λ; rg,α), . . . , (mpkζ , mskζ) ← sKEM.KeyGen(1λ; rg,ζ)
except for pid∗

τ , and sets mpkτ = mpk. Then, F2 sends ({mpkα, . . . , mpkζ},
state′) to F ′

2, and receives (id∗
T , pid∗

τ , m∗, σ∗) from F ′
2. Finally, if σ∗ is not

outputted by the simulation of SO(id∗
T , pid∗

τ ,m∗), then F2 outputs (id∗
T , m∗,

σ∗). Otherwise, F2 halts.

Simulation of KO(idi, pidι) by F2. If pidι �= pid∗
τ , then F2 generates rk ←

RSK , derive ski,ι ← sSig.KeyDer(mpkι, mskι, idi; rk), and output ski,ι. Else if
idi �= id∗

T , then pose idi to KO, receives ski, and outputs ski,τ = ski. Otherwise,
F2 rejects the query.

Simulation of SO(idi, pidι,m) by F2. If pidι �= pid∗
τ , then F2 generates rk ←

RSK , derive ski,ι ← sSig.KeyDer(mpkι, mskι, idi; rk), generate rs ← RSS and
σ ← sSig.Sign(mpkι, ski,ι, m; rs), and output σ. Else if idi �= id∗

T , then pose
idi to KO, receives ski, generate rs ← RSS and σ ← sSig.Sign(mpkι, ski, m;
rs), and output σ. Otherwise, pose (id∗

T ,m) to SO, receives σ, and output σ.

Estimation of advantage of F . F perfectly simulates the attack environment of
F ′. Hence, the advantage of F is ε = ε′.

Estimation of running time of F . In addition to ρ′, F runs (N + qS − 1) ran-
domness generations, (N − 1) master key generations, at most (qK + qS) key
derivations and at most qS signature generations. Hence, the running time ρ of
F is at most ρ′ + (N + qS − 1)tRG + (N − 1)tKG + (qK + qS)tKD + qStSig. �	
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Theorem 3.2 (sID-aPID-mPKG from sID-sPKG for IBS). If the under-
lying sPKG-IBS scheme, Σ, satisfies (ρ, ε)-sID-atk-CMA security, then the
transformed mPKG-IBS scheme, Σ′, satisfies (ρ′, ε′)-sID-aPID-atk-CMA secu-
rity, where

ε = ε′/N,

ρ = ρ′ + (N + qS − 1)tRG + (N − 1)tKG + (qK + qS)tKD + qStSig,

N is the number of PKGs, qK and qS are the numbers of queries to KO and
SO, respectively, tRG is the running time of randomness generation, tKG is the
running time of sSig.KeyGen, tKD is the running time of sSig.KeyDer, and tSig is
the running time of sSig.Sign.

Theorem 3.3 (aID-sPID-mPKG from aID-sPKG for IBS). If the under-
lying sPKG-IBS scheme, Σ, satisfies (ρ, ε)-aID-atk-CMA security, then the
transformed mPKG-IBS scheme, Σ′, satisfies (ρ′, ε′)-aID-sPID-atk-CMA secu-
rity, where

ε = ε′,

ρ = ρ′ + (N + qS − 1)tRG + (N − 1)tKG + (qK + qS)tKD + qStSig,

N is the number of PKGs, qK and qS are the numbers of queries to KO and
SO, respectively, tRG is the running time of randomness generation, tKG is the
running time of sSig.KeyGen, tKD is the running time of sSig.KeyDer, and tSig is
the running time of sSig.Sign.

Theorem 3.4 (aID-aPID-mPKG from aID-sPKG for IBS). If the under-
lying sPKG-IBS scheme, Σ, satisfies (ρ, ε)-aID-atk-CMA security, then the
transformed mPKG-IBS scheme, Σ′, satisfies (ρ′, ε′)-aID-aPID-atk-CMA secu-
rity, where

ε = ε′/N,

ρ = ρ′ + (N + qS − 1)tRG + (N − 1)tKG + (qK + qS)tKD + qStSig,

N is the number of PKGs, qK and qS are the numbers of queries to KO and
SO, respectively, tRG is the running time of randomness generation, tKG is the
running time of sSig.KeyGen, tKD is the running time of sSig.KeyDer, and tSig is
the running time of sSig.Sign.

The above theorems can be proved in a similar way to Theorem 3.1.

4 mPKG Secure IBAKE from sPKG Secure IBAKE

In this section, we show that mPKG secure IBAKE can be generically con-
structed from sPKG secure IBAKE.



Single PKG Security Implies Multiple PKGs Security 69

4.1 Models for sPKG-IBAKE and mPKG-IBAKE

We recall the id-CK+ model [6] as the security model for sPKG-IBAKE, and
propose a new security model, id(m)-aCK+ model, as the security model for
mPKG-IBAKE. For simplicity, we describe the security models as for two-pass
sPKG-/mPKG-IBAKE protocol.

We denote a party as Ui and the identifier of Ui as idi. For sPKG-IBAKE,
there is a single PKG P whose identifier pid. For mPKG-IBAKE, there are
multiple PKG; and hence, we denote a PKG as Pι and the identifier of Pι as
pidι.

A PKG, P , for sPKG-IBAKE (resp. each PKG, Pι, for mPKG-IBAKE) gen-
erates a pair of master secret and public keys (mpk, msk) (resp. (mpkι, mskι)).
It is defined as (mpk, msk) ← sAKE.KeyGen(1λ; rg) for sPKG-IBAKE (resp.
(mpkι, mskι) ← mAKE.KeyGen(1λ, pidι; rg) for mPKG-IBAKE), where rg is
randomness.

We outline our model for a two-pass sPKG-/mPKG-IBAKE protocol where
parties UA and UB exchange ephemeral public keys XA and XB . For mPKG-
IBAKE, they also exchange the identifiers of their PKGs, i.e., UA sends (XA,
pidα) to UB and UB sends (XB , pidβ) to UA. Finally, they derive a session key.
The session key depends on the exchanged ephemeral keys, identifiers of the par-
ties, (identifiers of the PKGs for mPKG-IBAKE,) the static keys corresponding
to these identifiers, and the protocol instance that is used.

In the model, each party is a probabilistic polynomial-time Turing machine
in security parameter λ and obtains a static private key corresponding to its
identifier string from its PKG via a secure and authenticated channel. The static
private key is defined as sski ← sAKE.KeyDer(mpk, msk, idi; rk) for sPKG-
IBAKE (resp. sski,ι ← mAKE.KeyDer(mpkι, mskι, idi; rk) for mPKG-IBAKE),
where rk is randomness.

Session. An invocation of a protocol is called session. A session is activated
via an incoming message in the form of (Π, I, idA, idB) or (Π, R, idA, idB,
XB) for sPKG-IBAKE (resp. (Π, I, idA, idB , pidα, pidβ) or (Π, R, idA, idB,
pidα, pidβ , XB) for mPKG-IBAKE), where Π is a protocol identifier. If UA

is activated with (Π, I, idA, idB) for sPKG-IBAKE (resp. (Π, I, idA, idB,
pidα, pidβ) for mPKG-IBAKE), then UA is the session initiator ; otherwise,
it is the session responder. After activation, UA appends ephemeral public key
XA to the incoming message and sends it as an outgoing response. If UA is the
responder, UA computes a session key. If UA is the initiator, UA that has been
successfully activated via (Π, I, idA, idB) for sPKG-IBAKE (resp. (Π, I, idA,
idB , pidα, pidβ) for mPKG-IBAKE), can be further activated via (Π, I, idA,
idB , XA, XB) for sPKG-IBAKE (resp. (Π, I, idA, idB , pidα, pidβ , XA, XB)
for mPKG-IBAKE) to compute a session key.

If UA is the initiator of a session, the session is identified by either sid = (Π,
I, idA, idB , XA) or sid = (Π, I, idA, idB , XA, XB) for sPKG-IBAKE (resp.
sid = (Π, I, idA, idB , pidα, pidβ , XA) or sid = (Π, I, idA, idB , pidα,
pidβ , XA, XB) for mPKG-IBAKE). If UB is the responder of a session, the
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session is identified by sid = (Π, R, idB , idA, XA, XB) for sPKG-IBAKE
(resp. sid = (Π, R, idB , idA, pidβ , pidα, XA, XB) for mPKG-IBAKE). We
say that UA is the owner (resp. peer) of session sid if the third (resp. fourth)
coordinate of session sid is idA. We say that a session is completed if its owner
computes a session key. The matching session of (Π, I, idA, idB , XA, XB) for
sPKG-IBAKE (resp. (Π, I, idA, idB, pidα, pidβ , XA, XB) for mPKG-IBAKE)
is session (Π, R, idB , idA, XA, XB) for sPKG-IBAKE (resp. (Π, R, idB , idA,
pidβ , pidα, XA, XB) for mPKG-IBAKE) and vice versa.

The generation of an ephemeral private key by initiator UA is defined as
xA ← sAKE.InitESK(mpk, idA, idB , sskA) for sPKG-IBAKE (resp. xA ←
mAKE.InitESK(mpkα, idA, idB , pidα, pidβ , sskA,α) for mPKG-IBAKE). Also,
the generation of an ephemeral private key by responder UB is defined as
xB ← sAKE.ResESK(mpk, idA, idB , sskB) for sPKG-IBAKE (resp. xB ←
mAKE.ResESK(mpkβ , idA, idB , pidα, pidβ , sskB,β) for mPKG-IBAKE).

Based on the ephemeral private key, xA, the generation of the ephemeral
public key by UA is defined as XA ← sAKE.InitEPK(mpk, idA, idB , sskA,
xA) for sPKG-IBAKE (resp. XA ← mAKE.InitEPK(mpkα, idA, idB , pidα,
pidβ , sskA,α, xA) for mPKG-IBAKE). Also, based on the ephemeral pri-
vate key, xb, the generation of the ephemeral public key by UB is defined as
XB ← sAKE.ResEPK(mpk, idA, idB , sskB , xB, XA) for sPKG-IBAKE (resp.
xB ← mAKE.ResEPK(mpkβ , idA, idB , pidα, pidβ , sskB,β , xB , XA) for mPKG-
IBAKE).

The generation of the session key by UA is defined as SK ←
sAKE.SesKey(mpk, idA, idB , sskA, xA, XB) for sPKG-IBAKE (resp. SK ←
mAKE.SesKey(mpkα, idA, idB , pidα, pidβ , sskA,α, xA, XB) for mPKG-
IBAKE). The generation of the session key by UB is also defined in the same
manner.

Adversary. Adversary A is modeled as a probabilistic Turing machine that con-
trols all communications between parties including session activation. Activation
is performed via a Send(message) query. The message has one of the follow-
ing forms: (Π, I, idA, idB), (Π, R, idA, idB , XA), or (Π, I, idA, idB , XA,
XB) for sPKG-IBAKE (resp. (Π, I, idA, idB , pidα, pidβ), (Π, R, idA, idB ,
pidα, pidβ , XA), or (Π, I, idA, idB , pidα, pidβ , XA, XB) for mPKG-IBAKE).
Each party submits its responses to adversary A, who decides the global delivery
order. Note that adversary A does not control the communication between each
party and its PKG.

The private information of a party is not accessible to adversary A; however,
leakage of private information is obtained via the following adversary queries.

– SessionKeyReveal(sid): A obtains the session key for session sid if the session
is completed.

– SessionStateReveal(sid): A obtains the session state of the owner of session
sid if the session is not completed (the session key is not established yet). The
session state includes all ephemeral private keys and intermediate computa-
tion results except for immediately erased information but does not include
the static private key.
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– Corrupt(idi): This query allows A to obtain all information of the party Ui.
If a party is corrupted by a Corrupt(idi) query issued by A, then we call the
party Ui dishonest. If not, we call the party honest.

– MasterKeyReveal(pidι): A learns the master private key of PKG Pι. For the
sake of convenient queries, when MasterKeyReveal() is called, i.e., called with
no argument, the master secret keys of all PKGs are returned.

– NewParty(idi): This query models malicious insiders. If a party is established
by a NewParty(idi) query issued by A, then we refer to the party as dishonest.
If not, the party is referred to as honest.

For mPKG-IBAKE, a Send query contains pidα (resp. pidβ), which means that
A specifies the binding between UA (resp. UB) and Pα (resp. Pβ). A can obtain
all static private keys of Ui on all PKGs via a Corrupt(idi) query.

Freshness. Our security definition requires the following “freshness” notion.

Definition 4.1 (freshness). Let sid∗ be the session identifier of a completed
session owned by honest party UA with peer UB who is also honest. If the match-
ing session exists, then let sid∗ be the session identifier of the matching session
of sid∗. We define sid∗ to be fresh if none of the following conditions hold.

1. A issues SessionKeyReveal(sid∗) or SessionKeyReveal(sid∗) if sid∗ exists.
2. sid∗ exists and A makes either of the following queries:

– SessionStateReveal(sid∗) or
– SessionStateReveal(sid∗).

3. sid∗ does not exist and A makes the following query:
• SessionStateReveal(sid∗).

Note that, for mPKG-IBAKE, if adversary A issues MasterKeyReveal(), we
regard A as having issued both Corrupt(idA) and Corrupt(idB). In addition, if
A issues MasterKeyReveal(Pα) (resp. MasterKeyReveal(Pβ)) such that Pα (resp.
Pβ) is contained in sid∗, we regard A as having issued Corrupt(idA) (resp.
Corrupt(idB)).

Security Experiment. Adversary A starts with common parameters, a set of
master public keys together, and a set of honest parties for whom A adaptively
selects identifiers. The adversary makes an arbitrary sequence of the queries
described above. During the experiment, A makes a special query, Test(sid∗),
and is given with equal probability either the session key held by session sid∗

or a random key. The experiment continues until A makes a guess regarding
whether or not the key is random. The adversary wins the game if the test
session, sid∗, is fresh at the end of execution and if the guess by A was correct.

Definition 4.2 (id-CK+ security and id(m)-aCK+ security). The advan-
tage of adversary A in the experiment with sPKG-IBAKE (resp. mPKG-IBAKE)
protocol Π is defined as

Adv{sPKG/mPKG}-IBAKE
Π (A) = Pr[A wins] − 1

2
.
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We say that Π is a secure sPKG-IBAKE (resp. mPKG-IBAKE) protocol in the
id-CK+ (resp. id(m)-aCK+) model if the following conditions hold.
1. If two honest parties complete matching sessions, then, they both compute the

same session key except with negligible probability in security parameter λ.
2. For any probabilistic polynomial-time adversary A, advantage

AdvsPKG-IBAKE
Π (A) (resp. AdvmPKG-IBAKE

Π (A)) is negligible in security
parameter λ for session sid,
(a) if sid does not exist, and the static private key of the owner of sid is

given to A.
(b) if sid does not exist, and the ephemeral private key of sid is given to A.
(c) if sid exists, and the static private key of the owner of sid and the

ephemeral private key of sid are given to A.
(d) if sid exists, and the ephemeral private key of sid and the ephemeral

private key of sid are given to A.
(e) if sid exists, and the static private key of the owner of sid and the static

private key of the peer of sid are given to A.
(f) if sid exists, and the ephemeral private key of sid and the static private

key of the peer of sid are given to A.

4.2 Generic Transformation from sPKG-IBAKE to mPKG-IBAKE

As IBKEM and IBS, the algorithms of sPKG-IBAKE can be used as the algo-
rithms of mPKG-IBAKE just as they are. The protocol of an mPKG-IBAKE
protocol, Π ′ = (mAKE.KeyGen, mAKE.KeyDer, mAKE.InitESK, mAKE.ResESK,
mAKE.InitEPK, mAKE.ResEPK, mAKE.SesKey), using an sPKG-IBAKE pro-
tocol, Π = (sAKE.KeyGen, sAKE.KeyDer, sAKE.InitESK, sAKE.ResESK,
sAKE.InitEPK, sAKE.ResEPK, sAKE.SesKey), is as follows:

mAKE.KeyGen(1λ, pidι; rg): Generate (mpk, msk) ← sAKE.KeyGen(1λ; rg), and
output mpkι = mpk and mskι = msk for pidι.

mAKE.KeyDer(mpkι, mskι, idi; rk): Derive sski ← sAKE.KeyDer(mpkι, mskι,
idi; rk), and output sski,ι = sski.

mAKE.InitESK(mpkα, idA, idB , pidα, pidβ , sskA,α): Generate a private key as
xA ← sAKE.InitESK(mpkα, idA, idB , sskA,α), and output xA.

mAKE.ResESK(mpkβ , idA, idB , pidα, pidβ , sskB,β): Generate a private key as
xB ← sAKE.ResESK(mpkβ , idA, idB , sskB,β), and output xB.

mAKE.InitEPK(mpkα, idA, idB , pidα, pidβ , sskA,α, xA): Compute the
ephemeral public key as XA ← sAKE.InitEPK(mpkα, idA, idB , sskA,α, xA),
and output XA.

mAKE.ResEPK(mpkβ , idA, idB , pidα, pidβ , sskB,β , xB, XA): Compute the
ephemeral public key as XB ← sAKE.ResEPK(mpkβ , idA, idB , sskB,β , xB ,
XA), and output XB .

mAKE.SesKey(mpkα, idA, idB , pidα, pidβ , sskA,α, xA, XB) for initiator UA:
Obtain SK ← sAKE.SesKey(mpkα, idA, idB , sskA,α, xA, XB), and output
SK.

mAKE.SesKey(mpkβ , idA, idB , pidα, pidβ , sskB,β , xB, XA) for responder
UB: Obtain SK ← sAKE.SesKey(mpkβ , idA, idB , sskB,β , xB , XA), and
output SK.
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Security. We show the id(m)-aCK+ security of the transformed mPKG-IBAKE
based on the id-CK+ security of the underlying sPKG-IBAKE. The intuition is
the same as mPKG-IBKEM in Sect. 2.2 and mPKG-IBS in Sect. 3.2.

Theorem 4.1 (id(m)-aCK+ Security from id-CK+ Security for
IBAKE). If the underlying sPKG-IBAKE protocol, Π, satisfies the id-CK+

security, then the transformed mPKG-IBAKE protocol, Π ′, satisfies the id(m)-
aCK+ security.

The proof is shown in the full version.
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Abstract. The fabrication process of integrated circuits (ICs) is com-
plex and requires the use of off-shore foundries to lower the costs and to
have access to leading-edge manufacturing facilities. Such an outsourcing
trend leaves the possibility of inserting malicious circuitry (a.k.a. hard-
ware Trojans) during the fabrication process, causing serious security
concerns. Hardware Trojans are very hard and expensive to detect and
can disrupt the entire circuit or covertly leak sensitive information via a
subliminal channel.

In this paper, we propose a formal model for assessing the security
of ICs whose fabrication has been outsourced to an untrusted off-shore
manufacturer. Our model captures that the IC specification and design
are trusted but the fabrication facility(ies) may be malicious. Our objec-
tive is to investigate security in an ideal sense and follows a simulation
based approach that ensures that Trojans cannot release any sensitive
information to the outside. It follows that the Trojans’ impact in the
overall IC operation, in case they exist, will be negligible up to simula-
tion.

We then establish that such level of security is in fact achievable for
the case of a single and of multiple outsourcing facilities. We present two
compilers for ICs for the single outsourcing facility case relying on verifi-
able computation (VC) schemes, and another two compilers for the mul-
tiple outsourcing facilities case, one relying on multi-server VC schemes,
and the other relying on secure multiparty computation (MPC) protocols
with certain suitable properties that are attainable by existing schemes.
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1 Introduction

The fabrication process adopted by the semiconductor industry is fundamentally
global, involving several parties that may not be trusted. As a result, integrated
circuits (ICs) are vulnerable to so-called hardware Trojans that can compromise
or disable critical systems, or covertly leak sensitive information [7]. Analogously
to a software Trojan, a hardware Trojan is a back-door deliberately added to the
circuit to disrupt its operation or disable it when certain events occur. A Trojan
can be added to the circuit during the design phase, by some malicious designer,
or more often during the manufacturing phase, by some malicious off-shore fab-
rication facility. A hardware Trojan’s objectives may be to modify the function-
ality of the circuit (e.g., in order to compromise or disable critical systems),
modify its specification (e.g., by changing its energy consumption), covertly leak
sensitive information (e.g., from a secret memory), or simply disable the entire
circuit when instructed to do so [6]. Once the Trojan is inserted into the circuit
it can stay active the entire time, or it can be “triggered” by some event such
as a special input to the circuit.

Reliably detecting compromised circuit components through testing and
reverse engineering appears to be an impossible task given our current tech-
nology [9]. Indeed, all non-destructive testing techniques can easily be circum-
vented by properly obfuscating embedded Trojans. The U.S. military recognized
this threat and started two programs, Trust and IRIS, with the intent of devel-
oping techniques and metrics to certify ICs going into weapon systems. The
main concern is that advanced weapons may appear to work properly but then
switch off in combat or when triggered by some special events. Another stated
concern is information leakage, where a malicious component is programmed to
leak sensitive information [32].

The U.S. military however currently obtains trusted chips through the DOD
Trusted Foundry program which is currently managed by the NSA’s Trusted
Access Program Office (TAPO). Within this program, a trusted design cen-
ter and foundry are established through an exclusive partnership with IBM for
secure semiconductor fabrication and ASIC services, along with the involvement
of several Trusted Suppliers which are accredited by an accreditation author-
ity (DMEA). The intent of the Trusted Foundry program is to provide national
security and defense programs with access to ICs from trusted sources. However,
a report by the U.S. Government Accountability Office (GAO) [25], released in
April 2015, found that even though the Trusted Foundry program started in
2004, IBM remained the sole-source supplier for leading-edge technologies meet-
ing the criteria put forth by DOD. GAO’s report highlights two main issues:
First, it notices that IBM sold its microelectronics fabrication business to a
foreign-owned entity (GlobalFoundries). Second, relying on a single source sup-
plier for defense microelectronics hinders competition and thus innovation in this
critical area.
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1.1 Previous Work

Inspired by the above considerations, in this work we put forward a formal
security model for the problem of utilizing off-shore fabrication facilities for IC
manufacturing. Our main motivation is that the setting of secure circuit fabrica-
tion, while being an extremely important practical problem, almost completely
lacks theoretical foundations. We discuss a few remarkable exceptions below.

– Seifert and Bayer [31] introduced a very strong security model for the fabri-
cation of Trojan-resilient circuits, where the produced circuit is required to
always have the same output as the original circuit; unfortunately, they show
how to achieve their definition only for very limited classes of Trojans (i.e.,
the adversary is allowed to “corrupt” only a small fraction of the gates in
each layer of the IC, and a small fraction of the wires connecting different
layers).

– Recently, Wahby et al. [33] introduced a new approach to the problem of
defeating hardware Trojans in fabless circuit manufacturing. Their model
reflects the fact that IC specification and design are trusted but the fabrica-
tion facility is not. Rather than testing or reverse engineering the IC hardware
received, which only provides limited security, they consider a class of solu-
tions where the IC’s operations are continuously verified.
In a nutshell, the goal of [33] is to make sure that the produced circuit main-
tains correctness of the computation, meaning that the output of the circuit
is either invalid, or equal to the output of the original circuit. The main draw-
back is that invalid outputs might be arbitrarily correlated with the secret
state of the circuit, which could expose key material in case the produced
circuit is a cryptographic circuit. (We will formalize this fact later in the
paper.)

– In [14], the authors show how to protect against hardware Trojans using
testing-based mechanisms. Their work is based on two existing techniques for
Trojan detection, called “input scrambling” and “split manufacturing” [20],
for which the authors provide formal models. Hence, they present a generic
compiler that transforms any circuit into a new (equivalent) circuit with the
following guarantee: Assuming the attacker invokes the circuit q times, and
that the device is being tested t times, for t > q uniform on a specific range
which is not known to the attacker, the compiled circuit is secure with prob-
ability at least 1 − (q/t)�/2, were � is the number of copies of the sub-circuits
whose production is outsourced.
The main limitation is that [14] assumes an a-priori known bound on the
number q of interactions between the user and the device; in fact, without such
a bound, their construction would require a super-polynomial number of tests.
Unfortunately, in many important applications, it is not realistic to assume
an upper bound on the value q, and thus it is an important open problem
to design a methodology that provides security for an arbitrary polynomial
number of interactions between the user/attacker and the device.

– The approach of applying secure distributed computing to defeat hardware
Trojans has also been recently explored in [26]. However, this work is more
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focused on the implementation aspects of this idea, and moreover it assumes
that the possibly malicious circuit components run applications that are
developed and signed by a trusted software developer.

1.2 Our Contributions

We put forward a formal framework for assessing security of a circuit whose
production has been, in part, outsourced to a set of manufacturers that are
not trusted. Our security definition implies that using the produced circuit
in the wild leaks no information on its secrets. Additionally, the adversarial
model we consider does not assume any a-priori bound on the number of exe-
cutions, and allows the manufacturer(s) to make arbitrary modifications to the
outsourced components. In essence, our security model captures any attack in
which the backdoored circuit communicates with the user/attacker through the
input/output gates of the produced circuit. (This includes digital and analog
Trojans, but not hidden antennas as considered in [14].)

With such a framework in hand, we give several design methodologies that
achieve our definition with different tradeoffs in terms of security, efficiency, and
underlying assumptions. Thus, our work establishes the theoretical feasibility of
utilizing off-shore fabrication facilities for IC manufacturing. A more detailed
explanation of our main contributions follows below.

Secure Circuit Fabrication. Let Γ be the original circuit to be produced. Instead
of producing Γ directly, we first “compile” it into a different circuit ̂Γ using an
efficient, possibly randomized, procedure Φ that we call an outsourcing compiler.
The compiler Φ takes as input a description of Γ and returns a description of ̂Γ ,
together with some auxiliary information specifying how ̂Γ can be divided into
sub-components, and which of these components can be produced off-shore; the
remaining components will be instead built in-house. After all components have
been produced, the circuit designer re-assembles the circuit ̂Γ (by combining
the outsourced components and the components built in-house), which is then
initialized with some initial secret memory M1, and used in the wild.

In order to make sense, the above approach needs to satisfy a few important
requirements. The first requirement is that Φ needs to be functionality preserv-
ing, meaning that the compiled circuit ̂Γ should compute the same functionality
as the original circuit Γ (for all possible initial memories M1, and for all possible
inputs). The second requirement is that the effort needed to manufacture the
trusted sub-components should be (much) less compared to the effort required
to manufacture the original circuit Γ . The third requirement is that Φ should be
secure, meaning that, under an acceptable assumption about the manufacturers
who construct the outsourced components, the produced circuit ̂Γ can be safely
used in real-life applications.

Our security definition follows the simulation paradigm, and is inspired by
similar definitions in the setting of tamper-proof circuit compilers [22]. We
refer the reader to Sect. 1.3 for a more detailed comparison between the two
approaches. In a nutshell, security of Φ is defined by requiring that whatever
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an adversary can learn by interacting with the fabricated circuit ̂Γ (produced
following the steps outlined above), can be simulated given only black-box access
to the original circuit Γ . This essentially means that, no matter how the out-
sourced components are maliciously modified (e.g., by inserting a hardware Tro-
jan), using circuit ̂Γ is as secure as using the original circuit Γ , and thus, in
particular, does not leak sensitive information on the secret memory. See Sect. 3
for a precise definition.

Case Study I: Single Manufacturer. In Sect. 4, we show how to construct a secure
outsourcing compiler that works for arbitrary circuits Γ in the setting where all
outsourcing manufacturers are corrupted. Similarly to [33], our compiler gener-
ically leverages a VC scheme for the function F implemented by Γ . Recent
breakthrough research on verifiable computation led to nearly practical schemes
that work for any function [10,29]; some schemes additionally preserve the pri-
vacy of the inputs on which the function is being computed on [15]. VC schemes
satisfying the latter property are called input-private.

The main idea of how to use verifiable computation in order to build secure
outsourcing compilers is simple enough to describe it here. The fabrication of
the chips that perform the entire bulk of computation will be outsourced to the
untrusted fabrication facility, whereas the only circuit components that need
to be built in-house are: (i) the component corresponding to the algorithm for
encoding the inputs (in case of input-private VC), (ii) the component correspond-
ing to the algorithm run by the client in order to verify correctness of the server’s
computation, and (iii) the component used to generate fresh random coins as
needed for computing the function (in case of randomized functions). Thanks to
the nature of VC, the size of the components in (i) and (ii) is independent of
the size of the original circuit computing the function. As for the component in
(iii), we can use any existing (and trusted) circuitry for generating true random
numbers (RNG). A good example is the Intel on-chip hardware random number
generator which can be accessed through the RDRAND instruction available on
all modern processors [19].

Our compiler relies on VC schemes with input-privacy, and achieves our
strongest security notion (i.e., no leakage required for the simulation).

Case Study II: Multiple Manufacturers. In Sect. 5, we show how to construct
secure outsourcing compilers for arbitrary circuits Γ in the setting where m ≥ 2
outsourcing manufacturers are available, and a certain unknown subset of them
is malicious. This is a strictly stronger assumption compared to the setting of a
single manufacturer, nevertheless, as we show, it opens the possibility for more
efficient constructions and stronger availability guarantees.

We present an outsourcing compiler utilizing a general client-server secure
multiparty computation (MPC) protocol, i.e., a protocol that, for any function,
enables a set of clients to privately communicate their inputs to a set of servers
that will perform a computation and return the output to a single designated
recipient. We stress that many MPC protocols follow this paradigm (e.g., [12]),
while others, as we comment later, can be easily adapted to it.
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Given such a protocol, the compiler operates in the following way (see also
Sect. 5.1). For a given circuit Γ it produces the MPC protocol implementing it,
isolates the client and recipient computation for manufacturing in-house, and
outsources each of the other components (representing a server in the MPC
protocol) to the untrusted manufacturers. The key points of this compiler con-
struction are as follows: (i) The client and recipient computation are typically
quite lightweight; the client, in many protocols, simply performs an encryption
or a secret-sharing operation, and the recipient a secret-reconstruction protocol;
in either case, the computation is independent of the circuit that is outsourced.
(ii) There are MPC protocols that can tolerate up to m − 1 malicious servers,
something we can leverage to argue that if at least one of the outsourcing man-
ufacturer is honest the compiled circuit would be safe for use.

Additional properties of the underlying MPC protocol can also be very valu-
able by our compiler: for instance, if the underlying MPC protocol supports
guaranteed output delivery, we can use this guarantee to argue that the final
circuit will be resilient to a certain faulty outsourced sub-component. Moreover,
if the underlying protocol satisfies the identifiable abort property, cf. [21], we
can enable our compiled circuit to switch-off an outsourced sub-component that
is discovered to be faulty (or malicious), thus reducing energy consumption.

1.3 Related Work

Hardware Trojans. Prevention of hardware Trojans in ICs is a common practice
that might take place during the design, manufacturing, and post-manufacturing
stage [24,30]. However, since it is not always possible to efficiently prevent Tro-
jans insertion, Trojans detection has also been vastly explored [9]; once a Trojan
is detected, the circuit can be disposed and not used. Common methodologies
used to perform Trojans detection vary from invasive ones (that destroy the IC
to examine it inside), to non-invasive ones (where the circuit is executed and
compared against a trusted copy of the circuit, or against some expected output
values). Trojan detection is typically a very expensive and unreliable process,
therefore the best practice is usually not to rely on any kind of testing to protect
against Trojans. Explicit countermeasures against Trojans also exist, where the
objective is to guarantee the functionality or security of the circuit even in the
presence of some unknown Trojan. For instance, the so-called “data guards” are
designed to prevent a Trojan from being activated and/or to access sensitive
data [34]. Another approach is the duplication of logic elements and the division
of the sensitive data to independent parts of the circuit [27,34].

Tamper-Proof Circuits. Our main security definition shares similarities with anal-
ogous definitions in the context of protecting circuits against tampering attacks
[11]. The main difference between this setting and the one considered in our paper
is that tamper-proof circuit compilers are typically used to protect against fault
injection [28] and tampering attacks at run-time; such attacks are usually car-
ried out in an adaptive manner, depending on the outcome of previous attempts.
Outsourcing compilers, instead, only protect against (non-adaptive) tampering
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taking place during the circuit fabrication process. Importantly, the latter restric-
tion allows to obtain security against arbitrary modifications, whereas in circuit
tampering one has to consider very restricted attacks (e.g., wire tampering [22]
or gate tampering [23]).

Subversion. The above type of non-adaptive tampering is, in fact, reminis-
cent of the setting of subversion attacks against cryptographic primitives and
algorithms. Inspired by the recent revelations of Edward Snowden [18], this line
of research recently led to constructing several concrete primitives resisting large
classes of subversion attacks [3,8]. In this light, our work could be interpreted as
formalizing the security of circuits that might have been subject to subversion
during fabrication.

2 Preliminaries

2.1 Notation

For a string x, we denote its length by |x|; if S is a set, |S| represents the number
of elements in S; for a natural number n, [n] denotes the set {1, . . . , n}. When
x is chosen randomly in S, we write x ←$ S. When A is an algorithm, we write
y ← A(x) to denote a run of A on input x and output y; if A is randomized, then
y is a random variable and A(x; r) denotes a run of A on input x and randomness
r. An algorithm A is probabilistic polynomial-time (PPT) if A is randomized
and for any input x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in at
most poly(|x|) steps. We denote with λ ∈ N the security parameter. A function
ν : N → [0, 1] is negligible in the security parameter (or simply negligible) if it
vanishes faster than the inverse of any polynomial in λ, i.e. ν(λ) = λ−ω(1).

The statistical distance between two random variables Z and Z′ defined over
some common set Z is defined as Δ(Z;Z′) = 1

2

∑

z∈Z |P [Z = z] − P [Z′ = z]|.
For two ensembles Z := {Zλ}λ∈N and Z′ := {Z ′

λ}λ∈N, we write Z ≡ Z′ to
denote that the two ensembles are identically distributed. We also write Z ≈c Z′

to denote that the ensembles are computationally indistinguishable, i.e. for all
PPT distinguishers D there exists a negligible function ν : N → [0, 1] such that
ΔD(Z;Z′) := |P [D(z) = 1 : z ←$ Z] − P [D(z) = 1] : z ←$ Z′| ≤ ν(λ).

We rely on the following lemma (which follows directly from the definition
of statistical distance):

Lemma 1. Let Z and Z′ be a pair of random variables, and W be an event
defined over the probability space of Z and Z′. Then, Δ(Z;Z′) ≤ Δ(Z;Z′|¬W )+
P [W ].

2.2 Circuits

A (Boolean) circuit Γ = (V,E) is a directed graph. The vertices V are logical
gates, and the edges E are wires connecting the gates. For the case of determin-
istic circuits, the gates can be of type AND, XOR and copy, where AND (resp. XOR)
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have fan-in two and fan-out one, and output the AND (resp. XOR) operation
on the input bits; a copy gate, denoted copy, simply forwards the input bit into
two output wires. The depth of a circuit is defined as the longest path from an
input to an output; the size of a circuit is defined as its total number of gates.
Sometimes we explicitly write 〈Γ 〉 for the description of the circuit Γ . A circuit
is clocked if it evolves in clock cycles (or rounds). The input and output values
of the circuit Γ in clock cycle i are denoted by Xi and Yi, respectively. A circuit
is probabilistic if it uses internal randomness as part of its logic. We call such
probabilistic logic randomness gates and denote them with $. In each clock cycle
$ outputs a fresh random bit. Additionally, a circuit may contain memory gates.
Memory gates, which have a single incoming edge and any number of outgoing
edges, maintain state: at any clock cycle, a memory gate sends its current state
down its outgoing edges and updates it according to the value of its incoming
edge. Any cycle in the circuit graph must contain at least one memory gate. The
state of all memory gates at clock cycle i is denoted by Mi, with M1 denoting
the initial state. When a circuit is run in state Mi on input Xi, the circuit will
output Yi and the memory gates will be in a new state Mi+1. We will denote
this by (Yi,Mi+1) ← Γ [Mi](Xi).

3 Secure Circuit Fabrication

In this section we put forward a formal model for assessing security of a (crypto-
graphic) circuit whose production is outsourced to one or more untrusted facil-
ities. We start by recalling the standard notion of connected component of a
circuit or graph.

Definition 1. A circuit Γ ′ = (V ′, E′) is a (connected) component of circuit
Γ = (V,E) if V ′ ⊆ V , E′ ⊆ E and for all g1, g2 ∈ V ′ we have that (g1, g2) ∈ E′

iff (g1, g2) ∈ E.

Next, we introduce the notion of an outsourcing circuit compiler (or simply
compiler). In a nutshell, a circuit compiler is an efficient algorithm Φ that takes
as input (the description of) a circuit Γ , and outputs (the description of) a
compiled circuit ̂Γ . Additionally, Φ returns a list of sub-components ̂Γi of ̂Γ
whose production can be outsourced to one or more external manufacturers,
together with the relevant information on how to connect those sub-components
with the remaining ones (that need to be built in-house) in order to re-assemble
the compiled circuit ̂Γ .

Definition 2. Let Γ be an arbitrary circuit. A (ρ,m)-outsourcing compiler Φ is
a PPT algorithm ( ̂Γ , aux) ← Φ(Γ ), such that the following holds:

– aux := (( ̂Γ1, . . . , ̂Γn),M, (I1, . . . , Im)), with n ∈ N and Ij ⊆ [n], for j ∈ [m],
mutually disjoint subsets.

– ( ̂Γ1, . . . , ̂Γn) are disjoint (connected) components of ̂Γ such that V =
⋃

i∈[n] Vi, where Γi = (Vi, Ei).
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– M : V × V → {0, 1} is a function such that M(v, v′) = 1 iff v, v′ ∈ Vi, Vj for
some i �= j and (v, v′) ∈ E.

We call ρ :=
∑

i∈[n]\I1∪...∪Im
|Γ̂i|

|Γ | the outsourcing ratio of the compiler.
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Fig. 1. On the left side we present the description of a (compiled) circuit. On the
right side the same circuit is represented as three different components. The mapping
function M establishes the connections between the components.

Intuitively, in the above definition, the outsourcing ratio ρ represents the
fraction of the compiled circuit (w.r.t. the original circuit) that should be built
in-house. Note that the sub-components ( ̂Γi)i∈[n] “cover” the entire compiled
circuit ̂Γ (without overlap), and the mapping function M specifies how to con-
nect the different components in order to reconstruct ̂Γ . The sets of indexes
Ij ⊆ [n] represents the sub-components whose production will be outsourced to
manufacturer j ∈ [m] (Fig. 1).

Correctness of an outsourcing compiler demands that the compiled circuit
maintains the same functionality of the original circuit.

Definition 3. We say that an outsourcing compiler Φ is functionality preserving
if for all circuits Γ , for all values of the initial memory M1, and for any set of
public inputs X1, . . . , Xq, the sequence of outputs Y1, . . . , Yq produced by running
the original circuit Γ starting with state M1 is identical to the sequence of outputs
produced by running the transformed circuit ̂Γ starting with state M1 (with all
but negligible probability over the randomness of the compiler and the randomness
of the original and compiled circuit).

For randomized functionalities we require the output distributions of the original
and the compiled circuits, to be statistically close.

3.1 Security

We define security using the simulation paradigm. Our approach is similar in
spirit to previous work on tamper-resilient circuit compilers (see, e.g., [22]). In
a nutshell, security is defined by comparing two experiments. In the first exper-
iment, also called the real experiment, the circuit designer compiles the circuit



84 G. Ateniese et al.

and outsources the production of some of the components in the compiled circuit
to a set of m untrusted manufacturers. A subset of size t of the manufacturers
are malicious, and controlled by a monolithic adversary A; of course the circuit
designer does not know which manufacturers are malicious and which ones are
honest. During production, A is allowed to completely change the outsourced
circuit components under its control, whether by adding, removing or changing
gates and/or wires. Later, the designer assembles the circuit by re-combining
all the components (the outsourced ones and the ones built in-house). Finally,
A can access the assembled circuit in a black-box way, that is, it can observe
inputs/outputs produced by running the assembled circuit (with some initial
memory M1). In the second experiment, also called the ideal experiment, a sim-
ulator is given black-box access to the original circuit (initialized with initial
memory M1). The goal of the simulator is to produce an output distribution
which is indistinguishable from the one in the real experiment. In its most gen-
eral form, our definition allows the simulator to obtain a short leakage on the
initial memory. This captures the (reasonable) scenario where the adversary, in
the real experiment, could learn at most a short amount of information on the
private memory.

Real Experiment. The distribution RealA,Φ,C,Γ,M1(λ) is parameterized by the
adversary A = (A0,A1), the set of corrupt manufacturers C, the compiler Φ,
and the original circuit Γ with initial memory M1.

1. ( ̂Γ , aux) ← Φ(Γ ): In the first step, the description of the original circuit Γ is
given as input to the compiler Φ; the compiler outputs the description of the
compiled circuit ̂Γ plus the auxiliary information aux := (( ̂Γ1, . . . , ̂Γn),M,
(I1, . . . , Im)) which is used to specify how the compiled circuit is split into
sub-components, how the different sub-components are connected (via the
mapping function M), and the subset of sub-components whose production
is outsourced to each manufacturer (in the index sets Ij , for j ∈ [m]).

2. ({ ̂Γ ′
i}i∈I , τ) ← A0(1λ, {〈 ̂Γi〉}i∈I , 〈Γ 〉, 〈 ̂Γ 〉): The adversary is given as input

the description of the components from the index set I = ∪J∈CIj , the descrip-
tion of the original circuit Γ , the description of the compiled circuit ̂Γ , and
returns the modified components along with some value τ that may contain
some auxiliary state information.

3. ̂Γ ′ := (̂V ′, ̂E′): The compiled circuit ̂Γ ′ is rebuilt by replacing the components
( ̂Γi)i∈I with the modified components ( ̂Γ ′

i )I∈I , and by connecting the different
components as specified by the mapping function M.

4. AΓ̂ ′[M1](·)
1 (1λ, τ): Adversary A1, with auxiliary information τ , is given oracle

access to the rebuilt circuit ̂Γ ′ with compiled private memory M1.

Simulation. The distribution IdealS,A,Φ,C,Γ,M1,�(λ) is parameterized by the sim-
ulator S, the adversary A = (A0,A1), the compiler Φ, the set of corrupt man-
ufacturers C, the original circuit Γ with initial memory M1, and some value
� ∈ N.

1. f ← S(1λ, 〈Γ 〉, Φ,A, C, �): Given as input a description of the original circuit,
of the compiler and of the adversary, the subset of corrupt manufacturers,
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and the parameter � ∈ N, the simulator specifies an arbitrary polynomial-
time computable function f : {0, 1}∗ → {0, 1}�.

2. SA,Γ [M1](·)(1λ, L) : The simulator takes as input leakage L = f(M1), and is
given oracle access to adversary A = (A0,A1) and to the original circuit Γ
with private memory M1. We remark that the simulator is restricted to be
fully black-box. In particular, S only accesses the modified sub-components
returned by A0 in a black-box way (i.e., without knowing their description).

Definition 4. We say that a (ρ,m)-outsourcing circuit compiler Φ is (�, t)-
secure if the following conditions are met.

(i) Non-triviality: ρ < 1, for sufficiently large values of λ ∈ N.
(ii) Simulatability: For all C ⊆ [m] of size at most t and for all PPT adver-

saries A, for all circuits Γ , there exists a simulator S with running time
poly(|A|, |Γ |), such that for all initial values of the memory M1 ∈ {0, 1}∗,
{RealA,Φ,C,Γ,M1(λ)}λ∈N

≈c {IdealS,A,Φ,C,Γ,M1,�(λ)}λ∈N
.

In the above definitions the adversary is allowed to modify each ̂Γi arbitrarily,
i.e., there is no restriction on the edges and nodes of ̂Γ ′

i , as long as the input and
output gates enable connectivity with the remaining components. We also allow
arbitrary modifications of the circuit memory (cf. Remark 1). Observe that, the
above definition is only interesting for small values of � (as, e.g., it becomes
trivial in case � = |M1|). The non-triviality condition demands that the ratio
between the size of the sub-components of the compiled circuit built in-house,
and the size of the original circuit, should be less than one. This is necessary,
as otherwise a manufacturer could simply produce the entire circuit by itself,
without the help of any off-shore facility. Clearly, the smaller ρ is, the better,
as this means that a large fraction of the original circuit production can be
outsourced.

4 Case Study I: Single Manufacturer

In this section we study secure outsourcing compilers that work for any circuit,
in the presence of a single malicious manufacturer. In Sect. 4.1 we describe our
compiler, that is based on any verifiable computation (VC) scheme (satisfying
some properties) for the function computed by the underlying circuit.

A typical VC scheme needs to satisfy some properties that we informally
discuss below.

– Correctness: The ProbGen algorithm produces problem instances that allow
for a honest server to successfully compute values ΣY such that Y = F(X).

– Soundness: No malicious server can “trick” a client into accepting an incorrect
output, i.e, some value Y such that Y �= F(X). We require this to hold even
in the presence of so-called verification queries [15].

– Inputprivacy: No server can learn the input value X that the function is being
computed on.
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– Outsourceability: The time to encode the input plus the time to run a verifi-
cation is smaller than the time to compute the function itself.

The reader is deferred to the full version [2] of this paper for a more thorough
treatment of the definitions for VC schemes.

4.1 Compiler Based on Input-Private VC

In this section we construct an outsourcing circuit compiler by using a VC
scheme that satisfies the properties of correctness, soundness, input-privacy and
outsourceability. Let Γ be a circuit; the idea is to invoke a VC scheme for the
function F corresponding to the functionality computed by Γ . The compiled cir-
cuit will consist of four main components ̂ΓProbGen, ̂ΓCompute, ̂ΓVerify, and ̂Γ$. The
first three components are the circuit representations of the algorithms ProbGen,
Compute and Verify corresponding to the underlying VC scheme; such compo-
nents hard-wire keys (SK,PK) generated using algorithm KeyGen. The fourth
component samples the random coins Ri to be used during each invocation of
the circuit. The production of component ̂ΓCompute will then be outsourced to
a single untrusted facility, whereas all other components are built in-house (as
their implementation needs to be trusted). Notice that the implementation of
algorithm KeyGen can be thought of as a pre-processing stage that runs only
once (and could be carried out in software).

An important observation is that the size of circuit ̂ΓVerify and ̂ΓProbGen is
independent, and much smaller, than the size of circuit ̂ΓCompute. As discussed in
the introduction, the size of ̂Γ$ can also be considered to be constant (consisting
only of a few gates). We describe our first compiler below in more details.

The Compiler Φ1
VC . Let Γ be a circuit, and VC = (KeyGen,ProbGen,Compute,

Verify) be a VC scheme for the function F implemented by Γ . Our first compiler
is depicted in Fig. 2, and can be described as follows.

1. First run (SK,PK) ← KeyGen(F , λ) once, obtaining the pair of keys
(SK,PK).

2. Let ̂ΓMemory be a circuit component consisting only of memory gates, as needed
by the original circuit Γ , storing the initial value of the private memory M1.

3. Let ̂Γ$ be a circuit outputting random coins ̂Ri (as needed in each invocation
of the compiled circuit).

4. Define a component for each function ProbGen, Compute and Verify of the VC
scheme as explained below.

– ̂ΓProbGen: This component embeds the secret key SK, and it takes three
inputs; the input Xi, the (current) private memory Mi, and random
coins ̂Ri := Ri||R′

i. It implements function ProbGenSK(Xi||Mi||Ri;R′
i),

that produces two outputs: an encoding ΣXi,Mi,Ri
, and a verification key

V KXi,Mi,Ri
.

– ̂ΓCompute: This component embeds the public key PK, and it takes as
input an encoding. It implements the function ComputePK(ΣXi,Mi,Ri

),
that produces the encoding ΣYi,Mi+1 of (Yi,Mi+1) = F(Xi,Mi;Ri) as
output.
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– ̂ΓVerify: This component embeds the secret key SK, and it takes two inputs;
the encoding ΣYi,Mi+1 and the verification key V KXi,Mi,Ri

. It implements
function VerifySK(V KXi,Mi,Ri

,ΣYi,Mi+1), to produce the output Yi ∈
{0, 1}∗ ∪{⊥}, and eventually update the circuit private memory to Mi+1.

5. The output of Φ1
VC is defined as follows. The first output is a (description

of the) compiled circuit ̂Γ as depicted in Fig. 2. The auxiliary information
aux consists of the components ̂ΓProbGen, ̂ΓCompute, ̂ΓVerify, ̂ΓMemory, and ̂Γ$, the
mapping function M that describes the physical connections between such
components (i.e., the arrows in Fig. 2), and the index set I = {2} specifying
the component ̂ΓCompute as a candidate for outsourcing.

Fig. 2. The description of compilers Φ1
VC . The green components (i.e., ̂ΓProbGen, ̂ΓVerify,

and ̂Γ$) need to be built in-house, while the production of the red component (i.e.,
̂ΓCompute) can be outsourced; the blue component (i.e., KeyGen) is built only once (not
necessarily in hardware). The dotted line depicts the circuit boundaries. The dotted
line depicts the circuit boundaries (Color figure online)

Remark 1 (On outsourcing memory gates). In the compiler depicted in Fig. 2,
̂ΓMemory is being built in-house. In order to outsource private memory to a poten-
tially malicious manufacturer we can modify the above compiler as follows:
instead of storing in ̂ΓMemory the value Mi in plaintext, we store C ← AESK′(Mi),
where C is the encryption of Mi using a symmetric, semantically secure authen-
ticated encryption scheme, with secret key SK ′. Moreover, ̂ΓProbGen is modified
such that when receiving the private memory value C, it first decrypts it using
SK′ and then executes the original circuit ̂ΓProbGen on the resulting plaintext.
We also substitute ̂ΓVerify so that it outputs the encryption of Mi+1, under SK ′.
This modification enables the simulator to execute the circuit using the all-zeros
bit-string as the initial memory value, and security follows by the semantic secu-
rity of the encryption scheme. Finally, whenever the decryption of C gives ⊥ the
circuit output is ⊥.
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The theorem below, whose proof appears in the full version [2] of the paper,
states that the compiler from Fig. 2 satisfies our strongest security notion (i.e.,
Definition 4 with � = 0), provided that the underlying VC scheme is correct,
sound, input-private, and outsourceable.

Theorem 1. Let Γ be an arbitrary circuit and let VC be a verifiable computation
scheme for the function F computed by Γ , satisfying the properties of correct-
ness, soundness, input-privacy and outsourceability. Then the compiler Φ1

VC is a
correct, (0, 1)-secure (o(1), 1)-outsourcing circuit compiler.

Proof idea. We give an intuition for the security proof. Correctness of the com-
piler and the fact that ρ = o(1) follow immediately, respectively, from the cor-
rectness and the outsourceability of the underlying VC scheme. As for security,
we need to build a simulator S that is able to “fake” the real experiment for all
adversaries A, for all circuits Γ , and for all initial memory values M1. The simu-
lator runs compiler Φ1

VC upon input Γ , forwards the circuit component ̂ΓCompute

to A obtaining a modified component ̂Γ ′
Compute, and re-assembles the compiled

circuit ̂Γ ′ plugging together all the required components. Thus, upon input a
query Xi from A, the simulator simply runs ̂Γ upon input Xi and using some
fixed memory (e.g., the all-zero string); if the output is invalid, S answers the
query with ⊥, and otherwise it answers the query by using black-box access to
the original circuit.

Intuitively, by soundness of the underlying VC scheme, whenever the output
of ̂Γ [Mi](·) is not ⊥, such value must be equal to the output of the function
F(·,Mi). On the other hand, the fact that the output is valid or not must be
independent of the actual memory used for the computation, as otherwise one
could break the input-privacy property of the VC scheme. With this in mind, one
can show the indistinguishability between the real and the simulated experiments
using a hybrid argument.

5 Case Study II: Multiple Manufacturers

In this section we focus on outsourcing compilers in the presence of multiple
manufacturers, aiming to improve the efficiency of the resulting circuit at the
expense of achieving security in the weaker model where there are m ≥ 2 man-
ufacturers, a t-fraction of which is malicious (for some threshold t ≤ m − 1).

Our solution, described in Sect. 5.1, is based on client-server multi-party com-
putation protocols.

5.1 Compiler Based on MPC

In this section we present our compiler based on a client-server multi-party
computation (MPC) protocol. The reader is referred to the full version [2] of
this paper for a formal definition of client-server MPC.
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The compiler ΦΠF . Let Γ be a circuit implementing the function F(M1, ·),
where for any X and i ∈ N, we have (Y,Mi+1) = F(Mi,X). Let ΠF =
(C,S,Enc,Dec,Next) be an r-round protocol realizing the function F , over a
set of m servers with a single client. The compiler produces ( ̂Γ , aux) ← ΦΠF (Γ ),
where

– ̂Γ is the circuit that implements ΠF having as a sub-circuit ̂ΓMemory, which
is a circuit consisting only of memory gates, as needed by the original circuit
Γ . During initialization, ̂ΓMemory stores the initial private memory value, M1.

– aux = (( ̂Γ1, . . . , ̂Γm+2),M, (I1, . . . , Im)), where
• ̂Γm+1 = ̂ΓEnc and ̂Γm+2 = ̂ΓDec, i.e., the circuits ̂Γm+1 and ̂Γm+2 imple-

ment the encoder, Enc, and the decoder Dec, of ΠF , respectively.
• For i ∈ [m], ̂Γi is the circuit that implements the code of the i-th server, for

the entire execution of ΠF (r-rounds). Those circuits can be implemented
in a straightforward way using the next message function Nexti.

• The mapping function M describes the physical connections between the
circuits described above, and Ij , for j ∈ [m], specifies the components
that will be outsourced to the manufacturer with index j. In our case
Ij = {J}.

• In case the original circuit is randomized, in addition to the components
described above, Φ also outputs a circuit ̂Γ$ producing random coins Ri

(as needed in each invocation of the circuit).

Our construction must be non-trivial (cf. Definition 4), thus the underlying
protocol Π must satisfy the following outsourceability property.

Definition 5 (Outsourceability of protocols). A protocol Π = (C,S,Enc,
Dec,Next) that realizes the function F can be outsourced if it satisfies the fol-
lowing condition: The circuit computing the encoding and decoding procedures
(Enc,Dec) must be smaller than the circuit computing the function F .

We prove the following result in the full version [2] of this paper:

Theorem 2. Let F be any function, and let ΠF be a (t,m)-private MPC pro-
tocol for F , satisfying the correctness and outsourceability properties. Then, the
compiler ΦΠF is a correct, (0, t)-secure, (o(1),m)-outsourcing circuit compiler.

6 Concrete Instantiations

In this section we propose several instantiations for the compilers analyzed in
the previous sections, highlighting several possible tradeoffs between security,
efficiency, and underlying hardness assumptions (Table 1).
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Table 1. Comparing our compilers in terms of security, efficiency, and hardness
assumptions. We write s, n, v for the size, number of inputs and number of outputs
of the original circuit Γ , respectively; as usual m denotes the number of servers of
which up to t might be corrupted (note that t = m corresponds to the case of a sin-
gle manufacturer). The values sin and sout denote, respectively, for the sizes of the
components built in house and the size of the outsourced components; d denotes the
number of multiplications in Γ . KoE stands for “Knowledge of Exponent” assump-
tions, FHE for “Fully-Homomorphic Encryption”, OT for “Oblivious Transfer” and
SHE for “Somewhat Homomorphic Encryption”. The first (colored) row represents the
compiler with a single outsourcing facility (m = 1), while the remaining rows represent
the compiler with multiple outsourcing facilities (m ≥ 2).

6.1 Case Study I

The area of verifiable computation has a long history in the cryptographic liter-
ature [4,16]. We refer the reader to the excellent survey by Walfish and Blum-
berg [35] for a thorough introduction. By now, several schemes and models for the
problem of outsourcing computation are known (see, among others, [1]). Below,
we focus only on single server VC schemes suitable for the single manufacturer
compiler.

Input Privacy. For the compiler of Sect. 4.1, we need a VC scheme satisfying
both soundness and input-privacy (in the presence of verification queries). The
only known schemes meeting these requirements are the ones constructed by
Fiore, Gennaro, and Pastro [15].

6.2 Case Study II

We describe below a few possible instantiations for the multiple manufacturers
compiler of Sect. 5.

Client-Server MPC. Many MPC protocols satisfy the outsourceability property,
as the values that feed the main computation, i.e., the output of the encoder,
are independent of the function that is being evaluated, and mostly depend on
the number of parties, as in the case of [17] (where the same holds for decoding).
An explicit (t,m)-private protocol is given in [12], for t < m/2, in which there is
a pre-processing phase that can be implemented by the encoder, with running
time independent of the function that is being evaluated. The construction uses
secure point-to-point and broadcast channels, that can be implemented directly
between the components, and besides privacy it also guarantees output delivery.

We can also easily adapt the SPDZ protocol [13] to the client-server set-
ting. The SPDZ protocol requires a pre-processing phase that is performed by
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the parties, and that will feed the encoder circuit who will perform the actual
encoding (which is only a linear operation). The complete protocol requires a
linear number of public-key operations in the circuit size s, with the encoder
requiring only a linear number of operations in m and the number of multipli-
cations of the original circuit. The efficiency of the pre-processing stage can be
further improved [5]. This construction does not guarantee output delivery, but
it is secure against adversaries that corrupt up to m − 1 sub-components.
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Abstract. Learning Parity with Noise (LPN) represents a notoriously
hard problem in learning theory and it is also closely related to the
“decoding random linear codes” problem in coding theory. Recently
LPN has found many cryptographic applications such as authentication
protocols, pseudorandom generators/functions and even advanced tasks
including public-key encryption (PKE) schemes and oblivious transfer
(OT) protocols. Crypto-systems based on LPN are computationally effi-
cient and parallelizable in concept, thanks to the simple algebraic struc-
ture of LPN, but they (especially the public-key ones) are typically ineffi-
cient in terms of public-key/ciphertext sizes and/or communication com-
plexity. To mitigate the issue, Heyse et al. (FSE 2012) introduced the
ring variant of LPN (Ring-LPN) that enjoys a compact structure and
gives rise to significantly more efficient cryptographic schemes. However,
unlike its large-modulus analogue Ring-LWE (to which a reduction from
ideal lattice problems can be established), no formal asymptotic studies
are known for the security of Ring-LPN or its connections to other hard-
ness assumptions.

Informally, we show that for μ = 1/n0.5−ε and δ = μμ′n = o(1):
assume that the decisional LPN problem of noise rate μ is hard even
when its matrix is generated by a random Ring-LPN instance of noise
rate μ′ (whose matrix is also kept secret in addition to secret and noise),
then either Ring-LPN of noise rate δ is hard or public-key cryptography is
implied. We remark that the heuristic-based approach to public random-
ness generation (as used in the assumption) is widely adopted in practice,
and the latter statement is less likely because noise rate μ = 1/n0.5−ε is
believed to reside in the minicrypt-only regime for LPN. Therefore, our
results constitute non-trivial evidence that Ring-LPN might be as hard
as LPN.
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1 Introduction

Learning Parity with Noise. The computational version of learning parity
with noise (LPN) assumption with secret size n ∈ N and noise rate 0 < μ < 1/2
postulates that given any q = poly(n) samples it is computationally infeasible for
any probabilistic polynomial-time (PPT) algorithm to recover the random secret

x $←− {0, 1}n given (A, A · x + e), where A is a random q × n Boolean matrix,
e follows Bq

μ = (Bμ)q, Bμ denotes the Bernoulli distribution with parameter
μ (i.e., taking value 1 with probability μ and value 0 otherwise), ‘·’ and ‘+’
denote (matrix-vector) multiplication and addition modulo 2 respectively. The
decisional LPN simply assumes that (A, A · x + e) is pseudorandom, which is
known to be polynomially equivalent to its computational version [6,10,32].

Hardness of LPN. The computational LPN problem can be seen as the
average-case analogue of the NP-complete problem “decoding random linear
codes” [8]. LPN has been also extensively studied in learning theory, and it
was shown in [22] that an efficient algorithm for LPN would allow to learn
several important function classes such as 2-DNF formulas, juntas, and any
function with a sparse Fourier spectrum. Under a constant noise rate, Blum
Kalai and Wasserman [11] solved LPN with time/sample complexity 2O(n/ log n).
Lyubashevsky [36] observed that one can produce almost as many LPN sam-
ples as needed using only q = n1+ε LPN samples (of a lower noise rate), which
implies a variant of the BKW attack [11] with time complexity 2O(n/ log log n)

and sample complexity n1+ε. If one is restricted to q = O(n) samples, then
the best attack has exponential complexity 2O(n) [39]. Quantum algorithms [21]
that build upon Grover search may achieve a certain level (up to quadratic) of
speedup over classic ones in solving LPN, which does not change the asymptotic
order (up to the constant in the exponent) of the complexity of the problem.
This makes LPN a promising candidate for “post-quantum cryptography”. Fur-
thermore, LPN enjoys simplicity and is more suited for weak-power devices (e.g.,
RFID tags) than other quantum-secure candidates such as Learning with Errors
(LWE) [41] as the many modular additions and multiplications in LWE would
be simplified to AND and XOR gates in LPN.

Symmetric-key Cryptography from LPN. The first cryptographic appli-
cation of LPN is lightweight authentication schemes (e.g. [28,31,32], see [1] for a
more complete list). Recently, Kiltz et al. [33] and Dodis et al. [18] constructed
randomized MACs from LPN, which implies a two-round authentication scheme
with man-in-the-middle security. Lyubashevsky and Masny [37] gave a more effi-
cient actively secure three-round authentication scheme from LPN and recently
Cash, Kiltz, and Tessaro [15] reduced the round complexity to 2 rounds. Apple-
baum et al. [5] used LPN to construct efficient symmetric encryption schemes
with certain key-dependent message (KDM) security. Jain et al. [30] constructed
an efficient perfectly binding string commitment scheme from LPN. We refer to
a recent survey [40] about cryptography from the LPN assumption.
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Public-key Cryptography from Low-noise LPN. All aforementioned
cryptographic applications reside in minicrypt1 and they rely on the hardness
of the standard LPN with constant noise (i.e., μ is a constant independent of
secret size n). Alekhnovich [3] constructed the first cryptomania application from
the low-noise LPN, in particular, he showed that LPN with noise rate O(1/

√
n)

implies CPA secure public-key encryption (PKE) schemes, and more recently
Döttling et al. [20] and Kiltz et al. [2] further showed that low-noise LPN alone
already suffices for PKE schemes with CCA (and even KDM [19]) security. David
et al. [17] showed how to construct universally composable Oblivious Transfer
(OT) protocols from low-noise LPN. Under low noise rate μ = O(1/

√
n), the

best attacks [7,9,34,35] solve LPN with time complexity 2O(μn). To see this,
consider an adversary who observes n LPN samples and trivially bets on the
noise e = 0, which occurs with probability (1 − μ)n ≈ e−μn, and one can trade
time for a noticeable success rate.

Security and Efficiency of LPN-Based PKE. It is more convenient to
use the “Hermite normal form” of LPN (see Definition 3) where the secret s is
also sampled from Bn

μ (instead of from uniform) with equivalent security [5] (see
Lemma 1). We depict in Fig. 1 a two-pass protocol by which Alice and Bob agree
on a single bit against passive adversaries, which is equivalent to an IND-CPA
secure PKE for single bit messages. That is, Alice samples a pair of keys (pk,
sk) and sends the public one pk to Bob, and Bob encrypts with pk his message
m and returns the ciphertext, which is decrypted with sk to m′. Correctness
requires the inner product of two noise vectors sampled from B2n

μ to be bounded
away from random (see Lemma 5), i.e.,

Pr[m = m′] = Pr
[
[sT1 , eT1 ] ·

[
e
s

]
= 0

]
≥ 1/2 + 2−O(μ2n),

and thus set μ = O(1/
√

n) to decrypt message with noticeable success probabil-
ity. However, the low noise rate makes the PKE scheme inefficient in terms of key
and ciphertext lengths. Further, the above only serves to show the feasibility by
encrypting a single bit (instead of many bits) with noticeable (instead of over-
whelming) successful decryption probability. A full-fledge scheme would need
to use many repetitions, i.e., S1 ∈ {0, 1}n×� and E1 ∈ {0, 1}n×� for � ∈ Ω(n)
(instead of sT1 ∈ {0, 1}n and eT1 ∈ {0, 1}n) and an error correction code, which
further deteriorate the efficiency. As estimated in [16], an 80-bit secure LPN-
based PKE already needs public keys of several megabytes, which is far from
practical. Note that one can use heuristic methods [4,12–14] to compress the
matrix A, e.g., use a PRG (with seed made public) or a hash function (mod-
elled as a random oracle) to expand a 256-bit random seed to generate as much
randomness as needed. But this does not resolve the problem as the other part
of public key b and the ciphertext (c1, c2) cannot be compressed.

1 minicrypt refers to Impagliazzo’s [29] hypothetical world where one-way functions
exist but public-key cryptography does not, and cryptomania is the more optimistic
world where public-key cryptography and multiparty computation are possible.
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Noise rate: µ = O(1/
√
n)

Alice Bob: m ∈ {0, 1}

A $←− {0, 1}n×n

sk = s ← Bn
µ

e ← Bn
µ

pk
def= A,b def= As+e

s1 ← Bn
µ

e1 ← Bn
µ

c1 := ATs1+e1

c2 := sT1 ·b+m
ciphertext= (c1, c2)

m′ := cT1 ·s − c2

Fig. 1. A two-pass protocol by which Bob transmits a message bit m to Alice with
passive security and noticeable correctness (for μ = O(1/

√
n)), where Bob receives

m′ = m + (sT1 · e) + (eT
1 · s).

Ring-LPN. Inspired by Ring-LWE [38], Heyse et al. [25] introduced the ring
variant of LPN (Ring-LPN) to improve the efficiency of LPN-based crypto-
systems. Informally, the computational (resp., decisional) Ring-LPN assumption
postulates that it is hard to recover s given (resp., distinguish from uniform the
following)

(a1, · · · ,aq,a1s + e1, · · · ,aqs + eq),

where a1, · · · ,aq
$←− {0, 1}n and s, e1, · · · , eq

$←− Bn
μ are treated as elements over

a ring R = F2[X]/(g) for some carefully chosen polynomial g of degree n. One
can compare the above with LPN with q′ = qn samples, i.e., the (qn)×n matrix
A is parsed as square submatrices matrices A1, · · · , Aq, and instead of chosen
from uniform each Ai is succinctly described using a random ring element ai,
i.e., Ai = mat(ai) such that for every s ∈ {0, 1}n the product of the two ring
elements ai ·s always equals to the matrix-vector product mat(ai) ·s. As depicted
in Fig. 2, this yields very efficient constructions with public-key/ciphertext size
O(n), and based on a variant of Ring-LPN, D̊amgard and Park [16] constructed
a nearly practical PKE with 128-bit security and 36-kilobyte ciphertext.

Security of Ring-LPN. Unlike its large-modulus analogue Ring-LWE to
which reductions are known from ideal lattices [38], Ring-LPN is short of any
formal security treatments. When introducing Ring-LPN, the authors of [25]
suggested a couple of “judicious” choices2 for the underlying ring polynomial
for which no attacks are known other than generic ones for standard LPN. For
example, simply use a polynomial g of degree n that is irreducible over F2 to
enjoy at least the following good properties:

2 Indeed, it is necessary to use “good” polynomials as otherwise there are specific
attacks [23,24] utilizing the “bad” structure of the underlying polynomials of Ring-
LPN and Ring-LWE.
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Noise rate: µ = O(1/
√
n)

Alice Bob: m ∈ {0, 1}k

a $←− {0, 1}n

sk = s ← Bn
µ

e ← Bn
µ

pk
def= a,b def= as+e

s1 ← Bn
µ

e1 ← Bn
µ

c1 := as1+e1

c2 := bs1 + ECC(m)
ciphertext= (c1, c2)

m′ := ECC−1(c1s − c2)

Fig. 2. A two-pass key-agreement protocol (and an IND-CPA public-key encryption
scheme) by which Bob transmits a message bit m to Alice with passive security, where
μ = O(1/

√
n) and (ECC, ECC−1) is the encoding and decoding functions of an error cor-

rection code such that Bob receives m = ECC−1(ECC(m)+s1e+se1) with overwhelm-
ing probability, and algebraic operations are carried out over a ring R = F2[X]/(g) for
some polynomial g of constant weight [16].

1. Linear independence. For any non-zero a ∈ R = F2[X]/(g) with irre-
ducible g, square matrix A = mat(a) always has full-rank.3

2. Uniformity. Every row/column of A = mat(a) is uniformly random on its
own (i.e., not jointly with others) if the underlying a is drawn uniformly at
random.

However, to our best knowledge, it remains an open problem whether one can
establish formal reductions (or non-trivial connections) from LPN to Ring-LPN.

Our Contributions. We informally state our main findings as the theorem
below.

Theorem 1 (main results, informal). Let n be the security parameter, let
μ = μ(n), μ′ = μ′(n), δ = δ(n) and q = poly(n) such that δ = μμ′n = o(1).
Then, the following hardness assumptions are closely related in certain senses
(to be explained below).

1. The decisional LPN assumption with noise rate μ.
2. The decisional LPN assumption with noise rate μ except that the matrix is

generated from a random Ring-LPN instance with noise rate μ′, where matrix,
secret and noise of Ring-LPN are all kept secret.

3. The decisional Ring-LPN assumption with noise rate δ.

Notice that we essentially aim to show that Assumption 1 is likely to imply
Assumption 3, and to this end (inspired by the hybrid argument) we insert
an intermediate one Assumption 2, for which we argue that for i ∈ {1, 2}
Assumption i (hopefully) leads to Assumption i+1 either due to heuristic based
approaches widely adopted in practice or theoretic barriers of known techniques.
3 Otherwise (i.e., if A has no full rank), there exists x �= 0 s.t. Ax = ax = 0, which

is not possible for nonzero elements a and x over a field.
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Assumption 1 → Assumption 2. This implication is immediate if we addi-
tionally assume Ring-LPN but then it renders the statement meaningless. How-
ever, we argue that this additional assumption may not be necessary as in this
case even the matrix of Ring-LPN is kept secret. Furthermore, similar heuristic-
based approaches for generating public matrix were also adopted by postquan-
tum public-key cryptographic schemes such as Frodo [14], New Hope [4] and
Kyber [12], where either a RO or a PRG (with seed made public) is used to gen-
erate as much public randomness as needed without a formal proof in standard
model.
Assumption 2 → Assumption 3. We give a win-win result (see Lemma 6)
that under Assumption 2 we have that either Assumption 3 holds, or otherwise
Assumption 2 implies public-key cryptography in a security-preserving manner,
which is unlikely for μ = 1

n0.5−ε .

How to Interpret the Results. We stress that the above is not a proof
that LPN implies Ring-LPN. Instead, it essentially states that, either it is not
even secure to use Ring-LPN for generating public randomness for LPN (e.g.,
when the ring is defined with respect to a “bad” polynomial that introduces
vulnerability and results in a malformed matrix), or that for certain meaningful
noise rates, e.g., μ = 1/n2/5, μ′ = 1/n3/4 and δ = 1/n3/20, LPN of noise rate μ =
1/n2/5 implies either Ring-LPN or public-key cryptography, where the latter is
beyond Alekhnovich’s 1/

√
n noise regime and thus very unlikely (see discussions

in [40, Footnote 4]).

2 Preliminaries

Notations and Definitions. Column vectors are represented by bold lower-
case letters (e.g., s), row vectors are denoted as their transpose (e.g., sT), and
matrices are denoted by bold capital letters (e.g., A). |s| refers to the Hamming
weight of binary string s. We use Bμ to denote the Bernoulli distribution with
parameter μ, while Bq

μ denotes the concatenation of q independent copies of Bμ.

x $←− X refers to drawing x from set X uniformly at random, and x ← X means
drawing x according to distribution X. We use Un to denote a uniform distri-
bution over {0, 1}n and independent of any other distribution in consideration.

For a ring R = F2[X]/(g) defined with polynomial g of degree n, s $←− R and
s ← BR

μ refer to (and are often used interchangeably with) sampling ring element

s according to s $←− {0, 1}n and s ← Bn
μ respectively. For ring element a, s ∈ R we

use mat(a) ∈ {0, 1}n×n and vec(s) ∈ {0, 1}n×1 to denote their respective matrix
and (column) vector representations such that vec(a · s) ≡ mat(a) · vec(s), where
vec(·) is often omitted. We use log(·) to denote the binary logarithm. A function
negl(·) is negligible if for any positive constant Nc we have that negl(n) < n−Nc

for all sufficiently large n.

Sample Complexity. In general, the polynomial security of LPN and its
variants considers adversaries who are not bounded to the number of samples
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(other than that he is polynomially bounded in running time). However, for more
quantitative reductions, we define the variants of LPN with sample complexity
bounded by a certain polynomial. Standard (polynomial) security requires that
the hardness holds with respect to all polynomials, e.g., we consider the compu-
tational LPN problem as hard if for every q = poly(n) the (n, μ, q)-LPN problem,
as defined below, is hard.

Definition 1 (Learning Parity with Noise). Let n be the security parameter,
and let μ = μ(n) and q = poly(n). The decisional LPN problem with secret length
n, noise rate 0 < μ < 1/2 and sample complexity q, denoted by (n, μ, q)-DLPN,
is hard if for every PPT algorithm D

∣∣ Pr[D(A, A · x + e) = 1] − Pr[D(A, r) = 1]
∣∣ = negl(n), (1)

and the computational LPN problem with the same n and μ and q, denoted by
(n, μ, q)-LPN, is hard if for every PPT algorithm D we have

Pr[ D(A, A · x + e) = x ] = negl(n), (2)

where q × n matrix A $←− {0, 1}q×n, x $←− {0, 1}n, e ← Bq
μ and r $←− {0, 1}q.

The ring version of the Learning Parity with Noise (Ring-LPN) problem
is defined same as Definition 1 except that algebraic operations are performed
between ring elements.

Definition 2 (Ring-LPN). Let n be the security parameter, and let μ = μ(n)
and q = poly(n). The decisional Ring-LPN problem with secret length n, noise
rate 0 < μ < 1/2 and sample complexity q, denoted by (n, μ, q)-Ring-DLPN, is
hard if for every PPT algorithm D we have
∣∣ Pr[D(a1, · · · ,aq,a1·x+e1, · · · ,aq·x+eq) = 1]−Pr[D(a1, · · · ,aq, r1, · · · , rq) = 1]

∣∣
(3)

equals negl(n), and the computational Ring-LPN problem with the same n, μ and
q, denoted by (n, μ, q)-Ring-LPN, is hard if for every PPT algorithm D we have

Pr[D(a1, · · · ,aq,a1 · x + e1, · · · ,aq · x + eq) = x] = negl(n), (4)

where a1, · · · ,aq,x, r1, · · · , rq
$←− R and e1 · · · , eq ← BR

μ , ‘+’ and ’·’ denote
additions and multiplications over R = F2[X]/(g) for certain polynomial g of
degree n respectively.

The (Hermite) normal form of LPN/Ring-LPN is defined the same as the
standard counterpart except that the secret is also sampled from the Bernoulli
distribution. The normal form is equivalent to the standard form by Lemmas 1
and 2.
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Definition 3 (Normal form of LPN/Ring-LPN). The normal form of com-
putational/decisional LPN (resp., Ring-LPN) problem with secret length n, noise
rate 0 < μ < 1/2 and sample complexity q, denoted by (n, μ, q)-N-LPN/N-DLPN
(resp., (n, μ, q)-N-Ring-LPN/N-Ring-DLPN), is defined same as in Definition 1
(resp., Definition 2) except that x ← Bn

μ (resp., x ← BR
μ ) instead of from uni-

form.

As stated in Lemmas 1 and 2, the standard form of LPN/Ring-LPN is equiva-
lent to its normal form counterpart and thus we can use them almost interchange-
ably. The reduction [5] easily extends to Ring-LPN [25] although [5] appeared
earlier than [25].

Lemma 1 (Standard-to-normal reduction [5]). Let n be the security
parameter, and let μ = μ(n) and q = poly(n). We have the following impli-
cations:

– (n, μ, q + n)-LPN → (n, μ, q)-N-LPN;
– (n, μ, q + n)-DLPN → (n, μ, q)-N-DLPN;
– (n, μ, q + 1)-Ring-LPN → (n, μ, q)-N-Ring-LPN;
– (n, μ, q + 1)-Ring-DLPN → (n, μ, q)-N-Ring-DLPN.

Lemma 2 (Normal-to-standard reduction, folklore). Let n be the secu-
rity parameter, and let μ = μ(n) and q = poly(n). We have the following impli-
cations:

– (n, μ, q)-N-LPN → (n, μ, q)-LPN;
– (n, μ, q)-N-DLPN → (n, μ, q)-DLPN;
– (n, μ, q)-N-Ring-LPN → (n, μ, q)-Ring-LPN;
– (n, μ, q)-N-Ring-DLPN → (n, μ, q)-Ring-DLPN.

Computational and decisional LPN are equivalent even for same sample com-
plexity [6].

Lemma 3 (Computational-and-decisional equivalence for LPN [6]). Let
n be the security parameter, and let μ = μ(n) and q = poly(n). We have the
following implications:

– (n, μ, q)-LPN → (n, μ, q)-DLPN → (n, μ, q)-LPN;
– (n, μ, q)-N-LPN → (n, μ, q)-N-DLPN → (n, μ, q)-N-LPN.

Lemma 4 (Decisional-to-computational reduction for Ring-LPN, folk-
lore). Let n be the security parameter, and let μ = μ(n) and q = poly(n). We
have the following implications:

– (n, μ, q)-Ring-DLPN → (n, μ, q)-Ring-LPN;
– (n, μ, q)-N-Ring-DLPN → (n, μ, q)-N-Ring-LPN.
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In summary, decisional and computational LPN, whether in standard or nor-
mal form, are polynomially equivalent. As for Ring-LPN, a computational-to-
decisional reduction remains an open problem. Thus, it would be ideal to estab-
lish a connection (or even a reduction) from LPN to decisional Ring-LPN (which
in turn implies computational Ring-LPN by Lemma4). This is the problem we
tackle in this paper, for which we make some non-trivial progress.

Lemma 5 (Piling-up lemma). For 0 < μ < 1/2 and random variables E1,
E2, · · · , E� that are i.i.d. to Bμ we have

Pr
[ �⊕

i=1

Ei = 0
]

=
1
2
(1 + (1 − 2μ)�) =

1
2
(1 + 2−cμ�),

where cμ = log 1
1−2μ = 2μ/ ln 2 + o(μ) due to μ = o(1) and ex = 1 + x + o(x) for

|x| = o(1).

3 Main Results

Unlike its large-modulus analogue Ring-LWE to which reductions are known
from ideal lattices [38], Ring-LPN is short of formal security treatments of any
sort, e.g., we do not known how the security of Ring-LPN relates to that of
LPN. To fill this gap, below we argue that Ring-LPN may be as nearly secure as
the LPN problem (of a slightly lower noise rate) as long as Ring-LPN can serve
certain heuristic purposes (for public randomness generation). In particular, we
establish the connection by a hybrid of hardness assumptions called Assumptions
1, 2 and 3 respectively. Assumption 1 is LPN (recall that standard LPN and its
normal form, either decisional or computational, are all equivalent). Assumption
3 is the normal form of decisional Ring-LPN, which implies (standard or normal)
computational/decisional Ring-LPN. We insert Assumption 2 as an intermediate
one in between Assumptions 1 and 3, and argue the connections between adjacent
ones as below.

Theorem 2 (main results, informal). Let n be the security parameter, let
μ = μ(n), μ′ = μ′(n), δ = δ(n) and q = poly(n) such that δ = μμ′n = o(1).
Then, we consider the following hardness assumptions as closely related (to be
explained below).

1. Conservative. (n, μ, nq)-N-DLPN.
2. De facto. (n, μ, nq)-N-DLPN except that the matrix is generated with (n,

μ′, q)-N-Ring-DLPN. That is, it is computationally infeasible to distinguish
between

(B,Bs + e1) and (B, r)

where s ← Bn
μ, e1 ← Bnq

μ , r $←− {0, 1}nq and instead of chosen from uniform,

we let B = A · X + E (see matrix visualization below) for A $←− Rq×1, X ←
(BR

μ′)1×n and E ← (BR
μ′)q×n.
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3. Idealized. (n, δ, q)-N-Ring-DLPN.

A def=

⎡
⎢⎣
mat(a1)

...
mat(aq)

⎤
⎥⎦ , X def= [x1, · · · ,xn] , E def=

⎡
⎢⎢⎢⎣

e11, e12, · · · , e1n

e21, e22, · · · , e2n

...
...

. . .
...

eq1, eq2, · · · , eqn

⎤
⎥⎥⎥⎦ ,

B := A · X + E =

⎡
⎢⎢⎢⎣

a1x1 + e11, a1x2 + e12, · · · , a1xn + e1n

a2x1 + e21, a2x2 + e22, · · · , a2xn + e2n

...
...

. . .
...

aqx1 + eq1, aqx2 + eq2, · · · , aqxn + eqn

⎤
⎥⎥⎥⎦ ∈ {0, 1}qn×n.

Alice

a1, · · · ,aq
$←− {0, 1}n

X ← Bn×n
µ′ ,E ← Bqn×n

µ′

B := A · X+E

m′ $←− D(A, r)

Bob

s ← Bn
µ

e1 ← Bqn
µ

m
$←− {0, 1}

if m = 1 then r := Bs+ e1

else if m = 0 then r $←− {0, 1}qn

B

r

Fig. 3. A two-pass key agreement protocol that enables Alice and Bob agree on a single
key bit, where the passive security is ensured by Assumption 2 and the (noticeable)
correctness is guaranteed by any efficient distinguisher D that falsifies Assumption 3.

Assumption 1 → Assumption 2. A reduction can be established if we addi-
tionally assume (n, μ′, q)-N-Ring-DLPN as B = A ·X+E is an instance of n-fold
(n, μ′, q)-Ring-LPN by a hybrid argument (but then the statement becomes
meaningless). However, we argue that this may not be necessary as the matrix
A can also be a secret and in practice we may not even need pseudorandom-
ness for public matrix. Intuitively, the operations of A · X + E may already
destroy the ring structures in A sufficiently enough in order to safely replace a
random matrix in standard LPN. In fact, similar heuristic-based approaches for
generating public matrix were also adopted by postquantum public-key crypto-
graphic schemes such as Frodo [14], New Hope [4] and Kyber [12], where either
a RO (instantiated by hash functions) or a PRG (with seed made public) is
used to generate as much public randomness as needed without a formal proof
in standard model.

Lemma 6 (Assumption 2 → Assumption 3). Under assumption 2, i.e., the
(n, μ, nq)-LPN problem is hard even when the public matrix is replaced with
B = A · X + E, then at least one of the following is true:
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1. Assumption 3 holds, i.e., the (n, δ, q)-N-Ring-DLPN problem is hard;
2. IND-CPA secure PKEs are implied.

Proof. The idea is to show that if Assumption 3 does not hold then a key agree-
ment protocol depicted in Fig. 3 is implied (for at least infinitely many n’s).
Under assumption 2, i.e., (B,Bs+e1) is computationally indistinguishable from

(B, r $←− {0, 1}nq) and thus passive security of the protocol is guaranteed. Fur-
ther, we observe that

Bs + e1 = (AX + E)s + e1 = A( Xs︸︷︷︸
∼Bn

δ

) + (Es + e1︸ ︷︷ ︸
∼Bqn

δ

),

where 0.99μn ≤ |s| ≤ 1.01μn except with probability 2−Ω(μn) by a Chernoff
bound, and conditioned on any fixed s of weight roughly μn, Xs and Es + e1
independently follow Bn

δ and Bqn
δ respectively for δ being the noise rate of taking

the XOR sum of μn independent samples from Bμ′ , i.e., by Lemma 5 and ex ≈
1 + x for |x| = o(1) we have

δ ≈ 1
2
(1 − 2− 2μμ′n

ln 2 ) =
1
2
(1 − e−2μμ′n) ≈ μμ′n.

In other words, (A,Bs + e1) is a random instance of (n, δ, q)-N-Ring-DLPN. If
Assumption 3 does not hold, there exist a PPT D and polynomial p = poly(n)
such that the following holds for at least infinitely many n’s:

Pr[D(A,Bs + e1) − 1] − Pr[D(A, r $←− {0, 1}nq) = 1] ≥ 1
p
.

This implies that Alice is able to decrypt m with at least noticeable probability:

Pr[m′ = m] = Pr[m = 1]︸ ︷︷ ︸
1/2

·Pr[m′ = 1|m = 1] + Pr[m = 0]︸ ︷︷ ︸
1/2

·Pr[m′ = 0|m = 0]︸ ︷︷ ︸
1−Pr[m′=1|m=0]

= 1/2 + (Pr[m′ = 1|m = 1] − Pr[m′ = 1|m = 0])/2

= 1/2 +
Pr[D(A,Bs + e1) − 1] − Pr[D(A, r $←− {0, 1}nq) = 1]

2

≥ 1/2 +
1
2p

.

Using parallel repetition and privacy amplification, it is known [26,27] that any
two-round protocol which achieves bit-agreement with noticeable correlation can
be turned into a full-fledged two-round key-agreement protocol, which further
implies an IND-CPA secure public-key encryption.

In summary, we did not manage to obtain a direct proof, and we believe such
a reduction is beyond the reach of conventional techniques. Instead, we estab-
lish some weak (but non-trivial) connections. Informally speaking, our results
state that either it is not even secure to use Ring-LPN for generating public
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randomness for LPN (e.g., when the ring is defined with respect to a “bad”
polynomial that introduces vulnerability and results in a malformed matrix), or
that (n, μ, nq)-LPN may imply either (n, δ, q)-Ring-LPN or public-key encryp-
tions. The latter case is very unlikely, especially for certain parameter settings,
e.g., for μ = 1/n2/5, μ′ = 1/n3/4 (and thus δ ≈ 1/n3/20) it is unlike to build
a PKE from LPN of a noise rate 1/n2/5, which is beyond Alekhnovich’s 1/

√
n

noise regime, and therefore (n, 1/n3/20, q)-N-Ring-DLPN is hard. In fact, even
for μ ≤ 1/

√
n it would be interesting to see any LPN-based PKE that does not

follow the Alekhnovich’s blueprint in Fig. 1, but a quite exotic one as in Fig. 3.
In fact, the only LPN-based PKE beyond the 1/

√
n noise regime [42] has only

quasi-polynomial security. This possibility can be ruled out as the PKE in Fig. 3
is roughly as secure as the underlying LPN.

4 Conclusion

We provide some non-trivial evidence that Ring-LPN might be as hard as LPN,
assuming the heuristic approach for public randomness generation in practice is
secure and utilizing the known infeasible noise regimes for LPN-based public-key
cryptography.
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Abstract. Cloud storage enables its users to store confidential informa-
tion as encrypted files in the cloud. A cloud user (say Alice) can share
her encrypted files with another user (say Bob) by availing proxy re-
encryption services of the cloud. Proxy Re-Encryption (PRE) is a cryp-
tographic primitive that allows transformation of ciphertexts from Alice
to Bob via a semi-trusted proxy, who should not learn anything about
the shared message. Typically, the re-encryption rights are enabled only
for a bounded, fixed time and malicious parties may want to decrypt or
learn messages encrypted for Alice, even beyond that time. The basic
security notion of PRE assumes the proxy (cloud) is semi-trusted, which
is seemingly insufficient in practical applications. The proxy may want
to collude with Bob to obtain the private keys of Alice for later use.
Such an attack is called collusion attack, allowing colluders to illegally
access all encrypted information of Alice in the cloud. Hence, achieving
collusion resistance is indispensable to real-world scenarios. Realizing
collusion-resistant PRE has been an interesting problem in the ID-based
setting. To this end, several attempts have been made to construct a
collusion-resistant IB-PRE scheme and we discuss their properties and
weaknesses in this paper. We also present a new collusion-resistant IB-
PRE scheme that meets the adaptive CCA security under the decisional
bilinear Diffie-Hellman hardness assumption in the random oracle model.

Keywords: Identity-based proxy re-encryption · Collusion-resistance
Random oracle · Unidirectional · CCA-secure

1 Introduction

Cloud security is imperative in recent years owing to the popularity of cloud data
storage and transmission. In order to preserve data privacy, users rely on stan-
dard encryption mechanisms that encrypt data using their public keys prior to
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cloud storage. Enabling secure data sharing in the cloud calls for fast and secure
re-encryption techniques for managing encrypted file systems. Blaze, Bleumer
and Strauss [3] introduced the concept of Proxy Re-encryption (PRE) towards
an efficient solution that offers delegation of decryption rights without compro-
mising privacy. PRE allows a semi-trusted third party termed proxy to securely
divert encrypted files of user A (delegator) to user B (delegatee) without reveal-
ing any information about the underlying files to the proxy. In the cloud scenario,
the file owner shares a re-encryption key with the proxy (designated server in the
cloud) who is assumed semi-trusted. PRE systems are classified as unidirectional
and bidirectional based on the direction of delegation. They are also classified
as single-hop and multi-hop based on the number of re-encryptions permitted.
In this work, we focus on unidirectional and single-hop PRE schemes.

In a single-hop environment, a user A uses the cloud to store encrypted infor-
mation and further sets the cloud as a proxy to allow re-encryption, thereby
maintaining two kinds of encrypted data. The first kind called first-level cipher-
text is the encrypted data that A would like to share with others. These kinds
of data are subject to re-encryption and the cloud performs the conversion as a
service upon receiving the re-encryption key (re-key) from user A, re-encrypting
towards user B. The second kind called second-level ciphertext, is the encrypted
data re-encrypted towards A by a user C. Note that the second-level ciphertexts
of A cannot be re-encrypted again with the re-key of A, as the PRE scheme is
single hop. The re-key is created as a function of the private key of A, the public
key of B and possibly some keys associated with the cloud. Hence, it is natural to
ask if B and the cloud can collude and acquire the private key of A. To motivate
such a collusion, we observe the following two scenarios. Firstly, a malicious user
B and a colluding cloud with a re-key may want to obtain the hidden messages
in the second-level ciphertexts of A, which can be realized only using the private
key of A. Again, the re-encryption rights are enabled for a bounded, fixed period
and malicious parties may want to decrypt ciphertexts of A even beyond that
period. Such an attack where a colluding cloud and a delegatee B obtains the pri-
vate key of A is termed collusion attack. Preventing collusion attack is one of the
major important problems in the context of cloud storage and computing. When
the private key of A is obtained, the cloud and user B can cause total damage to
user A in every possible way. Such a disclosure could be misused to the detriment
of the delegator A such as unauthorized sharing of his confidential files, financial
loss and identity theft. This marks collusion-resistance as a crucial property in
proxy re-encryption; it achieves re-encryption by placing minimal trust on the
proxy. Besides cloud storage, PRE can be applied to secure encrypted electronic
mail forwarding, distributed system storage, outsourced filtering of encrypted
spam, DRM of apple iTunes among others [1,2,15].

Identity-based PRE was introduced by Green and Ateniese [8] as a solution
to the certificate management problem in the PKI based PRE schemes. Of all
the properties offered by identity-based proxy re-encryption (IB-PRE), collusion
resistance is the most desirable as it preserves the private key of the delegator
even during an event of collusion between the proxy and delegatees. This would
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enable re-encryption in several real-time scenarios, such as secure sharing of files
in a cloud with an untrusted server. In this paper, we study IB-PRE in the light
of collusion resistance and propose a CCA-secure IB-PRE scheme that achieves
the same based on Decisional Bilinear Diffie Hellman (DBDH) assumption and
its variants in the random oracle model.

1.1 Related Works and Contribution

In ACNS 2007, Green and Ateniese [8] presented the first two constructions of
IB-PRE, one being CPA-secure and the other being CCA-secure using bilin-
ear pairing based on the Decisional Bilinear Diffie-Hellman assumption in the
random oracle model. Their scheme is unidirectional, non-interactive, permits
multiple re-encryptions but does not offer security against collusion attacks.

In this paper, we address the open problem proposed in [10] to design a
non-interactive collusion-resistant IB-PRE scheme. Although several attempts
have been made to achieve collusion-resistance in the identity based setting, all
existing results are shown to either have some weaknesses or be insecure. In the
collusion-resistant IB-PRE scheme given by Wang et al. [18] in the random oracle
model, the re-keys are constructed using the master secret key which involves
the PKG, making the scheme highly infeasible. Since the PKG is responsible
for the generation of private keys, achieving delegation with the involvement of
the PKG is trivial but undesirable. In [13], a generic construction for a collusion
resistant IB-PRE has been given based on threshold cryptosystem and key-
management in IBE. However, their encryption algorithm involves splitting the
private keys of the delegator into two components and publishing two public keys
corresponding to the private keys. This is equivalent to the PKI setting, as the
public keys require certification. Wang et al. [19] proposed a collusion-resistant
IB-PRE scheme which is CPA-secure for the first-level ciphertext and CCA-
secure for the second level ciphertext in the standard model based on the eDBDH
assumption. In 2013, Han et al. [9] presented a CPA secure collusion-resistant IB-
PRE scheme in the standard model based on the DBDH assumption. In 2015, Qiu
et al. [12] proposed a collusion-resistant IB-PRE scheme in the standard model.
However, in 2016, Zhang et al. [20] showed that the scheme presented in [12] is
vulnerable to collusion attacks. They also proposed a new identity-based proxy
re-encryption scheme withstanding collusion attack and chosen ciphertext attack
in the standard model. Note that both the collusion-resistant PRE schemes [9,20]
make use of the information from the ciphertext components in the process of
re-key generation. This clearly forces the user to create a separate delegation
key for every ciphertext being translated. In the standard definition of PRE, a
re-encryption key is generated only once between two parties (delegator A and
delegatee B), irrespective of the number of ciphertexts being translated. But in
[9,20], for every delegation between A and B, A needs to generate a new re-
encryption key being delegated from A to B. This enforces the fact that user A
needs to be online along with the proxy for converting every ciphertext towards
user B. In fact, this is equivalent to the decrypt-and-then-encrypt functionality.
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Note that making use of the knowledge of information from the ciphertext to
generate re-keys is simple and trivial but makes the scheme highly impractical.

In our work, we address the open problem on collusion-resistance in the ID-
based setting, affirmatively adhering to the standard definition of PRE. Ever
since the problem is proposed, it has remained as a challenging problem. In
the recent past, certain attempts have been made but most of them have either
major drawbacks or serious flaws as discussed. A summary of IB-PRE schemes is
provided in Table 1 in the context of collusion-resistance, alongside our scheme.
Our collusion-resistant IB-PRE scheme is based on the IBE scheme of Boneh
and Franklin [4] and BLS short signature [5] and satisfies adaptive CCA security
based on standard assumptions called the Decisional Diffie-Hellman assumption
(DBDH) and its variant (m-DBDH). The proof of CCA security is considered
in the random oracle model. The proof of collusion resistance of our scheme is
based on modified Computational Diffie Hellman assumption(m-CDH).

Table 1. A summary of IB-PRE schemes in the context of collusion-resistance.

Scheme Security Proof

model

Delegation process

involves

Underlying

assumption

Remarks

Wang et al. [18] CCA RO PKG, Delegator DBDH PKG involvement for

collusion-resistance makes scheme

infeasible

Wang et al. [19] CPA∗ Standard Delegator eDBDH Questionable or unproven claims∗

Han et al. [9] CPA Standard Ciphertext

Components and

Delegator

DBDH Re-key generation involves

delegator and ciphertext

components for

collusion-resistance, standard

PRE definition not satisfied

Qiu et al. [12] CCA Standard Delegator DBDH Collusion attack reported in [20]

Zhang et al. [20] CCA Standard Ciphertext

Components and

Delegator

DBDH Re-key generation involves

delegator and ciphertext

components for

collusion-resistance, standard

PRE definition not satisfied

Our scheme CCA RO Delegator DBDH Collusion-resistant, adheres to

standard PRE definition

*The proof of security in [19] is questionable as simulating the challenge ciphertext solves the discrete log

problem, discussed in details in Sect. 5.

2 Preliminaries

2.1 Bilinear Maps

A map ê : G1 ×G1 → GT is a bilinear map if it satisfies the following conditions:

1. G1, GT are of the same prime order q.
2. For all a, b ε Z

∗
q , g ε G1, ê(ga, gb) = ê(g , g)ab.

3. The map is non-degenerate, i.e., if G1 = 〈g〉, then GT = 〈ê(g , g)〉.
4. ê is efficiently computable.
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2.2 Hardness Assumption

We state the computational hardness assumptions that we use to prove the
security of our scheme. Let G1, GT be cyclic groups with prime order q and
ê : G1 × G1 → GT be an admissible bilinear map.

m-Computational Diffie-Hellman (m-CDH) Assumption [16]: The mod-
ified Computational Diffie-Hellman (m-CDH) assumption in G1 is, given a tuple
of elements (g , ga , gb , g

1
b , g

a
b ) ∈ G1

5, where a, b ∈R Z
∗
q , there exists no PPT

adversary which can compute gab in G1, with a non-negligible advantage.

Decisional Bilinear Diffie-Hellman (DBDH) Assumption: The Decisional
Bilinear Diffie-Hellman (DBDH) assumption in G1, GT is, given a tuple of ele-
ments (g , ga , gb , gc ,T ) ∈ G1

4 × GT , where a, b, c ∈R Z
∗
q , there exists no PPT

adversary which can decide whether T = ê(g , g)abc or T is a random element in
GT , with a non-negligible advantage.

m-Decisional Bilinear Diffie-Hellman (m-DBDH) Assumption [17]: The
modified-Decisional Bilinear Diffie-Hellman (m-DBDH) assumption in G1, GT

is, given a tuple of elements (g , ga , g
1
a , g

1
b , g

a
b , gb , gc ,T ) ∈ G1

7 × GT , where
a, b, c ∈R Z

∗
q , there exists no PPT adversary which can decide whether T =

ê(g , g)abc or T is a random element in GT , with a non-negligible advantage.

3 Definition and Security Model

3.1 Definition

In this section, we describe the syntactical definition of our single-hop unidirec-
tional IB-PRE scheme. An IB-PRE scheme consists of the following algorithms.

– Setup(λ): The PKG runs this probabilistic algorithm that takes a security
parameter λ as input and outputs the public parameters params, which is
shared with all the users, and the master secret key msk is kept private.

– KeyGen(msk, idi, params): This is a probabilistic algorithm run by the
PKG which on input of the master secret key msk and a user identity idi ∈
{0, 1}∗, outputs the private key skidi

of the user identity idi, which is securely
communicated to the user.

– ReKeyGen(skidi
, id j , params): The delegator runs this probabilistic algo-

rithm and takes as input its private key skidi
and the public key of the delega-

tee id j to generate a re-encryption key RKi→j from id i to id j . The delegator
then sends the re-encryption key to the proxy via a secure channel.

– Encrypt(m, idi , params): The sender runs the encryption algorithm which
takes as input a message m ∈ M and an identity idi under which m is
encrypted. It outputs the ciphertext C, which is termed as first-level cipher-
text.

– Decrypt (C, skidi
, params): The decryption algorithm is a deterministic

algorithm run by the delegator. On input of a first-level ciphertext C and the
delegator’s private key skidi , the algorithm outputs message m ∈ M or the
error message “INVALID CIPHERTEXT”.
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– Re-Encrypt(C, RKi→j , params): This is a probabilistic algorithm run
by the proxy which takes as input the first-level ciphertext C and the re-
encryption key RKi→j and outputs the re-encrypted ciphertext D, termed as
second-level ciphertext.

– Re-Decrypt(D, skidj , params): This is a deterministic algorithm run by
the delegatee. On input of the second-level ciphertext D and the delegatee’s
private key skidj

, the algorithm outputs the original message m ∈ M or the
error message “INVALID CIPHERTEXT”.

The consistency of an IB-PRE scheme for any given public parameters params
and a key pair (idi, skidi

), (idj , skidj
) is defined as follows:

1. Consistency between encryption and decryption:

Decrypt(Encrypt(m, id i , params), sk idi
, params) = m,∀m ∈ M.

2. Consistency between re-encryption and re-decryption:

Re − Decrypt(D, sk idj
, params) = m,∀m ∈ M,

where D ← Re-Encrypt(C,RKi→j , params), C ← Encrypt(m, idi, params).

3.2 Security Model

In this subsection, we define the security notions of our IB-PRE scheme. In
IB-PRE, there are two levels of ciphertexts, the first-level and the second-level
ciphertext, and it is crucial to prove the security for both levels [11]. We consider
the CK model wherein the adversary A can adaptively choose public keys for
malicious users. A adaptively queries the oracles listed below, and the challenger
C responds to the queries and simulates an environment running IB-PRE for A.

– Private Key Extraction Oracle(OKE(idi)): Given as input an identity
idi, return the corresponding private key skidi

.
– Re-Key Generation Oracle(ORK(idi, idj)): Given as input (idi, idj),

return the re-encryption key RKi→j .
– Re-Encryption Oracle(ORE(idi, idj ,C)): Given as inputs two identities

(idi, idj) and a first-level ciphertext C, return the second level ciphertext D.
– Decryption Oracle(ODEC(idi,C)): Given as input an identity idi and a first

level ciphertext C encrypted under idi, return the message m or “INVALID
CIPHERTEXT” if the ciphertext is invalid.

– Re-Decryption Oracle(OREDEC(idj ,D)): Given as input an identity idj

and a second level ciphertext D re-encrypted under idj , return the message
m or “INVALID CIPHERTEXT” if the ciphertext is invalid.

First Level Ciphertext Security: In the first level ciphertext security, an
adversary A is challenged with a first level ciphertext C encrypted under the
target identity id∗. Following is the description of the game template for Chosen
Ciphertext Security:
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1. Setup: The challenger C takes a security parameter λ and executes the Setup
algorithm to get the system parameters params and returns it to A.

2. Phase 1: A adaptively queries the Private Key Extraction, Re-Key Genera-
tion, Re-Encryption, Decryption and Re-Decryption oracles and C responds
to the queries.

3. Challenge: When A decides that Phase 1 is over, it outputs two equal-
length plaintexts m0, m1 ∈ M and a target identity id∗ with the following
adversarial constraints:

– The private key of the target identity id∗ must not be queried previously.
– A must not have queried ORK(id∗, dj), such that the private key of idj

is already queried upon.
On receiving {m0,m1}, C obtains a random bit ψ ∈ {0, 1} and computes a
challenge ciphertext C

∗ = Encrypt(mψ, id∗, params) and returns C
∗ to A.

4. Phase 2: A issues queries as in Phase 1 with the following constraints.
– The Re-Key Generation query ORK(id, idj) is only allowed if the private

key of idj has not been queried previously.
– If A issues a Re-Encryption query ORE(idi, idj ,C) such that the private

key of idj has been queried upon, (idi, C) cannot be a challenge derivative
(defined next) of (id∗, C∗).

– A can issue a Decryption query ODEC(idi, C) or a Re-Decryption query
OREDEC(idj , D) only if (idi, C) or (idj , D) is not a derivative of (id∗,
C

∗).

Definition 1 (Challenge Derivative). The challenge derivatives of (idi,C)
in the CCA setting as adopted from [7] are as shown below:

– Reflexitivity: (idi,C) is a challenge derivative of its own.
– Derivative by re-encryption: if D ← ORE(idi, idj ,C), then (idj ,D) is a chal-

lenge derivative of (idi,C).
– Derivative by re-key: if D ← Re-Encrypt(C, RKi→j , params), where the re-

key RKi→j ← ORK(IDi, IDj), then (idj ,D) is a challenge derivative of
(idi,C).

5. Guess: Finally, A outputs a guess ψ′ ∈ {0, 1}.

The advantage of the adversary A in winning the game is defined as:

AdvIND−IBPRE−CCA
A,first = 2|Pr[ψ′ = ψ]−1

2
|

where the probability is taken over the coin tosses of the challenger C and adver-
sary A. The scheme is IND-IBPRE-CCA secure for the first level ciphertext
against any t-time adversary A making qKE queries to key extraction oracle,
qRK queries to the re-key generation oracle, qRE queries to re-encryption oracle,
qDEC queries to decryption oracle, qREDEC queries to re-decryption oracle, if
the advantage of A is: AdvIND−IBPRE−CCA

A,first ≤ ε.
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Second Level Ciphertext Security: In the second-level ciphertext security,
the adversary A is challenged with a second level ciphertext D

∗ which is a re-
encryption of the ciphertext C under the delegator identity idi towards target
identity id∗, re-encrypted using the re-key RKi→∗. A does not have access to the
corresponding first level ciphertext C. The security for the second level ciphertext
is unaffected whether the delegator identity idi is a corrupt user or not. Note
that, since a second-level ciphertext cannot be further re-encrypted, A is allowed
to obtain all the re-encryption keys in our security model. This also justifies the
removal of the re-encryption oracle from the security model. Following is the
description of the game template for Chosen Ciphertext Security:

1. Setup: The challenger C takes a security parameter λ and executes the Setup
algorithm to get the system parameters params and return it to A.

2. Phase 1: A adaptively queries to Private Key Extraction, Re-Key Genera-
tion, Decryption and Re-Decryption oracles and C responds to the queries.

3. Challenge: When A decides that Phase 1 is over, it outputs two equal-
length plaintexts m0, m1 ∈ M, a delegator identity idi and an honest target
delegatee identity id∗ with the following adversarial constraints:

– The adversary A must not have queried OKE(id∗) at any point in time.
– The A must not have queried ORK(idi, id

∗).
– A cannot choose idi as the delegator if it has already obtained RKi→∗.

On receiving {m0,m1}, C obtains a random bit ψ ∈ {0, 1} and com-
putes a challenge ciphertext D

∗ = Re-Encrypt(Encrypt(mψ, idi, params),
RKi→∗, params) and returns D

∗ to A.
4. Phase 2: A issues queries as in Phase 1 with the following constraints:

– A cannot issue a Re-Decryption query ODEC(id∗, D∗).
– If skidi

has been queried previously, A cannot query RKi→∗ to C.
5. Guess: Finally, A outputs a guess ψ′ ∈ {0, 1}.

The advantage of the adversary A in winning the game is defined as:

AdvIND−IBPRE−CCA
A,second = 2|Pr[ψ′ = ψ]−1

2
|

where the probability is over the coin tosses of the challenger C and adversary A.
The scheme is IND-IBPRE-CCA secure for the second level ciphertext against
a t-time adversary A making qKE queries to key extraction oracle, qRK queries to
the re-key generation oracle, qDEC queries to decryption oracle, qREDEC queries
to re-decryption oracle, if the advantage of A is: AdvIND−IBPRE−CCA

A,second ≤ ε.

Collusion Resistance: Collusion-resistance or delegator secret key (DSK)
security prevents a colluding proxy and delegatee to recover the delegator’s pri-
vate key in full [7]. Following is the game template of the security model for
collusion resistance as in [6].

– Setup: C takes as input the security parameter λ and runs the Setup algo-
rithm to generate and return the system parameters params to A.
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– Queries: A issues the following queries adaptively to C:
• Private-Key Extraction Oracle OKE(idi): C runs the KeyGen(msk, idi,

params) algorithm to generate the private key skidi
of identity idi and

returns skidi
to A.

• Re-encryption Key Generation Oracle ORK(idi, idj): C generates and
returns the re-encryption key RKi→j from identity idi to idj .

– Output: A returns ski∗ as the private key of an identity id∗
i . A wins the

game if sk∗
i is a valid private key of an identity id∗

i whose private key has not
been queried for.

The advantage of A in attacking the collusion-resistance or delegator secret
security of the scheme is defined as AdvDSK

A = Pr[A wins], where the probability
is over the random coin tosses of the challenger C and adversary A. A scheme
is defined as (t, ε)-DSK secure against a t-time adversary A making at most
qKE key extraction queries and qRK re-encryption key generation queries if the
advantage of A is: AdvDSK

A ≤ ε.

4 Our Proposed Collusion Resistant IB-PRE Scheme

4.1 Overview of Construction

The starting points of our contruction are the IB-PRE scheme of Green and
Ateniese [8] which is based on Boneh and Franklin’s IBE scheme [4] and BLS
short signature [5]. In the system by Green and Ateniese, the PKG chooses
a random element s ← Z

∗
q as the master secret key and sets the private

key for an identity idi as H1(idi)s. Note that the hash functions are used
as defined in the IB-PRE scheme in [8]. The original ciphertext of a message
m ∈ {0, 1}n is computed by choosing a random element σ ← GT and computing
r = H4(σ,m). Then the ciphertext components C1 = gr, C2 = σ · ê(gs,H1(idi)r)
and C3 = m ⊕ H5(σ) are computed. S = H3(idi||C1||C2||C3)r is computed as a
BLS signature used during re-encryption/decryption to confirm well-formedness
of the ciphertext. Finally C = (C1,C2,C3, S) is output as the ciphertext of
message m. The re-key is generated by picking a random element N ← {0, 1}n

and computing K = ê(skidi
,H1(idj)). The re-key RKi→j = 〈RK1

i→j , RK2
i→j〉 =

〈N,H2(K, idi, idj , N) · skidi
〉 is computed. Now, if the proxy and delegatee col-

lude, K = ê(H1(idi), skidj
) is computed and the private key of the delegator can

be recovered by computing skidi
= RK2

i→j

H2(K,idi,idj ,N) .
In order to extend the system proposed by Green and Ateniese to the

collusion-resistant setting, we introduce another generator h and two group ele-
ments g1 = gδ, h1 = hδ to the public parameters. In our attempt, the PKG
chooses s ← Z

∗
q as the master secret key. The re-key is generated by picking

s1, s2 ← Z
∗
q and computing xij = H5(ê(Ppub1 ,H1(idj)s

1), idi, idj), where xij ∈ Z
∗
q

and Ppub1 = gs
1. The re-key is computed as RKi→j = 〈RK1

i→j ,RK2
i→j ,RK3

i→j 〉 =
〈(skidi

)−1 · hxij s2 , h1 s2 , gs1 〉. We construct our re-key in such a way that the pri-
vate key of the delegator (skidi

∈ G1) is blinded with a random salt and can only
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be removed in the target group GT during decryption of the re-encrypted cipher-
texts. The private key skidi

of delegator can be retrieved from the re-key compo-
nent RK1

i→j only by users with the knowledge of both skidj
(the delegatee’s secret

key) and random element s2 (chosen by delegator). This clearly makes it infea-
sible to retrieve the private key skidi

in G1 from the re-key, which prevents the
colluders to recover the delegator’s private key and provides collusion-resistance.

4.2 Construction

In this subsection, we present the construction of our collusion-resistant IB-
PRE scheme followed by its correctness and security proof. Our IB-PRE scheme
consists of the following algorithms:

1. Setup(λ): The PKG takes the security parameter λ as input. Let G1, GT be
groups of prime order q and let g, h be the generators of G1. The PKG picks
δ ← Z

∗
q and computes g1 = gδ and h1 = hδ. Let ê : G1 × G1 → GT be an

admissible bilinear map.
Five cryptographic hash functions are chosen by PKG as below, which are
modelled as random oracles in our security proof:

H1 : {0, 1}∗ → G1

H2 : GT × {0, 1}n → Z
∗
q

H3 : GT → {0, 1}n
H4 : {0, 1}∗ → G1

H5 : GT × {0, 1}∗ → Z
∗
q

The PKG selects s $←− Z
∗
q , computes Ppub1 = gs, Ppub2 = gs

1 and
the master secret key msk = s. The message space M is {0, 1}n . PKG
returns the public parameters params = (G1,GT , g, h, g1, h1, Ppub1 , Ppub2 ,
ê,H1,H2,H3,H4,H5, n).

2. KeyGen(msk, id i, params): For an identity id i ε {0, 1}∗, the PKG computes
the private key skidi

= H1(idi)s and sends skidi
to user idi in a secure way.

3. ReKeyGen(skidi
, id j , params): The user with identity idi generates a re-

encryption key from idi to user idj as below:

– Select s1 , s2
$←− Z

∗
q .

– Compute xij = H5(ê(Ppub1 ,H1(idj )s1 ), idi, idj) ∈ Z
∗
q .

– Compute RK1
i→j = (skidi

)−1 · hxij s2 = H1(idi)-s · hxij s2 ∈ G1.
– Compute RK2

i→j = h1 s2 ∈ G1.
– Compute RK3

i→j = gs1 ∈ G1.
The delegator idi sends the re-encryption key RKi→j = (RK1

i→j , RK2
i→j ,

RK3
i→j) to the proxy via a secure channel.

4. Encrypt(m, idi , params): To encrypt the message m ε M for the user with

identity idi , the sender chooses σ
$←− GT and computes r = H2(σ, m). The

sender then computes the ciphertext C as below:
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– Compute C1 = gr ∈ G1.
– Compute C2 = gr1 ∈ G1.
– Compute C3 = σ · ê(Ppub2 ,H1(idi)r) ∈ GT .
– Compute C4 = m ⊕ H3(σ) ∈ {0, 1}n.
– Compute C5 = H4(idi‖C1‖C2‖C3‖C4)

r ∈ G1.
The sender returns the first-level ciphertext C = (C1,C2,C3,C4,C5).

5. Decrypt(C, skidi , params): With input a first level ciphertext C =
〈C1,C2,C3,C4,C5〉, user idi with his private key skidi

decrypts as below:
– Check if both the following conditions hold:

ê(C1, g1)
?= ê(g,C2) (1)

ê(C1,H4(idi‖C1‖C2‖C3‖C4))
?= ê(g,C5) (2)

If either of the conditions fail, it returns “INVALID CIPHERTEXT”.
– Otherwise, compute σ as below:

σ =
C3

ê(C2, skidi
)
. (3)

– Compute the message:

m = C4 ⊕ H3 (σ), (4)

– Check the following condition:

C2
?= g1H2(σ,m). (5)

If satisfied, it outputs m, else outputs “INVALID CIPHERTEXT”.
6. Re-Encrypt(C, RKi→j , params): The proxy re-encrypts the first-level

ciphertext C to second-level ciphertext D as below.
– Check if the following condition holds:

ê(C1,H4(idi||C1||C2||C3||C4))
?= ê(g, C5). (6)

– If the check fails, return “INVALID CIPHERTEXT”.
– Set D1 = C1 = gr ∈ G1

– Set D2 = RK3
i→j = gs1 ∈ G1,

– Compute D3 = C3.ê(C2,RK1
i→j ) = σ.ê(gr

1 , hxij s2 ) ∈ GT ,
– Set D4 = C4 = m ⊕ H3(σ) ∈ {0, 1}n,
– Set D5 = RK2

i→j = hs2
1 ∈ G1.

The proxy returns the second-level ciphertext D = (D1,D2,D3,D4,D5).
7. Re-Decrypt(D, skidj

, params): With input a second-level ciphertext D =
(D1,D2,D3,D4,D5), the delegatee idj performs the following computations:

– Compute xij = H5(ê(D2, skidj
), idi, idj) using private key skidj

.
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– Compute σ as below:

σ =
D3

ê(D1,D5)xij
. (7)

– Compute the message m as:

m = D4 ⊕ H3 (σ). (8)

– Check if the following condition holds:

D1
?= gH2(σ,m). (9)

If the check holds, it returns m else returns “INVALID CIPHERTEXT”.

4.3 Correctness

Our collusion resistant unidirectional IB-PRE scheme is consistent and correct,
which can be verified using the following computations:

– Correctness of first-level ciphertext verification from Eq. 6:

RHS = ê(C1,H4(idi||C1||C2||C3||C4))
= ê(gr,H4(idi||C1||C2||C3||C4))
= ê(g, C5)
= LHS.

– Consistency between encryption and decryption from Eq. 3:

RHS =
C3

ê(C2, skidi
)

=
σ · ê(Ppub2 ,H1(idi)r)

ê(C2, skidi
)

=
σ · ê(g1 s,H1(idi)r)
ê(g1 r,H1(idi)s)

= σ

= LHS.

Using σ in Eq. 4, we get:

RHS = C4 ⊕ H3 (σ)
= m ⊕ H3 (σ) ⊕ H3 (σ)
= m
= LHS.



A CCA-Secure Collusion-Resistant IB-PRE Scheme 123

– Consistency between re-encryption and re-decryption from Eq. 7:

RHS =
D3

ê(D1,D5)
xij

=
C3.ê(C1,RK1

i→j )

ê(C1,RK2
i→j )

=
σ.ê(gr

1 , hxij s2 )
ê(gr, hs2

1 )xij

= σ

= LHS.

Using σ in Eq. 8, we get:

RHS = D4 ⊕ H3 (σ)
= m ⊕ H3 (σ) ⊕ H3 (σ)
= m
= LHS.

Remark 1. Our IB-PRE scheme defines the two levels of ciphertexts as follows.
The first level ciphertext C = (C1,C2,C3,C4,C5) is generated by the Encrypt
algorithm, which includes the delegatable ciphertexts encrypted towards the
delegator. The second level ciphertext D = (D1,D2,D3,D4,D5) is generated by
the Re-Encrypt algorithm, comprising the re-encrypted ciphertexts that cannot
be delegated further in encrypted form. When a user stores her data encrypted
in the cloud, the data may belong to any of the two categories.

4.4 Security Proof

Collusion Resistance

Theorem 1. Our proposed scheme is DSK-secure under the m-CDH assump-
tion. If a DSK adversary A breaks the DSK security of the given scheme with
an advantage ε in time t, then there exists a challenger C who solves the m-CDH
problem with advantage ε′ within time t′ where:

ε′ ≥ ε

e(1 + qKE)
,

t∗ ≤ t + O(qH1 + 3qRK + qKE)tet + O(qRK)tbp,

where e is the base of natural logarithm, tet denotes the time taken for exponen-
tiation in group G1 and tbp is the time taken for one bilinear pairing operation.
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Proof. Let A be a p.p.t adversary that has a non-negligible advantage ε in break-
ing the (t, ε)DSK security of the scheme with access to the random oracle H1.
Then, we can construct a polynomial time algorithm C to solve the m-CDH
assumption in G1 with a non-negligible advantage. Note that the hash functions
H2, H3, H4 and H5 are not modeled as random oracles in the proof. Algorithm
C accepts as input a properly-distributed tuple 〈G1 = 〈g〉, ga, gb, g

1
b , g

a
b 〉 and

outputs the value of gab. C plays the DSK game with A in the following way:

– Setup: C implicitly defines the master secret key msk = a and δ = 1
b . It sets

Ppub1 = ga, g1 = g
1
b and Ppub2 = g

a
b . It picks ν ← Z

∗
q , computes h = (ga)ν

and h1 = (g
a
b )ν and returns the resulting system parameters params to A.

– Queries: C interacts with A in the following ways:
• H1(idi)Oracle: C maintains a list LH1 with tuples of the form 〈idi ∈

{0, 1}∗, yi ∈ Z
∗
q , ki ∈ Z

∗
q , αi ∈ {0, 1}〉. If the tuple 〈idi, yi, ki, αi〉 already

exists in LH1 , retrieve and return the value yi. Else randomly set αi ∈
{0, 1} such that Pr[αi = 0] = γ which is defined as in the first level
ciphertext security. Set the hash value according to the following cases:

∗ If αi = 0, select zi ← Z
∗
q , compute yi = gzi and set H1(idi) = yi.

∗ If αi = 1, select zi ← Z
∗
q , compute y = (gb)zi . Set H1(idi) = yi.

Store tuple 〈idi, yi, zi, αi〉 in list LH1 and return yi.
• Private Key Extraction Oracle OKE(idi): C responds to the key-extraction

query of an identity idi by first checking for a tuple 〈idi, yi, ki, αi〉 already
exists in LH1 . If αi = 1, abort and return failure. Otherwise, return
skidi

= (ga)zi as the private key of identity idi.
• Re − encryption Key Generation Oracle ORK(idi, idj): C maintains a list

LRK that contains tuples of the form 〈idi ∈ {0, 1}∗, idj ∈ {0, 1}∗, xij ∈
Z

∗
q , RK1

i→j ∈ G1, RK2
i→j ∈ G1, RK3

i→j ∈ G1, s1 ∈ Z
∗
q , s̄2 ∈ Z

∗
q〉. C

responds to the re-encryption key-generation queries of A from user idi to
idj by searching list LH1 for tuples corresponding to idi and idj respec-
tively and computing the re-keys as per the following cases:

∗ Check if the re-key RKi→j exists in LRK by searching for a
tuple 〈idi, idj , xij , RK1

i→j , RK2
i→j , RK3

i→j , s1, s̄2〉. If present, return
RKi→j .

∗ If αi = 0 ∧ αj = 0: generate the re-keys as per ReKeyGen protocol.
∗ If αi = 0 ∧ αj = 1: generate the re-keys as per ReKeyGen protocol.
∗ If αi = 1 ∧ αj = 0: pick xij , s1, s̄2 ← Z

∗
q . Update list LH5 with the

tuple 〈ê(ga, gzjs1), idi, idj , xij〉. Implicitly define s2 = zix
−1
ij ν−1b + s̄2

and compute the re-key RKi→j as follows:
· Compute RK1

i→j = (ga)νxij s̄2 .

· Compute RK2
i→j = (ga)x−1

ij zi · (g
a
b )νs̄2 .

· Compute RK3
i→j = gs1 .

Observe that the re-encryption key RKi→j computed is identically
distributed as the keys generated by the ReKeyGen algorithm in
the construction. Infact, we have:

· RK1
i→j = (ga)νxij s̄2 = (gbzi)−a ·gaνxij(x

−1
ij ν−1bzi+s̄2) = H1(idi)−s ·

hxijs2 .
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· RK2
i→j = (ga)x−1

ij zi · (g
a
b )νs̄2 = (g

a
b )ν(zix

−1
ij ν−1b+s̄2) = hs2

1 .
∗ If αi = 1 ∧ αj = 1: generate the re-keys as below:

· Pick s1, s̄2, xij ← Z
∗
q .

· Compute RK1
i→j = (g)xij .

· Compute RK2
i→j = g

a
b

νs2 = hs̄2
1 .

· Compute RK3
i→j = gs1 .

Update list LRK with the tuple 〈idi, idj , xij , RK1
i→j , RK2

i→j ,

RK3
i→j , s1, s̄2〉. Return the re-keys RKi→j = (RK1

i→j , RK2
i→j , RK3

i→j)
to A.

– Output: Eventually, A returns skid∗ as the private key corresponding to the
identity id∗, where id∗ is honest (α∗ = 1). C recovers the tuple 〈id∗, y∗, z∗, α∗〉
from list LH1 and returns (skid∗)z∗−1

, where, for an honest identity id∗,
(skid∗)z∗−1

= (gabz∗
)z∗−1

= gab is the solution to the m-CDH problem.
– Probability Analysis: We calculate the probability that C aborts during

the simulation. Let Abort denote the event that C aborts during the game
and qKE denote the number of queries made to the key extraction oracle. We
note that C does not abort in the following events:

– E1: α∗ = 0 in the Private Key Extraction phase.
– E1: α∗ = 1 in the Output phase.

We have Pr[¬Abort] ≥ γqKE (1 − γ), which has a maximum value at γOPT =
qKE

1+qKE
. Using γOPT , we obtain:

Pr[¬Abort] ≥ 1
e(1 + qKE)

.

Therefore, the advantage of C in solving the m-CDH problem is:

ε′ ≥ ε · Pr[¬Abort]

≥ ε

e(1 + qKE)
,

where, e is the base of the natural logarithm. The running time of C is:

t∗ ≤ t + O(qH1 + 4qRK + qKE)tet + O(qRK)tbp.

This completes the proof of the theorem. �

First-Level Ciphertext Security

Theorem 2. Our proposed scheme is CCA-secure for the first level ciphertext
under the DBDH assumption. If an IND-IBPRE-CCA adversary A breaks
the IND-IBPRE-CCA security of the given scheme with an advantage ε within
time t, then there exists an adversary C that solves the DBDH problem with an
advantage ε′ within time t′ where,

ε′ ≥ ε

e(1 + qRK + qKE)
,
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t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qH5 + qKE + qRK + qRE + qDEC

+ qREDEC)O(1) + (qH1 + qH4 + qKE + 4qRK + 7qRE + 6qDEC + 3qREDEC)tet

+ (qRK + 5qRE + qDEC + 2qREDEC)tbp,

where e is the base of natural logarithm, tet denotes the time taken for exponen-
tiation in group G1 and tbp denotes the time taken for bilinear pairing operation.

Proof. Due to space constraint, the proof of first-level ciphertext security in
given in the full version of the paper [14]. �

Second-Level Ciphertext Security

Theorem 3. Our proposed scheme is CCA-secure for the second-level cipher-
text under the m-DBDH assumption. If an IND-IBPRE-CCA adversary A
breaks the IND-IBPRE-CCA security of the given scheme with a non-negligible
advantage, then there exists an adversary C who solves the m-DBDH problem
with an advantage ε′ within time t′ where,

ε′ ≥ ε

e(1 + qKE)
− qH5

22n
,

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qH5 + qKE + qRK + qDEC + qREDEC)O(1)
+ (qH1 + qH4 + 5qRK + 6qDEC + 3qREDEC)tet + (qRK + qDEC + 2qREDEC)tbp,

where e is the base of natural logarithm, tet denotes the time taken for exponen-
tiation in group G1 and tbp denotes the time taken for bilinear pairing operation.

Proof. Due to space constraint, the proof of second-level ciphertext security is
given in the full version of the paper [14]. �

5 Discussion on a Collusion-Resistant IB-PRE
Scheme in [19]

In the scheme due to Wang et al. [19], the first-level ciphertext CID consists
of the following components: (C1, C2, C3, C4, C5, C6, C7) = (gr, (g2g3)r, (gID

1 h)r,
SE.Enc(H2(e(g1, g2))r),M),H1(svk)r, svk, σ). Note that the hash function H1 is
defined as H1 : S → G, where S is the public key space of the one time signature
scheme used in the construction. In order to simulate the ciphertext component
C5 = H1(svk)r in the Challenge phase, the Challenger must know the value r to
form a valid ciphertext component C5, and when we know such an r, that would
solve the discrete log problem with respect to C1. Also, wellformedness of the
ciphertext can be verified using the following check: e(C1,H1(C6))

?= e(g, C5).
Therefore, the challenge ciphertext cannot be simulated without the knowledge
of the exponent r, which would lead to solving the discrete log problem.

Another big omission noticed in [19] is that, the private key generation uses
a signature scheme whose security is not proven or known. It is quite unlikely
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that a standard model proof is possible for this signature scheme since the key
components d1 and d′

1 are not used as exponents of the generator but used
directly as elements of Z∗

p. In fact, there are no known signature schemes in the
standard model with the keys used directly.

In light of the above observations, it is impossible to prove the security of
the scheme due to Wang et al. [19].

6 Conclusion

Though there are several proxy re-encryption (PRE) schemes in the literature
constructed in the identity based setting, only one IB-PRE scheme due to Wang
et al. [19] which is CPA-secure for the first-level ciphertext and CCA-secure for
the second-level ciphertext, has reported the collusion resistance property in the
standard model and adheres to the standard definition of PRE. However, the
scheme is not provably secure, as discussed in our work. Our collusion resistant
PRE scheme adheres to the standard definition of PRE, and is shown to be adap-
tively CCA secure in the random oracle model for both the first-level and second
level ciphertexts. Also, the definition of collusion resistance is met wherein the
colluders (proxy and the delegatee) cannot obtain the private key components of
the delegator. Thus, this paper proposes the first provably secure collusion resis-
tant IB-PRE scheme based on the Decisional Bilinear Diffie Hellman (DBDH)
assumption and its variants in the random oracle model.
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Abstract. The MQ problem is mathematical in nature and is related
to the security of Multivariate Public Key Cryptography (MPKC). In
this paper, we introduce the constrained MQ problem, which is a new
mathematical problem derived from the MQ problem. We also propose
an encryption scheme construction method in MPKC, the pq-method,
whose security is mainly based on the difficulty of solving the constrained
MQ problem. We analyze the difficulty level of solving the constrained
MQ problem, including different approach from the usual for solving the
MQ problem. Furthermore, based on the analysis of the constrained MQ
problem, we present secure parameters for the pq-method, and implement
the practical schemes.

Keywords: Multivariate public key cryptography
Constrained MQ problem · MQ problem · Post-quantum cryptography

1 Introduction

Multivariate Public Key Cryptography (MPKC) [7] is a candidate for post-
quantum cryptography. MPKC uses polynomial system as both secret key and
public key, and in most cases, their security is mainly based on the difficulty of
solving polynomial equations. In particular, the solving problem for quadratic
polynomials is called the MQ problem, which is described as follows.

MQ problem: For positive integers m and n, let F(x) be a polynomial
system which consists of m quadratic polynomials over a finite field Fq of
q elements in variables x = (x1, . . . , xn). Then, find x0 ∈ F

n
q such that

F(x0) = 0.

In this paper, we introduce the constrained MQ problem, which is a new math-
ematical problem derived from the MQ problem. It is described as follows.

Constrained MQ problem: For positive integers m,n and L, let F(x)
be a polynomial system which consists of m quadratic polynomials over Fq

in variables x = (x1, . . . , xn). Then, find x0 = (x0,1, . . . , x0,n) ∈ Z
n such

that F(x0) = 0 and −L
2 < x0,i ≤ L

2 (i = 1, . . . , n).

c© Springer Nature Switzerland AG 2018
J. Baek et al. (Eds.): ProvSec 2018, LNCS 11192, pp. 129–146, 2018.
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So far, the constrained MQ problem has never been used as a basis of security for
encryption scheme. In this paper, encryption schemes whose security is based
on the difficulty of solving the constrained MQ problem are proposed for the
first time. A solution of the constrained MQ problem is obviously a solution
of the (unconstrained) MQ problem. However, since the equation F(x) = 0
may have solutions outside the constraint domain, a solving algorithm of the
(unconstrained) MQ problem may not return a solution of the constrained MQ
problem. The difficulty level of solving the constrained MQ problem (of the
general type) is analyzed in Sects. 5.1, 5.2 and 5.3.

We are already aware of the encryption schemes in MPKC, Simple Matrix
Scheme [28], EFC [27], HFERP [15]. Since HFERP was just proposed, its detailed
cryptanalysis will start now. Critical attacks have not yet been reported for
Simple Matrix Scheme and EFC; however, the large number of variables that
they requires for their security is at the cost of the performance of encryption
and decryption. Due to such circumstances, the development of new encryption
schemes in MPKC is a critical issue.

In this paper, we propose the pq-method for construction of encryption
schemes in MPKC, which is a new method entirely different from any of the
previous schemes in MPKC. The pq-method is a converting method from an
encryption scheme in MPKC over Fp, where p is a small prime number, to that
over Fq, where q is a large prime number. One advantage of the pq-method is that
it enhances the security of the original scheme even when the original scheme is
insecure. We focus on TTM [19], C∗ [18], and Square [5] as they are the previous
encryption schemes used in MPKC over Fp, We apply the pq-method to these
schemes, and propose three new encryption schemes, namely pq-TM, pq-C∗ and
pq-Square.

In other words, we explain the pq-method. A regular encryption scheme in
MPKC over Fp is constructed by the following procedure. First, we prepare a
multivariate quadratic polynomial system G0(x) that is (almost) injective and
whose inverse can be efficiently computed. Next, we randomly choose two affine
transformations T0, S0, and define a polynomial function F0 = T0 ◦ G0 ◦ S0.
Now, F0(x) becomes a trapdoor one-way function, and an encryption scheme
with public key F0(x) is constructed. If m is a plaintext, the corresponding
ciphertext is obtained by c = F0(m). This G0(x) is called the central map of
the encryption scheme. On the other hand, the pq-method starts from G0(x).
First, we lift G0(x) to a polynomial system ˜G(x) with integer coefficients. Next,
another polynomial system ˜HR(x) with integer coefficients is prepared, and G(x)
is defined by G(x) = ˜G(x)+ ˜HR(x). The ˜HR(x) is appended in order to enhance
the security of the scheme constructed by G0(x). Finally, an affine transformation
T over Fq and a permutation matrix S are chosen randomly, and a polynomial
system F (x) is defined by F = T ◦G◦S. We now construct an encryption scheme
over Fq whose public key is F (x). This is a summary of the construction using the
pq-method. However, the pq-method requires a constraint on the domain of F (x).
In other words, any plaintext m = (m1, . . . , mn) must satisfy −p

2 < mi ≤ p
2 (i =

1, . . . , n). Due to the constraint, we can eliminate the part of T ( ˜HR(S(m)))
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from a ciphertext c = F (m) = T (G(S(m))) = T ( ˜G(S(m))) + T ( ˜HR(S(m))),
and thereby the decryption succeeds. According to the constraint, the security
of the pq-method is related directly to the constrained MQ problem.

In the security analysis of the pq-method, we also discuss the difficulty of solv-
ing the constrained MQ problem. Under the security analysis, we estimate the
secure parameters at 128-bit and 192-bit security levels. Moreover, we implement
the three encryption schemes constructed by the pq-method for these parame-
ters, and investigate their performance.

This paper is organized in the following manner. In Sect. 2, we discuss a
trapdoor one-way function used in the pq-method. We further prove its nature
and also describe a computing algorithm of its inverse map. In Sect. 3, the algo-
rithms of key generation, along with encryption and decryption of the pq-method
of general type are described. In Sect. 4, we talk about three encryption schemes
constructed using the pq-method. In Sect. 5, we analyze the security of the three
schemes and discuss the difficulty of solving the constrained MQ problem. Based
on the security analysis in Sect. 5, we estimate the secure parameters of the three
schemes in Sect. 6. Moreover, the performance of the three schemes is summa-
rized based on our implementation of the schemes. Sect. 7 is the conclusion of
this paper.

2 Construction of Multivariate Polynomial Trapdoor
Functions

For a positive integer l, we denote the least non-negative remainder of an integer
a by a mod l, and the least absolute remainder of a by liftl(a). For a ∈ Z/lZ,
amod l and liftl(a) is defined similarly. Il is defined by Il = (−l/2, l/2]∩Z, then
a mod l ∈ [0, l − 1] and liftl(a) ∈ Il.

Let x1, . . . , xn be n independent variables and x = (x1, . . . , xn). Let

˜G(x) = (g̃1(x), . . . , g̃n(x)) ∈ Z[x]n,

˜H(x) = (˜h1(x), . . . ,˜hn(x)) ∈ Z[x]n

be two polynomial systems with integer coefficients whose absolute values are
small. Moreover, we assume that for an odd prime number p, the reduction of
˜G(x) by p, ˜G(x) mod p ∈ Fp[x]n is (almost) injective and its inverse can be
computed efficiently. For example, (a lift to Z[x]n of) the central map of an
encryption scheme in MPKC satisfies this assumption. Let M

˜G,M
˜H be positive

integers such that

M
˜G ≥ max i=1,...,n

{|g̃i(a1, . . . , an)| ∣

∣ (a1, . . . , an) ∈ I n
p

}

,

M
˜H ≥ max i=1,...,n

{|˜hi(a1, . . . , an)| ∣

∣ (a1, . . . , an) ∈ I n
p

}

.
(1)

If g̃i(x) (i = 1, . . . , n) is expressed as:

g̃i(x) =
∑

k,l

α
(i)
k,l xkxl +

∑

k

β
(i)
k xk + γ(i) (α(i)

k,l, β
(i)
k , γ(i) ∈ Z),
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for example,

M
˜G = max i=1,...,n

⎧

⎨

⎩

(
∑

k,l

|α(i)
k,l|)

(

p − 1
2

)2

+ (
∑

k

|β(i)
k |)

(

p − 1
2

)

+ |γ(i)|
⎫

⎬

⎭

satisfies (1). It is similar for M
˜H .

Taking a (large) prime number q, we choose positive integers r1, . . . , rn (< q)
such that

2M
˜G < min k=1,...,2M

˜H
{|liftq(rik)|} (i = 1, . . . , n), (2)

and define Λi = {liftq(rik) | k = 0,±1,±2, . . . ,±M
˜H}. To exist the ri’s, q

must be sufficiently large. In fact, it is necessary that q > 4M
˜HM

˜G. Moreover,
ri > 2M

˜G is also needed.
For λ = rik, λ′ = rik

′ ∈ Λi, from |k − k′| < 2M
˜H and (2),

|liftq(λ − λ′)| = |liftq(ri(k − k′))| = |liftq(ri|k − k′|)| > 2M
˜G.

In other words,

|liftq(λ − λ′)| > 2M
˜G (∀λ, λ′ ∈ Λi (λ �= λ′)). (3)

A polynomial system G(x) is defined by

G(x) = (g1(x), . . . , gn(x)) =
(

˜G(x) + ˜HR(x)
)

mod q ∈ Fq[x]n,

where ˜HR(x) = (r1˜h1(x), . . . , rn
˜hn(x)) ∈ Z[x]n.

Then, G : Zn → F
n
q becomes a multivariate quadratic polynomial map.

Lemma 1. For ˜b ∈ I n
p , let (c1, . . . , cn) ∈ F

n
q be given by (c1, . . . , cn) = G(˜b).

Then, for i = 1, . . . , n, there exists a unique λi ∈ Λi such that |liftq(ci − λi)| <
M

˜G. Moreover, when writing ai = liftq(ci − λi),

˜G(˜b) = (a1, . . . , an) and ˜HR(˜b) ≡ (λ1, . . . , λn) mod q.

Proof. Actually, for the images of ˜b, ˜HR(˜b) = (λ̃1, . . . , λ̃n) and ˜G(˜b) =
(ã1, . . . , ãn), we get that for i = 1, . . . , n, liftq(λ̃i) ∈ Λi, ãi = liftq(ci − λ̃i) =
liftq(ci − liftq(λ̃i)) and |liftq(ci − liftq(λ̃i))| = |ãi| < M

˜G from the property of
M

˜H ,M
˜G. The rest of the assertion is sufficient to show that for λ′

i ∈ Λi such
that λ′

i �= liftq(λ̃i), |liftq(ci − λ′
i)| ≥ M

˜G. This is shown using (3) as follows.

|liftq(ci − λ′
i)| = |liftq(ci − λ̃i + λ̃i − λ′

i)| ≥
∣
∣
∣|liftq(λ̃i − λ′

i)| − |liftq(ci − λ̃i)|
∣
∣
∣ > M

˜G. �

For any c = (c1, . . . , cn) ∈ G(I n
p )(⊂ F

n
q ), the following inference is obtained:

˜b ∈ I n
p is a solution of G(x) = c.

⇐⇒ ˜b ∈ I n
p is a solution of two equations, ˜G(x) = (a1, . . . , an) and

˜HR(x) ≡ (λ1, . . . , λn) mod q, which appear in Lemma 1 for c.
=⇒ ˜b ∈ I n

p is a solution of the equation over Fp, ˜G(x) ≡ (a1, . . . , an) mod p.

From this, a computing algorithm of G−1(c) ∈ I n
p is obtained as follows:
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1. For all i = 1, . . . , n, find a (unique) λi ∈ Λi such that |liftq(ci − λi)| < M
˜G,

and set c̃i = liftq(ci − λi) ∈ Z.
2. Solve the equation over Fp, ˜G(x) ≡ (c̃1, . . . , c̃n) mod p. (We can solve this by

the assumption for ˜G(x).) The solution is denoted by b = (b1, . . . , bn) ∈ F
n
p .

3. G−1(c) = liftp(b) = (liftp(b1), . . . , liftp(bn)).

3 Key Generation, Encryption and Decryption of
pq-Method

The polynomial system G(x) described in the previous section can be applied
to construction of encryption scheme in MPKC. By choosing an affine trans-
formation T on F

n
q and a permutation matrix S randomly, we define F (x) by

F = T ◦ G ◦ S. Here, S is regarded as a linear transformation on Z
n. We can

then construct an encryption scheme whose public key is F (x). The following
are the algorithms for key generation, encryption and decryption method for this
encryption scheme.

– Key Generation Algorithm
Let p be an odd prime number, n a positive integer, and l

˜H a positive odd
integer.
1. Take a multivariate quadratic polynomial system ˜G(x) ∈ Z[x]n such that

˜G(x)modp is (almost) injective and its inverse can be computed efficiently.
2. Choose a multivariate quadratic polynomial system ˜H(x) =

(˜h1(x), . . . ,˜hn(x)) ∈ Z[x]n whose coefficients are randomly sampled from
Il

˜H
.

3. Compute M
˜G,M

˜H satisfying (1), and choose an odd prime number q such
that q > 4M

˜HM
˜G.

4. Choose (M
˜G <) r1, . . . , rn (< q) such that

2M
˜G < min k=1,...,2M

˜H
{|liftq(rik)|} (i = 1, . . . , n).

Unless such r1, . . . , rn are obtained, restart from Step 3 and reselect q.
5. Compute ˜HR(x) = (r1˜h1(x), . . . , rn

˜hn(x)) ∈ Z[x]n, and
G(x) = (g1(x), . . . , gn(x)) =

(

˜G(x) + ˜HR(x)
)

mod q ∈ Fq[x]n.
6. Choose an affine transformation T on F

n
q and a permutation matrix S of

size n randomly.
7. Compute F = T ◦ G ◦ S : Zn → F

n
q .

The secret key consists of ˜G(x) mod p, {r1, . . . , rn}, T, S, and the public key
consists of p and F (x).

– Encryption Algorithm
Let m ∈ I n

p be a plaintext.
1. Compute c = F (m) ∈ F

n
q .

Now, c is the ciphertext corresponding to m.
– Decryption Algorithm

Let c ∈ F
n
q be a ciphertext.
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1. Compute c′ = (c′
1, . . . , c

′
n) = T−1(c).

2. For all i = 1, . . . , n, find a (unique) λi ∈ Λi satisfying |liftq(c′
i−λi)| < M

˜G
and set c̃i = liftq(c′

i − λi) ∈ Z.
3. Solve the equation over Fp, ˜G(x) ≡ (c̃1, . . . , c̃n) mod p. The solution is

denoted by ˜b ∈ I n
p . (˜b is computable by the assumption for ˜G(x).)

4. Compute a = S−1(˜b).
Now, a coincides with the plaintext m.

4 Encryption Schemes Constructed by pq-Method

In the previous section, while discussing the pq-method, ˜G(x) is expressed as a
general form and its concrete construction is not given. In this section, three
types of ˜G(x) are exemplified from the central map of previous encryption
schemes used in MPKC, and subsequently, three encryption scheme, pq-TM,
pq-C∗ and pq-Square are proposed.

4.1 pq-TM

pq-TM is an encryption scheme that uses a triangular map. Similar to TTM
[19,20], several other encryption schemes in MPKC using a triangular map
have already been proposed [11,26,29] and analyzed [6,8,13,14,21,24] in sev-
eral papers. From these study, we know that the rank attack works well with the
schemes using a triangular map.

In pq-TM, the following is adopted as ˜G(x). Let l
˜G,1, l ˜G,2 be positive odd

integers. ˜G1(x) = (φ1(x), . . . , φn(x)), ˜G2(x) = (ψ1(x), . . . , ψn(x)) ∈ Z[x]n are
taken randomly in the following form: for any i = 1, . . . , n,

φi(x) =
∑

0≤k≤l<i

α
(i)
k,l xkxl +

∑

0≤k<i

β
(i)
k xk + xi + γ(i) (α(i)

k,l, β
(i)
k , γ(i) ∈ Il

˜G,1
),

ψi(x) =
∑

0≤k≤l≤n,
k≥i or l≥i

α′(i)
k,l xkxl +

∑

i<k≤n

β′
k
(i)

xk (α′(i)
k,l, β

′(i)
k ∈ Il

˜G,2
).

ψi(x) is a polynomial replenishing the terms that do not appear in φi(x). We
define ˜G(x) by ˜G(x) = ˜G1(x) + p ˜G2(x). Remember that ˜G(x) ≡ ˜G1(x) mod p

by the definition of ˜G(x). ˜G(x) mod p : Fn
p → F

n
p is injective, in fact, the inverse

image b = (b1, . . . , bn) ∈ F
n
p of c = (c1, . . . , cn) ∈ F

n
p is obtained as follows:

1. For i = 1, . . . , n in this order, the following is executed.

bi = ci −
⎛

⎝

∑

0≤k≤l<i

α
(i)
k,l bkbl +

∑

0≤k<i

β
(i)
k bk + γ(i)

⎞

⎠ .

The reason why ˜G2(x) is used in the definition of ˜G(x) consists in the security.
This is discussed in Sect. 5.4.
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4.2 pq-C∗

pq-C∗ uses the central map of the scheme C∗ as ˜G(x) mod p. C∗ was initially
proposed by Matsumoto and Imai [18], however, it was broken by Patarin [25]. It
is known that the Kipnis-Shamir attack [17] and the direct attack [7] also work
efficiently for C∗.

Let us explain ˜G(x) used in pq-C∗. Let h(t) ∈ Fp[t] be a monic irreducible
polynomial of degree n, and K = Fp[t]/(h(x)) be an extension field of Fp of
degree n. The Fp-isomorphism ρ : K → F

n
p is defined by

ρ(a0 + a1t + · · · + an−1t
n−1) = (a0, a1, . . . , an−1) (a0, . . . , an−1 ∈ Fp).

Choose θ such that 0 < θ < n, let integers κ and α be defined by κ = gcd(pθ +
1, pn − 1) and κ = α(pθ + 1) mod pn − 1. A polynomial Ǧ(X) over K in one
variable is defined by Ǧ(X) = Xpθ+1, and Ǧ0(x) : Fn

p → F
n
p is given by Ǧ0 =

ρ ◦ Ǧ ◦ ρ−1. Then, Ǧ0(x) becomes a homogeneous quadratic polynomial system.
˜G(x) ∈ Z[x] is defined as satisfying that its all coefficients belong to Ip and
˜G(x) ≡ Ǧ0(x) mod p. Then, ˜G(x) mod p (= Ǧ0(x)) is almost injective, and
the inverse image b = (b1, . . . , bn) ∈ F

n
p of c = (c1, . . . , cn) ∈ F

n
p is obtained as

follows:

1. Compute w = ρ−1(c).
2. Compute v = wα.
3. Compute a solution u of the equation Xκ = v (using a solver such as the

Berlekamp algorithm).
4. Compute b = ρ(u).

In pq-C∗, T is not chosen as an affine transformation, but as a linear transfor-
mation. Thereby, F (x) becomes a homogeneous quadratic polynomial system.

4.3 pq-Square

pq-Square uses the central map of the scheme, Square as ˜G(x) mod p. Square
was proposed by Clough et al. [5], however, it was broken using the differential
attack by Billet et al. [3].

Let us explain ˜G(x) used in pq-Square. Similarly for pq-C∗, let h(t) ∈ Fp[t] be
a monic irreducible polynomial of degree n, and K = Fp[t]/(h(x)) an extension
field of Fp of degree n. The Fp-isomorphism ρ : K → F

n
p is defined similar to

the case of pq-C∗. A polynomial Ǧ(X) over K in one variable is defined by
Ǧ(X) = X2, and Ǧ1(x) : Fn

p → F
n
p is given by Ǧ1 = ρ ◦ Ǧ ◦ ρ−1. Then, Ǧ1(x)

becomes a homogeneous quadratic polynomial system. ˜G1(x) ∈ Z[x] is defined
to be satisfying as all its coefficients belong to Ip and ˜G1(x) ≡ Ǧ1(x) mod p.
Let l

˜G,2 be a positive odd integer. A homogeneous quadratic polynomial system
˜G2(x) = (ψ1(x), . . . , ψn(x)) ∈ Z[x]n is taken randomly, for i = 1, . . . , n, in the
form,
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ψi(x) =
∑

0≤k≤l≤n,
k+l<n

α′(i)
k,l xkxl (α′(i)

k,l ∈ Il
˜G,2

).

˜G(x) is defined by ˜G(x) = ˜G1(x) + p ˜G2(x). Then, ˜G(x) mod p (= Ǧ1(x)) is
almost injective (exactly, two-to-one), and the inverse image b = (b1, . . . , bn) ∈
F

n
p of c = (c1, . . . , cn) ∈ F

n
p is obtained as follows:

1. Compute w = ρ−1(c).
2. Compute a solution u of the equation X2 = w (using a square root algorithm

such as the Tonelli-Shanks algorithm).
3. Compute b = ρ(u).

In pq-Square, similar to pq-C∗, T is not chosen as an affine transformation,
but as a linear transformation. Then, F (x) becomes a homogeneous quadratic
polynomial system.

Remark 1. (1) Any coefficient of the terms xkxl (k + l < n) of each component
of ˜G1(x) is either 0 or 1. Therefore, in order to increase the number of can-
didates of the coefficient, ˜G2(x) is appended. This is necessary for security,
and its reason is discussed in Sect. 5.4.

(2) In case of a scheme in “big field” system such as C∗ and Square, the equiv-
alence class of the public key itself remains unchanged even if a monic irre-
ducible polynomial h(t) is exchanged. However, in the case of pq-C∗ and
pq-Square, different equivalence classes of public key are obtained when h(t)
is exchanged because the action of reduction modulo p cannot be realized by
the arithmetic operation of Fq. Therefore, many equivalence classes of public
key can be created by exchanging h(t).

5 Security Analysis of pq-Method

The security of the pq-method is mainly based on the difficulty of solving the
constrained MQ problem.

Constrained MQ problem: For positive integers m,n and L, let F(x)
be a polynomial system which consists of m quadratic polynomials over
Fq in variables x = (x1, . . . , xn). Then, find x0 ∈ I n

L such that F(x0) = 0.

In this section, fixing a ciphertext c ∈ F
n
q , we consider a polynomial system

F(x) = F (x) − c for a public key F (x) constructed by the pq-method. For this
F(x), we obtain the plaintext corresponding to c by solving the constrained MQ
problem where L = p.
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5.1 Constrained MQ Problem

A solution of the constrained MQ problem is also a solution for the general MQ
problem. Therefore, attacks against the general MQ problem are applicable to
the constrained MQ problem. Such attacks are considered in Sect. 5.3; however
here, we observe a peculiar attack against the constrained MQ problem.

For F(x) = (f̂1(x), . . . , f̂n(x)), each component f̂i(x) has n(n+1)
2 + n + 1 =

(n+1)(n+2)
2 terms. This number is denoted by s0. Determining an order of these

terms, a vector ai ∈ Z
s0 is defined as the vector of coefficients lifted to integers

from the coefficients of f̂i(x). The q-ary lattice generated by a1, . . . ,an is denoted
by A. By solving the Shortest Independent Vector Problem (SIVP) for A, n
linearly independent short vectors b1, . . . ,bn ∈ Z

s0 in A are obtained. The
polynomial over Z corresponding to the vector bi is denoted by ĥi(x), and let
H(x) = (ĥ1(x), . . . , ĥn(x)). Then, the problem of solving the equation F(x) = 0
is reduced to the problem of solving the equation H(x) ≡ 0 mod q. Here, let us
assume that for a solution x0 of the constrained MQ problem,

|ĥi(x0)| <
q − 1

2
(i = 1, . . . , n) (4)

are satisfied. Then, x0 is not only a solution of H(x) ≡ 0 mod q, but also a
solution of the equation over Z, H(x) = 0.

Solving the equation H(x) = 0 can be carried out efficiently by combining
methods to solve approximately nonlinear equations over the real number field
with the fact that x0 has integer components. Method to solve approximately
H(x) = 0, includes the Levenberg-Marquardt method [16], and also optimization
technique [2,23] for ‖H(x)‖ 2

2 where ‖ · ‖2 is the usual Euclid norm.
First, let us consider the possibility that H(x) satisfies (4) for a general con-

strained MQ problem. Since vol(A) = qs0−n, according to the Gaussian heuristic
[22], it is expected that

‖bi‖2 ≈
√

s0
2πe

q1− n
s0 (i = 1, . . . , n).

Here, e is Napier’s constant. Simply, assuming that
√

s0
2πe components of bi are

close to q, the probability satisfying (4) will be negligible if s0 is sufficiently
large.

Next, consider the case of a constrained MQ problem obtained by the pq-
method. ˜G(x), ˜H(x) have small coefficients, but, the distribution of r1, . . . , rn is
close to the uniform distribution on [2M

˜G, q − 2M
˜G − 1]. Therefore, considering

G(x) defined as, a coefficient of the components of G(x) behaves as chosen
randomly in [M

˜G, q − M
˜G − 1]. Since M

˜G is small as compared to q, similarly
for a general constrained MQ problem, the probability of satisfying (4) must
be negligible. This argument implies that the part ˜HR(x) is indispensable while
defining G(x).
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5.2 Exhaustive Search

For the ciphertext c, the solution x0 of F (x) = c on I n
p coincides with the

plaintext. In the case of pq-C∗ and pq-Square, −x0 is also a solution of F (x) =
c because F (x) is homogeneous quadratic. Therefore, the complexity of the
exhaustive search is given by O(pn/2). In case of pq-TM, if the linear part L(x)
of F (x) is regular, by changing F (x) by L−1 ◦ F (x), it can be assumed that
the linear part of F (x) is the identity map. Instead of the equation F (x) = c,
consider the inequality

‖F (x) − x − c‖∞ ≤ p, (5)

and find a solution of this inequality using the exhaustive search. Here, ‖ ·
‖∞ represents the supremum norm (= the maximum of the absolute values of
components). Since ±x0 are all solutions of (5), the complexity also becomes
O(pn/2).

5.3 Algebraic Attack

The algebraic attack uses algebraic equation solvers such as XL [4] and Gröbner
basis techniques [9,10] for solving the general MQ problem. The complexity of
the algebraic attack can be calculated by the complexity of the hybrid approach
[1] of computing the Gröbner basis and exhaustive search. In [1], while con-
ducting the exhaustive search, all the elements in a finite field are substituted
for several variables, but, in the pq-method, the part of the finite field must be
changed into Ip.

For k = 0, 1, . . . , n, we randomly choose (vn−k+1, vn−k+2, . . . , vn) ∈ Ip
k.

We denote the polynomial system in n − k variables obtained by substitut-
ing (xn−k+1, . . . , xn) = (vn−k+1, . . . , vn) for F(x) by Fk(x(k)). Here, x(k) =
(x1, . . . , xn−k). Note that F0(x(0)) is same as F(x).

For Fk(x(k)) = (f̂1(x(k)), . . . , f̂n(x(k))), the homogeneous quadratic part of
f̂i(x(k)) (i = 1, . . . , n) is denoted by f̂h

i (x(k)), and the homogeneous ideal J (k)

of Fq[x(k)] is defined by

J (k) = 〈f̂h
1 (x(k)), . . . , f̂h

n (x(k))〉.

For d ≥ 0, let Fq[x(k)]d denote the subspace of Fq[x(k)] consisting of homogeneous
polynomials of degree d, and J

(k)
d = J (k) ∩ Fq[x(k)]d. The Hilbert series of the

quotient ring Fq[x(k)]/J (k) is defined by

HSFq[x(k)]/J(k)(t) =
∞
∑

d=0

dimFq
(Fq[x(k)]d/J

(k)
d ) td ∈ Z[[t]].
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If the Krull-dimension of J (k) is zero, HSFq[x(k)]/J(k)(t) becomes a poly-
nomial. Then, the degree of regularity, dreg(k) is defined by dreg(k) =
deg(HSFq [x(k)]/J(k)(t)) + 1. For any S(t) ∈ Z[[t]], the power series obtained
by truncating S(t) at its first non positive coefficient is denoted by [S(t)]+ ∈
Z>0[[t]]. If

HSFq [x(k)]/J(k)(t) =
[

(1 − t2)n

(1 − t)n−k

]

+

(6)

is satisfied, Fk(x(k)) is said to be semi-regular. When k = 0 and Fk(x(k)) is
semi-regular, it is simply called regular.

Under the preceding preparation, the complexity of the algebraic attack is
described as follows [1]:

min0≤k≤n O
(

pk

(

n − k + dreg(k) − 1
dreg(k)

)ω)

. (7)

Here, 2 ≤ ω ≤ 3 is the linear algebra constant of solving a linear system. Tables 1,
2 and 3 show the experimental result of computing the degree of regularity of
F(x) for the three encryption schemes. For each parameter, 100 samples are
experimented using MAGMA. As a result, for all cases, we got that dreg(0) =
n + 1, or, F(x) is regular.

Based on the experimental result, we assume that F(x) is regular for any
other parameter. When F(x) is regular, for k = 1, . . . , n and random substitution
for k variables, the possibility that Fk(x(k)) is semi-regular is high from the point
of view of the Fröberg conjecture [12]. Therefore, by assuming that all Fk(x(k))
are semi-regular, the complexity (7) of the algebraic attack can be computed
using the value of the degree of regularity obtained by the Eq. (6).

5.4 Key Recovery Attack

Once an adversary knows the linear transformation part of the affine transfor-
mation T , he or she can calculate G(x) from the public key, and can compute
r1, . . . , rn, ˜G(x), ˜H(x) easily from G(x); hence, the secret information neces-
sary for decryption become known. Therefore, let us now consider an attack to
discover the linear transformation part T1 of T .

Let l
˜G be defined by

l
˜G =

⎧

⎨

⎩

min{l
˜G,1, l ˜G,2} if pq-TM,

p if pq-C∗,
min{p, l

˜G,2} if pq-Square.
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Table 1. Degree of regularity of pq-TM

Bit length of q n dreg(0)

22 bits 10 11

22 bits 11 12

23 bits 12 13

23 bits 13 14

24 bits 14 15

Table 2. Degree of regularity of pq-C∗

Bit length of q n dreg(0)

19 bits 10 11

20 bits 11 12

20 bits 12 13

21 bits 13 14

21 bits 14 15

Table 3. Degree of regularity of pq-Square

Bit length of q n dreg(0)

21 bits 10 11

21 bits 11 12

22 bits 12 13

22 bits 13 14

23 bits 14 15

An adversary who knows rj for some j can compute the j-th row vector of T−1
1

by the following procedure.

1. Choose an integer u such that n < u ≤ (n+2)(n+1)
2 , and a (ordered) set M

consisting of u monomials of degree less than or equal to 2.
2. For F (x) = (f1(x), . . . , fn(x)) and i = 1, . . . , n, compute a vector ai ∈ Z

u of
coefficients lifted to integers from coefficients of fi(x) with respect to M . The
q-ary lattice of Zu generated by a1, . . . ,an is denoted by A.

3. Choose b = (b1, . . . , bu) ∈ I u
lH̃

randomly.
4. Search the vector a in A closest to rjb. If ‖rjb − a‖∞ < l

˜G/2 is satisfied,
output the coefficient vector (c1, . . . , cn) of the linear combination a ≡ c1a1+
· · · + cnan mod q, and terminate. Otherwise, go back to Step 3.

The reason why u is chosen as u > n in Step 1 is because otherwise, the lattice
A coincides with the trivial lattice Z

u. Again, in the case that u is close to n, the
above algorithm may fail to output the j-th row vector of T−1

1 . Since b satisfying
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the inequality in Step 4 exists uniquely, even if we estimate the cost of searching
the closest vector to be 1, the complexity of the preceding algorithm becomes
O(lu

H̃
), which is larger than O(ln

H̃
).

If the vector g ∈ Z
u of coefficients lifted to integers from coefficients of g̃j(x)

with respect to M coincides with 0, then b satisfying the inequality in Step 4
can be found by computing the shortest vector of A. Therefore, in this case, the
complexity of the algorithm is reduced dramatically. To prevent this, we must
ensure that g is never equal to 0. In the case of pq-C∗, the construction of G̃(x)
ensures that g is not equal to 0. In the case of pq-TM and pq-Square, since a
replenishing polynomial ˜G2(x) of ˜G1(x) is appended in the construction of G̃(x),
g becomes non-zero.

Moreover, the above attack can exchange the roll of ˜G(x) and ˜H(x). Namely,
if the above algorithm is changed by l

˜G ↔ l
˜H , ri → 1/ri, it will work as an attack.

The complexity of this attack is O(lu
G̃

)(> O(ln
G̃

)).

5.5 Attack Against pq-TM

In pq-TM, a triangular map ˜G1(x) = (φ1(x), . . . , φn(x)) is used. While writing
the homogeneous quadratic part of each φi(x) for φh

i (x), we have

φh
1 (x) = 0,

φh
2 (x) ∈ Z[x1],

φh
3 (x) ∈ Z[x1, x2],

φh
4 (x) ∈ Z[x1, x2, x3],

...

Most schemes in MPKC that use a triangular map as the secret key, such as
TTM, were broken using the above structure of triangular map [13].

In pq-TM, to ˜G1(x), a polynomial p ˜G2(x) is appended, therefore, it is
designed not to have any special structure as above. Moreover, since a poly-
nomial ˜HR(x) is also appended, it is difficult to extract the part ˜G(x) from
G(x). Therefore, the application of the rank attack as seen in [13] is impossible.

5.6 Attack Against pq-C∗ and pq-Square

C∗ and Square use a special polynomial with one variable over the extension field
K as the central map. This is same for pq-C∗ and pq-Square. The linearization
equation attack [25] and the Kipnis-Shamir attack [17] which are attacks against
C∗, and the differential attack [3] which is an attack against Square, make use
of the algebraic structure of the extension field K.

Whereas, in the case of pq-C∗ and pq-Square, K is used for the construction
of Ǧ0(x) and Ǧ1(x). However, other than these polynomials, G(x) can also be
constructed by appending polynomials such as ˜HR(x) that have no relation with
K. Therefore, properties of K are not reflected in G(x), and the linearization
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equation attack, the Kipnis-Shamir attack and the differential attack cannot be
applied to pq-C∗ and pq-Square.

6 Selection of Parameters and Implementation

6.1 Selection of Parameters

Based on the security analysis in the previous section, we present secure param-
eters. Hereafter, we assume that l

˜H = p, and both l
˜G,1 and l

˜G,2 appearing in
pq-TM or pq-Square are equal to p. The complexity (7) of the algebraic attack
is estimated using ω = 2. The complexity of the attack in Sect. 5.4 is estimated
by O(pn). Then, all of pq-TM, pq-C∗ and pq-Square have the correspondence of
the security levels with the parameters (p, n) as Table 4.

Table 4. Security level and parameters

Security level (p, n)

128 bits (3, 91), (5, 71), (7, 65)

192 bits (3, 140), (5, 110), (7, 99)

6.2 Implementation

We explain our implementation for searching λi in Step 2 in the decryption
algorithm in Sect. 3. Let μ be an integer such that 0 ≤ μ ≤ 2M

˜H , and

Λ′
i(μ) = {liftq(rik) | k = 0, 1, 2, . . . , μ}.

This set is computed and sorted in the usual order in the process of the key
generation. In our implementation, λi is found as follows:

1. Search λ′ ∈ Λ′
i(μ) such that |liftq(|c′

i| − λ′)| < M
˜G using the binary search. If

λ′ is found, go to Step 3.
2. For k = μ+1, μ+2, . . . in this order, find k such that |liftq(|c′

i|− rik)| < M
˜G.

Set λ′ = rik.
3. Determine λ = ±λ′ by ci · λ ≥ 0, and output λ.

The binary search is executed efficiently in O(log μ) time. However, as μ gets
larger, the secret key size becomes larger.

We implemented pq-TM, pq-C∗ and pq-Square with secure parameters given
in Table 4 using Intel Core i7-6700, 3.4GHz. We used C++ programming lan-
guage with g++ compiler. As an algorithm of the binary search, lower bound in
<algorithm> library was used. The experiment is carried out for three kinds of
μ. One is μ = 0, another is μ = 2M

˜H , and the other is about twice of the average
of the evaluation of H(x). The following is the experimental result.
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128-bit security level

– pq-TM

p n q PK (bytes) Enc.(μs) μ SK (bytes) Dec.(μs)
0 60, 697 210

3 91 27 bits 1, 285, 625 619 200 125, 443 183
2, 930 995, 585 215

0 44, 410 102
5 71 33 bits 748, 588 288 800 278, 710 103

12, 900 3, 827, 184 115
0 37, 269 136

7 65 36 bits 627, 412 144 2, 000 622, 269 115
34, 500 10, 099, 561 130

– pq-C∗

p n q PK (bytes) Enc.(μs) μ SK (bytes) Dec.(μs)
0 27, 231 2, 286

3 91 26 bits 1, 238, 009 634 200 86, 381 2, 275
2, 850 876, 921 2, 582

0 19, 196 1, 184
5 71 30 bits 680, 535 284 800 232, 196 1, 208

12, 600 3, 377, 141 1, 286
0 17, 720 1, 177

7 65 33 bits 575, 128 155 2, 000 553, 970 1, 131
34, 200 9, 165, 877 1, 146

– pq-Square

p n q PK (bytes) Enc.(μs) μ SK (bytes) Dec.(μs)
0 28, 278 1, 526

3 91 27 bits 1, 285, 625 627 200 89, 703 1, 522
2, 900 905, 734 1, 525

0 20, 474 896
5 71 32 bits 725, 904 290 800 247, 674 872

12, 700 3, 594, 330 886
0 18, 793 856

7 65 35 bits 609, 984 152 2, 000 587, 543 842
34, 300 9, 706, 027 858
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192-bit security level

– pq-TM

p n q PK (bytes) Enc.(μs) μ SK (bytes) Dec.(μs)
0 190, 820 530

3 140 30 bits 5, 181, 750 2, 520 300 348, 320 508
6, 800 3, 764, 495 534

0 138, 888 313
5 110 35 bits 2, 938, 031 1, 578 1, 400 812, 638 313

30, 200 14, 625, 476 322
0 109, 518 290

7 99 38 bits 2, 327, 737 888 3, 200 1, 614, 318 285
78, 500 36, 820, 055 311

– pq-C∗

p n q PK (bytes) Enc.(μs) μ SK (bytes) Dec.(μs)
0 69, 125 7, 046

3 140 28 bits 4, 836, 300 2, 392 300 216, 125 6, 949
6, 700 3, 355, 065 7, 088

0 50, 407 3, 774
5 110 33 bits 2, 770, 143 1, 534 1, 400 685, 657 3, 743

29, 900 13, 595, 752 3, 750
0 44, 587 3, 262

7 99 36 bits 2, 205, 225 865 3, 200 1, 470, 187 3, 110
78, 000 34, 835, 018 3, 139

– pq-Square

p n q PK (bytes) Enc.(μs) μ SK (bytes) Dec.(μs)
0 74, 060 4, 835

3 140 29 bits 5, 009, 025 2, 432 300 223, 842 4, 575
6, 680 3, 463, 722 4, 596

0 51, 933 2, 573
5 110 34 bits 2, 854, 087 1, 544 1, 400 706, 433 2, 502

29, 800 14, 011, 483 2, 543
0 47, 062 2, 389

7 99 37 bits 2, 266, 481 844 3, 200 1, 511, 024 2, 377
78, 000 35, 790, 294 2, 388

7 Conclusion

We have introduced the constrained MQ problem as a new mathematical prob-
lem to be used as a security assumption for encryption schemes in MPKC.
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We have also proposed the pq-method, as a construction method of encryp-
tion schemes in MPKC whose security is mainly based on the constrained MQ
problem. In this paper, three encryption schemes using the pq-method are pre-
sented. On the other hand, the pq-method can be regarded as a kind of modifier
of encryption scheme in MPKC. Therefore, the pq-method is also applicable to
any encryption scheme in MPKC other than our proposals.

The constrained MQ problem itself is an interesting problem and should be
analyzed by various approach. We expect that the constrained MQ problem will
be discussed well and be applied to many scheme constructions.
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Abstract. In this paper, we put forward the notion of a token-based
multi-input functional encryption (token-based MIFE) scheme – a notion
intended to give encryptors a mechanism to control the decryption of
encrypted messages, by extending the encryption and decryption algo-
rithms to additionally use tokens. The basic idea is that a decryptor
must hold an appropriate decryption token in addition to his secrete
key, to be able to decrypt. This type of scheme can address security con-
cerns potentially arising in applications of functional encryption aimed
at addressing the problem of privacy preserving data analysis. We firstly
formalize token-based MIFE, and then provide two basic schemes based
on an ordinary MIFE scheme and a public key encryption scheme and a
pseudorandom function (PRF), respectively. Lastly, we extend the latter
construction to allow decryption tokens to be restricted to specified set
of encryptions, even if all encryptions have been done using the same
encryption token. This is achieved by using a constrained PRF.

1 Introduction

1.1 Background and Motivation

Nowadays, large amounts of data is constantly being collected, and data analy-
sis has become an indispensable tool for extracting value from this data. How-
ever, central data collection and processing, which is typically at the heart of
the data collection, potentially leads to security or privacy issues, as the stor-
age and processing provider, such as a cloud environment, is often not fully
trusted to keep the data or the extracted information private. This is especially
a concern, if the collected data contains sensitive information. As a potential
solution, homomorphic encryption (HE) and functional encryption (FE) have
attracted attention. Especially, multi-key homomorphic encryption (MKHE) or
multi-input functional encryption (MIFE) is expected to be suitable for the case
where the data is collected by different entities and will be processed by an entity
which is not fully trusted. Recently, MIFE for inner products has been stud-
ied [BLR+14,ARW16,LL16,KLM+16,ABDP15,DOT18] since the inner prod-
uct operation frequently appears in various statistical computation.
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Let us consider the following data analysis scenario using HE or FE. A data
analyst wants to analyze users’ data stored on a cloud server, but is only trusted
with the result of the analysis, and not the individual data of the users. In
order to achieve this securely, users might encrypt their own data by using the
HE or FE public key of the data analyst, and the store the ciphertexts in the
cloud. Here, we refer to each user’s ciphertext stored in the cloud as the original
ciphertext. In the HE case, the data analyst might request the cloud to perform
homomorphic evaluations of the original ciphertexts corresponding to the desired
analysis, and will then be able to obtain the result by decrypting the evaluated
ciphertext using his own (master) secret key. In the FE case, the data analyst
can obtain the result of the data analysis by merely decrypting the original
ciphertext(s) under his own secret key which embeds a function corresponding
to the desired analysis.

The above approach might seem to be a secure way for the analyst to obtain
the desired result. However, this might not be the case in all scenarios. For exam-
ple, in the HE case, the analyst might be able to instruct the cloud environment
to do a different type of processing or to limit the data which is being processed
such that additional details regarding the data of individual users are leaked. In
the extreme case, the analyst gains access to the original ciphertexts, in which
case he can directly obtain the data of the individual users. In the FE case, ana-
lysts will often be required to have access to many different keys implementing
various functions, and decrypting the user data with all of these will potentially
leak unintended information regarding the user data. Furthermore, and perhaps
more importantly, a different analysts holding a key corresponding to a differ-
ent function might gain access the original ciphertexts and decrypt these using
his key. As the data was intended for the original analyst holding a key for the
original function, this might lead to unintended data leaks. This problem might
be amplified if the key of one data analyst is compromised, as this will put all
existing and future data at risk. Hence, in these scenarios, additional security
measures might be warranted.

1.2 Our Contributions

In this paper, we attempt to address the above described problem, and focus on
reducing the power of the master or user secret key. We propose a new encryp-
tion primitive, called token-based encryption, which provides the encryptor with
additional means to control the decryption possible with the user secret key or
the master secret key. Our token-based multi-input functional encryption (token-
based MIFE) uses tokens both in the encryption and decryption processes, in
addition to secret keys. Roughly speaking, in token-based MIFE, both an appro-
priate decryption token and the secret key are required to decrypt, and as the
encryptors control the tokens, this provides an additional mechanism to address
the above discussed issues. The purpose of this paper it to formalize token-based
MIFE.

Token-Based MIFE. In this paper, we focus on multi-input functional
encryption in the private key setting [GGG+14,BLR+14,ARW16,LL16,BKS16,
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KLM+16,ABDP15,DOT18]. In token-based MIFE, we introduce new parame-
ters – encryption tokens etk and decryption tokens dtk – which are output by a
token generation algorithm GenToken. Informally speaking, token-based MIFE
scheme is similar to ordinary MIFE scheme, except that (1) an encryption token
etk is added to the input of encryption algorithm Enc, and (2) decryption algo-
rithm Dec takes as input a decryption token in addition to the user secret key
(and ciphertext). The encryption and decryption tokens are intended to be gen-
erated by the users encrypting the data in question, and the generation can be
done independently of the key generation server holding the master secret key.
Furthermore, new tokens can be generated as frequently as desired, which allow
the user to partition the data they encrypt. By only distributing the relevant
decryption tokens to the relevant decryption servers/analysts, the users can con-
trol what part of the data is accessible. For example, by encrypting data for two
different analysts using different tokens, the user can ensure that one analyst
cannot access data intended for the other.

In principle, users could generate a new set of tokens for each encryption
done, which would correspond to a very fine-grained partitioning. However, the
overhead of generating and managing tokens might make this undesirable. Fur-
thermore, at the time of encryption, it might not be clear how the data should
be partitioned. To address this, we additionally consider the ability to restrict
decryption tokens to only work for a specified set of encryptions, even if all
encryptions have been done using the same encryption token.

Specific Token-Based MIFE Schemes. In this paper, we present three spe-
cific token-based MIFE schemes. Firstly, we construct a simple scheme by com-
bining a MIFE scheme and an ordinary public key encryption (PKE) scheme. In
this scheme, the encryption and decryption tokens etk and dtk correspond to a
public and private key of the PKE scheme, and encryptions simply correspond
to double encryptions, using the MIFE scheme as the inner encryption. This
scheme allows the entity generating the tokens, e.g. a chosen user, to broadcast
the encryption token to the other users over a public channel.

The second token-based MIFE is constructed from a pseudorandom function
(PRF) and a MIFE scheme. In this scheme, the ciphertexts of the underlying
MIFE scheme are masked with masks generated using the PRF. However, to
ensure security, the scheme is required to be stateful. In contrast to the first
scheme, the token generation can be run in a distributed manner in the sense
that each user can run the corresponding part of the token generation indepen-
dently of the other users, but is then required to send the generated part of the
decryption token to the decryption server.

Lastly, the third construction is an extension of the second one using a con-
strained PRF as opposed to an ordinary one. This allows the scheme to sup-
port decryption token restriction. Furthermore, using the GGM tree-based PRF
[GGM84] as a constrained PRF, allows an efficient instantiation.
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1.3 Paper Organization

The rest of the paper is organized as follows: In Sect. 2 we review the cryp-
tographic preliminaries. In Sect. 3, we introduce the formal syntax and security
definitions of token-based MIFE. In Sect. 4, we show our specific stateless scheme
and it’s security. In Sects. 5 and 6, we show our specific efficient stateful schemes
and their security.

2 Preliminaries

In the following, we introduce the notion used in the paper, as well as the primi-
tives our constructions are based on. In addition to the primitives in this section,
we make use of a standard public key encryption scheme, which is defined in
AppendixA.

2.1 Notation

Throughout the paper we will use λ ∈ N to denote the security parameter and
will sometimes suppress the dependency on λ, when λ is clear from the context.
We denote by y ← x the assignment of y to x, and by s ← S we denote the
selection of an element s uniformly at random from the set S. The notation
[n] represents the set {1, 2, . . . , n}, and for n1 < n2, [n1;n2] represents the set
{n1, n1 + 1, . . . , n2}. For an algorithm A, we denote by y ← A(x) that A is run
with input x, and that the output is assigned to y.

2.2 Pseudorandom Function

A pseudorandom function (PRF) F : K × D → R with keyspace K, domain D,
and range R, is given by the following two algorithms.

F.KeyGen(1λ) This is the key generation algorithm which, on input the security
parameter 1λ, returns a key k ∈ K.

F.Eval(k, x) This is the evaluation algorithm which, given key k ∈ K and input
x ∈ D, returns an output value y ∈ R.

Security is defined via the security game shown in Fig. 1.

Definition 1. Let the advantage of an adversary A playing the security game
in Fig. 1 with respect to a pseudorandom function F = (KeyGen, Eval) be defined
as

AdvPRFF,A(λ) = 2
∣
∣
∣
∣
Pr[PRFF

A(λ) ⇒ 1] − 1
2

∣
∣
∣
∣
.

F is said to be secure if for all PPT adversaries A, AdvPRFF,A(λ) is negligible in the
security parameter λ.
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PRFF
A(λ):

k ← F.KeyGen(1λ)
b ←$ {0, 1}
F ← ∅
b′ ← AEval(1λ)
return (b = b′)

proc. Eval(x):
if b = 1

y ← F.Eval(k, x)
else

if F [x] = ⊥, then F [x] ←$ R
y ← F [x]

return y

Fig. 1. Game defining security of a pseudorandom function.

PRFF
A(λ):

(S, st) ← A(1λ)
k ← F.KeyGen(1λ)
kS ← F.Constrain(k, S)
b ←$ {0, 1}
F ← ∅
b′ ← AEval(st, kS)
return (b = b′)

proc. Eval(x):
if x ∈ S return ⊥
if b = 1

y ← F.Eval(k, x)
else

if F [x] = ⊥, then F [x] ←$ R
y ← F [x]

return y

Fig. 2. Game defining security of a constrained pseudorandom function.

Constrained Pseudorandom Function. A constrained PRF is an extension
of an ordinary PRF that allows PRF keys to be constrained to only be usable
for certain inputs. Specifically, besides the algorithms KeyGen and Eval defined
for an ordinary PRF, a constrained PRF additionally includes the following
algorithm:

Constrain(k, S) Given a key k ∈ K and a set S ⊂ D, this constraining algorithm
returns a constrained key kS .

For correctness, it is required that for all security parameters λ, all keys k ←
KeyGen(1λ), all sets S ⊂ D, all constrained keys kS ← Puncture(k, S), it holds
that

Eval(kS , x) =

{

Eval(k, x) if x ∈ S

⊥ otherwise

We define (selective) security for a constrained PRF F via the game shown in
Fig. 2.

Definition 2. Let the advantage of an adversary A playing the security game
in Fig. 1 with respect to a pseudorandom function F = (KeyGen, Eval) be defined
as

AdvPRFF,A(λ) = 2
∣
∣
∣
∣
Pr[PRFF

A(λ) ⇒ 1] − 1
2

∣
∣
∣
∣
.

F is said to be secure if for all PPT adversaries A, AdvPRFF,A(λ) is negligible in the
security parameter λ.
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Note the the above defined security notion for a constrained PRF is slightly
weaker than the notion considered by [BW13], as the adversary is only given
access to a challenge evaluation oracle returning real or random values, as
opposed to both an ordinary evaluation oracle alway returning Eval(k, x) and a
challenge evaluation oracle which can be evaluated on distinct inputs. However,
the above defined notion is sufficient to guarantee security for in our construction
based on a constrained PRF.

2.3 Symmetric-Key Multi-input Functional Encryption

A symmetric-key multi-input functional encryption (MIFE) scheme M for a func-
tion f is given by the following algorithms [BLR+14].

Setup(1λ) Given the security parameter λ, this setup algorithm returns public
parameters mpk and a private master key msk.

KeyGen(msk, y) Given msk and value y, this key generation algorithm returns
a secret key sky.

Enc(msk, x) Given the master key msk, an index i, and a message xi, this
encryption algorithm returns a ciphertext ci.

Dec(sky, c1, . . . , cn) Given sky and ciphertexts (c1, . . . , cn) encrypting message
vectors x1, . . . , xn, this decryption algorithm returns either f(x1, . . . , xn, y)
or the error symbol ⊥.

Correctness is defined in the obvious way. Adaptive security of a MIFE scheme
M is defined via the following security game.

INDβ
M,A(λ):

(mpk,msk) ← Setup(1λ)
b ← AKeyGen,Enc(mpk)
return b

proc. KeyGen(y):
sky ← KeyGen(msk, y)
return sky

proc. Enc(i, x0
i , x

1
i ):

c ← Enc(msk, i, xβ
i )

return c

In the above game it is required that for all j1, . . . , jn ∈ [Q1] × · · · × [Qn],
where for all i ∈ [n], Qi denotes the number of encryption queries for index i, A
only makes queries y to KeyGen satisfying

f(xj1,0
1 , . . . , xjn,0

n , y) = f(xj1,1
1 , . . . , xjn,1

n , y)

where (xj,0
i , xj,1

i ) denotes the values submitted by A in its jth query to Enc for
index i.

Definition 3. A scheme MIFE M is said to be IND secure, if for all PPT algo-
rithms A, the advantage

AdvINDM,A(λ) =
∣
∣Pr[IND0

M,A(λ) ⇒ 1] − Pr[IND1
M,A(λ) ⇒ 1]

∣
∣

is negligible in the security parameter λ.
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3 Token-Based MIFE

3.1 Functionality

A token-based MIFE extends the functionality of an ordinary MIFE as defined
in Sect. 2.3, by including an additional algorithm GenToken which, on input the
parameters mpk of the scheme, generates encryption tokens etk1, . . . , etkn and
a decryption token dtk. Each user i will then use encryption token etki as an
additional input to the encryption algorithm, while the decryption server will use
dtk as an additional input to the decryption algorithm. For simplicity, we will in
our formalization consider a setup in which the evaluation of the functionality
f implemented by the token-based MIFE is done over values x1, . . . , xn where
xi is encrypted by user i using encryption token etki. Lastly, our formalization
considers token-based MIFE schemes supporting restricting decryption tokens to
only work for specific ciphertexts. This is captured via the Restrict algorithm,
which takes as input a decryption token dtk and a set S consisting of index pairs
(i, j) referring to the jth encryption of the ith input, and outputs a decryption
token dtkS that only works for ciphertexts specified by S.

More formally, a token-based MIFE scheme for functionality f : X1 × . . . ×
Xn ×Y → R and a class S ⊆ 2[n]×N of supported restriction sets, is given by the
following algorithms.

Setup (1λ) Given the security parameter λ, this setup algorithm returns a secret
master key msk and public parameters mpk.

KeyGen (msk, y) Given msk and value y, this key generation algorithm returns
a secret key sky.

GenToken (mpk) Given the public parameters mpk, this token generation algo-
rithm returns encryption tokens etk1, . . . , etku and a decryption token dtk.

Enc (msk, i, etki, xi) Given the master key msk, a slot index i, a corresponding
encryption token etki, and a message xi, this encryption algorithm returns a
ciphertext ci and an updated encryption token etk′

i.
Restrict (dtk, S) Given dtk and a set S of index pairs, each pair (i, j) ∈ S

referring to the jth ciphertext encrypted for slot i, this algorithm returns a
restricted decryption token dtkS .

Dec(dtk, sky, c1, . . . , cn) Given dtk, sky, and ciphertexts c1, . . . , cn encrypting
messages x1, . . . , xn, this decryption algorithm returns either f(x1, . . . , xn, y)
or the error symbol ⊥.

Stateful/Stateless Schemes. Note that the above definition allows the encryp-
tion algorithm Enc to be stateful in the sense that, in addition to the ciphertext
c, Enc returns an updated encryption token etk′

i. The premise is that user i will
use the updated token etk′

i (as opposed to the old encryption token etki) in
the following encryption. We refer to this type of scheme as a stateful scheme.
However, we will additionally consider stateless schemes in which the encryption
token is not updated, that is, for (ci, etk

′
i) ← Enc(msk, i, etki, xi) it holds that

etk′
i = etki regardless of the other inputs msk, i, and xi.
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Support for Decryption Token Restriction. While the above definition
allows decryption tokens to be restricted via the Restrict algorithm, we will
also consider scheme that essentially do not support this. In this case, we simply
set the supported class of restriction sets S to be ∅ and let Restrict return
an empty string. In particular note that for a stateless scheme, the input to
the encryption algorithm besides xi will remain the same, which implies that
decryption tokens cannot be meaningfully restricted, assuming the ability to
decrypt is independent of xi. Hence, we will only consider decryption token
restriction for stateful schemes.
Correctness for Stateless Schemes. For a token-based MIFE scheme T for
function f , we require that for all security parameters λ, any input x1, . . . , xn ∈
X , any y ∈ Y, any (mpk,msk) ← T.Setup(1λ), any sky ← T.KeyGen(msk, y),
any (etk1, . . . , etku, dtk) ← T.GenToken(mpk), any i ∈ [n], and any ci ←
T.Enc(msk, i, etki, xi), it holds that

T.Dec(sky, dtk, c1, . . . , cn) = f(x1, . . . , xn, y).

Correctness for Stateful Schemes. For a token-based MIFE scheme T for function
f , we require that for all security parameters λ, any set of n values s1, . . . , sn

polynomial in λ, any set of n(s1 + · · · + sn) inputs, namely, x
(1)
1 , . . . , x

(s1)
1 ∈

X1; . . . ;x
(n)
1 , . . . , x

(sn)
n ∈ Xn, any y ∈ Y, any (mpk,msk) ← T.Setup(1λ),

any sky ← T.KeyGen(msk, y), any set of encryption/decryption tokens
(etk1, . . . , etku, dtk) ← T.GenToken(mpk), any set of ciphertexts (c(j1)1 , . . . ,

c
(jn)
n ) obtained by, for each i ∈ [n], iteratively computing (c(j)i , etk

(j+1)
i ) ←

T.Enc(msk, i, etk
(j)
i , x

(j)
i ), j ∈ [si], where etk

(1)
i = etki, it holds that

T.Dec(sky, dtk, c
(s1)
1 , . . . , c(sn)

n ) = f(x(s1)
1 , . . . , x(sn)

n , y)

and for all sets S ∈ S for which (1, j1), . . . , (n, jn) ∈ S, and all dtkS ←
T.Restrict(dtk, S), it likewise holds that

T.Dec(sky, dtkS , c
(s1)
1 , . . . , c(sn)

n ) = f(x(s1)
1 , . . . , x(sn)

n , y)

Remark 1. Note that correctness for stateless schemes is in fact captured as a
special case of correctness for stateful schemes. However, we explicitly included
the former for readability, since it is simpler than the latter.

3.2 Security

FE-IND Security. Firstly, we consider security against a malicious decryp-
tion server who attempts to derive additional information regarding plaintexts
xi beyond what is revealed by f(x1, . . . , xn, y) obtained in an honest decryption.
This is captured by the security notion functional encryption indistinguishability
(FE-IND) defined via the following game for a scheme T. In the game, the adver-
sary will be given an unrestricted decryption token, a key generation oracles, as
well as a (stateful) challenge encryption oracle. The FE-IND notion mirrors the
IND notion defined for an ordinary MIFE (see Sect. 2.3).
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FE-INDβ
T,A(λ):

(mpk,msk) ← Setup(1λ)
(etk1, . . . , etkn, dtk) ← GenToken(mpk)
b ← AKeyGen,Enc(mpk, dtk)
return b

proc. KeyGen(y):
return sky ← KeyGen(msk, y)

proc. Enc(i, x0
i , x

1
i ):

(c, etk′
i) ← Enc(msk, etki, i, x

β
i )

etki ← etk′
i

return c

In the above game it is required that for all j1, . . . , jn ∈ [Q1] × · · · × [Qn],
where for all i ∈ [n], Qi denotes the number of encryption queries for index i, A
only makes queries y to KeyGen satisfying

f(xj,0
1 , . . . , xj,0

n , y) = f(xj,1
1 , . . . , xj,1

n , y)

where (xj,0
i , xj,1

i ) denotes the values submitted by A in its jth query to Enc for
index i.

Definition 4. A scheme token-based MIFE T is said to be FE-IND secure, if for
all PPT algorithms A, the advantage

AdvFE−IND
T,A (λ) =

∣
∣Pr[FE − IND0

T,A(λ) ⇒ 1] − Pr[FE − IND1
T,A(λ) ⇒ 1]

∣
∣

is negligible in the security parameter λ.

TK-IND Security. We additionally consider security against a malicious
decryption server who attempts to learn any information regarding plaintexts
xi without possessing the appropriate decryption token. This is captured by
the security notion token-based indistinguishability (TK-IND) defined via the
following game for scheme T. Note that in the security game, the adversary A
is given the master secret key msk as input, and hence captures a malicious
decryption server colluding with the key generation server. Furthermore, A is
given a restricted decryption token dtkS for a set S of his own choice, but is
required to submit challenge queries that are not covered by S. This captures
that dtkS does not leak information that would assist decryption of ciphertexts
not covered by S. Note that our notion is selective in terms of the choice of S,
as A is required to commit to S before interacting with the challenge encryption
oracle. Lastly note that for a scheme not supporting decryption token restriction,
the Restrict algorithm is implicitly defined to always return an empty string,
which implies that A would only receive msk as input.

TK-INDβ
T,A(λ):

(mpk,msk) ← Setup(1λ)
(S, st) ← A(mpk,msk)
(etk1, . . . , etkl, dtk) ← GenToken(mpk)
j1, . . . , jn ← 0
dtkS ← Restrict(dtk,S)
b ← AEnc(st, dtkS)
return b

proc. Enc(i, x0
i , x

1
i ):

if (i, ji) ∈ S
return ⊥

(c, etk′
i) ← Enc(msk, etki, i, x

β
i )

ji ← ji + 1
etki ← etk′

i

return c
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Definition 5. A token-based MIFE scheme T is said to be TK-IND secure, if for
all PPT algorithms A, the advantage

AdvTK−IND
T,A (λ) =

∣
∣Pr[TK − IND0

T,A(λ) ⇒ 1] − Pr[TK − IND1
T,A(λ) ⇒ 1]

∣
∣

is negligible in the security parameter λ.

Besides the above, we consider a slightly stronger security notion which cap-
tures schemes in which the encryption tokens are broadcast to the users over a
public channel. We will refer to this notion as public token-based indistinguisha-
bility (pTK-IND). More specifically, we denote by pTK-IND a security game
identical to the TK-IND game defined above, except that in the second invoca-
tion of the adversary A, etk1, . . . , etkn will be given as input to A in addition to
st and dtkS . Based on this game, pTK-IND security is defined as follows.

Definition 6. A token-based MIFE scheme T is said to be pTK-IND secure, if
for all PPT algorithms A, the advantage

AdvpTK−IND
T,A (λ) =

∣
∣Pr[pTK − IND0

T,A(λ) ⇒ 1] − Pr[pTK − IND1
T,A(λ) ⇒ 1]

∣
∣

is negligible in the security parameter λ.

4 A Stateless Scheme

We will now present a simple stateless token-based MIFE scheme based on a
standard MIFE scheme and a public key encryption scheme. The construction
uses a single public key for the encryption tokens, and simply constructs a dou-
ble encryption of messages, using the public key encryption as the outer layer.
This leads to a scheme in which e.g. a chosen user can generate the encryp-
tion/decryption tokens on behalf of all users, and then simply broadcast the
encryption token to the remaining users (as well as provide the decryption token
to the decryption server fi/when appropriate). However, as this is a stateless
scheme, it will not support decryption token restriction.

Concretely, we construct a token-based MIFE scheme T for function f using
an ordinary public-key encryption scheme PKE = (KeyGen, Enc, Dec) and a multi-
input functional encryption scheme M = (Setup, KeyGen, Enc, Dec) for f as fol-
lows.

Setup (1λ) Return (mpk,msk) ← M.Setup(1λ).
KeyGen (msk, y) Return sky ← M.KeyGen(msk, y).
GenToken (λ) Compute (pk, sk) ← PKE.KeyGen(1λ), set etk1 = · · · = etkl ← pk

and dtk ← sk. Finally return (etk1, . . . , etkl, dtk).
Enc (msk, i, etki, xi) Compute c′ ← M.Enc(msk, i, xi); c ← PKE.Enc(etki, c

′).
Return (c, u).

Dec (dtk, sky, c1, . . . , cn) For each i ∈ [n], compute c′
i ← PKE.Dec(dtk, ci).

Return M.Dec(sky, c′
1, . . . , c

′
n).
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4.1 Security

The security of the above construction is established via the following two the-
orems. The corresponding proofs can be found in AppendixB.

Theorem 1. Assume the MIFE scheme M is IND secure. Then the above scheme
T is FE-IND secure. Specifically, for every PPT adversary A against the FE-IND
security of T, there exists a PPT adversary B against the IND security of M such
that AdvFE−IND

T,A ≤ AdvINDM,B.

Theorem 2. Assume PKE is IND-CPA secure. Then the above scheme T is pTK-
IND secure. Specifically, for every PPT adversary A against the pTK-IND secu-
rity of T, there exists a PPT adversary B against the IND-CPA security of PKE
such that AdvTK−IND

T,A ≤ n · AdvIND−CPA
PKE,B .

5 A Stateful Scheme

We will now present a stateful token-based MIFE scheme based on a standard
MIFE scheme and a PRF. Compared to the stateless scheme in the previous
section, the computational overhead of making the MIFE scheme token-based is
much lower, as a PRF can be implemented much more efficiently compared to a
PKE. Furthermore, the scheme allows the GenToken algorithm to be computed
in a distributed manner; each user will be able to independently generate his
own encryption token etki and the corresponding part of the decryption token
dtki. For the decryption server to be able to decrypt, it is then required that
each user sends dtki to the server, which will then form the full decryption token
dtk = (dtk1, . . . , dtkn). Like the stateless scheme, the construction idea is simple;
the ciphertexts of the MIFE are simply masked with a mask generated using the
PRF evaluated. To guarantee security, the scheme must be stateful, as it must
be ensured that the same mask is never used twice.

Concretely, we construct a token-based MIFE scheme T using a PRF
PRF = {KeyGen, Eval} with range {0, 1}l, and a MIFE scheme M =
{Setup, KeyGen, Enc, Dec} with ciphertext space C ⊂ {0, 1}l as follows.

Setup (1λ) Return (mpk,msk) ← M.Setup(1λ).
KeyGen (msk, y) Return sky ← M.KeyGen(msk, y).
GenToken (λ) For i ∈ [n] compute ki ← PRF.KeyGen(1λ), and set etki ← (ki, 0).

Finally set dtk ← (k1, . . . , kn), and return (etk1, . . . , etkn, dtk).
Enc (msk, i, etk, xi) Parse etk → (k, j), and compute m ← PRF.Eval(k, j). Then

compute c′ ← M.Enc(msk, i, xi), and set c ← (c′ ⊕ m, j), j′ ← j + 1, and
etk′ ← (k, u, j′). Finally return (c, etk′).

Dec (dtk, sky, c1, . . . , cn) Parse dtk → (k1, . . . , kl) and ci → (c′
i, ji) for i ∈ [n].

For each i ∈ [n], compute mi ← PRF.Eval(ki, ji) and c′′
i ← c′

i ⊕ mi. Finally
return z ← M.Dec(sk′

y, c′′
1 , . . . , c′′

n).
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5.1 Security

The security of the above construction is established via the following two the-
orems.

Theorem 3. Assume the MIFE scheme M is IND secure. Then the above scheme
T is FE-IND secure. Specifically, for every PPT adversary A against the FE-IND
security of T, there exists a PPT adversary B against the IND security of M such
that AdvTK−IND

T,A ≤ AdvINDM,B.

Proof. The proof is a simple and straightforward reduction. Given adversary A
against the FE-IND security of T, we construct adversary B against the IND
security of M as follows.

Initially, B is given parameters mpk which B simply forwards to A. Further-
more, B will compute PRF keys ki ← P.KeyGen(1λ) and set variables ji ← 0
for i ∈ [n]. When A submits a key generation query y, B simply forwards y to
his own KeyGen oracle, and returns the response sky to A. When A makes an
encryption query (u, i, x0

i , x
1
i ), B forwards (i, x0

i , x
1
i ) to his own Enc oracle to

obtain ciphertext c′. Then B computes m ← P.Eval(ki, ji), sets c ← (c′ ⊕ m, ji)
and ji ← ji + 1, and lastly returns c to A. Eventually A will terminate with
output b, which B forwards as his own output.

By inspection, it should be clear that B provides a perfect simulation of the
FE-IND game for A, and that B wins the IND game for M (i.e. correctly guesses
the challenge bit β) whenever A wins the FE-IND game for T. Hence the theorem
follows.

Theorem 4. Assume the PRF P is secure. Then the above scheme T is TK-IND
secure. Specifically, for every PPT adversary A against the TK-IND security of
T, there exists a PPT adversaries B1, . . . ,Bl against the PRF security of P such
that AdvTK−IND

T,A ≤ AdvPRFP,B1
+ . . . + AdvPRFP,B2l

.

Proof. The proof is a series of simple game hops, firstly replacing the output of
the PRF P with random values for each user, then changing the challenge bit
β used by the encryption oracle, and finally replacing the output of P back to
the real values. Note that since the scheme does not support decryption token
restrictions, the restricted decryption token dtkS will correspond to ⊥ regardless
of the set S, and we can ignore this input to A (as well as S output by A).

More concretely, let G0 denote the TK − IND0
T,A game, and let Gt, t ∈ [n],

denote modifications of this game in which the encryption done in response to
encryption queries (i, x0

i , x
1
i ), is modified as follows: if i ≤ t, set m ← {0, 1}t,

otherwise set m ← P.Eval(ki, ji). Furthermore, let Gn+1 denote a modification of
Gn in which the encryption oracle uses β = 1. Finally, let Gt for t ∈ [n+2; 2n+1]
denote modifications of Gn+1 corresponding to reversing the changes introduced
in games G1, . . . , Gn i.e. the random masks m used in the response to encryption
queries are replaced with m ← P.Eval(ki, ji) for each user i in turn, starting from
user 1. It should be clear the game G2n+1 is identical to TK − IND1T,A.

Via a simple reduction, we bound the difference between the probability that
A outputs 1 in game Gt and in game Gt+1, t ∈ {0, . . . , n− 1}, with AdvPRFP,Bt

for a
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PPT algorithm Bt. Specifically, Bt is constructed as follows. Initially, Bt generates
(mpk,msk) ← M.Setup(1λ), sets j1, . . . , jn ← 0, computes ki ← P.KeyGen(1λ) for
all i �= t and i ∈ [n], and forwards (mpk,msk) to A (note that (ki, ji) corresponds
to the encryption token etki for user i). For encryption queries (i, x0

1, x
1
i ) where

i ≤ t, Bt responds by using a randomly chosen mask mi ← {0, 1}l. For queries
where i > t+1, Bt responds using mi ← P.Eval(ku, i||j) and updating ji ← ji+1.
However, for queries where i = t + 1, Bt forwards ji to his own Eval oracle to
obtain mi, and sets ji ← ji + 1. Finally, when A returns a bit b′, Bt forwards
this as his own output.

From the above description, it should be clear that Bt provides a perfect
simulation of game Gt for A if the challenge bit β in the PRF security game
played by Bt is 0. On the other hand, if β = 1, Bt provides a perfect simulation of
game Gt+1. Hence, it directly follows that |Pr[Gt ⇒ 1]−Pr[Gt+1 ⇒]| ≤ AdvPRFP,Bt

,
t ∈ [0; l − 1]. Furthermore, since in game Gn and Gn+1, the masks used in the
response to encryption queries are picked uniformly at random, the distributions
of (mi⊕c′

i, ji) in the two games are identical, even though c′
i encrypts x0

i in game
Gn and x1

i in game Gn+1. Finally, using an identical argument to the above, it
follows that |Pr[Gi ⇒ 1] − Pr[Gi+1 ⇒]| ≤ AdvPRFP,Bi

, i ∈ [l + 1; 2l + 1].
Combining the above bounds, we obtain

AdvTK−IND
T,A = |Pr[TK − IND0

T,A ⇒ 1] − TK − IND1
T,A ⇒ 1]|

≤
2l∑

t=0

|Pr[Gt ⇒ 1] − Pr[Gt+1 ⇒ 1]|

≤ AdvPRFP,B0
+ . . . + AdvPRFP,Bl−1

+ AdvPRFP,Bl+1
+ . . . + AdvPRFP,B2l

�

6 A Stateful Scheme Supporting Decryption Tokens
Restriction

We will now present an extension of the scheme from Sect. 5 that allows restrict-
ing decryption tokens. First observe that the stateful scheme from Sect. 5 actually
supports a simple form of decryption token restriction. Specifically, note that the
decryption server is required to recover the masks mi to be able to decrypt, which
is possible as the decryption token dtk contains the PRF keys ki used to gener-
ate these. To restrict dtk to only be usable for a set of ciphertext specified by a
given set S, e.g. S = {(1, j1), . . . , (n, jn)}, it is possible to simply use the rele-
vant masks as a restricted decryption token i.e. dtkS = {mi = Eval(ki, ji)}i∈[n].
It is not difficult to see that security for ciphertexts not described by S will
be preserved. However, the disadvantage of this solution is that the size of the
decryption token will equal the size of S.

To obtain a more efficient solution, we will make use of a constrained PRF to
limit the ability of the decryption server to only be able to generate the masks
required to decrypt the ciphertexts described by S. By choosing an appropriate
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instantiation of the constrained PRF, the size of the decryption token can be
reduced. We discuss the details of the instantiation below.

The scheme rT is based on a MIFE M = {Setup, KeyGen, Enc, Dec} and a
constrained PRF cP = {KeyGen, Eval, Restrict}. The algorithms rT.Setup,
rT.KeyGen, rT.GenToken, rT.Enc, and rT.Dec are identical to the stateless scheme
T in Sect. 4, but for clarity, all algorithms are described below.

Setup (1λ) Return (mpk,msk) ← M.Setup(1λ).
KeyGen (msk, y) Return sky ← M.KeyGen(msk, y).
GenToken (λ) For i ∈ [n] compute ki ← cP.KeyGen(1λ), and set etki ← (ki, 0).

Finally set dtk ← (k1, . . . , kn), and return (etk1, . . . , etkn, dtk).
Enc (msk, i, etk, xi) Parse etk → (k, j), and compute m ← cP.Eval(k, j). Then

compute c′ ← M.Enc(msk, i, xi), and set c ← (c′ ⊕ m, j), j′ ← j + 1, and
etk′ ← (k, u, j′). Finally return (c, etk′).

Restrict (dtk, S) Parse dtk → (k1, . . . , kn) and let Si = {j|(i, j) ∈ S}. Set
k′

i ← cP.Restrict(ki, Si) for i ∈ [n], and return dtkS ← (k′
1, . . . , k

′
n).

Dec (dtk, sky, c1, . . . , cn) Parse dtk → (k1, . . . , kl) and ci → (c′
i, ji) for i ∈ [n].

For each i ∈ [n], compute mi ← cP.Eval(ki, ji) and c′′
i ← c′

i ⊕ mi. Finally
return z ← M.Dec(sk′

y, c′′
1 , . . . , c′′

n).

It is relatively straightforward to confirm that the scheme is correct.

6.1 Security

Theorem 5. Assume the MIFE scheme M is IND secure. Then the above scheme
rT is FE-IND secure. Specifically, for every PPT adversary A against the FE-
IND security of rT, there exists a PPT adversary B against the IND security of
M such that AdvTK−IND

rT,A ≤ AdvINDM,B.

The proof of the above theorem is identical to the proof of Theorem3

Theorem 6. Assume the PRF P is secure. Then the above scheme T is TK-IND
secure. Specifically, for every PPT adversary A against the TK-IND security of
T, there exists a PPT adversaries B1, . . . ,Bl against the PRF security of P such
that AdvTK−IND

T,A ≤ AdvcPRFP,B1
+ . . . + AdvcPRFP,B2l

.

(Proof Sketch). The proof is almost identical to the proof of Theorem4, so we will
just highlight the differences. In fact, the only difference is that the adversary A
will have to be given a correctly formed restricted decryption token dtkS corre-
sponding to the set S output by A. Following the description of the scheme, this
implies that in all games Gt, i ∈ [2l + 1], A will be given dtkS = (kS1 , . . . , kSn

),
where Si = {j|(i, j) ∈ S} and kSi

← cP.Restrict(dtk, Si). Note that the adver-
sary Bt constructed to bound the difference between games Gt and Gt+1, for
t ∈ 0, . . . , l − 1, will have access to all keys ki for i �= t+1 i ∈ [n], and can hence
directly compute kSi

← P.Constrain(ki, Si). Furthermore, Bt will initially be
given S and can derive St+1 = {j|(t+1, j) ∈ S}, and since Bt will be interacting
in the security game of the constrained PRF cP , Bt will be able to submit this
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as the initial step, and obtain kSt+1 ← cP.Restrict(kt+1, St+1) for the chal-
lenge key kt+1. The remaining part of the simulation is exactly as in the proof
of Theorem 4, and a an identical bound on the advantage of A is obtained. �

6.2 Efficient Instantiation of a Constrained PRF

As also observed in several other works [BW13,BGI14,KPTZ13], a selective
secure constrained PRF can be obtained directly from the GGM tree-based
construction of a PRF [GGM84]. More precisely, the secret key ks at an internal
node associated with the string s in the tree, allows the PRF to be evaluated on
strings with the prefix s i.e. ks is a constrained key for the set of strings with
prefix s. Using this construction in combination with the above token-based
MIFE, leads to restricted decryption tokens dtkS consisting of PRF keys ks such
that all values j in the set S is captured by a prefix s, but no value j′ ∈ S is.
This construction is particularly efficient when the values j in S are consecutive
values.

A Public Key Encryption

A public key encryption (PKE) scheme PKE is defined by three algorithms with
the following functionality:

PKE.KeyGen(1λ) This is the key generations algorithm, which on input the secu-
rity parameter 1λ, returns a public/private key pair (pk, sk).

PKE.Enc(par, pk,m) This is the encryption algorithm, which on input a public
key pk and a message m, returns an encryption c of m under pk.

PKE.Dec(par, sk, c) This is the decryption algorithm, which on input a private
key sk and a ciphertext c, returns either a message m or the error symbol ⊥.

We require that a PKE scheme satisfies perfect correctness, that is,
for all λ, all (pk, sk) ← PKE.KeyGen(1λ), and all m, it holds that
PKE.Dec(sk, PKE.Enc(pk,m)) = m.

IND-CPAPKE
A (λ):

(pk∗, sk∗) ← PKE.KeyGen(1λ)
b ←$ {0, 1};
(m0, m1, st) ← A(pk∗)
c∗ ← PKE.Enc(pk∗, mb)
b′ ← A(st, c∗)
return (b = b′)

Fig. 3. Game defining indistinguishability under chosen plaintext attacks (IND-CPA)
for a PKE scheme.

The standard IND-CPA security notion for PKE scheme is defined via the
game shown in Fig. 3.
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Definition 7. Let the advantage of an adversary A playing the IND-CPA game
with respect to a PKE scheme PKE, be defined as:

AdvIND−CPA
PKE,A (λ) = 2

∣
∣
∣
∣
Pr[IND-CPAPKE

A (λ) ⇒ 1] − 1
2

∣
∣
∣
∣
.

A scheme PKE is said to be IND-CPA secure, if for all PPT adversaries A,
AdvIND−CPA

PKE,A (λ) is negligible in the security parameter λ.

B Security Proofs for Stateless Scheme

Theorem 7. Assume the MIFE scheme M is IND secure. Then the above scheme
T is FE-IND secure. Specifically, for every PPT adversary A against the FE-IND
security of T, there exists a PPT adversary B against the IND security of M such
that AdvFE−IND

T,A ≤ AdvINDM,B.

Proof. The proof is a simple and straightforward reduction. Given adversary A
against the FE-IND security of T, we construct adversary B against the IND
security of M as follows.

Initially, B is given parameters mpk which B simply forwards to A. Fur-
thermore, B will compute (pk, sk) ← PKE.KeyGen(1λ). When A submits a key
generation query y, B simply forwards y to his own KeyGen oracle, and returns
the response sky to A. When A makes an encryption query (i, x0

i , x
1
i ), B for-

wards (i, x0
i , x

1
i ) to his own Enc oracle to obtain ciphertext c′. Then B computes

c ← PKE.Enc(pk, c′), and returns c to A. Eventually A will terminate with output
b′, which B forwards as his own output.

By inspection, it should be clear that B provides a perfect simulation of the
FE-IND game for A, and that B wins the IND game for M (i.e. correctly guesses
the challenge bit b) whenever A wins the FE-IND game for T. Hence the theorem
follows.

Theorem 8. Assume PKE is IND-CPA secure. Then the above scheme T is pTK-
IND secure. Specifically, for every PPT adversary A against the pTK-IND secu-
rity of T, there exists a PPT adversary B against the IND-CPA security of PKE
such that AdvTK−IND

T,A ≤ n · AdvIND−CPA
PKE,B .

Proof. Again, the proof is a simple and straightforward reduction. In the fol-
lowing, we will for convenience make use of the standard extension of IND-CPA
security to the multi-challenge setting.

Given adversary A against the TK-IND security of T, we construct adversary
B against the IND-CPA security of PKE as follows.

Initially, B is given parameters pk. B computes (mpk,msk) ← M.Setup(1λ).
and forwards (mpk,msk) to A. When A submits a key generation query y,
B simply computes sky ← M.KeyGen(msk, y) and returns sky to A. When A
makes an encryption query (i, x0

i , x
1
i ), B computes c′

i
(0) ← M.Enc(msk, i, x0

i )
and c′

i
(1) ← M.Enc(msk, i, x1

i ). B then submits (c′
1
(0)

, c′
1
(1)), . . . , (c′

n
(0)

, c′
n
(1)) to
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the multi-challenge IND-CPA challenge oracle to obtain the challenge vector
(c1, . . . , cn). B then returns it to A. Eventually A will terminate with output b′,
which B forwards as his own output.

By inspection, it should be clear that B provides a perfect simulation of
the TK-IND game for A, and that B wins the multi-challange IND-CPA game
for M (i.e. correctly guesses the challenge bit b) whenever A wins the TK-IND
game for T. Furthermore, since the multi-challenge IND-CPA security reduces to
the normal IND-CPA security with reduction n, the number of challenges, the
theorem follows. �
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Abstract. In this paper we study public-key encryption schemes based
on error-correcting codes that are IND-CCA2 secure in the standard
model. In particular, we analyze a protocol due to Dowsley, Müller-Quade
and Nascimento, based on a work of Rosen and Segev. The original for-
mulation of the protocol contained some ambiguities and incongruences,
which we point out and correct; moreover, the protocol deviates sub-
stantially from the work it is based on. We then present a construction
which resembles more closely the original Rosen-Segev framework, and
show how this can be instantiated with the McEliece scheme.

1 Introduction

The McEliece cryptosystem [11] is the first scheme based on coding theory prob-
lems and it makes use of error-correcting codes (binary Goppa codes in the
original proposal). Persichetti [15] has shown that it is possible to produce a
very efficient CCA2-secure scheme in the random oracle model; it is however of
interest to study systems that are secure in the standard model.

Rosen and Segev in [16] gave a general approach for CCA2 security in the
standard model incorporating tools like lossy trapdoor functions and one-time
signature schemes. This general protocol can be applied directly to many dif-
ferent hard problems such as Quadratic Residuosity, Composite Residuosity,
the d-linear Assumption and the Syndrome Decoding Problem, as shown in [6].
Dowsley et al. [3] have attempted to adopt the Rosen-Segev approach to the
McEliece framework. To do this, a new structure called k-repetition PKE is
introduced, as well as a number of differences in the key generation, encryption
and decryption processes. It is claimed that the scheme has IND-CCA2 security
in the standard model, but some ambiguities in the constructions were present
which undermined this claim. These have been addressed in subsequent works:
in a follow-up paper [2], the authors, with the addition of Döttling, present a
corrected version of the scheme of [3]. The paper was published in 2012, around
the same time an earlier version of this work [14] was released. It is therefore
safe to assume the results were obtained independently.

Mathew et al. [10] introduced an alternative construction for code-based
IND-CCA2 secure PKE in the standard model, which is more efficient than
the proposals studied in this work. However, their construction is based on the
c© Springer Nature Switzerland AG 2018
J. Baek et al. (Eds.): ProvSec 2018, LNCS 11192, pp. 165–181, 2018.
https://doi.org/10.1007/978-3-030-01446-9_10
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Niederreiter scheme [12]. Finally, in an independent work [19], Yoshida, Morozov
and Tanaka proved that it is possible to obtain Key Privacy for both the Rosen-
Segev scheme and the Dowsley et al. scheme. This is an alternative security
notion that aims at guaranteeing the non-malleability of public keys, rather than
ciphertexts. For this reason, it is also known as Anonymity or Indistinguishability
of Keys (IK). Note that this notion was proved to hold for code-based schemes
in the random oracle model, again in [15].

In this paper we analyze in detail the construction of [3], since we believe it
introduced an interesting alternative to the Rosen-Segev approach. First of all,
we make some observations, point out the ambiguities of the description of the
scheme, and discuss the fixes of [2,14]. For the sake of completeness, we provide
a correct formulation together with a proof of security. Finally, we show how to
get a CCA2-secure encryption scheme based on the McEliece assumptions using
the original Rosen-Segev approach.

2 Preliminaries

We will summarize here all the objects we are going to work with in the paper.
Formally, we define a Public-Key Encryption scheme (PKE) to be formed by

the 6-tuple (K,P,C, KeyGen,Enc,Dec), defined as follows:

– K: The pair (Kpubl,Kpriv), respectively the public key and private key spaces.
– P: The set of messages to be encrypted, or plaintext space.
– C: The set of the messages transmitted over the channel, or ciphertext space.
– KeyGen: A probabilistic key generation algorithm that takes as input a secu-

rity parameter 1δ and outputs a public key pk ∈ Kpubl and a private key
sk ∈ Kpriv.

– Enc: A (possibly probabilistic) encryption algorithm that receives as input a
public key pk ∈ Kpubl and a plaintext φ ∈ P and returns a ciphertext ψ ∈ C.

– Dec: A deterministic decryption algorithm that receives as input a private
key sk ∈ Kpriv and a ciphertext ψ ∈ C and outputs a plaintext φ ∈ P or the
failure symbol ⊥.

Similarly, we define a Signature scheme (SS) as a 6-tuple (K,M, Σ,
KeyGen,Sign,Ver), defined as follows:

– K: The pair (Ksign,Kver), respectively the signing key and verification key
spaces.

– M: The set of documents to be signed, or message space.
– Σ: The set of the signatures to be transmitted with the messages, or signature

space.
– KeyGen: A probabilistic key generation algorithm that takes as input a secu-

rity parameter 1δ and outputs a signing key sgk ∈ Ksign and a verification key
vk ∈ Kver.

– Sign: A (possibly probabilistic) signing algorithm that receives as input a
signing key sgk ∈ Ksign and a message μ ∈ M and returns a signature σ ∈ Σ.
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– Ver: A deterministic decryption algorithm that receives as input a verification
key vk ∈ Kver, a message μ ∈ M and a signature σ ∈ Σ and outputs 1, if the
signature is recognized as valid, or 0 otherwise.

2.1 Security Notions

Here we refresh the security notions which will be addressed in this work.

Definition 1 (IND). An adversary A for the indistinguishability (IND) prop-
erty is a two-stage polynomial-time algorithm. In the first stage, A takes as input
a public key pk ∈ Kpubl, then outputs two arbitrary plaintexts φ0, φ1. In the sec-
ond stage, it receives a ciphertext ψ∗ = Encpk(φb), for b ∈ {0, 1}, and returns a
bit b∗. The adversary succeeds if b∗ = b. More precisely, we define the advantage
of A against PKE as

AdvA(λ) = Pr[b∗ = b] − 1
2
. (1)

Indistinguishability can be achieved in various attack models. In the strongest
model (that of interest to us), called CCA2, the adversary is allowed to make
use of a decryption oracle during the game, with the only exception that it is
not allowed to ask for the decryption of the challenge ciphertext.

Definition 2 (IND-CCA2). The attack game for IND-CCA2 (or active
attack) proceeds as follows:

– Query a key generation oracle to obtain a public key pk.
– Make a sequence of calls to a decryption oracle, submitting any string ψ of

the proper length (not necessarily an element of C). The oracle will respond
with Decsk(ψ).

– Choose φ0, φ1 ∈ P and submit them to an encryption oracle. The oracle will
choose a random b ∈ {0, 1} and reply with the “challenge” ciphertext ψ∗ =
Encpk(φb).

– Keep performing decryption queries. If the submitted ciphertext is ψ = ψ∗,
return ⊥.

– Output b∗ ∈ {0, 1}.
We say that a PKE has Indistinguishability against Adaptive Chosen Cipher-

text Attacks (IND-CCA2) if the advantage AdvCCA2 of any IND adversary A in
the CCA2 attack model is negligible.

There are many notions of security for signature schemes; the one we present
here is what we need for the Rosen-Segev scheme.

Definition 3 (One-Time Strong Unforgeability). We define an adversary
A as a polynomial-time algorithm that acts as follows:

– Query a key generation oracle to obtain a verification key vk.
– Choose a message μ ∈ M and submit it to a signing oracle. The oracle will

reply with σ = Signsgk(μ).
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– Output a pair (μ∗, σ∗).

The adversary succeeds if Vervk(μ∗, σ∗) = 1 and (μ∗, σ∗) �= (μ, σ). We say
that a signature scheme is One-Time Strongly Unforgeable if the probability of
success of any adversary A is negligible in the security parameter, i.e.

Pr[vk ←− Kver : Vervk(A(vk,Signsgk(μ))) = 1] ∈ negl(λ). (2)

Note that in this scenario the adversary is only allowed to ask for the sig-
nature of a single message (hence the One-Time), so this is a relatively weak
security assumption.

Definition 4 (Hard-Core Predicate). Let f be a one-way function and h be
a predicate, i.e. a function whose output is a single bit. Define an adversary A to
be a probabilistic polynomial-time algorithm that, on input f(x), tries to compute
h(x), i.e. A(f(x)) = b ∈ {0, 1}. The predicate h is a Hard-Core Predicate of the
function f if the probability Pr[b = h(x)] − 1

2 is negligible for all random choices
of x.

2.2 The McEliece Cryptosystem

The McEliece cryptosystem, based on coding theory, was introduced in 1978 by
McEliece [11] and, for an appropriate choice of parameters, it is still unbroken. In
the original proposal, binary Goppa codes are used as a basis for the construction.
We give here a more general and modern description extending the scheme to
generic finite fields Fq and introducing a few little optimizations. The input
parameters are the code length n, the code dimension k and the error-correction
capacity w.

– Setup: Choose a code family and fix public parameters n, k, w.
– Kpubl: The set of k × n matrices over Fq.
– Kpriv: The set1 of “code descriptions” for the chosen code family.
– P: The vector space F

k
q .

– C: The vector space F
n
q .

– KeyGen: Sample a random generator matrix G for a code of the chosen family.
Compute the “scrambled” generator matrix Ĝ, then publish the public key
Ĝ ∈ Kpubl and store the private key Γ ∈ Kpriv.

– Enc: On input a public key Ĝ ∈ Kpubl and a plaintext m ∈ P, sample a random
error vector e of weight w in F

n
q and return the ciphertext ψ = mĜ + e ∈ C.

– Dec: On input the private key Γ ∈ Kpriv and a ciphertext ψ ∈ C, apply the
decoding algorithm DΓ to it. If the decoding succeeds, return the resulting
plaintext φ = m. Otherwise, output ⊥.

1 For instance for Goppa codes, this is given by the support α1, . . . , αn ∈ Fqm and the
Goppa polynomial g.
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Remark 1. In the original McEliece proposal the scrambling process was accom-
plished using an invertible matrix S and a permutation matrix P , and Ĝ was
obtained as SGP . This is rather outdated and unpractical; moreover, it can
introduce vulnerabilities to the scheme as per the work of Strenzke et al. (for
example [17,18]). A still secure (Biswas and Sendrier, [1]), but much simpler
description would be to take the public key Ĝ to be just the systematic form of
G.

The security of the McEliece scheme relies on two computational assump-
tions.

Assumption 1 (Indistinguishability). The matrix Ĝ output by KeyGen is
computationally indistinguishable from a uniformly chosen matrix of the same
size.

Assumption 2 (Decoding hardness). Decoding a random linear code with
parameters n, k, w is hard.

It is immediately clear that the following corollary is true.

Corollary 1. Given that both the above assumptions hold, the McEliece cryp-
tosystem is one-way secure under passive attacks.

Remark 2. In a recent paper [4], Faugère et al. presented a distinguisher for
instances of the McEliece cryptosystem that make use of high-rate Goppa codes.
While the distinguisher works only in a special case and doesn’t affect security
for the general scheme, it is still recommended to avoid such insecure choices.

As we mentioned in the introduction, it is possible to easily obtain CCA2
security for the McEliece cryptosystem in the Random Oracle Model using either
standard conversions (as in [7,8]) or the dedicated paradigm of [15]. We therefore
consider only the issue of achieving such a security level in the Standard Model.

2.3 Computable Functions and Correlated Products

We define here the notion of security under correlated products for a collection of
functions. Formally, we describe a collection of efficiently computable functions
as a pair of algorithms F = (G, F) where G is a generation algorithm that
samples the description f of a function and F(f, x) is an evaluation algorithm
that evaluates the function f on a given input x. We then define a k-wise product
as follows:

Definition 5. Let F = (G, F) be a collection of efficiently computable functions
and k be an integer. The k-wise product Fk is a pair of algorithms (Gk,Fk) such
that:

– Gk is a generation algorithm that independently samples k functions from F
by invoking k times the algorithm G and returns a tuple (f1, . . . , fk).
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– Fk is an evaluation algorithm that receives as input a sequence of functions
(f1, . . . , fk) and a sequence of points (x1, . . . , xk) and invokes F to evaluate
each function on the corresponding point, i.e.

Fk(f1, . . . , fk, x1, . . . , xk) = (F(f1, x1), . . . ,F(fk, xk)).

A trapdoor one-way function is then an efficiently computable function that,
given the image of a uniform chosen input, is easy to invert with the use of a
certain trapdoor td but hard to invert otherwise; i.e. there exists an algorithm
F−1 such that F−1(td,F(f, x)) = x.

We may think to extend the notion to the case where the input is given
according to a certain distribution, that is, there exists a correlation between
the points x1, . . . , xk.

Definition 6. Let F = (G, F) be a collection of efficiently computable functions
with domain D and Ck be a distribution of points in D1 × · · · × Dk. We say that
F is secure under a Ck-correlated product if Fk is one-way with respect to the
input distribution Ck.

In the special case where the input distribution Ck is exactly the uniform
k-repetition distribution (that is, k copies of the same input x ∈ D) we simply
speak about one-wayness under k-correlated inputs. Rosen and Segev in [16]
showed that a collection of lossy trapdoor functions for an appropriate choice
of parameters can be used to construct a collection of functions that is one-way
under k-correlated inputs. Their work is summarized in the next section.

3 The Rosen-Segev Scheme

The computational assumption underlying the scheme is that there exists a
collection of functions F = (G, F) which is secure under k-correlated inputs. The
scheme makes use of a strongly-unforgeable signature scheme and of a hard-core
predicate h for the collection Fk.

KeyGenRS: Invoke G for 2k times independently and obtain the descriptions
of functions (f0

1 , f1
1 , . . . , f0

k , f1
k ) and the corresponding trapdoors (td01 , td

1
1 , . . . ,

td0k , td
1
k). The former is distributed as the public key pk, while the latter is the

private key sk.

EncRS: To encrypt a plaintext m ∈ {0, 1} with the public key pk, sample a
key from a strongly-unforgeable one-time signature scheme, say (vk, sgk) and a
random x ∈ {0, 1}N . Write vki for the i-th bit of vk and let h be a hard-core
predicate, then:

– ci = F(f vki
i , x) for i = 1, . . . , k.

– y = m ⊕ h(f vk1
1 , . . . , f vkk

k , x).
– σ = SignSSsgk(c1, . . . , ck, y).
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It is assumed that vk ∈ {0, 1}k: if not, it is enough to apply a universal
one-way hash function to obtain the desired length.

Finally, output the ciphertext ψ = (vk, c1, . . . , ck, y, σ).

DecRS: Upon receipt of a ciphertext ψ:

– Verify the signature; if VerSSvk ((c1, . . . , ck, y), σ) = 0 output ⊥.
– Otherwise compute xi = F−1(tdvkii , ci) for i = 1, . . . , k.
– If x1 = · · · = xk then set m = y⊕h(f vk1

1 , . . . , f vkk
k , x1) and return the plaintext

m, otherwise output ⊥.

The security of the scheme is summarized in the next theorem, which was
proved in [16].

Theorem 1. Assuming that F is secure under k-correlated inputs, and that the
signature scheme is one-time strongly unforgeable, the above encryption scheme
is IND-CCA2-secure.

The proof consists of a standard argument, divided in two parts. The first
part shows that if an adversary exists capable to break the CCA2 security of the
scheme, it can be converted to an adversary able to forge the signature scheme.
In the second part, assuming that the forgery doesn’t occur, an adversary is built
that contradicts the security of the hard-core predicate. Due to space constraints,
we don’t present the proof here, but we refer the reader to [16] for more details.

4 Previous Proposals

It would be natural to describe the McEliece encryption process as a function
fG(x, y) = xG + y. However, this function is clearly not secure under correlated
inputs. Let us assume Fq has characteristic 2 like in the original McEliece scheme.
Then, given two evaluations fG1(x, y) = xG1 + y and fG2(x, y) = xG2 + y,
an attacker could simply sum the outputs together and, since the error vector
cancels out, obtain x(G1+G2), from which it is easy to recover x. The problem is
that, since we are defining a function, there is no randomness anymore, whereas
McEliece requires a random error vector in order to be secure under k-correlated
inputs. A mapping that incorporates a random element would in fact give a
different result for multiple encryptions of the same plaintext and so would not
have a unique image.

We now present two schemes that have been proposed to deal with the matter.

4.1 Syndrome Decoding

This construction was presented in [6] and is based on the Niederreiter cryp-
tosystem [12]. Since this relies on the properties of the parity-check matrix rather
than the generator matrix, it is often considered the “dual” cryptosystem and
the computational assumptions for the security change accordingly.
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The Niederreiter trapdoor function can be described as the family N = (G, F)
in the following way:

Generation: On input n, k the algorithm G generates a random parity-check
matrix H for an [n, k]-linear code with an efficient decoding algorithm over Fq,
then computes its systematic form Ĥ. The algorithm returns the public key Ĥ
and the private key Γ .

Evaluation: On input Ĥ, e, where e is a string of fixed weight w in F
n
q , the

algorithm F computes ψ = Ĥe and returns the ciphertext ψ.
It is possible to invert F using the trapdoor: on input Γ and ψ, simply decode

to obtain e using the decoding algorithm connected to Γ . The function is proved
to be one-way under k-correlated inputs in [6, Theorem 6.2] if k is chosen such
that the Niederreiter assumptions hold for n and (n − k)k, and it is intended to
be used in the general Rosen-Segev framework.

4.2 k-Repetition PKE

Dowsley, Müller-Quade and Nascimento [3] propose a scheme that resembles the
Rosen-Segev protocol trying to apply it to the McEliece cryptosystem. Despite
the authors’ claim that this is the “direct translation” of [16], this is not exactly
the case.

Among other differences, the main discrepancy is that the scheme doesn’t
rely on a collection of functions but instead defines a structure called k-repetition
Public-Key Encryption (PKEk). This is essentially an application of k samples
of the PKE to the same input, in which the decryption algorithm also includes
a verification step on the k outputs. The encryption step produces a signature
directly on the McEliece ciphertexts instead of introducing a random vector x
as in the original scheme. This means that it is necessary to use an IND-CPA
secure variant of McEliece’s cryptosystem to achieve CCA2 security. For this
task, the authors propose to use the “Randomized McEliece” variant by Nojima
et al. [13]. This variant uses, as the name says, additional randomness, in the form
of a random string. The string is sampled from a randomness set R with elements
of length k2, and then concatenated to the plaintext so that the resulting string
has length k and can be encoded as normal. We briefly recall the scheme below.

– Setup: Fix public system parameters q, n, k, w ∈ N such that k = k1 + k2.
– Kpubl: The set of k × n matrices over Fq.
– Kpriv: The set of “code descriptions” for the chosen code family.
– P: The vector space F

k1
q .

– R: The vector space F
k2
q .

– C: The vector space F
n
q .

– KeyGen: Sample a random generator matrix G for a code of the chosen family.
Compute the “scrambled” generator matrix Ĝ, then publish the public key
Ĝ ∈ Kpubl and store the private key Γ ∈ Kpriv.
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– Enc: On input a public key Ĝ ∈ Kpubl, a plaintext m ∈ P and a random string
r ∈ R, sample a random error vector e of weight w in F

n
q and return the

ciphertext ψ = (r|m)Ĝ + e ∈ C.
– Dec: On input the private key Γ ∈ Kpriv and a ciphertext ψ ∈ C, apply the

decoding algorithm DΓ to it. If the decoding succeeds, parse the result as
(r|m) and return the plaintext φ = m. Otherwise, output ⊥.

Remark 3. It is clear that, as already mentioned by the authors in [13], the IND-
CPA security of the randomized McEliece scheme is not absolute, but depends
on the choice of the sizes of the message m and randomness r in the encryption
procedure (r|m)Ĝ+ e. In the context of a CPA attack game, in fact, this cipher-
text is subject to general decoding attacks with partial information about the
plaintext. As illustrated in [13, Table 1], if the randomness r is not large enough,
the IND-CPA security of the scheme can be easily broken.

We now present the scheme described in [3]. Note that, in the paper, this is
presented as a general scheme, applicable to any IND-CPA secure PKE which is
secure and verifiable under k-correlated inputs.

KeyGenDMQN: Invoke KeyGenPKE for 2k times independently and obtain the
collection of public keys (pk01 , pk

1
1 , . . . , pk

0
k , pk

1
k) and the corresponding pri-

vate keys (sk01 , sk
1
1 , . . . , sk

0
k , sk

1
k), then run the key generation algorithm for

the signature scheme to obtain a key (vk∗, sgk∗). Publish the public key
pk = (pk01 , pk

1
1 , . . . , pk

0
k , pk

1
k) and choose the private key accordingly to vk∗, i.e.

sk = (vk∗, sk1−vk∗
1

1 , . . . , sk
1−vk∗

k

k ).
EncDMQN: To encrypt a plaintext m with the public key pk, sample another,
different key (vk, sgk) from the signature scheme, then:

– ci = EncPKE

pk
vki
i

(m) for i = 1, . . . , k.

– σ = SignSSsgk(c1, . . . , ck).
– Output the ciphertext ψ = (vk, c1, . . . , ck, σ).

DecDMQN: Upon receipt of a ciphertext ψ:

– If vk = vk∗ or VerSSvk ((c1, . . . , ck), σ) = 0 output ⊥.
– Otherwise compute m = DecPKE

sk
vki
i

(ci) for some i such that vki �= vk∗
i .

– Verify that ci = EncPKE

pk
vki
i

(m) for all i = 1, . . . , k. If the verification is successful
return the plaintext m, otherwise output ⊥.

Since we know that vk �= vk∗, there is at least one position in which they
differ, hence the decryption process is well defined.

Remark 4. Note that, even though the encryption process is not deterministic,
for McEliece encryption it is still possible to perform the check in the last step
of DecDMQN. It is in fact enough to check the Hamming weight of ci − mĜi

where Ĝi is the generator matrix corresponding to the public key pkvkii . This
is not clearly stated by the authors along with the description of the general
scheme, but it is mentioned later on in [3, Theorem 3] for the particular case of
the randomized McEliece.
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The above specification of the scheme appears to be ambiguous. In fact,
even assuming that the underlying encryption scheme is IND-CPA secure, the
encryption step is described simply as EncPKE

pk
vki
i

(m) for i = 1, . . . , k, without

indicating explicitly the role of the randomness. In [3, Section 4] some remarks
are made about the security and there is the suggestion that the scheme in use
be the randomized McEliece scheme from [13]; however, precise details on how
this should be instantiated are missing. One could in general think at the k
encryptions as ci = EncPKE

pk
vki
i

(m, ri) = (ri|m)Ĝi + ei. In this case, since we check

the Hamming weight of ci − (ri|m)Ĝi, the check would obviously fail unless
r1 = · · · = rk = r.

Remark 5. The KeyGen algorithm is slightly different from the Rosen-Segev case.
In particular, 2k keys are generated, then a random verification key vk∗ is chosen
and half of the private keys (the ones corresponding to vk∗) are discarded. This
also implies that decryption only works when vk �= vk∗. This technique is used
in the context of the proof of Theorem1, specifically in the second part while
constructing an efficient distinguisher for the hard-core predicate. While, as we
will see in the following, this is necessary for the proof (both for the original
paper and for the proposed scheme), it is certainly a redundant requirement in
the KeyGen process.

In light of the previous observations, we describe below a corrected descrip-
tion of the three algorithms composing the scheme:

KeyGenDMQN: Invoke KeyGenPKE for 2k times independently and obtain the
collection of public keys (pk01 , pk

1
1 , . . . , pk

0
k , pk

1
k) and the corresponding private

keys (sk01 , sk
1
1 , . . . , sk

0
k , sk

1
k). The former is distributed as the public key pk, while

the latter is the private key sk.

EncDMQN: To encrypt a plaintext m with the public key pk, sample a key (vk, sgk)
from the signature scheme and a randomness r, then:

– ci = EncPKE

pk
vki
i

(m, r)2 for i = 1, . . . , k.

– σ = SignSSsgk(c1, . . . , ck).
– Output the ciphertext ψ = (vk, c1, . . . , ck, σ).

DecDMQN: Upon receipt of a ciphertext ψ:

– If VerSSvk ((c1, . . . , ck), σ) = 0 output ⊥.
– Otherwise compute (m, r) = DecPKE

sk
vki
i

(ci) for some i.

– Verify that ci = EncPKE

pk
vki
i

(m, r) for all i = 1, . . . , k. If the verification is suc-
cessful return the plaintext m, otherwise output ⊥.

2 Note that the randomness we are expliciting here is the one necessary to realize the
IND-CPA security of PKE, hence Enc is still a randomized algorithm. In particular,
for the McEliece instantiation we would have ci = (r|m)Ĝi + ei.
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The original construction is proved to be CCA2-secure in [3, Theorem 1]. We
have constructed our own arguments for security, but due to space limitations,
these have been moved to AppendixA.

Remark 6. The follow-up paper of [2] also includes a modified version that allows
to encrypt correlated inputs. Note that, however, this is still not a “direct trans-
lation” of the Rosen-Segev scheme. Moreover, improvements such as encrypting
correlated inputs are not necessarily relevant when public-key encryption is used
to exchange a single symmetric key (e.g. as a Key Encapsulation Mechanism, or
KEM), which is (or should be) its main purpose. Therefore, in the next section,
we propose a version that is simpler, and much closer to [16].

5 A Direct Translation of McEliece

We now explain how to realize the Rosen-Segev scheme using McEliece. The
construction arises naturally if we want to be as close as possible to the original
McEliece formulation. We hence follow the usual approach of the McEliece cryp-
tosystem, that is to choose a different random error vector every time we call
the evaluation algorithm; this implies that we are not using functions anymore.
The construction is proved to be secure under k-correlated inputs in Theorem2.
It proceeds as follows:

Describe McEliece as a pair McE = (G,F) composed by two algorithms: G
is a generation algorithm that samples a description, and F is an evaluation
algorithm that provides the evaluation on a given input.

Generation: On input n, k the algorithm G generates a random generator
matrix G for an [n, k]-linear code with an efficient decoding algorithm over Fq,
computes the “scrambled” generator matrix Ĝ, then publishes the public key Ĝ
and stores the private key Γ .

Evaluation: On input Ĝ,m the algorithm F generates a random error vector e
of fixed weight w in F

n
q , computes ψ = mĜ + e and outputs the ciphertext ψ.

It is possible to invert F using the trapdoor: on input Γ and ψ, simply decode
to obtain e using the decoding algorithm connected to Γ , then retrieve m using
linear algebra.

We claim that this encryption process is secure under k-correlated inputs.
First, we need a technical lemma.

Lemma 1. If Assumption 2 holds for parameters n̂, k and ŵ, then the ensembles
{(G,mG + e) : G ∈ F

k×n̂
q ,m ∈ F

k
q , e ∈ Wn̂,ŵ} and {(G, y) : G ∈ F

k×n̂
q , y

R←− F
n̂
q }

are computationally indistinguishable.

Proof. Consider the problem of distinguishing the ensembles {(H,HeT ) : H ∈
F
(n̂−k)×n̂
q , e ∈ Wn̂,ŵ} and {(H, y) : H ∈ F

(n̂−k)×n̂
q , y

R←− F
n̂−k
q } as in [5] and

suppose A is a probabilistic polynomial-time algorithm that is able to distinguish
the ensembles described above. In particular, say A outputs 1 if the challenge
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ensemble is of the form (G,mG+ e) and 0 otherwise. We show how to construct
an adversary A′ that solves the above problem.

Let (H, z) be the received input, where z is either HeT for a certain error
vector e ∈ Wn̂,ŵ or a random vector of Fn̂−k

q . By linear algebra, is easy to find
a vector x ∈ F

n̂
q with wt(x) ≥ ŵ such that z = HxT . Submit (G̃, x) to A,

where G̃ is the generator matrix associated to H. Now, if z = HeT we can write
x = m̃G̃ + e; in this case, in fact, we have HxT = z = HeT =⇒ H(x − e)T = 0
and clearly this implies that (x − e)T is a codeword. Then A will output 1 and
so will A′. Otherwise, A will output 0 and so will A′. In both cases, A′ is able
to distinguish correctly and this terminates the proof. 	


Note that this was proved in [5] for the syndrome decoding (Niederreiter)
case. We know [9] that the two formulations are equivalent; in particular, any
adversary able to distinguish the above ensembles can be used to build an adver-
sary for the Niederreiter case.

The security of the construction is proved in the following theorem, which
closely follows the proof of [6, Theorem 6.2].

Theorem 2. Fix an integer k. If the parameters n, k, w are chosen such that
decoding a random linear code with parameters nk, k and wk is hard, then the
above encryption process is secure under k-correlated inputs.

Proof. Let A be an adversary for the one-wayness under k-correlated inputs. We
define the advantage of A to be

AdvA(λ) = Pr[A(Ĝ1, . . . , Ĝk,F(Ĝ1,m), . . . ,F(Ĝk,m)) = m]

where Ĝ1, . . . , Ĝk are k independent public keys generated by G.
We assume the indistinguishability assumption holds: we can then exchange

all the matrices Ĝi with uniform matrices Ui with a negligible advantage for the
attacker. Now, let’s define the k ×nk matrix U by concatenating the rows of the
matrices Ui, i.e. U = (U1| . . . |Uk). We assume that the distributions (U1, . . . , Uk,
F(U1,m), . . . ,F(Uk,m)) and (U,F(U,m)) are interchangeable without a signifi-
cant advantage for the attacker. Note that in the latter the error vector used will
have length nk and weight wk. A formal argument for this indistinguishability
assumption will be provided below.

We now invoke Lemma 1 with n̂ = nk and ŵ = wk. Hence

AdvA(λ) = Pr[A(U,F(U,m)) = m] − Pr[A(U, y) = m] ∈ negl(n)

and since this last one is of course negligible, we conclude the proof. 	

An indistinguishability assumption on error vectors Similarly to what happens
for the IND-CPA security of the McEliece variant (as pointed out in Remark 3),
also in this case the security we are trying to achieve is not absolute, but depends
on a suitable choice of parameters. The assumption in this case is that we can
replace the vector (mU1 + e1| . . . |mUk + ek) with the vector mU + e, where
U = (U1| . . . |Uk) and e is a random error vector of weight wk; in other words,
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we would like to argue that e′ = (e1| . . . |ek) is indistinguishable from e. Note
that wt(e′) = wt(e) but while the distribution of the error positions on e is truly
pseudorandom, e′ is formed by k blocks of weight w each. It is plausible that the
number of vectors of this kind (that we denote #e′) is not too small compared to
the total of error vectors with same length and weight. Unfortunately, the only
estimate we can provide is not of help:

#e′

|Wnk,wk| =

(
n

w

)k

(
nk

wk

) ≥

( n

w

)wk

(ne

w

)wk
=

1
ewk

. (3)

However, the bound is not tight, and experimental evidence indicates that
this ratio is much bigger.

It is possible to implement the Rosen-Segev scheme using the choice of F and
G that we described above. We present the details below.

KeyGenP: Invoke G for 2k times independently and obtain the collections of public
keys pk = (pk01 , pk

1
1 , . . . , pk

0
k , pk

1
k) and private keys sk = (sk01 , sk

1
1 , . . . , sk0k , sk

1
k),

where pki
j = (Ĝj)i and ski

j = (S, P, Γ )i
j as above.

EncP: To encrypt a plaintext m with the public key pk, sample a key (vk, sgk)
and a random x ∈ {0, 1}k, then:

– ci = F(pkvkii , x) for i = 1, . . . , k.
– y = m ⊕ h(pkvk11 , . . . , pkvkkk , x).
– σ = SignSSsgk(c1, . . . , ck, y).

where vki represents the i-th bit of vk. The ciphertext is ψ = (vk, c1, . . . , ck, y, σ).

DecP: Upon receipt of a ciphertext ψ:

– Verify the signature; if VerSSvk ((c1, . . . , ck, y), σ) = 0 output ⊥.
– Otherwise compute xi = F−1(skvkii , ci) for i = 1, . . . , k.3

– If x1 = · · · = xk then set m = y ⊕ h(pkvk11 , . . . , pkvkkk , x1) and return the
plaintext m, otherwise output ⊥.

For simplicity, as in the original construction, we can assume m to be a single
bit, in which case h describes a hard-core predicate for McEliece. However, the
protocol extends easily to multiple bits plaintexts: as suggested in [16], to encrypt
a polynomial number T of bits, it is enough to replace the hard-core predicate
h with a hard-core function h′ : {0, 1}∗ → {0, 1}T .

The security is summarized in the following corollary.

Corollary 2. The above encryption scheme is IND-CCA2 secure in the stan-
dard model.
3 By analogy with the Rosen-Segev scheme. Clearly in practice it would be much more

efficient, rather than decoding k ciphertexts, to just decode one and then re-encode
and test as in [3, Theorem 3].
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Proof. By Theorem 2, the collection of McEliece encryption schemes McE is k-
correlation secure. Then this is analogous to Theorem1, noting that the same
argument applies when F = McE, i.e. f describes a randomized algorithm rather
than a function. The proof uses the same steps as in Theorem3, with the excep-
tion that in our case Lemma 3 is proved by constructing an adversary A′ that
works as a predictor for the hard-core predicate h. 	


6 Conclusions

The scheme of Dowsley et al. [3] is a first proposal to translate the Rosen-Segev
protocol to the McEliece setting. However, the construction is ambiguous, as we
have shown in Sect. 4, and features some strange and unnecessary modifications
such as “forgetting” half the private keys, or forbidding ciphertexts to feature the
verification key vk∗. The original Rosen-Segev scheme has no such requirements.

The scheme was subsequently fixed in the follow-up joint work with
Döttling [2], but still deviates substantially from the original Rosen-Segev frame-
work. We therefore present a construction that, instead, follows more closely the
original framework. We provide a choice of algorithms F and G, based on the
McEliece cryptosystem, that can be used directly into the Rosen-Segev scheme.
We then show that our construction is IND-CCA2 secure following the original
security arguments of Rosen and Segev.

A Security Arguments for the Corrected Scheme

Theorem 3. Assuming that PKEk is IND-CPA secure and verifiable under k-
correlated inputs, and that the signature scheme is one-time strongly unforgeable,
the above encryption scheme is IND-CCA2-secure.

Let A be an IND-CCA2 adversary. During the attack game, A submits m0,m1

and gets back the challenge ciphertext ψ∗ = (vk∗, c∗
1 , . . . , c

∗
k , σ

∗). Indicate with
Forge the event that, for one of A’s decryption queries ψ = (vk, c1, . . . , ck, σ), it
holds vk = vk∗ and VerSSvk ((c1, . . . , ck), σ) = 1. The theorem is proved by means
of the two following lemmas.

Lemma 2. Pr[Forge] is negligible.

Proof. Assume that there exists an adversary A for which Pr[Forge] is not negli-
gible. We build an adversary A′ that breaks the security of the one-time strongly
unforgeable scheme. A′ works as follows:

Key Generation: Invoke KeyGenDMQN as above and return pk to A.

Decryption Queries: Upon a decryption query ψ = (vk, c1, . . . , ck, σ):

1. If vk = vk∗ and VerSSvk ((c1, . . . , ck), σ) = 1 output ⊥ and halt.
2. Otherwise, decrypt normally using DecDMQN.
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Challenge Queries: Upon a challenge query m0,m1:

1. Choose random b ∈ {0, 1}.
2. Use EncDMQN to compute c∗

i = Enc
pk

vk∗
i

i

(mb, r) for i = 1, . . . , k.

3. Obtain the signature σ∗ on (c∗
1 , . . . , c

∗
k) with respect to vk∗4.

4. Return the challenge ciphertext ψ∗ = (vk∗, c∗
1 , . . . , c

∗
k , σ

∗).

Note that, if Forge doesn’t occur, the simulation of the CCA2 interaction is
perfect. Therefore, the probability that A′ breaks the security of the one-time
signature scheme is exactly Pr[Forge]. The one-time strong unforgeability implies
that this probability is negligible. 	


Lemma 3.
∣∣∣Pr[b = b∗ ∧ ¬Forge] − 1

2

∣∣∣ is negligible.

Proof. Assume that there exists an adversary A for which
∣∣∣Pr[b = b∗∧¬Forge]− 1

2

∣∣∣
is not negligible. We build an adversary A′ that breaks the IND-CPA security
of PKEk. A′ works as follows:

Key Generation: On input the public key (pk1, . . . , pkk) for PKEk:

1. Execute KeyGenSS and obtain a key (vk∗, sgk∗).
2. Set pkvk

∗
i = pki for i = 1, . . . , k.

3. Run KeyGenPKE for k times and denote the resulting public keys by (pk1−vk∗
1

1 ,
. . . , pk

1−vk∗
k

k ) and private keys by (sk1−vk∗
1

1 , . . . , sk
1−vk∗

k

k ).
4. Return the public key pk = (pk01 , pk

1
1 , . . . , pk

0
k , pk

1
k) to A.

Decryption Queries: Upon a decryption query from A:

1. If Forge occurs output ⊥ and halt.
2. Otherwise, there will be some i such that vki �= vk∗

i . Decrypt normally using
DecDMQN with the key skvkii previously generated.

Challenge Queries: Upon a challenge query m0,m1:

1. Send m0,m1 to the challenge oracle for the IND-CPA game of A′ and obtain
the corresponding challenge ciphertext (c∗

1 , . . . , c
∗
k).

2. Sign (c∗
1 , . . . , c

∗
k) using sgk∗ to get the signature σ∗.

3. Return the challenge ciphertext ψ∗ = (vk∗, c∗
1 , . . . , c

∗
k , σ

∗).

Output: When A outputs b∗ also A′ outputs b∗.
As long as Forge doesn’t occur, it is clear that the IND-CPA advantage of A′

against PKEk is the same as the IND-CCA2 advantage of A against the above
scheme. Since we are assuming the IND-CPA security of PKEk, we have the
IND-CCA2 security as desired. 	

4 Remember that in the one-time strong unforgeability game the adversary is allowed

to ask to a signing oracle for the signature on one message.
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Abstract. Traitor tracing scheme can be used to identify a decryption
key is illegally used in public-key encryption. In CCS’13, Liu et al. pro-
posed an attribute-based traitor tracing (ABTT) scheme with blackbox
traceability which can trace decryption keys embedded in a decryption
blackbox/device rather than tracing a well-formed decryption key. How-
ever, the existing ABTT schemes with blackbox traceability are based
on composite order group and the size of the decryption key depends
on the policies and the number of system users. In this paper, we revisit
blackbox ABTT and introduce a new primitive called attribute-based set
encryption (ABSE) based on key-policy ABE (KP-ABE) and identity-
based set encryption (IBSE), which allows aggregation of multiple related
policies and reduce the decryption key size in ABTT to be irrelevant to
the number of system users. We present a generic construction of the
ABTT scheme from our proposed ABSE scheme and fingerprint code
based on the Boneh-Naor paradigm in CCS’08. We then give a concrete
construction of the ABSE scheme which can be proven secure in the ran-
dom oracle model under the decisional BDH assumption and a variant
of q-BDHE assumption.

Keywords: Public-key cryptosystems · Attribute-based encryption
Blackbox traceability

1 Introduction

Public-key encryption is the most fundamental primitive of public-key cryp-
tography. However, the traditional public-key infrastructure (PKI) suffers from
the certificate management problem. To overcome this drawback, identity-based
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encryption (IBE) has been proposed, and it provides a new paradigm for public-
key encryption [3]. IBE uses the identity string (e.g., email or IP address) of a
user as the public key of that user. The sender using an IBE does not need to look
up the public keys and the corresponding certificates of the receiver. However,
IBE cannot efficiently handle data sharing among multiple users. To address
this issue, attribute-based encryption (ABE) was introduced [3] to provide fine-
grained access control. However, encryption schemes supporting multiple valid
decryptors suffer the problem of decryption key re-distribution. A malicious user
might have an intention to leak the decryption key or some decryption privileges
by giving the decryption key or decryption blackbox/device to other unautho-
rized users for financial gain or for some other incentives.

To address this problem, traitor tracing scheme [4] was proposed to identify
the traitor who violates the copyright restrictions. A traitor tracing scheme com-
prises an encryption key, a tracing key and n decryption keys, where n is the
number of system users. Each legitimate user is given a unique decryption key
that can decrypt any properly encrypted message. The tracing key can trace at
least one user decryption used to construct the decryption blackbox/device. A
traitor tracing scheme is said to be t-collusion resistant if the tracing is still suc-
cessful against t colluded users. In this paper, we investigate the traitor tracing
scheme in the ABE setting.

ABE with traitor tracing (ABTT) has been studied in the literature [9–
11,14]. There are two levels of traceability depending on the way of tracing
traitors. Level one is whitebox traceability [10,14], by which given a well-formed
decryption key as input, a tracing algorithm can find out user who owns this
decryption key. Level two is blackbox traceability [9,11], by which given a decryp-
tion blackbox/device, which the decryption key and even decryption algorithm
could be hidden, the tracing algorithm, which treats the decryption blackbox
as an oracle, can still find out the malicious user whose key has been used in
constructing the decryption blackbox.

In this paper, we present a new construction of ABTT based on a new primi-
tive called attribute-based set encryption (ABSE) inspired by KP-ABE [16] and
IBSE [7]. We then describe our ABTT scheme from our proposed ABSE scheme
and fingerprint code [4] to provide the efficient traitor tracing mechanism in the
ABE setting. Our ABSE scheme is provably secure in the random oracle model
under the decisional BDH assumption and a variant of q-BDHE assumption.
Compared with the previous ABTT schemes, our ABTT scheme only requires
the prime order group and the size of the decryption key only depends on the
access policies as traditional KP-ABE rather than both the access policies and
the number of system users.

1.1 Related Work

Sahai and Waters [16] introduced ABE that allows users to selectively share
their encrypted data at a fine-grained level. To enrich expressiveness of access
control policies, Goyal et al. [6] and Bethencourt et al. [2] then proposed key-
policy and ciphertext-policy ABE schemes, respectively. In KP-ABE schemes,
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attribute sets are used to annotate ciphertexts, and private keys are associated
with access structures that specify which ciphertexts the user will be entitled to
decrypt. Ciphertext-policy ABE (CP-ABE) proceeds in a dual way, by assigning
attribute sets to private keys and letting senders specify an access policy that
receivers’ attribute sets should comply with. However, the seminal works [2,6,16]
of ABE schemes suffer some common problems, such as the size of the key and
the ciphertext are linear to the attribute set and security proofs are under the
selective model. Attrapadung et al. [1] proposed the first constant-size ABE and
Lewko et al. [8] provided first fully secure ABE with dual encryption system [17],
respectively. Unfortunately, the above schemes must define the attribute universe
at setup phase or have to sacrifice the security by deploying the random oracle
to scale up the attribute universe. Rouselakis and Waters [15] proposed large
universe ABE schemes with selective security that can overcome this problem.

The concept of whitebox ABTT was introduced by Liu et al. [10] to identify
the traitors who violate the copyright restrictions in the ABE setting. However,
Liu et al.’s work must define the attribute universe at setup phase and cannot
support the large attribute universe. To overcome this drawback, several ABTT
[14,18] schemes were proposed to support the large universe. Liu et al. [9,11]
introduced blackbox ABTT to solve a practical problem that the decryption
key may not be a well-formed key and it may be embedded in a decryption
blackbox/device. However, the decryption key in the proposed scheme is in the
order of O(|S| +

√
n), where |S| represents the number of attributes in the

attribute set S and n is the number of system users. After that, some other
works [12,13,19,20] have been proposed to improve efficiency, functionality or
security. Unfortunately, the above schemes require the composite order group or
large decryption key size depending on the number of system users.

1.2 Contribution

In this paper, we proposed an efficient blackbox ABTT scheme. Compared to
previous ABTT schemes, our scheme provides the blackbox traceability based on
prime order group and decryption key only relates to the access policies as the
traditional ABE rather than both the access policies and the number of system
users. Note that most of the previous blackbox ABTT schemes are based on
Boneh et al.’ traitor tracing scheme [5], which requires the decryption key in the
order of O(

√
n), where n is the number of system users.

Our approach utilizes fingerprint codes to realize the traitor tracing mech-
anism. However, the trivial solution needs O(n) private keys by appending a
unique index from fingerprint codes as the user identifier at the end of each
access policy. Suppose the ith user has an access structure A = (M, ρ) with the
matrix M of size d × l and mapping function ρ mapping each row in the matrix
to the attribute universe. The trivial solution requires to extend each row j in
the matrix to a set of policies for tracing traitors in blackbox, e.g., the jth row
policy (Mj , ρ(j)) extends to a set of policies

(Mj , ρ(j)‖1‖w
(i)
1 ), (Mj , ρ(j)‖2‖w

(i)
2 ), . . . , (Mj , ρ(j)‖�‖w

(i)
� ), (1)
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where � denotes the size of codeword in fingerprint codes and w
(i)
k represents

the kth position codeword for the ith user. It is obvious that the trivial solution
requires the policy size of � × d × l eventually.

To reduce the size of the decryption key, we introduce a new cryptographic
primitive called attribute-based set encryption (ABSE). Roughly speaking, our
ABSE compresses the decryption key for a set of policies as shown in Eq. (1) to
two policies

(Mj , ρ(j)‖S0‖0) and (Mj , ρ(j)‖S1‖1)

with O(1) size for each row in the access policy, where Sb represents a set of
indices recording all positions j ∈ [�] s.t. w

(i)
j = b (w(i)

j representing jth position
in the codeword for the ith user). Finally, the decryption key has the policy size
of d × l as the traditional ABE system.

We provide a generic construction of ABTT from fingerprint codes and ABSE
under the prime order group, and it is provably secure based on the underlying
fingerprint code and ABSE. The ABSE scheme instantiated in this paper is
provably secure in random oracle model based on the decisional BDH assumption
and a variant of q-BDHE assumption.

1.3 Outline

We introduce some preliminaries in Sect. 2 and provide the generic construction
of the ABTT scheme and its proof in Sect. 3. In Sect. 4, we provide the concrete
construction of ABSE scheme and its formal proof. We then summarize this
paper in Sect. 5.

2 Preliminaries

2.1 Notations

Let N denote the set of all natural numbers, and for n ∈ N, we define
[n] := {1, . . . , n}. If a and b are strings, then |a| denotes the bit-length of a,
a‖b denotes the concatenation of a and b. Let �u := (u1, u2, . . . , u�) denote a vec-
tor of dimension � in Zp. Let the Greek character λ denote a security parameter.
A function ε(λ) : N → [0, 1] is said to be negligible if for all positive polynomials
p(λ) and all sufficiently large λ ∈ N, we have ε(λ) < 1/p(λ). To simplify, ε is
used to represent negligible.

2.2 Bilinear Map

Let G and GT be two cyclic multiplicative groups of prime order p and g be a
generator of G. The map e : G × G → GT is said to be an admissible bilinear
pairing if the following properties hold true.

– Bilinearity: for all u, v ∈ G and a, b ∈ Zp, e(ua, vb) = e(u, v)ab.
– Non-degeneration: e(g, g) �= 1.
– Computability: it is efficient to compute e(u, v) for any u, v ∈ G.
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2.3 Decisional Bilinear Diffie-Hellman Assumption

Let a, b, c, z ∈ Zp be chosen at random and g be a generator of G. The deci-
sional Bilinear Diffie-Hellman (BDH) assumption [16] is that no probabilistic
time algorithm can distinguish the tuple (ga, gb, gc, e(g, g)abc) from the tuple
(ga, gb, gc, e(g, g)z) with a non-negligible advantage over random guess.

2.4 Modified q-Biliner Diffie-Hellman Exponent Assumption

Let a ∈ Zp be chosen at random and g be a generator of G. The modified q-
Bilinear Diffie-Hellman Exponent (q-BDHE) [7] is that giving the terms g, g(a),

g(a
2), . . . , gaq

, g(a
2q+2), g(a

2q+3), . . . , g(a
3q+1) ∈ G

2q+1, no probabilistic time algo-
rithm can output the term e(g, g)a2q+1

with a non-negligible advantage.

2.5 Access Structure and Monotone Span Program

We recall the definition of access structures and monotone span program, as
defined in [6].

Definition 1 (Access Structure). Let {P1, . . . , Pn} be a set of parties. A col-
lection A ⊆ 2{P1,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆ C, then C ⊆ A.
A monotone access structure is a monotone collection A of non-empty subsets
of {P1, . . . , Pn}, i.e., A ⊆ 2{P1,...,Pn} \ {∅}. The sets in A are called authorized
sets, and the sets not in A are called unauthorized sets.

Definition 2 (Monotone Span Program (MSP)). Let K be a field and
{x1, . . . , xn} be a set of variables. A MSP over K is labeled matrix M̃(M, ρ)
where M is a matrix over K, and ρ is a labeling of the rows of M by literals from
{x1, . . . , xn} (every row is labeled by one literal). A MSP accepts or rejects an
input by the following criterion. For every input set S if literals, define the sub-
matrix MS of M consisting of those rows whose labels are in S, i.e., rows labeled
by some i such that i ∈ S. The MSP M̃ accepts S of and only if �1 ∈ span(MS),
i.e., some linear combination of the rows of MS given the all-one vector �1. The
MSP M̃ computes a boolean function fM if it accepts exactly those input S where
fM(S) = 1. The size of M̃ is the number of rows in M.

In the rest of paper, we define M as a matrix with d × l elements, where d is a
dynamic value depending on the access policy A. Mi stands for the ith row of
the matrix M and is a vector size of l. In our proposed scheme, each row of the
matrix M maps to different attributes. For simply the notation, let A(S) = 1
indicate the attribute set S satisfies the access policy A and A(S) = 0 denote
the attribute set S does not satisfy the access policy A.

2.6 Fingerprint Code

The fingerprint code [4] is defined as follows.
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– Let w̄ ∈ {0, 1}� be an �-bit codeword. We write w̄ = w1w2 · · · w� and assume
wi is the ith bit of w̄.

– Let W = {w̄(1), w̄(2), · · · , w̄(n)} codewords in {0, 1}�. We say that a codeword
w̄ = w1w2 · · · w� is feasible for the set W, if for all i ∈ [�] there exists a j ∈ [n]
such that the ith bit of w̄(j), denoted by w

(j)
i , is equal to wi.

– Let F (W) be a feasible set of W, it includes all codewords that are feasible
for W.

Definition 3 (Fingerprint Code). Let FC denote a fingerprint code and it
consists of two algorithms defined as follows.
FC.Gen(n, t, λ) → (Γ, tk). On input the number of codewords n, the collu-
sion bound t and a security parameter λ, the generation algorithm outputs a
codebook Γ containing n codewords {w̄(1), w̄(2), · · · , w̄(n)} in {0, 1}� with length
� = �(n, t, λ) and a tracing key tk.
FC.Trace(w̄∗, tk) → S. On input a codeword w̄∗ ∈ {0, 1}� and the tracing key tk,
the tracing algorithm outputs a subset S ⊆ [n]. Informally, let W be a subset of
Γ , if w̄∗ ∈ F (W), we have that the output set S is a subset of W.

Definition 4 (Security Model of Fingerprint Code). The security defini-
tion of a fingerprint code from the following experiment:

ExpFC,A(n, t, λ)
(Γ, tk) ← FC.Gen(n, t, λ);
w̄∗ ← AO(·)(n, t);
If FC.Trace(w̄∗, tk) �⊆ ∅ return 1 else return 0.

O(·) is a oracle that allows the adversary queries the index I ⊆ [n] with |I| ≤ t,
the challenger responds by returning the codewords W = {w̄i}i∈I to the adversary.
Note that the challenge codeword w̄∗ is not belongs to the returning codeword set
W, such that w̄∗ �∈ W.
A fingerprint code is t-collusion resistant if for all adversaries, all n, t satisfying
n ≥ t, all I satisfying I ⊆ [n] and |I| ≤ t, we have that the advantage of the
adversary in the above game AdvFC,A is negligible:

AdvFC,A(n, t, λ) =
∣
∣
∣ Pr[ExpFC,A(n, t, λ) = 1]

∣
∣
∣.

2.7 Attribute-Based Encryption with Traitor Tracing

We refine the definition and security model in [9,11]. It is worth to notice that
the augmented ABTT scheme is considered in the previous works since the
encryption algorithm needs an additional index for labeling users, which works
as an identifier that allows another user to identify the malicious users. In our
proposed scheme, we use fingerprint codes as a different tracing method, thus
our scheme does not need to consider augmented ABTT.
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Definition 5 (Attribute-Based Encryption with Traitor Tracing). Let
ABT T denote an ABTT scheme and an ABTT scheme with the attribute set Ω
that supports policies P with the message space M consists of five algorithms as
follows.
ABT T .Setup(n, t, λ) → (pp,msk, tk). The probabilistic setup algorithm takes the
number of system users n, the collusion bound t and a security parameter λ as
input, and outputs the public parameter pp, the master secret key msk and the
tracing key tk.
ABT T .KeyGen(msk,A) → skA. The probabilistic key generation algorithm takes
the master secret key msk and the an access structure A ∈ P as input, and
outputs the secret key skA.
ABT T .Enc(pp,m,S) → ctS . The probabilistic encryption algorithm takes the
public parameter pp, a message m ∈ M and an attribute set S ⊆ Ω as input,
and outputs the ciphertext ctS .
ABT T .Dec(skA, ctS) → m. The deterministic decryption algorithm takes the
secret key skA and the ciphertext ctS as input, and outputs a message m ∈ M.
ABT T .TracePD(tk) → S. The deterministic tracing algorithm is an oracle algo-
rithm takes is given as input the tracing key tk. The tracing algorithm queries
the pirate decoders PD as a blackbox oracle. It outputs a set of traitors S which
is a subset of [n].

Next, we define the security of the traitor tracing scheme in terms of the following
games, called selective indistinguishability under chosen plaintext attack (sIND-
CPA) and traceability against t-collusion attack.

Definition 6 (sIND-CPA in Attribute-Based Encryption with Traitor
Tracing). The security definition of an ABTT scheme for message hiding is
based on the following experiment:

ExpsIND-CPA
ABT T ,A(n, t, λ)

S∗ ← A(n, t, λ);
(pp,msk, tk) ← ABT T .Setup(n, t, λ);
(m0,m1) ← AOABT T .KeyGen(·)(pp);
b ← {0, 1};
ctS∗ ← ABT T .Enc(pp,mb,S∗);
b′ ← AOABT T .KeyGen(·)(ctS∗);
If b = b′ return 1 else return 0.

OABT T .KeyGen(·) represents the key generation oracle that allows the adversary
to query an access structure A ∈ P except A(S∗) = 1, and it returns the secret
key skA by running ABT T .KeyGen(msk,A).
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An ABTT scheme is said to be sIND-CPA secure if for any probabilistic polyno-
mial time adversary A, the following advantage is negligible:

AdvsIND-CPA
ABT T ,A(n, t, λ) =

∣
∣
∣ Pr[ExpsIND-CPA

ABT T ,A(n, t, λ) = 1] − 1/2
∣
∣
∣.

Definition 7 (Traceability against t-collusion Attack in Attribute-
Based Encryption with Traitor Tracing). The security definition of an
ABTT scheme for traceability is based on the following experiment:

ExpTrace
ABT T ,A(n, t, λ)

S∗ ← A(n, t, λ);
(pp,msk, tk) ← ABT T .Setup(n, t, λ);
PD ← AOABT T .KeyGen(·)(pp);
S ← ABT T .TracePD(tk);
If Pr[PD(ABT T .Enc(pp,m,S∗)) = m] = 1 and
S ⊆ ∅ or S �⊆ I return 1 else return 0.

OABT T .KeyGen(·) represents the key generation oracle that allows the adversary
to query a set of the indices I ⊆ [n] (|I| ≤ t), and it runs ABT T .KeyGen(msk,A)
to all i ∈ I and A(S∗) = 0, and then returns the secret key {ski}i∈I. Notice that
the adversary cannot adaptively query this oracle since this oracle only runs once
before the challenge phase.
An ABTT scheme is said to be t-collusion resistant if for any probabilistic poly-
nomial time adversary A, the following advantage is negligible:

AdvTrace
ABT T ,A(n, t, λ) = Pr[ExpTrace

ABT T ,A(n, t, λ) = 1].

2.8 Attribute-Based Set Encryption

An IBSE scheme [7] was introduced to improve the efficiency of identity-based
traitor tracing scheme by reducing the size of private key and ciphertext. We
refined the definition and security model in the IBE setting to the ABE setting.
It is worth to notice that the following algorithms have some elements in the
definition of fingerprint code as given Sect. 2.6.

Definition 8 (Attribute-Based Set Encryption). Let ABSE be an ABSE
scheme and an ABSE scheme with the attribute set Ω that supports the policies
P and the message space M consists of four algorithms as follows.
ABSE .Setup(n, λ) → (pp,msk). The probabilistic setup algorithm takes the num-
ber n and a security parameter λ as input, and outputs the public parameter pp
and the master secret key msk.
ABSE .KeyGen(msk,A, b,L) → skA. The probabilistic key generation algorithm
takes the master secret key msk and the access structure A ∈ P, a bit b ∈ {0, 1}
and a list of indices L (|L| ≤ � and L represents all indices j ∈ [�] s.t. w

(i)
j = b,
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where w
(i)
j representing jth position in the codeword for the ith user) as input,

and outputs the private key skA.
ABSE .Enc(pp,m,S, b, �, τ) → ctS . The probabilistic encryption algorithm takes
the public parameter pp, the message m ∈ M, an attribute set S, a bit b ∈ {0, 1},
a number � representing the size of each codeword and a number τ (τ ≤ � which
represents the position in the codeword and will be used to form the attribute
A‖τ‖b for all A ∈ S) as input, and outputs a ciphertext ctS .
ABSE .Dec(skA, ctS , b) → m. The deterministic decryption algorithm takes the
secret key skA, the ciphertext ctS and a bit b ∈ {0, 1} as input, and outputs a
message m ∈ M.

Next, we describe the security of selective indistinguishability under chosen plain-
text attack in the random oracle model (sIND-CPA security) for the ABSE set-
ting.

Definition 9 (sIND-CPA in Attribute-Based Set Encryption). The secu-
rity definition of an ABSE scheme is based on the following experiment:

ExpsIND-CPA
ABSE,A (n, λ)

S∗ ← A(n, λ);
(pp,msk) ← ABSE .Setup(n, λ);
(m0,m1, b, τ) ← AO(pp);
c ← {0, 1};
ctS∗ ← ABSE .Enc(pp,mc,S∗, b, �, τ);
c′ ← AO(ctS∗);
If c = c′ return 1 else return 0.

In the random oracle setting O represent a set of oracles, {OABSE.KeyGen(·, ·, ·),
OH(·)}, and the details are given in below.

– OABSE.KeyGen(·, ·, ·) is the key generation oracle that allows the adversary to
query on the access structure A (expect A(S∗) = 1), a bit b and a set of
indices L, and the challenger runs the ABSE .KeyGen(msk,A, b,L) algorithm
and returns the secret key skA to the adversary.

– In random oracle model, we provide the oracle OH(·) that allows the adversary
to query on the message s, if s has been queried, it will output the same has
output; otherwise, it outputs a random hash output. Note that, we may provide
multiple hash oracles in the random oracle model.

An ABSE scheme is said to be sIND-CPA secure if for any probabilistic polyno-
mial time adversary A, the following advantage is negligible:

AdvsIND-CPA
ABSE,A (n, λ) =

∣
∣
∣ Pr[ExpsIND-CPA

ABSE,A (n, λ) = 1] − 1/2
∣
∣
∣.
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3 Attribute-Based Encryption with Traitor Tracing

3.1 Generic Construction

Let FC = (Gen,Trace) be an fingerprint code and ABSE = (Setup,KeyGen,Enc,
Dec) be an ABSE scheme. Our ABTT is described as follows.
ABT T .Setup(n, t, λ) → (pp,msk, tk). Let � = �(n, t, λ) be the length of code-
word in the fingerprint code. The setup algorithm runs

FC.Gen(n, t, λ) → (Γ, tk),
ABSE .Setup(n, λ) → (pp0,msk0).
ABSE .Setup(n, λ) → (pp1,msk1).

The public parameter is pp = (Γ, pp0, pp1) and the master secret key is msk =
(msk0,msk1).
ABT T .KeyGen(msk,A) → skA. For the ith user, this algorithm assigns the ith

codeword w̄(i) to this user and initializes two empty lists L0 and L1. For j ∈ [�],
the algorithm derives the ciphertext skA as: If w

(i)
j = 0,

L0 ← L0 ∪ {j};

otherwise,
L1 ← L1 ∪ {j}.

The key generation algorithm runs

ABSE .KeyGen(msk0,A, 0,L0) → sk
(0)
A

,

ABSE .KeyGen(msk1,A, 1,L1) → sk
(1)
A

.

Finally, it returns the secret key skA = (sk(0)
A

, sk
(1)
A

) for the access structure A.
ABT T .Enc(pp,m,S) → ctS . The encryption algorithm randomly pick τ ∈ Zp

(τ ≤ �). Then, it runs

ABSE .Enc(pp0,m,S, 0, τ) → ct
(0)
S ,

ABSE .Enc(pp1,m,S, 1, τ) → ct
(1)
S .

The ciphertext is ctS = (τ, ct(0)S , ct
(1)
S ).

ABT T .Dec(skA, ctS) → m. For the ith user, the decryption algorithm runs as
follows. If w

(i)
τ = 0, it runs

ABSE .Dec(sk(0)
A

, ct
(0)
S , 0) → m;

otherwise, it runs
ABSE .Dec(sk(1)

A
, ct

(1)
S , 1) → m.
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ABT T .TracePD(tk) → S. Suppose the pirate decoder PD claims to be able to
decrypt any message m ∈ M under the access structure A: For all j ∈ [�],
the tracing algorithm randomly chooses a message mj �= 0, and derives the
ciphertext under the attribute set S with A(S) = 1 by running

ABSE .Enc(pp0,mj ,S, 0, �, j) → ct
(0)
S ,

ABSE .Enc(pp1, 0,S, 1, �, j) → ct
(1)
S .

It then sends the ciphertext ctA = (j, ct(0)S , ct
(1)
S ) to PD. Let the return from PD

be m′
j . Define the bit w∗

j as

w∗
j =

{

0 if m′
j = mj , and

1 otherwise.

It outputs the �-bit codeword w̄∗ = w∗
1w

∗
2 · · · w∗

� and returns a set of traitors
S ⊆ [n] by running

FC.Trace(w̄∗, tk) → S.

3.2 Security Analysis

Our ABTT scheme above is extended from the public-key traitor tracing scheme
[4]. We do not change their paradigm, but replace the public-key encryption
scheme in [4] with ABSE. The following theorem shows that our ABTT scheme
is secure.

Theorem 1. Given an attribute-based set encryption scheme ABSE = (Setup,
KeyGen,Enc,Dec), which is sIND-CPA secure and fingerprint codes FC = (Gen,
Trace), which is t-collusion resistant, our ABT T = (Setup,KeyGen,Enc,Dec,
Trace) is a t-collusion resistant attribute-based traitor tracing scheme. Particu-
larly, using the notion in Sect. 2, for all t > 0, n > t, and all polynomial time
adversaries attacking ABTT, there exist polynomial adversaries attacking ABSE
or fingerprint code such that

AdvsIND-CPA
ABT T ,A(n, t, λ) ≤ 2� · AdvsIND-CPA

ABSE,A (n, t),
AdvTrace

ABT T ,A(n, t, λ) ≤ AdvFC,A(n, t, λ) + � · (AdvsIND-CPA
ABSE,A (n, t) + 1/|M|).

where � denotes the bit length of codeword and M denotes the message space.

The proof of Theorem1 is very similar to the proof of Theorem 1 in [4]. We
detail the proof in the full version of this paper1.

1 Please contact the authors for it.
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4 The Proposed Attribute-Based Set Encryption

4.1 Our Construction

An ABSE scheme with the attribute set Ω that supports policies P with message
space Ω is described as follows.
ABSE .Setup(n, λ) → (pp,msk). The setup algorithm takes the number of sys-
tem users n and the security parameter λ as input. It first generates the bilinear
groups (g, p,G,GT , e) by running the bilinear group generator G(λ). The algo-
rithm randomly chooses the terms α, β ∈ Zp and h ∈ G, then the algorithm
computes the terms h1, h2, g1, g2, . . . , gn as:

h1 = gα, h2 = hβ , g1 = g(β), g2 = g(β
2), . . . , gn = g(β

n).

It picks three collusion-resistant hash functions H1,H2 and H3 at random:

H1 : Ω → G, H2 : {0, 1}∗ → Zp, H3 : GT → M.

The public parameter pp and the master secret key msk are

pp = (p,G,GT , e, g, g1, . . . , gn, h, h1, h2,H1,H2,H3), msk = (α, β).

ABSE .KeyGen(msk,A, b,L) → skA. The key generation algorithm takes the
master secret key msk, an access structure A = (M, ρ) ∈ P, a bit b ∈ {0, 1}
and a index list L (|L| ≤ n) as input, where M is a matrix of the size d× l in Zp

and ρ : [d] → Ω is a mapping function. Let �u be a random l dimensional vector
over Zp and �1 · �u = α. For each row i in the matrix M, it randomly chooses
ri ∈ Zp and computes the terms K

(0)
i ,K

(1)
i and K

(2)
i as:

K
(0)
i = hMi�uiH1(ρ(i))ri , K

(1)
i = gri , K

(2)
i = h

∑
j∈L

1
β−H2(ρ(i)‖j‖b) .

The secret key skA is

skA = {K
(0)
i ,K

(1)
i ,K

(2)
i }i∈[d].

ABSE .Enc(pp,m,S, b, �, τ) → ctS . The encryption algorithm takes the public
parameter pp, the message m ∈ M, an attribute set S = (A1, A2, . . . , Ak), a
random bit b ∈ {0, 1}, and a number � ∈ Zp and a number τ ∈ Zp (τ ≤ �) as
input. It randomly chooses a message m′ ∈ M, and derives the message m′′ as:

m′′ = m ⊕ m′.

It chooses a random exponent s ∈ Zp and computes the terms C(0) and C(1) as:

C(0) = m′ · e(h, h1)s, C(1) = gs.
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For all i ∈ [k], it computes the terms C
(2)
i , C

(3)
i , C

(4)
i and C

(5)
i as:

C
(2)
i = H1(Ai)s,

C
(3)
i =

(

g
∏�

j=1 β−H2(Ai‖j‖b)
)s′

,

C
(4)
i =

(

hβ−H2(Ai‖τ‖b)
)s′

,

C
(5)
i = m′′ ⊕ H3

⎛

⎝e

(

g

∏�
j=1 β−H2(Ai‖j‖b)

β−H2(Ai‖τ‖b) , h

)s′⎞

⎠ .

The ciphertext ctS is

ctS = (τ, C(0), C(1), {C
(2)
i , C

(3)
i , C

(4)
i , C

(5)
i }i∈[k]).

ABSE .Dec(skA, ctS , b) → m. The decryption algorithm takes the secret key skA,
the ciphertext ctS and a bit b ∈ {0, 1} as input. It takes the vector �w s.t.
∑

ρ(i)∈S Miwi = �1 and recovers the message m′ by computing:

C(0) ·
∏

ρ(i)∈S

(

e(K(1)
i , C

(2)
i )

e(K(0)
i , C(1))

)

= m′ · e(h, h1)s ·
∏

ρ(i)∈S

(
e(gri ,H1(ρ(i))s)

e(hMi�uiH1(ρ(i))ri , gs)

)

= m′.

It randomly chooses Ai ∈ S and recovers the message m′′ as: Let the polynomial
function f(a) be

f(a) =
∏�

j=1 (a − H2(Ai‖j‖b)) ·
(
∑

j∈L
1

a−H2(Ai‖τ‖b)

)

=

∏�
j=1 (a − H2(Ai‖j‖b))

a − H2(Ai‖τ‖b)
+ (a − H2(Ai‖τ‖b)) ·

(
∑�−2

j=0 fja
j
)

,

where fj is the coefficient of aj . The algorithm derives the message m′′ by com-
puting:

C
(5)
i ⊕ H3

(

e(C(3)
i ,K

(2)
i ) · e

(

C
(4)
i ,

∏�−2
j=1 g

fj

j · gf0

)−1
)

= m′′ ⊕ H3

⎛

⎝e

(

g

∏�
j=1 β−H2(Ai‖j‖b)

β−H2(Ai‖τ‖b) , h

)s′⎞

⎠ ⊕ H3

⎛

⎝e

(

g

∏�
j=1 β−H2(Ai‖j‖b)

β−H2(Ai‖τ‖b) , h

)s′⎞

⎠

= m′′.

The returning message m is m = m′ ⊕ m′′.
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4.2 Security Proof

We prove the security of our ABSE in the selective security model based on the
decisional BDH assumption and the modified q-BDHE assumption.

Theorem 2. Suppose the hash functions H1,H2,H3 are three random oracles.
Let qH1 , qH2 and qH3 be the query number to the oracle H1,H2 and H3, respec-
tively. Assuming the decisional BDH assumption is εBDH-hard, and the modified
q-BDHE is εq-BDHE-hard, our ABSE scheme is (qH2 , qH3 , ε)-secure under selec-
tive IND-CPA model under the ABSE setting. We have

AdvsIND-CPA
ABSE,A ≤ 1/2 · (εBDH + 1/(qH2qH3) · εq-BDHE) .

Proof. Suppose there exist a probabilistic polynomial time adversary A that
can break our ABSE scheme in the selective security model with a non-negligible
advantage. We can build an algorithm B that can have a non-negligible advantage
to break the decisional BDH problem or the modified q-BDHE problem.
Init. B runs A. A chooses the challenge attribute set S∗ and sends S∗ to B. B
randomly chooses a bit ĉ ∈ {0, 1}.
If ĉ = 0, B is giving the terms (A = ga, B = gb, C = gc, Z) and the aim of B is
to distinguish Z is e(g, g)abc or a random value.

If ĉ = 1, B is giving the terms g, g(a), g(a
2), . . . , gaq

, g(a
2q+2), g(a

2q+3),
. . . , g(a

3q+1) ∈ G
2q+1 and the aim of B is to output e(g, g)(a

2q+1).
Setup. B generates the public parameters pp to A.
If ĉ = 0, B assigns the public parameter h = B and h1 = A and chooses random
value β ∈ Zp to derive the rest of public elements:

h2 = hβ , g1 = g(β), g2 = g(β
2), . . . , gn = g(β

n).

B then randomly chooses two collusion-resistant function H2 : {0, 1}∗ → Zp and
H3 : GT → M, and forwards the public parameter as:

pp = (p,G,GT , e, g, g1, . . . , gn, h, h1, h2,H2,H3)

except the hash function H1 to A, where H1 works as a random oracle in the
rest of reduction.
If ĉ = 1, B randomly picks a random value α ∈ Zp and sets h1 = gα. Next, B
randomly chooses {I1, I2, . . . , IqH2

} from Zp, and picks a random i∗ ∈ [qH2 ]. Let
F (x) ∈ Zp[x] be a (qH2 − 1)-degree polynomial function as:

F (x) = b
∏qH2

i=1,i �=i∗(x − Ii) = FqH2−1x
qH2−1 + · · · + F2x

2 + F1x + F0.

It sets gi = g(a
i) for all i ∈ [�] and computes h = gF (a) and h2 = gaF (a) from the

challenge input and F (x). B then randomly chooses a collusion-resistant hash
function H1 : Ω → G, and forwards the public parameter pp as

pp = (p,G,GT , e, g, g1, . . . , gn, h, h1, h2,H1)
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except the two hash functions to A, and sets H1 and H2 as random oracles.
Hash Queries. If ĉ = 0, A can query the random oracle H1 at any time;
otherwise, A can query the random oracles H2 and H3 at any time.
OH1(·). For any query on A to the random oracle H1, B maintains a list LH1 and
responds as follows. If A is not in the list, the algorithm responds depended on
S∗. If A ∈ S∗, the algorithm sets r = 0 and randomly picks r′ ∈ Zp. If A �∈ S∗,
the algorithm randomly chooses r, r′ ∈ Zp. The algorithm returns H1(A) = hrgr′

to A, and adding (A, r, r′) to LH1 . Otherwise, there has been already a tuple
(A, r, r′) in the list and the algorithm responds with H1(A) = hrgr′

.
OH2(·). For any query on A to the random oracle H2, B maintains a list LH2 and
responds as follows. If there has been already a tuple (A, I) in the list LH2 , the
algorithm responds with H2(A) = I. Otherwise, let A be the ith distinct query.
B responds by returning H2(A) = Ii to A, and adding (A, Ii) to LH2 .
OH3 . For a random query on R to the random oracle H3, B maintains a list
LH3 and responds as follows. If R is not in the list, the algorithm responds by
randomly choosing a different Y ∈ Zp, returning H3(R) = Y to A, and adding
(R, Y ) to LH3 . Otherwise, there has been already a tuple (R, Y ) in the list and
the algorithm responds with H2(R) = Y .

Phase 1. A queries the key generation oracle OABSE.KeyGen(·, ·, ·). For the query
on access structure A = (M, ρ), a bit b and a number � from A, B responds as:
If ĉ = 0, according to the proposition 1 in [6], we have

Mi�u = �v +
ab − �v

h
· �w = αμ1 + μ2,

where the coefficients μ1 = Mi �w · h−1 and μ2 = Mi(h�v − �v �w) are computable.
For all i ∈ [d], the algorithm fetches (ρ(i), r, r′) and computes the terms K

(0)
i

and K
(1)
i as:

If ρ(i) ∈ S∗, the algorithm randomly chooses ri ∈ Zp and sets

K
(0)
i = hMi�uiH3(ρ(i))ri , K

(1)
i = gri , K

(2)
i = h

∑�
j=1

1
β−H2(ρ(i)‖j‖b) .

If ρ(i) �∈ S∗, the algorithm randomly chooses r′
i ∈ Zp and sets

K
(0)
i = h

−μ1·r′
r

1 gμ2
2 H3(ρ(i))r′

i , K
(1)
i = gr′

ih
−μ1

r
1 , K

(2)
i = h

∑�
j=1

1
β−H2(ρ(i)‖j‖b) .

If ĉ = 1, it computes the terms {K
(0)
i ,K

(1)
i }i∈[d] as our proposed scheme. For all

i ∈ [d], let the response for ρ(i)‖j‖b in the list LH2 be (ρ(i)‖j‖b, Ij) for all j ∈ [�].
If Ij = I∗ holds for any i ∈ [�], the algorithm aborts the simulation. When Ij �= I∗

holds for j ∈ [�], we have that H2(ρ(i)‖1‖b),H2(ρ(i)‖2‖b), . . . ,H2(ρ(i)‖�‖b) are
all the roots of F (x). Then, we deduce that

Fρ(i)(x) = F (x) ·
(
∑�

j=1
1

x−H2(ρ(i)‖j‖b)

)
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is a (qH2 − 2)-degree at most polynomial function, and B can compute

K
(2)
i = h

∑�
j=1

1
β−H2(ρ(i)‖j‖b) = g

F (β)·
(∑�

j=1
1

β−H2(ρ(i)‖j‖b)

)

= gFρ(i)(a)

from Fρ(i)(x) and g, g(a), . . . , g(a
q), and K

(2)
i is a valid secret key component.

Finally, B returns the secret key skA = {K
(0)
i ,K

(1)
i ,K

(2)
i }i∈[d] to A.

Challenge. A will submit two challenge message (m0,m1, b, τ) to B. B flips a
fair binary coin c̄.
If ĉ = 0, B randomly chooses m′ ∈ M and sets m′′ = mc̄ ⊕ m′, then computes
the terms C(0), C(1), C(2) as:

C = m′ · Z, C(1) = C, ∀Ai ∈ S∗ : C
(2)
i = Cr′

.

If Z = e(g, g)abc. Then the ciphertext is:

C = m′ · e(g, g)abc, C(1) = gc, ∀Ai ∈ S∗ : C
(2)
i = H3(Ai)c.

The rest of ciphertext (τ, {C
(3)
i , C

(4)
i , C

(5)
i }Ai∈S∗) are generated as our proposed

scheme.
If ĉ = 1, B randomly chooses m′ ∈ M and sets m′′ = mc̄ ⊕ m′, then computes
the terms C(0), C(1), C

(2)
i as our proposed scheme. For each attribute ρ(i) in S,

B works as follows:
If B cannot find the tuple (ρ(i)‖τ‖b, I∗) ∈ LH2 satisfies I∗ �= Iτ , abort; otherwise,
the algorithm randomly chooses C

(5)∗
i ∈ {0, 1}�. Let

F ′(x) =
∑�

j=1
1

β−H2(ρ(i)‖j‖b)

x−I∗

be an (n − 1)-degree polynomial function. The algorithm randomly chooses r′ ∈
Zp and computes the challenge ciphertext (C(3)

i , C
(4)
i , C

(5)
i ) by

C
(3)
i = gr′(a2q+2−I∗2q+2)F ′(a), C

(4)
i = gr′(a2q+2−I∗2q+2)F (a), C

(5)
i = C

(5)∗
i .

where C
(3)
i and C

(4)
i are computable from F ′(x) and F (x) and the challenge

input. Let the randomness r be

r = r′ · a2q+2−I∗2q+2

a−I∗ ,

which is also universally random in Zp. We have the challenge ciphertext is
equivalent to

C
(3)
i =

(

g
∑�

j=1
1

β−H2(ρ(i)‖j‖b)

)r

, C
(4)
i =

(

hβ−H2(ρ(i)‖τ‖b)
)r

, C
(5)
i = C

(5)∗
i .

According to our setting, there must exist a hash query on

e

(

g

∑�
j=1

1
β−H2(ρ(i)‖j‖b)

β−H2(ρ(i)‖τ‖b) , h

)r

to the random oracle H3 in order to decrypt the
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message in the challenge ciphertext.

m′′ = H3

(

e

(

g

∑�
j=1

1
β−H2(ρ(i)‖j‖b)

β−H2(ρ(i)‖τ‖b) , h

)r)

· C
(5)∗
i .

Phase 2. Phase 2 is same as Phase 1.

Guess. If ĉ = 0, A will submit a guess c̄′. If c̄ = c̄′, B will output 0 to indicate
that is was given a valid BDH-tuple otherwise it will output 1 to indicate it was
given a random 4-tuple.

If ĉ = 1, A returns a guess c̄′. Let F ′′(x) be the (2q + n + qH1 − 1)-degree
polynomial function

F ′′(x) = r′ · x2q+2−I∗2q+2

x−I∗ · F ′(x) · F (x)

and F ′′
i be the coefficient of xi in F ′′(x). We have that e

(

g

∑�
j=1

1
β−H2(ρ(i)‖j‖b)

β−H2(ρ(i)‖τ‖b) , h

)r

= e(g, g)F ′′(a). It is easy to verify that F ′′
2q+1 is equal to r′F ′(I∗)F (I∗) which

is non-zero, and that e(g, g)F ′′·ai

for all i �= 2q + 1 are computable from the
challenge input. B picks a random tuple (R, Y ) from the list LH3 and computes

(

R ·
∏2q+n+qH2−1

i=1,i �=2q+1 e(g, g)−F ′′
i ·ai

) 1
r′F ′(I∗)F (I∗) = e(g, g)a2q+1

as the solution to the modified q-BDHE problem.
When ĉ = 0, if B output 0 (c̄ = c̄′), the generation of public parameters and

secret keys is identical to that of the actual scheme. In the case where outputs 1
(c̄ �= c̄′), A gains no information about c̄. Therefore, the probability of guessing
successful is 1/2. In the case where outputs 0, A sees an encryption of mc̄. The
advantage in this situation is εBDH by definition. Hence, the advantage is εBDH.

When ĉ = 1, we need to consider of three events. The first event is B can
generate ith key generation query on the challenge attribute. The second event
is B does not abort in the challenge phase. Hence, we have the overall abort
in the guess phase 1/qH2 . The last one is B may not query e(g, g)F ′′(a) to the
random oracle OH3 , and the probability of choosing a correct randomness Ri

is 1/qH3 . The advantage in this situation is (1/(qH2qH3))εq-BDHE. Therefore, the
advantage of A breaking the game is (1/(qH2qH3))εq-BDHE

We have the advantage when ĉ = 0 and ĉ = 1, respectively. Hence, the above
probability analysis does not consider B guessing ĉ correctly, and the probability
of B guessing ĉ successful is 1/2. Therefore, the overall advantage is

AdvsIND-CPA
ABSE,A = 1/2 · (εBDH + 1/(qH2qH3) · εq-BDHE) .
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5 Conclusion

We introduced the attribute-based traitor tracing scheme based on the finger-
print code in blackbox setting. The size of the secret key relates to the size of
policies as the normal attribute-based encryption scheme rather than the previ-
ous blackbox attribute-based traitor tracing schemes depend on both the number
of the user in the system and the size of policies. It saves both secure storage
and bandwidth for ABTT applications. We also introduced a new primitive of
attribute-based set encryption for reducing the multi-attribute scenarios. Our
proposed ABSE scheme is provably secure in the random oracle under the deci-
sional BDH assumption and the modified q-BDHE assumption.
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Abstract. Linkable ring signature schemes are cryptographic primitives
which have important applications in e-voting and e-cash. They are ring
signature schemes with the extra property that, if the same user signs
two messages, a verifier knows they were signed by the same user. In
this work, we present a new linkable ring signature scheme. The secu-
rity of our proposal is based on the hardness of the syndrome decod-
ing problem. To construct it, we use a variant of Stern’s protocol and
apply the Fiat-Shamir transform to it. We prove that the scheme has
the usual properties for a linkable ring signature scheme: unforgeability,
signer anonymity, non-slanderability and linkability.

Keywords: Linkable ring signature scheme · Code-based cryptography

1 Introduction

With the advent of the quantum computer, most of the standard asymmetric
cryptography is threatened since Shor’s algorithm is able to solve both dis-
crete logarithm and factorization problems [28]. As a consequence of this fact,
the development of post-quantum cryptographic primitives is crucial for the
future. Among the most important cryptographic primitives are digital signa-
ture schemes. They have the same legal value of a physical signature and can be
used in a wide range of applications such as authentication for a secure access to
a website, non-repudiation of contracts, validating transactions (as in the Bitcoin
system and other cryptocurrencies system) or e-voting. However, post-quantum
(in particular, code-based) digital signature schemes are still very inefficient for
applications and there are a lot of signature types for which there is no code-
based variant.

Linkable ring signature schemes [24] are a special type of ring signature
schemes that allow linkability, i.e., that allow two different signatures to be
linked to the same signer in a ring. Their applications to e-voting, e-cash and
cryptocurrencies are well known [27,31]. But, until now, there was no construc-
tion of this primitive based on coding theory.

In this work, we present the first linkable ring signature scheme whose security
is based on a hard problem in coding theory, the syndrome decoding problem.
c© Springer Nature Switzerland AG 2018
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Until this moment, most of the linkable ring signature schemes had their security
based on the discrete logarithm problem, which makes them useless for the post-
quantum era. Since our construction is based on a well-known code-based hard
problem, it is conjecture to be robust against quantum attacks and thus, suitable
for the post-quantum world.

1.1 Previous Work

Ring Signatures. Ring signature schemes are a special type of digital signa-
ture [26]. They allow for a user in a group to sign a message in name of the
group while preserving its anonymity. They can be seen as a particular case of
group signature scheme [13], where a member of a group can sign messages in
name of the group such that a verifier cannot know who signed the message but
the anonymity can be revoked by a group manager.

In some applications, one may be interested in knowing if two ring signatures
were issued by the same user in the ring. This can be done trivially using a group
signature scheme. The problem is that, in group signature schemes, anonymity
only exists as long as the group manager wants. Sometimes we may wish to
preserve the anonymity of a signer in a ring and give the verifier the chance to
know if two signatures were issued by the same user. This is the motivation for
creating linkable ring signature schemes.

Linkable Ring Signatures. Linkable ring signatures [24] are ring signature
schemes where it is possible to determine when two different messages were
signed by the same group user. They have important applications in e-cash and
e-voting [31]. At the moment, most of the existing signature schemes are based
on the discrete logarithm problem [7,23–25,31,32]. Therefore their security is
threatened: Shor’s algorithm [28] solves the discrete logarithm problem and,
thus, it breaks all of these linkable ring signature schemes. Very recently two dif-
ferent lattice-based linkable ring signature schemes were presented [8,30], which
are conjectured to be secure against quantum adversaries.

Code-Based Signatures. The first signature scheme based on coding theory
appeared in 2001 [14] and, in the last years, there was a huge development
of post-quantum signatures and, in particular, of code-based signature schemes.
The first code-based ring signature scheme appeared in 2007 [34]. After that,
many other variants were proposed like threshold ring signatures schemes [3,16],
undeniable signature schemes [2] or group signature schemes [4,5,18]. But, as
far as the authors know, this is the first proposal for a linkable ring signatures
scheme based on coding theory.

The signature schemes of [14,34] use trapdoors and, for this reason, their
security is based on both the Syndrome Decoding problem and on the Goppa
Distinguisher problem [14]. The latter can be solved when Goppa codes are used
with high rates [19] and hence, we have to increase their security parameters,
making them impractical in real-life applications. To overcome this problem, we
use the Fiat-Shamir transform (following [3,16]) to obtain linkable ring signature
scheme with more practical key sizes.
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1.2 Our Contribution

In this paper, we give the first construction of a linkable ring signature scheme
whose security is based on a hard problem in coding theory. We also give a
variant of the proposed linkable ring signature scheme that provides the usual
security properties of existential unforgeability, anonymity and linkability.

To construct our proposal, we use a variant of Stern’s protocol and then we
apply the Fiat-Shamir transform to it. Signatures can be linked to each other
by a vector r that is the syndrome of the secret key of the signer by a random
matrix ˜H.

1.3 Organization of the Paper

We begin the paper by introducing some notation and preliminary results. In
Sect. 3 we present both linkable ring signature schemes, one that achieves security
in the classical setting and a variant that achieves security in the quantum
setting. The proof of security for both schemes is given in Sect. 4. Finally, we
conclude this work by proposing parameters for the scheme and analyzing its
signature and key size.

2 Notation and Preliminaries

If A is an algorithm, y ← A(x) denotes the result of running A on input x
and outputting y and AO denotes A running with access to oracle O. If S is a
finite set, then x ←$ S means that x is chosen uniformly at random from S. A
negligible function negl(n) is a function such that negl(n) < 1/poly(n) for every
polynomial poly(n) and sufficiently large n. We denote Pr[A | B1, . . . , Bn ] the
probability of event A after events B1, . . . , Bn happened sequentially.

2.1 Linkable Ring Signature

In this section, we give the definition of a linkable ring signature scheme and
present the security model we adopt. By linked signatures we mean that they
were signed by the same user in the ring.

Definition 1. A linkable ring signature scheme is a tuple of algorithms
(KeyGen, Sign,Ver, Link) where:

– (pk, sk) ← KeyGen(1κ) is a probabilistic polynomial-time (PPT) algorithm
that receives as input the security parameter κ and outputs a pair of public
and secret keys (pk, sk).

– σ ← Sign(1κ,pk,M, sk) is a PPT algorithm that receives as input a security
parameter κ, a list of public keys pk of size N (where the public key corre-
sponding to sk is included), a message M to be signed and a secret key sk. It
outputs a signature σ.
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– b ← Ver
(

1κ,pk,M, σ
)

is a deterministic polynomial-time algorithm that
receives as input a security parameter κ, a list of public keys pk of size N , a
message M and a signature σ and outputs a bit b ∈ {0, 1} corresponding to
whether the signature σ is a valid one (b = 1) or not (b = 0).

– b ← Link(1κ,pk,M1, σ1,M2, σ2) is a deterministic polynomial-time algorithm
that takes as input a list of public keys pk two messages M1 and M2 and
two signatures σ1 and σ2 such that Ver

(

1n,pk,M1, σ1

)

= 1 and Ver
(

1n,pk,

M2, σ2

)

= 1. It outputs b = 1 for linked signatures and b = 0 otherwise.

The security model we adopt is based on [7,25]. In order for a linkable ring
signature scheme to be secure, it must be existential unforgeable, anonymous,
non-slanderable and linkable. Existential unforgeability prevents an adversary
from forging a signature in name of a group if it does not have a public key
in this group, for any message M , while anonymity certifies that an adversary
is incapable of knowing who inside the group has signed a given message. Non-
slanderability (firstly introduced in [31] and formalized in [7]) prevents an adver-
sary from creating a signature that is linked to a second signature issued by other
user. Linkability guarantees that a user cannot create two valid signatures that
are not linked.

In the following, let pk = {pk1, . . . , pkN} be the set of public keys of the users
in the ring and L ⊆ pk. Sign(·, sk) is a signing oracle that receives queries of
the form (pk,M), and outputs σ ← Sign(1κ,pk,M, ski), for any i ∈ {1, . . . , N},
and Co(·) be a corruption oracle that receives queries of the for pk and outputs
the corresponding secret key sk.

Existential Unforgeability. Consider the following game:

GameunfA (κ,N) :

1 : (pki, ski) ← KeyGen(1κ) i = 1, . . . , N

2 : (L, M, σ) ← ASign(·,ski),Co(·)(pk)

3 : b ← Ver (1κ, L, M, σ)

4 : return b

where (L,M) was not asked Sign(·, sk) and A only queried Co(·) for pk /∈ L. We
define

AdvunfA (κ,N) := Pr[b = 1] .

If for all PPT adversaries A we have that AdvunfA (κ,N) ≤ negl(κ,N ) then the
linkable ring signature scheme is existentially unforgeable. This is called unforge-
ability with respect to insider corruption in [9] and it is the strongest level of
unforgeability that a ring signature can achieve.
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Anonymity. Consider the following game:

GameanonA (κ,N) :

1 : (pki, ski) ← KeyGen(1κ) i = 0, 1

2 : b ←$ {0, 1}
3 : b′ ← ASign(·,skb),Sign(·,sk0),Sign(·,sk1)(pk0, pk1)

4 : return b′

where the adversary is not allowed to ask queries with different L to Sign(·, skb)
nor to ask queries with the same L to both Sign(·, skb) and Sign(·, sk0) or to both
Sign(·, skb) and Sign(·, sk1). We do not allow this to happen to avoid the trivial
attacks. We define

AdvanonA (κ,N) := Pr [b = b′] − 1
2
.

If for all PPT adversaries A we have AdvanonA (κ,N) ≤ negl(κ,N ) then the link-
able ring signature scheme is anonymous. This definition is equivalent to the
definition of anonymity with respect to adversarially-chosen keys in [9], as it is
stated in [21].

Non-slanderability. Consider the following game:

GamenslaA (κ,N) :

1 : (pki, ski) ← KeyGen(1κ), i = 1, . . . N

2 : (L, pk1, M1) ← ASign(·,ski)(pk)

3 : σ1 ← Sign(1κ, L, M1, sk1)

4 : (pk2, M2, σ2) ← ASign(·,ski)(pk, L, sk2, pk1, M1, σ1)

5 : b ← Link(1κ, L, M1, σ1, M2, σ2)

6 : return b

where pk1, pk2 ∈ L, pk1 �= pk2 and both pairs (L,M1), σ1 and (L,M2), σ2 were
not asked to nor replied by Sign(·, ski). We define

AdvnslA (κ,N) := Pr[b = 1] .

If for all PPT adversaries A we have AdvnslA (κ,N) ≤ negl(κ,N ) then the linkable
ring signature scheme has non-slanderability.

Linkability. Consider the game:

GamelinkA (κ,N) :

1 : (pki, ski) ← KeyGen(1κ), i = 1, . . . , N

2 : pk ← ASign(·,ski)(pk)

3 : (L, M1, σ1, M2, σ2) ← ASign(·,ski)(pk, pk)

4 : b ← 1 − Link(1κ, L, M1, σ1, M2, σ2)

5 : return b
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where Ver(1κ, L,M1, σ1) = 1, Ver(1κ, L,M2, σ2) = 1 and both pairs (L,M1), σ1

and (L,M2), σ2 were not asked to nor replied by Sign(·, ski). We define

AdvlinkA (κ,L) := Pr[b = 1] .

If for all PPT adversaries A we have that AdvlinkA (κ,L) ≤ negl(κ,N ) then the
linkable ring signature scheme has linkability.

2.2 Sigma Protocols

Due to the lack of space, we review very briefly some basic concepts on sigma
protocols and on the Fiat-Shamir transform. For a more detailed review, see [17].
A sigma protocol (P,V) is a three-round protocol between a prover P and a
verifier V where the prover tries to convince the verifier about the validity of
some statement. A proof of knowledge (PoK) is a particular case of a sigma
protocol. Here, the prover P convinces the verifier V, not only about the veracity
of the statement but also that P has a witness for it. The three rounds of any
sigma protocol are the commitment (com) by the prover, the challenge (ch) by
the verifier and the response (resp) by the prover. A transcript (com, ch, resp)
is said to be valid if the verifier accepts it as a valid proof.

A sigma protocol must have the following properties: (i) completeness, which
guarantees that the verifier will accept the proof with high probability if the
prover has the secret; (ii) special soundness, which ensures that there is an extrac-
tor such that, given two valid transcripts (com, ch, resp) and (com, ch ′, resp′)
where ch �= ch ′, then it can extract the secret; and (iii) honest-verifier zero-
knowledge (HVZK) which ensures that no information is gained by the verifier
by just looking at the proof. This is usually proven by showing the existence of a
simulator that can generate transcripts that are computationally indistinguish-
able from transcripts generated by the interaction between the prover and the
verifier.

As usual, we denote a relation of size n in X × W by Rn. Given x ∈ X
(which is public information) and w ∈ W (usually called the witness), it can
be computed whether Rn(x,w) = 1. We define the set LR = {x ∈ X : ∃w ∈
W s.t. Rn(x,w) = 1}.

The following definitions are taken from [33] and they will be useful to argue
post-quantum security of the Fiat-Shamir transform.

A sigma protocol (P,V) is said to be statistically sound if

Pr
[

1 ← V ∧ x /∈ LRn
| (x, com) ← A1, ch ←$ {0, 1}l, resp ← A2

] ≤ negl(n) ,

where A2 takes (ch) as input and V takes the transcript (com, ch, resp). The
sigma protocol (P,V) is said to have unpredictable commitments if for all (x,w)
such that Rn(x,w) = 1 we have that

Pr [com = com′ | com ← P(x,w), com′ ← P(x,w)] ≤ negl(n) .



A Code-Based Linkable Ring Signature Scheme 209

Let K be a (possibly quantum) polynomial-time algorithm. We call K a hard
instance generator for some relation Rn of size n if, for all PPT adversaries A
and (x,w) ← K such that Rn(x,w) = 1 we have

Pr[R(x,w′) = 1 | w′ ← A(x)] ≤ negl(n) .

Definition 2 ([33]). We call K a dual-mode hard instance generator if there is
a PPT algorithm K∗ such that

Pr[1 ← A(x) | (x,w) ← K ] − Pr [1 ← A(x) | x ← K∗] ≤ negl(n)

and
Pr[x ∈ LRn

| x ← K∗ ] ≤ negl(n) .

Informally, a dual-mode hard instance generator is a hard instance generator
where, not only it is hard to find witnesses for a word x, but also it is hard to
distinguish if there is a witness w for this word x.

2.3 Fiat-Shamir Transform

The Fiat-Shamir transform [20] is a generic method to convert any PoK protocol
that is complete, special sound and HVZK into a signature scheme. The security
of the Fiat-Shamir transform is proven to be secure both in the random oracle
model (ROM) [1] and in the quantum random oracle model (QROM) [33], under
certain conditions.

The idea behind the Fiat-Shamir transform is that the prover is able to
simulate the challenge that is usually sent by the verifier. Since this challenge
should be chosen uniformly at random, the prover sets the challenge according
to a cryptographic hash function depending on the message to be signed and on
the commitment chosen previously by the prover. More precisely, given a proof
of knowledge (P,V), the prover computes com, then sets ch = h(com,M) where
h is a cryptographic hash function and M is the message to be signed. Finally,
it computes resp such that (com, ch, resp) is a valid transcript. The signature of
M is (com, resp). For someone to verify the validity of the signature, one just
has to compute ch = h(com,M) and then check that (com, ch, resp) is a valid
transcript.

The following result guarantees the security of the Fiat-Shamir transform in
the classical setting.

Theorem 1 ([1]). Suppose that (P,V) is a sigma protocol that is complete,
special sound and HVZK. Then the signature scheme obtained by applying the
Fiat-Shamir transform is secure in the ROM.

However, in the quantum setting, where an adversary can perform quantum
computations in the quantum random oracle model (QROM [11]), the Fiat-
Shamir transformation seems to be insecure, or, at least, it is not secure in
some cases [6]. Fortunately, Unruh gave sufficient conditions for the Fiat-Shamir
transform to be secure in the quantum setting [33].
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Theorem 2 ([33]). Let K be a dual-mode hard instance generator for some
relation R. Let (P,V) be a sigma protocol for the relation R that is complete,
statistical sound, HVZK and has unpredictable commitments. Then the signature
scheme obtained by applying the Fiat-Shamir transformation to (P,V) is secure
in the QROM.

We will use the Fiat-Shamir transform to construct a linkable ring scheme
and we will use Theorem 1 to prove its security in the ROM. Theorem 2 gives
the basis to prove security in the QROM.

2.4 Hard Problems in Coding Theory

We present the Syndrome Decoding (SD) problem, which is proven to be NP-
complete [10].

Problem 1 (Syndrome Decoding - Decision Version). Given a binary
matrix H ∈ {0, 1}(n−k)×n, a vector s ∈ {0, 1}n−k, and an integer t ≥ 0 deter-
mine whether there exists e such that w(e) ≤ t and HeT = sT .

The following problem is a generalization of the SD problem. We will call
this problem the General Syndrome Decoding (GDS) problem.

Problem 2 (General Syndrome Decoding). Given binary matrices H,G ∈
{0, 1}(n−k)×n, vectors s, r ∈ {0, 1}n−k, and an integer t ≥ 0 determine whether
there exists e such that w(e) ≤ t, HeT = sT and GeT = rT .

It is easy to see that SD can be reduced to the GSD problem. More precisely,
we have that (H, s, t) ∈ SD iff (H, s,H, s, t) ∈ GSD, which gives a Karp reduction
of SD to GSD. In other words, the SD problem is the diagonal of GSD. Moreover,
since the SD problem is NP-complete, we conclude that the SD problem and the
GSD problem are equivalent. Furthermore, observe that the reduction presented
is tight. Hence, the parameters for which the SD problem is infeasible also make
the GSD problem infeasible.

Note that it is trivial to conceive an algorithm that satisfies the conditions of
a dual-mode hard instance generator that creates instances of the SD problem, in
the sense of Definition 2: one just has to choose a random matrix and a random
error vector and then compute the syndrome of the error vector. The matrix,
the syndrome and the weight of the error vector form an instance of the SD
problem. The same applies to the GSD problem.

We present a variant of Stern’s protocol [29] based on the hardness of the
GSD problem. In this variant, the prover is able to prove that it has the solution
for an instance of the GSD problem. That is, given (H, s,G, r, t), it proves that
it has an error vector e such that HeT = s, GeT = rT and w(e) ≤ t. The
protocol is presented in Algorithm 1. We will call it the GStern’s protocol.

As in the original Stern’s protocol, when b = 1, V can check that c1 was
honestly computed by computing H(y + e) + s = Hy and G(y + e) + r = Gy.
Also, the verifier can check that the same error vector e that was used to compute
both the syndrome vectors s and r. The next lemma states that GStern’s protocol
has the usual properties of completeness, special soundness and HVZK.
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Algorithm 1. GStern’s protocol
1. Public information: H,G ∈ {0, 1}n×n−k and s, r ∈ {0, 1}n−k.
2. Secret information: e ∈ {0, 1}n such that HeT = sT , GeT = rT and w(e) = t.
3. Prover’s commitment:

– Chooses y ←$ {0, 1}n and a permutation δ;
– Computes c1 = h(δ,HyT ,GyT ), c2 = h (δ(y)) and c3 = h (δ(y + e));
– P sends c1, c2 and c3.

4. Verifier’s challenge: V sends b ←$ {0, 1, 2}.
5. Prover’s answer:

– If b = 0, P reveals y, δ;
– If b = 1, P reveals y + e, δ;
– If b = 2, P reveals δ(y), δ(e).

6. Verifier’s verification:
– If b = 0, V checks if h(δ,HyT ,GyT ) = c1 and h (δ(y)) = c2;
– If b = 1, V checks if h(δ,H(y+e)T +sT ,G(y+e)T +rT ) = c1 and h (δ(y + e)) =

c3;
– If b = 2, V checks if h (δ(y)) = c2, h(δ(y) + δ(e)) = c3 and w (δ(e)) = t.

Lemma 1. The protocol presented in Algorithm 1 is complete, special sound
and HVZK.

Proof. The proof is similar to the proofs of completeness, special soundness and
HVZK for Stern’s protocol, presented in [29].

Next we present in Algorithm 2 a variant of the above protocol that enables
a prover to prove the knowledge of the solution of an instance of the problem
without revealing which one it is. It is based on the generic construction in [15]
and on the previous proof of knowledge. In this new protocol, given N instances
of the GSD problem, the prover is able to prove that it has a solution for one
of these instances, without revealing to the verifier which one is it. More pre-
cisely, given (H1, s1,G1, r1, t1), . . . , (HN , sN ,GN , rN , tN ), the prover proves the
knowledge of an error vector e such that HieT = si, GieT = rT

i and w(e) ≤ ti,
for some i ∈ {1, . . . N} unknown to the verifier. Here, com corresponds to the
prover’s commitment, ch to the challenge by the verifier, resp the response of
the prover and (com, ch, resp) to a transcript according to the previous protocol.
The protocol presented in Algorithm 2 will be called

(

N
1

)

-GStern’s protocol.
The protocol is proven to be a proof of knowledge that is complete, special

sound and HVZK [15].
Based on the results of [33], for the GStern’s protocol to be secure in the

post-quantum setting it needs to achieve statistical soundness.
To this end, we need to introduce the concept of perfectly binding commit-

ment schemes. First, we present the definition of commitment scheme. A commit-
ment scheme is a protocol between two parties, the committer and the receiver,
that has two phases: the commitment phase where the committer commits to
a value, and the opening phase where the committer opens her commitment.
A commitment scheme should be hiding, meaning that the receiver should not
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Algorithm 2.
(

N
1

)

-GStern’s protocol

1. Public information: H,G ∈ {0, 1}n×n−k, s1, . . . , sN , r1, . . . , rN ∈ {0, 1}n−k

and t ∈ Z.
2. Secret information: e ∈ {0, 1}n such that w(e) = t, HeT = sT

i and GeT = rT
i

for some i.
3. Prover’s commitment:

– P∗ simulates transcripts (comj , chj , respj) using the simulator S for GStern’s
protocol for j �= i;

– P∗ computes comi according to GStern’s protocol;
– P∗ sends com1, . . . , comn;

4. Verifier’s challenge: V sends b ←$ C.
5. Prover’s answer:

– P computes chi = b +
∑

j �=i chj ;
– P chooses respi, according to comi and chi;
– Sends (comj , chj , respj) for every j;

6. Verifier’s verification:
– V checks that (comj , chj , respj) is valid for every j according to GStern’s pro-

tocol;
– V checks that b =

∑
j chj ;

– If all the previous conditions hold, V accepts.

be able to know the committer’s commitment before the opening phase; and it
should be binding, meaning that the committer should not be able to open a
different message from the one she has committed before. By a perfectly bind-
ing commitment scheme (PBCS) we mean a commitment scheme for which the
user that commits cannot change its commitment even if it has unlimited com-
putational power. In this work, we use a post-quantum PBCS as a black-box,
although it is known that PBCS exist in the post-quantum setting (see, for
instance [22], that is proven to be secure under the LPN problem, the dual and
equivalent version of the SD problem). In our construction, any commitment
scheme can be used as long as it is perfectly binding and computationally hiding
against quantum attacks.

As we show in the next result, to construct a variant of GStern’s protocol that
achieves statistical soundness, it is enough to replace the hash function h used
to create the commitments, in the Prover’s commitment phase, by a perfectly
binding commitment scheme. We will call it the PQ GStern’s protocol. Observe
that this is still a complete and HVZK protocol.

Lemma 2. PQ GStern’s protocol is statistically sound.

Proof. First, note that, if Com is a PBCS, then Com(x1) �= Com(x2) for x1 �= x2

except with negligible probability. If this happens with non-negligible probability,
then the user who is committing could send Com(x1) and then reveal x2 with
non-negligible probability, contradicting the fact that Com is perfectly binding.

Suppose that there is an algorithm A (not necessarily running in polynomial-
time) that breaks the statistical soundness of PQ Stern’s protocol. Then A is
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able to find H, s, G, r and t, for which there is no e such that w(e) = t, HeT = s
and GeT = rT , and com such that it is able to answer correctly to any challenge
with non-negligible probability. This implies that either A is able to break the
special soundness of the protocol (note that, since there is no witness for the
instance (H, s.G, r, t) then the adversary must build its commitments according
to some strategy since, if it follows the protocol, it will be caught) or it is able
to break the PBCS. The first event happens with probability as close to zero as
we want and the second event also happens with negligible probability. In both
cases, we reach a contradiction. 
�

Recall that a sigma protocol is said to have unpredictable commitments if
the probability of getting the same value when running twice the commitment
phase of the sigma protocol is negligible, as it was defined in 2.2.

Lemma 3. PQ GStern’s protocol has unpredictable commitments.

Proof. Again, recall that Com(x1) �= Com(x2) for x1 �= x2 except with negligible
probability, when Com is a PBCS.

Now consider GStern’s protocol. For two commitments made in different
executions of the protocol to be equal, the prover would have to choose uniformly
at random two vectors y and z of length n and two permutations δ and γ over
1, . . . , n such that

1. (δ,HyT ,GyT ) = (γ,HzT ,GzT )
2. δ(y) = γ(z)
3. δ(y + e) = γ(z + e).

By 1. we conclude that δ = γ in order for the commitments to be equal. But
the probability of this happening is 1/n!. This is enough to prove the lemma,
since we have that

Pr[com = com ′ | com ← P(1n, x, w), com′ ← P(1n, x, w)] ≤ 1/n!

which is, of course, negligible in n. 
�
To finish this section, note that the same technique can be applied to

(

N
1

)

-
GStern’s protocol in order to obtain new a sigma protocol that yield statistical
soundness. It is obvious that

(

N
1

)

-GStern’s protocol also has unpredictable com-
mitments. We will call PQ

(

N
1

)

-GStern’s protocol to this new version.

3 A Linkable Ring Signature Scheme

We present the new linkable ring signature scheme in Algorithm 3. To obtain the
signature scheme we apply the Fiat-Shamir transform to

(

N
1

)

-GStern protocol.
More precisely, the signer creates an instance I = (H, s, ˜H, r) using its secret key
and where the matrix ˜H is obtained via a cryptographic hash function and r is
the syndrome of its secret key by ˜H. Then, it applies the Fiat-Shamir transform
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to
(

N
1

)

-GStern’s protocol on input (H, s, ˜H, r) where s = (s1, . . . sN ) are the
public keys of the members in the ring and r = (r, . . . , r). On the one hand, the
verifier will not be able to check which user computed r, due to the hardness
of the SD problem. On the other hand, r will be part of every signature issued
by this user with respect to the same ring. So, these signatures can be linked
by a verifier. In the following, let g and f be two different cryptographic hash
functions and consider a ring with N users with public keys pk = (pk1, . . . , pkN ).

Algorithm 3. A new linkable ring signature scheme
1. Parameters: n, k, t ∈ N such that n > k, H ←$ {0, 1}n×(n−k)

2. Key Generation: Each user Pi:
– Chooses ei ←$ {0, 1}n such that w(e) = t;
– Computes sT

i = HeT
i .

Public key of user Pi: H, si, t.
Secret key of user Pi: ei such that w(e) = t and HeT

i = sT
i .

3. Sign: To sign message M , user Pi:
– Computes matrix g(pk) = H̃ and H̃eT

i = rT ;

– Applies the Fiat-Shamir transform to
(

N
1

)
-GStern’s protocol on input (H, s, H̃, r)

where s = (s1, . . . , sN ) and r = (r, . . . , r):
• Computes the commitments Com according to

(
N
1

)
-GStern’s protocol;

• Simulates the verifier’s challenge Ch as f(Com, M);
• Computes the corresponding responses Resp according to step 5 of

(
N
1

)
-

GStern’s protocol;
• Outputs the transcript T = (Com,Ch,Resp).

– Outputs the signature (pk, M, σ) where σ = (r,Com,Resp).
4. Verify: To verify, the verifier:

– Computes Ch = f(Com, M);

– Computes H̃ = g(pk);
– Verifies that T = (Com,Ch,Resp) is a valid transcript, according to

(
N
1

)
-

GStern’s protocol and input (H, s, H̃, r).
5. Link: Given two signatures (pk, M, σ) and (pk, M ′, σ′) where σ = (r,Com,Resp)
and σ′ = (r′,Com ′,Resp′) and such that Ver(pk, M, σ) = 1 and Ver(pk, M ′, σ′) = 1,
the verifier:

– Checks if r = r′;
– Outputs 1 if it is equal; else, outputs 0.

4 Security of the Scheme

In this section we present the results concerning the security of the proposed
scheme. We prove that the scheme has the usual properties for a linkable ring
signature scheme: existential unforgeability, anonymity, non-slanderability and
linkability. The proofs are presented in the extended version of the paper.

Existential Unforgeability. Existential unforgeability in the classical setting is a
direct consequence of the fact that the signature is obtained from a sigma proto-
col that is complete, special sound and HVZK and Theorem 1. The post-quantum
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security of the proposed PQ linkable ring signature scheme is guaranteed by the
fact that the sigma protocol used in the Fiat-Shamir transform is complete,
statistically sound, HVZK and has unpredictable commitments.

Theorem 3. Assume that the GSD problem is hard. The linkable ring signature
scheme proposed is existentially unforgeable in the ROM.

Anonymity. In order to prove anonymity for the linkable ring signature scheme,
we reduce the GSD problem to that of breaking anonymity. In this proof, we
assume that we are able to break the anonymity of the scheme, and construct
an algorithm that solves the GSD problem. However, we have to know before-
hand some non-null coordinates of the error vector, namely we assume that t/2
positions are known. This is required because we know how the algorithm that
breaks the anonymity behaves when it is given two valid public key or when
it is given two random values as public keys. However, we do not know how it
behaves when it is given one valid public key and one random value as public
key. Moreover, given a tuple (H, s,G, r, t), we do not know if this represents a
valid public key of the cryptosystem or if it is a random tuple. However, if we
know part of the secret, we are able to construct another tuple (H, s′,G, r′, t)
that is a GSD tuple if (H, s,G, r, t) is a GSD tuple or that is a random tuple if
(H, s,G, r, t) is a random tuple. The fact that t/2 positions are known does not
threat the security proof since the GSD problem is still computationally hard.
We just have to increase the parameters to maintain the same level of security.

Theorem 4. Assume that the GSD problem knowing t/2 positions of the error
vector is hard. The proposed linkable ring signature scheme has anonymity in
the ROM.

Non-slanderability. To argue that our proposal has the non-slanderability prop-
erty, we prove that it is infeasible for an adversary to frame another user in
the ring. That is, given a message and a signature produced by some user, it
is infeasible for an adversary to create a signature for another message that is
linked to the first one.

Theorem 5. Assume that the GSD problem is hard. The linkable ring signature
scheme is non-slanderable in the ROM.

Linkability. Linkability prevents a user from signing two messages that are not
linked. To show that the proposed linkable ring signature scheme has linkability,
we must prove that it is infeasible for an adversary with access to at most one
secret key to create signatures that are not linked.

Theorem 6. Assume that the GSD problem is hard. The linkable ring signature
scheme is linkable in the ROM.
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5 Parameters and Key Size

To conclude, we propose parameters for the scheme and analyze its signature and
key size. For the cheating probability of GStern’s protocol to be approximately
2−80, it has to be iterated 140 times. Recall that anonymity for our linkable ring
signature scheme is proven when knowing t/2 positions of the error vector. Hence,
to yield the standard security of approximately 80 bits for signature schemes
according to the best known attack [12], we consider a code with n = 1268,
k = n/2 and t = 130. Note that a code with these parameters has a security
of at least 80 bits even when knowing t/2 positions of the error vector. This is
necessary to maintain the anonymity of the scheme.

Size of the Sigma Protocol. Using a cryptographic hash function with a security
of 128 bits, each round of GStern’s protocol has approximately 2270 bits of
exchange information. Let N be the number of users in the ring. Since

(

N
1

)

-
GStern’s protocol is just the previous protocol repeated N times, then

(

N
1

)

-
GStern’s protocol has 2270N bits of exchange information in each round.

Signature Size. To estimate the size of a signature, notice that the signature is a
transcript of

(

N
1

)

-GStern’s protocol repeated 140 times plus the size of a vector
r, in order to guarantee the usual level of security for signature schemes, which
is about 80 bits of security. Hence, the signature size is approximately 317 800N
bits , where N is the number of users in the ring. In other words, the signature
size is approximately 39N kBytes. For example, for a ring with N = 100 users,
the signature size is approximately 4 MBytes.

Public Key Size. The public key of the ring is composed by (H, s1, . . . , sN ).
Therefore, the total size of the public key is approximately 803917 + 634N bits,
which is linear in the number of users in the ring. For each user, the public key
is of size 803917 + 634 bits and a secret key of size 1268 bits.

Comparison with Lattice-Based Linkable Ring Signature Schemes. The signature
size of our proposal is slightly bigger than the signature size of the schemes
in [8,30] (around 4 times bigger for the same number of users in the ring). The
public key size is roughly the same as the scheme in [8] and it is ten times bigger
than the one presented in [30], for a ring with 10 users. The secret key size of
our proposal is much smaller than both schemes [8,30] (it is 50 times smaller
than [8] and 6 times smaller than [30]).

6 Discussion and Conclusion

Linkable ring signature schemes have become important in today’s world mainly
because of their importance in e-voting schemes and in cryptocurrencies. In
this paper we presented the first code-based linkable ring signature scheme.
To achieve this, we applied the Fiat-Shamir transform to a variant of Stern’s
protocol.

A candidate for post-quantum linkable ring signature scheme can be obtained
by applying the Fiat-Shamir transform to the PQ

(

N
1

)

-GStern protocol (that is,
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the post-quantum version of Algorithm 2) in a similar way as presented in Algo-
rithm 3. It is easy to extend the the proofs of Theorem 3 (existential unforgeabil-
ity), Theorem 5 (non-slanderability) and Theorem 6 (linkability) for such ring
signature scheme in the QROM. But it is now straightforward to extend the
result of Theorem 4 (anonymity). We leave as an open problem the case where
an adversary can make queries in superposition to the random oracle, as usual
for other post-quantum signature schemes, e.g. [4,8]. Although this case was not
addressed yet by the community, it is strongly believed that there is no efficient
quantum attack on the anonymity for these schemes.

Finally, the protocol we described outputs signatures and keys which are too
long for some applications (as it is usual for code-based cryptographic schemes).
Still, we think that there is room for improvement. For example, in some appli-
cations, the public matrix H can be divided among the several users in the ring
since H is part of the public key of every user. This would reduce the key size
for each user.
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Abstract. A large number of parameterized complexity assumptions
have been introduced in the bilinear pairing setting to design novel cryp-
tosystems and an important question is whether such “q-type” assump-
tions can be replaced by some static one. Recently Ghadafi and Groth
captured several such parameterized assumptions in the pairing setting
in a family called bilinear target assumption (BTA). We apply the DéjàQ
techniques for all q-type assumptions in the BTA family. In this process,
first we formalize the notion of extended adaptive parameter-hiding prop-
erty and use it in the Chase-Meiklejohn’s DéjàQ framework to reduce
those q-type assumptions from subgroup hiding assumption in the asym-
metric composite-order pairing. In addition, we extend the BTA family
further into BTA1 and BTA2 and study the relation between different
BTA variants. We also discuss the inapplicability of DéjàQ techniques on
the q-type assumptions that belong to BTA1 or BTA2 family. We then
provide one further application of Gerbush et al.’s dual-form signature
techniques to remove the dependence on a q-type assumption for which
existing DéjàQ techniques are not applicable. This results in a variant
of Abe et al.’s structure-preserving signature with security based on a
static assumption in composite order setting.

Keywords: Bilinear target assumption · q-type assumption
DejaQ technique · Dual form signature technique

1 Introduction

Rapid development of pairing-based cryptography has witnessed an enormous
number of complexity assumptions. The thrust for new complexity assumptions
become somewhat unavoidable due to the role they play in the security reduc-
tion of many novel construction of cryptographic protocols. For example, Boneh
and Boyen [5] introduced strong Diffie-Hellman (SDH) assumption to propose a
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signature scheme in the standard model and Abe et al. [2] introduced a tailor-
made assumption (later called as q-AGHO assumption) to prove the security of
their structure preserving signature scheme.

Parameterized Assumptions. This type of non-static q-type assumptions
have been extensively used in the security argument of pairing-based protocols.
For example, the q-SDH assumption and its variants q-hidden SDH (HSDH), q-
asymmetric hidden SDH (ADHSDH), (q, �)-Poly-SDH, q-2 variable SDH (2SDH)
are used in various signature schemes [5,8,16,27]. The parameter q is typically
related to the number of (signing) oracle queries given to the adversary in the
security game. However, parameterized assumptions do have some implication
on concrete security and may require larger size for the underlying groups. Also
it is observed that the parameterized assumption becomes stronger as these
parameters grow. In particular Cheon [15] proved that for q-SDH assumption,
the secret information (say x) can be recovered using O(

√
p/q) group operations,

where p is the underlying group order. Jao and Yoshida [24] proved that q-SDH
assumption is equivalent to Boneh-Boyen signature and also showed that given
access to a sufficient number of signing oracle queries, an adversary can recover
the secret signing key much faster than solving the discrete log problem. Hence,
it’s relevant to investigate whether for a particular cryptosystem one can remove
the dependency on parameterized assumption. Two prominent approaches in this
direction are DéjàQ [11,12] and dual-form signature techniques [19].

BTA. Boneh, Boyen and Goh [6] introduced the Uber assumption family which
captures many complexity assumptions under it. Boyen [9] informally suggested
to extend the Uber assumption family to those assumptions with (a) flexible
challenge terms, (b) rational polynomial exponents in both problem instance
and challenge terms, (c) composite-order group of known or unknown factoriza-
tion. Recently, Ghadafi and Groth [22] focused on the first two points above in
the context of non-interactive computational assumptions. In the bilinear pair-
ing setting, they formulated the bilinear target assumption (BTA) family. In the
BTA family, the exponent of both problem instance and challenge terms are rep-
resented using rational polynomials and all the polynomial coefficients are given
explicitly as Zp elements, where p is the group order. The challenge terms are
determined by the adversary’s input, whose exponents are represented as coeffi-
cients of a rational polynomial. However there are many tailor-made assumptions
that are not captured by this BTA family. Some examples are (q, �)-Poly-SDH
[8], q-AGHO [2], q-simultaneous flexible pairing (SFP) [1] etc.

In this work we focus on q-type assumptions that belong to BTA family for
which no reduction is known from subgroup hiding (SGH) assumption. Examples
of such assumptions are generalized q-co-SDH [17] and Boneh-Boyen computa-
tional Diffie-Hellman (BB-CDH) assumption [3].

DéjàQ. Our main approach is to use the DéjàQ framework. The seminal work
of Chase and Meiklejohn [12] showed that certain parameterized assumptions
are implied by SGH assumption in the asymmetric composite-order pairing. In
particular, they gave a reduction from SGH to certain q-type assumptions such
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as decisional q-type assumptions which are one sided (for example, exponent
q-SDH assumption) and computational q-type assumptions which are two sided
(q-Diffie-Hellman inversion assumption). Also they gave a reduction for q-SDH
from SGH assumption, which is having flexible challenge term. However they
were not able to give a reduction for those q-type assumptions where challenge
terms belong to the target group GT in the bilinear pairing setting (for example,
q-DDHE assumption). This is solved by Chase et al.’s [11] extended framework.
Their technique treats the generators of different groups using separate ways in
the asymmetric composite-order pairing. In particular separate generators are
used to answer separate types of queries and because of the access to additional
randomness, these generators are indistinguishable by the bounded adversary.
In 2015, Wee [29] came up with similar approach at protocol level instead of
assumption level, but in the symmetric composite-order pairing setting.

Dual-Form Signatures. Our second approach for removing dependence on
parameterized assumption is to utilize Gerbush et al.’s [19] dual-form signature
techniques. For example, we consider the Abe et al.’s structure-preserving signa-
ture scheme [2] which is used as a building block in other cryptosystems [20,21].
The security of Abe et al.’s structure-preserving signature is proved under q-
AGHO assumption. We observe that the existing DéjàQ technique is not appli-
cable to reduce this q-AGHO assumption to SGH assumption. Hence we con-
struct a dual-form of Abe et al.’s structure-preserving signature scheme and
prove its security under SGH assumption. The dual-form signature technique
may change the scheme construction slightly from the original, as it introduces
some additional randomness in the construction to argue security based on static
assumption. For example, in the full version of this paper [13], we construct the
dual-form of Boyen-Waters [10] group signature scheme under static assumption
instead of the originally used q-HSDH assumption.

1.1 Our Contribution

1. We extend the BTA family further (in Sect. 3.2) to capture the assumptions
(q, �)-Poly-SDH, q-AGHO, q-SFP and q-HSDH, which are not covered under
BTA family [22]. Also we investigate the relation among these new variants
in Sect. 3.3.

2. We formalize the extended adaptive parameter-hiding property (in Sect. 4.1).
Then we use it in the Chase-Meiklejohn’s DéjàQ framework to give a reduction
from subgroup hiding assumption to all the q-type assumptions that belong
to BTA family (in Sect. 4.2). As a consequence, we can prove the security
of Fuchsbauer et al.’s set commitment scheme [17] under subgroup hiding
assumption, instead of generalized q-co-SDH and q-co-DL assumptions used
in the original proof.

3. We construct the dual-form variant of Abe et al.’s structure-preserving sig-
nature scheme in Sect. 5.1 whose security is proved under subgroup hiding
assumption instead of q-AGHO assumption. Similarly, in the full version [13],
we construct the dual-form variant of Boyen-Waters group signature scheme
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whose security is proved under subgroup hiding assumption instead of q-
HSDH assumption.

2 Preliminaries

2.1 Notation

Let X denote the vector representation of m monomials (X1, . . . , Xm). Let
q(X) =

∑
ak1,...,km

Xk1
1 · · · Xkm

m be the multivariate polynomial of degree d ≥ 0
with m variables, where the summation is taken over all ki ∈ [0, d] such
that

∑m
i=1 ki ≤ d. The polynomial q(X) is represented using the coefficients

(ak1,...,km
) ki∈[0,d]∑

i ki≤d

. We denote q(x) to be the polynomial q(X) which is evalu-

ated at X = x, for x ∈ Z
m
p , for some prime p. We also denote x

$← G to be the
element x which is chosen uniformly at random from the group G. Similarly, for
any randomized algorithm A, y

$← A(x) denotes the algorithm A which takes the
value x from the appropriate domain and outputs y uniformly at random. For
any function f , f.D denotes the domain of f . For any n ∈ N, we denote [1, n] to
be the collection of all natural numbers that lies between 1 and n. Throughout
this paper, λ denotes the security parameter.

2.2 Definitions

We first begin by recalling the definition of a bilinear group generator from [12].

Definition 1. A bilinear group generator G is a probabilistic polynomial time
(PPT) algorithm which takes the security parameter λ as input and outputs
(N,G,H,GT , e, μ), where N is either prime or composite, G, H and GT are
the groups such that |G| = |H| = k1N and |GT | = k2N for k1, k2 ∈ N, all the
elements of G,H,GT are of order atmost N and e : G × H −→ GT is a bilinear
map and it satisfies, (i) Bilinearity: For all g, g′ ∈ G and h, h′ ∈ H, one has
e(g · g′, h · h′) = e(g, h) · e(g, h′) · e(g′, h) · e(g′, h′), (ii) Non degeneracy: If a
fixed g ∈ G satisfies e(g, h) = 1 for all h ∈ H, then g = 1 and similarly for
elements of H and (iii) Computability: The map e is efficiently computable. The
additional information μ is optional and defined as follows. Whenever G and
H are prime-order cyclic groups, then μ contains their respective generators g
and h. Whenever the groups G and H are decomposed into its cyclic subgroups
G1, . . . , Gn and H1, . . . , Hn respectively, then μ contains the description of these
subgroups and/or their generators.

The bilinear group generator G is said to be composite-order (resp. prime-
order), if N is composite (resp. prime). In this paper we use both prime-order
and composite-order bilinear group generator simultaneously. Hence for ease
of readability, we use the following notation to differentiate between these two
settings. In the prime-order setting, we denote G1 = G, G2 = H, GT = GT and
we could obtain only trivial subgroups, hence μ contains the generators g and h of
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the respective groups G1 and G2. In the composite-order setting, we decompose
the groups G ∼= G1 ⊕ . . . ⊕ Gn and H ∼= H1 ⊕ . . . ⊕ Hn for N = p1 . . . pn with
μ containing required subgroup information i.e., μ contains {gi, hi}n

i=1, where gi

(resp. hi) is the generator of the subgroup Gi (resp. Hi).
Now we define the subgroup hiding assumption in the composite-order pairing

setting and one can see that it is equivalent to the definition given by [12].

Definition 2. Consider a composite-order bilinear group generator G which
takes λ as input and outputs (N,G,H, GT , e, μ). G is said to satisfy the sub-
group hiding assumption in G for subgroup G1 with respect to μ, if for every PPT
adversary A the following advantage is negligible in the security parameters,

AdvSGHG

A =
∣
∣Pr[A(N,G, x, μ) = 1 : x ∈ G] − Pr[A(N,G, x, μ) = 1 : x ∈ G1]

∣
∣

where g1 ∈ μ. Similarly we can define the subgroup hiding (SGH) assumption in
H.

From the above definition it is clear that the choice of μ might make the subgroup
hiding easy. In the above definition, if μ contains h2 then one can easily decide
whether the given element x is from the subgroup G1 or from the group G, by
checking e(x, h2)

?= 1. Without loss of generality we assume that μ does not
contain such elements which make the SGH easy.

In this paper we will be using several computational parameterized (q-type)
assumptions which are given in the full version [13].

3 Bilinear Target Assumption and Its Extension

Boneh et al. [6] introduced Uber assumption (we call it classical Uber) and
argued its security in the generic group model. However Boyen [9, Sect. 6] infor-
mally suggested to capture the Uber assumptions which have (a) challenge terms
with adversary’s input and (b) rational polynomial representation in the expo-
nent. In 2017, Ghadafi and Groth [22] formalized an assumption family which
captures the above features in both cyclic group setting and in the bilinear group
setting of prime-order. The first assumption type is said to be target assumption
family. Whereas the second type is known as bilinear target assumption (BTA)
family and here we focus on this assumption family.

In this section we recall the definition of BTA family [22]. We identify some
of the concrete computational assumptions which satisfy Boyen’s (a) and (b),
but will not fall under this BTA family. Hence we extend the BTA definition to
capture such computational assumptions. We also look at the possible relation
among the BTA family and its extension.

First, we fix some notation which will be used in this section. Let us denote
the generator of the groups G1, G2 and GT by [1]1, [1]2 and [1]T respectively.
Hence [a]1 denote the group element having discrete logarithm of a with respect
to its generator [1]1 in G1. Similarly we denote [a]2 (resp. [a]T ) for the group
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element in G2 (resp. GT ). The group operation [a]1 · [b]1 is denoted as [a+ b]1 in
G1. For the other groups G2 and GT , we follow the similar notation. The pairing
operation is denoted as e([a]1, [b]2) = [ab]T .

3.1 Definition

We fix some notation to define the BTA assumption. As we know that the BTA
is a family of computational assumptions which are defined in the cyclic group of
prime order p. Hence any group element can be written as its discrete logarithm
value exponentiated with a fixed random generator of that group. Ghadafi and
Groth [22] represented those exponent values using some multivariate rational
polynomials of bounded degree. Let X be the indeterminate with m variables
and a(X), b(X) denote the multivariate polynomials of degree d ≥ 0 over Zp.
For randomly chosen x from Z

m
p such that b(x) 	= 0, we denote

[a(x)
b(x)

]
j

be the
group element from Gj having exponent which is represented using the rational
polynomial a(X )

b(X ) evaluated at X = x, for j ∈ {1, 2, T}. Since the polynomials
are represented using the coefficients, we denote that [a(X)]i (resp. [b(X)]i) be
the coefficient representation of the polynomial a(X) (resp. b(X)) in the group
Gi, for i, j ∈ {1, 2, T}.

In the BTA assumption [22] exponent of both problem instance and challenge
term are represented using rational polynomials and all the polynomial coeffi-
cients are given explicitly as Zp elements. More formally we define as follows.

Assumption 1 BTA. Let Θ = (p, G1, G2, GT , e) be the output of a bilinear
group generator G on the input λ. For ι ∈ {1, 2, T}, G is said to satisfy bilinear
target assumption [22] in Gι, if for every PPT adversary A, the advantage as

defined below. Let Adv
BTAGι

A := Pr[A(Γ ) $→ Δ : Δ satisfies cond 1] and it is
negligible in the security parameters, where the problem instance Γ is defined as

Γ =

(

Θ,

{{[
a
(j)
i (x)

b
(j)
i (x)

]

j

,
a
(j)
i (X)

b
(j)
i (X)

}nj

i=1

}

j∈{1,2,T}
, pub

)

and the challenge term Δ is defined as

Δ =
([r(x)

s(x)

]

ι
, r(X), s(X), sol

)
.

The condition cond 1 is defined as,

r(X)
∏nι

i=1
b
(ι)
i (X) /∈ Span

({
s(X)a(ι)

i (X)
∏

l �=i
b
(ι)
l (X)

}nι

i=1

)
. (1)

The condition from Eq. 1 is used to avoid the trivial attacks due to generic
group operations. The above defined BTA assumption is parameterized with
(d,m, n1, n2, nT ), where d denotes the degree of polynomials (from both problem
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instance and challenge terms1) and m denotes the number of indeterminates in
X and for j ∈ {1, 2, T}, nj denotes the total number of elements from Gj

which are present in the problem instance. Once the parameter is clear from
the context, for simplicity we ignore this parameter. In the above definition, pub
contains all the coefficients of the polynomials presented in the problem instance
and sol contains some additional information in order to validate the challenge
term. The secret vector x that is used in the assumption should not be given
explicitly as part of the problem instance.

Example 1. We recall the generalized q-co-SDH problem [17] defined in Table 1
of [13]: given the instance

({
[1]j,

{
[xi]j

}q

i=1

}2
j=1

)
compute

(
r(X), s(X),

[ r(x)
s(x)

]
1

)

such that 0 ≤ deg r(X) < deg s(X) ≤ q. Note that this assumption is same
as q-bilinear simple fractional assumption (BSFrac) [22] defined in G1. We rep-
resent the exponent values as a polynomial in X which is evaluated at X = x.
Hardness of this problem ensures that the challenge term satisfies Eq. 1. Thus
the generalized q-co-SDH assumption belongs to BTA family with d = q, m = 1,
n1 = n2 = q + 1, nT = 0. �

Similarly it is easy to check that the assumptions such as q-Diffie-Hellman
inversion (DHI), q-Diffie-Hellman exponent (DHE) q-modified SDH (mSDH), q-
modified double SDH (mDSDH) and BB-CDH (see Table 1 of [13]) are examples
for BTA family, since all the polynomial coefficients of both problem instance
and challenge term are given explicitly.

3.2 BTA Extension

Recall that in the BTA definition all the polynomial coefficients in both prob-
lem instance and challenge term are given explicitly. However there are many
assumptions in which not all the polynomial coefficients from problem instance
and challenge terms are given explicitly. Some examples of such assumptions are
q-HSDH, q-SFP, q-Triple Diffie-Hellman (TDH), q-simultaneous pairing (SP).
See the complete list of such assumptions in Table 1 of [13].

Before defining the variants of BTA we observe that we could extend Ghadafi
and Groth’s BTA definition by including more number of challenge terms, in
particular polynomial number of terms. However one can see that this extension
is equivalent to the original BTA assumption.

First we motivate the definition of BTA1 with a concrete assumption. Recall
that, Abe et al. [2] defined a variant of q-AGHO assumption (see Table 1 of [13]).

Example 2. We recall the q-AGHO′ problem defined in Table 1 of [13]: given(
[1]1, [1]2, [w]2, [x]2, [y]2,

{
[x−aiw−riy]1, [ai]1, [ri]1, [a−1

i ]2
}q

i=1

)
compute

(
[x−

1 For BTA in GT , the degree of the challenge term polynomials are bounded by 2d,
as given the d degree polynomials in both source groups, one can use the pairing to
compute the product of these polynomials in GT .
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a∗w − r∗y]1, [a∗]1, [r∗]1, [(a∗)−1]2
)
. As in Example 1, the exponent values are

represented using polynomials in W , X and Y which are evaluated at W = w,
X = x and Y = y. The exponent values such as ai, ri from the instance and
a∗, r∗ from the challenge terms are the coefficients of the polynomials. In this
assumption, none of the polynomial coefficients are given explicitly rather given
as the exponent of the source group element. Here the parameters can be computed
with d = 1, m = 3, n1 = 3q +1, n2 = q +4, nc1 = 3, nc2 = 1 and nT = ncT

= 0,
where ncj

denotes the total number of challenge terms in Gj, for j ∈ {1, 2, T}.
�

From the above example, we define a new family of BTA variant called BTA1,
in which not all the polynomial coefficients in both problem instance and chal-
lenge terms are given explicitly, rather given in the exponent of some source
group element. In this paper we focus on the BTA1 family defined only in the
source groups, since all the known instances of the parameterized assumptions
described in Table 1 of [13] are defined in the source groups.

Assumption 2 BTA1. Let Θ = (p, G1, G2, GT , e) $← G(λ). For ι ∈ [1, 2], G
is said to satisfy bilinear target assumption-1 (BTA1) in Gι, if for every PPT
adversary A, the advantage as defined below. Let

Adv
BTA1Gι

A := Pr[A(Γ ) $→ Δ : Δ satisfies either cond 2 or cond 3]

and it is negligible in λ, where

Γ =

(

Θ,

{{[
a
(j)
i (x)

b
(j)
i (x)

]

j

,
({[

a
(j)
i (X)

]

ja

}2

ja=1
or a

(j)
i (X)

)
,

({[
b
(j)
i (X)

]

jb

}2

jb=1
or b

(j)
i (X)

)}nj

i=1

}

j∈{1,2,T}
, pub

)

,

Δ =

({[
r
(ι)
t (x)

s
(ι)
t (x)

]

ι

,
({[

r
(ι)
t (X)

]

ιr

}2

ιr=1
or r

(ι)
t (X)

)
,

({[
s
(ι)
t (X)

]

ιs

}2

ιs=1
or s

(ι)
t (X)

)}ncι

t=1

, sol

)

.

The condition cond 2 states that, there exists t ∈ [1, ncι
] with atleast one of the

following condition should satisfy, either
[
r
(ι)
t (X)

]
ι
or
[
s
(ι)
t (X)

]
ι
or
[

r
(ι)
t (X )

s
(ι)
t (X )

]

ι

/∈ Span
({[

a
(ι)
i (X)

b
(ι)
i (X)

]

ι

}nι

i=1

,
{[

a
(ι1)
i1

(X)
]

ι
,
[
b
(ι2)
i2

(X)
]

ι

}
ι1,ι2∈{1,2}

i1,i2∈[1,n1]∪[1,n2]

)
. (2)
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Also the condition cond 3 states that, for ς = 3 − ι, either
[
r
(ς)
t (X)

]
ς

or
[
s
(ς)
t (X)

]
ς

/∈ Span
({[

a
(ς)
i (X)

b
(ς)
i (X)

]

ς

}nς

i=1

,
{[

a
(ι1)
i1

(X)
]

ς
,
[
b
(ι2)
i2

(X)
]

ς

}
ι1,ι2∈{1,2}

i1,i2∈[1,n1]∪[1,n2]

)
. (3)

The above defined BTA1 family is parameterized with (d,m, n1, n2, nT , nc1 , nc2 ,
ncT

), where ncj
denotes the total number of challenge terms from Gj , for

j ∈ {1, 2, T} and the remaining parameters are defined as in BTA family. The
condition from Eqs. 2 and 3 are used to avoid the trivial attacks due to generic
group operation. As some of the challenge terms are given in the exponent instead
of as Zp element, this will be more flexible to mount some trivial attacks due to
generic group operations. As a concrete example, we explain this attack for the
variant of q-SDH assumption described in the following remark.

Remark 1. We consider the q-2SDHS problem [27]: given
({

[1]j , [x]j , [y]j
}2

j=1
,

{
[ai]1, [ai]2, bi,

[
y+bi

x+ai

]
j

}q

i=1

)
compute

([
y+d
x+c

]
1
, [c]1, [c]2, d

)
, for d 	= bi. As in

Example 1, we represent the exponent values as polynomials in X and Y which
are evaluated at X = x and Y = y. One can solve this problem by computing
[

y+d
x+c

]
1

= [y]1[d]1, [c]1 = [1 − x]1 and [c]2 = [1 − x]2, for d
$← Zp with d 	= bi, for

all i ∈ [1, q]. This attack is captured using cond 2 and cond 3.

From the definition of BTA1, it is easy to see that assumptions such as q-
HSDH, q-ADHSDH, q-SFP and q-AGHO (defined in Table 1 of [13]) belong to
BTA1 family, since not all the polynomial coefficients in both problem instance
and challenge terms are given explicitly.

Now consider the BB-HSDH assumption [3] in which all the polynomial coef-
ficients of the problem instance are given explicitly, whereas all the polynomial
coefficients of the challenge terms are given in the exponent of both source
groups. Thus BB-HSDH assumption will not fall under BTA1 family. This moti-
vate us to define another variant of BTA family, called BTA2. There are many
assumptions such as q-TDH, q-SP, (q, �, �′)-Pluri-SDH and (q, �)-Poly-SDH (see
Table 1 of [13]) that fall in this family.

Assumption 3 BTA2. Let Θ = (p, G1, G2, GT , e) $← G(λ). For ι ∈ [1, 2], G
is said to satisfy bilinear target assumption-2 (BTA2) in Gι, if for every PPT
adversary A, the advantage as defined below. Let

Adv
BTA2Gι

A := Pr[A(Γ ) $→ Δ : Δ satisfies either cond 2 or cond 3]

and it is negligible in λ, where

Γ =

(

Θ,

{{[
a
(j)
i (x)

b
(j)
i (x)

]

j

, a
(j)
i (X), b(j)i (X)

}nj

i=1

}

j∈{1,2,T}
, pub

)

,
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Δ =

({[
r
(ι)
t (x)

s
(ι)
t (x)

]

ι

,
({[

r
(ι)
t (X)

]

ιr

}2

ιr=1
or r

(ι)
t (X)

)
,

({[
s
(ι)
t (X)

]

ιs

}2

ιs=1
or s

(ι)
t (X)

)}ncι

t=1

, sol

)

.

The conditions for this assumption remains same as in BTA1.

Similar to BTA1, BTA2 family is parameterized with (d,m, n1, n2, nT ,
nc1 , nc2 , ncT

). Conditions cond 2 and cond 3 ensure that trivial attacks due
to generic group operation can be avoided. In order to better understand the
importance of the conditions cond 2 and cond 3, consider the following problem.
Given

({
[1]j , [x]j

}2
j=1

,
{[

1
x+ai

]
1
, ai

}q

i=1

)
whether we can compute the challenge

terms (
[

1
x+a

]
1
, [a]1, [a]2) or not. Similar to Remark 1, one can solve this problem

using generic group operation.
Also we observe that there are assumptions in which challenge terms do not

output all the polynomial coefficients even in the exponent of a group element.
As a concrete example we describe the (q, �)-Poly-SDH assumption [8] and we
show that it belongs to BTA2 family.

Example 3. Refer to the (q, �)-Poly-SDH problem defined in [13]: given the
instance

(
[1]1, [1]2,

{
[xi]1, [xi]2

}�

i=1
,
{
[ 1
xi+cij

]1, cij

}�,q

i,j=1

)
compute

({
[ γi

xi+ci
]1,

ci

}�

i=1

)
such that

∑�
i=1 γi = 1. As similar to previous examples, the exponent

values which are having terms like xi are represented as polynomials in {Xi}�
i=1

that are evaluated at Xi = xi and all the remaining exponent values are the coef-
ficients of the polynomials. In this assumption, none of the numerator’s polyno-
mial coefficients of the challenge terms (i.e., γi) are given explicitly. However
the condition

∑�
i=1 γi = 1 is included as part of sol, which ensure the well-

formedness of the challenge terms by
∏�

i=1 e
([

γi

xi+ci

]
1
, [xi]2[ci]2

) ?= e([1]1, [1]2).
The hardness of this assumption [8] requires that it also satisfy the Eqs. 2 and 3.
Thus (q, �)-Poly-SDH assumption belongs to BTA2 family. �

3.3 Relation Among BTA Variants

We briefly discuss the relation among newly defined variants of BTA assump-
tion. Since BTA is a family of assumptions, Ghadafi and Groth [22] used the
following notion to prove the reduction between two families F1 and F2. For
any assumption P1 in F1, there exists an assumption P2 in F2 such that P2

implies P1, which ensures that the assumption family F2 reduces to F1. Using
this reduction, we prove that the assumptions in BTA2 family could be a pos-
sible candidate Uber assumption as compared to the assumptions in BTA and
BTA1 families. We emphasize that while describing BTA and its variants we use
both assumption and family interchangeably.
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Lemma 1. (i) For any (d,m, n1, n2, nT )-BTA assumption, there exists
(d,m, n1, n2, nT , nc1 , nc2 , ncT

)-BTA2 assumption such that BTA2 implies BTA.
(ii) For any (d,m, n1, n2, nT , nc1 , nc2 , ncT

)-BTA1 assumption, there exists
(d,m, n1, n2, nT , nc1 , nc2 , ncT

)-BTA2 assumption such that BTA2 implies BTA1.

Proof of this lemma can be found in the full version [13].
However it’s still an open problem whether such implications will also hold

in the other directions. The source of the difficulty for proving that BTA is
reducible to BTA1 and BTA is reducible to BTA2 (resp. BTA1 is reducible to
BTA and BTA1 is reducible to BTA2) is computing the discrete logarithm for
the challenge terms (resp. problem instance) in the appropriate groups.

4 BTA in DéjàQ Framework

In this section we prove that subgroup hiding implies all the q-type assump-
tions that belong to bilinear target assumption (BTA) family. Recall that Chase-
Meiklejohn’s [12] DéjàQ framework ensures the reduction from SGH to q-SDH
and q-generalized Diffie-Hellman exponent (q-GDHE) assumptions. However
they did not consider the assumptions such as generalized q-co-SDH, q-mDSDH
and BB-CDH. We notice that generalized q-co-SDH assumption was used to
prove the security of Fuchsbauer et al.’s set commitment scheme [17]. To the
best of our knowledge no prior work proved that generalized q-co-SDH assump-
tion is implied by SGH assumption. Hence it is worth investigating whether SGH
assumption implies the parameterized assumptions that belong to BTA family.

First we formalize the extended adaptive parameter-hiding property and use
this property in Chase-Meiklejohn’s DéjàQ techniques [12]. We also discuss the
apparent inapplicability of the existing DéjàQ techniques for the concrete q-type
assumptions that fall in either BTA1 or BTA2 family.

4.1 Extended Adaptive Parameter-Hiding Property

Parameter-hiding [25] is a property which ensures that the elements in one sub-
group do not reveal anything about related elements in other subgroups. Chinese
Remainder Theorem (CRT) ensures the same in the composite-order pairing set-
ting. Lewko [25] informally used parameter-hiding property to convert Lewko-
Waters IBE scheme from composite-order to prime-order pairing. In 2014, Chase
and Meiklejohn [12] defined parameter-hiding property for any polynomial func-
tion in the composite-order setting and used it to prove SGH implies decisional
q-type assumption which are one-sided,2 such as exponent q-SDH assumption
[30]. Also, they defined extended parameter-hiding property and used it to prove
SGH implies the computational q-type assumptions which are two-sided, such
as q-SDH assumption. Informally, extended parameter hiding property says that

2 We say that the BTA assumption defined in the asymmetric pairing setting is one-
sided, if the secret vector x associated with the polynomial representation occurs in
exactly one of the source groups. Otherwise we say that the assumption is two-sided.
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the distributions {g
f(x)
1 g

f(x)
2 } and {g

f(x)
1 g

f(x′)
2 } are identical, even if some auxil-

iary informations are given in the exponent of h1. The other definition by Chase
and Meiklejohn is the adaptive parameter-hiding property. Informally, this prop-
erty ensures that any unbounded adversary who makes only polynomial number
of queries cannot statistically distinguish between the distributions {g

f(x)
1 g

f(x)
2 }

and {g
f(x)
1 g

f ′(x)
2 }, for any f, f ′ from the family of functions F . In particular,

they have used this property for rational polynomial function of the form 1
x+c

with c being chosen by the adversary.
Now we consider the computational q-type assumptions that belong to BTA

family which are two-sided in which all the polynomial coefficients of the chal-
lenge terms are chosen by the adversary. Hence it is natural to use the adap-
tive parameter-hiding property along with some auxiliary information. We note
that this idea has been already noted by Chase and Meiklejohn [12, footnote 2]
to prove SGH implies q-SDH assumption. Similarly we can use the adaptive
parameter-hiding property for the computational q-type assumptions which are
one-sided. Now we formally define the extended adaptive parameter-hiding prop-
erty for any function as follows.

Definition 3. Let G be a bilinear group generator and functions f, f ′ are chosen
at random from a family of functions F . Let Aux denote the auxiliary informa-
tion. Let O(·) be the oracle that returns g

f(·)
1 g

f(·)
2 if the input is in the domain f.D

and 1 otherwise. Similarly, let O′(·) be the oracle that returns g
f(·)
1 g

f ′(·)
2 if the

input is in the domain f.D ∩f ′.D and 1 otherwise. Let Θ = (N,G,H,GT , e, μ) $←
G(λ),3 where μ = {g1, g2}, g1 ∈ G1, g2 ∈ G2 and G ∼= G1 ⊕ G2. We say that
G satisfies extended adaptive parameter-hiding with respect to F and Aux, if the
oracles O and O′ are statistically indistinguishable and if they are given with aux-
iliary information Aux and queried polynomially many times. In other words, for
any unbounded adversary A that makes poly(λ) queries, there exists a negligible
function ν(·) such that

∣∣Pr[f $← F : AO(·)(Θ,Aux) = 1] − Pr[f, f ′ $← F : AO′(·)(Θ,Aux) = 1]
∣∣ < ν(·).

We emphasize that the above definition is applicable for any function, in par-
ticular it can be applied for rational polynomial functions in the following way.
Consider the functions f and f ′ which take rational polynomial coefficients as
input and evaluate on some random vectors x and x′ from Z

m
N , i.e., the function f

is defined as f(r(X), s(X)) := r(x)
s(x) and f ′ is defined as f ′(r(X), s(X)) := r(x′)

s(x′) ,
where r(X) and s(X) denote the coefficient representation of the polynomi-
als of degree d (defined over ZN ) with m many monomials. We know that in
the BTA family, given the instance, adversary chooses some random coefficients
which determine the challenge term. Hence we can apply the extended adaptive
parameter-hiding property for this rational polynomials. Also we consider the

3 Even if N = p1 . . . pn, we decompose G using two of its subgroups G1 and G2 such
that G1 (resp. G2) is a subgroup of order p1 . . . pn−1 (resp. pn).
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auxiliary information as Aux = {h
ζ(j)(x)
1 }j=2,T for BTA assumption defined in

G, where ζ(j)(x) ∈
{

a
(j)
i (x)

b
(j)
i (x)

}nj

i=1
.

4.2 SGH Implies BTA

In this section we prove that all the q-type assumptions that belong to BTA
family defined in composite-order pairing setting can be reduced from SGH
assumption. This reduction uses the extended adaptive parameter-hiding prop-
erty (Definition 3). As mentioned earlier, instead of polynomial function of the
form f(X), we apply this property for rational polynomial function of the form
f1(X )
f2(X ) .

For the q-type assumption that belongs to BTA family, it is guaranteed from
the BTA definition that atleast one of the parameter from {n1, n2, nT } can be
written as some function of q, where q = poly(λ). Now we consider the BTA
assumption defined in G. As a concrete example, we consider generalized q-
co-SDH assumption described in Example 1 that belongs to BTA family with
n1 = n2 = q + 1 and nT = 0. Now, without loss of generality, it is sufficient
to consider the BTA assumption defined in G with n1 being expressed as some
function of q. For the BTA assumption with n2 being expressed as some function
of q can be handled as follows. Consider a BTA problem instance (say P1) defined
in G where n1 and nT are some constants but n2 is expressed as some function
of q (say n2(q)). First one can construct a stronger problem (say P2) from P1

by including all its n2(q) many exponents of H component to the exponent of
G. Then we can apply our DéjàQ framework on P2 assumption. This guarantees
that SGH is reducible to P1 via P2 assumption. Similarly we can handle the
BTA assumption with nT being some function of q.

Now we proceed with Chase-Meiklejohn’s DéjàQ framework along with
extended adaptive parameter-hiding property on BTA assumption with n1 being
expressed as some function of q. First we define a variant of BTA assumption,
which will be useful while proving SGH implies BTA assumption.

Assumption 4. Let Θ = (N,G,H,GT , e, μ) $← G(λ) with μ = {G1, G2}. G is
said to satisfy a variant of bilinear target assumption (vBTA) in G, if for every
PPT adversary A and for all � = poly(λ), the following advantage is negligible

in λ, AdvvBTAG

A := Pr[A(Γ ) $→ Δ],4 where

4 As similar to BTA assumption, hardness of Assumption 4 ensures that the instance
and challenge terms should satisfy certain linearly independent condition that corre-
sponds to Eq. 1. However we directly prove the hardness of Assumption 4 in Corol-
lary 1. This guarantees that the above condition automatically satisfies and hence
we do not need to explicitly state such condition here.
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Γ =

(
Θ, g1g

�∑

i=1
ri

2 , h1,

{
g

a
(1)
i

(x )

b
(1)
i

(x )

1 g

�∑

j=1
rj

a
(1)
i

(x j)

b
(1)
i

(x j)

2

}n1

i=1

,

{
h

a
(2)
i

(x )

b
(2)
i

(x )

1

}n2

i=1

,

{
e(g1, h1)

a
(T )
i

(x )

b
(T )
i

(x )

}nT

i=1

,

{{
a
(ι)
i (X)

b
(ι)
i (X)

}nι

i=1

}
ι∈{1,2,T}

, pub

)
,

for g1
$← G1, g2

$← G2 � {1} and rj
$← ZN , x,xj

$← Z
m
N , for all j ∈ [1, �] and

the output Δ is
(
g

r(x )
s(x )
1 g

�∑

j=1
rj

r(x j)
s(x j)

2 , r(X), s(X), sol
)
.

Now we prove that BTA assumption (Assumption 1) defined in G is implied
by Assumption 4 using subgroup hiding assumption and extended adaptive
parameter-hiding property.

Theorem 1. For a bilinear group generator G(λ) $→ (N,G,H,GT , e, μ), con-
sider G satisfies (d,m, n1, n2, nT ) bilinear target assumption in G. Suppose that
G satisfies the following, (i) subgroup hiding assumption for subgroup G1 with
respect to μ = {g2, h1} and for subgroup H1 with respect to μ = {g1} and (ii)
extended adaptive parameter-hiding with respect to

F =

{{
a
(1)
i (x)

b
(1)
i (x)

}n1

i=1

,
r(x)
s(x)

}

and Aux =
{
hζ
1

}

ζ∈
{{

a
(2)
i

(x )

b
(2)
i

(x )

}n2

i=1
,

{
a
(T )
i

(x )

b
(T )
i

(x )

}nT

i=1

}

for any h1 ∈ H1 and if G2 is of prime-order, then the BTA assumption is implied
by the Assumption 4.

Proof Sketch. The detailed proof can be found in the full version [13]. Here
we give the proof sketch and it uses the hybrid argument using a sequence of
games. The intuitive idea as follows, consider the BTA assumption defined over
composite-order bilinear groups, first translate all the elements from the group
of composite-order to its subgroup of order p1. Thus the elements of G and H are
shifted to subgroups G1 and H1 and this shifting goes unnoticed under subgroup
hiding in G and H respectively. Notice that the challenge term of BTA belongs
to the group G, as BTA is defined in G. Since the exponent of the group elements
are interpreted as rational polynomials that are evaluated at some secret vector
x, the translation of elements from G1 into G2 retains the same polynomial
evaluation as its shadow copy in the exponent of G2. This transition is unnoticed
under subgroup hiding in G. Now the shadow copy of the rational polynomials
that corresponds to the subgroup G2’s exponents are evaluated using different
secret vector x1 and is statistically indistinguishable to its previous state. This
transition is achieved by using the extended adaptive parameter-hiding property
defined in Definition 3. We repeat the above procedure polynomial many times
(say �) and thus prove the theorem. �
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In order to prove the hardness of Assumption 4, it is sufficient to take � to be
n1 + 2 in the following Corollary 1. This implies that SGH is reducible to BTA
assumption.

Corollary 1. For a bilinear group generator G(λ) $→ (N,G,H,GT , e, μ), G sat-
isfies (d,m, n1, n2, nT )-BTA assumption in G, if (i) N = p1 . . . pn for distinct
primes p1, . . ., pn ∈ Ω(2λ) and G satisfies the following, (ii) subgroup hiding for
subgroup G1 with respect to μ = {g2, h1} and for subgroup H1 with respect to
μ = {g1}, (iii) extended adaptive parameter-hiding with respect to class F and
Aux which are defined as in Theorem 1 and (iv) the polynomials in F are linearly
independent and have maximum degree poly(λ).

Proof. From the requirements (ii) and (iii), Theorem 1 tells us that BTA assump-
tion is implied by the Assumption 4. In order to prove this corollary, it is suffi-
cient to prove that the advantage as defined in Assumption 4 is negligible in the
security parameter. Now for the sake of simplicity we assume that g1 and x are
public. Hence adversary can compute the G1 component of any challenge term,

which boils down to computing g

∑�
j=1 rj

r(x j)
s(x j)

2 . Also note that the auxiliary infor-
mation Aux doesn’t provide any advantage in computing the above element, since
they operate on different groups with completely independent set of variables.
Consider the following matrix from the G2 component of Assumption 4,

V =

⎛

⎜⎜
⎜⎜
⎝

1 a
(1)
1 (x1)

b
(1)
1 (x1)

. . .
a(1)

n1
(x1)

b
(1)
n1 (x1)

r(x1)
s(x1)

...
...

. . .
...

...

1 a
(1)
1 (x�)

b
(1)
1 (x�)

. . .
a(1)

n1
(x�)

b
(1)
n1 (x�)

r(x�)
s(x�)

⎞

⎟⎟
⎟⎟
⎠

.

Here we set � as n1 + 2. Including the requirement (iv), [12, Lemma 4.1] ensures
that the above matrix V is nonsingular. For randomly chosen vector r from
Z

n1+2
N (it was chosen during the simulation, see the full version [13]), we define

y = r · V . Thus from this matrix relation, the first n1 + 1 elements are given
to A and his goal is to compute the last element of y. Since V is invertible and
r is chosen uniformly at random from Z

n1+2
N , then the vector y is uniformly at

random from Z
n1+2
N . In particular the last element of y is uniformly distributed.

Hence probability of computing such challenge term is negligible in the security
parameter. �
In the full version [13], we show that the SGH assumption implies all the q-type
assumptions that belong to BTA family defined in GT . From the definition of
BTA1 and BTA2, the polynomial coefficient of the challenge terms and problem
instance are not given explicitly. Hence one cannot apply the existing DéjàQ
framework. The detailed explanation can be found in the full version [13].

5 Dual-Form Signature Variants

Here we consider two protocols whose security is proved under q-type assump-
tions that belong to either BTA1 or BTA2 family. The first one is Abe et al.’s



Towards Static Assumption Based Cryptosystem in Pairing Setting 235

[2] structure-preserving signature (SPS) scheme which is proven secure under
q-AGHO assumption. We apply the dual-form signature techniques of Gerbush
et al.’s [19] to construct a dual-form SPS scheme where security is based on
some static assumption. The detailed construction is described in Sect. 5.1. The
second one is Boyen-Waters [10] group signature scheme which is secure under
q-HSDH assumption. We describe the dual-form variant of Boyen-Waters group
siganture scheme in the full version [13].

5.1 Dual-Form Abe et al.’s Structure-Preserving Signature Scheme

Structure-preserving signature (SPS) is used as a building block to construct
several cryptographic primitives such as group signature, blind signature, anony-
mous credentials etc. SPS is a special type of signature scheme where the mes-
sage, public key and signature components belong to the underlying bilinear
groups and the signature is verified using pairing product equations over the
public key, the message and the signature.

Gerbush et al. introduced dual-form signature [19] which is defined using
two signing algorithms, namely SignA and SignB that will respectively return
two forms of signature and both will verify under the same public key. The
security definition categorizes the forgeries into two types, Type I and Type
II which typically correspond to the signatures returned by SignA and SignB

respectively. See the full version [13] for the definition of dual-form signature,
structure preserving signature schemes and their security.

Informally, we directly instantiate the original Abe et al.’s SPS scheme [2]
in the asymmetric composite-order pairing and using dual-form signature tech-
niques we prove its security under static assumption. Without loss of general-
ity, in the following we assume that the signer chooses the message M from
the group G. However the same techniques can be extended for the message
vectors from either or both of the source groups G and H. Let Θ := (N =

p1p2, G,H,GT , e, μ = {g′
1, g

′
2, h

′
1}) $← G(λ), where g′

i (resp. h′
1) is a random ele-

ment from the pi-order (resp. p1-order) subgroup Gi (resp. H1) of G (resp. H)
and pairing is defined as e : G×H → GT , for i ∈ [1, 2]. We instantiate the dual-
form SPS scheme using the above mentioned bilinear group generator G. In this
construction, the public key and signatures returned by SignA algorithm reside
in the subgroup of order p1, whereas the signature returned by SignB algorithm
resides in the group of order N . The dual-form SPS scheme consists of four PPT
algorithms, which are defined as follows.

KeyGen(Θ). Choose gi (resp. h1) uniformly at random from Gi (resp. H1).
Choose w, x, y1, y2 uniformly at random from ZN and compute W = hw

1 ,X =
hx
1 , Y1 = hy1

1 and Y2 = hy2
1 . Return the secret key SK = (w, x, y1, y2, g2) and

public key PK = (g1, h1,W,X, Y1, Y2).
SignA(SK,M). Choose r (resp. a) uniformly at random from ZN (resp. Z

∗
N ).

Compute A = ga
1 , D = h

1/a
1 , B = gx−aw−ry1

1 M−y2 and R = gr
1. Return the

signature σ = (A,D,B,R) along with the message M .
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SignB(SK,M). Choose r, γ1, γ2, γ3 (resp. a) uniformly at random from ZN (resp.
Z

∗
N ). Compute A = ga

1gγ1
2 , D = h

1/a
1 , B = gx−aw−ry1

1 M−y2gγ2
2 and R = gr

1g
γ3
2 .

Return the signature σ = (A,D,B,R) along with the message M .

Verify(PK,M, σ). Parse the signature and check A,B,R
?∈ G,D

?∈ H1.5 If any
of the above checks fail to hold, then abort, else check

e(R, h1) 	= 1, e(A,D) ?= e(g1, h1)
e(B, h1)e(A,W )e(R, Y1)e(M,Y2)

?= e(g1,X).
(4)

If all the above relations hold then return accept, otherwise return reject.

The signature returned by both SignA and SignB algorithms can be verified
using Eq. 4. It is easy to check the correctness of the scheme from Eq. 4. Similar
to Abe et al.’s [2] SPS scheme, we prove the above dual-form SPS scheme is
secure in the sense of strongly unforgeable. The detailed proof can be found in
the full version [13].
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Abstract. We construct digital signatures secure in the quantum ran-
dom oracle model (QROM) under the middle-product learning with
errors problem, which is recently proposed by Roşca et al. (CRYPTO
2017) and shown by Roşca et al. (EUROCRYPT 2018) that it can be
reduced from the worst-case hardness of ideal lattice problems for a large
class of polynomial rings. The previous signatures secure under the lat-
tice problems not specified in a certain ring is based on the short integer
solution (SIS) problems for bounded-degree polynomials (Lyubashevsky,
ASIACRYPT 2016). The standard path to construct efficient signatures
secure in the QROM (Kiltz et al., EUROCRYPT 2018) requires hardness
of a decision problem, but the SIS problems for polynomial rings are not
known to have search-to-decision reductions. Our signatures are the first
efficient signatures secure in the QROM under the worst-case hardness
of ideal lattice problems for many rings.

Keywords: Lattices-based cryptography · Digital signatures
Middle-product learning with errors

1 Introduction

Lattice-based cryptography takes very much attention in the post-quantum era.
Besides that the lattice-based cryptography has resilience to quantum comput-
ers, they have many attracting features for practical use-cases. One of such fea-
tures is that breaking a lattice-based cryptosystems leads to solve the worst-case
instance of an underlying lattice problem.

Almost provably secure lattice-based cryptosystems are shown to be secure
under two problems: the short integer solution (SIS) problem of [2] and the
learning with errors (LWE) problem of [22]. Infeasibility of the both problems is
guaranteed by the worst-case hardness of a lattice problem: solving a randomly
chosen instance of these problems leads to find a short vector in any lattices
with non-negligible probability. This worst-case hardness guarantee helps us to
choose an exact secure parameter for cryptographic schemes whose security is
proven under the hardness of these problems.

The security of efficient lattice-based cryptosystems (such as [4,6,11]) are
often based on the hardness of ring- or module-LWE [17,20]. It was known that
c© Springer Nature Switzerland AG 2018
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solving a ring-LWE problem leads to approximate a short vector in ideal lat-
tices corresponding to a certain cyclotomic polynomial [20,21]. There are some
attacks [8–10] that use the structure of an underlying integer ring for the cyclo-
tomic polynomial to solve the lattice problem. In particular, Cramer et al. [10]
showed that efficient quantum algorithms can approximate a short vector with
subexponential factor in ideal lattices for cyclotomic polynomials. The module-
LWE was also known to have the worst-case hardness guarantee of a problem
over module lattices. Albrecht et al. [3] showed that the module-LWE can be
reduced to the ring-LWE for a large modulus (whose size depends on the rank
of the underlying module). Therefore, breaking a specific ideal lattice problem
for cyclotomic polynomials means that the cryptographic scheme constructed on
the hardness of the ring- or module-LWE problem may be broken by adversaries.

It may be hopeful that lattice-based cryptographic schemes meet security
guarantee not regarding to a specific polynomial rings. There are two works
that hardness of SIS- and LWE-like assumptions can be ensured under a large
class of polynomials. In the SIS-case, Lyubashevsky [19] proposed the signature
scheme whose security is proven under the Ring-SIS problem not parametrized
by a certain polynomial: the problem can be reduced from every SIS problems
in polynomial rings with some bounded degree. Also on the LWE-case, Roşca et
al. [23] showed that the middle-product LWE (MPLWE) problem can be reduced
from the polynomial LWE problems for polynomials with bounded degree and
expansion factor, where solving the polynomial LWE leads to approximate a
short vectors in ideal lattices for any modulus and many polynomial rings [21,24].
The hardness of solving the MPLWE problem is a base of the Titanium public-
key encryption [26], which is the one of NIST submissions for post-quantum
cryptography.

For security against a quantum adversary, we also need to consider the case
where a quantum adversary may execute offline cryptographic primitives such
as hash functions on arbitrary superposition. The security model that maintain
such situations is the quantum random oracle model (QROM). A standard path
to construct efficient signatures secure in the QROM is the generic transforma-
tion of [16], which showed that Fiat-Shamir transformed signatures from a lossy
identification scheme [1,15] can be secure in the quantum random oracle model.
The lossy identification is usually constructed under the hardness of a decision
problem. To construct lossy identification secure under a lattice assumption not
regarding a specific ring in the QROM, we may first consider to use the decision
variant of the Ring-SIS problem. As well as the search Ring-SIS can be reduced
from every search SIS problem for bounded degree polynomials [19], the decision
variant of that problem is reduced from every decision SIS for such polynomials.
While the search version of the SIS can be guaranteed by the worst-case hardness
of lattice problems for the polynomial ring, the decision SIS does not have any
worst-case hardness guarantee because we do not know any search-to-decision
reduction of the SIS for polynomial rings.

Therefore, the ultimate goal of achieving quantum security for lattice-based
signatures is to build the signature scheme so that its security is based on the
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worst-case hardness of ideal lattice problems for a large family of polynomial
rings in the QROM.

1.1 Our Result

In this paper, we construct digital signatures secure in the QROM under the
MPLWE problem. The MPLWE problem is recently proposed by Roşca et
al. [23], and shown that it has the worst-case hardness guarantee of ideal lattice
problems for many polynomial rings [24]. Our signatures are obtained by adapt-
ing [16]’s transformation, which is a quantumly secure variant of the Fiat-Shamir
transformation [13], to the lossy identification constructed under the MPLWE.
The resulting signature scheme from our identification scheme can be seen as
an MPLWE variant of Dilithium-QROM in [16], so the [5,11]-like compression
technique for the MPLWE setting is applied to our signatures.

2 Preliminaries

We denote the set of natural numbers by N, and the set of integers by Z. In
this paper, we use the standard interval notations: for any integers a, b ∈ Z,
the notation (a, b) (or [a, b]) means the set {x ∈ Z s.t. a < x < b} (or {x ∈
Z s.t. a ≤ x ≤ b}, respectively). For any positive integer d > 0, we abuse an
interval notation [d] to represent the set {1, 2, . . . , d}. Let S be a set and P be

a probability distribution over S. Then, a
$←− S means that a ∈ S is chosen

uniformly at random from S, and b
$←− P means that b ∈ S is sampled from P.

The notation negl(λ) represents the set of negligible functions for λ ∈ N.

2.1 Identification Schemes

A (canonical) identification scheme is a two-party three-move protocol between
a prover and verifier. The prover first sends a message w called commitment, and
the verifier chooses a uniformly random challenge c from a set C. When given a
response z from the prover, the verifier makes a deterministic decision.

Definition 1 (Canonical Identification Schemes). A (canonical) identi-
fication scheme ID is defined as the triple of the following algorithms ID :=
(IGen,P,V)

– The instance generation algorithm IGen takes as input a security parameter
λ, and outputs a public and secret key (pk, sk). Suppose that the public key pk
defines the commitment, challenge, and response set: W, C, and Z, respec-
tively.

– The prover algorithm P is split into two algorithms P = (P1,P2) where P1

takes as input secret key sk, and outputs a commitment w ∈ W and state
information st; P2 takes as input a secret key sk, commitment w ∈ W, chal-
lenge c ∈ C, and state st, and outputs a response z ∈ Z.
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– The Verifier algorithm V takes a public key pk, and transcript of the conver-
sation between the prover and verifier, (w, c, z), and outputs 1 or 0.

A transcript is a tuple of three elements (w, c, z) ∈ W ×C×Z. The transcript
(w, c, z) is valid if V(pk, w, c, z) = 1.

Definition 2 (Transcript). A transcript algorithm Tr, which takes as input a
secret key sk and outputs a honestly generated transcript (i.e., a result of real
interaction of a prover and verifier) (w, c, z) ∈ W × C × Z, is defined as

– (w, st) $←− P1(sk)

– c
$←− C

– z
$←− P2(sk, w, c, st)

– if z = ⊥ then return (⊥,⊥,⊥)
– return (w, c, z)

Correctness of the identification schemes is defined as all transcripts out-
put by Tr and not including ⊥ are valid, and ⊥ is output by Tr with smaller
probability than the given correctness error.

Definition 3 (Correctness). Identification scheme ID is εc-correct if for all
(pk, sk) ∈ IGen(1λ), the following holds

– All possible transcripts (w, c, z) satisfying z �= ⊥ are valid, namely, for all
(w, st) ∈ P1(sk), all c ∈ C, and all z ∈ P2(sk, q, c, st) with z �= ⊥, we have
V(pk, w, c, z) = 1.

– The probability that a honestly generated transcript (w, c, z) contains z = ⊥
is bounded by εc, that is,

Pr
[
z = ⊥ : (w, , c, z) $←− Tr(sk)

]
≤ εc.

No Abort Honest-Verifier Zero-Knowledge property [18] defined below is a
weak variant of honest-verifier zero-knowledge property where transcripts of the
protocol are required to be publicly simulatable, conditioned on z �= ⊥.

Definition 4 (No Abort Honest-Verifier Zero-Knowledge). A canonical
identification scheme ID is εZK-perfect naHVZK (non-abort honest-verifier zero-
knowledge) if there exist an algorithm S that given only the public key pk, outputs
(w, c, z) such that the following holds:

– The statistical distance between the distribution of (w∗, c∗, z∗) $←− S(pk) and a

real transcript (w, c, z) $←− Tr(sk) is at most εZK.
– The distribution of c∗ from the simulator S is uniformly random in C.

We define a notion of min-entropy for identification schemes, which says the
probability that the most likely value of commitments output by the prover
occurs, given an honestly-generated key pair.
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Definition 5 (Min-Entropy). We say that the identification scheme ID has
α-bits of min-entropy if

Pr
[
Hmin(w : (w, st) $←− P1(sk)) ≥ α : (pk, sk) $←− IGen(1λ)

]
≥ 1 − 2−α,

where for a probability distribution D, Hmin(w : w
$←− D) ≥ α means that the

most likely value of w chosen from D occurs with probability 2−α.

The lossy identification scheme is an identification scheme whose public key
is indistinguishable from a special key called lossy key, on which a malicious
prover cannot impersonate the verifier.

Definition 6 (Lossy Identification Schemes [1]). An identification scheme
ID = (IGen,P,V) is lossy if there exists a lossy key generation algorithm
LossyIGen that takes as input a security parameter λ and returns a lossy public
key pkls with the following properties:

– Lossy-Key Indistinguishability: The lossy key pkls is indistinguishable from
the real public key pk generated by the instance generation algorithm IGen.
The advantage of a quantum adversary A in distinguishing between the lossy
and public keys is defined by

AdvLOSSY−IND
A (λ) :=

∣∣∣∣∣∣∣

Pr
[
A(pkls) → 1 : pkls

$←− LossyIGen(1λ)
]

−Pr
[
A(pk) → 1 : (pk, sk) $←− IGen(1λ)

]

∣∣∣∣∣∣∣
.

– Lossy Soundness: The identification scheme is εls-sound if the probability that
the unbounded adversary A with the lossy key successfully impersonate in the
interaction with the honest verifier is negligible:

Pr

⎡
⎢⎢⎢⎣V(pkls, w∗, c∗, z∗) → 1 :

pkls
$←− LossyIGen(1λ);

(w∗, st) $←− A(pkls);

c∗ $←− C; z∗ $←− A(st, c∗)

⎤
⎥⎥⎥⎦ = negl(λ)

2.2 Middle-Product Learning with Errors

We present the definition of the middle-product learning with errors (MPLWE)
problem first introduced in [23]. We denote by R<k (or R<k

q ) the set of polyno-
mials of coefficients in Z (or Zq respectively) with degree at most k − 1 > 0. We
write the �∞ norm and �2 norm for a polynomial r by ‖r‖∞ and ‖r‖2, respec-
tively, and, we use S<k

α for α ∈ N to denote the set of all elements w such that
‖w‖∞ ≤ α. For a polynomial r := r0 +r1x+ · · ·+rk−1x

k−1 ∈ R<k (or r ∈ S<k),
we use the notations r = (r0, r1, . . . , rk−1) and r̄ = (rk−1, rk−2, . . . , r0). For a
vector r ∈ Rk, r[i; j] (0 < i < j < k) denotes the vector with the coefficients
from the i-th element through the j-th element of r.

The middle-product of polynomials is used to accelerate computation in poly-
nomial rings [14,25]. Here we introduce the middle-product of two polynomials.
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Definition 7 (Middle-Product). Let da, db, d, k be integers such that da+db−
1 = d + 2k. The middle product 
d : R<da × R<db → R<d is the following map:

(a, b) �→ a 
d b =
⌊

a · b mod xk+d

xk

⌋
.

We use the notation 
d for every da, db such that da +db −1−d is non-negative
and even.

The middle-product can instead be represented by a product between a
Toeplitz matrix and vector, which can be computed in quasi-linear time.

Definition 8 (Toeplitz matrix). For any d, k > 0, and a ∈ R<k, we let
Toepd,k(a) denote the matrix in Rd×(k+d−1) whose i-th row, for i = 1, . . . , d, is
given by the coefficients of xi−1 · a.

Lemma 1 (Lemma 3.2 of [23]). Let d, k > 0. Let r ∈ R<k+1, a ∈ R<k+d, and
b := r 
d a. Then

b̄ = Toepd,k+1(r) · ā.

The above representation can be re-written as the following form by an easy
deformation.

Corollary 1. Let d, k > 0. Let r ∈ R<k+1, a ∈ R<k+d, and b := r 
d a. Then

b = Ar̄,

where
A =

[
a[1; k + 1] ‖ a[2; k + 2] ‖ · · · ‖ a[d; k + d]

]T

For polynomials with compatible dimensions, middle-product and polynomial
product have the following property like associativity.

Lemma 2 (Lemma 3.3 of [23]). Let d, k, n > 0. For all r ∈ R<k+1, a ∈ R<n,
s ∈ R<n+d+k−1, we have r 
d (a 
d+k s) = (r · a) 
d s.

On polynomials with the same dimensions of the above lemma, we can easily
see that middle-product is partially-commutative from the commutative-property
of polynomial products.

Corollary 2. For the same r ∈ R<k+1, a ∈ R<n, s ∈ R<n+d+k−1 in Lemma 2,
we have r 
d (a 
d+k s) = a 
d (r 
d+n−1 s).

Proof. From Lemma 2, it holds that

r 
d (a 
d+k s) = (r · a) 
d s

= (a · r) 
d s

= a 
d (r 
d+n−1 s).

�
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Here we define the decision variant of the MPLWE problem [23], which is
the problem to distinguish elements sampled from the MPLWE distribution and
uniform distribution. The decision MPLWE assumption states that the MPLWE
problem is infeasible for any efficient (classical or quantum) adversary.

Definition 9 (MPLWE Distribution). Let n, d > 0, q ≥ 2, and χ be a distribu-
tion over Z. For s ∈ R<n+d−1

q , we define the distribution MPLWEq,n,d,χ(s) over

R<n
q × R<d

q as the one obtained by: sample a
$←− R<n

q , e
$←− χ<d, and returning

(a, b := a 
d s + e).

Definition 10 ((Decision) MPLWE Problem). Let n, d > 0, q ≥ 2, and χ
be a distribution over R<d. The (decision) MPLWEn,d,q,χ problem consists in
distinguishing between arbitrary many samples from MPLWEn,d,q,χ(s) and the
same number of samples from the uniform distribution over R<n

q × R<d
q . For an

adversary A, the advantage of A for the MPLWEn,d,q,χ(s) problem is defined as

Adv
MPLWEn,d,q,χ

A (λ) :=

∣∣∣∣∣∣∣

Pr
[
1 ← A(a, t) : (a, t) $←− MPLWEn,d,q,χ(s)

]

− Pr
[
1 ← A(a, t) : (a, t) $←− R<n

q × R<d
q

]

∣∣∣∣∣∣∣
,

where the probabilities are taken over s
$←− χ and randomness of the adversary.

The MPLWEn,d,q,χ assumption states that for any PPT algorithm it is infeasible
to solve the MPLWEn,d,q,χ problem, namely AdvMPLWE

A (λ) = negl(λ).

The MPLWE problem can be reduced from the polynomial LWE problem for
polynomials with bounded degree and expansion factor, and the polynomial LWE
problem is known to be reducible from the worst-case hardness of approximating
short vectors on ideal lattices [24]. To ready for introducing the reduction to the
MPLWE problem, we now define the polynomial LWE problem and the expansion
factor of polynomials.

Definition 11 (Polynomial LWE Problem PLWE). Let q > 0 and f be a
polynomial of degree n > 0. Let R := Z[x]/(f) and Rq := R/qR be polynomial
rings, and χ be a distribution over R. The PLWE(f)

q,χ problem is to distinguish the
following two distribution:

– Sample a
$←− Rq, s

$←− Rq, and e
$←− χ, and output (a, b := as + e) ∈ R2

q,

– Sample uniformly random elements (a, b) $←− R2
q.

Definition 12 (Expansion Factor). The expansion factor of polynomial f
with degree n is defined as maxg∈Z<2n−1[x]\{0}{‖g mod f‖∞/‖g‖∞}.

The reduction of the following theorem supports Gaussian distribution, but
we can immediately switch the distribution to some bounded uniform distri-
bution. For n, s > 0, we denote by Dn,s a Gaussian distribution over Z

n with
parameter s.
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Theorem 1 (Theorem 3.6 of [23]). Let n, d > 0, q ≥ 2, and α ∈ (0, 1).
For S > 0, we let F(S, d, n) denote the set of polynomial f ∈ Z[x] that are
monic, have constant coefficient coprime with q, have degree m ∈ [d, n] and
whose expansion factor is less than S. Then there exists a PPT reduction from
PLWE

(f)
q,Dm,α·q for any f ∈ F(S, d, n) to MPLWEq,n,d,Dd,α′·q with α′ = αdS.

3 Lossy Identification from MPLWE

In this section, we give the construction of the lossy identification scheme
IDMPLWE whose security is based on the MPLWE problem. Our identification
can be seen as an MPLWE-analogue of the identification scheme for Dilithium-
QROM [16]. The construction of the signatures obtained by applying the trans-
formation of [16] to our identification is shown in AppendixA.

3.1 Supporting Algorithms

Notations. We first give the notational definitions of special modular reductions
and a function with related to Boolean statements. For any integer r and any
even (or odd) integer α > 0, let r′ = r mod± α be the unique element r′ ∈
(−α/2, α/2] (or r′ ∈ [−(α − 1)/2, (α − 1)/2]) such that r′ ≡ r (mod α), and let
r′ = r mod+ α be the unique integer r′ ∈ [0, α) such that r′ ≡ r (mod α). Also,
we denote by [[B]] the bit that is 1 if the Boolean statement B is true, and 0
otherwise.
Algorithm Description. Here we describe the supporting algorithms used in [11]
to compress protocol messages of our identification scheme. The algorithms are
defined over the integers, but can easily be generalized to the case over polyno-
mials (or also vectors) via coefficient-wise application.

– Power2Roundq(r, d): Compute r := r mod+ q and then set r0 := r mod± 2d.
Output (r − r0)/2d.

– Decomposeq(r, α): Compute r := r mod+ q and r0 := r mod± α. If r − r0 =
q − 1 then set r1 := 0 and r0 := r0 − 1, else set r1 := (r − r0)/α. Output
(r1, r0).

– HighBitsq(r, α): Compute (r0, r1) := Decomposeq(r, α) and output r1.
– LowBitsq(r, α): Compute (r0, r1) := Decomposeq(r, α) and output r0.
– UseHintq(h, r, α): Set m := (q − 1)/α and compute (r0, r1) :=

Decomposeq(r, α). If h = 1 and r0 > 0, then output (r1 + 1) mod+ m. If
h = 1 and r0 ≤ 0, then output (r1 − 1) mod+ m.

– MakeHintq(z, r, α): Set r1 := HighBitsq(r, α) and v1 := HighBitsq(r + z, α),
and outputs [[r1 �= v1]].

The following two lemmas are useful facts that the above three supporting
algorithms UseHint, MakeHint, and HighBits satisfy.
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Lemma 3 (from [11,16]). Suppose that q and α are positive integers satisfying
q > 2α, q ≡ 1 (mod α), and α even. Let r and z be elements in R<n

q where
‖z‖∞ ≤ α/2 and let h,h′ be binary vectors. Then the HighBitsq,MakeHintq and
UseHintq algorithms satisfy the following properties:

– UseHintq(MakeHintq(z, r, α), r, α) = HighBitsq(r + z, α)
– Let v1 := UseHintq(h, r, α). Then ‖r − v1 · α‖∞ ≤ α + 1.
– For any h,h′, if UseHintq(h, r, α) = UseHintq(h′, r, α), then h = h′.

Lemma 4 (from [11,16]). If ‖s‖∞ ≤ β and ‖LowBitsq(r, α)‖∞ < α/2 − β,
then

HighBitsq(r, α) = HighBitsq(r + s, α)

3.2 Construction of IDMPLWE

Our lossy identification scheme IDMPLWE consists of the following three algo-
rithms, IDMPLWE = {IGen,P,V}. As similar with [5,11], our identification uses
uniform samplings rather than Gaussian samplings to get resilience against side-
channel analysis (e.g., [7,12]). Because of the uniform sampling, our identifica-
tion scheme equips compression mechanisms to reduce size of protocol messages
especially the response.

In the following, we use the extendable output function Sam(·), which is
modeled as a random oracle and used to expand a λ-bit random seed ρ ∈ {0, 1}λ.
Let C be the challenge set of polynomials of �∞ norm 1, and of �2 norm bounded
so that their polynomials have λ-bits of min entropy.

– Instance Generation IGen. The instance generation algorithm IGen takes as
input a security parameter λ, and sets n = n(λ), d = d(λ), k = k(λ), and

q = q(λ). The algorithm chooses a random seed ρ
$←− {0, 1}λ, and compute

a := Sam(ρ) ∈ R<n
q . It samples s1

$←− S<n+d+k−1
α and s2

$←− S<d+k
α uniformly

at random. The algorithm computes t := a 
d+k s1 + s2 ∈ R<d+k
q . Then

it generates t1 := Power2Roundq(t, δ) and t0 := t − t1 · 2δ ∈ R<d+k. The
algorithm IGen outputs sk := (ρ, s1, s2, t0) and pk := (ρ, t0, t1).

– Prover P. The prover algorithm consists of two algorithms, P = (P1,P2). The
first prover algorithm P1 takes as input a secret key sk = (ρ, s1, s2, t0). The

algorithm P1 first construct a := Sam(ρ). Then P1 samples y
$←− S<n+d+1

β ,
and computes w := a 
d y ∈ R<d

q and w1 := HighBitsq(w, 2β′). It sets state
information st := (w, y) and sends a commitment w1 to the verifier.
The second prover algorithm P2 takes as input a secret key sk = (s1, s2),
challenge c sent from the verifier, and state st = (w, y) from P1. The algorithm
computes z := c 
n+d−1 s1 + y ∈ R<n+d−1. If ‖z‖∞ ≥ γ or ‖LowBitsq(w −
c 
d s2, 2β′)‖∞ ≥ γ′ then set (z, h) := (⊥,⊥), else set h := MakeHintq(−c 
d

t0, w − c 
d s2 + c 
d t0, 2β′). Finally P2 outputs a response (z, h) to V.
– Verifier V. The verifier algorithm V accepts if ‖z‖∞ < γ and w1 =

UseHintq(h, a 
d z − c 
d t1 · 2δ), rejects otherwise.
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3.3 Proofs

We show some properties of our IDMPLWE: naHVZK property, correctness, min-
entropy of commitments, lossy-key indistinguishability and lossy soundness. The
proofs of this section are almost according to [16].

Non Abort Honest Verifier Zero-Knowledge. We show that our identification
scheme IDMPLWE is perfectly naHVZK, i.e., the probability distribution of the
output of the transcript algorithm Tr that takes as input a secret key is exactly
the same as that of the naHVZK simulator S that is given only the public key.

Lemma 5 (Non Abort Honest Verifier Zero-Knowledge). The identifi-
cation scheme IDMPLWE is perfectly naHVZK if (k + 1)α ≤ β − γ.

Proof. We first give the constructions of the algorithm Tr that outputs an hon-
estly generated transcript of our identification protocol and its simulator S:

– Tr(sk): Generate a := Sam(ρ). Sample y
$←− S<n+d−1

β uniformly at random,

compute w := a 
d y ∈ R<d
q , and w1 := HighBitsq(w, 2β′). Choose c

$←− C
at random, and compute z := c 
n+d−1 s1 + y ∈ R<n+d−1. If ‖z‖∞ ≥ γ,
then return ⊥. Also, if ‖LowBitsq(w − c 
d s2, 2β′)‖∞ ≥ γ′, then return ⊥.
Compute h := MakeHintq(−c 
d t0, w − c 
d s2 + c 
d t0, 2β′), and output
(c, (z, h)).

– S(pk): Compute a := Sam(ρ). Output ⊥ with probability 1 −
(|S<n+d−1

γ |/|S<n+d−1
β |). Sample z

$←− S<n+d−1
γ and c

$←− C uniformly at
random. Return ⊥ if ‖LowBitsq(a 
d z − c 
d t, 2β′)‖∞ ≥ γ′. Compute
h := MakeHintq(−c 
d t0, a 
d z − c 
d t + c 
d t0, 2β′), and output (c, (z, h)).

Let (s1, s2) ∈ S<n+d+k−1
α1

× S<d+k
α2

be any polynomials satisfying t = a 
d+k

s1 + s2 ∈ R<d+k
q . For any z ∈ S<n+d−1

γ and c ∈ C, it holds that

Pr
[
z = c �n+d−1 s1 + y : y

$←− S<n+d−1
β

]
= Pr

[
y = z − c �n+d−1 s1 : y

$←− S<n+d−1
β

]
.

Since we have z − c 
n+d−1 s1 ∈ S<n+d−1
β because of ‖c 
n+d−1 s1‖∞ ≤ β − γ,

it holds that

Pr
[
y = z − c 
n+d−1 s1 : y

$←− S<n+d−1
β

]
=

1∣∣∣S<n+d−1
β

∣∣∣
.

Thus every z ∈ S<n+d−1
γ occurs in an equal probability. The probability

that the algorithm Tr generates z ∈ S<n+d−1
γ and does not return ⊥ is

|S<n+d−1
γ |/|S<n+d−1

β |. Hence, Tr outputs either ⊥ except with probability
|S<n+d−1

γ |/|S<n+d−1
β |, or (c, z) is distributed uniformly over C × S<n+d−1

γ . This
is the same distribution as the outputs of the simulator S.

To conclude the prove of this lemma, we show that the final process of Tr is
the same as that of S. From Corollary 2, it holds that
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w − c 
d s2 = a 
d y − c 
d s2

= a 
d (z − c 
n+d−1 s1) − c 
d s2

= a 
d z − c 
d (a 
d+k s1) − c 
d s2

= a 
d z − c 
d t

�

Correctness. To check that well-formed transcript of our identification scheme
is accepted by the verifier V with high probability, in the following lemma, we
estimate the probability that the reject symbol ⊥ is not sent from the prover P,
and the probability that the verifier V accepts when P does not send ⊥ to V.

Lemma 6 (Correctness). If ‖c
d s2‖∞ < (k +1)α, the identification scheme
IDMPLWE is εc-correct, where

εc <

(
2γ + 1
2β + 1

)n+d−1 (
2γ′ + 1
2β′ − 1

)d

Proof. We first estimate the probability that the simulator S described in the
above outputs ⊥, since our identification scheme is perfectly naHVZK (i.e., the
distribution of protocol messages is exactly the same as that of Tr, and so is
IDMPLWE).

The probability that S does not output ⊥ before sampling z and c is

|S<n+d−1
γ |

|S<n+d−1
β | =

(
2γ + 1
2β + 1

)n+d−1

.

If we heuristically assume that for uniformly random z
$←− S<n+d−1

γ , the distri-
bution of a 
d z − c 
d t ∈ R<d

2β′ is approximately uniform, then the probability
that S outputs ⊥ in his last step is

Pr[‖LowBitsq(a 
d z − c 
d t, 2β′)‖∞ < γ′ : z
$←− S<n+d−1

γ ] <

(
2γ′ + 1
2β′ − 1

)d

.

To complete the proof of this lemma, we only show that the verification
algorithm V will always accept if (z, h) �= (⊥,⊥). Suppose that V receives (z, h) �=
(⊥,⊥). Then the check ‖z‖∞ < γ of V will always pass, since the prover always
outputs (z, h) = (⊥,⊥) if ‖z‖∞ ≥ γ. From the proof of Lemma 5, we know that

w − c 
d s2 = a 
d z − c 
d t

= a 
d z − c 
d t0 − c 
d t1 · 2δ,

so it holds that

h = MakeHintq(−c 
d t0, w − c 
d s2 + c 
d t0, 2β′)

= MakeHintq(−c 
d t0, a 
d z − c 
d t1 · 2δ, 2β′).
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By ‖c 
d t0‖∞ < β′ and Lemma 3, we have

UseHintq(h, a 
d z − c 
d t1 · 2δ, 2β′)

= HighBitsq(a 
d z − c 
d t0 − c 
d t1 · 2δ, 2β′)

= HighBitsq(w − c 
d s2, 2β′).

Since ‖c 
d s2‖∞ < (k + 1)α, and the prover always outputs (⊥,⊥) if
‖LowBitsq(w−c
ds2, 2β′)‖∞ ≥ γ′ (so we have ‖LowBitsq(w−c
ds2, 2β′)‖∞ < γ′

from supposing that the prover does not output (⊥,⊥)), by Lemma 4 it holds
that

HighBitsq(w − c 
s s2, 2β′) = HighBitsq(w, 2β′) = w1.

From the above, the verifier can correctly computes w1 = UseHintq(h, a 
d z −
c 
d t1 · 2δ, 2β′), and so accept a honest prover. �

Min-Entropy. The following lemma says that it is difficult for a malicious verifier
to guess a internal state of the prover when a commitment is given.

Lemma 7 (Min-Entropy of Commitments). If q is prime, then the iden-
tification scheme IDMPLWE has

α ≥ min
{

log
(

qd

((4β + 1)d+n−1(4β′ + 1)d)

)
, (d + n − 1) · log (2β + 1)

}

bits of min-entropy.

Proof. We first estimate the probability

p := Pr

[
∃y �= y′ ∈ S<d+n−1

β

s.t. HighBitsq(a 
d y, 2β′) = HighBitsq(a 
d y′, 2β′)
: a

$←− R<n
q

]
.

If we define (w0, w1) := Decomposeq(a 
d y, 2β′) and (w′
0, w

′
1) := Decomposeq

(a 
d y′, 2β′), then from HighBitsq(a 
d y, 2β′) = HighBitsq(a 
d y′, 2β′), we
have a 
d y = w1 · 2β′ + w0 and a 
d y′ = w′

1 · 2β′ + w′
0 for w1 = w′

1 and
‖w0‖∞, ‖w′

0‖∞ ≤ β′. Let ŷ := y − y′ and ŵ0 := w0 − w′
0, then the above implies

a 
d ŷ = ŵ0 with ‖ŷ‖∞ < 2β and ‖ŵ0‖ < 2β′. By Corollary 1 we have

a 
d ŷ =

⎡
⎢⎢⎢⎣

ŷ1 ŷ2 · · · ŷn

ŷ2 ŷ3 · · · ŷn+1

...
ŷd ŷd+1 · · · ŷd+n−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

an

an−1

...
a1

⎤
⎥⎥⎥⎦ .

Since it holds that ai ≡ (ŵ0,i −
∑

j∈[n]\{i} aj · ŷi+n−j)/ŷn (mod q) for any i ∈ [d],
and all the ai’s are independently and identically sampled from the uniform
distribution over R<n

q , we have

Pr[a 
d ŷ = ŵ0 : a
$←− R<n

q ] <
1
qd

.



Digital Signatures from the Middle-Product LWE 251

Then it holds that

p <
∑

ŷ∈S<d+n−1
2β ,ŵ0∈R<d

2β′

Pr[a 
d ŷ = ŵ0 : a
$←− R<n

q ] <
(4β + 1)d+n−1(4β′ + 1)d

qd
.

Therefore, in the probability at most 1 − ((4β + 1)d+n−1(4β′ + 1)d/qd) over

the randomness of a
$←− R<n

q , each w occurs with the probability at most (2β +
1)−(d+n−1). �

Lossy Identification. Here we first give the construction of a lossy key generation
algorithm, which just outputs an uniformly random element in the same domain
as the public key of our lossy identification scheme.

– LossyIGen(1λ): Sample a random seed ρ
$←− {0, 1}λ, and choose t

$←− R<d+k
q

uniformly at random. Set t0 := Power2Round(t, δ) and t1 := t− t0 ·2δ. Output
a lossy key pkls := (ρ, t0, t1).

To prove that our construction IDMPLWE is a lossy identification scheme, we
show that our identification scheme IDMPLWE satisfies two properties of lossy
identifications: lossy-key indistinguishability and lossy soundness. In the follow-
ing, we prove that the lossy key is (computationally) indistinguishable from the
real public key under the MPLWE assumption.

Lemma 8 (Lossy-key Indistinguishability). Under the MPLWE assump-
tion, the identification scheme is lossy-key indistinguishable. Namely, for any
PPT adversary A1 for the lossy ID scheme IDMPLWE, there exists an PPT adver-
sary A2 for the decision MPLWE problem such that

AdvLOSSY−IND
A1

(λ) = AdvMPLWE
A2

(λ).

Proof. Since the public key of IDMPLWE is just an MPLWE instance, probability
of distinguishing an MPLWE instance from a uniformly random element is equal
to the winning probability of an adversary in the lossy-key indistinguishability
game. Particularly, it holds that

AdvLOSSY−IND
A1

(λ) = AdvMPLWE
A2

(λ).

From the MPLWE assumption, we have AdvLOSSY−IND
A (λ) = negl(λ) for any PPT

algorithm A. �

Now we prove that our identification scheme is lossy sound, namely the prob-
ability that an adversarial prover with lossy key can impersonate the verifier is
negligible in a security parameter.

Lemma 9 (Lossy Soundness). If q is prime and 2δ ≤ (4γ + 1)n−1, then the
identification scheme IDMPLWE is εls-lossy, where

εls <
(4γ + 1)d+n−1(8β′ + 5)d|C|2

qd
.
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Proof. We first formalize the lossy impersonation game where a malicious prover
only with a lossy key try to impersonate a verifier.

1. pkls := (ρ, t0, t1)
$←− LossyIGen(1λ).

2. (w1, st)
$←− A(pkls)

3. c
$←− C

4. (z, h) $←− A(st, c)
5. Return [[w1 = UseHintq(h, a 
d z − c 
d t1 · 2δ, 2β′)]] and [[‖z‖∞ < γ]]

Suppose that for some w1 ∈ R<d
q , there exist two c �= c′ ∈ C and two

(z, h), (z′, h′) ∈ S<n+d−1
γ × {0, 1} such that an unbounded adversary A that

is given c and output (z, h), (z′, h′) wins the impersonation game. Then the
following two equations holds:

w1 = UseHintq(h, a 
d z − c 
d t1 · 2δ, 2β′),

w1 = UseHintq(h, a 
d z′ − c′ 
d t1 · 2δ, 2β′).

We know from Lemma 3 that the above two equations leads

‖a 
d z − c 
d t1 · 2δ − w1 · 2β′‖∞ ≤ 2β′ + 1,

‖a 
d z′ − c′ 
d t1 · 2δ − w1 · 2β′‖∞ ≤ 2β′ + 1.

By the triangular inequality, they imply that

‖a 
d (z − z′) − (c − c′) 
d t1 · 2δ‖∞ ≤ 4β′ + 2.

Let ẑ1 := z − z′ ∈ S<n+d−1
2γ and ĉ := c − c′ ∈ [−2, 1]<k+1. Then the above

inequation can be rewritten as

a 
d ẑ1 + ẑ2 = ĉ 
d t1 · 2δ,

for some ẑ2 ∈ S<d
4β′+2.

We need to estimate the probability that the above equation is satisfied. By
taking the two cases where z1 = 0 or not, we consider the following probability
p:

p := Pr

[ ∃(z1, z2, c) ∈ S<d+n−1
2γ × S<d

4β′+2 × S<k+1\{0}
s.t. a �d z1 + z2 = c �d t1 · 2δ

:
a

$←− R<n
q ; t

$←− R<d+k
q ;

t1 := Power2Roundq(t, δ)

]
.

Case 1. Here we will manage the case where z1 = 0, namely, we estimate the
probability

p1 := Pr

[
∃(z2, c) ∈ S<d

4β′+2 × S<k+1\{0}
s.t. z2 = c 
d t1 · 2δ

:
t

$←− R<d+k
q ;

t1 := Power2Roundq(t, δ)

]
.
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By the union bound, p1 is re-written as

p1 <
∑
z2,c

Pr

[
z2 = c 
d t1 · 2δ :

t
$←− R<d+k

q ;

t1 := Power2Roundq(t, δ)

]

≤
∑
z2,c

Pr

[
c 
d t1 = 2−δ(z2) :

t
$←− R<d+k

q ;

t1 := Power2Roundq(t, δ)

]
,

where from Corollary 1 it holds that

c 
d t1 =

⎡
⎢⎢⎢⎣

t1,1 t1,2 · · · t1,k+1

t1,2 t1,3 · · · t1,k+2

...
t1,d t1,d+1 · · · t1,d+k

⎤
⎥⎥⎥⎦

⎡
⎢⎣

ck+1

ck

...c1

⎤
⎥⎦ .

Without loss of generality, we can suppose that the first element of the vector c̄
is not 0. So it holds that for any i ∈ [d],

t1,i = c−1
k+1 ·

⎧
⎨
⎩2−δ(z2[i] −

∑
j∈[r]

t1,i+j · ck+1−j)

⎫
⎬
⎭ .

Since the most frequent value of coefficients of t1 occurs with probability at most
2δ/q, we have

p1 <
∑

z2∈S<d
4β′+2

,c∈S<k+1\{0}

(
2δ

q

)d

<
(8β′ + 5)d|C|2(2δ)d

qd
.

Case 2. We will take the case where z1 �= 0 by estimating the probability

p2 := Pr

⎡
⎣ ∃(z1, z2, c) ∈ S

<d+n−1
2γ \{0} × S

<d
4β′+2 × S

<k+1\{0}
s.t. a �d z1 + z2 = c �d t1 · 2

δ
:

a
$←− R

<n
q ; t

$←− R
<d+k
q ;

t1 := Power2Roundq(t, δ)

⎤
⎦ .

By the union bound and the similar argument with Lemma7, the probability p2

is rewritten as

p2 <
∑

z1∈S<n+d−1
2γ \{0},z2∈S<d

4β′+2
,c∈S<k+1\{0}

Pr
[
a �d z1 = c �d t1 · 2δ − z2 : a

$←− R<n
q

]

<
∑

z1∈S<n+d−1
2γ \{0},z2∈S<d

4β′+2
,c∈S<k+1\{0}

1

qd

<
(4γ + 1)n+d−1(8β′ + 5)d|C|2

qd

By combining the above two cases and from the assumption that 2δ ≤ (4γ +
1)n−1, we can obtain the probability bound in the statement of this lemma. �
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A Digital Signatures from the MPLWE

A.1 Digital Signatures

We first introduce the definition of digital signatures and pseudorandom func-
tions.

Definition 13. A digital signature scheme consists of a triple of polynomial-
time algorithms Σ := {Keygen,Sign,Verify} with the following syntax:

– KeyGen(1λ): given a security parameter λ, outputs secret and public keys
(sk, pk).

– Signsk(μ ∈ {0, 1}∗): given a secret key sk and message μ, outputs a signature
σ.

– Verifypk(μ, σ): given a public key pk, message μ, and signature σ, outputs 1 if
σ is a valid signature of μ, and 0 otherwise.

The signature scheme has correctness error γ if for all (pk, sk) ∈ KeyGen(1λ)
and all message μ ∈ {0, 1}∗, it holds that Pr[Verifypk(μ,Signsk(μ)) = 0] ≤ γ.

Let OSign be an oracle that outputs a signature for a queried message, and
M be the set of queried messages to OSign. The advantage of an algorithm F is
defined as

AdvEUF-CMA
Σ,F (λ) := Pr

⎡
⎣Verifypk(μ

∗, σ∗) = 1

∧ μ∗ �∈ M :
(pk, sk) $←− KeyGen(1λ);

(μ∗, σ∗) $←− FOSign

(pk)

⎤
⎦ .

The signature scheme Σ is called EUF-CMA secure if AdvEUF-CMA
Σ,F (λ) =

negl(λ) for any PPT adversary F .

Definition 14 (Pseudorandom Function). For a security parameter λ, let
n = n(λ) and k = k(λ) be integers, and K be a finite key space. The advantage
of a map PRF : K × {0, 1}n → {0, 1}k for an adversary D is defined as

AdvPRPRF,D(λ) :=
∣∣∣Pr[DPRFK(·)(1λ) → 1;K $←− K] − Pr[DRF(·)(1λ) → 1]

∣∣∣ ,

where RF : {0, 1}n → {0, 1}k be a random function. The map PRF is called a
pseudorandom function if AdvPRPRF,D(λ) = negl(λ).

The following signatures ΣDFS, obtained from the deterministic variant of
Fiat-Shamir transformation for the (canonical) identification, is a triple of key
generation, signing, and verification algorithm, but we omit the description of
the key generation, since it is the same as the instance generation algorithm
of the underlying identification. Let H : {0, 1}∗ → R<k+1 be a hash function
implemented by the random oracle, PRFK(·) be a pseudorandom function with
key K, and κm be a positive integer.
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– Signsk,K(μ ∈ {0, 1}∗): Set κ := 0. Repeat the followings while z = ⊥ and
κ ≤ κm: set κ := κ + 1; compute (w, st) := P1(sk;PRFK(0 ‖ μ ‖ κ)); set
c := H(w‖μ); compute z := P2(sk, w, c, st;PRFK(1‖μ‖κ)). If z = ⊥ then
return σ := ⊥, else return σ := (w, z).

– Verifypk(μ, σ): Parse σ = (w, z), and return V(pk, w, c, z) ∈ {0, 1} for c :=
H(w‖μ).

In [16], Kiltz et al. showed quantum security of the signatures obtained from
the (deterministic) Fiat-Shamir transformation for a lossy identification scheme.

Theorem 2 (Adapted from Theorem 3.1 of [16]). Assume the identi-
fication scheme ID is lossy key indistinguishable, εls-lossy sound, εZK-perfect
naHVZK, and has an α-bits of min entropy. For any quantum EUF-CMA adver-
sary F that issues at most qH queries to the quantum random oracle |H〉, and
qS classical queries to the signing oracle, there exists a quantum adversary A
against ID and a quantum adversary D against PRF such that

AdvEUF-CMA
ΣDFS,F (λ)≤AdvLOSSY−IND

ID,A (λ)+8(qH+1)2·εls+AdvPRPRF,D(λ)+2−α+1+κmqSεZK.

A.2 Fiat-Shamir Transformed Signatures from IDMPLWE

We here give a construction of the signatures from our identification scheme
IDMPLWE described in Sect. 3.2. The signatures are obtained by applying the
transformation of [16] to IDMPLWE. The resulting signature scheme can be seen
as an MPLWE variant of Dilithium-QROM [16].

The (deterministic) Fiat-Shamir transformed signature scheme ΣMPLWE con-
sists of the following three algorithms:

– KeyGen(1λ): Generate (pk, sk) $←− IGen(1λ).
– Signsk,K(μ ∈ {0, 1}∗): Parse sk = (ρ, s1, s2, t0), set κ := 0, and recover a :=

Sam(ρ). Repeat the followings while (z, h) = (⊥,⊥) and κ ≤ κm: set κ :=
κ + 1; compute y := PRFK(μ ‖ κ); compute w := a 
d y ∈ R<d

q and w1 :=
HighBitsq(w, 2β′); set c := H(w1 ‖ μ); compute z := c 
n+d−1 s1 + y ∈
R<n+d−1; if ‖z‖∞ ≥ γ or ‖LowBitsq(w−c
ds2, 2β′)‖∞ ≥ γ′ then set (z, h) :=
(⊥,⊥), else set h := MakeHintq(−c 
d t0, w − c 
d s2 + c 
d t0, 2β′). Output
σ := (h, z, c).

– Verifypk(μ, σ): Parse σ = (h, z, c). Generate a = Sam(ρ) and compute w′
1 :=

UseHintq(h, a
d z−c
d t1 ·2δ, 2β′). Output 1 if ‖z‖∞ < γ and c = H(w′
1 ‖ μ)

holds, 0 otherwise.

From Theorem 2 and the lemmas proven in Sect. 3, the Fiat-Shamir Trans-
formed signatures from our identification scheme IDMPLWE is EUF-CMA secure
in the QROM.

Corollary 3. If the decision MPLWE assumption holds, and the function PRF is
pseudorandom against quantum adversaries, then the signature scheme ΣMPLWE

is EUF-CMA secure in the QROM. In particular, for any quantum adversary F
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against EUF-CMA security for the signature scheme ΣMPLWE that issues at most
qH queries to the quantum random oracle |H〉, and qS classical queries to the
signing oracle, there exists a quantum adversary A of MPLWE assumption and
a quantum adversary D against PRF such that

AdvEUF-CMA
ΣMPLWE,F (λ) ≤ AdvMPLWE

A (λ) + 8(qH + 1)2 · εls + AdvPRPRF,D(λ) + 2−α+1.
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Abstract. Double-authentication preventing signatures (DAPS) are a
variant of digital signatures which have received considerable attention
recently (Derler et al. EuroS&P 2018, Poettering Africacrypt 2018).
They are unforgeable signatures in the usual sense and sign messages
that are composed of an address and a payload. Their distinguishing
feature is the property that signatures on two different payloads with
respect to the same address allow to publicly extract the secret signing
key. Thus, they are a means to disincentivize double-signing and are a
useful tool in various applications.

DAPS are known in the factoring, the discrete logarithm and the lat-
tice setting. The majority of the constructions are ad-hoc. Only recently,
Derler et al. (EuroS&P 2018) presented the first generic construction that
allows to extend any discrete logarithm based secure signature scheme
to DAPS. However, their scheme has the drawback that the number of
potential addresses (the address space) used for signing is polynomially
bounded (and in fact small) as the size of secret and public keys of the
resulting DAPS are linear in the address space. In this paper we over-
come this limitation and present a generic construction of DAPS with
constant size keys and signatures. Our techniques are not tailored to a
specific algebraic setting and in particular allow us to construct the first
DAPS without structured hardness assumptions, i.e., from symmetric
key primitives, yielding a candidate for post-quantum secure DAPS.
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1 Introduction

Digital signatures are an important cryptographic primitive used to provide
strong integrity and authenticity guarantees for digital messages. Among many
other applications, they are used to issue digital certificates for public keys within
public-key infrastructures, to guarantee the origin of executable code, to sign
digital documents such as PDF documents (in a legally binding way), as well as
in major cryptographic protocols such as TLS. Recently, signatures also emerged
to be a cornerstone of distributed cryptocurrencies such as Bitcoin, i.e., are used
to bind coins to users (by means of public keys) and to sign transactions.

Double-authentication preventing signatures (DAPS) are a variant of digital
signatures used to sign messages of the form m = (a, p) with a being the so
called address and p the payload. They provide unforgeability guarantees in the
sense of conventional signatures but have the special property that signing two
different payloads p �= p′ using the same address a allows to publicly extract the
secret signing key from the respective signatures. In the literature, various com-
pelling applications for DAPS have been proposed. Those applications include
penalizing double spending attacks in cryptocurrencies [27] or penalizing certi-
fication authorities for issuing two certificates with respect to the same domain
name, but for two different public keys [25], for example. In this work we purely
focus on DAPS constructions and we refer the reader to [25,26] for a comparison
with other types of self-enforcing digital signatures.

Currently, DAPS are known in the factoring [6,25,26], the discrete loga-
rithm [16,24,27] and the lattice setting [10]. The majority of the constructions
(the only exception being [16]) are ad-hoc. Unfortunately, such an approach
yields very specific constructions, whose security may not be well understood.
Having generic DAPS constructions, in contrast, yields much more flexibility, as
it allows to plug in building blocks whose security is well understood. In addi-
tion, this yields simplicity and modularity in the security analysis. Only recently,
Derler et al. (EuroS&P 2018) presented the first generic construction that allows
to extend any discrete logarithm based EUF-CMA secure signatures scheme to
DAPS. However, their scheme has the drawback that the number of potential
addresses (the address space) used for signing is polynomially bounded (and in
fact small) as the size of secret and the public keys of the resulting DAPS are
linear in the address space. We ask whether we can come up with a generic
construction without this drawback.

Somewhat orthogonal to the motivational discussion above, our work is also
driven by the question whether it is possible to construct DAPS without relying
on structured hardness assumptions, i.e., solely from symmetric key primitives
(following up on a very recent line of work [9,12,15,22]). This is interesting,
because symmetric key primitives are conjectured to remain secure in the advent
of sufficiently powerful quantum computers. Such quantum computers would
break all discrete log and RSA based public key cryptosystems [30].
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1.1 Existing DAPS Constructions

DAPS have been introduced by Poettering and Stebila [25,26] in a factoring-
based setting. Ruffing, Kate and Schröder later introduced the notion of account-
able assertions (AS) in [27], being a related but weaker primitive than DAPS.
In addition they present one AS that also is a DAPS (RKS henceforth). The
RKS construction is based on Merkle tress and chameleon hash functions in the
discrete logarithm setting. Very recently, Bellare, Poettering and Stebila [6] pro-
posed new factoring-based DAPS from trapdoor identification-schemes using an
adaption and extension of a transform from [5]. Their two transforms applied
to the Guillou-Quisquater (GQ) [20] and Micali-Reyzin (MR) [23] identification
scheme yield signing and verification times as well as signature sizes comparable
(or slightly above) standard RSA signatures. Boneh et al. [10] propose construc-
tions of DAPS from lattices. They consider DAPS as a special case of what they
call predicate-authentication-preventing signatures (PAPS). In PAPS one con-
siders a k-ary predicate on the message space and given any k valid signatures
that satisfy the predicate reveal the signing key. Consequently, DAPS are PAPS
for a specific 2-ary predicate. Derler, Ramacher and Slamanig (DRS henceforth)
in [16] recently provided the first black-box construction of DAPS from digital
signatures schemes and demonstrate how this approach can be used to con-
struct N -times-authentication-preventing signatures (NAPS) (a notion called
k-way DAPS in [10]). In addition, they introduced weaker extraction notions,
where the focus of the extraction is on the signing key of the underlying sig-
nature scheme only. A drawback of their work is that the constructions have
O(n) secret and public key size where n is the size of the address space. So
their constructions are only suitable for small message spaces. In a follow up
work Poettering [24], also focusing on DAPS for small address spaces, showed
how for a certain class of signature schemes (obtained via Fiat-Shamir from
certain identification schemes), the DRS approach can be improved by reduc-
ing the signature size by a factor of five and the size of the secret key from
O(n) to O(1). However, this comes at the cost of no longer being able to do a
black-box reduction to the underlying signature scheme. In Table 1 we provide a
comparison of existing DAPS approaches with the ones presented in this paper
regarding address space, extraction capabilities, algebraic setting as well as their
characteristic as either being tailored to a specific setting or generic.

1.2 Contribution

Our contributions can be summarized as follows:

– We propose a generic DAPS, respectively NAPS, construction building upon
DRS’ secret-sharing approach, which resolves the address-space limitation in
the DRS construction, and, in particular, supports an exponentially large
address space. This improvement is achieved by deriving the coefficients of
the secret sharing polynomial from the address using a carefully chosen pseu-
dorandom function with an output domain being compatible with the secret
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Table 1. Overview of DAPS constructions

Approach Address space Extraction Setting Generic

[25,26] Exponential DSE Factoring ×
[27] Exponential DSE DLOG ×
[6] Exponential DSE Factoring ×
[10] Exponential DSE Lattices ×
[16] Small wDSE∗ DLOG �
[24] Small DSE DLOG ×
Construction 1 Exponential wDSE Symmetric �
Construction 2 Exponential DSE Any �

key space of the underlying signature scheme. Consequently, the overhead
in the public-key reduces to a constant factor. Like the DRS approach, our
generic approach satisfies a relaxed notion of extractability. Interestingly, we
can instantiate this construction solely from symmetric-key primitives, yield-
ing a candidate for post-quantum secure DAPS/NAPS.

– While the aforementioned construction thus closes an important gap in the
literature, the signature sizes are somewhat large compared to signatures in
the discrete log or RSA setting. To this end, we additionally follow a differ-
ent direction which basically targets the extension of any digital signature
scheme (such as ECDSA or EdDSA, for example) to a DAPS. Essentially,
we present a compiler which uses an arbitrary DAPS scheme to extend any
given signature scheme to a DAPS. While this might sound somewhat odd
at first sight, we want to stress that all existing DAPS which have compact
keys and exponentially large address space are ad-hoc constructions, whereas
practical applications most likely will use standardized signature schemes.
Using our construction it is possible to generically bring extraction to any
signature scheme. Hence we obtain more efficient DAPS being compatible
with standardized signature schemes such as ECDSA or EdDSA.

2 Preliminaries

In this section we firstly present a formal model for the security of signature
and DAPS schemes, recall non-interactive zero-knowledge proof systems and
Shamir’s secret sharing.

2.1 Digital Signature Schemes

Subsequently we formally recall the notion of digital signature schemes.

Definition 1 (Signature Scheme). A signature scheme Σ is a triple (KGenΣ,
SignΣ,VerifyΣ) of PPT algorithms, which are defined as follows:
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KGenΣ(1κ): This algorithm takes a security parameter κ as input and outputs
a secret (signing) key skΣ and a public (verification) key pkΣ with associated
message space M (we may omit to make the message space M explicit).

SignΣ(skΣ,m): This algorithm takes a secret key skΣ and a message m ∈ M as
input and outputs a signature σ.

VerifyΣ(pkΣ,m, σ): This algorithm takes a public key pkΣ, a message m ∈ M
and a signature σ as input and outputs a bit b ∈ {0, 1}.

We require a signature scheme to be correct and to provide existential unforge-
ability under adaptively chosen message attacks (EUF-CMA security). For cor-
rectness we require that for all κ ∈ N, for all (skΣ, pkΣ) ← KGenΣ(1κ) and for all
m ∈ M it holds that

Pr [VerifyΣ(pkΣ,m,SignΣ(skΣ,m)) = 1] = 1.

Definition 2 (EUF-CMA). For a PPT adversary A, we define the advantage
function in the sense of EUF-CMA as

AdvEUF-CMA
A,Σ (κ) = Pr

[
ExpEUF-CMA

A,Σ (κ) = 1
]

where the corresponding experiment is depicted in Fig. 1. If for all PPT adver-
saries A there is a negligible function ε(·) such that

AdvEUF-CMA
A,Σ (κ) ≤ ε(κ)

we say that Σ is EUF-CMA secure.

ExpEUF-CMA
A,Σ (κ):

(skΣ, pkΣ) ← KGenΣ(1κ)
Q ← ∅
(m∗, σ∗) ← ASign′

Σ(skΣ,·)(pk)
where oracle Sign′

Σ on input m:
σ ← SignΣ(skΣ, m), Q ← Q ∪ {m}
return σ

return 1, if VerifyΣ(pkΣ, m∗, σ∗) = 1 ∧ m∗ /∈ Q
return 0

Fig. 1. EUF-CMA security.

2.2 Double-Authentication-Preventing Signatures

Double-authentication-preventing signatures (DAPS) are signature schemes
being capable of signing messages from a message space M of the form A × P.
Each message m = (a, p) ∈ M thereby consists of an address a in address space
A and a payload p from payload space P. In addition to the algorithms provided
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by conventional signature schemes, a DAPS scheme provides a fourth algorithm
ExD that extracts the secret key from signatures on two colliding messages, i.e.,
two different messages sharing the same address. Formally, a pair of colliding
messages is defined as follows:

Definition 3 (Colliding Messages). We call two messages m1 = (a1, p1) and
m2 = (a2, p2) colliding if a1 = a2, but p1 �= p2.

Below, we now formally define DAPS following [25,26].

Definition 4 (DAPS). A double-authentication-preventing signature scheme
DAPS is a tuple (KGenD,SignD,VerifyD,ExD) of PPT algorithms, which are
defined as follows:

KGenD(1κ) : This algorithm takes a security parameter κ as input and outputs
a secret (signing) key skD and a public (verification) key pkD with associated
message space M (we may omit to make the message space M explicit).

SignD(skD,m) : This algorithm takes a secret key skD and a message m ∈ M as
input and outputs a signature σ.

VerifyD(pkD,m, σ) : This algorithm takes a public key pkD, a message m ∈ M
and a signature σ as input and outputs a bit b ∈ {0, 1}.

ExD(pkD,m1,m2, σ1, σ2) : This algorithm takes a public key pkD, two colliding
messages m1 and m2 and signatures σ1 for m1 and σ2 for m2 as inputs and
outputs a secret key skD.

Note that the algorithms KGenD, SignD, and VerifyD match the definition of
the algorithms of a conventional signature scheme. For DAPS one requires
a restricted but otherwise standard notion of unforgeability [25,26], where
adversaries can adaptively query signatures for messages but only on distinct
addresses. Figure 2 details the unforgeability security experiment.

Definition 5 (EUF-CMA [25]). For a PPT adversary A, we define the advan-
tage function in the sense of EUF-CMA as

AdvEUF-CMA
A,DAPS (κ) = Pr

[
ExpEUF-CMA

A,DAPS (κ) = 1
]

where the corresponding experiment is depicted in Fig. 2. If for all PPT adver-
saries A there is a negligible function ε(·) such that

AdvEUF-CMA
A,DAPS (κ) ≤ ε(κ)

we say that DAPS is EUF-CMA secure.

The interesting property of a DAPS scheme is the notion of double-signature
extractability (DSE). It requires that whenever one obtains signatures on two
colliding messages, one should be able to extract the signing key using the extrac-
tion algorithm ExD. We present the security definition denoted as DSE in Fig. 3.
Thereby, we consider the common notion which requires extraction to work if
the key pair has been generated honestly. In this game, the adversary is given a
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ExpEUF-CMA
A,DAPS (κ):

(skD, pkD) ← KGenD(1κ)
Q ← ∅, R ← ∅
(m∗, σ∗) ← ASign′

D(skD,·)(pkΣ)
where oracle Sign′

D on input m:
(a, p) ← m
if a ∈ R, return ⊥
σ ← SignD(skD, m), Q ← Q ∪ {m}, R ← R ∪ {a}
return σ

return 1, if VerifyD(pkD, m∗, σ∗) = 1 ∧ m∗ /∈ Q
return 0

Fig. 2. EUF-CMA security for DAPS.

key pair and outputs two colliding messages and corresponding signatures. The
adversary wins the game if the key produced by ExD is different from the signing
key, although extraction should have succeeded, i.e., the messages were colliding
and their signatures were valid.

Definition 6 (DSE [25]). For a PPT adversary A, we define the advantage
function in the sense of double-signature extraction (DSE) as

AdvDSE
A,DAPS(κ) = Pr

[
ExpDSE

A,DAPS(κ) = 1
]

where the corresponding experiment is depicted in Fig. 3. If for all PPT adver-
saries A there is a negligible function ε(·) such that

AdvDSE
A,DAPS(κ) ≤ ε(κ),

then DAPS provides DSE.

ExpDSE
A,DAPS(κ):

(skD, pkD) ← KGenD(1κ)
(m1, m2, σ1, σ2) ← A(skD, pkD)
return 0, if m1 and m2 are not colliding
return 0, if VerifyD(pkD, mi, σi) = 0 for any i ∈ [2]
sk′

D ← ExD(pkD, m1, m2, σ1, σ2)
return 1, if sk′

D �= skD

return 0

Fig. 3. DSE security for DAPS.

In the full version we recall the strong variant of extractability under mali-
cious keys (denoted as DSE∗), where the adversary is allowed to generate the key
arbitrarily. The DSE∗ notion is very interesting from a theoretical perspective,
but no practically efficient DAPS construction can achieve this notion so far.
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DRS in [16] argue that when DAPS are constructed by extending a con-
ventional signature scheme Σ, extraction of the part of the signing key corre-
sponding to Σ is already sufficient to disincentivizes double-authentication for
many applications. Hence, Derler et al. [16] defined two weaker double-signature
extraction notions that cover extraction of the signing key of the underlying sig-
nature scheme for honestly and maliciously generated DAPS keys. The security
games for weak double-signature extraction (wDSE) and weak double-signature
extraction under malicious keys (wDSE∗) are depicted in Figs. 4 and 5. DSE and
DSE∗ imply their weaker counterparts and wDSE∗ implies wDSE.

Definition 7 (T ∈ {wDSE,wDSE∗}). For a PPT adversary A, we define the
advantage function in the sense of weak double-signature extraction (T = wDSE)
and weak double-signature extraction under malicious keys (T = wDSE∗), as

AdvT
A,DAPS(κ) = Pr

[
ExpT

A,DAPS(κ) = 1
]

where the corresponding experiments are depicted in Figs. 4 and 5 respectively.
If for all PPT adversaries A there is a negligible function ε(·) such that

AdvT
A,DAPS(κ) ≤ ε(κ),

then DAPS provides T .

ExpwDSE
A,DAPS(κ):

(skD, pkD) ← KGenD(1κ) with skD = (skΣ, . . . )
(m1, m2, σ1, σ2) ← A(skD, pkD)
return 0, if m1 and m2 are not colliding
return 0, if VerifyD(pkD, mi, σi) = 0 for any i ∈ [2]
sk′

D ← ExD(pkD, m1, m2, σ1, σ2) where sk′
D = (sk′

Σ, . . . )
return 1, if sk′

Σ �= skΣ

return 0

Fig. 4. wDSE security for DAPS.

ExpwDSE∗
A,DAPS(κ):

(pkD, m1, m2, σ1, σ2) ← A(1κ) where pkD = (pkΣ, . . . )
return 0, if m1 and m2 are not colliding
return 0, if VerifyD(pkD, mi, σi) = 0 for any i ∈ [2]
sk′

D ← ExD(pkD, m1, m2, σ1, σ2) where sk′
D = (sk′

Σ, . . . )
return 1, if sk′

Σ is not the secret key corresponding to pkΣ

return 0

Fig. 5. wDSE∗ security for DAPS.
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Finally, for our constructions we may sometimes require a very mild addi-
tional property of DAPS which we call verifiability of secret keys. Informally it
requires that there is an additional efficient algorithm VKey which, given a key
pair, outputs 1 if the given secret key is the key corresponding to the given public
key. Formally we define verifiability of keys as follows:

Definition 8 (Verifiability of Keys). We say that a DAPS scheme DAPS =
(KGenD,SignD,VerifyD,ExD) provides verifiability of keys, if it provides an addi-
tional efficient algorithm VKey so that for all κ ∈ N, for all (sk, pk) it holds
that

VKey(sk, pk) = 1 =⇒ (sk, pk) ∈ KGenD(1κ).

2.3 Non-interactive ZK Proof Systems (NIZK)

We recall a standard definition of non-interactive zero-knowledge proof systems.
Let L ⊆ X be an NP-language with associated witness relation R so that L =
{x | ∃w : R(x,w) = 1}.

Definition 9 (Non-Interactive Zero-Knowledge Proof System). A non-
interactive proof system Π is a tuple of algorithms (SetupΠ,ProofΠ,VerifyΠ),
which are defined as follows:

SetupΠ(1κ) : This algorithm takes a security parameter κ as input, and outputs
a common reference string crs.

ProofΠ(crs, x, w) : This algorithm takes a common reference string crs, a state-
ment x, and a witness w as input, and outputs a proof π.

VerifyΠ(crs, x, π) : This algorithm takes a common reference string crs, a state-
ment x, and a proof π as input, and outputs a bit b ∈ {0, 1}.

From a non-interactive zero-knowledge proof system we require completeness,
soundness and adaptive zero-knowledge and simulation-sound extractability. In
the full version we recall formal definitions of those properties.

NIZK from Σ-protocols. A Σ-protocol for language L is an interactive three move
protocol between a prover and a verifier, where the prover proves knowledge of
a witness w to the statement x ∈ L. We recall the formal definition of Σ-
protocols in the full version. One can obtain a non-interactive proof system
with the above properties by applying the Fiat-Shamir transform [17] to any Σ-
protocol where the min-entropy μ of the commitment a sent in the first message
of the Σ-protocol is so that 2−μ is negligible in the security parameter κ and its
challenge space C is exponentially large in the security parameter. Essentially,
the transform removes the interaction between the prover and the verifier by
using a hash function H (modelled as a random oracle) to obtain the challenge.
That is, the algorithm Challenge obtains the challenge as H(a, x). Due to the
lack of space we postpone a formal presentation to the full version.

Efficient NIZK Proof Systems for General Circuits. Over the last few years NIZK
proof systems for general circuits have seen significant progress improving their
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overall efficiency. Based on the MPC-in-the-head paradigm by Ishai et al. [21],
ZKBoo [19] and the optimized version ZKB++ [12] are zero-knowledge proof
systems covering languages over arbitrary circuits. They roughly work as follows:
The prover simulates all parties of a multiparty computation (MPC) protocol
implementing the joint evaluation of some function, say y = SHA-3(x), and
computes commitments to the states of all players. The verifier then randomly
corrupts a subset of the players and checks whether those players performed the
computation correctly. Following the same paradigm, Katz et al. [22] recently
proposed to use a MPC protocol with a preprocessing phase, which allows to sig-
nificantly reduce the proof sizes. This proof system, denoted as KKW, allows one
to choose a larger number of players then in the case of ZKBoo and ZKB++,
where larger numbers lead to smaller proofs. For all three proof systems, the
number of binary multiplication gates is the main factor influencing the proof
size, as the proof size grows linearly with the number of those gates.

Finally, Ames et al. [4] introduced Ligero, which offers proofs of logarithmic
size in the number of multiplication gates if the circuit is represented using a
prime field. When considering binary circuits, the number of addition respec-
tively XOR gates has also to be accounted for in the proof size. But, as noted
by Katz et al. in [22], especially for large circuits with more than 100,000 gates
Ligero beats ZKBoo, ZKB++ and KKW in term of proof size.

2.4 Shamir’s Secret Sharing

Shamir’s (k, �)-threshold secret sharing [29] is a secret sharing scheme which
allows to information-theoretically share a secret s among a set of � parties so
that any collection of at least k shares allow to reconstruct s. Let s be the
constant term of an otherwise randomly chosen k − 1 degree polynomial

f(X) = ρk−1X
k−1 + · · · + ρ1X + s

over a finite field F. A share is computed as f(i) for party i, 1 ≤ i ≤ �. Let S be
any set of cardinality at least k of these � shares and let IS be the set of indices
corresponding to shares in S. Using Lagrange interpolation one can then can
reconstruct the secret s by computing s = f(0) as

s =
∑
j∈IS

λjf(j) with λj =
∏

i∈IS\{j}

j

j − i
.

As long as only k − 1 or less shares are available the secret s is information-
theoretically hidden.

3 DAPS Without Structured Hardness Assumptions

For our first construction we follow the basic idea of Derler et al. [16] and build
DAPS by including secret shares of the signing key in the signatures. To resolve
the address space limitation of their approach, however, we derive the coefficients
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KGenD(1κ) : Fix a signature scheme Σ = (KGenΣ, SignΣ, VerifyΣ), a value-key-binding
PRF : S × D → R with respect to β ∈ D. Let skPRF ←R S, and crs ← SetupΠ(1

κ).
Let c = (skPRF, β). Set skD ← (skΣ, skPRF), pkD ← (pkΣ, crs, β, c).

SignD(skD, m) : Parse skD as (skΣ, skPRF) and m as (a, p).
1. ρ ← (skPRF, a)
2. z ← ρp + skΣ

3. π ← ProofΠ(crs, (pkΣ, β, c, a, z, m), (skΣ, skPRF, ρ))
4. Return (z, π).

VerifyD(pkD, m, σ) : Parse pkD as (pkΣ, crs, β, c), m as (a, p) and σ as (z, π).
1. Return VerifyΠ(crs, (pkΣ, β, c, a, z, m), π).

ExD(pkD, m1, m2, σ1, σ2) : Parse σi as (zi, ·), mi as (ai, pi).
1. If m1 and m2 are not colliding, return ⊥
2. if VerifyD(pkD, mi, σi) = 0 for any i, return ⊥
3. let skΣ ← z1p2−z2p1

p2−p1
4. return skΣ

Scheme 1. Generic DAPS from Σ.

of the sharing polynomial using a pseudorandom function (PRF). By then addi-
tionally proving the correct evaluation of the PRF, it is no longer necessary to
store encrypted versions of the coefficients in the public key. The only issue which
remains, is to additionally prove consistency with respect to a “commitment”
to the PRF secret key contained in the public key (we commit to it using a
fixed-value key-binding PRF as defined in Appendix A). To bind the message to
the proof, we use a signature-of-knowledge style methodology [14].

More precisely, we start from a one-way function f : S → P , which we use
to define the relation between public and secret keys, i.e., so that pkΣ = f(skΣ).
In addition we carefully choose a PRF F , which maps to the secret key space S.
At the core of our DAPS construction we use a NIZK proof to prove consistency
of the secret signing key, as well as the correctness of the secret sharing. For this
proof we define an language L with associated witness relation R in the following
way:

((pkΣ, β,c, a, z), (skΣ, skPRF, ρ)) ∈ R ⇐⇒
ρ = F(skPRF, a) ∧ z = ρp + skΣ ∧ c = F(skPRF, β) ∧ pkΣ = f(skΣ)

In this statement we cover three aspects: First, we prove that the polynomial for
Shamir’s secret sharing is derived from the address and that the secret share is
correctly calculated. Second, we prove the relation between the secret and public
key of the signature scheme. Third, we “commit” to the PRF secret key using a
fixed-value key-binding PRF. The full scheme is depicted in Scheme 1.

It is important to note that the PRF needs to be compatible with the signa-
ture scheme, in the sense that secret-key space of Σ, i.e., S, and R match. For
simplicity, we assume that R = S. Additionally, the domain and codomain of
the PRF also define the message space of the DAPS. In the following theorem
we prove that Scheme 1 is an EUF-CMA-secure DAPS.
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Theorem 1. If the NIZK proof system Π is simulation-sound extractable, F is
a PRF, and f is an OWF, then Scheme 1 provides EUF-CMA security.

Proof We prove this theorem using a sequence of games. We denote the winning
event of game Gi as Si. We let QΣ be the number of signing oracle queries.

Game 0: The original game.
Game 1: As before, but we modify KGenD as follows:

KGenD(1κ) : As before, but let (crs, τ) ← S1,Π(1κ) and store τ .
Transition 0 ⇒ 1: Both games are indistinguishable under adaptive zero-knowl-

edge of the proof system, i.e. |Pr[S0] − Pr[S1]| ≤ AdvSim
A,S,Π(κ).

Game 2: As Game 1, but we modify SignD as follows:
SignD(sk,m) : As before, but let π ← S2,Π(crs, τ, (pkΣ, β, c, a, z,m)) .

Transition 1 ⇒ 2: Both games are indistinguishable under adaptive zero-knowl-
edge of the proof system, i.e. |Pr[S1] − Pr[S2]| ≤ AdvZK

A,S,Π(κ).
Game 3: As before, but we modify KGenD and SignD as follows.

KGenD(1κ) : As before, but let c ←R R .

SignD(skD,m) : As before, but let ρ ←R R .
Transition 2 ⇒ 3: We engage with a PRF challenger C against F . We modify

SignD as follows:
KGenD(1κ) : As before, but let c ←R C(β) .

SignD(skD,m) : As before, but let ρ ←R C(a) .
Thus an adversary distinguishing the two games also distinguishes the PRF
from a random function, i.e. |Pr[S4] − Pr[S3]| ≤ AdvD,F (κ).

Game 4: As before, but we modify SignD as follows.
SignD(skD,m) : As before, but track all (a, ρ) pairs in Q.

We abort if there exists (a1, ρ), (a2, ρ) ∈ Q such that a1 �= a2.
Transition 3 ⇒ 4: Both games proceed identically, unless the abort event hap-

pens. The probability of the abort event is bounded by 1/|R|, i.e. |Pr[S5] −
Pr[S4]| ≤ QΣ/|R|.

Game 5: As before, but we modify SignD as follows.
SignD(skD,m) : As before, but let z ←R R .

Transition 4 ⇒ 5: This change is conceptional. Note that ρ is uniformly random
and not revealed, and thus z is uniformly random.

Game 6: As before, but we modify KGenD as follows:
KGenD(1κ) : As before, but let (crs, τ, ξ) ← E1,Π(1κ) and store (τ, ξ) .

Transition 5 ⇒ 6: Both games are indistinguishable under simulation-sound
extractability of the proof system, i.e. |Pr[S6] − Pr[S5]| ≤ AdvExt1

A,E,Π(κ).
Game 7: As before, but we now use the extractor to obtain sk∗

Σ ← E2,Π(crs, ξ,
(pkΣ, β, c, a, z,m), π) and abort in case the extraction fails.

Transition 6 ⇒ 7: Both games proceed identically, unless we abort. The proba-
bility of that happening is bounded by the simulation-sound extractablity of
the proof system, i.e. |Pr[S7] − Pr[S6]| ≤ AdvExt2

A,E,Π(κ).
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Reduction. Now we are ready to present a reduction which engages with an OWF
challenger C. In particular, we obtain a challenge and embed it in the public key,
i.e.

KGenD(1κ) : As before, but pkΣ ← C .

Once the adversary returns a forgery, we extract sk∗
Σ and forward the solution

to the OWF challenger. Hence Pr[S7] ≤ AdvOWF
A,f (κ), which concludes the proof.

�
We now show that Scheme 1 also provides wDSE security. We note that in

the proof of Theorem 2 we do not need to simulate proofs, so a weaker extrac-
tion notion would suffice. The proof of Theorem 1, however, already requires
simulation-sound extractability which is why we directly resort to simulation-
sound extractability.

Theorem 2. If the NIZK proof system Π is simulation-sound extractable and
the PRF F is computationally fixed-value-key-binding, then Scheme 1 provides
wDSE security.

Proof We prove this theorem using a sequence of games. We denote the winning
event of game Gi as Si. Let m1,m2, σ1, σ2 denote the output of A. For simplicity
we write mj = (a, pj), σj = (zj , πj) for j ∈ [2]. Now, we have proofs attesting
that zj = ρpj + skΣ for j ∈ [2].

Game 0: The original game.
Game 1: As before, but we modify KGenD as follows:

KGenD(1κ) : As before, but let (crs, τ) ← S1,Π(1κ) and store τ .
Transition 0 ⇒ 1: Both games are indistinguishable under adaptive zero-knowl-

edge of the proof system, i.e. |Pr[S0] − Pr[S1]| ≤ AdvSim
A,S,Π(κ).

Game 2: As before, but we modify KGenD as follows:
KGenD(1κ) : As before, but let (crs, τ, ξ) ← E1,Π(1κ) and store ξ .

Transition 1 ⇒ 2: Both games are indistinguishable under simulation-sound
extractability of the proof system, i.e. |Pr[S2] − Pr[S1]| ≤ AdvExt1

A,E,Π(κ).
Game 3: As before, but we now use the extractor to obtain (sk∗

Σ,j , sk
∗
PRF,j) ←

E2,Π(crs, ξ, (pkΣ, β, c, a, zj ,mj), π) for j ∈ [2] and abort if the extraction fails.
Transition 2 ⇒ 3: Both games proceed identically, unless we abort. The prob-

ability of that happening is bounded by the simulation-sound extractablity
of the proof system, i.e. |Pr[S3] − Pr[S2]| ≤ 2 · AdvExt2

A,E,Π(κ).
Game 4:] As before, but we abort if skPRF �= sk∗

PRF,j for any j ∈ [2].
Transition 3 ⇒ 4: Both games proceed identically, unless we abort. Let j ∈ [2]

be such that skPRF �= sk∗
PRF,j . We bound the abort probability using F . Let C

be a computational fixed-value-key-binding challenger. We modify KGenD as
follows:
KGenD(1κ): As before, but let (skPRF, β) ← C.

Then we have that F(skPRF, β) = F(sk∗
PRF,j , β), hence we forward sk∗

PRF,j to
C. Thus we built an adversary B against fixed-value-key-binding of F , i.e.
|Pr[S4] − Pr[S3]| ≤ AdvcFKVB

B,F (κ) = ε(κ).
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As we have now ensured that the correct PRF secret key was used to generate ρ
from a, skΣ is now uniquely determined via the secret sharing. Thus the adversary
can no longer win, i.e. Pr[S4] = 0. �
Extension to NAPS. Following the ideas outlined in [16], Scheme 1 can be
extended to an N -time authentication-preventing signature scheme by chang-
ing the sharing polynomial ρX + skΣ to a polynomial of degree N − 1 with
coefficients ρ1, . . . , ρN−1 obtained from the PRF via ρi = F(skPRF, a‖i).

Instantiations. The requirement on the signature scheme are very weak, yet
finding a suitable combination of primitives can be difficult. Thus we discuss
some possible instantiations. One candidate scheme on top of which the DAPS
extension can be applied is Picnic [12,13]. In Picnic the public key pkΣ is the
image of the secret key skΣ under a one-way function built from LowMC [2,
3]. Signatures are then generated by proving this relation using a NIZK from
ZKB++ made non-interactive. In this case it is straight forward to use the block
cipher LowMC (denoted by E) as PRF by setting F(s, x) = E(s, x)⊕x. We argue
that this PRF can also be considered a computational fixed-value-key-binding
PRF, since it is reasonable to assume that finding a new key which maps one
particular input to one particular output is no easier than generic key search.
Furthermore, when increasing the block size of LowMC relative to the key size,
the existence of second key mapping to the same output becomes increasingly
unlikely.

The circuit for the secret sharing can either be implemented using a binary
circuit realizing the required arithmetic, or, more efficiently, by computing the
sharing bit-wise. For the latter, we consider ρ, p and skΣ as n bit values, and
compute secret shares zi = ρipi + skΣ,i for each bit i ∈ [n]. Thus only n ANDs
are required to implemented the secret sharing. All in all Picnic signatures can
be easily extended to a DAPS without requiring extensive changes. We also
note that the Fiat-Shamir transformed ZKB++ is in fact simulation-sound
extractable NIZK proof systems as confirmed in [15]. Using the signature size for-
mulas, we can estimate DAPS signatures sizes at around 408 KB, meaning there
is a overhead of 293 KB compared to Picnic signatures requiring roughly 115 KB
in the ROM targeting 256 bit classical security. Analogously to the QROM secu-
rity of Picnic, Unruh’s transform [31–33] can be used to obtain QROM security
for the DAPS construction.

Also hash-based signatures such as SPHINCS [8] are well suited for this
construction. Similar to the case of Picnic, the PRF can be instantiated using
LowMC. However, the consistency proof is more expensive, as computing the
public key requires multiple evaluations of hash functions.

Relying on Structured Hardness Assumptions. The situation is different for signa-
ture schemes relying on structured hardness assumptions, e.g., those in the dis-
crete logarithm setting such as Schnorr signatures [28], ECDSA and EdDSA [7].
While they would fulfill the requirement for the secret-key-to-public-key rela-
tion, i.e., here working in a group G with generator g the OWF is of the form
f(x) := gx, the problem is finding an efficient NIZK proof system to prove state-
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ments over Zp and in a prime order group G simultaneously. Furthermore the
NIZK proof system would also need to support statements over binary circuits
for the PRF evaluation. Recently, Agrawal et al. [1] made progress in this direc-
tion, enabling non-interactive proofs of composite statements for relations over
multiple groups and binary circuits. Using these techniques to construct DAPS
is an interesting open problem.

4 Extending Any Signature Scheme Using DAPS

Finally, we follow a different direction for our second approach. Here we start
from an already existing DAPS and use it to extend any unforgeable signature
scheme to a DAPS. Interestingly, both the unforgeability and extraction fol-
low in a black-box way from the signature scheme and the underlying DAPS,
respectively. In this construction, the secret key consists of the secret keys of
the underlying DAPS and signature scheme. To guarantee extraction of the full
secret key, we apply the technique of Bellare et al. [6] and encrypt the key of the
signature scheme using a one-time pad derived from the secret key of the DAPS
scheme. The public key then consists of that encrypted key and the public keys
of the underlying DAPS and signature scheme. However, for extraction of mali-
ciously generated keys, i.e., DSE∗-security, this means that public keys need to
be extended with a NIZK proof that the encryption was performed correctly. For
the sake of simplicity, we thus concentrate on the DSE security of the scheme.
We present the compiler in Scheme 2.

KGenD(1κ) : Fix some signature scheme Σ = (KGenΣ, SignΣ, VerifyΣ) and some DAPS
DAPS = (KGenD, SignD, VerifyD, ExD) with verifiability of keys. Let (skΣ, pkΣ) ←
Σ.KGenΣ(1κ), (sk, pk) ← DAPS.KGenD(1κ), Y ← skΣ ⊕ H(sk), and return
(skD, pkD) := ((skΣ, sk), (pkΣ, pk, Y )).

SignD(skD, m) : Parse skD as (skΣ, sk).
1. σ0 ← Σ.SignΣ(skΣ, m)
2. σ1 ← DAPS.SignD(sk, m)
3. Return σ = (σ0, σ1)

VerifyD(pkD, m, σ) : Parse pkD as (pkΣ, pk, ·), and return 1 if all of the following checks
hold and 0 otherwise:
– Σ.VerifyΣ(pk, (a, p)) = 1
– DAPS.VerifyD(pkD, (a, p)) = 1

ExD(pkD, m1, m2, σ1, σ2) : Parse pkD as (pkΣ, pk, Y ), obtain sk ← DAPS.ExD(pk, m1, m2,
σ1, σ2) and skΣ ← Y ⊕ H(sk), and return skD = (skΣ, sk).

Scheme 2. Black-Box Extension of any Signature Scheme to DAPS.

In the following theorem we formally state that the DAPS construction in
Scheme 2 yields an EUF-CMA-secure DAPS.
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Theorem 3. If Σ is unforgeable, DAPS is unforgeable and provides verifiability
of keys, then the DAPS construction in Scheme 2 is unforgeable in the ROM.

The theorem above is proven in the full version. Additionally, Scheme 1 provides
DSE-security if the underlying DAPS provides it as well.

Theorem 4. If DAPS provides DSE-security, then the construction of DAPS in
Scheme 2 provides DSE-security as well.

The theorem above is proven in the full version.

5 Conclusion

In this work, we close two important gaps in the literature on DAPS. First, we
present a generic DAPS construction, which, in contrast to [16], does not come
with the drawback of a polynomially bounded address space. Our construction
only relies on assumptions related to symmetric key primitives, which is why
we also obtain a candidate for a post-quantum DAPS construction. Second,
we also present an alternative generic construction of DAPS which basically
shows how to bring DAPS features to any signature scheme. This is of particular
practical importance, as it allows to extend arbitrary signature schemes with
double signature extraction features. As our compiler works by using an arbitrary
DAPS scheme to extend a given signature scheme in a black-box way, this yields
more efficient DAPS than previously known for standardized and widely used
signature schemes such as ECDSA or EdDSA.

A One-Way Functions and Pseudorandom Function
Families

We recall the definitions of one-way functions and pseudorandom function (fam-
ilies).

Definition 10 (OWF). Let f : S → P be a function. For a PPT adversary A
we define the advantage function as

AdvOWF
A,f (κ) = Pr

[
x ←R S, x∗ ← A(1κ, f(x)) : f(x) = f(A∗)

]
.

The function f is one-way function (OWF) if it is efficiently computable and for
all PPT adversaries A there exists a negligible function ε(·) such that

AdvOWF
A,f (κ) ≤ ε(κ).

Definition 11 (PRF). Let F : S × D → R be a family of functions and let
Γ be the set of all functions D → R. For a PPT distinguisher D we define the
advantage function as

AdvPRF
D,F (κ) =

∣∣∣Pr
[
s ←R S,DF(s,·)(1κ)] − Pr[f ←R Γ,Df(·)(1κ)

]∣∣∣ .
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F is a pseudorandom function (family) if it is efficiently computable and for all
PPT distinguishers D there exists a negligible function ε(·) such that

AdvPRF
D,F (κ) ≤ ε(κ).

Below, we provide a slightly stronger variant of a definition of a notion introduced
in [11,18].

Definition 12 (Fixed-Value-Key-Binding PRF). A PRF family F : S ×
D → R and a β ∈ D, is fixed-value-key-binding if for all adversaries A

Pr
[
s ←R S, s′ ← A(s, β) : F(s, β) = F(s′, β) ∧ s �= s′] = 0.

Moreover, we present a relaxed (computational) version of the above definition.

Definition 13 (Computational Fixed-Value-Key-Binding PRF). For a
PRF family F : S × D → R and a β ∈ D, we define the advantage function of a
PPT adversary A as

AdvcFKVB
A,F (κ) = Pr

[
s ←R S, s′ ← A(1κ, s, β) : F(s, β) = F(s′, β) ∧ s �= s′] .

F is computationally fixed-value-key-binding if for all PPT adversaries there
exists as negligible function ε(·) such that

AdvcFKVB
A,F (κ) = ε(κ).
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Abstract. Ring signature is an attractive cryptographic primitive that
has been widely used in many fields because of its anonymity. Tradi-
tional ring signatures rely on the public key infrastructure and require
lots of digital certificates. To eliminate the digital certificates, Zhang
and Kim (Asiacrypt’02) introduced the concept of identity-based ring
signatures. So far, however there is few identity-based ring signatures
built on lattice-related assumptions and they are not efficient enough
for applications. In this paper we present a new identity-based ring sig-
nature scheme from lattices. Compared with the existing counterparts,
our scheme has the advantages of higher computational efficiency and
lower storage overhead. We prove the security of our construction in the
random oracle model under the short integer solution assumption.

Keywords: Ring signature · Identity-based cryptography · Lattice

1 Introduction

Digital signature is one of the fundamental primitives of modern cryptography
and has been widely used in almost all aspects of daily-life. However, ordinary
digital signatures are not of anonymity—a verifier could recognize the signer
of a signature, and thus they may not be usable in some specific applications,
e.g., electronic voting. In 2001, Rivest et al. [28] first introduced the concept of
ring signature, which enables a signer to sign a message on behalf of a signer-
included-group (called a ring) and an outsider cannot distinguish the signer from
the other group members. In contrast to the similar notion of group signature
[9], there is no group establishment process as well as the revocation mechanism
in ring signatures. Thanks to its simplicity and full anonymity, ring signature
has received a plenty of attention from the cryptographic community (see, e.g.,
[1,5,10,12,17,24,29,33]).

Traditional ring signatures are built on the Public Key Infrastructure (PKI)
and hence require lots of digital certificates to bind users’ random public keys
with their real identities. This undoubtedly increases the storage and compu-
tation overhead of users, and leads to the certificate management problem. To
eliminate the certificate management problem, Zhang and Kim [34] adopted the
advantages of identity-based cryptography [30] to ring signatures and presented
c© Springer Nature Switzerland AG 2018
J. Baek et al. (Eds.): ProvSec 2018, LNCS 11192, pp. 277–291, 2018.
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the concept of identity-based ring signatures. In an identity-based cryptosystem,
a user no longer needs a public key certificate, but instead sets its identity (such
as an email address) as an public key. Therefore, identity-based ring signatures
are more efficient than their PKI-based counterparts.

Since the pioneering work of Zhang and Kim [34], many new identity-based
ring signature schemes have been published, e.g., [3,11,16,18]. However, those
schemes are all based on traditional number theory assumptions that are easy
for quantum algorithms [31]. With the rapid development of quantum comput-
ers, it is increasingly important to find alternatives that can resist quantum
attacks. Wang [32] recently proposed two identity-based ring signature schemes
with and without random oracles from lattices. Due to the fact that there is no
efficient algorithm for some lattice problems, the two schemes are conjectured
to be quantum-secure. Besides, lattice problems also enjoy the average-to-worst
reduction [2]. In a nutshell, Wang’s identity-based ring signatures undertake
the “hash-and-sign” methodology of [15] and form rings using the lattice basis
delegation mechanism of [8]. Therefore, they need some tanglesome preimage
sampling algorithms [8,15] to generate signatures, and the delegation mecha-
nism [8] would also increase their signature sizes. Moreover, we note that the
identity-based ring signatures in [32] miss security proofs.

Our Contribution. In this paper, we propose a new identity-based ring sig-
nature scheme from lattices. Compared with Wang’s ones [32], our scheme has
the advantages of higher computational efficiency and lower storage overhead.
Specifically, we use the rejection sampling algorithm of [13] instead of the preim-
age sampling algorithm to generate signatures. In addition, we also discard the
lattice trapdoor delegation mechanism [8] to produce rings. We formally prove
the security of our scheme in the random oracle model under the standard short
integer solution assumption. We stress that our scheme can be transformed into
the ideal lattices [22] to further reduce its storage overhead. Moreover, we also
note that our scheme can be further improved by replacing the discrete Gaus-
sians in rejection sampling algorithms with the rounded Gaussians [19].

Overview of Our Scheme. Now we briefly sketch our identity-based ring
signature scheme. In our scheme, the master public key is a matrix A ∈ Z

n×m
2q

and the master secret key is a relevant G-trapdoor R ∈ Z
m̄×nk with m = m̄+nk.

Different from the traditional lattice trapdoors in e.g. [8,15], the G-trapdoor
(introduced in [25]) is smaller than a lattice basis. We set the public matrix of a
user with identity IDi as Ai = [A|H1(IDi)] ∈ Z

n×(m+nk)
2q where H1 : {0, 1}∗ →

Z
n×nk
2q is a collision-resistant hash function, and let the user’s secret key be a

small matrix Si ∈ Z
(m+nk)×n satisfying AiSi = qIn mod 2q, where In is an

identity matrix with order n. We can generate the secret key Si lightly using
the G-trapdoor R. To sign a message μ on a ring R with l identities, the signer
IDs ∈ R first picks l vectors yj ’s from the Gaussian distribution Dm+nk

σ and
computes c = H2(

∑
Ajyj , R, μ), where H2 is a secure hash function and Aj ’s

are the public matrices corresponding to all identities in R. Then for all j �= s,
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let zj = yj . If j = s, the signer chooses a random bit b ∈ {0, 1} and calculates
zs = (−1)bSsc + ys. The candidate ring signature is ({zj}, c, R).

It is not difficult to see that the candidate ring signature is related to the
signer’s secret key Ss. To obtain a secure signature scheme, we apply the rejec-
tion sampling technique [13,21] to make the distribution of the outputted ring
signatures independent of the secret key Ss. Roughly speaking, the rejection sam-
pling technique is used to ensure the real distribution of signatures is statistically
close to the ideal distribution that we want. Assume f and g are two probability
distributions and M ∈ R is a positive constant such that f(x) ≤ Mg(x) for
all x ∈ R. If we sample an element x from distribution g and output it with
probability f(x)/(Mg(x)), then the resulting distribution of x will follow f and
the expected number of repetitions required to output a sample is M .

Related Work. The rejection sampling algorithm was first proposed in 2012
by Lyubashevsky [21], which is very efficient since it just requires simple matrix-
vector multiplications and outputs results according to some distributions. As
an application, Melchor et al. [24] showed how to design a lattice ring signa-
ture scheme using the rejection sampling algorithm of [21]. Later, Ducas et al.
[13] improved the Lyubashevsky’s algorithm using the bimodal discrete Gaus-
sian distributions instead of the standard discrete Gaussian distributions. Very
recently, Hülsing et al. [19] showed that the discrete Gaussians used in [13] can
be replaced by rounded Gaussians.

The existing lattice-based signature schemes mostly rely on the “hash-and-
sign” methodology of [15]. Their signatures essentially are preimages of some
message-associated images. The preimages are generated using the preimage
sampling algorithm of [15] with a lattice basis as the secret key (also called
trapdoor). In 2012, Micciancio and Peikert [25] improved the preimage sam-
pling algorithm of [15] and proposed the concepts of primitive matrices and
G-trapdoors. The generations of primitive matrices and G-trapdoors are very
simple, and the preimage sampling algorithm built on them can be executed
quickly and efficiently. Since then, some improvements and schemes on [25] were
successively proposed (e.g., [6,7,14,20,23,27]).

Paper Organization. The rest of this paper is organized as follows. Section 2
reviews the definition of identity-based ring signatures and some preliminaries
about lattices. Section 3 presents our identity-based ring signature scheme and
its security proofs. Besides, we also analyze the efficiency of our scheme in this
section. Finally, Sect. 4 concludes this paper.

2 Preliminaries

Notations. Throughout this paper, the security parameter is a positive integer
n. For any positive integer d, we define [d] as the set {1, 2, . . . , d}. We denote the
number of elements in a set S by |S|. We represent vectors by bold lower case
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letters and matrices by bold upper case letters. Unless otherwise indicated, all
vectors are viewed as column. We use vt (resp. At) to denote the transpose of v
(resp. A). Let the i-th component of a vector v be vi. We define the lp-norm of v
as ‖v‖p = (

∑
i |vi|p)1/p for any integer p > 0. For convenience, we will omit the

subscript for the l2-norm. For a matrix A = [a1, . . . ,am], Ã denotes its Gram-
Schmidt orthogonalization and define ‖A‖p = maxi ‖ai‖p for any integer p > 0.
The concatenation of A and B is written as [A|B]. Let Sn

w be the set of binary
vectors of length n with Hamming weight w (i.e. the number of non-zero elements
in the vector is w). Define the largest singular value of A as s1(A) = maxu ‖Au‖,
where the maximum is taken over all unit vectors u.

For a distribution D, we denote by x
$←D that x is sampled randomly accord-

ing to D. For a set S, we denote by x
$←S that x is sampled uniformly at ran-

dom from S. We say that the function negl(n) is negligible meaning that it is
smaller than all polynomial fractions for sufficiently large n. We say that an
event happens with overwhelming probability if it happens with probability at
least 1−negl(n).

Let X and Y be two random variables over a finite domain D. We define
their statistical distance as Δ(X,Y ) = 1

2

∑
x∈D |Pr[X = x]−Pr[Y = x]|. We say

X and Y are statistically indistinguishable if Δ(X,Y ) <negl(n).

2.1 Identity-Based Ring Signatures

Definition 1 (Syntax). An identity-based ring signature scheme consists of
the following four polynomial-time algorithms:

– Setup(1n): On input a security parameter n, it outputs the public parameter
PP and the master secret key MSK.

– Extract(PP, ID,MSK): On input the public parameter PP , a user identity
ID ∈ {0, 1}∗ and the master secret key MSK, it generates a secret key SKID

corresponding to the identity.
– RSign(PP, μ, ID,R, SKID): On input the public parameter PP , a message

μ, a ring R, an identity ID ∈ R and the corresponding secret key SKID, it
outputs a ring signature Sig.

– RVerify(PP, μ,Sig, R): On input the public parameter PP , a message μ, a
ring R and a signature Sig, it returns 1 if the signature is valid; otherwise, it
returns 0.

Correctness. We require that an identity-based ring signature scheme must sat-
isfy the standard consistency. That is, for all message μ, ring R and ID ∈ R,
let (PP,MSK) ← Setup(1n), SKID ← Extract(PP, ID,MSK) and Sig ←
RSign(PP, μ, ID,R, SKID), then RVerify(PP, μ,Sig, R) will output 1 with over-
whelming probability. Like PKI-based ring signature schemes, a secure identity-
based ring signature scheme should also satisfy both anonymity and unforgeabil-
ity [5].

Definition 2 (Anonymity). An identity-based ring signature scheme is
anonymous if the advantage of any polynomial-time adversary in the follow-
ing game is negligible. The game is played between a challenger C and an
adversary A.



A Simpler Construction of Identity-Based Ring Signatures 281

Setup. Given a security parameter n, the challenger C runs the algorithm Setup
to generate the public parameter PP and the master secret key MSK. Then C
sends both PP and MSK to the adversary A.
Challenge. The adversary A submits a signing query to the challenger C on
a message μ, a ring R and two identities IDb ∈ R for b ∈ {0, 1}. The
challenger C picks a random b ∈ {0, 1} and returns a ring signature Sig ←
RSign(PP, μ, IDb, R, SKIDb

).
Guess. The adversary A outputs a guess b′ of b.

The advantage of A in this game is defined as |Pr[b′ = b] − 1/2|.
Definition 3 (Unforgeability). An identity-based ring signature scheme is
unforgetable under adaptive chosen-identity and chosen-message attacks if for
any polynomial-time adversary A the probability that A wins the following game
is negligible. The game is also played between a challenger C and adversary A.

Setup: Given a security parameter n, the challenger C runs the algorithm Setup
to generate the public parameter PP and the master secret key MSK. Then
C sends PP to the adversary A.

Extract query: The adversary A submits an identity ID ∈ {0, 1}∗ adaptively.
The challenger C runs the algorithm Extract to obtain a secret key SKID

corresponding to ID and then sends it to A.
Sign query: The adversary A submits a message μ, a ring R and an identity

ID ∈ R adaptively. The challenger C runs the algorithm RSign and then
forwards its result to A.

Forgery: The adversary A finally outputs a ring signature Sig∗ on the message
μ∗ and ring R∗. A wins the game if RVerify(PP, μ∗,Sig∗, R∗) = 1, (μ∗, R∗)
has never been submitted to Sign query and all identities in R∗ have never
been input to Extract query either.

2.2 Lattices

Definition 4. Given a matrix B ∈ R
m×m that contains a set of linearly inde-

pendent m-dimensional vectors b1, . . . ,bm, the m-dimensional full-rank lattice
Λ generated by B is defined as the linear combination of vectors b1, . . . ,bm,

Λ = L(B) = {Bc =
∑

cibi : c ∈ Z
m}.

We call the matrix B in the above a basis of the lattice L(B). In this paper,
we are only interested in the following lattices.

Definition 5. For positive integers q and m, a matrix A ∈ Z
n×m
q and a vector

u ∈ Z
n
q , define:

Λ⊥(A) = {e ∈ Z
m s.t. Ae = 0 (mod q)},

Λu(A) = {e ∈ Z
m s.t. Ae = u (mod q)}.

We can observe that if v ∈ Λu(A) then we have Λu(A) = Λ⊥(A)+v clearly,
that is, Λu(A) is a coset of Λ⊥(A).
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2.3 Hardness Assumption

The security of our scheme relies on the hardness of the short integer solution
(SIS) problem [2].

Definition 6 (SISq,m,β Problem). Given positive integers q,m, A ∈ Z
n×m
q

and β ∈ R
+, the SISq,m,β problem is to find a vector e ∈ Z

m\{0} satisfying
Ae = 0 (mod q) and ‖e‖ ≤ β.

For the hardness of the SISq,m,β problem, Micciancio and Regev [26] have
shown that, for any polynomial-bounded m,β = poly(n) and any prime q ≥
β · ω(

√
n log n), solving the SISq,n,m,β problem on the average is as hard as

approximating some intractable lattice problems in the worst case.

2.4 Discrete Gaussians

For any σ > 0 and x ∈ R
m, the Gaussian function over R

m centered at some
v ∈ R

m with parameter σ is defined as

ρv,σ(x) = exp(−π‖x − v‖2/σ2).

For any σ > 0 and m-dimensional lattice Λ ⊆ Z
m, the discrete Gaussian

distribution over Λ centered at some v ∈ Z
m with parameter σ is defined as

∀x ∈ Λ,DΛ,v,σ(x) = ρv,σ(x)/ρv,σ(Λ),

where ρv,σ(Λ) =
∑

z∈Λ ρv,σ(z).
For notation convenience, we may omit the parameter v (resp. σ) if v = 0

(resp. σ = 1) in the following. When the lattice is Z
m, we denote the discrete

Gaussian distribution DZm,v,σ by Dm
v,σ.

The discrete Gaussian distribution has following useful properties:

Lemma 1 ([26]). Let n, q be any positive integers and m ≥ 2n log q. Given a
matrix A ∈ Z

n×m
q , a basis B of Λ⊥(A) and a vector u ∈ Z

n
q , if the gaussian

parameter σ ≥ ‖B̃‖·ω(
√

log n), then for any x
$←DΛu(A),σ, we have ‖x‖ ≤ σ

√
m

with overwhelming probability.

Lemma 2 ([21]). For any positive k, σ ∈ R and any vector v ∈ Z
m, we have

1. Pr[|z| > kσ; z
$←D1

σ] ≤ 2e
−k2
2 .

2. Pr[‖z‖ > kσ
√

m; z
$←Dm

σ ] < kme
m
2 (1−k2).

3. If σ ≥ 3, then Dm
σ (z) ≤ 2−m.

4. Pr[Dm
σ (z)/Dm

v,σ(z) = O(1); z
$← Dm

σ ] = 1 − 2−ω(log m) for σ = ω(‖v‖√log m).
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2.5 Primitive Matrix

In this subsection, we will recall the primitive matrix G introduced in [25]. The
primitive matrix G is a matrix with special structure. It is usually generated by
the vector gt = (1, 2, 4, . . . , 2k−1) ∈ Z

k
q for k = �log q and G is defined as

G = In ⊗ gt ∈ Z
n×nk
q ,

where In ∈ Z
n×n is the identity matrix with order n and ⊗ denotes the tensor

product. That is,

G =

⎡

⎢
⎢
⎢
⎣

gt

gt

. . .
gt

⎤

⎥
⎥
⎥
⎦

∈ Z
n×nk
q .

The vector g defines a k-dimensional lattice Λ⊥(gt). Let Sk ∈ Z
k×k be a

basis of Λ⊥(gt), i.e., gt · Sk = 0 ∈ Z
k
q . Then S = In ⊗ Sk ∈ Z

nk×nk is the basis
of Λ⊥(G), and we have

Sk =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 q0
−1 2 q1

−1
. . .

...
2 qk−2

−1 qk−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ Z
k×k, S =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Sk

Sk

. . .
Sk

Sk

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ Z
nk×nk,

where (q0, q1, . . . , qk−1) is the binary expansion of q =
∑

i 2i · qi.
We can easily compute a vector x such that Gx = u mod q for any u ∈ Z

n
q .

By Lemma 1, we know that x can be small.
Next, we give a formal definition of G-trapdoors which will play an important

role in our scheme.

Definition 7. Given a matrix A ∈ Z
n×m
q and the primitive matrix G ∈ Z

n×nk
q

for some positive integers q,m, k. Let H ∈ Z
n×n
q be some invertible matrix. The

G-trapdoor for A with tag H is a matrix R such that A
[
R
I

]

= HG (mod q).

The quality of the trapdoor R is measured by s1(R).

Lemma 3 ([25]). Let Dn×m
σ be a discrete Gaussian distribution with parameter

σ. For any X
$←Dn×m

σ , we have s1(X) ≤ σ · O(
√

n +
√

m) except with negligible
probability.

The motivation behind the usage of primitive matrices is that it’s easy to
be produced and takes up little storage. In addition, the preimage sampling
algorithm and the trapdoor delegation algorithm derived from primitive matrices
are also quite efficient.

Theorem 1 ([25]). For any integers q ≥ 2, k = �log q, there is a primitive
matrix G ∈ Z

n×nk
q such that
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– The lattice Λ⊥(G) has a known basis S ∈ Z
nk×nk with ‖S̃‖ ≤ √

5 and ‖S‖ ≤
max{√5,

√
k}.

– Both G and S require little storage. In particular, they are sparse (with only
O(nk) nonzero entries) and highly structured.

– Preimage sampling for fG(x) = Gx (mod q) with Gaussian parameter σ ≥
‖S̃‖ · ω(

√
log n) can be performed in quasilinear time.

Now we recall several useful algorithms related with primitive matrices and
G-trapdoors. Their details can be found in [25].

GenTrap(Ā,H): Let q ≥ 2, m̄ ≥ 1 be integers and k = �log q. Given an
uniformly random matrix Ā ∈ Z

n×m̄
q and an invertible matrix H ∈ Z

n×n
q , the

polynomial time algorithm GenTrap(Ā,H) will output a random matrix
A = [Ā|HG − ĀR] and a G-trapdoor R ∼ Dm̄×nk

σ with tag H, where
σ = ω(

√
log n).

SampleD (A,R,H,u, σ): Let q ≥ 2,m = O(n log q) be integers and k =
�log q. Given a matrix A ∈ Z

n×m
q , a G-trapdoor R ∈ Z

m×nk with tag
H and a vector u ∈ Z

n
q . Let A′ = HG − AR ∈ Z

n×nk
q and Gaussian

parameter σ ≥ s1(R) · ω(
√

log n). The polynomial time algorithm Sam-
pleD(A,R,H,u, σ) will output a vector e ∈ Z

m+nk sampled from a dis-
tribution that is statistically close to DΛu([A|A′]),σ.

DelTrap(A,A1,R,H, σ): Let q ≥ 2,m = O(n log q) be integers and k =
�log q. Given a matrix A ∈ Z

n×m
q along with a G-trapdoor R ∈ Z

(m−nk)×nk,
a new matrix A1 ∈ Z

n×nk
q , an invertible matrix H ∈ Z

n×n
q and a Gaus-

sian parameter σ ≥ s1(R) · ω(
√

log n), the polynomial time algorithm Del-
Trap(A,A1,R,H, σ) will output a G-trapdoor R′ ∈ Z

m×nk for matrix
[A|A1] with tag H.

In the rest of the paper, we will set H = In and omit it for simplicity.

2.6 Rejection Sampling

As mentioned before, the rejection sampling technique used in this paper is
to ensure the real distribution of signatures is statistically close to the ideal
distribution that we want. We will use the technique to make the distribution of
outputted signatures independent of users’ secret keys in our scheme.

Lemma 4 ([21], Rejection Sampling). Let m be a positive integer and V be
an arbitrary set. Let f and gv be probability distributions over Z

m where gv is a
family of probability distributions indexed by v ∈ V with the property that

∃M ∈ R
+ s.t. Mgv(z) ≥ f(z) for all v ∈ V, z

$← f.

Then the distributions of the following two algorithms are statistically indistin-
guishable (within statistical distance 2−ω(log m)

M ):

1. v
$←V , z

$← gv, output (z, v) with probability min( f(z)
Mgv(z)

, 1).

2. v
$←V , z

$← f , output (z, v) with probability 1/M .
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3 Our Identity-Based Ring Signature Scheme

3.1 Description

Our scheme works as follows:

Setup: Given a security parameter n, pick integers q ≥ 2, m = O(n log q),
m̄ ≥ 1, w ≥ 3 and k = �log 2q, and a fixed positive real M < 3.
Let m = m̄ + nk. Select two hash functions H1 : {0, 1}∗ → Z

n×nk
2q and

H2 : {0, 1}∗ → Sn
w. Choose an uniformly random matrix Ā ∈ Z

n×m̄
2q , run

the algorithm GenTrap(Ā) to generate a matrix A ∈ Z
n×m
2q along with a

G-trapdoor R ∼ Dm̄×nk
σ1

. The system public parameter is (A,H1,H2) and
the master secret key is R.

Extract: Given an identity IDi ∈ {0, 1}∗, do:
1. Let Qi = H1(IDi) and Ai = [A|Qi];
2. Run the algorithm DelTrap(A,Qi,R, σ2) to generate the G-trapdoor

Ri for Ai;
3. Run the algorithm SampleD(Ai,Ri,ut, σ3) repeatedly to generate a

short matrix Si such that AiSi = qIn mod 2q, where ut is the t-th
column of qIn for t ∈ [n];

4. Output the secret key SKIDi
= Si ∈ Z

(m+nk)×n.
RSign: Given a message μ, a ring R = (ID1, ID2, . . . , IDl), an identity IDs ∈ R

and a corresponding secret key SKIDs
, do:

1. For each identity IDj ∈ R, choose a vector yj
$←Dm+nk

σ ;
2. Calculate c = H2(

∑
j∈[l] Ajyj , R, μ);

3. For all j ∈ [l]\{s}, let zj = yj ;
4. Choose a random bit b ∈ {0, 1}, calculate zs = (−1)bSsc+ys and output

zs with probability

1
/(

M exp
(

−‖Ssc‖2
2σ2

)

cosh
( 〈zs,Ssc〉

σ2

))

;

5. Output the ring signature Sig = ({zj}j∈[l], c, R).
Verify: Given a message μ, a ring R = (ID1, . . . , IDl) and a signature Sig =

({zj}j∈[l], c, R), the algorithm outputs 1 if the following conditions hold:
1. For all j ∈ [l], ‖zj‖ ≤ ησ

√
m + nk, where 1.1 ≤ η ≤ 1.4;

2. c = H2(
∑l

j=1 Ajzj + qc mod 2q,R, μ).

3.2 Parameters and Correctness

In order to generate a matrix A ∈ Z
n×m
2q and its G-trapdoor R ∼ Dm̄×nk

σ1
,

we set integers q ≥ 2, k = �log 2q and m ≥ 2n log 2q. For sampling preimages
of fG(x) = Gx (mod q), the Gaussian parameter in the algorithm GenTrap
should be set as σ1 ≥ ‖S̃‖ · ω(

√
log n) =

√
5 · ω(

√
log n) by Theorem 1. From

Lemma 3, we know s1(R) ≤ σ1 · (
√

m̄ +
√

nk) = O(
√

n log 2q) · ω(
√

log n). The
Gaussian parameter σ2 for delegating the G-trapdoor Ri should be set as σ2 ≥
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s1(R) · ‖S̃‖ ·ω(
√

log n) = O(
√

n log 2q) ·ω(log n) according to the algorithm Del-
Trap. Thus we have s1(Ri) ≤ σ2 ·O(

√
m+

√
nk) = O(n log 2q)·ω(log n). To sam-

ple a secret key Si, we set σ3 ≥ s1(Ri) ·‖S̃‖·ω(
√

log n) = O(n log 2q) ·ω(log3/2 n)
according to the algorithm SampleD. Finally, we set σ = wσ3

√
m + nk to make

pzs
≤ 1 (defined later) so that the rejection sampling works.
For a signature Sig = ({zj}j∈[l], c, R) generated by the algorithm RSign, we

know that all zj ’s are distributed according to the distribution f = Dm+nk
σ

except zs that satisfies the distribution gSsc = 1
2Dm+nk

Ssc,σ + 1
2Dm+nk

−Ssc,σ before
performing rejection sampling. By Lemma 4, to get the distribution of f =
Dm+nk

σ , we can output zs with probability

pzs
=

f(zs)
MgSsc(zs)

= 1
/(

M exp
(

−‖Ssc‖2
2σ2

)

cosh
( 〈zs,Ssc〉

σ2

))

.

From Lemma 2, we have that ‖zj‖ ≤ ησ
√

m + nk with overwhelming probability.
In addition, we know
∑

j∈[l] Ajzj + qc =
∑

j∈[l]\{s} Ajyj + As((−1)bSsc + ys) + qc (mod 2q)
=

∑
j∈[l]\{s} Ajyj + Asys + ((−1)bAsSs)c + qc (mod 2q)

=
∑

j∈[l] Ajyj + (−1)bqc + qc (mod 2q)
=

∑
j∈[l] Ajyj (mod 2q)

Therefore, we can obtain that c = H2(
∑l

j=1 Ajzj + qc mod 2q,R, μ).

3.3 Security

Theorem 2. Our identity-based ring signature scheme is secure in the random
oracle model under the SIS assumption.

We prove the theorem using the following two lemmas.

Lemma 5. Our identity-based ring signature scheme satisfies anonymity.

Proof. The anonymity is straightforward. Assume there are two signers each
with an identity IDb for b ∈ {1, 2}. We denote Sigb = ({zb

j}j∈[l], cb, R) as the
ring signature on ring R = (ID1, ID2, . . . , IDl) and message μ generated by
the signer IDb. Since all zb

j for both b ∈ {1, 2} and j ∈ [l] are distributed close
to Dm+nk

σ by construction and by Lemmas 2 and 4. Thus, the two signatures
Sig1,Sig2 on the same message and ring but generated by two different signers
would also be statistically close. This concludes the proof.

Lemma 6. If there is a polynomial-time adversary A who can break our
identity-based ring signature scheme with non-negligible probability, then there
exists a polynomial-time algorithm C who can solve the SIS problem with non-
negligible probability.

Proof. Given a security parameter n, integers q ≥ 2, m = O(n log q), w ≥ 3 and
k = �log 2q. The simulation works as follows:
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– Setup: The algorithm C first picks two collision-resistant hash functions
H1 : {0, 1}∗ → Z

n×nk
2q ,H2 : {0, 1}∗ → Sn

w and chooses an uniformly ran-
dom matrix A ∈ Z

n×m
2q . Assume the adversary A can make at most s queries

to the signing oracle, h queries to the random oracle H2 and e queries to the
secret key extraction oracle. Let the maximum number of identities in the

system be d. Then the algorithm C chooses c1, . . . , ct
$←Sn

w for t = s + h
and random B1, . . . ,Bd ∈ Zn×nk

2q . Finally, C sends the public parameter
PP = (A,H1,H2) to the adversary A. Here H1 and H2 will be viewed as
random oracles controlled by C. The SIS problem is to find a non-zero short
x such that [A|B1| . . . |Bd]x = 0 mod q.

– Query: The adversary A could make the following types of queries.
• H1 query: The adversary A sends an identity IDi to C. Then C retrieves

the list L1, an initially empty list with tuples like (IDi,Qi,Ri,Ai, j). If
IDi already appears in the list L1, C simply returns Qi. Otherwise, C
selects a matrix Ri ∼ Dm×nk

σ1
randomly and selects an unused matrix Bk

from the set {B1, . . . ,Bd}, then returns Qi = G − ARi with probability
δ = e

e+d and returns Qi = Bk with probability 1 − δ. Finally, C inserts
the tuple (IDi,Qi,Ri,Ai, j) into the list L1, where Ai = [A|Qi], and
j = 1 if Qi = G − ARi, otherwise j = 2 and Ri =⊥.

• H2 query: The adversary A sends a message μ and ring R =
(ID1, . . . , IDl) to C. C retrieves the list L2, an initially empty list with
tuples like (μ,R, c). If C finds a match, C simply returns c. Otherwise, C
replies the query by selecting an unused ci from the set {c1, . . . , ct} and
gives it back to the adversary A. Then C adds the tuple (μ,R, c) to the
list L2.

• Extract query: The adversary A submits an identity IDi adaptively. C
retrieves the list L3, an initially empty list with tuples like (IDi,Si). If
IDi has already appeared in the list L3, then C returns Si. Otherwise,
C retrieves the list L1 and finds the tuple (IDi,Qi,Ri,Ai, j). If j = 1,
then C runs the algorithm SampleD with Ri to generate a secret key Si

and adds the tuple (IDi,Si) to the list L3. If j = 2, C will abort. We can
see that in the simulation C doesn’t abort in this step with probability at
least δe.

• Sign query: The adversary A submits a message μ, a ring R and an iden-
tity IDi ∈ R. Then challenger C retrieves the list L4, an initially empty
list with tuples like (IDi, R, μ, {zj}, c). If this query has been submitted
before, C finds a match and replies with ({zj}, c). Otherwise, C chooses

random zj
$←Dm+nk

σ and an unused ci, sets c = ci and programs the
random oracle H2(

∑
Ajzj + qc mod 2q,R, μ) = c. Finally, C returns

({zj}, c) to A and inserts the tuple (IDi, R, μ, {zj}, c) into L4.
– Forgery: The adversary A eventually outputs a valid forgery ({z∗

j}, c∗) on
the message μ∗ and ring R∗ with non-negligible probability ε. And A has not
made any sign queries on (μ∗, R∗) and extract queries on any IDi ∈ R∗.
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If there is an identity in R∗ such that the corresponding Qi is not selected
from the set {B1, . . . ,Bd}, then C will abort. We know that in the simulation C
doesn’t abort in this step with probability at least (1 − δ)d.

If H2 and signing oracle have not been queried, then A can produce c∗

such that c∗ = H2(
∑

Ajz∗
j + qc∗ mod 2q,R∗, μ∗) only with probability 1/|Sn

w|.
So, with probability at least 1 − 1/|Sn

w|, c∗ is one of the elements in the set
{c1, . . . , ct}. Hence, we know the probability that A outputs a valid forgery and
c∗ is in the set {c1, . . . , ct} is at least ε − 1/|Sn

w|.
Assume that c∗ = ci where ci is a response of C to a query on H2 made by

A. Now we repeat the above process. According to the General Forking Lemma
of [4], we can obtain a new valid signature ({z′

j}, c′) on the message μ∗ and
ring R∗ such that c′ �= c∗ with non-negligible probability. Moreover, we know∑

Ajz∗
j + qci =

∑
Ajz′

j + qc′
i mod 2q. Let zj = z∗

j − z′
j = (zt

j1, z
t
j2)

t. We have

l∑

j=1

Ajzj = [A|Q1|Q2|...|Ql](zt
11 + zt

21 + ... + zt
l1, z

t
12, z

t
22, . . . , z

t
l2)

t.

Let F = [A|Q1|Q2|...|Ql] and v = (zt
11+zt

21+ ...+zt
l1, z

t
12, z

t
22, . . . , z

t
l2)

t. We can
obtain Fv = q(c′ − c∗) mod 2q. Since c′ − c∗ �= 0 mod 2, we know that v �= 0
mod 2q. Furthermore, we also have v �= 0 mod q with high probability. So, we
know Fv = 0 mod q. Since the matrices Qi are chosen from the set {B1, . . . ,Bd},
a non-zero short vector u can be obtained by padding 0 at the appropriate
positions of the vector v such that F′u = 0 mod q where F′ = [A|B1|...|Bd].
Therefore, we obtain a solution of the SIS problem.

3.4 Efficiency

In Table 1, we compare the efficiency of our scheme and Wang’s schemes [32],
where � is the length of messages in [32] and l is the size of the ring used in
signatures. We can see that compared with [32], our scheme has less storage
overhead than Wang’s ones.

In addition, we can see that our scheme is also more efficient than Wang’s
ones in terms of computational costs. The notations TEB and TRB denote the
costs of the algorithms ExtBasis and RandBasis used in [32] respectively.
And TSP and TSD denote the costs of the algorithms SamplePre and SampleD
respectively. Let TDT denote the cost of the algorithm DelTrap and TSM denote
the cost of a scalar multiplication. We omit the costs of hashing and addition
operations. From Table 1, we can see that the signature generation process in our
scheme only involves simple operations while it involves the preimage sampling
algorithm in Wang’s schemes. The secret key extraction algorithm in our scheme
will run SampleD about n-times, it is faster than the algorithm RandBasis
used in Wang’s schemes. Therefore, our scheme is more efficient in terms of both
storage and computational overhead.
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Table 1. Comparison of several schemes.

Scheme [32] Sect. 4.1 [32] Sect. 4.2 Our scheme

PP size O(n2 log q) O(�n2 log q) O(n2 log q)

SK size O(n2 log2 q) O(n2 log2 q) O(n2 log q)

Sig size O(ln log q) O(ln log q) O(ln log q)

Extract cost O(TEB + TRB) O(TEB + TRB) O(TDT + nTSD)

RSign cost O(TSP + ln2 log qTSM ) O(TSP + ln2 log qTSM ) O(ln2 log qTSM )

ROM Yes No Yes

4 Conclusion

In this paper, we have proposed a new identity-based ring signature scheme
from lattices and proved its security in the random oracle model under the SIS
assumption. Comparisons show that our scheme is more efficient than Wang’s
ones [32] in terms of both storage and computational overhead.
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work is supported by the National Natural Science Foundation of China under Grant
61502443.
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Abstract. The aggregate message authentication code (aggregate
MAC) is a cryptographic primitive which can compress MAC tags on
multiple messages into a short aggregate MAC tag. Furthermore, the
sequential aggregate MAC can check not only the validity of multiple
messages but also the (sequential) order of messages. In this paper, we
introduce a new model of sequential aggregate MACs where an aggrega-
tion algorithm generates a sequential aggregate tag depending only on
any multiple and independent MAC tags with no secret-key, and we for-
mally define security in this model. We also propose a generic construc-
tion of sequential aggregate MACs starting from various MACs without
changing the structure of the MACs. This property is useful to make the
existing networks more efficient by combining the aggregation algorithm
with various MAC schemes already existing in the networks.

Keywords: Message authentication · MAC · Aggregate MAC
Sequential aggregate MAC

1 Introduction

The message authentication code (MAC) is one of the most fundamental cryp-
tographic primitives. Furthermore, Katz and Lindell [8] proposed the aggregate
MAC that can compress multiple MAC tags on multiple messages generated
by different signers into a single aggregate tag. The advantage of the aggregate
MAC lies in that the size of an aggregate tag is much smaller than total sizes
of MAC tags, and hence it will be useful in applications in mobile networks or
IoT (Internet of Things) networks where many devices sending messages are
connected. The model and security of aggregate MACs were introduced by Katz
and Lindell [8], and they proposed the simple construction satisfying the security
by using exclusive-or of MAC tags.

Furthermore, there is another line of research about compressing MAC tags,
called the sequential aggregate MACs. In sequential aggregate MACs, we can
check not only the validity of multiple messages (like the aggregate MACs) but
c© Springer Nature Switzerland AG 2018
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also the (sequential) order of messages. This property is required in applica-
tions including networks of resource-constrained devices such as IoT networks
and mobile ad-hoc networks (MANET). Eikemeier et al. [5] formally defined
the model and security for sequential aggregate MACs. They also introduced
history-freeness which is a property depending only on a local message of each
sender and the prior aggregate tag (aggregate-so-far tag), and they proposed
history-free sequential aggregate MAC schemes. Ma and Tsudik [9] gave a sim-
ple construction by using hash functions for sequential aggregate MACs with
forward security, however, they did not give a formal security proof to show
that their construction met the security. Hence, Hirose and Kuwakado [6] for-
mally defined the forward security in sequential aggregate MACs, and proposed
a construction satisfying the security property with a formal security proof.
Tomita et al. [10] gave a model of sequential aggregate authentication codes in
the information-theoretic security setting, and they proposed constructions along
with their model. The model in [10] focuses the one-time information-theoretic
security which is different from those of [5,6,9].

Our motivation is to make the existing networks using MACs more efficient
than the present state of affairs, however, it is not realistic to replace the cur-
rently existing network protocols with other ones entirely in general. Instead, we
consider to simply embed a new node for improvement of efficiency (by aggregat-
ing MAC-tags sequentially) into the existing network without changing input-
formats or structures of the existing MACs in the networks. In this paper, we call
such a node an aggregate node whose role is to sequentially compress any mul-
tiple MAC-tags into a short tag without managing secret keys. The prior work
for sequential aggregate MACs [5,6,9] does not satisfy our targeted property,
namely, the prior work needs a new system setting (e.g., changing composition
of MACs or setting an aggregate algorithm with a secret-key) or needs to change
input-formats of the underlying MAC schemes (e.g., additional information with
the local message would be required as input of MACs).

In this paper, we introduce a new model of sequential aggregate MACs where
an aggregation algorithm generates a sequential aggregate tag depending only
on multiple and independent MAC tags without any secret-key, and we formally
define security in this model in Sect. 3. Our model and security are quite different
from those of previous works. In addition, we propose two generic constructions
of sequential aggregate MACs, called SAMAC1 and SAMAC2, starting from any
MAC schemes (e.g., HMAC [2,3] and CMAC [1]) in Sect. 4.1, and we formally
prove that our constructions meet the security in Sect. 4.2. We also show an
application of our sequential aggregate MACs in Sect. 5: we consider a case
where a device transmits long data by data-partitioning in a wireless network.
Furthermore, it is shown in Sect. 6 that we can transform our construction into
history-free sequential aggregate MACs [5]. Hence, ours can also be used as the
prior sequential aggregate MACs.

To clarify the (dis)advantage of our constructions, we compare ours (i.e.,
SAMAC1 and SAMAC2) and the existing ones (i.e., MT [9], EFG+ [5], and
HK [6]) in terms of universal applicability, security, and efficiency in Tables 1,
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2 and 3, where we do not compare TWS [10] with others, since the security of
TWS is information-theoretic and quite different from others. In the following,
we explain differences among them by using Tables 1, 2 and 3.

(i) Universal Applicability. We consider applicability of embedding an
aggregate node into the existing MAC protocols without changing the
input-formats or network connections of underlying MACs. We also con-
sider whether an aggregate algorithm can be executed without secret keys.
Table 1 summarizes information about this. In previous works [5,6], each
sender has to use not only a local message but also an aggregate-so-far
tag to generate an aggregate tag, which means that we need to change
the input-formats or structure of the underlying MACs. In addition, the
constructions in [5,6,9] require other primitives except for MACs, such as
a collision-resistant hash function [9], a pseudorandom permutation [5], or
a pseudorandom generator [6]. On the other hand, our two constructions,
SAMAC1 and SAMAC2, need not to change the input-formats or network
connections of underlying MACs, and can generate an aggregate tag from
MAC-tags without a secret key. While SAMAC1 requires only a MAC as a
primitive, SAMAC2 needs a cryptographic hash function in addition to a
MAC.

(ii) Security. We summarize provable security in Table 2. We note that a secu-
rity proof of MT is not given, while other ones have provable security. We
also note that the security proof of SAMAC2 is given in the random oracle
model (ROM) while the security of HK, EFG+, and SAMAC1 are proved
in the standard model (i.e., without random oracles).

(iii) Efficiency. Table 3 shows efficiency for the constructions. The number of
function-calls, denoted by #Func.-call, shows how many times the required
primitives are invoked in generating an aggregate tag. The number of
function-calls in our constructions is smaller than those of the existing ones,
which indicates that communication among senders and an aggregation
node in our constructions is more efficient. Parallel computation in Table 3
means whether we can compute an aggregate tag in parallel. Although MT,
HK, and EFG+ need to transmit an aggregate tag in a sequential way from
a sender to another sender due to the order of messages, ours can compute
an aggregate tag in parallel since each sender can compute a MAC-tag in
parallel and then an aggregation node aggregates them into an aggregate
tag following the order of messages. Parallel computability leads to less time
complexity and avoids delay of sending messages in a network. Time com-
plexity in Table 3 means the number of operations required for computing
an aggregate tag. Our constructions do not need to compute MAC-tags N
times owing to parallel computation of MAC-tags, while we need (N − 1)
matrix multiplications in SAMAC1. It is not easy to strictly compare time
complexity of SAMAC1 with those of MT, HK, and EFG+, since quite
different operations are used. Anyway, we can say that our second con-
struction SAMAC2 is best in time complexity since its time complexity
does not depend on N . All of the constructions have the same bit-length of



298 S. Sato et al.

aggregate tags. The reduction loss being small implies that the gap between
the resulting constructions and the underlying MACs in the security proof
is small. From this viewpoint, SAMAC1 and SAMAC2 are superior to HK
and EFG+. In total, we see that SAMAC2 is best among all ones in terms
of efficiency.

(iv) Summary. In order to make the existing networks using MACs more effi-
cient with slight change, universal applicability shown in Table 1 is impor-
tant in a real world. In addition, we require provable security for the con-
structions, and we desire more efficiency than the current situation of the
network that is our goal in this paper. From the viewpoints, we consider
SAMAC2 is superior to others, though the security proof is given in the
random oracle model. It is interesting to consider SAMAC1 as well in the
standard model, and it is also interesting in versatility since it can be trans-
formed into a history-free sequential aggregate MAC in the model of [5]
without changing the input-formats of the MAC or adding any other prim-
itive except for the MAC.

Table 1. Universal Applicability: CRH means a collision-resistant hash function, PRP
means a pseudorandom permutation, PRG means a pseudorandom generator, and HF
is a cryptographic hash function. MAC’s input means the input-format required for
the underlying MAC, m is a message, e is the end-marker in a time period, and τ̃ is a
previous aggregate tag.

Construction Keyless aggregation Primitive MAC’s input

MT [9] � MAC and CRH m

HK [6] MAC and PRG m‖e‖τ̃

EFG+ [5] MAC and PRP m

SAMAC1 � MAC m

SAMAC2 � MAC and HF m

Table 2. Security: UF means unforgeability. ROM means the random oracle model,
and Standard Model means the model without any random oracles.

Construction Security level Provable security Standard model

MT [9] Forward UF n/a

HK [6] Forward UF � �
EFG+ [5] UF � �
SAMAC1 UF � �
SAMAC2 UF � ROM
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Table 3. Efficiency: Let N be the number of senders, let q be the number of queries to
the tagging oracle, and let L be the maximum number of ID/message pairs in submit-
ted queries. #Func.-call means the number that primitives are invoked in generating an
aggregate tag. For a primitive P ∈ {MAC,CRH,PRG,PRP,HF}, TP means time com-
plexity for computing P , and TMUL means time complexity for computing multiplication
of two matrices. Agg.-tag size means bit-length of aggregate tags, and n is bit-length
of the underlying MAC. Reduction loss means the ratio ε/ε′, where ε and ε′ are the
success probabilities of adversaries’ attacks against the corresponding construction and
the underlying MAC, respectively.

Construction #Func.-call Parallel
computation

Time
complexity

Agg.-tag
size

Reduction
loss

Primitive #Call

MT [9] MAC N N · TMAC +
(N −1)TCRH

n n/a

CRH N

HK [6] MAC N N · TMAC +
U · TPRG

n O(Nq2)

PRG U

EFG+ [5] MAC N N · TMAC +
N · TPRP

n O(Nq2L)

PRP N

SAMAC1 MAC N � TMAC +
(N −1)TMUL

n O(N(1 −
2− n

4 )−N )

SAMAC2 MAC N � TMAC + THF n O(N)

HF 1

2 Preliminaries

In this paper, we use the following notations. For a positive integer n, let [n] :=
{1, 2, . . . , n}. If we write a negligible function ε in λ, it means a function ε : N →
[0, 1] where ε(λ) < 1/g(λ) for any polynomial g and a sufficiently large λ. We
describe {xi}i∈[n] := {x1, x2, . . . , xn} as a set of values xi for all i ∈ [n], and
(xi)i∈[n] := (x1, x2, . . . , xn) as a sequence of values xi for all i ∈ [n]. We denote
a polynomial in n by poly(n). Probabilistic polynomial time is abbreviated as
PPT.

We define a deterministic message authentication code (MAC) as follows: A
MAC scheme consists of three polynomial-time algorithms (KGen, Tag, Vrfy).

– k ← KGen(1λ): KGen is a randomized algorithm which, on input a security
parameter λ, outputs a secret key k ∈ K.

– t ← Tag(k,m): Tag is a deterministic algorithm which, on input a secret key
k and a message m ∈ M, outputs a tag t ∈ T .

– 1/0 ← Vrfy(k,m, t): Vrfy is a deterministic algorithm which, on input a secret
key k, a message m, and a tag t, outputs 1 (acceptance) or 0 (rejection).

Let K be a key-space, let M be a message-space, and let T be a tag-space.
It is required that, for all k ← KGen(1λ) and all m ∈ M, we have 1 ←
Vrfy(k,m,Tag(k,m)).
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We next define security notions of unforgeability against chosen message
attacks (UF-CMA) and pseudorandomness for the MACs as follows: Let MAC
= (KGen, Tag, Vrfy) be a MAC scheme.

UF-CMA. MAC meets UF-CMA, if for any PPT adversary A against MAC,
the advantage of Advuf-cma

MAC,A(λ) := Pr[A wins] is negligible, where [A wins] is
an event that A wins, in the following game:
Setup: A challenger generates k ← KGen(1λ) and sets LTag = ∅.
Tagging: The tagging oracle Tagk(·) takes a query m ∈ M, returns t ←

Tag(k,m), and sets LTag ← LTag∪{m}. The number of queries submitted
by A is at most Q = poly(λ).

Output: When A outputs a forgery (m∗, t∗), A wins if the following holds:
1 ← Vrfy(k,m∗, t∗), and m∗ �= m for any m ∈ LTag.

Pseudorandomness. MAC meets pseudorandomness, if the following holds:
Advpr

MAC,D(λ) :=
∣
∣Pr[DTagK(·)(1λ) = 1] − Pr[Df(·)(1λ) = 1]

∣
∣ is negligible.

Here, D is a PPT algorithm which, on input an oracle either Tagk(·) or f(·),
determines which oracle is given; Tagk(·) is the tagging oracle which, on input
m ∈ M, returns t = Tag(k,m); and f(·) is an oracle which, on input m ∈ M,
returns f(m) for a random function f : M → T .

3 Sequential Aggregate MACs: Our Model and Security

We introduce a new model of sequential aggregate MACs where an aggregation
algorithm generates a sequential aggregate tag depending only on multiple and
independent MAC tags without any secret-key, and we formally define security
in this model.

Let MAC=(KGen, Tag, Vrfy) be a MAC scheme. Then, a sequential aggre-
gate MAC scheme consists of a tuple of five polynomial-time algorithms (KGen,
Tag, Vrfy, SeqAgg, SAVrfy) as follows, where N is the number of senders, ID
is an ID-space, K is a key-space, M is a message-space, T is a tag-space, and
Tagg is an aggregate tag-space. Let S := {(id�1 , id�2 , . . . , id�

̂N
) | N̂ ≤ N ∧ idi �=

idj if i �= j}, which means the set of all different sequences of IDs with length
at most N :

– kid ←KGen(1λ, id): KGen is a randomized algorithm which, on input a secu-
rity parameter λ and an ID id ∈ ID, outputs a secret key kid ∈ K. Note that
this is the same as KGen of the underlying MAC except for adding id.

– t ←Tag(kid,m): Tag is a deterministic algorithm which, on input a secret key
kid and a message m, outputs a tag t ∈ T . This is the same as Tag of the
MAC.

– 1/0 ←Vrfy(kid,m, t): Vrfy is a deterministic algorithm which, on input a
secret key kid, a message m ∈ M, and a tag t, outputs 1 (acceptance) or 0
(rejection). This is the same as Vrfy of the MAC.

– τ ←SeqAgg(T ): SeqAgg is a deterministic algorithm which, on input a
sequence of tags T = ((id�i

, ti))i∈[ ̂N ] such that (id�1 , . . . , id�
̂N
) ∈ S, outputs

an aggregate tag τ ∈ Tagg.
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– 1/0 ←SAVrfy(K,M, τ): SAVrfy is a deterministic algorithm which, on input
a set of key/id pairs K = {(kidi

, idi)}i∈[N ], a sequence of message/id pairs
((mi, id�i

))i∈[ ̂N ] for any (id�1 , . . . , id�
̂N
) ∈ S, and an aggregate tag τ , outputs

1 (acceptance) or 0 (rejection).

We require that the following condition (i.e., correctness) holds:

– For all id ∈ ID, all kid ← KGen(1λ, id) and all m ∈ M, we have 1 ←
Vrfy(kid,m,Tag(kid,m)).

– For all id ∈ ID, all kid ← KGen(1λ, id) and all m ∈ M, for any K =
{(kidi

, idi)}i∈[N ] and any M = ((mi, id�i
))i∈[ ̂N ] such that (id�1 , . . . , id�

̂N
) ∈ S,

we have 1 ← SAVrfy(K,M, τ), where T = ((id�i
,Tag(kid�i

,mi)))i∈[ ̂N ] and
τ = SeqAgg(T ).

We define the following relation for sequences of message/ID pairs in order
to define security of sequential aggregate MACs in our model.

Definition 1. For two sequences of message/ID pairs M (1) = ((m(1)
i ,

id
(1)
i ))i∈[N(1)] and M (2) = ((m(2)

i , id
(2)
i ))i∈[N(2)], we define (M (1))i1,i2 ≡

(M (2))i′
1,i′

2
for i1, i2, i

′
1, i

′
2 such that i1 < i2 ≤ N (1) and i′1 < i′2 ≤ N (2), if

the following holds:

((m(1)
i1

, id
(1)
i1

), · · · , (m(1)
i2

, id
(1)
i2

)) = ((m(2)
i′
1

, id
(2)
i′
1

), · · · , (m(2)
i′
2

, id
(2)
i′
2

)).

If not, we denote (M1)i1,i2 �≡ (M2)i′
1,i′

2
.

We next define a security notion of C-aggregate unforgeability against chosen
message attacks (C-aggUF-CMA) in our model.

Definition 2 (C-aggUF-CMA). A sequential aggregate MAC scheme
SAMAC = (KGen, Tag, Vrfy, SeqAgg, SAVrfy) meets C-aggUF-CMA, if for
any PPT adversary A against SAMAC, the advantage Advagg-uf

SAMAC,A(λ) :=
Pr[A wins] of A is negligible, where [A wins] is an event that A wins, in the
following game:

Setup: A challenger generates a set of secret-key/ID pairs K = {(kidi
, idi)}i∈[N ]

by using the KGen algorithm. Then, it sets lists LCor = ∅ and LSA = ∅.
Corrupt: The corrupt oracle Corrupt(·) takes an ID id ∈ ID as input and returns

the secret key kid and sets LCor ← LCor ∪ {id}, where LCor means a list of
IDs whose corresponding secret keys are known by an adversary. The number
of queries submitted by A is at most C.

Tagging: The sequential aggregate tagging oracle SATagK(·) takes a sequence of
message/ID pairs M = ((mi, id�i

))i∈[ ̂N ] such that (id�1 , . . . , id�
̂N
) ∈ S and

the number of not corrupted tags is at least N − C, where without loss of
generality, we assume that id�1 /∈ LCor and id�

̂N
/∈ LCor. Then, it does the

following:
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1. Compute ti ← Tag(kid�i
,mi) for all i ∈ [N̂ ],

2. Output τ ← SeqAgg(((id�i
, ti))i∈[ ̂N ]),

3. Set LSA ← LSA ∪ {M}.
The number of queries which A submits is at most Q = poly(λ). A is not
allowed to access Corrupt(·) after accessing SATagK(·). In addition, A is not
allowed to query M such that for any M ′ ∈ LSA, it holds that (M)1,1+� ≡
(M ′)1,1+� or (M)

̂N−�, ̂N ≡ (M ′)
̂N ′−�, ̂N ′ , where � := min(N̂ − 1, N̂ ′ − 1) and

N̂ ′ is the number of message/ID pairs in M ′.

Output: When A outputs M∗ = ((m∗
i , id�∗

i
))i∈[ ˜N ] and τ∗, A wins if the following

holds:

– 1 ← SAVrfy(K,M∗, τ∗),
– (id�∗

1
, . . . , id�∗

˜N
) ∈ S such that id�∗

1
/∈ LCor and id�∗

˜N
/∈ LCor, and the number

of not corrupted IDs is at least N − C,
– M∗ /∈ LSA, and M∗ is not any concatenation of queries in LSA and a tag

generated by a secret key of corrupted entities in LCor.

In principle, it is impossible in our model to guarantee the unforgeability
against an adversary who can observe each MAC-tag before the aggregation. This
reason is that, if the adversary obtains a sequence {(mi,Tag(kidi

,mi))}i∈[ ̂N ] by
accessing the tagging oracle, he can generate an aggregate tag for any sequential
messages (m�i

)i∈[N ] because SeqAgg algorithm is keyless. Thus, we consider
the attacking model where an adversary makes a forgery by only accessing the
sequential aggregate tagging oracle.

We next show a condition for a SeqAgg algorithm to achieve C-aggUF-CMA.
For simplicity, we view a SeqAgg algorithm as a function F : T N → Tagg, where
T is a MAC tag-space and Tagg is an aggregate tag-space. Then, the following
proposition states that, for given y ∈ Tagg, the equation F (x) = y should not be
correctly solved in polynomial time for achieving C-aggUF-CMA.

Proposition 1. Let SAMAC = (KGen, Tag, Vrfy, SeqAgg, SAVrfy) be a
sequential aggregate MAC scheme, and we identify SeqAgg with F : T N → Tagg.
If we can compute a sequence of tags (ti)i∈[N ] from F ((ti)i∈[N ]) in polynomial
time, then SAMAC does not meet C-aggUF-CMA.

Proof. Let A be a PPT adversary against SAMAC. If A gets an aggregate tag
τ on a sequence of messages (mi)i∈[N ] by accessing the sequential aggregate
tagging oracle, A can compute each MAC-tag ti on mi for all i ∈ [N ]. For
a message sequence (m�i

)i∈[N ] different from (mi)i∈[N ], A can make a forgery
τ∗ = F ((t�i

)i∈[N ]) on (m�i
)i∈[N ]. ��

4 Construction of Sequential Aggregate MACs

4.1 Our Construction

We propose a generic construction of sequential aggregate MACs (SAMACs)
in our model such that our SAMAC consists of any MAC scheme MAC =
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(MAC.KGen, MAC.Tag, MAC.Vrfy) and a sequential aggregation algorithm-pair
(SA.SeqAgg, SA.SAVrfy). This is well explained by the following construction of
sequential aggregate MACs, GSAMAC = (KGen, Tag, Vrfy, SeqAgg, SAVrfy):

– kid ← KGen(1λ, id): Generate kid ← MAC.KGen(1λ) and output kid.
– t ← Tag(kid,m): Output a MAC-tag t ← MAC.Tag(kid,m).
– 1/0 ← Vrfy(kid,m, t): Output b ← MAC.Vrfy(kid,m, t) ∈ {0, 1}.
– τ ← SeqAgg(T ): Take a sequence of MAC tags T = ((id�i

, ti))i∈[ ̂N ] as input
and output τ ← SA.SeqAgg(T ).

– 1/0 ← SAVrfy(K,M, τ): Take K = {(kidi
, idi)}i∈[N ], M = ((mi, id�i

))i∈[ ̂N ],
and τ as input, and output a bit b ← SA.SAVrfy(K,M, τ).

Therefore, it is enough to construct only a sequential aggregation algorithm-pair
(SA.SeqAgg, SA.SAVrfy), and we propose two constructions called SA1 and
SA2 for it. Consequently, we will obtain two constructions of SAMACs called
SAMACi (i = 1, 2) starting from any MAC scheme and the aggregate algorithm-
pair SAi.

We construct two aggregation algorithm-pairs SA1 and SA2. First, we
describe the basic processes of SA1 informally as follows.

– SeqAgg algorithm:
1. Each MAC-tag ti is transformed into a matrix Ti,
2. Output the product of these matrices T1T2 · · · T

̂N as an aggregate tag τ .
– SAVrfy algorithm:

1. Compute an aggregate tag τ ′ from K = {(kidi
, idi)}i∈[N ] and M =

((mi, id�i
))i∈[ ̂N ] following the SeqAgg algorithm,

2. Output 1 (accept) if τ ′ = τ , or output 0 (reject) otherwise.

Our idea is based on non-commutativity of matrix multiplications. And, the
order of messages is regarded as invalid, if the order of MAC-tags’ matrices are
changed. From this, we can construct sequential aggregate MAC schemes from
any MAC schemes by transforming each MAC-tag into a matrix, and can give a
security proof in the standard model. Also, we provide a simple construction SA2
by using hash functions, and give a security proof in the random oracle model.
Furthermore, based on SA1, we can construct a history-free sequential aggregate
MAC scheme from any MACs in Sect. 6. Although the existing construction
[5] uses not only MACs but also pseudorandom permutations for constructing
history-free sequential aggregate MACs, our construction requires only MACs.

Besides, it should be noted that we cannot achieve the security under con-
sideration even if we slightly change inputs of the underlying MACs as follows:
Suppose that, for each i ∈ [N ], the i-th sender computes ti ← Tag(kidi

, i ‖ mi)
and the resulting aggregate tag is τ = t1 ⊕ · · · ⊕ tN . However, it is easy to
generate a valid forgery in the case where some IDs are corrupted. Actually,
for an aggregate tag τ = t1 ⊕ · · · ⊕ tN on (mi)i∈[N ], an adversary can compute
t′i ← Tag(kidi

, i ‖ m′
i) with a corrupted ID’s (i.e., idi) secret key kidi

and can
generate a forgery τ ′ = τ ⊕ ti ⊕ t′i without accessing the tagging oracle. Fur-
thermore, even if an adversary does not corrupt any secret keys, he can break
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aggUF-CMA by submitting queries to the tagging oracle and receiving the fol-
lowing aggregate-tags:

τ1 = Tag(kid1 , 1 ‖ m1) ⊕ Tag(kid2 , 2 ‖ m2) ⊕ Tag(kid3 , 3 ‖ m3) ⊕ · · · ,

τ2 = Tag(kid1 , 1 ‖ m′
1) ⊕ Tag(kid2 , 2 ‖ m2) ⊕ Tag(kid3 , 3 ‖ m3) ⊕ · · · ,

τ3 = Tag(kid1 , 1 ‖ m1) ⊕ Tag(kid2 , 2 ‖ m′
2) ⊕ Tag(kid3 , 3 ‖ m3) ⊕ · · · .

Then, he computes τ1 ⊕ τ2 ⊕ τ3 = Tag(kid1 , 1 ‖ m′
1) ⊕ Tag(kid2 , 2 ‖ m′

2) ⊕
Tag(kid3 , 3 ‖ m3) ⊕ · · · , which is a valid forgery since the sequence ((m′

1, id1),
(m′

2, id2), (m3, id3), . . .) has never been queried. Therefore, this construction
does not meet the security of sequential aggregate MACs in our model.

Construction 1. We propose a construction SA1 by transforming each MAC-
tag ti into a matrix as follows: Let n be bit-length of MAC-tag and we separate
a MAC-tag ti ∈ {0, 1}n into (ti,1 ‖ ti,2 ‖ ti,3 ‖ ti,4) ∈ ({0, 1}n

4 )4. Then, we
regard each ti,j ∈ {0, 1}n

4 (1 ≤ j ≤ 4) as an element of the finite field GF (2
n
4 ),

and set Ti :=
[
ti,1 ti,2
ti,3 ti,4

]

. Here, we note that such a matrix Ti is invertible with

an overwhelming probability if the MAC meets pseudorandomness. Based on
this transformation, SA1 = (SA1.SeqAgg, SA1.SAVrfy) is constructed in the
following way.

– τ ← SA1.SeqAgg(((id�i
, ti))i∈[ ̂N ]): Generate an aggregate tag as follows:

1. For each i ∈ [N̂ ], let Ti :=
[
ti,1 ti,2
ti,3 ti,4

]

be a matrix transformed from ti as

mentioned above.
2. Output τ := T1T2 · · · T

̂N .
– 1/0 ← SA1.SAVrfy(K,M, τ): For K = {(kidi

, idi)}i∈[N ] and M =
((mi, id�i

))i∈[ ̂N ], verify (M, τ) as follows:

1. For each i ∈ [N̂ ], compute t′i ← MAC.Tag(kid�i
,mi) and

τ ′ ← SA1.SeqAgg(((id�i
, t′i))i∈[ ̂N ]).

2. Output 1 if τ ′ = τ , or output 0 otherwise.

Then, we show the following lemma.

Lemma 1. Given two aggregate tags τ1 ← SA1.SeqAgg((id�1 , t1), . . . , (id�i
, ti))

and τ2 ← SA1.SeqAgg((id�i+1 , ti+1), . . . , (id�j
, tj)), if MAC meets pseudoran-

domness, the probability that τ1τ2 = τ2τ1 holds is negligible.

Proof. We denote the matrices τ1 and τ2 by

τ1 =
[
a1 b1
c1 d1

]

, τ2 =
[
a2 b2
c2 d2

]

,

where ai, bi, ci, di ∈ GF (2
n
4 ) for i ∈ {1, 2}. We have

τ1τ2 =
[
a1a2 + b1c2 a1b2 + b1d2
a2c1 + c2d1 b2c1 + d1d2

]

, τ2τ1 =
[
a1a2 + b2c1 a2b1 + b2d1
a1c2 + c1d2 b1c2 + d1d2

]

.
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Then, τ1τ2 = τ2τ1 is equivalent to the conditions:

b1c2 = b2c1, (1)
a1b2 + b1d2 = a2b1 + b2d1, (2)
a2c1 + c2d1 = a1c2 + c1d2. (3)

Hence, the number of the equations that must hold is three, while the number
of variables ai, bi, ci, di (i = 1, 2) is eight. Therefore, if ai, bi, ci, di (i = 1, 2)
are chosen uniformly at random, the probability that the Eqs. (1)–(3) hold is
(2− n

4 )3 = 2− 3
4n. Therefore, if the MAC meets pseudorandomness, the probability

that the Eqs. (1)–(3) hold is negligible. ��

Construction 2. We construct SA2 = (SA2.SeqAgg, SA2.SAVrfy) by using
hash functions in a simple way, and this construction is provably secure in the
random oracle model. SA2 is given as follows: Let H be a random function
H : {0, 1}∗ → T , where T is the tag space of a MAC scheme.

– τ ← SA2.SeqAgg(((id�i
, ti))i∈[ ̂N ]): Output τ := H(t1, . . . , t ̂N ).

– 1/0 ← SA2.SAVrfy(K,M, τ): Output 1 if τ = H(t′1, . . . , t
′
̂N
), where t′i :=

MAC.Tag(kid�i
,mi) for all i ∈ [N̂ ], and output 0 otherwise.

By definition of random functions, we can see that the order of messages is
guaranteed.

4.2 Security of Our Constructions

The following theorems show the security of our constructions.

Theorem 1. If MAC meets pseudorandomness, SAMAC1 meets (N − 2)-
aggUF-CMA.

Theorem 2. If MAC meets UF-CMA, SAMAC2 meets (N − 2)-aggUF-CMA.

Proof of Theorem 1. We prove that SAMAC1 meets (N − 2)-aggUF-CMA. Let
A be a PPT adversary against SAMAC1. We define the following events:

– Succ: An event that A outputs a forgery breaking aggUF-CMA.
– New: An event that for a new message which is never queried, A makes a

forgery against a MAC scheme which is not corrupted.
– Pre: An event that A makes a forgery against SAMACi without generating

any forgeries against MACs.
– Cor: An event that A does not break any MAC schemes, but uses new MAC-

tags generated by using corrupted ID’s keys.
– Replace: An event that A replaces the sequence of messages queried to the

tagging oracle.
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Because the events New and Pre are exclusive, we have

Advagg-uf
SAMAC,A(λ) := Pr[Succ] ≤ Pr[Succ ∧ New] + Pr[Succ ∧ Pre]

≤ Pr[Succ ∧ New] + Pr[Succ ∧ Pre ∧ Replace]

+ Pr[Succ ∧ Pre ∧ Cor | Replace] + Pr[Succ ∧ Pre ∧ Cor | Replace].

Therefore, it is sufficient to prove the following:

– Pr[Succ ∧ New] ≤ N
Pinv

· Advuf-cma
MAC,F (λ) for a function Pinv of N .

– Pr[Succ ∧ Pre ∧ Replace] ≤ ε(λ) for a negligible function ε.
– Pr[Succ ∧ Pre ∧ Cor | Replace] ≤ (N−C)

Pinv
· Advpr

MAC,D(λ) + 1
2n .

– Pr[Succ ∧ Pre ∧ Cor | Replace] ≤ (N−C)
Pinv

· Advpr
MAC,D(λ) + 1

2n .

Event [Succ∧New]: In this case, an adversary generates a forgery against a MAC
scheme which the ID id fulfills id /∈ LCor. By using A breaking aggUF-CMA,
we construct a PPT algorithm F breaking UF-CMA of MACs as follows.

Setup: Given the tagging oracle of a MAC, do the following.
1. Choose idi ∈ ID for all i ∈ [N ],
2. Generate kidi

← KGen(1λ, idi) for all i ∈ [N ],
3. Set lists LCor = ∅ and LSA = ∅.

Corrupt: When A submits an ID id ∈ ID to the oracle Corrupt(·), return kid

and set LCor ← LCor ∪ {id}. When A stops accessing Corrupt and moves to
the Tagging phase, choose an ID id∗ /∈ LCor uniformly at random.

Tagging: For each query M = ((mi, id�i
))i∈[ ̂N ] to the oracle SATagK(·) where

K := {(kidi
, idi)}i∈[N ], do the following for all i ∈ [N̂ ].

– If id�i
�= id∗, compute ti = Tag(kid�i

,mi),
– If id�i

= id∗, submit a message query mi to the MAC oracle and receive the
tag ti.
Return τ = SeqAgg((id�i

, ti)i∈[ ̂N ]) to A and set LSA ← LSA ∪ {M}.

Output: When A outputs M∗ = ((m∗
i , id�∗

i
))i∈[ ˜N ] and τ∗, do the following.

1. Move to the next step if the output of A meets the conditions of the
security game except for 1 ← SAVrfy(K,M∗, τ∗), or abort this game
otherwise.

2. For i ∈ [Ñ ] and id�i
except for id∗, compute τ∗

i = MAC.Tag(kid�∗
i
,m∗

i ).
3. Let i∗ be the order of the ID id∗ in M∗ and compute Ti∗ in the following

way: Ti∗ = T ∗−1
i∗−1 · · · · · T ∗−1

1 · τ · T ∗−1
˜N

· · · · · T ∗−1
i∗+1 ∈ GF (2n).

4. Recover a MAC-tag ti∗ from the matrix Ti∗ .
5. Output (mi∗ , ti∗) as a forgery of the MAC.
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F simulates the environment of A completely. In Step 3 of Output phase, the
probability that all matrices are invertible is at most Pinv := (1− 1

2n/4 )N−1. For
all IDs id�∗

i
(i ∈ [Ñ ]) except for id∗, MAC tags t∗i generated by using kid�∗

i
are

valid. Therefore, ti∗ is also a valid MAC tag. Therefore, the success probability
of F is at least Pinv

N · Pr[Succ ∧ New].

Event [Succ ∧ Pre ∧ Replace]: From Lemma 1, Pr[Succ ∧ Pre ∧ Replace] is 2− 3
4n

in SAMAC1.

Event [Succ∧Pre∧Cor | Replace]: In this case, we consider the following adver-
saries: We assume that for a query M , there exists a corrupted pair (id,m, t)
between not corrupted pairs (idi1 ,mi1 , ti1) and (idi2 ,mi2 , ti2) such that i1 is the
first order among not corrupted IDs and i2 is the last order among not corrupted
IDs, in M . An adversary tries to replace the message/tag pair (m, t) with (m∗, t∗)
such that m∗ �= m and t∗ = Tag(kid,m

∗). He cannot replace the message/tag
pair without knowing ti1 and ti2 . We show that the probability that the event
happens is negligible if MACs meet pseudorandomness.

Let Game-0 be the standard security game and let C be the number of
corrupted IDs. For X ∈ [N − C], we define Game-X where for one of IDs
id /∈ LCor, the MAC’s tagging algorithm is replaced with a random function
fid : M → T . Then, we show that in Game-(X −1) and Game-X, the difference
between the success probabilities of them is negligible from pseudorandomness
of MACs. We construct a PPT algorithm D breaking pseudorandomness of a
MAC scheme. D can be constructed in the same way as in the above F except
for the process of Output phase. We describe the process of D at Output phase
as follows: When A outputs M∗ = ((m∗

i , id�∗
i
))i∈[ ˜N ] and τ∗, do the following.

1. Move to the next step if the output of A meets the conditions of the security
game except for 1 ← SAVrfy(K,M∗, τ∗), or abort this game otherwise.

2. For each id�∗
i

(i ∈ [Ñ ]) except for id∗, compute t∗i by using the key kid�∗
i
.

3. Compute the MAC-tag tid∗ of id∗ from τ∗ and the other tags computed in
Step 2.

4. Submit m∗ to the tagging oracle and receive the tag t.
5. Output 1 if tid∗ = t and (m∗, id∗) has never been queried, or output 0 other-

wise.

In Game-(N − C), all outputs of fid and MAC tags are hidden statistically.
Therefore, the probability is at most (N−C)

Pinv
· Advpr

MAC,D(λ) + 1
2n .

Event [Succ ∧ Pre ∧ Cor | Replace]: In the same way as event [Succ ∧ Pre ∧ Cor |
Replace], we obtain Pr[Succ∧ Pre∧ Cor | Replace] ≤ (N−C)

Pinv
· Advpr

MAC,D(λ) + 1
2n .

From the discussion above, we have

Advagg-uf
SAMAC1,A(λ) ≤ N

Pinv
· Advuf-cma

MAC (λ) +
1

2
3
4n

+ 2
(N − C)

Pinv
· Advpr

MAC(λ) +
1

2n−1

≤ 3
N

Pinv
· Advpr

MAC(λ) +

(
N

Pinv
+ 2

)
1

2n
+

1

2
3
4n

.
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We note that Advuf-cma
MAC (λ) ≤ Advpr

MAC(λ) + 1
2n holds (see [4]), and Pinv is

(

1 − 1
2n/4

)N−1. Therefore, the proof is completed. ��
Proof of Theorem 2. Let A be a PPT adversary against SAMAC2. Let LH

be the list of the query/answer pairs of H(·). Let Forge be an event that A
breaks SAMAC2 by making a forgery of the underlying MAC, and let Coll
be an event that A finds a collision of the random oracle H. Then, we have
Advagg-uf

SAMAC2,A(λ) := Pr[Forge] ≤ Pr[Coll] + Pr[Forge ∧ Coll].
In the event Coll, an adversary tries to find a collision of H. We note that this

case includes an attack that he replaces MAC-tags queried to H. The success
probability is at most Q2

h

2n+1 .
Next, we consider the event [Forge ∧ Coll]. We construct a PPT algorithm

F breaking UF-CMA as in the proof of Theorem1 except for the process of
Output phase. In this phase, when A outputs ((mi, id�∗

i
))i∈[ ˜N ] and τ∗, F does

the following process.

1. Move to the next step if the output of A meets the conditions of the security
game except for 1 ← SAVrfy(K,M∗, τ∗), or abort this game otherwise.

2. Compute t∗i = MAC.Tag(kid�∗
i
,mi) except for id∗,

3. Find a pair ((t∗i )i∈[ ˜N ], τ
∗) except for a tag of id∗ from LH . Abort this game

if there exists no such pair in LH .
4. Output the id∗’s pair (m∗, t∗).

The pair (t∗1, . . . , t
∗
˜N
, τ∗) is in LH with overwhelming probability because the

probability that it outputs τ∗ such that τ∗ = H(t∗1, . . . , t
∗
˜N
) is negligible without

accessing to the random oracle H(·). Thus, F ’s output is a valid forgery breaking
a MAC scheme. Therefore, we have Pr[Forge ∧ Coll] ≤ N · Advuf-cma

MAC,F (λ).

From the above, we obtain Advagg-uf
SAMAC2,A(λ) ≤ N · Advuf-cma

MAC,F (λ) + Q2
h

2n+1 ,
and the proof is completed. ��

5 Application: Sending Long Data by Data-Partitioning

Suppose that a device wants to send a long message in a wireless network, but the
message is too long to directly transmit because of restrictions in the network. In
this case, we usually utilize a data partitioning method to transmit the long data:
We first divide a long message M into (at most) N pieces m1,m2, . . . ,mN (e.g.,
each piece may be called a packet); For each divided part mj (1 ≤ j ≤ N), the
device generates a MAC tag tj ←Tag(k, (mj , j)); The device sends ((mj , j), tj)
for j = 1, 2, . . . , N by possibly different paths in the network; A receiver obtains
{(mj , tj)}j∈[N ], where we assume that divided parts m1,m2, . . . ,mN do not
necessarily reach with the correct order (e.g., some of which may delayed in the
network) and he will check the validity of both divided data and their ordering
to correctly recover the message M . In this situation, we note that N tags are
transmitted in the wireless network, which may cause a traffic problem if there
are an enormous number of devices connected to the network and each device
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wants to send a long message. Our idea is to apply a sequential aggregate MAC
under consideration in the previous sections in order to reduce the numbers of
tags for divided data, so that we resolve the problem by reducing the amount
of tags with the aggregation technique without changing the structure of the
underlying MACs.

Formally, suppose that an existing authentication protocol utilizes a MAC
scheme MAC=(KGen, Tag, Vrfy) as follows, where a secret key k ←KGen(1λ)
is already generated and installed in a device and such secret keys are generally
different in devices:

– Transmission by Data-Partitioning:
1. For a long message M , generate divided messages (m1, 1), (m2, 2), . . . ,

(mN , N) from M by a data partitioning technique.
2. For each (mj , j), generate its tag tj ←Tag(k, (mj , j)).
3. It transmits ((mj , j), tj) for j = 1, 2, . . . , N by possibly different paths in

the network.
– Verification: On receiving {((mj , j), tj)}j∈[N ], it checks both the validity of

both divided data and their ordering: If 1 ←Vrfy(K, (mj , j), tj) for every
j ∈ [N ], M is recovered by the sequential data (m1,m2, . . . ,mN ); otherwise,
it rejects the data.

In order to resolve a traffic problem, we consider to embed a SeqAgg algo-
rithm into a device and a SAVrfy algorithm into an verification protocol/system
as an application of our sequential MACs. Then, we propose the following:

– Transmission by Data-Partitioning:
1 and 2. The same in the above protocol.
3. Compute τ ←SeqAgg(((ti, i))i∈[N ]), and then transmit N pieces

((m1, 1), T ), (m2, 2), . . . , (mN , N) by possibly different paths in the net-
work, where we note that a tag is attached only to (m1, 1).

– Verification: On receiving ((m1, 1), T ) and {((mj , j), tj)}2≤j≤N , it checks both
the validity of both divided data and their ordering: If 1 ←SAVrfy(k, M̃ , τ)
where M̃ = ((m1, 1), (m2, 2), . . . , (mN , N)), M is recovered by the sequential
data (m1,m2, . . . ,mN ); otherwise, it rejects the data.

Here, we note that in each device, the same key k is used for generating N
tags t1, t2, . . . , tN . Therefore, if a device keeps the key secure, it is sufficient to
apply C-aggUF-CMA secure sequential aggregate MACs with C = 0.

6 Our Construction of HF Sequential Aggregate MAC

We construct a partial invertible MAC scheme meeting computational almost
universal from MAC schemes. By applying this construction to Construction
6.10 of [5], we can obtain a history-free (hf) sequential aggregate MAC scheme.

Let MAC = (KGen, Tag, Vrfy) be a MAC scheme. First, we define the
following property of the MAC.
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Partial Inversion. MAC meets partial inversion if there exists the following
polynomial time algorithm: For any secret key k and any message m, and a tag
τ given as input, the algorithm returns m′ such that τ ← Tag(k, (m ‖ m′)) for
some m′ ∈ {0, 1}poly(λ).

Next, we construct a scheme meeting partial inversion and pseudorandomness
from our SA1. Let MAC = (KGen, Tag, Vrfy) be the underlying MAC. Then,
PIMAC = (PIMAC.KGen, PIMAC.Tag, PIMAC.Vrfy) is constructed as follows.

– k ← PIMAC.KGen(1λ): Output k ← KGen(1λ).
– τ ← PIMAC.Tag(k,m ‖ τ ′): On input a secret key k and a message (m ‖

τ ′) ∈ M × Tagg where any τ ′ ∈ Tagg is a matrix of SA1, generate a tag τ in
the following way.
1. Compute t ← Tag(k,m) and let T be a matrix for t based on SA1.
2. Output τ := T · τ ′ · T ∈ Tagg.

– 1/0 ← PIMAC.Vrfy(k,m ‖ τ ′, τ): On input a secret key k, a message m ‖ τ ′,
and a MAC tag τ , verify the message/tag pair (m ‖ τ ′, τ) as follows.
1. Compute τ̄ ← PIMAC.Tag(k,m‖τ ′).
2. Output 1 if τ̄ = τ , or output 0 otherwise.

Then, we show the following lemma.

Lemma 2. PIMAC meets partial inversion. Furthermore, if MAC meets pseu-
dorandomness, PIMAC also meets pseudorandomness.

Proof. First, we prove that PIMAC meets partial inversion by constructing the
following partial inversion algorithm: It takes a secret key k, a message m, and
τ as input, and does the following.

1. Compute t ← Tag(k,m) and let T be a matrix transformed from t.
2. Output τ ′ := T−1 · τ · T−1 ∈ Tagg.

Then, we can see that the output τ ′ is valid.
Second, we prove that PIMAC meets pseudorandomness. Let A be a PPT

adversary breaking the pseudorandomness of PIMAC. We construct a PPT algo-
rithm B breaking the pseudorandomness of the underlying MAC as follows: It
is given the oracle of a MAC or a random function. When A submits a message
query m‖τ ′, it submits m to the given oracle and receives the value t. Then, it
computes τ following PIMAC.Tag algorithm and returns it. When A outputs
the guessing bit b′ ∈ {0, 1}, B also outputs b′.

If A breaks the pseudorandomness of PIMAC, B also breaks the pseudoran-
domness of MAC. This completes the proof. ��

Let HF-SAMAC be a sequential aggregate MAC obtained by applying
PIMAC to Construction 6.10 of [5]. Then, by Theorem 6.11 of [5], we have:

Proposition 2. If PIMAC meets pseudorandomness and partial inversion, HF-
SAMAC meets the aggregate unforgeability of Definition 5.4 in [5].
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7 Conclusion

In this paper, we introduced a new model of sequential aggregate MACs where
an aggregation algorithm generates a sequential aggregate tag depending only
on multiple and independent MAC tags without any secret-key, and we formally
defined security in this model. Our model and security are quite different from
those of previous works [5,6,9]. In addition, we proposed two generic construc-
tions, SAMAC1 and SAMAC2, starting from any MACs, with formal security
proofs. And, we compared the existing ones and ours in terms of universal appli-
cability, security, and efficiency. As a result, SAMAC2 is superior to others from
all aspects of evaluation items, though the security proof is given in the ran-
dom oracle model. It is interesting to consider SAMAC1 as well in the standard
model, and it can be transformed into a history-free sequential aggregate MAC
in the model of [5] without changing the input-formats of MACs or adding any
other primitives except for MACs.

We note that, if a sequence of messages are rejected in our sequential aggre-
gate MACs, we cannot identify which message has been invalid (e.g., some of
them was forged, or their order was wrong). Hirose and Shikata [7] recently
proposed (non-sequential) aggregate MACs in which we could identify which
message was invalid, if a set of messages are rejected in their aggregate MACs.
Our future work includes extension of [7] for sequential aggregate MACs.
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Abstract. We present a Single-key Length Doubler built on an n-bit
Tweakable block cipher (SLDT), which is a length-preserving cipher on
the strings with bit length in integer interval [n, n + 1, . . . , 2n − 1]. SLDT
is mainly motivated to reduce the key material size of a length doubler
proposed by Chen et al. at FSE2018, since the key management is always
challenging in practice. We prove that SLDT is a strong pseudo-random
permutation (SPRP) if the underlying tweakable block cipher is SPRP.

Keywords: Length doubler · SLDT · Tweakable block cipher
Single key · Provable security · Birthday bound

1 Introduction

The encryption is always a fundamental functionality of cryptography, ever since
the secrecy has been desired. Nowadays the most popular approach of designing
an encryption scheme is to iterate a (tweakable) block cipher, which is usu-
ally called Mode of Operations. Examples include Cipher Block Chaining mode
(CBC), Electronic CodeBook mode (ECB), Cipher FeedBack mode (CFB), Out-
put FeedBack mode (OFB) and CounTer mode (CTR). Nevertheless, a block
cipher is a fixed-input-length primitive. Throughout the paper, the block and
key sizes of (tweakable) block cipher are denoted as n and k respectively. A
block cipher is a deterministic algorithm E : K × M → M, where K = {0, 1}k,
M = {0, 1}n and for each key K ∈ K, the mapping E(K, ·) (sometimes writ-
ten as EK(·)) is a permutation over M and easily invertible. A trivial iteration
of a block cipher can only proceed messages of multiple blocks long, that is
i × n bits long with some positive integer i. In order to handle arbitrarily long
messages, a solution widely adopted in practice is to use a padding algorithm
that pads a message M to be multiple blocks long, e.g. pad(M) = M‖10 · · · 0,
where ‖ denotes concatenation. However, it brings a drawback that the cipher-
text is longer than the original plaintext. This is undesired, in particular for
low bandwidth network protocols, disk encryption, etc. Thus, an interesting and
c© Springer Nature Switzerland AG 2018
J. Baek et al. (Eds.): ProvSec 2018, LNCS 11192, pp. 313–326, 2018.
https://doi.org/10.1007/978-3-030-01446-9_18
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important research is the length-preserving encryption, which handles arbitrarily
long messages, and yet produces ciphertexts of the same length with plaintexts.

There are roughly two approaches to build length-preserving encryption
schemes. One is dedicated designs. Examples are EME [4], TET [5], HEH [13],
HCTR [15], HCH [1] and XCB [8]. The other approach is generic transfor-
mations that can turn any mode of operations to be length-preserving. The
first such transformation is XLS proposed by Ristenpart and Rogaway [11]. It
utilizes block ciphers to build an encryption cipher for (n + s)-bit messages,
where s ∈ [1, . . . , n − 1], with length preserving. Hence such ciphers are referred
to as length doubler. More formally, a length doubler is a deterministic func-
tion E : K × M → M, where M =

⋃2n−1
i=n {0, 1}i. A length doubler can be

attached to any encryption scheme for multiple-block messages to transform
it to a length-preserving cipher. Unfortunately XLS was not secure, as Nandi
found an attack [9]. Subsequently, two block-cipher-based length doublers DE
and HEM are proposed by Nandi [14] and Zhang [16] respectively, which make
four primitive calls.

Recently, Chen et al. [3] design a length doubler LDT, which for the first
time uses tweakable block ciphers as underlying primitives. Interestingly it makes
just two primitive calls. Tweakable block cipher has an additional public tweak
compared with block cipher, Ẽ : K × T × M → M, where K = {0, 1}k, T =
{0, 1}t, M = {0, 1}n, and for any pair (K,T ) ∈ K × T , Ẽ(K,T, ·) (sometimes
written as ẼK(T, ·)) is a permutation over M and easily invertible. LDT is
proven secure up to 2n/2 adversarial queries, that is birthday-bound security.

Our Contributions

This research is motivated to further refine previous length doublers. An investi-
gation on LDT finds that it requires two independent keys, one for each underly-
ing tweakable block cipher, that is in total 2k key bits. It is well known that key
management is very changing from the practical point of view. A long key size
causes extra burden and potential risk on key exchange, storage and use. Thus,
a conventional research line is to reduce the key size of cryptographic primitives
while maintaining the same security level. Examples are [6,7]. Following this
research line, we aim to reduce the key size of LDT [3], while maintaining the
birthday-bound provable security.

We introduce a new length doubler SLDT, short for Single-key Length Dou-
bler with Tweakable block cipher. SLDT uses a single key, and hence the key
length is only k bits, that is half reduced from LDT. Our idea is largely inspired
by Rogaway’s XEX [12]. More specifically, we derive two tweakable block ciphers
(Ẽ1, Ẽ2) by masking a single tweakable block cipher ẼK as below,

Ẽ1(·, ·) = ẼK(·, · ⊕ 2Δ1), Ẽ2(·, ·) = ẼK(·, · ⊕ 2Δ2)

where the masks are obtained by Δ1 = ẼK(0, 0) and Δ2 = ẼK(0, 1). Then
we prove that (Ẽ1, Ẽ2) are indistinguishable from two independent tweakable
permutations up to the birthday bound security. Finally we replace the two
underlying tweakable block ciphers of LDT by (Ẽ1, Ẽ2), and obtain SLDT. By a
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standard hybrid proof procedure, we get that SLDT is a strong PRP up to the
birthday bound q2/2n. A comparison of SLDT with previous length doublers are
provided in Table 1.

Table 1. Comparison between SLDT and other length doublers.

Length
doubler

Security
(log2)

Key
length

Cryptographic
primitive calls

Mixing
function

Reference

XLS 1 2n 3 ε-good [9,11]

DE n/2 5n 4 - [14]

HEM n/2 3n 4 ε-good [16]

LDT n/2 2n 2 Pure [3]

SLDT n/2 n 2 Pure Section 4

2 Preliminaries

2.1 Notations

{0, 1}n denotes the set of all n-bit strings. For any two strings X,Y ∈ {0, 1}∗, X⊕
Y denotes their bitwise exclusive or (XOR). X||Y denotes their concatenation.
|X| denotes the bit length of string X. We define {0, 1}[m,...,n] =

⋃n
i=m{0, 1}i

for m ≤ n (m,n ∈ N).

2.2 Tweakable Block Cipher and the Security Definition

A tweakable block cipher Ẽ : K × T × M → M is a family of permutations on
M, which are indexed by two functionally distinct parameters: a key K ∈ K that
is secret and used to provide the security, and a tweak T ∈ T that is public and
used to provide variability. The tweak is assumed to be known or even controlled
by the adversary. In this paper, we let K = {0, 1}k and T = M = {0, 1}n, where
k, n ∈ N. For a key K ∈ {0, 1}k. Ẽ−1

K (T, ·) denotes the decryption.
A distinguisher D is an algorithm that has query access to one (or multiple)

oracle of being either O or Q, and outputs a single bit. The advantage of D in
distinguishing these two primitives is defined as

Adv(D) =
∣
∣Pr

[
DO ⇒ 1

]
− Pr

[
DQ ⇒ 1

]∣
∣

Let T̃WP be all functions P̃ : T ×M → M, where for each T ∈ T , P̃ (T, ·) is
a permutation on M. A function P̃ is said to be an ideal tweakable block cipher
if it is selected from T̃WP uniformly at random, that is P̃

$← T̃WP.
The security of tweakable block cipher is defined via upper bounding the

advantage of all distinguishers D in the game defined as follows. D is given
access to an oracle O, which is either ẼK with a secret key K randomly selected
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from K (K $← K) or an ideal tweakable block cipher P̃ . The advantage of D is
defined as

Advsprp
˜E

=
∣
∣
∣Pr

[
D ˜E±

K ⇒ 1
]

− Pr
[
D ˜P± ⇒ 1

]∣
∣
∣

where the probability is taken over the choices of K
$← K, P̃

$← T̃WP and D’s
coins if any.

Throughout this paper, we fix a model of computation and a choice of encod-
ing. Then we define

Advsprp
˜E

(t, q) = max
D

Advsprp
˜E

(D)

where the maximum is taken over all distinguishers whose time complexity is at
most t and query complexity is at most q.

2.3 Length Doubler

A length doubler E : {0, 1}k × {0, 1}[n,...,2n−1] → {0, 1}[n,...,2n−1] is a set of
permutations, indexed by two parameters: the secret key K ∈ {0, 1}k and the
block size i ∈ [n, . . . , 2n − 1]. Let LB be the set of all the functions E : {0, 1}k ×
{0, 1}[n,...,2n−1] → {0, 1}[n,...,2n−1], where for each K ∈ {0, 1}k, EK is a length-
preserving permutation on {0, 1}[n,...,2n−1]. A function π is said to be an ideal
length doubler, if it is selected from LB uniformly at random, that is π

$← LB.
The security of a length doubler is defined via upper bounding the advantage of
all distinguishers D:

Advvsprp
E (D) =

∣
∣
∣Pr

[
DE±

K ⇒ 1
]

− Pr
[
Dπ± ⇒ 1

]∣
∣
∣

where the probability is taken over the choices K
$← K, π

$← LB, and D’s coins
if any. Similarly with above, we define that

Advvsprp
E (t, q) = max

D
Advsprp

E (D),

where the maximum is taken over all distinguishers whose time complexity is at
most t and query complexity is at most q.

2.4 Pure Mixing Function

We introduce the pure mixing function defined by Chen et al. [3]. A simple
example is mix(A,B) = (B,A).

Definition 1 ([3, Sect. 2.4]). Let m,n ∈ N such that m ≤ n. Let mix :⋃n
s=m({0, 1}s)2 →

⋃n
s=m({0, 1}s)2 be a length-preserving permutation. Define

by mixL the left half of its evaluation and by mixR its right half. The mixing
function is called pure if for all s ∈ [m · · · n] we have:

– mixL(A, ·) is a permutation for all A ∈ {0, 1}s,
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– mixR(·, B) is a permutation for all B ∈ {0, 1}s.

A property of pure mixing function is found in [3].

Lemma 1 ([3, Sect. 2.4]). Let mix be a pure mixing function as in Defini-
tion 1. Given B,D ∈ {0, 1}s, there exists a unique value A ∈ {0, 1}s such that
mixR(A,B) = D and a unique value C ∈ {0, 1}s such that mix−1

L (C) = (A,B).

2.5 H-Coefficient Technique

The proof in this paper adopts the H-Coefficient technique [2,10]. Here we pro-
vide a brief description, which presents all necessary information to follow and
verify our proof, and refer interested readers to [2,10] for completed definition.
We focus on information-theoretic distinguisher D that is not computationally
bounded. Hence, without loss of generality we assume D is deterministic. Sup-
pose D interacts with one of two oracles, the “real world” oracle O or the “ideal
world” oracle Q. A view is the query-response tuples that D receives. Let X
(resp. Y ) be the probability distribution of the view when D interacts with O
(resp. Q). Let V be the set of all attainable views v when interacting with Q,
that is V = {v | Pr[Y = v] > 0}.

The H-Coefficient technique partitions V into disjoint subsets Vgood and Vbad

such that V = Vgood

⋃
Vbad. If there are two real values 0 ≤ ε1, ε2 ≤ 1 such that

• for each v ∈ Vgood, it has that

Pr[X = v]
Pr[Y = v]

≥ 1 − ε1

• for a view v sampled from V uniformly at random, it has that

Pr[v ∈ Vbad ] ≤ ε2

then the advantage of D is upper bounded as

Adv(D) ≤ ε1 + ε2.

3 LDT [3] and an Attack on a Trivial Single-Key Variant

The specification of LDT [3] is depicted in Fig. 1. It uses two tweakable block
cipher ẼK1 and ẼK2 , and a pure mixing function mix. We stress that K1 and
K2 are independent. Here we give a brief description of the encryption of LDT,
and its decryption can be easily derived.

Let M be an input message of bit length n + s, where 0 ≤ s ≤ n − 1. Divide
M into M1‖M2, where M1 is the first n bits of M and M2 is the remaining s bits.
LDT uses a Padding algorithm, and an example is pad(M2) = M2‖10n−1−s. The
procedure is follows.
1. Z‖M3 ← ẼK1(pad(M2),M1);
2. C3‖C2 ← mix(M3,M2);
3. C1 ← ẼK2(pad(C2), Z‖C3)

Finally, C1‖C2 is output as the ciphertext. We refer interested readers to the
completed specification in [3].
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3.1 An Attack for the Case K1 = K2

Let K denote the key, that is K = K1 = K2. We present a distinguishing attack
that takes at most 3 queries, and succeeds with an overwhelming probability.
The observation is that the attacker is able to obtain input-output tuples of
ẼK by exhausting the value of Z, when |Z| is small, e.g. |Z| = 1. After that,
by exploiting that the two layers use the same key, he can adaptively select
a plaintext such that its input-output tuple of ẼK at the first layer is equal
to an input-output tuple of ẼK at the second layer of some previous message,
which enables him to examine some linear relation between the plaintext and
the ciphertext, and hence to successfully distinguish from an ideal cipher. The
attack procedure is detailed as follows.

1. Choose a plaintext M = M1||M2 with |M1| = n and |M2| = n − 1, and get a
corresponding ciphertext C = C1||C2 with |C1| = n and |C2| = n − 1.

2. Compute intermediate states M3 and C3 from M2 and C2 due to Lemma 1.
Note that ẼK(pad(C2), Z||C3) = C1.

3. Guess the value of Z randomly from {0, 1}.
4. Construct M ′

1‖M ′
2 as M ′

1 = Z‖C3 and M ′
2 = C2, and get a corresponding

ciphertext C ′
1‖C ′

2:
5. Let LSBn−1(C1) denote the n−1 LSBs of C1. Check if mixR(LSBn−1(C1), C2)

is equal to C ′
2.

• if yes, then output 1;
• if no, change Z to the other value and repeat steps 4–5. If both values
of Z have been examined, then output 0.

A straightforward analysis shows that Pr[D ⇒ 1] is 1 when interacting with
the LDT variant, and at most 22−n when interacting with an ideal cipher. Thus
the advantage of D is at least Adv(D) ≥ 1 − 22−n, which is overwhelming for
typically n = 128.

4 Our Construction SLDT

In this section, we introduce our single-key length doubler SLDT, which is pre-
sented in Algorithm 1 and depicted in Fig. 1. It is a single-key variant of LDT,
and hence is also based on Tweakable block cipher and pure mixing function.

Algorithm 1. EK(M) = SLDT[Ẽ, mix] encryption
Input: K ∈ {0, 1}k,M ∈ {0, 1}[n,...,2n−1]

Output: C ∈ {0, 1}|M|

1: s ← |M | − n

2: Δ1 ← ˜EK(0, 0) and Δ2 ← ˜EK(0, 1)
3: M1||M2 ← M , with |M1| = n and |M2| = s

4: Z||M3 ← 2Δ1 ⊕ ˜EK(pad(M2), M1 ⊕ 2Δ1), with |Z| = n and |M3| = s
5: (C3, C2) ← mix(M3, M2)

6: C1 ← 2Δ2 ⊕ ˜EK(pad(C2), (Z||M3) ⊕ 2Δ2)
7: Return C1||C2
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C1 C2
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Z
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Fig. 1. Our SLDT (left) and LDT [3] (right)

SLDT uses two masks Δ1 and Δ2 such that Δ1 = ẼK(0, 0) and Δ2 =
ẼK(0, 1). For a message M ∈ {0, 1}[n,...,2n−1], the encryption procedure is as
follows. The decryption procedure can be easily derived and hence omitted here.

1. Parse M to an n-bit string M1 and a s-bit string M2 (s = |M |−n) such that
M = M1‖M2.

2. Input M1 into the first tweakable block cipher call masked by Δ1, where the
tweak is generated by padding M2. The output is denoted as Z‖M3, where
Z is the first n − s bits and M3 is the remaining s bits.

Z‖M3 = ẼK(pad(M2),M1 ⊕ 2 · Δ1) ⊕ 2 · Δ1

where we note that the operation · is a finite field multiplication and often
omitted in the description in this paper.
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3. Apply a pure mixing function to update (M3,M2), and the outputs are
denoted as (C3, C2).

(C3, C2) = mix(M3,M2).

4. Input Z‖C3 to the second tweakable block cipher call masked by Δ2, where
the tweak is generated by padding C2. The output is denoted as C1.

C1 = ẼK(pad(C2), (Z‖C3) ⊕ 2 · Δ2) ⊕ 2 · Δ2.

5. Output C1‖C2 as the ciphertext.

SLDT is a provably secure SPRP up to roughly 2n/2 adversarial queries
as formally stated in Theorem 1 below, namely achieving the birthday bound
security bound. Hence SLDT has a comparable security with LDT, but has
reduced the key size by half, more precisely from 2k bits to k bits.

Theorem 1. Let E be a SLDT with a tweakable block cipher Ẽ : {0, 1}k ×
{0, 1}n × {0, 1}n and a pure mixing function mix, as illustrated in Algorithm 1
and depicted in Fig. 1. The secret key K is selected from {0, 1}k uniformly at
random, that is K

$← {0, 1}k. Let t and q be the upper bounds of distinguisher’s
time complexity and query complexity. The following bound holds

Advvsprp
E (t, q) ≤ Advsprp

˜E
(t + O(q), 2q) +

4q2

2n
+

5q

2n
(1)

The proof is provided in next section.

5 Security Proof of SLDT

Throughout the proof, we always assume that D has a time complexity at most
t and a query complexity at most q. We use ΔD(O,Q) to denote D’s advantage
of distinguishing any two oracles O and Q, that is

ΔD(O,Q) =
∣
∣Pr

[
DO ⇒ 1

]
− Pr

[
DQ ⇒ 1

]∣
∣ .

Firstly, we replace the tweakable block cipher ẼK with an ideal tweakable
block cipher P̃

$← T̃WP. Let E [ẼK ] and E [P̃ ] denote SLDT with underlying
primitive ẼK and P̃ , respectively. We have trivially that

ΔD(E [ẼK ], E [P̃ ]) ≤ Advsprp
˜EK

(t + O(q), 2q). (2)

The remaining proof deals with ideal primitives. Hence we will only consider
information-theoretic distinguisher D that has unlimited computation resource.
Without loss of generality, we assume D is deterministic.

Secondly, let LDT[P̃1, P̃2] be a LDT [3] with independent two ideal tweakable
block ciphers P̃1, P̃2

$← T̃WP. Let π be an ideal length doubler, that is π
$← LB.

It has been proven by Chen et al. in [3] that

ΔD(LDT[P̃1, P̃2], π) ≤ q(q − 1)
2n

. (3)
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We refer interested readers to [3, Theorem 1] for the proof of (3).
As Advvsprp

E (D) = ΔD(E , π), we have the following upper bound via a
straightforward hybrid argument.

ΔD(E , π) ≤ ΔD(E [ẼK ], E [P̃ ]) + ΔD(E [P̃ ], LDT[P̃1, P̃2]) + ΔD(LDT[P̃1, P̃2], π)
(4)

Combining the Eqs. (2), (3) and (4), we have that

ΔD(E , π) ≤ ΔD(E [P̃ ], LDT[P̃1, P̃2]) + Advsprp
˜E

(t + O(q), 2q) +
q(q − 1)

2n
. (5)

Therefore the remaining work is to upper bound ΔD(E [P̃ ], LDT[P̃1, P̃2]). Similarly
with upper bounding ΔD(E [ẼK ], E [P̃ ]), we can instead analyze the distinguishing
distance between (P̃ (·, ·⊕Δ1)⊕Δ1, P̃ (·, ·⊕Δ2)⊕Δ2) and (P̃1, P̃2), which is the
essential work in our proof. The pair of oracles are depicted in Fig. 2 and referred
as oracles X and Y respectively. The proof adopts the H-coefficient technique
introduced in Sect. 2.5. Here X and Y are referred to as so-called the real world
and the ideal world respectively. Let X and Y be the probability distributions
of the view when D interacts with X and Y respectively.

Views. At the end of D interacting with the oracle and before D outputting the
bit, we reveal the values of the two masks (Δ1,Δ2) to D. We stress that it only
enlarges the advantage of D, as he can simply ignore such information when
making the final decision. In the ideal world, we randomly select two distinct
values in {0, 1}n as dummy Δ1 and Δ2, and release them to the distinguisher.
Thus, the view of D is in the form

v =
(
Δ1,Δ2, (M

(1)
1 , T

(1)
1 , C

(1)
1 ), . . . , (M (q)

1 , T
(q)
1 , C

(q)
1 ),

(M (1)
2 , T

(1)
2 , C

(1)
2 ), . . . , (M (q)

2 , T
(q)
2 , C

(q)
2 )

)
.

It is straight-forward that a view v to be attainable when interacting with Y
should satisfy

• for any pair (M (i)
b , T

(i)
b , C

(i)
b ) and (M (j)

b , T
(j)
b , C

(j)
b ) with T

(i)
b = T

(j)
b , where

b ∈ {1, 2}, 1 ≤ i, j ≤ q and i 
= j, it has that M
(i)
b 
= M

(j)
b implies C

(i)
b 
= C

(j)
b

and C
(i)
b 
= C

(j)
b implies M

(i)
b 
= M

(j)
b .

All such attainable views contribute to a set V. Next, we partition V into two
disjoint subsets Vgood and Vbad such that V = Vgood

⋃
Vbad.

Vbad definition and Pr[Y ∈ Vbad] bound. A view is said to be bad if (at least)
one of the following cases happens.

• Case 1: there exists 1 ≤ i, j ≤ q such that M
(i)
1 ⊕ M

(j)
2 = 2 · Δ1 ⊕ 2 · Δ2 or

C
(i)
1 ⊕ C

(j)
2 = 2 · Δ1 ⊕ 2 · Δ2;
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M1

M2

C2

C1

P̃1

P̃2
T2

T1

M1

M2

C2

C1

P̃

P̃
T2

T1

2Δ1

2Δ1

2Δ2

2Δ2

Fig. 2. Oracle X (left) and Oracle Y (right)

• Case 2: for 1 ≤ i ≤ q, there exists (M (i)
1 , T

(i)
1 = 0) such that M

(i)
1 ⊕ 2 ·Δ1 ∈

{0, 1}, or there exists (M (i)
2 , T

(i)
2 = 0) such that M

(i)
2 ⊕ 2 · Δ2 ∈ {0, 1}.

• Case 3: for 1 ≤ i ≤ q, there exists (C(i)
1 , T

(i)
1 = 0) such that C

(i)
1 ⊕ 2 · Δ1 ∈

{Δ1,Δ2}, or there exists (C(i)
2 , T

(i)
2 = 0) such that C

(i)
2 ⊕ 2 · Δ2 ∈ {Δ1,Δ2}.

We can easily get the following upper bound, since the dummy Δ1 and Δ2 are
randomly selected at the end of the interaction.

Pr[Y ∈ Tbad] ≤ Pr[Case 1] + Pr[Case 2] + Pr[Case 3]

≤ q(q − 1)
2n

+
4q

2n
+

4q

2n

=
q(q − 1)

2n
+

8q

2n
, (6)

Pr[X = v]/Pr[Y = v] for each v ∈ Vgood. We write ΩX (resp. ΩY) for the set
of all instance functions of the oracle X (resp. Y), and its cardinality as ‖ΩX ‖
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(resp. ‖ΩY‖). For a view v, we write compX (v) (resp. compY(v)) as the subset
of ΩX (resp. ΩY) that are compatible with the view v. Namely if the oracle
X (resp. Y) is instantiated to a function in compX (v) (resp. compY(v)), D will
receive v as its view during the interaction with X (resp. Y). Thus, we have that

Pr[X = v] =
‖compX (v)‖

‖ΩX ‖ , Pr[Y = v] =
‖compY(v)‖

‖ΩY‖ .

It is easily to get ‖ΩX ‖ = (2n!)2
n

and ‖ΩY‖ = 2n(2n − 1)(2n!)2
n

(2n!)2
n

.
Now we evaluate ‖compY(v)‖. We will group the query-response tuples

according to the tweak value. Let w1 and w2 be the number of distinct tweak
values in {(M (1)

1 , T
(1)
1 , C

(1)
1 ), . . . , (M (q)

1 , T
(q)
1 , C

(q)
1 )} and {(M (1)

2 , T
(1)
2 , C

(1)
2 ), . . . ,

(M (q)
2 , T

(q)
2 , C

(q)
2 )}, respectively. We re-order the query-responses according to

the tweak values and force the first tweak value be 0 if included. We denote by
αi (resp. βi) the number of query-responses with the tweak T

(i)
1 for 1 ≤ i ≤ w1

(resp. T
(i)
2 for 1 ≤ i ≤ w2). As v ∈ Vgood, we have

∑w1
i=1 αi =

∑w2
i=1 βi = q. It is

straightforward to get that

‖compY(v)‖ = (2n!)2
n−w1(2n!)2

n−w2

w1∏

i=1

(2n − αi)!
w2∏

j=1

(2n − βj)!.

Next we evaluate ‖compX (v)‖. Similarly we denote by w the num-
ber of distinct tweaks in {(M (1)

1 , T
(1)
1 , C

(1)
1 ), . . . , (M (q)

1 , T
(q)
1 , C

(q)
1 ), (M (1)

2 , T
(1)
2 ,

C
(1)
2 ), . . . , (M (q)

2 }, where all query-response tuples are distinct due to v ∈ Vgood.
We re-order the query-responses according to the tweak value, and force the first
tweak to be 0 if included. We denote by γi the number of query-responses with
tweak T (i). It has that

∑w
i=1 γi = 2q. There are two cases as follows.

• the tweak 0 is included in the query-response tuples.

‖compX (v)‖ = (2n!)2
n−w(2n − 2 − γ1)!

w∏

i=2

(2n − γi)!

• the tweak 0 is not included in the query-response tuples.

‖compX (v)‖ = (2n!)2
n−w−1(2n − 2)!

w∏

i=1

(2n − γi)!

Overall, we have that

‖compX (v)‖ ≥ (2n!)2
n−w(2n − 2 − γ1)!

w∏

i=2

(2n − γi)!
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Up to now, we compute as follows

Pr[X = v]
Pr[Y = v]

=
‖compX (v)‖/‖ΩX ‖
‖compY(v)‖/‖ΩY‖

≥ 2n(2n − 1)(2n − 2 − γ1)!(2n!)w1+w2−w
∏w

i=2(2
n − γi)!∏w1

i=1(2n − αi)!
∏w2

j=1(2n − βj)!

=

∏w1
i=1(2

n)αi

∏w2
j=1(2

n)βj

(2n − 2)γ1

∏w2
i=2(2n)γi

, (7)

where (i)j = i!/(i − j)!. We know that (2n − 2)γ1 ≤ (2n)γ1 , so we can proceed
(7) as follows.

(7) ≥
∏w1

i=1(2
n)αi

∏w2
j=1(2

n)βj

(2n)γ1

∏w
i=1(2n)γi

=

∏w1
i=1(2

n)αi

∏w2
j=1(2

n)βj
∏w

i=1(2n)γi

. (8)

In addition,
∑w1

i=1 αi =
∑w2

j=1 βj = q,
∑w

i=1 γi = 2q and (x)y(x)z ≥ (x)y+z.
When γi = 1 for 1 ≤ i ≤ w and w = 2q, meaning that v has 2q distinct tweaks,
the term

∏w
i=1(2

n)γi
can reach its maximum (2n)2q.we can proceed (8) as below:

(8) ≥ (2n)q(2n)q

(2n)2q

≥ (2n)2q

(2n)2q

=
2q−1∑

i=1

(1 − i

2n
)

≥ 1 − q(2q − 1)
2n

. (9)

From (7), (8) and (9), we get that for each v ∈ Vgood,

Pr[X = v]
Pr[Y = v]

≥ 1 − q(2q − 1)
2n

. (10)

Following the H-coefficient technique and the Eqs. (6) and (10), we have that

ΔD(E [P̃ ], LDT[P̃1, P̃2]) ≤ q(q − 1) + q(2q − 1)
2n

+
8q

2n
(11)

Finally, we can conclude from (5) and (11) that

Advvsprp
E (t, q) ≤ Advsprp

˜E
(t + O(q), 2q) +

q(q − 1) + q(2q − 1)
2n

+
8q

2n
+

q(q − 1)
2n

= Advsprp
˜E

(t + O(q), 2q) +
4q2

2n
+

5q

2n
,

which completes the proof for Theorem 1.
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Abstract. In this paper, we study privacy models for privacy-preserving
Wifi fingerprint based indoor localization (PPIL) schemes. We show
that many existing models are insufficient and make unrealistic assump-
tions regarding adversaries’ power. To cover the state-of-the-art prac-
tical attacks, we propose the first formal security model which formu-
lates the security goals of both client-side and server-side privacy beyond
the curious-but-honest setting. In particular, our model considers vari-
ous malicious behaviors such as exposing secrets of principles, choosing
malicious Wifi fingerprints in location queries, and specifying the loca-
tion area of a target client. Furthermore, we formulate the client-side
privacy in an indistinguishability manner where an adversary is required
to distinguish a client’s real location from a random one. The server-side
privacy requires that adversaries cannot generate a fabricate database
which provides a similar function to the real database of the server. In
particular, we formally define the similarity between databases with a
ball approach that has not been formalized before. We show the validity
and applicability of our model by applying it to analyze the security of
an existing PPIL protocol.

Keywords: Indoor localization · Wifi fingerprint
Security model · Privacy

1 Introduction

People spend significant amounts of their time in public indoor environments
including shopping malls, libraries, airports, university campuses, etc. This has
boosted the interest towards various indoor location-based applications [6,15]
such as indoor-navigation or elderly assistance and emergency responding. How-
ever, in an indoor environment, the traditional Global Positioning System (GPS)
may be not available due to weak signal strengths caused by blocking construc-
tions. To obtain a location in a building, a client has to rely on certain indoor
location services (ILS) provided by some server of the building. The most widely
used approach for ILS is the one based on the Wifi fingerprinting technique
[5,7–9,11,14,18,20,21]. This method is very effective and popular because it
c© Springer Nature Switzerland AG 2018
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uses an existing Wifi infrastructure of a building. For a Wifi fingerprint based
ILS, the server holds a geo-location database (e.g. [22, Table 1]) containing signal
strengths of Wifi access points (AP) in various reference locations, as explained
in Sect. 3. Roughly speaking, a client measures the signal strengths of Wifi APs
in the client’s current (unknown) location and send them to the server. The
server calculates the client’s location based on the geo-location database, e.g.,
by calculating the k-nearest Euclidean distances between the client’s input and
reference fingerprints in the database. Finally, the server sends the location to
the client. However, this naive solution cannot prevent a malicious server from
tracking its clients’ locations, which of course violates the clients’ privacy.

Recently, several solutions, e.g. [12,13,22,24], have been proposed to pro-
tect the clients’ location privacy in ILSs. However, only a few pieces of research
(e.g. [24]) have included a formal security model for privacy-preserving indoor
localization (PPIL) schemes. This deficiency has resulted in the development
of flawed protocols (e.g. [13,24]) which may take years to discover. Therefore,
applying PPIL schemes without rigorous security proofs is inherently risky. For
example, in INFOCOM 2014, Li et al. [13] presented a Wifi fingerprint localiza-
tion system called PriWFL which was claimed to provide both clients’ location
privacy and server’s database privacy (which will be referred to as client-privacy
and server-privacy for short, respectively). PriWFL is based on the ‘honest-but-
curious’ setting where the adversary does not change the protocol execution
between an honest client and the server. Client-privacy roughly states that no
passive adversary (including the server) can infer the honest client’s location
after intercepting all protocol messages. Server-privacy requires that a mali-
cious client cannot use location queries for compromising the server’s database.
However, Yang and Järvinen [22] recently unveiled a practical attack (which
will be called as chosen fingerprint attack) for breaking the server-privacy of
PriWFL. In this chosen fingerprint attack, the malicious client chooses special
fingerprints, such as all-zeros or single-one fingerprints, to compromise the whole
server’s database. Unfortunately, their attack idea can be applied to break also
the protocol recently proposed by [24], as shown in [23]. One of the major prob-
lems here is that the server-privacy defined in [13,24] cannot cover the malicious
client attack of [22]. Hence, PriWFL has not been provably demonstrated to
provide security against such attack (due to lack of formal definitions). Namely,
the curious-but-honest setting is not enough for proving the security for PPIL
schemes.

To fix the problem of PriWFL, Yang and Järvinen proposed a new PPIL
scheme (which will be referred to as YJ scheme) that relies on Paillier’s public
key encryption (PKE) [17] and garbled circuits based secure evaluation function
(SFE). Intuitively, the YJ scheme satisfies both client- and server-privacy. How-
ever, we notice that its security is only informally justified in [22] without being
analyzed under an appropriate security model. Hence, there are still open ques-
tions: (i) how many active attacks it can withstand and (ii) what the security
assumptions of its build blocks and the corresponding security reductions should
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be. The primary motivation for this work is to develop a formal security model
that allows formal analysis of the security of practical PPIL protocols.

We stress that the definitions on client- and server-privacy respectively are
fundamental to the success of ‘provably secure’ PPIL schemes. It is therefore
highly desirable to define a security model to cover the state-of-the-art attacks so
that their securities can be formally proved to satisfy the security goals. Recently,
Zhang et al. [24] made an effort to formulate the client- and server-privacy in a
curious-but-honest setting. The definitions of client- and server-privacy in [24]
can be seen as extensions from that in [13]. In the location privacy attack [24,
Definition 1], a successful adversary should compromise either a client’s Wifi
fingerprint or location in a query. However, in practice, an adversary may violate
client-privacy via learning (for instance) sensitive information about whether
the client appeared at some place or its whereabouts, even without knowing its
exact location or fingerprints. In particular, the definition of server-privacy is still
vague in [24]. I.e., ‘a certain level of accuracy’ (in [24, Definition 2]) regarding
ILS provided by an adversary is not clearly formalized. Specifically, there is
no way to measure the accuracy of an adversary’s ILS as there is no security
experiment or any formulation about the adversary’s advantage on breaking
either client- or server-privacy. Furthermore, several important practical attacks
are not modeled in [24]) such as: (i) chosen fingerprint attack introduced by
Yang and Järvinen [22], (ii) known location attack (e.g. whether knowledge of an
exposed (historical) location of a client affects the client’s unexposed locations),
and (iii) known sub-area attacks (e.g. a follower is curious about the direction
of movement or location of a client within a specific area). It is still an open
question on modeling these malicious attacks. Hence, we conclude that Zhang et
al.’s model is rather weak and informal and it is not possible to give a thorough
security analysis for a PPIL protocol using such model.

Our Results. In this paper, we present the first unilateral-malicious security
model for Wifi fingerprint-based PPIL schemes to solve the open problems in
existing models. Generally speaking, the unilateral-malicious setting is stronger
than the traditional semi-honest setting but weaker than the fully malicious set-
ting. In the unilateral-malicious setting, we particularly formulate the malicious
behaviors relative to clients’ sessions, e.g., manipulating Wifi fingerprints and
exposing locations. We require the server to behave in semi-honest manner (for
simplicity). Namely, the server may be curious about a client’s location, but it
should honestly run the protocol instance in order to provide a good service.
We can weaken the security requirement of the server since a server’s mali-
cious behaviors (e.g., dishonest executions) would be easily caught in practice
(and substantially punished) due to providing poor ILS. If the service is poor,
then clients would likely just stop using the service and, consequently, make
such an attack impossible. However, the server cannot easily identify a client’s
malicious behaviors. This is true especially when the client’s messages are (non-
deterministically) encrypted by its own public key. Hence, we define the first
practical formal PPIL security model that focuses on modeling the most harm-
ful malicious behaviors on the client side. We specifically apply our new security
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model to analyze the YJ scheme (as an example) to not only show the validity of
our security model but also to exhibit another attractiveness of the YJ scheme
in its provable security.

We consider the security model in a simulation environment (which covers
the real world applications) with a single server and multiple clients, where
each client may have multiple sessions for querying different locations. Unlike
previous work [13,22,24], we formulate the attacks of an adversary via a series
of oracle queries. Each query stands for a generic class of attacks. Under the
unilateral-malicious setting, we assume that the adversary can only run protocol
instances between the client and server by following the protocol specification.
In spite of that, several important active attacks are defined via a series of oracle
queries allowing an adversary to manipulate and learn sensitive information of
sessions. Namely, an adversary can specify sessions’ initial states such as Wifi
fingerprint and target location area, record her own RSS measurements, or reveal
a principal’s long-term or ephemeral secret key and a client’s location. The details
of these queries can be found in Sect. 3.

The security goal of client-privacy is defined in an indistinguishable manner
following the approach in [3]. Namely, a PPIL scheme is said to be client secure
(informally) if no polynomial time adversaries can distinguish the location of an
unexposed session from a random location. Whereas the security goal of server-
privacy is achieved (informally) if all polynomial time adversaries are unable to
generate a database D′ which can provide a similar function of the server’s real
database D. A key problem required to be resolved is to formulate the notion
of ‘similar function’. Here we adopt a ball approach. Informally speaking, we
say that the fabricated database D′ generated by an adversary has a similar
function to the real database D, if D′ results in a fabricated location L′ within
a small ball that is centered at the corresponding real location L (which is cal-
culated based on D for a certain location query) with a pre-defined radius ρ for
most of the distinct location queries. Furthermore, each security goal is asso-
ciated with a corresponding security experiment which defines the interactions
between adversary and experiment simulator (challenger), rules of the adversary
(on launching various attacks), and winning condition of the adversary. Even-
tually, we carefully define the client- and server- privacy in conjunction with
the adversarial model, security experiment, and the corresponding adversaries’
winning advantages. Here define a security model mainly for the Wifi fingerprint
database. However, our security definitions and the adversarial model might be
still generic enough to address the security for different kinds of PPIL schemes.
It is not hard to see that the key elements (or formulation ideas) of our security
model, such as adversary model, security experiment, and security definitions,
can be simply applied to formulate other types of databases with small changes.

In the security analysis of the YJ scheme, we first show that the client-privacy
can be linearly reduced to that of Paillier PKE and SFE. We also show that the
YJ scheme does not leak any useful information about a server’s database to
the adversaries due to the large enough randomness space, and the security of
SFE. Since adversaries cannot gain overwhelming advantages from the messages



Modeling Privacy in WiFi Fingerprinting Indoor Localization 333

of YJ protocol, the security of the database is therefore determined by the secret
entropy of the database itself.

Organization. The remainder of this paper is organized as follows. The security
assumptions on the building blocks of the YJ scheme are reviewed in Sect. 2. In
Sect. 3, we introduce a new security model for PPIL protocols. In Sect. 4, we
review the YJ scheme and introduce the security analysis under our proposed
model. Finally, we give conclusion remarks in Sect. 5.

2 Preliminaries

General Notations. We let κ ∈ N be the security parameter and 1κ be a string
of κ ones. Let [n] = {1, . . . , n} ⊂ N denote the set of integers. Let a

$← S denote
the operation sampling a uniform random element from a set S. We use ‖ to
denote the concatenation operation of two strings. Let | · | denote an operation
calculating the bit-length of a string, and # denote an operation calculating the
number of elements in a set.

Paillier Public Encryption Scheme. Paillier public-key encryption (PKE)
scheme [17] is a probabilistic encryption scheme. Let PrimG(κ) be a function
which generates a set of primes of length κ. The Paillier PKE scheme mainly
consists of the following three algorithms:

– Key Generation (KeyGen). Given the security parameter 1κ, the algorithm
chooses two large primes p, q

$← PrimG(κ/2), and computes n = p · q. It also
selects a group generator g for the multiplicative group Z

∗
n2 , such that the

order of g is a non-zero multiple of n. The public key pk is a tuple (n, g) and
the secret key sk is λ = lcm(p − 1, q − 1). This algorithm returns (pk, sk).

– Encryption (Enc). This algorithm takes a message m < n and a public
key (n, g) as inputs. It selects a random value r

$← [n], and computes the
ciphertext: C = gm · rn mod n2. The output of this algorithm is C. For
simplicity, we may omit modulus n2 in the rest of the paper.

– Decryption (Dec). This algorithm takes C < n2 and the secret key λ as
inputs, and outputs m = L(Cλ) mod n2

L(gλ) mod n2 mod n where L(u) = u−1
n .

Paillier PKE scheme is additively homomorphic over the group Zn. Namely,
for two ciphertexts C1 = Enc(pk,m1) and C1 = Enc(pk,m2), we have that
Dec(sk, C1 · C2 mod n2) = m1 + m2 (mod n) and Dec(sk, C1 · C−1

2 mod n2) =
m1 − m2 (mod n), where the inverse can be computed via the exponentia-
tion C−1

2 = Cn2−1
2 mod n2. Using the above homomorphic additions, it is

also possible to compute multiplications and divisions by a scalar t ∈ [n]:
Dec(sk, Ct

1 mod n2) = t · m1 (mod n) and Dec(sk, Ct−1 mod n
1 mod n2) = m1/t

(mod n), where t−1 mod n can be computed with the Extended Euclidean Algo-
rithm.

We review the security of Paillier PKE scheme via the following definition.
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Definition 1. The security experiment for a Paillier PKE scheme Pai=
(KeyGen, Enc, Dec) is defined in the following:

EXPind−cpa
Pai,B (κ) :

b
$← {0, 1}, p, q

$← PrimG(κ/2), n = p · q; g ← Z
∗
n2

,
(m0,m1) ← B(n, g), s.t. |m0| = |m1|and 0 ≤ (m0,m1)< n;
r0, r1

$← [n − 1], C0 := gm0 · rn
0 mod n2, C1 := gm1 · rn

1 mod n2;
b′ ← B(pk,Cb); if b = b′ return 1, otherwise return 0.

We define the advantage of B in the above experiment as: Advind-cpaPai,B (κ) :=
∣
∣
∣Pr[EXPind-cpa

Pai,B (κ) = 1] − 1
2

∣
∣
∣ . We say that the Paillier PKE scheme Pai is secure,

if for all probabilistic polynomial time (PPT) adversary B the advantage
Advind-cpaPai,B (κ) is a negligible function in κ.

Two-party Secure Function Evaluation. We briefly review the formal
notions regarding (circuit based) secure function evaluation (SFE) which is used
by the YJ protocol. Given a public function F̂ , a classical SFE scheme allows
two parties to run a protocol which results in party 1 learning only the outcome
of F̂ (x1||x2), while party 2 learning nothing, where x1 and x2 are the private
inputs of party 1 and party 2 respectively. We refer the reader to [2] for more
details on the security notions and concrete example of SFE.

We let f̂ denote a circuit for a certain function F̂ with input size n ∈ N

(that may be accessed as f̂ .n). And let ev(f̂ , x) be a canonical circuit evaluation
function which takes as inputs f̂ and a string x, and computes the output of
the function F̂ (x). Here we define a function Φ(f̂) to describe what we allow
to be revealed regarding f̂ . With respect to a garbling scheme, Φ may reveal a
circuit’s size, topology, identity, or many others. More concrete side information
functions can be found in [1,2].

In a two-party protocol, we suppose that party i (i ∈ [2]) has a private string
xi with length ni, and party 2 has a circuit f̂ where n = n1 + n2. We describe a
two-party protocol (for executing a SFE scheme) via a pair of PPT algorithms
Σ = (Σ1, Σ2) . Party i ∈ {1, 2} will run Σi on its current state and the incoming
message from its intended partner, to generate an outgoing message and a local
output. The initial state of Σi includes the security parameter κ, a fresh random
coin γi

$← Ri (chosen from a random space Ri) and the (private) function input
Ii of party i. The random coins γ1 and γ2 might be omitted (in the following
descriptions) for simplicity, i.e., they are implicitly generated and used. In order
to represent the protocol execution, we define a PPT algorithm Viewi

Σ which
takes as input security parameter 1κ, and inputs (I1, I2) for the two parties
respectively, and returns an execution view vwi and output outi of party i in a
protocol instance. Nevertheless, we may denote an execution between two parties
as SF.Σ(I1, I2) at a high-level view.

Then a SFE scheme is a tuple SF = (Σ, ev) where Σ is a two-party pro-
tocol with input (I1, I2) as above and ev is a circuit evaluation function. The
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correctness requirement states that, for all f̂ and all x ∈ {0, 1}f̂ .n, we have
Pr[out1 = ev(f̂ , x)] = 1, where x = x1||x2, x1 ∈ I1 and (x2, f̂) ∈ I2. We here
review the privacy of SFE in the honest-but-curious setting.

Definition 2. For a SFE scheme SF = (Σ, ev), a simulator S and an adversary
E, the security experiment relative to Φ is defined as follows:

EXPpri.sim,S
SF,E,Φ (κ, i) : ExcuteSF(b, i, xi, f̂) :

b
$← {0, 1}; if xi � {0, 1}f̂ .nireturn⊥;

b′ ← EExcuteSF(b,i,·,·)(κ, i); x3−i
$← {0, 1}f̂ .n3−i , I1 := x1, I2 := (x2, f̂);

if b = b′ return 1, if b = 1 return Viewi
Σ(1κ, I1, I2);

otherwise return 0. if i = 1 return S(1κ, ev(f̂ , x1||x2), Φ(f̂));
if i = 2, return S(1κ, f̂ , |x1|);

We define the advantage of E, which is allowed only a single ExcuteSF query,
in the above experiment as: Advpri.sim,S

SF,E,Φ (κ, i) :=
∣
∣
∣Pr[EXPpri.sim,S

SF,E,Φ (κ, i) = 1] − 1
2

∣
∣
∣ .

We say that SF is secure relative to Φ, if for each i ∈ {1, 2} and all PPT
adversaries E, the advantage Advpri.sim,S

SF,E,Φ (κ, i) is a negligible function in κ.

3 A New Security Model for Privacy Preserving Indoor
Location Schemes

In this section, we define a new unilateral-malicious security model for privacy
preserving indoor location (PPIL) protocols which are based on Wifi fingerprints.
The privacy for client and server is formulated respectively following the well-
known game-based modeling approach [3,10].

Simulation Preliminary. We first describe the general simulation environment
which will be exploited in the following security notions (in particular for secu-
rity experiment). There are two types of entities considered: client C and server
S. The server S is supposed to provide the indoor location service (ILS) of a
building according to a client’s request. The building area (which is covered by
the location service) is assumed to be delicately divided into M reference loca-
tions LT = {i, (xi, yi, zi)}M

i=1, e.g. the black dot in Fig. 1, where (xi, yi) denotes
the horizontal coordinates and zi denotes the vertical coordinate (e.g., the posi-
tion of a floor). One could consider the unit of each coordinate is meter (m)
for instance. Moreover, the building is deployed with N Wifi access points (AP)
to provide network service, where each i-th (i ∈ [N ]) access point may have a
unique identity APi. Let APT = {APj}N

j=1 be list storing all identities of Wifi
access points. In particular, each location has a so-called Wifi fingerprint which
comprises of Received Signal Strength (RSS) values of certain Wifi AP, where
each RSS value is from a range Rv = [vmin, vmax] and (vmin, vmax) are mini-
mum and maximum values respectively. Consequently, the server is assumed to
hold a pre-measured Wifi fingerprint database D which consists of a set of tuples



336 Z. Yang and K. Järvinen

< i, Vi = {vi,j}N
j=1 >M

i=1 (See also in [22, Table 1]) , where i is an index of a refer-
ence location Li ∈ LT, each vi,j denotes the RSS value obtained at Li from APj .
Furthermore, we let Dist be a distance function which takes as input two loca-
tions Li and Lj (with their corresponding coordinates (xi, yi, zi) and (xj , yj , zj))
and outputs the distance between them. One could consider Euclidean distance,
i.e. Eq. 1, as a concrete example of Dist.

When C wants to know its location, it first measures the RSS values from
all APs to get a real-time Wifi fingerprint F = {fj}N

j=1. Then it may ‘privately’
submit F to S as a location query, and calculate its location L from S’s response.
We refer the reader to [23, Sect. 2.1] for more details on the principle of Wifi
fingerprint localization. Meanwhile, the private information of the client mainly
includes its secret key sk, location query F and the corresponding location L.
The secret of the server is the database D.

In order to emulate the behaviors of a set of entities (including λ clients
and 1 server), we may realize a collection of oracles {πs

τ , πt
λ+1 : τ ∈ [λ], s ∈

[d], t ∈ [λ × d]} for (λ, d) ∈ N. Each oracle πs
τ behaves as the s-th protocol

instance (session) performed by the party τ for calculating one location. The
special party λ + 1 is assumed to be server. Each party may have a pair of
pubic/private key (pkτ , skτ ) for τ ∈ [λ + 1], where pkτ can be accessed by all
oracles. Moreover, each oracle πs

τ for τ ∈ [λ] is supposed to keep the following
internal state variables: (i) dss

τ ∈ {accept, reject} – final decision of a session; (ii)
F s

τ – fingerprint F s
τ = {v′

j}N
j=1 for a location query; (iii) inssτ – index selection

set (INS) specifying the location indexes (in LT) which are close to the current
location related to F s

τ ; (iv) ers
τ – ephemeral randomness used to run the protocol

instance; (v) T s
τ – transcript recording all sent and received protocol messages;

(vi) Ls
τ = (xs

τ , ys
τ , zs

τ ) – location of party τ calculated in the s-th session. We
assume the variable Ls

τ will be assigned if and only if dss
τ = accept (meaning

that a protocol instance is correctly executed in a session). The server’s oracles
only have dss

τ and T s
τ .

In order to simulate a Wifi fingerprint used by a location query, we define a
function FPTSim(i) which on input a reference location index i generates a Wifi
fingerprint Fi = {fj}N

j=1 with the following steps: (i) fj
$← [vi,j − Δ, vi,j + Δ]

where Δ is a pre-defined positive integer, where vi,j ∈ D; (ii) If fj ≤ vmin or
vi,j = vmin then fj := vmin; (iii) Else if fj ≥ vmax then fj := vmax.

Adversarial Model. Here we define the power of an active adversaries. The
active adversaries A in our model are considered as a probabilistic polynomial
time (PPT) algorithms, which may interact with another PPT algorithm called
simulator C via the following queries:

– InitCorruptO(τ, s, F̃ ): The variables dss
τ , T s

τ and Ls
τ (if any) of the client’s

oracle πs
τ are initiated with an empty string ∅. This query initializes inssτ :=

[M ]. If F̃ 
= ∅ and τ 
= λ + 1, this query sets F s
τ := F̃ . Each oracle can be

initialized by this query only once.
– InitHonestO(τ, s, i, rds): This query first initializes dss

τ , ers
τ , T s

τ and Ls
τ

with empty string ∅. Let ĩns ⊆ [M ] be a set of location indexes such that
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∀j ∈ ĩns the distance between Li = (xi, yi, zi) and Lj = (xj , yj , zj) is smaller
than rds, i.e., Dist(Li, Lj) ≤ rds. Note that ĩns may cover indexes within a
ball centered at i with radius rds. If τ 
= λ + 1 and #ĩns ≥ χ · M� (for a
threshold say 0.1 ≤ χ ≤ 1)1, this query initializes F s

τ as follows: (i) j
$← ĩns;

(ii) F s
τ := FPTSim(j); (iii) inssτ := ĩns. Again each client’s oracle can be

initialized by this query only once.
– ExecutePPIL(τ, s, t): This query executes the protocol instance between an

unused and initialized client’s oracle πs
τ and a server’s unused oracle πt

λ+1,
and returns the protocol transcript T s

τ . We call πs
τ and πt

λ+1 proceeded in this
query as partner oracles. The oracles run by this query are called used. All
server’s oracles here are assumed to be default initialized (without specific
initiation query).

– CorruptC(τ): This query responds with the τ -th client’s secret key skτ .
– CorruptS: This query responds with the server’s database D and secret key

skλ+1 (if any).
– RandReveal(τ, s): Oracle πs

τ responds with the ephemeral secret key ers
τ .

– LocReveal(τ, s): Oracle πs
τ responds with the location Ls

τ .
– LocTest(τ, s): If the oracle has state dss

τ 
= accept or τ = λ+1, then this query
returns a failure symbol ⊥. Otherwise, it does the following steps: (i) flip a fair
coin b

$← {0, 1}; (ii) choose a random index j ∈ inssτ , obtain Fj := FPTSim(j),
and calculate L0 based on Fj and D (following the protocol specification)
such that L0 
= Ls

τ ; (iii) set L1 := Ls
τ (which is the real location). Eventually,

the location Lb is returned. This query is allowed to be asked at most once
during the following corresponding security experiment. We call the oracle πs

τ

selected in this query as test oracle.
– DBLeak(i): If the index i has been queried via this query, then it returns a

failure symbol ⊥. Otherwise, this query responses with a similar Wifi finger-
print F ′

i ← FPTSim(i) according to the i-th row of database D.

InitCorruptO query is used to model the chosen fingerprint attacks against
server’s privacy (in the unilateral-malicious setting), i.e., the malicious client may
choose special fingerprints (e.g. all zeros) to compromise the server’s database.
For example, the attack introduced in [22] is a kind of chosen fingerprint attack.
An oracle initialized by this query is known as location exposed oracle.

InitHonestO query is used to initialize the honest (unexposed) oracle based
on an area which is specified by an adversary in term of the reference location
index i and a radius rds. We categorize the attacks modeled by this query as
known sub-area attacks. Consider the attack scenario that an adversary loses
his tracking target at a street corner (determined by i) and he wants to know
the target’s ‘whereabouts’ (within a range rds). In this case, the attacker may
know an approximate area of the client within a range. Moreover, if rds is large
enough then it may cover all location indexes in LT.

ExecutePPIL query formulates the passive adversaries which only observe the
communication between the client and server.
1 If χ is too small, then there is no privacy at all.
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CorruptC and CorruptS queries formulate the corruption of an honest
principal’s long-term credentials respectively. The corrupted party is known as
dishonest or malicious one.

RandReveal query models the randomness exposure attacks which may be
caused by malware or careless disposal.

DBLeak query ‘approximately’ formulates the attack that A measures and
records the Wifi fingerprints Vi

′ (which is similar to Vi of D) for certain location
index i, say based on limited Wifi fingerprint samples.

LocReveal query models the known location attacks (ULA). The resilience of
ULA requires that the exposed locations will not affect the others. For example,
the PPIL scheme proposed in [12] is subject to known location attack. To get a
location, the client in [12] would issue a set of camouflaged localization requests
that follow a similar natural movement pattern. However, if one of the client’s
locations is exposed, e.g., by posting a picture, then the server can simply identify
which location request is the real one.

LocTest query will be exploited to formulate the capability of an adversary
on breaking the client’s privacy. The job of the adversary is to distinguish the
bit chosen by the LocTest query.

Note that we are the first one to generalize the practical attacks against
PPIL schemes via the above generic queries which have not been formalized in
previous work [13,22,24].

Client Privacy. We first define a security experiment as follows.

Security Experiment EXPCP
Π,A(κ,D): On input security parameter κ and a

server’s database D, the security experiment is carried out as a game between a
simulator C and an adversary A based on a PPIL scheme Π, where the following
steps are performed:

1. The simulator C first initiates the game by realizing a collection of oracles
and generating all public/private key pairs for all λ + 1 honest parties and
all other public information. C gives A all public information {pkτ}λ+1

τ=1, LT,
APT and PD.

2. A may adaptively issue a polynomial number of InitCorruptO,
InitHonestO, ExecutePPIL, CorruptC, CorruptS, LocReveal, and
RandReveal queries. At some point, A may issue a single LocTest(τ∗, s∗)
query.

3. At the end of the game, A may terminate and output a bit b′ as its guess for
b of LocTest(τ∗, s∗) query.

4. Meanwhile, the experiment would return a failure symbol ⊥ if one of the
following conditions is satisfied: (a) A has not issued a LocTest(τ∗, s∗)
query; (b) The LocTest(τ∗, s) query returns a failure symbol ⊥; (c) A
asked an InitCorruptO(τ∗, s∗, F ∗) query to the test oracle; (d) A asked
a CorruptC(τ∗) query; (e) A asked either a RandReveal(τ∗, s∗) query or
a RandReveal(λ + 1, t∗) query, where πt∗

λ+1 is the partner oracle of the test
oracle; (f) A asked a LocReveal(τ∗, s∗) query to the test oracle πs∗

τ∗ .
5. The experiment finally returns 1 if b = b′, and 0 otherwise.
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We call an adversary as a ‘legal’ one if it runs an experiment without failure.
A legal adversary should not violate the rules defined in the above step 4). Note
that violating one of the rules (c) to (f) would ‘trivially’ break the client-privacy,
i.e., asking the corresponding queries (specified in the rules) would enable the
adversary to easily distinguish the bit b chosen in the LocTest(τ∗, s) query with-
out breaking the underlying protocol. These situations should be therefore for-
bidden in the experiment. Otherwise, it would always return 1.

Definition 3 (Client-privacy). The advantage of legal adversaries A in the
above experiment is AdvCPΠ,A(κ,D) :=

∣
∣
∣Pr[EXPCP

Π,A(κ,D) = 1] − 1
2

∣
∣
∣ . We say that a

PPIL scheme Π is client-secure, if for all PPT legal adversaries A, the advantage
AdvCPΠ,A(κ,D) is a negligible function in κ.

Server Privacy. Informally speaking, the server’s privacy is achieved if all
polynomial time adversaries are unable to generate a database D′ which can
provide a similar function as the server’s real database D. We may call a location
calculated based on D′ as a fabricated location, and a location calculated based
on D as real location. Given two databases D and D′, we have the following
similar event (as exemplified in Fig. 1):

– Similar Event (SE): For a client’s location query regarding Wifi fingerprint
Fi = {fj}N

j=1, the corresponding location Li and the fabricated location L′
i

have distance at most ρ, i.e., Dist(Li, L
′
i) ≤ ρ, where ρ is a pre-defined differ-

ence threshold (in meter).

L

L′
ρ L′′

Floor 3

Floor 1

Floor 2

L′′

L
L′ρ

Fig. 1. Similar event occurrence examples in horizontal (left) and vertical planes
(right). The small black dots represent the reference locations in LT. The red dot
represents the real location L. The green dot represents the fabricated location L′ in
which the similar event occurs. The blue dot represents the fabricated location L′′ in
which the similar event does not occur. (Color figure online)

The term on ‘similar function’ of two databases can be roughly illustrated as
follows. Given a number of distinct client’s location queries, the occurrence rate
of SE is larger than a pre-defined success threshold α (e.g. α = 0.7). Let TF be
a test set that consists of |TF | > M distinct fingerprints of random locations.
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Table 1. Parameters of server-privacy.

Params Description

D Real database of server

φ A security parameter specifying the number of DBLeak queries

ρ Distance threshold between the real location and the fabricated location

α Probability threshold of SE

TF Test set of random fingerprints

For example, one could generate a fingerprint F ∈ TF by randomly choosing an
index i

$← [M ] and running F := FPTSim(i). Let SimilarTest be a function that
is used to test the functional similarity between two databases. SimilarTest takes
as input two databases D and D′ with their related reference location lists LT
and LT′ (respectively), and a test set TF , and outputs the test result in {0, 1}.
The execution steps of SimilarTest comprises of the following:

– Initiate a SE count variable cnt := 0. Suppose that for a fingerprint Fi ∈ TF
the real location which is calculated based on Fi, D and LT is Li = (xi, yi, zi),
and the fabricated location which is calculated based on Fi, D′ and LT′ is
L′

i = (x′
i, y

′
i, z

′
i). For i ∈ [|TF |], if Dist(Li, L

′
i) ≤ ρ then cnt := cnt + 1.

– Finally, it returns 1 if cnt
|TF | > α; otherwise, 0 is returned.

The parameters, which are relevant to the formulation of the server-privacy,
are summarized in Table 1.

Security Experiment EXPSP
Π,A(κ,D, LT, ρ, α, φ): On input security parameter

κ, a server’s database D, and a distance accuracy threshold ρ, the security exper-
iment is carried out as a game between a simulator C and an adversary A based
on a PPIL scheme Π, where the following steps are performed:

1. The simulator C first implements a collection of oracles and generates all
public/private key pairs for all λ + 1 honest parties and all other public
information. All public information are given to A.

2. A may issue a polynomial number of queries to InitCorruptO, CorruptC,
ExecutePPIL, RandReveal, and LocReveal respectively, and at most φ
DBLeak queries.

3. Eventually, A may return a database D′ and a relevant reference location list
LT′ that has M ′ reference location. Meanwhile, the experiment would return
a failure symbol ⊥ if A asked either a RandReveal(λ + 1, ·) query or more
than φ queries to DBLeak.

4. Finally, the experiment returns SimilarTest(D,D′, LT, LT′, TF ).

Definition 4 (Server-privacy). The advantage of a legal adversary A in the
above experiment is AdvSPΠ,A(κ,D, LT, ρ, α, φ) := Pr[EXPSP

Π,A(κ,D, LT, ρ, α, φ) =
1]. We say that a PPIL scheme Π is server-secure, if for all PPT legal adversaries
A, the advantage AdvSPΠ,A(κ,D, LT, ρ, α, φ) is a negligible function in κ.



Modeling Privacy in WiFi Fingerprinting Indoor Localization 341

We define the above model based on Wifi fingerprint database as an example.
Of course, one could simply modify our model for other types of PPIL schemes
since each query aforementioned represents a generic class of attacks against
PPIL schemes. One may only need to customize the simulation environment
and slightly modify the queries if necessary.

Database Hardcore. The volume of a database D is determined by the number
M of reference locations (that is related to the area of a building), the number N
of APs, and bit size of each RSS value |Rv|. However, there is a general problem
on how hard it is for adversaries to generate a valid fabricated database D′

without any useful information from a PPIL scheme using D. I.e. is the D′ itself
hard to build? This question is independent of any concrete PPIL schemes. If D′

is easy to generate without breaking the PPIL scheme, then we do not need a
PPIL scheme at all. Since the server could just publish its database for all clients.
Intuitively, the adversary should be very hard to generate a valid fabricated D′

that has a similar function as D since D′ also has a large number of bits to
predict. In the following, we are going to give a formal definition regarding the
security assumption of a database (that is non-relevant to PPIL schemes).

Definition 5. The security experiment for testing the hardness of forging a sim-
ilar database for a target database D is defined in the following:

EXPDBH
D (κ,D, LT, ρ, α, φ) :

(D′, LT′) ← DDBLeak(·)(LT, ρ, α, φ), Return SimilarTest(D,D′, LT, LT′, ρ, α, φ).

The advantage of D which can ask at most φ DBLeak queries in the above
experiment is AdvDBH

D (κ,D, LT, ρ, α, φ) := Pr[EXPDBH
D (κ,D, LT, ρ, α, φ) = 1]. We

say that a database D is hard to forge, if for all PPT adversaries D the advantage
AdvDBH

D (κ,D, LT, ρ, α, φ) is a negligible function in κ.

It is straightforward to see that D is hard to forge if only a small portion of
D is leaked via DBLeak to the adversary and D has large M , N , and |Rv|, e.g.,
M = 505, N = 241 and |Rv| = 8 in the real database [16, BUILDING1 NEW]
which has M ×N × |Rv| = 973640 bits at all. However, an open question is how
hard it is to create a valid fabricated database. Such hardness might be closely
related to the structure of specific building and database generation algorithm.
In the future work, one is encouraged to formally analyze the database hardcore
assumption in the setting with the leakage of side-channel information, such as
adversaries’ own RSS measurements modeled by DBLeak query. In this paper,
we just focus on the formalism of server-privacy for PPIL schemes.

4 On the Security of the YJ Scheme

The YJ Scheme. We first review the PPIL scheme [22] recently proposed by
Yang and Järvinen. The YJ scheme is built from Paillier PKE Pai = (KeyGen,
Enc,Dec) and two-party SFE protocol SF = (Σ, ev). Paillier PKE scheme is used
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to protect a client C’s fingerprint F = (f1, f2, . . . , fN ). In the YJ scheme, the
server S should compute the distances between F and Vi (of its database D),
where each distance di is assumed to be the following Euclidean distance:

di = ||Vi − F ||2 =
N∑

j=1

(vi,j − fj)2 =
N∑

j=1

v2
i,j +

N∑

j=1

(−2vi,jfj) +
N∑

j=1

f2
j . (1)

SFE protocol is used to privately compute the location LC = (x, y, z) of C as
the centroid of the k nearest reference locations indexed by i1, i2, . . . , ik, where
i1, i2, . . . , ik indicate distances such that di1 ≤ di2 ≤ . . . ≤ dik

≤ dj for all
j 
= i1, i2, . . . , ik.

Protocol Description. When C subscribes to the location service, it runs
(sk, pk) $← KeyGen(κ) to generate a key pair (sk, pk) for Paillier PKE scheme
with a sufficiently large κ (e.g. κ = 2048) and sends pk = (n, g) to S. The
protocol execution is shown in Fig. 2.

Note that the randomness space RR = Zn may result in the blinded dis-
tance being wraparound over Zn, i.e. a modular n operation is involved in the
generation of the blinded distance.

C
(sk, pk) $← KeyGen(1κ)

S
Database D

Location Retrieval with F = (f1, f2, . . . , fN )
For j ∈ [N roF:] i ∈ [M ]:

Cj,0 := Enc(pk, −2fj) CΔi,1 := Enc(pk, N
j=1 v2

i,j)
C1 := Enc(pk, N

j=1 f2
j ) CΔi,2 := N

j=1 C
vi,j

j,0

Cdi := CΔi,1 · CΔi,2 · C1

−
{{Cj,0}N

j=1, C1}, pk
→−−−−−−−−−−−−−−−

(θ, {CRcb,ι}θ
ι=1, {Rι}θ

ι=1)
← Algorithm 1({Cdi}M

i=1, M)

−−−←
{CRcb,ι}θ

ι=1−−−−−−−−−−−−−
For ι ∈ [θ]:

dι := Dec(sk, CRcb,ι) Produce f̂

I1 = x1 := {dι}θ
ι=1 x2 := {Rι}θ

ι=1, I2 ← (f̂ , x2)

−−−←
SF.Σ(I1, I2) →−−−−−−−−−−−−−

Obtain SF.ev(f̂ , x1||x2)

Fig. 2. The YJ Scheme

Security Analysis. The security results of our scheme are shown by the fol-
lowing theorems. Here we briefly analyze the theorems. The full proofs of them
will be presented in the full version of this paper.
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Algorithm 1. Pack Encrypted Distance Set
Input: {Cdi}M

i=1 and M
Output: θ, {CRcb,ι}θ

ι=1, and {Rι}θ
ι=1

1 θ := 1; μ := M ; RR = Zn

2 while μ > 0 do
3 t := κ−1

m

4 if t > μ then
5 t := μ

6 Ccb,θ :=
∏t

i=1 C2(i−1)m

dμ−i
; Rθ

$← RR; CRcb,θ := Ccb,θ · Enc(pk, Rθ)

7 μ := μ − t
8 if μ �= 0 then
9 θ := θ + 1

10 return (θ, {CRcb,ι}θ
ι=1, {Rι}θ

ι=1)

Theorem 1. Suppose that the Paillier PKE scheme Pai is secure and the SFE
scheme SF is secure, then the YJ scheme with a database D is client-secure with
AdvCPYJ,A(κ,D) ≤ (dλ) · ((N + 1) · Advind-cpaPai,B (κ) + M

2 · Advpri.indSF,E,Φ(κ, 1)).

We summarize the games of the proof in Table 2. We use a superscript ‘∗’ to
denote an element of the test oracle.

Table 2. Sequence of games for client-privacy.

Game Description and Modification

0 Real experiment. {{C∗
j,0}N

j=1, C
∗
1} and {C∗

Rcb,ι}θ
ι=1 of the test oracle

are computed with F ∗ = {f∗
ι }N

ι=1
$← FPTSim(i∗)

1 Abort if the challenger fails to guess the test oracle

2 {C∗
ι,0}N

ι=1 are computed with F ∗′ = {f∗
ι

′}N
ι=1, but {C∗

Rcb,ι, C
∗
1}θ

ι=1 are
computed with F ∗ = {f∗

ι }N
ι=1, where f∗

1
′ �= f∗

1 but {f∗
ι

′}N
ι=2 = {f∗

ι }N
ι=2

3.j Game 2 = Game 3.1

j ∈ [N ] In Game 3.j: f∗
ι

′ �= f∗
ι for 1 ≤ ι ≤ j, but {f∗

ι
′}N

ι=j+1 = {f∗
ι }N

ι=j+1

4 Generating C∗
1 using a random squared RSS values. ∀{{C∗

j,0}N
j=1, C

∗
1}

and {C∗
Rcb,ι}θ

ι=1 are independent now

5 A random location is chosen to answer the LocTest query

Theorem 2. Suppose that the SFE scheme SF is secure, the database D is hard
to forge, then the YJ scheme is server secure with AdvSPYJ,A(κ,D, LT, ρ, α, φ) ≤
d ·  · Advpri.indSF,E,Φ(κ, 2) + θ·d·�

2κ + AdvDBH
D (κ,D, LT, ρ, α, φ).

We summarize the proof of this theorem in Table 3.
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Table 3. Sequence of games for server-privacy

Game Description and modification

0 Real experiment

1 Abort if two random values are equal

2 The random values used to generate the ciphertexts {C∗
Rcb,ι}θ

ι=1

and corresponding SFE protocol instance are different

3 Apply database entropy assumption as Definition 5

5 Conclusion

We presented the first formal privacy model for Wifi fingerprint based PPIL
schemes, where both client- and server- privacy are formulated in a unilateral-
malicious setting to cover state-of-the-art active attacks. The client-privacy is
defined based on the classic notion of indistinguishability, and the server privacy
is defined in a computational manner. The proposed model is verified by apply-
ing it for proving a recent PPIL protocol. An interesting open question here
is whether or nor our security analysis approach can be applied to prove other
kinds of privacy-preserving schemes which have a similar construction (i.e., using
Paillier PKE and SFE) to the YJ scheme, e.g., the protocols for face recognition
[4,19]. For theoretical interesting, the reader is encouraged to define a stronger
security model in the full malicious setting based on our model, and to proposed
PPIL protocols which can be proven secure under such model. For example, one
could allow the active adversaries to send her own messages to oracles (mas-
querading as either client or server). In the future work, it is also required to
formally study the complexity of Definition 5. Nevertheless, it might be also
interesting to consider whether or not it is possible to model the server-privacy
based on indistinguishability.
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Abstract. Cloud storage is in widespread use by individuals and enter-
prises but introduces a wide array of attack vectors. A basic step for users
is to encrypt their data, yet it is not obvious what security properties are
required for such encryption. Furthermore, cloud storage providers often
use techniques such as data deduplication for improving efficiency which
restricts the application of semantically-secure encryption. Generic secu-
rity goals and attack models have thus far proved elusive: primitives are
considered in isolation and protocols are often proved secure under ad
hoc models for restricted classes of adversaries.

We formally model natural security notions for cloud storage and
deduplication using a generic syntax for storage systems. We define secu-
rity notions for confidentiality and integrity in encrypted cloud storage
and determine relations between these notions. We show how to build
cloud storage systems that satisfy our defined security notions using stan-
dard cryptographic components.

1 Introduction

When handing over their data to third parties, it is natural that users regard
security and privacy as critical concerns. Some users may be willing to trust a
cloud storage provider (CSP) to secure their data, but as the Snowden revela-
tions have shown, even well-meaning providers are not immune from compro-
mise. Users increasingly want to manage confidentiality and integrity of their
outsourced data without the need to trust the CSP.

It is perhaps surprising that up to now there seems to be no general model
of security for remote storage. What are the essential components of a remote
storage system, and how should users protect their data so that they can inter-
act usefully with the system while maintaining security requirements? It may
seem obvious that users should simply encrypt their data, but the remote stor-
age scenario is different from that of communication or local storage. Multiple
users interact and files are vulnerable to manipulation by the CSP. Moreover,
c© Springer Nature Switzerland AG 2018
J. Baek et al. (Eds.): ProvSec 2018, LNCS 11192, pp. 347–365, 2018.
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efficiency factors may conflict with user goals. Specifically, CSPs extensively use
deduplication for removing redundant copies of data and saving storage.

Security Goals for Cloud Storage. Users who trust their storage provider
can send plaintext data for storage: this is today the most common situation.
Several commercial storage providers, however, support client-side encryption so
that the cloud provider cannot obtain the plaintext. It is not immediately obvious
which security properties are most appropriate for client-side encryption. In this
paper we create a fine-grained approach to adversarial capabilities in terms of
compromise of both users and servers. We consider three different security goals
and show how they can be achieved within our model.

IND This is the usual standard for strong confidentiality of encrypted data:
indistinguishability of ciphertexts. We will show that this can be achieved in
our cloud storage model by appropriate choice of encryption scheme.

PRV Deduplication cannot take place if strong encryption is deployed. Privacy
under a chosen distribution attack (PRV-CDA) [4] is used to identify achiev-
able security in the presence of message-derived keys. We will show how this
primitive-level goal can be transferred to the protocol level using our model.

INT In many scenarios the user wishes to remove local copies of outsourced
files so has no way checking if a retrieved file has been modified. We intro-
duce a notion of integrity of ciphertexts for cloud storage schemes (INT-SC),
with three flavors corresponding to differing levels of server compromise. Fur-
thermore, we consider integrity in deduplicating schemes and link existing
definitions of tag consistency to our framework.

Contributions. The literature on secure cloud storage has tended to focus on
ad hoc solutions rather than generic models that capture classes of realistic
adversaries. We fill this gap by providing a comprehensive definition of cloud
storage in terms of the input/output behavior of the entities in the system. For
various security properties we use our framework to define game-based notions.

We identify the limits of a number of key security properties in cloud storage
and provide generic security models for encrypted storage and deduplication. Our
framework covers many natural and practically-deployed cloud storage solutions
and this approach enables practitioners to identify which components of a storage
scheme need to satisfy certain criteria for a given security goal. Specifically, we:

– create a modular framework for security models in cloud storage;
– cast known and novel attack models and security notions in our framework;
– consider known attacks on schemes.

Previous Work. From the point of view of a single enterprise or an individ-
ual, secure outsourced storage seems straightforward: encrypt all files at the
client side using strong symmetric encryption, use a message authentication
code (MAC) or AE for integrity and keep the key(s) secret. In this mindset,
cloud storage appears similar to disk encryption [11], and this is the approach



Security Notions for Cloud Storage and Deduplication 349

recently taken by Messmer et al. [21]. Such an approach ignores more complex
interactions between different clients and servers lacking mutual trust.

Moreover, the business model that allows CSPs to provide cheap storage
relies on individuals not employing encryption so as not to interfere with data
deduplication. Since the concept of convergent encryption [8] was formalized by
Bellare et al. [4] there have been a number of proposals for secure deduplica-
tion [10,15,18,27], with each appearing to provide a new threat model. This
has led to uncertainty over what security guarantees these schemes provide. For
example, the protocol of Liu et al. (CCS ’15) [18], as noted later in a revision
to the ePrint version [19] and also in subsequent work by some of the same
authors [20], only provides the security claims if one round of the protocol is
considered: for more than one round, any user can infer whether or not any
file is stored on the cloud – a side channel that can result in serious security
issues [2,13].

Specific functionalities designed for the cloud storage scenario have been
modelled and analysed extensively. These include, but are not limited to: proto-
cols for proofs of retrievability (PoR) [14], proofs of data possession (PDP) [3],
proofs of ownership (PoW) [12], secure auditing [29], and privacy of interactions
(queries and results) between a data owner and a malicious server [26].

2 Preliminaries

We use the notation a ← f(b) to denote assignment of a to the result of comput-

ing f(b) if f is either a function or an algorithm. a
$←− D means that either a has

been chosen from set D (uniformly) or according to some distribution D. If a is
a vector then denote the ith component by a[i], with |a| denoting the number of
components. We denote concatenation of two values, usually bit-strings, by a||b.
If L is a list then the code L

∪←− {a} indicates that a is appended to L.
Throughout this work we assume that all security parameters and public val-

ues are known to all parties (and algorithms). This means that if ever we need to
initialize a primitive or protocol, generation of such values is implicit. In situa-
tions where algorithms are run with no inputs given, these public values are still
provided. Our security experiments consider an adversary that possibly interacts
with some oracles before terminating and providing an output. We use the con-
crete security framework throughout, thus we do not regard adversaries in terms
of security parameters: in particular we avoid use of negligible advantage since
in the cloud setting the (possibly adversarial) server can perform huge numbers
of operations per second. In pseudocode for security games, return b′ ?= b is
shorthand for if b′ = b then return 1 // else return 0, with output of 1 indi-
cating successful adversarial behavior. We will use an init procedure to represent
initialization of cloud storage systems – this encompasses a number of possible
subroutines but for generality and brevity we use a single line. An oracle in a
security game that corresponds to the environment simulating some functional-
ity func is denoted by O.func (the simulation may invoke some restrictions on
func).
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Cloud storage infrastructure includes some always-available servers (the
CSP) and some clients (that act on behalf of users) that are sometimes avail-
able and interact with the servers. There may additionally be some parties that
interact with the clients and servers to provide extra functionality, such as a
key-server [15] or an auditing mechanism [29]. We regard users as the entities
with distinct logins to a system, and clients as the devices that interact with the
server on behalf of their owner, the user. This allows us to consider two clients
that have the same key material, e.g. laptop and phone, of one user.

Symmetric-Key Encryption (SKE). Our results aim to build secure schemes
from the most simple and well-understood building block in cryptography: sym-
metric encryption. In traditional SKE, two parties agree some key in advance
and then communicate over some (presumed insecure) channel. In the context of
outsourced storage the two parties are often the same user at different points in
time. Additionally, the ‘channel’ is not only the communication lines between the
user and the server but also the server’s storage when the ciphertext is at rest.
Our syntax and definitions of security follow standard practice and are given in
the full version [6]; here we highlight some choices we have made to facilitate our
results. Our games for IND-CPA, IND-CCA2 and AEAD represent multi-challenge
left-or-right indistinguishability. We do not restrict what we regard as files for
these notions due to the myriad of ways in which a file can be processed before,
during and after the store procedure. Instead we insist that trivial wins are dis-
allowed by some restriction on the relation between files sent in (F0,F1) calls to
left-or-right oracles: normally this will mean that the segmentation procedure
applied to both files must yield the same number of blocks. We also require
PRV-CDA and tag consistency as given by Bellare et al. [4].

3 Modelling Cloud Storage

Our goal is to study security of cloud storage in terms of confidentiality and
integrity of files. Such analysis is only possible if the model provides sufficient
detail about adversarial capabilities. The challenge is to provide a sufficiently
detailed model that allows analysis, yet is generic enough to facilitate study of
natural schemes. It is desirable that the model can easily be extended to incorpo-
rate particular exotic design choices. We present here what is to our knowledge
the first such model for (secure) outsourced storage that accommodates both
widely-deployed (and conceptually straightforward) solutions as well as much of
the literature (in particular schemes facilitating encrypted data deduplication).
As for any storage scheme, a user of a cloud storage scheme should be able to
store, retrieve and delete files. A user must be able to specify which previously
stored files to retrieve or delete, and we shall achieve that by having the user
choose a unique file handle (identifier) for each file when storing. Correctness can
then be defined in the expected way, stated here for a notational introduction:

Definition 1 (Correctness). If user uid previously stored F under handle id
then when it later retrieves id the result will be F, unless client has sent del(id).
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init
01. ST ← ∅

newu(uid)
02. ukuid ← kgen
03. KTuid ← ∅
04. return ukuid

del(uid, id)

05. KTuid
∪←− {(⊥, id)}

06. if ∃ {uid, ·, id, 0} in ST then
07. ST

∪←− {(uid, −, id, 1)}

upl(uid, c, id)

08. ST ∪ (uid, c, id, 0)

store(uid,F, id)
09. fk ← fkeyGen(F, ukuid)
10. c ← Efk(F, id)
11. upl(uid, c, id)
12. KTuid

∪←− {(fk, id)}

retr(uid, id)
13. if ∃ (uid, ·, id, 1) ∈ ST or
14. ∃(⊥, id) ∈ KTuid then
15. return ⊥
16. if ∃ (uid, c, id, 0) ∈ ST and
17. ∃(fk, id) ∈ KTuid then
18. F ← Dfk(c, id)
19. return F
20. else
21. return

Fig. 1. Definition of a cloud storage scheme CS.

We use storage handles, denoted by id, to indicate the value that the user
wishes to use in the future to retrieve that file. We regard the generation of
id as outside the scope of the model. It is perhaps easiest to think of id as a
random value that is generated by the user’s device for each file. In practice
all a user sees is a list of filenames (which are certainly not suitable for our
purposes due to non-uniqueness): this approach allows us to focus on issues
directly related to confidentiality and integrity. This handle is distinct from the
deduplication ‘tags’ used in prior literature on message-locked encryption [1,4,8].
In client-side-deduplicating systems the user first sends some short, message-
derived tag (for example in convergent encryption [8] this is τ = H(H(C)) for
ciphertext C) and if the server already has this tag, informs the user not to
send the full ciphertext and updates that ciphertext’s metadata to indicate that
the user can in future retrieve the ciphertext. Note that this process also occurs
in deduplicating schemes that do not use any encryption. In this context, this
tag is all that is required to claim ownership of a file. Our handles do not have
this feature: they simply ensure that retrieve queries work ‘correctly’. In Sect. 5
we will discuss integrity in the context of deduplicating and non-deduplicating
cloud storage, and highlight the differences between our handles and these tags
in more detail.

3.1 A Model for Cloud Storage

Our model for cloud storage is depicted in Fig. 1. A cloud storage scheme
CS[SKE, fkeyGen] = (init, newu, store, retr, del) is parameterized by a symmetric-
key encryption scheme SKE = (KG,E,D) and a file-key generation procedure
fkeyGen, and supports natural functionalities: init for initialization, newu for
adding a new user, store for storing a file, retr for retrieval and del for deletion.



352 C. Boyd et al.

Each user is associated with a user identification uid, and each file is identified
by a storage handle id. We define per-user keys uk and per-file keys fk. Each
user has some (preferably small) local storage and the server maintains (what
is from an abstract perspective at least) a vast data structure. Generation of
per-user key material uk (line 02) may include keys for a number of different
purposes. The user stores this material and their own KT (‘Key Table’) locally
and the server(s) maintains a database ST (‘Store Table’) that it uses to track
file ownership and retrieval handles. This means that there is only one ST but
there could be many KTs. Our model retains generality: to our knowledge it
incorporates almost all intuitive schemes and all protocols from the literature
(more details in next subsection). We make no assumption about how files are
handled in terms of segmentation, nor do we consider redundancy at the server’s
backend. The model that follows is, by design, modular and generic enough to
cope with straightforward modifications to incorporate such processes.

We now discuss the design choices that require further attention. In line 02 we
explicitly regard the per-user key generation procedure as occurring separately
from the other procedures, this is to retain generality and to allow us to focus
on file-key generation. ST tracks deletion status of each file for each user (lines
13–15), using a bit as the fourth value in each entry. In deployed systems this
abstract procedure may not be done as directly as we describe. Line 07 indicates
that the server may at this point delete the ciphertext for the deleted file, however
we do not enforce this: the ‘1’ flag indicates deletion has occurred1 for user uid
and handle id. Encryption algorithm E takes id as input (line 10): if SKE is an
AEAD scheme then id could be the associated data – we model this construction
later on. Lines 16–19 specify that the file can only be retrieved if it has not been
removed either by the client or the server: in particular line 17 says that if there
exists an fk such that (fk, id) ∈ KTuid then the retrieve is allowed to continue.

We differentiate between store – the entire process of storing a file on the
server and updating the client’s local storage – and upl– the specific action that
occurs server-side. The definition generalizes to include the simplest and most
widely-deployed solution, which is without any client-side encryption at all. Any
scheme that distributes files among multiple servers is also included, incurring
a rather complicated outsourced state ST, however the results in the remainder
of this paper will mainly focus on the single server case. To satisfy correctness
we require an implicit assumption that the CSP forwards all requests honestly:
this approach reflects cryptographic models for key exchange. If fk used for
store (encryption) is not the same as the one used for retr (decryption) then no
scheme can be correct. The adversaries that we consider cannot modify KT so
key symmetry is implicit in our model and for the rest of the paper.

1 Many CSPs never actually delete files at the backend, and this is understandable:
the cost of finding, accessing and removing a file and all its redundant copies is often
considerable, and if the CSP uses client-side deduplication then if the user (or any
other) uploads that file in the future this will incur a bandwidth cost.
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Scheme fkeyGen(F, uk)
1 No encryption fk ← ⊥
2 Per-user key fk ← uk

3 Per-file key fk ← KG
4 MLE [4] fk ← H(F)
5 Liu et al. [18] fk ← PAKE.Out(F)
6 DupLESS [15] fk ← OPRF.Out(F)
7 Duan [10] fk ← DOKG(F)
8 Stanek et al. [27] fk ← Thr.PKE.KG(F)
9 CDStore [17] fk SS(H(F

Fig. 2. Specification for fkeyGen procedure for existing cloud storage schemes

3.2 Modelling Existing Schemes and Literature

In Fig. 2 we detail the file-key generation procedure for natural constructions and
a number of schemes from the existing literature. The natural scenarios include
a CSP that does not support client-side encryption (line 1), a CSP wherein each
user holds a per-user key and encrypts all files with that key (line 2), and a CSP
wherein a per-file key is randomly chosen at the point of the file being uploaded
(line 3). The per-user key scenario (line 2) allows deduplication of a particular
user’s files (but not cross-user deduplication) which can still allow great savings,
particularly in the backup setting. This case also reflects some enterprise sce-
narios in which an organization has a storage gateway (that may interact with
trusted hardware, such as a hardware security module) that deduplicates files
and encrypts (under one key) on behalf of all of its employees before sending to
some public cloud (CSP). The per-file key scenario (line 3) intuitively provides
increased confidentiality, but introduces challenging key management. A gate-
way can also be used in this case as described in the Omnicloud architecture [16]:
this of course requires the gateway to additionally manage the vast number of
keys that could be generated in the enterprise scenario.

Schemes in lines 4–9 all aim to provide ‘secure cross-user deduplication’ to
some extent, providing more confidentiality than using no encryption (line 1)
but at the risk of opening a side channel that may allow a user to learn if a file is
already stored on the server [2]. In many schemes such as those of Keelveedhi et
al. (DupLESS) [15] and Liu et al. [18], the fkeyGen procedure is not a single algo-
rithm but a protocol run between the user and the key server or the other users
in the protocol, respectively. Stanek et al. [27] use both convergent encryption
and an outer layer threshold encryption scheme to produce ciphertexts, and the
fkeyGen protocol interacts with two trusted third parties. Duan [10] attempts to
avoid the single point of failure inherent in having a single (semi-trusted) key
server (KS) in DupLESS-like schemes: fkeyGen generates encryption keys using a
distributed oblivious key generation, instantiated using a (deterministic) thresh-
old signature scheme. The CDStore protocol of Li et al. [17] distributes shares
of a file to multiple cloud servers using so-called convergent dispersal.
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The restriction to SKE in line 10 of Fig. 1 is for the purposes of results
in Sects. 4 and 5. Note here that schemes 1–7 in Fig. 2 precisely fit our model
while schemes 8 and 9 do not simply encrypt using SKE – for these schemes E
represents some other encryption mechanism. In the schemes that do precisely
fit our model, generation of file key fk could happen as part of the key generation
procedure kgen: for example in the per-user key case (line 2 of Fig. 2) fkeyGen
is the identity function. This is one of many potential modular extensions of
our framework: we could of course consider a model in which (for example) the
fkeyGen and E algorithms are general functions with arbitrary inputs.

Cloudedup [23] uses block-level convergent encryption to send ciphertexts to
a third party that adds further (symmetric) encryption and manages metadata.
Dang and Chang [7] similarly assume a trusted entity, in their case hardware.
A trusted enclave uses an oblivious PRF (similarly to DupLESS) to get block-
derived keys to allow the enclave to perform deduplication: the enclave acts
as a deduplication gateway then applies randomized encryption before sending
ciphertexts to the CSP. In these schemes encryption is done in two phases and
the per-block keys are managed by the third party; this does not quite fit our
model but it is straightforward to modify how KT (and SKE) works to analyze
such schemes. Recently Shin et al. [25] attempted to distribute the role of the key
server in DupLESS-like schemes by additionally using inter-KS deduplication.
Again, allowing this type of scheme is a simple extension of our model.

To simplify much of our analysis later on we require that every time a new file
is stored by a client, a new id is generated. This leads to the following assumption:

Assumption 1. In all cloud storage schemes CS considered in this paper, store
is never called on the same id twice.

We emphasize that id is the retrieval handle chosen by the client, and is distinct
from the deduplication ‘tags’ used in prior literature. This assumption (and the
existence of the id) emphasizes that our handles are there to distinguish file
uploads from one another: each {uid, id} pair can only ever occur once.

4 Confidentiality

Now that we have defined a suitable syntax for cloud storage schemes, we can
begin to consider the many ways in which security features can be obtained.
In this section we turn our attention to confidentiality of files with respect to
realistic adversaries. Defining confidentiality notions of security is a two-step
process: We first define what we want to prevent the adversary from learning
(the goal), and then we specify the adversary’s capabilities.

There are several possible goals. The classical cryptographic goal is indistin-
guishability, where one of two adversary-chosen files was stored and the adversary
is unable to decide which file was stored. This is similar to semantic security,
where a file sampled from one of two adversary-chosen probability spaces was
stored, and the adversary is unable to decide which distribution the file was
sampled from. A weaker notion is to sample a file from one of two pre-chosen
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high-entropy probability spaces. The adversary has two distinct capabilities when
attacking a cloud storage system. The first is the ability to influence the actions
of the honest users. The second is the ability to influence the CSP.

When considering corruption of users, it is important to note that an adver-
sary can usually create genuine logins to a system, and thus receive a valid uid
and uk for an arbitrary number of users. We model this by distinguishing between
two types of newu query: O.newuC creates a valid (Corrupt) user and outputs
its uk to the adversary, and O.newuH that only creates a valid (Honest) user2.
For its corrupted users the adversary may not necessarily use uk and fkeyGen
correctly (which O.store cannot handle): we model this capability by giving the
adversary access to an O.upl oracle that pushes some {(uid, c, id, 0)} tuple to the
server’s storage table ST. We regard the minimum adversarial capability as being
able to have full control over a number of corrupted users and to make honest
users store files, we refer to this notion as a chosen store attack (CSA). The
adversary may even be able to get honest users to retrieve files from the cloud
storage system, a chosen retrieve attack (CRA). Analogously to encryption, CSA
and CRA somewhat correspond to CPA and CCA, respectively.3

The adversary’s control of the CSP can be usefully divided into three levels:
the adversary may have no influence at all on the CSP then we have an honest
CSP giving the adversary zero access (Z). The adversary may also be able to
look at the CSP’s storage and key material, but not tamper with anything, a
passively corrupt (P) CSP. This models both honest-but-curious CSPs and snap-
shot hackers (of the cloud’s storage servers or the communication channel). And
finally, the adversary may have full control over the CSP, an actively corrupt (A)
adversary. When the CSP is honest, it may seem that our model always guaran-
tees confidentiality because the adversary would never have access to ciphertexts.
However, this is not the case, since the file key generation procedure is regarded
as a protocol and may leak information (as mentioned earlier with the protocol
of Liu et al. [18]). Roughly speaking, we can say that when the CSP is hon-
est, we consider only the security of the file key generation protocol. When the
CSP is passively corrupt, we must additionally consider the confidentiality of
the encryption used. When the CSP is actively corrupt, we must also consider
integrity in the encryption mechanism. This separation of concerns is by design.

4.1 Defining Confidentiality for Cloud Storage

In combination we define a generic IND-atk-csp experiment with six distinct
cases: atk ∈ {CSA,CRA}, csp ∈ {Z,P,A} and this IND-atk-csp experiment is
detailed in Fig. 3. Just as in our general definition for storage protocols (Fig. 1)
we keep track of the retrieval capability by using a table ST, initially set to empty.

2 It is certainly possible to extend this model to adaptive corruptions, however this
would add considerable extra complexity to any scheme.

3 It is possible to define an equivalent of a passive adversary, however since our defini-
tions are multi-challenge, the adversary can always call O.LRb on F0 = F1 to mimic
a store query (though it cannot query O.retr on these ciphertexts).
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ExpIND-atk-csp
CS, A :

init
b

$←− {0, 1}
CL, usersC, usersH ← ∅
b′ ← Aoracles

return b′ ?= b

O.newuC(uid) :
usersC

∪←− uid
ukuid ← kgen
KTuid ← ∅
return ukuid

O.newuH(uid) :
usersH

∪←− uid
ukuid ← kgen
KTuid ← ∅
return ⊥

O.store(uid,F, id) :
do store(uid,F, id)

O.upl(uid, c, id) :
if uid ∈ usersC then

do upl(uid, c, id)

O.del(uid, id) :
do del(uid, id)

O.LRb(uid,F0,F1, id) :
if uid /∈ usersH then

return ⊥
else

O.store(uid,Fb, id)
CL

∪←− {(uid, id)}

O.retr(uid, id) : // CRA only
if uid /∈ usersH or (uid, id) ∈ CL then

return ⊥
else

F ← retr(uid, id)
return F

O.peek(uid, id) : // P, A only
return {(uid, c, id, 0/1) ∈ ST}

O.erase(uid, id) : // A only
ST ← ST \ {(uid, ·, id, ·) ∈ ST}

O.insert(uid, c, id, d) : // A only
ST

∪ (uid, c, id, d)

Fig. 3. The experiment defining IND-atk-csp security for cloud storage, for
atk ∈ {CSA,CRA}, csp ∈ {Z,P,A}. All adversaries have access to O.newuC,
O.newuH,O.store,O.upl,O.del and O.LR. CRA additionally has access to O.retr, P addi-
tionally has the O.peek oracle and finally A additionally has O.erase and O.insert.

The security experiment keeps track of the O.LR queries using a forbidden list
CL to prevent trivial wins. In order to model the attacker’s influence on the CSP,
we introduce three new oracles: O.peek, O.erase and O.insert. These are not func-
tionalities of storage systems so they are not included in Fig. 1. O.peek allows the
adversary to see the ciphertext (and deletion status) for some user uid and some
handle id, and this is available to a passively corrupt adversary (P). O.insert and
O.erase model actively malicious (or completely compromised) CSPs, granting
the ability to store or delete arbitrary items in the CSP’s database: these two
oracles are only available to an actively corrupt (A) attacker.

Definition 2 (IND-atk-csp Security for Cloud Storage). Consider any cloud
storage scheme CS = (init, newu, store, retr, del). The IND-atk-csp advantage for
an adversary A and atk ∈ {CSA,CRA}, csp ∈ {Z,P,A} against CS is defined by

AdvIND-atk-csp
CS, A = 2 ·

[
Pr

[
ExpIND-atk-csp

CS, A = 1
]

− 1
2

]
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where experiment ExpIND-atk-csp
CS, A is given in Fig. 3.

On Our Model. Our weakest notion of server compromise, IND-atk-Z, refers
to a very limited adversary, with no access to the server’s database and only
capable of making ‘challenge’ store queries (modelled by O.LRb) with users that
it does not have key material for, resulting in ciphertexts that it cannot access.
Thus even a scheme with no encryption can be secure under this notion. This
is by design: the only schemes that do not meet this requirement are those that
leak information about a file to other users during the store procedure.

It is possible to imagine adversaries that may wish to act without being
noticed by the users they have infiltrated. This CRA adversary would thus
retrieve but not store or delete – and yet seems to be more ‘limited’ than a
CSA adversary that does perform store/delete operations and does not mind if
the user notices its behavior. This is the nature of adversaries in cloud storage:
the clear hierarchy that exists for encryption does not easily translate.

The concept of length equality for files in cloud storage is not as clear cut
as it is for bitstrings in an IND-based game for encryption. If the encryption
scheme is not length hiding and the adversary submits one O.LR query and one
O.peek query: if the ciphertext lengths differ then the adversary trivially wins
the game. As mentioned earlier, this means that an inherent restriction exists
on O.LR queries: if the length of (the segmentation of) F0 and F1 differs then
the experiment does not go ahead with the store procedure4.

Relations Between Notions. While we have just defined six adversarial
capabilities, in fact only three are distinct. Figure 4 summarizes how the notions
relate to each other, and we detail these relations fully in the full version [6].
We give a brief intuition here. If notion A has strictly more oracles than notion
B then any CS secure under A will also be secure under notion B. This means
that IND-atk-A ⇒ IND-atk-P ⇒ IND-atk-Z for atk ∈ {CSA,CRA}, and also
IND-CRA-csp ⇒ IND-CSA-csp for csp ∈ {Z,P,A}. This leaves three equivalences
and two separation results. IND-CSA-Z and IND-CRA-Z are equivalent since it is
always possible to simulate the O.upl queries of an IND-CRA-Z adversary: this
adversary can only use O.store to place items in ST that it can later retrieve (since
O.LR and O.upl are forbidden), and by correctness this means a simulator can
just keep track of these queries in a table. A similar approach can be used to show
that IND-CSA-P and IND-CRA-P are equivalent. To show that IND-CSA-P and
IND-CSA-A are equivalent, the simulator needs to successfully simulate O.insert
and O.erase queries. This is indeed possible: the simulator keeps track of such
queries in a table. As we have mentioned, the CS built using no encryption is
IND-atk-Z. It is however not IND-CSA-P: the adversary simply performs one O.LR
query with distinct files and then queries O.peek on that entry. We henceforth
refer to these three distinct notions using IND-atk-Z, IND-CSA-P and IND-CRA-A.

4 In deduplicating schemes segmentation can be a side channel in itself [24]. If the
adversary can observe a distinguishable error symbol as part of its O.LR queries
then this may cause issues. We strictly disallow this by not returning anything to
the adversary and assuming a stringent restriction on allowed file pairs for O.LR.



358 C. Boyd et al.

IND-CSA-Z
IND-CRA-Z

⇐
�

IND-CSA-P
IND-CRA-P
IND-CSA-A

⇐
� IND-CRA-A

Fig. 4. Relations between IND notions for confidentiality of cloud storage systems.

4.2 Achieving Confidentiality in Cloud Storage

In the full version we show four straightforward reductions, showing that the
intuitive protocols that we expect to meet all security goals – strong encryption
with random file identifiers – do in fact provide confidentiality. Formal state-
ments are omitted due to space constraints, but we summarize the results in
Fig. 5. We show that if users encrypt using an IND-CPA-secure SKE scheme
using their own fixed key then the overall system is IND-CSA-P secure (and
thus also IND-CRA-P and IND-CSA-A secure). Specifically, key generation for CS
outputs a random key to each user (or, kgen runs the SKE’s KG algorithm) and
fkeyGen(F, uk) outputs uk for all F. We go on to show that this same construction,
when implemented with an AEAD scheme, yields an IND-CRA-A-secure cloud
storage system, our strongest notion. The scenario in which a random symmetric
key is created for each file, perhaps surprisingly meets the strongest IND-CRA-A
notion of security even with IND-CPA-secure encryption. Finally we consider
the secure deduplication setting with (a reduction to) PRV-CDA security of the
underlying encryption: for this we need a modified security experiment (see full
version). These theorems emphasize the simplicity and versatility of the model.

Theorem Key Usage Encryption Conf of CS
1 Per-user + IND-CPA ⇒ IND-CSA-P
2 Per-user + AEAD ⇒ IND-CRA-A
3 Per-file + IND-CPA ⇒ IND-CRA-A
4 File-derived + PRV-CDA PRV-CSA-P

Fig. 5. Summary of the composition results.

Deduplicating Systems Using File-Derived Keys. A natural way for using
SKE in deduplicating systems is to derive encryption keys from the files them-
selves [4,8]. Cloud storage schemes with this property cannot achieve the usual
indistinguishability notion because the adversary knows the possible files and
therefore the possible encryption keys used. For such schemes, PRV-CDA [4] asks
an adversary to distinguish ciphertexts when files are sampled from some pre-
chosen high-entropy probability space and then encrypted. The probability space
must be independent of the encryption scheme to avoid pathological situations,
hence pre-chosen. This security notion can be achieved by both deterministic [4]
and randomised schemes [1,4]. Based on such an encryption scheme, we define
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a natural cloud storage scheme by having fkeyGen simply run the encryption
scheme’s key derivation algorithm. We define a notion of security for such cloud
storage similar to PRV-CDA, where we sample two vectors of files and store
every file from one of those vectors. The adversary’s task is to determine which
vector was stored. In the full version we define this notion and prove the natural
theorem, stated as the last line of Fig. 5.

4.3 Deduplicating Schemes with Non-trivial fkeyGen Procedures

The results so far in this section have only considered schemes for which fkeyGen
is an operation that can be run locally, without the need for communicating
with other users, the server or third parties (i.e. lines 1–4 of Fig. 2)5. While our
model (Fig. 1) can handle deduplicating schemes with complex fkeyGen protocols
such as that of Liu et al. [18], Duan [10] and Keelveedhi et al. [15], our security
definitions do not fully capture them due to the ‘unnatural’ inputs to fkeyGen
when ‘called’ by store. A simple extension to our framework allows analysis of
such schemes: an O.fkeyGen oracle that can be called on arbitrary inputs.

Our model is also easily extensible to the distributed storage context: the
O.peek oracle, instead of returning the tuple {(uid, c, id, 0/1)}, could take as input
some indices that correspond to different servers and return the information
stored on that subset of the servers, if any, under uid and id. This would enable
a rigorous analysis of schemes such as CDStore [17].

It is straightforward to create a variant, D-IND, of our generic IND experiment
for deterministic encryption: the adversary is not allowed to send the same file to
O.LR or O.store. In particular, the experiment initializes an empty list, and on
each F or (F0,F1) query to store, resp. O.LR, that value is added to the list. If the
adversary later attempts to perform O.store or O.LR with a file already on that
list, return ⊥. Certainly any scheme that is IND-atk-csp is also D-IND-atk-csp for
some {atk, csp}, and furthermore D-IND-atk-csp ⇒ PRV-atk-csp.

Since Duan [10] showed that the DupLESS system achieves D-IND$ (in the
random oracle model), we would expect that DupLESS would meet strong secu-
rity in our model. However given that the adversary has a fkeyGen oracle as
described above, DupLESS does not even meet D-IND-CSA-P. The attack is
straightforward: The adversary calls its fkeyGen oracle on F0 to get fkF0 ; then
again for some distinct F1 to get fkF1 ; calls O.LRb(F0,F1) for some (uid, id) and
does O.peek(uid, id) to receive the c that Fb is stored under. All that is left to
do is to attempt to decrypt c using the two keys it got from fkeyGen earlier to
get Fb, then output b. This indicates how weak a D-IND$ notion is: in a realistic
attack setting, it is trivial for an adversary that has (even only snapshot) access
to the cloud’s storage to be able to distinguish ciphertexts.

5 The threshold scheme of Stanek et al. [27] is a special case since fkeyGen is run locally
but the encryption algorithm is not a symmetric encryption scheme.
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5 Integrity

Once a user of a cloud storage system has decided to use encryption to ensure
confidentiality of files, the user will also wish that integrity is retained for cipher-
texts sent to the CSP. One approach to this requirement is proofs of retrievability
(PoR) [14], where users embed some data in their files (ciphertexts) and period-
ically engage in a protocol with the CSP to check that the files have not been
deleted or modified. We consider the simpler problem of ensuring that retrieved
files are correct. Our approach is inspired by ciphertext integrity notions from
the cryptography literature. As before, we focus on generic results rather than
concrete instantiations. We formally define a notion of integrity of ciphertexts
for cloud storage schemes, denoted INT-SC (INTegrity of Stored Ciphertexts).
The experiment is given in Fig. 6. An adversary, in control of a number of users
of the cloud storage scheme CS, wins the game by making a user retrieve a file
that either the user had previously deleted, or that the user did not store in the
first place. This rules out schemes for which possessing a file hash alone indi-
cates ownership (Dropbox pre-2011 [9,22], content distribution networks, etc.):
in Sect. 5.3 we discuss ciphertext integrity in such deduplicating systems.

5.1 Defining Integrity for Cloud Storage

What follows is a definition of integrity for cloud storage with three flavours
corresponding to the different levels of server compromise detailed in Sect. 4.1.
We call this notion INT-SC-csp for csp ∈ {Z,P,A}.

We use a second storage table TrueST to track all activities that the adver-
sary makes the (notional) users do: store, retr and del. The other ST tracks all
of these activities in addition to the oracles modelling active server compro-
mise: O.erase and O.insert. In Sect. 5.2 we focus on actively corrupted servers
manipulating the storage database: the adversary will always have access to
O.peek, O.erase and O.insert and this corresponds to INT-SC-A. We will later
consider integrity in client-side deduplicating systems: there an adversarial client
(INT-SC-Z) is (inherently) given more power by the mechanism that saves
communication bandwidth. Note that in the description of O.retr′, the code
if {(uid, ·, id, ·)∈ST} �= {(uid, ·, id, ·)∈TrueST} means that for fixed uid and id, if
there exists an entry in ST and an entry in TrueST such that the tuples are not
exactly equal then this condition is met. Thus if the ciphertext component or
the deletion bit (or both) being different means that this condition is achieved.

Definition 3 (INT-SC-csp for Cloud Storage). Let CS be a cloud storage
system based on symmetric encryption as in Fig. 1, and let A be an adversary.
Then the INT-SC-csp advantage for an adversary A and csp ∈ {Z,P,A} against
CS is defined by

AdvINT-SC-csp
CS, A = Pr

[
ExpINT-SC-csp

CS, A = 1
]
,

where experiments ExpINT-SC-csp
CS, A are defined in Fig. 6.
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ExpINT-SC-csp
CS, A :

b ← 0
ST ← ∅
TrueST ← ∅
Aoracles

return b

O.del′(uid, id) :
do del(uid, id)
if (uid, ·, id, 0) ∈ TrueST then

TrueST
∪ (uid, , id, 1)

O.store′(uid,F, id) :
do store(uid,F, id)
TrueST

∪←− {(uid, c, id, 0)}, where
(uid, c, id, 0) ∈ ST

O.retr′(uid, id) :
do F ← retr(uid, id)
if {(uid, ·, id, ·) ∈ ST} 	= {(uid, ·, id, ·) ∈ TrueST}

and F 	= ⊥
then b ← 1

return F

Fig. 6. The experiment defining INT-SC-csp for cloud storage. The adversary has access
to O.newuC, O.newuH, O.store′, O.upl, O.del′ and O.retr′. If csp = P, the adversary
additionally has access to O.peek; if csp = A, the adversary additionally has access to
O.erase and O.insert. Oracles that are not explicitly stated are as defined in Fig. 3.

Our definition of del in Fig. 1 firstly removes the KT entry and then updates
ST if an applicable entry exists. This formulation makes it extremely difficult for
an adversary to win the INT-SC-csp game by retrieving a file it previously deleted
since it has no ability to edit KT. If del would only delete the KT entry after
checking existence in ST then this would allow a trivial way to de-synchronize
TrueST and ST. We believe this exposition gives the clearest possible definition
of ciphertext integrity for cloud storage systems as we have defined them.

5.2 Achieving Integrity in Cloud Storage

In the full version [6] we show how to construct a cloud storage protocol that
meets our strongest INT-SC-A notion. The construction is straightforward: each
user holds their own symmetric key and uses an encryption scheme that is
INT-CTXT secure during the store procedure (line 2 from Fig. 2). For this we
require the syntax for an encryption scheme that can handle associated data –
the associated data is the handle id.

Theorem 5. Per-user keys + SKE(AD = id) + INT-CTXT ⇒ INT-SC-A.

Further, we prove an intuitive theorem inspired by Bellare and Namprempre’s
IND-CPA + INT-CTXT ⇒ IND-CCA2 result for symmetric encryption [5].

Theorem 6. IND-CSA-P + INT-SC-A ⇒ IND-CRA-A.

5.3 Integrity in Deduplicating Schemes

For deterministic schemes such as convergent encryption (fk ← H(F)) an adver-
sary with active server compromise can trivially create new ciphertexts that
decrypt correctly. For this reason Bellare et al. (BKR) [4] discussed tag consis-
tency (see full version for TC and STC exposition). BKR’s tags served a different
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init
01. ST ← ∅

newu(uid)
02. ukuid ← kgen
03. KTuid ← ∅
04. return ukuid

del(uid, id)

05. KTuid
∪←− {(⊥, id, τ)}

06. if ∃ {uid, ·, id, τ , 0} in ST then
07. ST

∪←− {(uid, −, id, τ , 1)}

store(uid,F, id)
08. fk ← fkeyGen(F, ukuid)
09. c ← Efk(F, id)
10. τ ← TGen(c)
11. upl(uid, c, id, τ)
12. KTuid

∪ (fk, id, τ)

upl(uid, c, τ , id)

13. ST ∪←− {(uid, c, id, τ , 0)}

retr(uid, id)
14. if ∃ (uid, ·, id, τ , 1) ∈ ST or
15. ∃(⊥, id, τ) ∈ KTuid then
16. return ⊥
17. if ∃ (uid, c, id, τ , 0) ∈ ST and
18. ∃(fk, id, τ) ∈ KTuid then
19. F ← Dfk(c, id)
19a. τ ′ ← TGen(c)
19b. if τ ′ 	= τ then
19c. return ⊥tag

20. return F
21. else
22. return ⊥

Fig. 7. Definition of a deduplicating cloud storage scheme DCS[SKE.Dedup].

purpose to our handles as their syntax assumes the server does not track the set of
allowed users for each file (i.e. tag ownership is enough to retrieve). This assump-
tion opens up systems to duplicate-faking attacks [28] in which a malicious client
can find a tag collision for a target file, upload an ill-formed ciphertext under
that tag, and stop genuine users from retrieving the target file. Assumption 1
rules out this type of attack, so we must consider a modified system model to
include an additional tagging algorithm, formalized in Fig. 7.

A deduplicating cloud storage scheme is a tuple DCS = (init, newu,
store, retr, del) as before, but in addition to SKE = (KG,E,D) and fkeyGen we
also require a TGen algorithm. We follow BKR and define the TGen algorithm
as acting on ciphertexts only: τ ← TGen(c). This is without loss of generality:
the HCE1, HCE2 and RCE schemes that they describe calculate τ ← H(fk) to
give a ciphertext formed as τ ||Efk(F), then the TGen algorithm parses this value
and outputs τ . Again following BKR we define a deduplicating encryption mech-
anism SKE.Dedup = (fkeyGen,E,D,TGen) that combines an SKE’s encryption
and decryption algorithms with the fkeyGen and TGen procedures. BKR called
this primitive an MLE, and their definition was for generic KG: for our purposes it
is sufficient to only consider the fkeyGen algorithm we have previously described
since in the deduplicating scenario fkeyGen typically does not use any material
that is unique to each user. This combined construction defines all the inputs to
the wider cloud storage system: we write this as DCS[SKE.Dedup].

In a client-side deduplicating cloud storage system, the upl procedure will be
a two stage process: first the user sends τ , gets a response indicating whether it
should send the ciphertext or not, and finally sends the ciphertext if asked to.
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In our syntax line 13 initially only requires (uid, id, τ) as inputs and checks its
storage for a tag match: if ∃{·, c, ·, τ, ·} ∈ ST then ST

∪←− {(uid, c, id, τ, 0)}. If a
match is not found, the server sends a message, sometimes called a deduplication
signal [2], to the user indicating that ciphertext transmission is necessary.

Lines 19a–c in Fig. 7 represent an optional tag check that has a (possibly
distinguishable) error symbol: this operation is employed by the HCE2 and RCE
schemes described by BKR. If the tag check procedure is enforced as part of retr,
then using a SKE.Dedup that is STC does in fact yield a DCS that is INT-SC-A.
The result is stated here informally; the proof is in the full version.

Theorem 7. If DCS[SKE.Dedup] implements the tag check (lines 19a-19c in
Fig. 7) and if SKE.Dedup is STC then DCS is INT-SC-A.

Acknowledgements. We thank Frederik Armknecht and Yao Jiang for input to dis-
cussions. We also thank anonymous reviewers for useful feedback. This research was
funded by the Research Council of Norway under Project No. 248166.

References

1. Abadi, M., Boneh, D., Mironov, I., Raghunathan, A., Segev, G.: Message-locked
encryption for lock-dependent messages. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 374–391. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 21

2. Armknecht, F., Boyd, C., Davies, G.T., Gjøsteen, K., Toorani, M.: Side channels in
deduplication: trade-offs between leakage and efficiency. In: Karri, R., Sinanoglu,
O., Sadeghi, A., Yi, X. (eds.) AsiaCCS 2017, pp. 266–274. ACM (2017). https://
doi.org/10.1145/3052973.3053019

3. Ateniese, G., et al.: Provable data possession at untrusted stores. In: Ning, P., di
Vimercati, S.D.C., Syverson, P.F., (eds.) CCS 2007, pp. 598–609. ACM (2007).
https://doi.org/10.1145/1315245.1315318

4. Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure
deduplication. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology -
EUROCRYPT 2013. Lecture Notes in Computer Science, vol. 7881, pp. 296–312.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 18

5. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

6. Boyd, C., Davies, G.T., Gjøsteen, K., Toorani, M., Raddum, H.: Security notions
for cloud storage and deduplication. IACR Cryptology ePrint Archive 2017/1208
(2017). http://eprint.iacr.org/2017/1208

7. Dang, H., Chang, E.: Privacy-preserving data deduplication on trusted processors.
In: Fox, G.C. (ed.) 10th International Conference on Cloud Computing, pp. 66–73.
IEEE (2017). https://doi.org/10.1109/CLOUD.2017.18

8. Douceur, J.R., Adya, A., Bolosky, W.J., Simon, D., Theimer, M.: Reclaiming space
from duplicate files in a serverless distributed file system. In: ICDCS 2002, pp. 617–
624 (2002). https://doi.org/10.1109/ICDCS.2002.1022312

https://doi.org/10.1007/978-3-642-40041-4_21
https://doi.org/10.1145/3052973.3053019
https://doi.org/10.1145/3052973.3053019
https://doi.org/10.1145/1315245.1315318
https://doi.org/10.1007/978-3-642-38348-9_18
https://doi.org/10.1007/3-540-44448-3_41
http://eprint.iacr.org/2017/1208
https://doi.org/10.1109/CLOUD.2017.18
https://doi.org/10.1109/ICDCS.2002.1022312


364 C. Boyd et al.
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Abstract. Currently, the Simple Password-Based Encrypted Key
Exchange (SPAKE2) protocol of Abdalla and Pointcheval (CT-RSA
2005) is being considered by the IETF for standardization and inte-
gration in TLS 1.3. Although it has been proven secure in the Find-
then-Guess model of Bellare, Pointcheval and Rogaway (EUROCRYPT
2000), whether it satisfies some notion of forward secrecy remains an
open question.

In this work, we prove that the SPAKE2 protocol satisfies the so-
called weak forward secrecy introduced by Krawczyk (CRYPTO 2005).
Furthermore, we demonstrate that the incorporation of key-confirmation
codes in SPAKE2 results in a protocol that provably satisfies the stronger
notion of perfect forward secrecy. As forward secrecy is an explicit require-
ment for cipher suites supported in the TLS handshake, we believe this
work could fill the gap in the literature and facilitate the adoption of
SPAKE2 in the recently approved TLS 1.3.

Keywords: Provable security
Password Authenticated Key Exchange · Forward secrecy
Common Reference String

1 Introduction

1.1 SPAKE2 Protocol

Password Authenticated Key Exchange (PAKE) protocols allow two users, who
only share a password, to agree on a high-entropy session key over a hostile
network. The goal is to use the established session key to build a secure channel
between the involved parties. The nature of passwords makes PAKEs vulnerable
to on-line dictionary attacks, where an adversary tries to impersonate a user
by guessing his password, engaging in a protocol execution and verifying if its
guess was correct. An offline dictionary attack occurs when the protocol execu-
tion allows an adversary to launch an exhaustive offline search of the password.
The intuition of security requires PAKEs to be vulnerable to online dictionary
attacks only. The seminal work in this area is the Encrypted Key Exchange
(EKE) protocol of Bellovin and Merritt [1]. Since then, various PAKE protocols
c© Springer Nature Switzerland AG 2018
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have been proposed: PPK and PAK [2,3], J-PAKE [4,5], SRP [6], SPEKE [7]
and SPAKE2 [8]. In parallel, prominent complexity-theoric security models for
PAKEs have been proposed to get assurance on the claimed security properties
by performing a rigorous analysis of the protocol in question [2,9–12].

The SPAKE2 protocol, proposed by Abdalla and Pointcheval [8], is a one-
round PAKE protocol proven secure in the Find-then-Guess (FtG) model of
Bellare et al. [9] without considering forward secrecy. It is a simple, yet efficient
protocol that, in addition to the pre-shared password, requires the protocol par-
ticipants to share two Common Reference Strings (CRS) prior to the execution of
the protocol. The adoption of the CRS yields to an elegant construction that does
not require full domain hash functions, which are hard to implement efficiently
in practice. On the other side, the CRS requires extra security assumptions that
might be easy to satisfy in some scenarios but may be very restrictive in oth-
ers [13]. Also, as it is a one-round protocol, only implicit authentication can
be satisfied. Fortunately, the incorporation of key-confirmation codes allows the
protocol participants to explicitly authenticate each other [14] and [15, Chap.
40].

Recently, the Internet Engineering Task Force (IEFT) community has revis-
ited the deployment of SPAKE2 protocol: (i) as stand alone specification [16],
(ii) its usage as pre-authentication mechanism in Kerberos protocol [17] and (iii)
its adoption in TLS 1.3 protocol, specifically in the handshake when pre-shared
keys for authentication are available [18,19]. The discussion of forward secrecy
in SPAKE2 has been a common factor in the aforementioned Internet Drafts.

1.2 PAKEs Adoption in TLS

Nowadays, the Transport Layer Security (TLS) is the de-facto standard to pro-
tect internet communications. It consists of two stages: the Handshake protocol
where two parties agree on a session key, and the Record protocol where the com-
munication is protected using the previously negotiated keys. Most of the TLS
implementations provide only unilateral authentication, where client C authenti-
cates server S during the handshake by means of public-key infrastructure (PKI),
therefore identity disclosure of client to server is usually not supported.

While the unilateral server-authenticated approach might be sufficient for
scenarios like internet surfing, it is certainly inadequate for real-world applica-
tions including email access, internet banking and social media, where client
C needs to authenticate to server S to gain access to resources in S. In prac-
tice, the common approach for authenticating the client asks the client to send
his user/password protected through a server-authenticated TLS channel. This
approach protects the password against eavesdroppers but not against phish-
ing attacks: An adversary can clone a legitimate website and fool the client to
visit the fake website where he input his credentials. To make things worse, the
adversary can manage to obtain a valid public-key certificate from a certifica-
tion authority (CA) for his illegitimate web page. Indeed, the client may see on
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his web browser “secure connection” as a TLS connection may be established
between the client and the cloned website controlled by the adversary.1

Fortunately, PAKEs stand as a strong candidate for scenarios where two
parties require to mutually authenticate each other while intrinsically protecting
their shared password. In fact, the Secure Remote Password (SRP) protocol
[6] has been incorporated in previous versions of TLS and standardized in the
form of RFC5054 [20]. Specifically, the SRP protocol was made available as
cipher suite in the TLS handshake. Similarly, the IETF is currently considering
the adoption of SPAKE2 in TLS 1.3 handshake [18], in particular in the TLS
handshake, for scenarios where authentication is made using pre-shared password
available between the Client and Server.

In the recently approved TLS 1.3, it has explicitly been a design goal to
provide forward secrecy for the session keys used to construct the TLS chan-
nel. In particular, static RSA and Diffie-Hellman cipher suites were removed to
favor public-key based key-exchange mechanism that guarantee forward secrecy.
Therefore, formally proving that SPAKE2 satisfies some significant notion of
forward secrecy would increase its possibilities of acceptance into TLS 1.3.

Remark: While PAKEs adoption in web authentication is a good approach to
protect user’s password during the authentication phase, there are still usability
concerns that slow down the implementation of PAKEs in TLS to properly
prevent phishing attacks. This implementation requires an easy to identify “safe
area” available in the web browser where the passwords should be entered [21].

1.3 Forward Secrecy

Forward secrecy is a desirable property which has been explicitly a design goal
in relevant AKE and PAKE protocols [3,4,22,23], and more recently in TLS
1.3 [19].2 Roughly speaking, it ensures the protection of session keys even if the
long-term secret of the participants gets later compromised [24]. For instance:
(i) the password file at the server could be leaked or (ii) via phishing attacks a
client could reveal his password to some malicious entity.

The notion of forward secrecy appeared first in [24] and was later formalized
in [23,25–27] for AKE and in [9,28] for PAKE protocols. We distinguish weak
forward secrecy (wFS) from perfect forward secrecy (PFS): The former protects
session keys after compromise of long-term key material, but only those sessions
created without the active participation of the attacker [23], while the latter
protects all session keys which were negotiated before corruption, i.e. even those
created with the active intervention of the adversary. It is generally accepted that
PFS is difficult to satisfy in protocols which only guarantee implicit authentica-
tion. For instance, Krawczyk [23] states that PFS cannot be satisfied by two-flow
protocols using public-key as authentication mechanism. Therefore Krawczyk
proposed the notion of weak Forward Secrecy (wFS) as an attempt to satisfy
1 A typical client should not be expected to verify the certificate details.
2 However, in TLS 1.3, there still remains some configurations that do not satisfy

forward secrecy.
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some notion of security when long-term material is compromised but only for
those sessions without the active participation of the adversary.

PFS and Key-Confirmation: The authors in [3,9,25] demonstrated that PFS
can be satisfied when explicit authentication is added to protocols that initially
satisfy only wFS. The idea is the following: Suppose P is a 2-flow PAKE protocol
satisfying only implicit authentication. The adversary sends the first message to
Bob masquerading as Alice, Bob computes the session key, sends back the sec-
ond message and finishes his protocol execution. Then the adversary waits for
the leakage of the long-term key and that could possibly help her to compute
the same session key as Bob. For this scenario, the notion of PFS requires the
adversary not to learn Bob’s session key, which can be easily avoided by requir-
ing key-confirmation, since then Bob will not accept the session key before he
authenticates his communication partner.

1.4 Our Contribution

We propose a new version of SPAKE2 which we name PFS-SPAKE2. This is
essentially SPAKE2 but with key-confirmation codes incorporated into the pro-
tocol. This well known approach allowed us to meet the PFS requirement in a
provably secure way even in the case of active adversaries, making it a suitable
candidate for standardization and adoption in the TLS 1.3 protocol. In addition,
we prove that the original SPAKE2 satisfies weak forward secrecy.

2 Security Model with Forward Secrecy

Notation. We use calligraphic letters to denote adversaries, typically A and B.
We write s

$←− S for sampling uniformly at random from set S and |S| to denote
its cardinality. The output of a probabilistic algorithm A on input x is denoted
by y ← A(x), while y := F (x) denotes a deterministic assignment of F (x) to
the variable y. Let {0, 1}∗ denote the bit string of arbitrary length while {0, 1}l

stands for those of length l. Let λ be the security parameter, negl(λ) denote a
negligible function and PPT stand for probabilistic polynomial time.

Next we describe the well-known security model of Bellare, Pointcheval and
Rogaway [9], which we use to prove the security of PFS-SPAKE2 and SPAKE2
protocol. Frequently referred as the Find-then-Guess (FtG) model, it is an exten-
sion of [29,30] to the password setting. We assume the reader is familiar with
the model.
PAKE PROTOCOL. A PAKE protocol is defined by a pair of algorithms
(Gen,P). Gen is the password generation algorithm. It takes as input the dic-
tionary D, a probability distribution Q and initializes the protocol participants
with some password. The protocol description P defines how honest participants
behave.
PROTOCOL PARTICIPANTS. Each participant is either a client C ∈ C or a
server S ∈ S. Let U = C ∪ S denote the set of all (honest) users and C ∩ S = ∅.
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LONG-TERM SECRETS. Each client C holds a password πC and server S holds
a vector of passwords for all clients i.e. πS =< πC >C∈C s.t. for each client C
πS [C] = πC . We consider the client-server scenario where there is a single server
S. The passwords are assumed to be independent and uniformly distributed.
PROTOCOL EXECUTION. P is a probabilistic algorithm that defines how
users respond to signals from the environment. We assume the presence of a
PPT adversary A with full control of the network and an unlimited number of
user instances. Specifically, let Πi

U denote the instance i-th of user U ∈ U . In
cases where distinction matters, let Πi

C and Πj
S denote the i-th and j-th instance

of client C ∈ C and server S respectively.
Security is defined via a game played between the challenger CH and adver-

sary A whose goal is to break the semantic security of the established session
keys. A controls the oracle user instances with the following queries:

– Send(U, i,m): A message m is sent to instance Πi
U and processed according

to the protocol description P. Its output is given to A.
– Execute(C, i, S, j): This query causes an honest run of protocol P between

Πi
C and Πj

S , the transcript of execution is given to A.
– Reveal(U, i): The session key ski

U held at Πi
U is given to A. It requires the

ski
U to be already computed, i.e. Πi

U must be on terminate state.
– Corrupt(U). The adversary obtains the password of user U. If U = C ∈ C,

then A receives πC , else if U = S, then A receives πS =< πC >C∈C .
– Test(U, i): CH flips a bit b and answers the query as follows: if b = 1 A gets

the session key ski
U , otherwise she receives r

$←− {0, 1}κ, where {0, 1}κ denotes
the length of the session key space.

2.1 Definitions

Partnering. Two instances, Πi
C and Πj

S , are partnered if both accept, holding
(ski

C , sidi
C , pidi

C) and (skj
S , sidj

S , pidj
S) respectively and also:

1. ski
C = skj

S , sidi
C = sidj

S , pidi
C = S, pidj

S = C and
2. no other instance accepts with the same session identifier sid, except with

negligible probability.

The notion of freshness avoids scenarios where an adversary could trivially
win the security experiment. Next we define two notions of freshness depending
on the desired of forward secrecy guarantee: The first flavour models PFS, where
the intuition is to consider as legitimate targets of a Test query those instances
which session keys were negotiated before the corruption of any principal. The
second variant models wFS, which does not guarantee the secrecy of those ses-
sions keys which were negotiated with the active intervention of an adversary
(determined via partnering) whenever some user has been corrupted.

PFS-Freshness. An instance Πi
U is PFS-fresh unless:

– A Reveal query was made to Πi
U or its partner or
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– There was a Corrupt(U’) and a Send(U, i,m) query, Πi
U does not have a

partner and the corruption of any user U ′ occurs before the Test query.

wFS-Freshness. An instance Πi
U is wFS-fresh unless:

– A Reveal query was made to Πi
U or its partner or

– There was a Corrupt(U ′) and a Send(U, i,m) query, Πi
U does not have a

partner and the corruption of any user U ′ occurs at any time.

Advantage of the Adversary. Let SuccPFS-FtG
P be the event where A asks

a single Test query directed to a PFS-fresh instance that has terminated, A
outputs his guess b′ and wins i.e. b′ = b. The advantage of A attacking protocol
P is:

AdvPFS-FtG
P (A) = 2 · Pr

[
SuccFtG

P (A)
] − 1 (1)

Definition 1 (PFS-FtG security). Protocol P is FtG secure and satisfies perfect
forward secrecy if for all PPT adversaries there exists a negligible function ε(·)
such that:

AdvPFS-FtG
P (A) ≤ nse/|D| + ε(λ),

where nse is the number of Send queries and D is the password dictionary.

We similarly define FtG security with weak forward secrecy, the only change is
in the advantage function, where the Test query must be made to a wFS-fresh
instance. From inspection, it is easy to see that PFS-FtG → wFS-FtG security.

2.2 Cryptographic Hardness Assumptions

Let G be a multiplicative a group, with generator g and |G| = q. For X = gx

and Y = gy, let DH(X,Y ) = gxy, where {gx, gy, gxy} ∈ G.

Definition 2 (Computational Diffie-Hellman (CDH) Problem). Given (g, gx,

gy) compute gxy, where {gx, gy, gxy} ∈ G and (x, y) $←− Z
2
q. Let the advantage of

an algorithm A in solving the CDH problem be:

AdvCDH
G

(B) = Pr [(x, y) $←− Z
2
q,X = gx, Y = gy : B(X,Y ) = DH(X,Y )].

Under the CDH assumption there exist sequences of cyclic groups G indexed by
λ s.t. ∀B running in time t polynomial in λ, AdvCDH

G
(B) is a negligible function.

3 PFS-SPAKE2

Inspired by MacKenzie’s work [3], we propose to incorporate key-confirmation
codes into the SPAKE2 protocol [8] to achieve PFS in a provably secure manner.
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Client C Server S
Initialization

Public: G, g, M ∈ G; H1, H2, H3 : {0, 1}∗ → {0, 1}k

Secret: π ∈ Zq, π �= 0

x ← Zq, X := gx

X∗ := X · Mπ C, X∗
abort if X∗ /∈ G

y ← Zq, Y := gy

σ := ( X∗
Mπ )y

abort if Y /∈ G Y, k k := H1(C, S, X∗, Y, σ, π)

σ := Y x

verify k
?= H1(C, S, X∗, Y, σ, π)

k′ := H2(C, S, X∗, Y, σ, π)

sk := H3(C, S, X∗, Y, σ, π) k′
verify k′ ?= H2(C, S, X∗, Y, σ, π)

sk := H3(C, S, X∗, Y, σ, π)

Fig. 1. PFS-SPAKE2 protocol.

3.1 Protocol Description

In Fig. 1 we provide the technical description of the proposed PFS-SPAKE2
protocol. Before the protocol is executed, public parameters must be chosen and
published. These parameters include the description of group G, hash functions
H1, H2, H3 and a CRS M – which we require to be choosen at random from
G and its discrete logarithm to be kept secret. These constraints on the CRS
can be achieved either by having a third trusted party or by assuming a public
source of randomness to publicly derive M . Our protocol is instantiated over
group G, a q order subgroup of Z

∗
p where CDH assumption holds and p, q are

safe prime numbers. The protocol requires that passwords are encoded in Zq.

Comparison to Existing PAKEs. The efficiency of a PAKE protocol is
defined by (i) the number of communication rounds until the protocol termi-
nates, (ii) the total number messages exchanged and (iii) the computational cost
of the protocol. Compared to the original SPAKE2, the proposed PFS-SPAKE2
protocol benefits from explicit authentication and strong security guarantees for
PFS. It is also slightly less computationally expensive, as it requires the client
to compute only three exponentiations instead of four, i.e. no need to compute
Nπ ∈ G. These improvements usually come at the cost of increasing the number
of rounds and message flows and unfortunately our protocol is not an exception
[3,23].
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Table 1. Comparison with existing PAKEs for Client-Server scenarios.

Protocola Commn.b Computationc Rounds/

Flows

Hardness

Asm.d
Forward

Secrecy

Key

Confirm.

EKE [1,9] 2 × G 4 exp., 2 enc. 1/2 CDH wFS No

SPEKE [7,32] 2 × G + 2κ 4 exp. 2/4 DIDH - Yes

PPK [3] 2 × G 6 exp. 1/2 CDH - No

PAK [3] 2 × G + 2κ 5 exp. 3/3 CDH PFS Yes

J-PAKEd [4] 12 × G + 6 × Zq 28 exp. 2/4 DSDH PFS No

J-PAKE∗ [4] 12 × G + 6 × Zq 28 exp. 3/6 DSDH PFS Yes

SPAKE2 [8] 2 × G 6 exp. 1/2 CDH wFS No

PFS-SPAKE2 2 × G + 2κ 5 exp. 3/3 CDH PFS Yes
aJ-PAKE∗ is simply J-PAKE but with an extra round for key-confirmation.
bCommunication. G denotes a group element, Zp a scalar and κ a κ-bit string.
cExp. denotes an exponentiation in G and enc. an encryption and decryption operation.
dDSDH and DIDH stand for Decision Square and Decision Inverted-Additive Diffie-Hellman.

In Table 1 we summarize the comparison of PFS-SPAKE2 with other rele-
vant PAKE protocols with full security proofs.3 Notably J-PAKE satisfies PFS
and requires only two communication rounds; however, it is computationally
more expensive than PFS-SPAKE2 as the former requires 28 exponentiations
while the latter only 5. Furthermore, J-PAKE with key-confirmation requires
the same number of communication rounds as PFS-SPAKE2. Alternatively, PAK
and PFS-SPAKE2 are similar in terms of efficiency, PFS and key confirmation
guarantees, yet the usage of CRS in the latter allowed us to achieve tighter
security reductions to the CDH assumption than the original results for PAK
[3,31].

3.2 Security of PFS-SPAKE2

Theorem 1 (Security in the PFS-FtG Model). Let P be the protocol specified
in Fig. 1, instantiated in group G and with passwords uniformly distributed over
dictionary D. Let A be an adversary that runs in time t polynomial in λ, makes
at most nex, nse, nro queries of type execute, send and random oracle. Then:

AdvPFS-FtG
P (A) ≤ nse

|D| + O
(

(nse + nex)(nse + nex + nro)
q

+

nro · AdvCDH
G

(BA) + nsenro · AdvCDH
G

(B̃A) + n2
ro · AdvCDH

G
(B̂A)

)
,

where BA, B̃A and B̂A are CDH-solver algorithms running in time t′ = O(t +
(nse + nex + nro) · texp), where texp is the time for an exponentiation in G.

3 The server usually stores some function f(·) of the password while the clients needs
to compute f(π) for every protocol run. This difference is relevant in (i) PPK, PAK
and (ii) SPAKE2 and PFS-SPAKE2, as f(·) requires hashing into groups in (i) and
group exponentiations in (ii).
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To prove the security of PFS-SPAKE2, we introduce a sequence of protocols
P0 . . . P7, where P0 is the original protocol and P7 allows only online dictio-
nary attacks. Let Gi be the security game associated to Pi. We borrow from [3]
the structure and the nomenclature to prove the security of our PFS-SPAKE2
protocol and refer to AppendixA for the necessary terminology.

The security proof requires the random oracle model: each new random oracle
query Hl for l ∈ {1, 2, 3} is answered with a fresh random output, however, if
the query has been previously made, it is answered consistenly with previous
queries. In cases where it is clear enough, we write Hl(·) to refer to query of
the form Hl(C,S,X∗, Y, σ, π). For easiness of the proof we assume that for each
Hl(C,S,X∗, Y, σ, π) query made by A, with l ∈ {1, 2, 3}, the corresponding Hl′(·)
and Hl′′(·) are also made, with l′, l′′ ∈ {1, 2, 3}\{l} and l′ 	= l′′. The simulator

sets M := gm ∈ G, where m
$←− Zq.

In the following games, we simply write SuccFtG
Pi

instead of SuccPFS-FtG
Pi

to
denote the success probability of A winning in game Gi.

Game G0: Execution of original protocol.
Game G1: Uniqueness of honest sessions.

During the interaction with adversary A, the challenger needs to simulate honest
instances and generate the X∗ and Y terms according to the protocol description.
Let F1 be the event where there is a collision between either an X∗ or Y value,
with previously seen X∗ or Y values. If F1 occurs, the challenger draws random
values again until he arrives at a X∗ or Y term that has not been previously
seen. It is easy to show that the probability of F1 occurring is bounded by the
birthday paradox. Then for all A:

Pr
[
SuccFtG

P0
(A)

] ≤ Pr
[
SuccFtG

P1
(A)

]
+ O

(
(nse + nex)(nse + nex + nro)

q

)
.

Game G2: Prevent Lucky Guesses on Hash Outputs.
This game forces A to query the random oracle whenever she needs to compute
any hash H(·)l. As a result, this game rules out the possibility of A to output
correct values k, k′ or sk without calling the corresponding random oracle.

Let P2 be a protocol identical to P1, except that honest instances respond
to Send and Execute queries without making any random oracle queries and
subsequent random oracle queries made by A are backpatched to be consistent
with previous queries. Next we detail the changes in P2.

– In an Execute(C, i, S, j) query set X∗ = gτ [C,i] and Y = gτ [S,j], where τ [·] $←−
Zq, k, k′ $←− {0, 1}κ and skj

S ← ski
C

$←− {0, 1}κ, where {0, 1}κ denotes the
session key space.

– In a CLIENT ACTION 0 query to Πi
C , set X∗ = gτ [C,i], where τ [C, i] $←− Zq.

– In a SERVER ACTION 1 query to Πj
S , set Y = gτ [S,j] and k

$←− {0, 1}κ,

where τ [S, j] $←− Zq.
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– In a CLIENT ACTION 1 query to Πi
C proceed as follows:

• If Πi
C is paired with Πj

S then set k′, ski
C

$←− {0, 1}κ.
• Else if this query triggers a testpw(C, i, S, πc, l) event, for some l ∈

{1, 2, 3}, then set k′ and ski
C to the associated value of the event testpw

(C, i, S, πc, 2) and testpw(C, i, S, πc, 3) respectively.
• Else Πi

C aborts.

– In a SERVER ACTION 2 query to Πj
S proceed as follows:

• If Πj
S is paired with Πi

C after some CLIENT ACTION 1 query to Πi
C ,

then set skj
S ← ski

C .
• Else this query triggers a testpw(S, j, C, πc, l), with l ∈ {1, 2, 3}, set skj

S

to the associated value of the event testpw(S, j, C, πc, 3).
• Else instance Πj

S aborts.
– In an Hl(C,S,X∗, Y, σ, π) query made by A, if it triggers a testpw

(C, i, S, πC , l), testpw(S, j, C, πC , l) or testexecpw(C, i, S, j, πC) event, then
output the associated event of the corresponding event. Otherwise output
v

$←− {0, 1}κ.

Claim 1. For all adversaries A, Pr
[
SuccFtG

P1
(A)

] ≤ Pr
[
SuccFtG

P2
(A)

]
+ nse

2κ .

Proof. In SERVER ACTION 2 to Πj
S , the input k′ determines whether the

instance Πj
S should terminate or abort. Let F1 be the event where in a SERVER

ACTION 2 to Πj
S , it terminates such that (i) Πj

S is not paired with Πi
C and

(ii) testpw(S, j, C, πC , l) event does not occur, for l ∈ {1, 2, 3}, i.e. A luckily
guessed the correct k′ value. Then Pr [F1 ] ≤ nse/2κ. 
�
Game G3: Do not backpatch Hl(·) queries against Execute queries.
This game shows that there is no need to backpatch Hl(·) queries to maintain
consistent views against Execute queries. More formally, let P3 be identical to
P2 except that, in a Hl(C,S,X∗, Y, σ, πC) query made by A, the simulator does
not verify whether the testexec(C, i, S, j, πC) event occurs or not. Let F2 and
F3 denote the testexec(C, i, S, j, πC) event occurring in P2 and P3 respectively.

Claim 2. For all adversaries A, |Pr
[
SuccFtG

P2
(A)

] − Pr
[
SuccFtG

P3
(A)

]| ≤
Pr [F2 ].

Proof. P2 and P3 are identical protocols until the testexec(C, i, S, j, πC) event
occurs. The observation is that the events F2 and F3 are triggered as result of
some interaction CH2 vs A and CH3 vs A respectively, however by definition
they are identical. Then it follows that Pr [F2 ] = Pr [F3 ] and to conclude the
proof we simply apply Shoup’s Difference Lemma [33]. 
�
Claim 3. Given A, there exists a CDH-solver BA with running time t′ = O(t+
(nse + nex + nro) · texp) such that:

Pr
[
SuccFtG

P2
(A)

] ≤ Pr
[
SuccFtG

P3
(A)

]
+ nro · AdvCDH

G
(BA),
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Proof. Let ε be the probability that testexec(C, i, S, j, π) event occurs in P2. We
build an adversary BA whose goal is to solve the CDH problem using adversary A
as a subroutine and with success probability ε/nro. On input (A = gα, B = gβ),
BA simulates P2 to A with the following changes:

1. For every Execute(C, i, S, j) query made by A, the simulator BA sets X∗ =

A · gr1 , Y = B · gr2 , k, k′ $←− {0, 1}κ and skj
S ← ski

C
$←− {0, 1}κ, where

r1, r2
$←− Zq are known to the simulator.

2. For every Hl(C,S,X∗, Y, σ, πC) query, where l ∈ {1, 2, 3}, X∗ and Y are
generated via an Execute(C, i, S, j) query, add γ to the set S-DH, where:

γ = σ · Bm·πC · Mr2·πC /Br1 · Ar2 · gr1r2

3. When A finishes, the set S-DH contains at most nro elements, where each
item a possible solution to DH(gα, gβ). Then BA outputs γ

$←− L-DH.

The adversary A can only distinguish P2 from P3 once testexec(C, i, S, j, π)
has occurred, but this happens with probability ε ≤ nro · AdvCDH

Gq
(t′). We make

the observation that G3 guarantees forward secrecy for session keys established
via Execute queries. 
�
Game G4: Check for successful password guesses.
Let P4 be identical to P3, except that if correctpw event occurs, the protocol
stops and the adversary automatically wins.

Claim 4. For all PPT adversaries A, Pr
[
SuccFtG

P3
(A)

] ≤ Pr
[
SuccFtG

P4
(A)

]
.

Proof. Obvious. 
�
This game simply counts for an adversary who is successful in an online dic-
tionary attack by impersonating either a Client or the Server. The implication
is that from P4, until either correctpw event or a Corrupt query occurs, no
unpaired client or server instance will terminate.
Game G5: Randomized session keys for paired instances.
Let P5 be identical to P4 except that if the pairedpwguess event occurs the
protocol stops and the adversary fails.

In this game we will demonstrate that an adversary A who (i) may actively
corrupt any Client or Server, i.e. A knows the corresponding correct password
πC and (ii) manages to compute k, k′ or sk for paired instances Πi

C and Πj
S , is

also a CDH-solver. Let F4 and F5 denote the pairedpwguess event occurring
in P4 and P5 respectively.

Claim 5. For all adversaries A, |Pr
[
SuccFtG

P4
(A)

] − Pr
[
SuccFtG

P5
(A)

]| ≤
Pr [F4 ].

Proof. Identical to Claim 2. 
�
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Claim 6. Given A, there exists CDH-solver B̃A with running time t′ = O(t +
(nse + nex + nro) · texp) such that:

Pr
[
SuccFtG

P4
(A)

] ≤ Pr
[
SuccFtG

P5
(A)

]
+ nse · nro · AdvCDH

G
(B̃A),

Proof. Let ε be the probability of pairedpwguess event happening. We build
BA, a CDH-solver with success probability ε/(nse ·nro). On input (A = gα, B =

gβ), B̃A sets M = gm ∈ G for m
$←− Zq, chooses d ∈ {1...nse} at random –

a session target of the Test query – and simulates P4 to A with the following
changes:

1. In a CLIENT ACTION 0 query to Πd
C with input S, set X∗ ← A, where Πd

C

is the client instance that B̃A hopes it remains PFS-fresh.
2. In a SERVER ACTION 1 query to Πj

S with input 〈C,m〉, where there was
previous a CLIENT ACTION 0 query to Πd

C with input S and output 〈C,m〉,
set Y = B · grS,j , where rS,j

$←− Zq.
3. In a CLIENT ACTION 1 query to Πd

C , if Πd
C is unpaired then it aborts an

also B̃A stops the simulation.
4. In a SERVER ACTION 2 query to Πj

S , if it was paired with Πd
C after its

SERVER ACTION 1 but now is not paired, then Πj
S aborts. However, the

simulation continues as the instance Πd
C may still be target of the Test query.

5. When A finishes, then for every Hl(C,S,X∗, Y, σ, πC), made by A, with l ∈
{1, 2, 3} and where (i) X∗ and Y were generated by Πd

C and Πj
S respectively,

(ii) Πj
S was paired with Πd

C after its SERVER ACTION 1 and (iii) Πd
C was

paired with Πj
S , then add γ to the set S-DH, where:

γ = σ · Bm·πC · MrS,j ·πC · A−rS,j

6. The set S-DH contains at most nro elements, where each one is a possible
solution to DH(gα, gβ). Then B̃A picks γ

$←− L-DH as its output.

In this reduction the simulator B̃A has to guess the client instance target
of the Test query, say Πd

C . The freshness requirement guarantees that a Cor-
rupt query is only possible after the Test query, directed to Πd

C (or its part-
ner), has been placed. Following the reductionist approach, we showed that the
pairedpwguess event occurs at most with probability ε ≤ nse · nro · AdvCDH

Gq

(B̃A). 
�
Game G6: Prevent testing more two passwords per server instance.
In P6 we restrict an adversary, who tries to masquerade as a client, from testing
two passwords per session, say π1 and π2, in an online dictionary attack. Con-
cretely, let P6 be identical to P5 except that if doublepwserver event occurs,
the protocol stops and the adversary fails.

Let F5 and F6 denote the doublepwserver event occurring in P5 and P6

respectively. By definition it follows that SuccFtG
P5

(A)∧¬F5 ⇔ SuccFtG
P6

(A)∧¬F6.

Claim 7. For all adversaries A, |Pr
[
SuccFtG

P5
(A)

] − Pr
[
SuccFtG

P5
(A)

]| ≤
Pr [F6 ].
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Proof. Identical to Claim 2. 
�
Claim 8. Given A, there exists a CDH-solver B̂A with running time t′ = O(t+
(nse + nex + nro) · texp) such that:

Pr
[
SuccFtG

P5
(A)

] ≤ Pr
[
SuccFtG

P6
(A)

]
+ n2

ro · AdvCDH
G

(B̂A),

Proof. We construct an algorithm B̂A that solves the CDH problem probability
ε/n2

ro, where ε is the probability of pairedpwguess event occurring. On input
(A = ga, B = gb), B̂A simulates G5 to A with the following changes:

1. Set M := A
2. In a SERVER ACTION 1 to Πj

S with input 〈C,X∗〉 set Y ← B ·gy, where y
$←−

Zq, and sends back 〈Y, k〉. From P4 it holds that no unpaired instances can
terminate. Specifically, unpaired client and server instances abort in CLIENT
ACTION 1 and SERVER ACTION 2 respectively.

3. When A terminates, for every pair of queries Hl(C,S,X∗, Y, σ1, π1) and
Hl(C,S,X∗, Y, σ2, π2), where π1 	= π2, add γ to the S-DH, where:

γ = A−y · (σ1/σ2)
(π2−π1)

4. The set S-DH contains at most (nro)2 elements and each element in the set

is a possible solution to DH(A,B). Then B̂A outputs γ
$←− S-DH.

P6 and P5 are identical unless the doublepwserver event occurs, however,
this only occurs with probability ε ≤ n2

ro · AdvCDH
Gq

(B̂A). The quadratic degra-
dation factor is due to B̂A having to guess two queries Hl(C,S,X∗, Y, σ1, π1)
and Hl(C,S,X∗, Y, σ2, π2) such that σ1 = DH (X∗/Mπ1 , Y ) and σ2 = DH
(X∗/Mπ2 , Y ). 
�
Game G7: Internal password oracle.
In protocol P7, we consider an internal password oracle Oπ who handles every
password request and is only available to the challenger. Specifically, the chal-
lenger queries the Oπ to (i) assign passwords to users, (ii) answer Corrupt queries
and (iii) determine if the correctpw event occurs.

Claim 9. For all adversaries A, Pr
[
SuccFtG

P6
(A)

]
= Pr

[
SuccFtG

P7
(A)

]
.

Proof. It follows from inspection. 
�
Claim 10. For all adversaries A, Pr

[
SuccFtG

P7
(A)

] ≤ 1
2 + nse

2·|D| .

Proof.

Pr
[
SuccFtG

P7
(A)

]
= Pr

[
SuccFtG

P7
(A) | correctpw

] · Pr [ correctpw ]

+ Pr
[
SuccFtG

P7
(A) | ¬correctpw

] · Pr [¬correctpw ] (2)

We know from P6 that A can test at most one password per instance in an
active attack, then Pr [ correctpw ] ≤ nse/|D|. We examine the second term of
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Eq. 2. The security experiment requires the adversary to make a Test query to
some PFS-fresh instance Πi

U of his choice. It is easy to show that the view of
A is independent of the sk on which she is challenged: (i) P1 prevents two or
more instances accepting with the same sid, which would violate the partnering
definition allowing A to trivially win, (ii) it follows from P4 that, before any
Corrupt query, only instances that are paired instances can reach terminate
state – and therefore be target of a Test query – and (iii) from P5 it holds that
for such paired instances, the view of A is independent of sk for the session
target of the Test query. Then Pr

[
SuccFtG

P7
(A) | ¬correctpw

]
= 1/2. �

4 The SPAKE2 Protocol

4.1 Security of SPAKE2

SPAKE2 protocol is already proven secure in the FtG model [8] without consid-
ering any notion of forward secrecy. Here, we show that SPAKE2 also satisfies
weak forward secrecy in the FtG model assuming the CDH problem is hard in G.
The security proof of SPAKE2 is similar to that of PFS-SPAKE2 protocol; the
biggest difference is game G6, where A is prevented from testing two different
passwords when she masquerades as C but also when masquerading as S. The
later scenario does not occur in PFS-SPAKE2 since a client instance aborts the
protocol whenever it receives an invalid key-confirmation code k.

Theorem 2. Let P be the protocol specified in Fig. 2 instantiated in group G and
with passwords uniformly distributed over dictionary D. Let A be an adversary
that runs in time t polynomial in λ, makes at most nex, nse, nro queries of type
execute, send and random oracle. Then:

Client C Server S
Initialization

Public: G, g, M, N ∈ G; H : {0, 1}∗ → {0, 1}k

Secret: π ∈ Zq, π �= 0

x ← Zq, X := gx y ← Zq, Y := gy

X∗ := X · Mπ Y ∗ = Y · Nπ

X∗

Y ∗

σ := ( Y ∗
Nπ )x σ := ( X∗

Mπ )y

sk := H(C, S, X∗, Y ∗, σ, π) sk := H(C, S, X∗, Y ∗, σ, π)

Fig. 2. SPAKE2 protocol.
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AdvwFS-FtG
P (A) ≤ nse

|D| + O
(

(nse + nex)(nse + nex + nro)
q

+

nro · AdvCDH
G

(BA) + nsenro · AdvCDH
G

(B̃A) + n2
ro · AdvCDH

G
(B̂A)

)
,

where BA, B̃A and B̂A are CDH-solver algorithms running in time t′ = O(t +
(nse + nex + nro) · texp), where texp is the time for an exponentiation in G.

Next we provide a sketch of the proof, where we simply write SuccFtG
Pi

instead
of SuccwFS-FtG

Pi
to denote the success probability of A winning in game Gi:

Game G0: Execution of original protocol.

Game G1: Force uniqueness of honest instances.
If honest instances generate X∗ or Y ∗ terms equals those seen in previous exe-
cutions of the protocol, the the protocol stops and A fails.

SuccFtG
P0

≤ SuccFtG
P1

+ O
(

(nse + nex)(nse + nex + nro)
q

)
.

Game G2: Simulation without password.
The protocol is simulated without using password information, subsequent ran-
dom oracle queries made by A are backpatch to generate consistent views. Also,
A is forced to query the random oracle to compute sk = H(·).

SuccFtG
P1

(A) ≤ SuccFtG
P2

(A) + O(nse/2κ).

Game G3: No need to backpatchHl(·) queries against Execute queries.
We can show that the view of an A running in time t against P2 is computa-
tionally indistinguishable from that of P3 via a CDH reduction.

SuccFtG
P2

(A) = SuccFtG
P3

(A) + nro · AdvCDH
G

(BA).

where BA is a CDH-solver algorithm running in time t′ = O(t + (nse + nex +
nro) · texp) and texp the time for an exponentiation in G.
Game G4: Check for successful password guesses.
If before any Corrupt query, the adversary is successful on a password guess
against a client or server instance, the protocol stops and the adversary wins.

SuccFtG
P3

(A) ≤ SuccFtG
P4

(A).

Game G5: Randomized session keys for paired instances. We build a
CDH-solver algorithm from an adversary who manages to compute the sk estab-
lished at paired instances Πi

C and Πj
S , even if A obtains πC by adaptively cor-

rupting any of the instances.

Pr
[
SuccFtG

P4
(A)

] ≤ Pr
[
SuccFtG

P5
(A)

]
+ nse · nro · AdvCDH

G
(B̃A).
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Game G6: Prevent testing more than one passwords per instance.
If before any Corrupt query, A manages to test more than one passwords per
client or server instance, the protocol stops and the adversary fails. Via a CDH
reduction, we show this may happend only with negligible probability.

Pr
[
SuccFtG

P4
(A)

] ≤ Pr
[
SuccFtG

P5
(A)

]
+ 2n2

ro · AdvCDH
G

(B̂A).

Game G7: Internal password oracle.
By inspection P6 is statistically indistinguishable from P7. Additionally, let Πi

U

be any instance that remains wFS-fresh and is the target of a Test query. In
P7, provided that A has not successfully guessed the password, the view of the
adversary is independent of the ski

U . Then:

Pr
[
SuccFtG

P7
(A)

]
=

1
2

+
nse

2 · |D|

5 Conclusion and Future Work

We proved that SPAKE2 protocol satisfies weak forward secrecy. Note that prov-
ing perfect forward secrecy for unmodified SPAKE2 seems to be a harder task.
Consider the following scenario: A masquerades as a client and sends an arbi-
trary message X∗ to a server instance Πj

S , the latter computes Y ∗, its session
key, answers back with Y ∗ and terminates. Now A makes a Test(S, j) query,
receives the challenge and then corrupts the tested server instance (as corrup-
tion occurred after the Test query the instance Πj

S remains PFS-fresh). The
difficulty is that, even though the proof shows that A cannot test two passwords
per instance, in this particular scenario the simulator cannot determine the pass-
word to which A committed in X∗ as she has not asked any random oracle query.
Given the difficulty in proving perfect forward secrecy for SPAKE2, we modified
the protocol by incorporating key-confirmation codes into it. We proved that
the modified protocol satisfies perfect forward secrecy and therefore we called it
PFS-SPAKE2.

In future work, we would like to study if the SPAKE2 and PFS-SPAKE2
protocols compose securely with symmetric-key encryption schemes. This ques-
tion has practical relevance, as in TLS 1.3 the aforementioned primitives would
be used not in stand alone operation but as a combined system.

Acknowledgements. The authors are especially grateful to the Luxembourg
National Research Fund for supporting this work under CORE project AToMS.

A Terminology from [3]

We introduce the terminology necessary to refer to adversary’s actions.
We say “in a CLIENT ACTION k query to Πi

C” to refer to “in a Send query
directed to the client instance Πi

C that results in CLIENT ACTION k procedure
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being executed” and “in a SERVER ACTION k” to refer to “in a Send query
directed to the server instance Πj

S that results in SERVER ACTION k procedure
being executed”.

A client instance Πi
C is paired with server instance Πj

S if there was a CLIENT
ACTION 0 query to Πi

C with output 〈C,X∗〉, a SERVER ACTION 1 to Πj
S with

input 〈C,X∗〉 and output 〈S, Y, k〉 and a CLIENT ACTION 1 to Πi
C with input

〈S, Y, k〉. A server instance Πj
S is paired with client instance Πi

C if there was a
CLIENT ACTION 0 query to Πi

C with output 〈C,X∗〉 and a SERVER ACTION
1 to Πj

S with input 〈C,X∗〉 and output 〈Y, k〉, additionally, if there is a SERVER
ACTION 2 query with input k′, then there was a previous CLIENT ACTION 1
to Πi

C with input 〈Y, k〉 and ouput k′.
Next we define the events that will allow us to proof the security of the

protocol by sequence of games.
testpw(C, i, S, π, l): Adversary A makes (i) an Hl(C,S,X∗, Y, σ, π) query for
some l ∈ {1, 2, 3}, (ii) a CLIENT ACTION 0 to Πi

C with output 〈S,X∗〉 and
(iii) a CLIENT ACTION 1 to Πi

C with input 〈C, Y, k〉, where X∗ = X ·Mπ and
σ = DH(X,Y ). The associated value to this event is the output of the Hl(·)
query, or the k, k′, ski

C values, respectively for l = 1, 2, 3, whichever is set first.
testpw(S, j, C, π, l): A makes an Hl(C,S,X∗, Y, σ, π) for some l ∈ {1, 2, 3} and
a SERVER ACTION 1 to Πj

S with input 〈S,X∗〉 and output 〈C, Y, k〉, where
X∗ = X · Mπ and σ = DH(X,Y ). The associated value to this event is the
output of the Hl(·) query, or the k, k′, skj

S values, respectively for l = 1, 2, 3,
whichever is set first.
testpw!(C, i, S, π): In a CLIENT ACTION 1 query with input 〈μ, k〉, causes a
testpw(C, i, S, π, 2) event to occurs, with associated value k.
testexecpw(C, i, S, j, π): A makes (i) an Hl(C,S,X∗, Y, σ, π) for some l ∈
{1, 2, 3}, where X∗ = X · Mπ and σ = DH(X,Y ) and (ii) previously an
Execute(C, i, S, j) which produces X∗, Y . The associated value to this event is
the output of the Hl(·) query, or the k, k′, skj

S values, respectively for l = 1, 2, 3,
whichever is set first.
correctpw: Before any Corrupt query, either a testpw!(C, i, S, πc) event occurs,
for some C, i, S, or a testpw(S, j, C, πc, l) event occurs for some S, j, C and l ∈
{1, 2, 3}, where πc is the correct password.
pairedpwguess: For some client and server instance Πi

C and Πj
S respectively,

both testpw(C, i, S, πc, l) and testpw(S, j, C, π, l) event occurs for l ∈ {1, 2, 3},
where Πi

C is paired with Πj
S , and Πj

S is paired with Πi
C after its SERVER

ACTION 1.
doublepwserver: Before any Corrupt query, both a testpw(S, j, C, π1, l) and a
testpw(S, j, C, π2, l) event occurs, for some S, j, π1 and π2, with π1 	= π2 and
l ∈ {1, 2, 3}.
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User-Mediated Authentication Protocols
and Unforgeability in Key Collision
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Abstract. This research provides a computational analysis of the ISO
9798-6 standard’s Mechanism 7a authentication protocol. In contrast to
typical authentication protocols, ISO 9798-6 mechanism 7a requires user
interaction and aims to authenticate data possession instead of identities.
Consequently, we introduce a 3-party possession user mediated authen-
tication (3-PUMA) model. Furthermore, we demonstrate the necessary
security guarantees of the MAC primitive – which include non-standard
assumptions – and introduce existential unforgeability under key colli-
sion attacks (EUF-KCA). The resulting analysis demonstrates a notable
lack in the standard’s requirements and has implications for other PUMA
protocols.

Keywords: ISO 9798-6 · Authentication protocols · User interface
MAC security · Key-collision attacks

1 Introduction

User interaction is largely unconsidered in protocol analysis, even in instances
where the user takes an active role. This research addresses modeling of user-
mediated authentication protocols and computationally analyzes the standardized
ISO 9798-6 Mechanism 7a [8] (abbreviated ISO 9798-6.7a) authentication proto-
col. Unlike previously analyzed ISO 9798 protocols, those within the ISO 9798-6
standard employ an active user interface. These protocols present two intriguing
modeling concerns: modeling of a 3-party authentication protocol and modeling
of the user interface. While work has been done on modeling of 3-party – and more
generally multi-party – key exchange protocols [4,12], 3-party authentication pro-
tocols are largely ignored. Analyses of many 3-party key exchange protocols handle
the user as an out-of-band (OOB) information exchange [12]. Indeed, this follows
from a standard device-to-device security perspective and modeling of the user is
considered irrelevant or external to the cryptographic model. However, in a user-
mediated protocol the user is an active participant relaying and confirming infor-
mation and even generating nonces or keys. It is thus possible to consider a user-
to-device “channel”, e.g. a device keypad or display, as well as adversarial behavior
such as via a priori access to a device.
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heim, Norway.
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Notably, the goals of ISO 9798-6.7a differ also from those expected from
typical mutual authentication protocols. In the absence of long-term keys and
symmetric keys, etc., which could normally be used for entity authentication,
the goal of ISO 9798-6.7a is to provide a mutually authenticated data string D,
such that both parties are assured that the protocol partner has also agreed to
the string. The only intended prevention mechanism against man-in-the-middle
attacks is a user generated value, which again highlights the highly interactive
nature of the protocol.

In addition to the protocols goals, the security goals of the underlying message
authentication code (MAC) algorithm also differ from the accepted norm. ISO
9798-6.7a sends the MAC key in the clear, before verifying the MAC tag. Thus
the MAC should be secure against an adversary that can produce a different but
valid MAC key – essentially forging a key, given a message-tag pair. In order to
address these demands, it is necessary to go beyond standard MAC assumptions
(e.g. EUF-CMA and SUF-CMA) and formalize key collision attacks.

Related Work. Previous analyses of the ISO 9798 standard have addressed mech-
anisms in the standard which do not include a user interface [3,7,14]. These
analyses include both formal modeling [3,14] and computational modeling [7].
None of these works cover any of the protocols of ISO 9798-6, but demonstrate
the importance of analyzing such standardized protocols.

Classically, we assume that an adversary cannot access a secret key. Thus,
both standard MAC security variants EUF-CMA and SUF-CMA required that
the MAC key is fixed and unavailable to the adversary. Yet ISO 9798-6.7a con-
tains a different scenario, one in which MAC tags are essentially “committed”
to. Then, even if the key is revealed, the tag cannot be altered and an adversary
must generate a message forgery that corresponds to the fixed tag, or produce
an alternative key. Known Key, Chosen Key, and Related Key attacks bear some
similarities to this security scenario, but differ from the present case. Known Key
attacks (KKAs) were introduced in [11] and cover the case of block ciphers where
an adversary knows a key and aims to exhibit non-random behavior in the cipher.
KKAs [2] have been studied extensively. Chosen Key attacks (CKAs) consider
a similar situation, but where an adversary may choose the key in question [6].
In a Related Key attack (RKA) [5] an adversary chooses a relation between a
pair of keys for a blockcipher, but not the keys themselves, before launching a
chosen plaintext attack. The goal of these attacks (e.g. non-random behavior in
the cipher in the case of a KKA) differs from the goal of the MAC adversary
exhibited in ISO 9798-6.7a (generating a new key for a given message-tag pair).

The concept of adversarial key guessing has surfaced previously under terms
such as key spoofing and key-collision. The concept of key spoofing for symmetric
encryption was briefly discussed in [1] as a situation where an adversary’s goal
is to find a new key which produces a given message-ciphertext pair. Later, the
idea was revived in [13] (not peer-reviewed) under the term key-collision for
digital signatures. Unlike in key spoofing, key collision demands only a fixed
ciphertext – the adversary must find a new key and may additionally find a new
message, which yields the given ciphertext. Still, these attacks do not consider
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Table 1. Security experiment against a MAC algorithm with inpsuts into the veri-
fication oracle (key K, message m, or MAC tag t). If an adversary can generate a
new input (�) when others are fixed (-), it wins the corresponding experiment. Other
inputs which the adversary may manipulate are denoted (*). E.g. an adversary wins
SUF-CMA if it can generate a new MAC tag, a new message or both. For visual com-
pleteness we include the trivial combinations where the adversary must generate a new
key-tag pair for a message (given or of the adversary’s choice).

MAC security experiments corresponding to verification inputs which are

optionally generated by the adversary (*), required fresh for a win (�), and fixed (-)

Security experiment K m t

EUF-KCA � * -

EUF-CMA - � *

Forged tag - * �
SUF-KCA � � -

SUF-CMA = EUF-CMA + Forged tag - � �
Trivial (win) � - �
Trivial (win) � � �
Trivial (impossibility) - - -

a related-key case, where the adversary can exploit knowledge of the actual key.
This leaves an open problem. How can we formulate MAC security for when the
MAC key is intentionally provided to the adversary?

This research handles the situation where the adversary must guess a different
valid key but is actually provided the correct key (which of course necessitates
restriction of valid key use). We call this existential unforgeability under key
collision attacks (EUF-KCA). Table 1 shows all possible forgeries an adversary
can perform and the corresponding security game that captures such abilities.
In all non-trivial cases, either the key or message tag is fixed. Note that classical
SUF-CMA fixes the key while SUF-KCA fixes the tag. Discussion on SUF-KCA
security is left for the full version.

Contributions. This work extends previous research on ISO 9798, providing a
model for user-mediated authentication and analyzing a previously untouched
protocol. Particularly:

– We introduce Existential Unforgeability under Key Collision Attacks (EUF-
KCA) for a MAC. EUF-KCA security considers an adversary’s ability to find
a second key for a fixed MAC message-tag pair, given knowledge of the correct
key.

– We initiate the study of 3-party Possession User-Mediated Authentication (3-
PUMA) Protocols and provide a corresponding security model. This model
handles 3-party authentication where one party is a user, with the explicit
goal of authenticating possession of some data.



390 B. Hale

– We computationally analyze the ISO 9798-6.7a authentication protocol under
the 3-PUMA model. Ultimately, we demonstrate that the MAC requirements
stated in ISO 9798-6.7a are insufficient for the protocol’s security.

2 Preliminaries

Here we introduce ISO 9798-6.7a and necessary MAC definitions.

2.1 ISO 9798-6 Mechanism 7a Authentication Protocol Specification

Both devices possess a “simple output interface”, e.g. red and green lights. They
also possess “standard input” interfaces which allow a user to input a bit-string
into the devices. Figure 1 shows the ISO 9798-6.7a protocol with the following
variables:

Fig. 1. ISO 9798-6 Protocol Mechanism 7a. Protocol flows are color-coded for the
Device-to-Device channel and User-to-Device channel. Data string D and identities
are pre-shared. (Color figure online)

– R: A 16–20 bit random bit-string generated by the user.
– D: A data string. D is the agreed upon data at the termination of the protocol

run.
– KI : A 128–160 bit short-term session key derived by identity I.
– macI : 128–160 bits output of a MAC algorithm, selected from ISO 9797 [9,10].
– ready: An indicating signal that the device is ready for the protocol to start.
– start: An initiation message.
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– OK: An indicating signal that the protocol is completed successfully. If unsuc-
cessful, failed is sent.

ISO 9798-6.7a does not define the distribution or freshness of the data string
D, but the mechanism does not begin until after the data has been distributed.
ISO 9798-6.7a does not specify how identities are obtained, but requires that
identities are known prior to the start of the mechanism. Thus, we consider the
identities to be transmitted out-of-band. ISO 9798-6.7a also does not specify
how the random bit-string R is generated, but does require it to be kept secret
(including during the user-to-device transfer of R). Following the specification,
we assume that R is generated randomly. We do not consider “shoulder-surfing”
attacks, where an adversary may observe R on input, in accordance with the
strict specification on the secrecy of R to prevent MitM attacks.

A device outputs an indication of success/failure to the user based on the
MAC verification step – we indicate this as v = 1/0. If both devices output
an indication of success to the user (vB = vA = 1), then the user enters a
confirmation of success (OK) into both devices. If either vB = 0 or vA = 0, the
user enters an indication of failure failed into both devices; absence of a user
response (OK/failed) within a specified time interval is interpreted as failed
by the device. We say that a protocol instance of ISO 9798-6.7a accepts if: (1)
it has received a value R from the user, and (2) it outputs a verification bit
vpartner identity = 1, and (3) the last message received from the user is OK.

2.2 MAC Security

Due to space constraints the usual MAC definition and standard SUF-CMA
security experiment ExpSUF-CMA

MAC,A is left for the full version. The one-time
strong unforgeability (OT-SUF-CMA) experiment for MAC, ExpOT-SUF-CMA

MAC,A , is
as ExpSUF-CMA

MAC,A with the additional restriction that an adversary may only query
MAC and MAC.Vfy once each.

Definition 1. Let A be a PPT adversarial algorithm against the MAC.
The existential unforgeability under key collision attacks (EUF-KCA) experi-
ment for MAC, ExpEUF-KCAMAC,A is given in Fig. 2. We define AdvEUF-KCA

MAC,A (λ) :=
Pr[ExpEUF-KCAMAC,A (λ) = 1].

Definition 2 (Existential Unforgeability Under Key Collision Attacks).
We say that a MAC scheme is EUF-KCA secure if there exists a negligible function
negl(λ) such that for all PPT adversariesA interacting according to the experiment
ExpEUF-KCAMAC,A it holds that AdvEUF-KCA

MAC,A (λ) ≤ negl(λ).

Since the MAC key is provided to the adversary following generation of a
MAC tag, EUF-KCA security is naturally a one-time security game. Unlike in a
brute-force search, the adversary in an KCA attack actually has a valid key at
its disposal. It also possesses a complete message triple (K,m, t), with the goal
of finding an alternative key.
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Fig. 2. EUF-KCA experiment for an algorithm MAC = (Kgn,MAC,Vfy) and adver-
sary A.

3 3-PUMA Model for Simple Output Devices

The 3-PUMA model considers the channel between devices (wired or wireless),
as well as the third-party user interaction via channels between the user and
devices.

Each device possesses a simple output interface, e.g. binary success/failure
indication, as well as a standard input interface which allows a user to input
a bit-string into the device. A participant in a 3-PUMA protocol is either a
device I ∈ ID or a user U . As there is only one user interface, we do not model
multiple users. The set of all participants is the union ID ∪ {U}. We refer to
elements of ID alternatively as devices or identities. We model participants via
sessions, such that πP

i is the i-th session at P . that there may be multiple and
simultaneous sessions at each participant.

Devices. Each device I ∈ ID is modeled via session oracles, where each session
maintains a list of the following variables:

– K ∈ K: a variable for storing an ephemeral key, where K is the protocol’s key
space.

– D: defined in Sect. 2.1.
– role ∈ {initiator, responder}: a variable indicating the role of I in the session.
– pid ∈ ID/{I}: a variable for storing the partner identity for the session.
– δ ∈ {accept, reject, ∗}: a variable indicating the session accepts, rejects, or has

not yet reached a decision.
– sid: a variable for storing the session ID.

The internal state of each session oracle at identity I is initialized to
(K,D, role, pid, sid) = (∅, ∗, ∅, ∅, ∅), where V = ∅ indicates that the variable V
is undefined and ∗ indicates that the variable value may or may not be defined.
In the case of OOB exchange of D, D is initialized to the agreed value; otherwise,
D is initialized to ∅. It is the explicit goal of the 3-PUMA protocol to authenti-
cate possession of D at two sessions πI

s and πI′
s , versus mutually authenticating

parties I and I ′, therefore we require that D be included in the sid. Rejection of
the protocol run may occur at any time, but acceptance does not usually occur
until the protocol is complete. We disallow pidI = I.
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User. U is modeled via session oracles, where each session maintains the follow-
ing:

– init ∈ ID: a variable indicating the initiating identity.
– resp ∈ ID: a variable indicating the responding identity.

The internal state of each session oracle at U is initialized to (init, resp) =
(∅, ∅).

For devices we use a notion of partnering based on session IDs. Note that
Device-to-Device (DtD) messages occur on a different channel than User-to-
Device (UtD) messages. As there is a single user, we do not define partnering
between the user and devices.

Definition 3. Identities I and I ′ possess matching session IDs if sidI = sidI′ .

Remark 1. For analysis of ISO 9798-6.7a, we use sid = (D,R,macA,macB ,KA,
KB). This is the full transcript between I and I ′, inclusive of OOB data D, but
also includes elements sent to respective identities by the user, on the UtD
channel.

Definition 4 (Partnering Device-to-Device). We say that two sessions
πI
s , π

I′
s , for I, I ′ ∈ ID, are partnered if they both accept, and possess, respec-

tively, (pidI , sidI) and (pidI′ , sidI′), where pidI = I ′, pidI′ = I, and
sidI = sidI′ .

3.1 Adversarial Model

We consider a probabilistic polynomial-time (PPT) adversarial algorithm A.
We define the following abilities and queries of A in the 3-PUMA experiment
Exp3-PUMA

A .

Device-to-Device (DtD). For messages between participants I and I ′, such
that I, I ′ ∈ ID, A is allowed to read, modify, replay, and delete messages.

User-to-Device (UtD). For messages sent between identities I ∈ ID and
the user U , A may not modify a message’s sender/recipient. We present three
variants of adversarial behavior allowed on the UtD channel, where 3-PUMAi

denotes i-th variant:

1. – Before the first DtD message, A is allowed to read, modify, replay, or
delete UtD messages.

– After the first DtD message is sent, A is allowed to read, replay, and
delete messages, but may not modify UtD messages.

2. A is allowed to read, replay, and delete messages, but may not modify UtD
messages.

3. – Before the first DtD message, A is allowed to replay or delete messages
sent from a user to a device, but may not read or modify messages. A is
allowed to replay, delete or read messages sent from a device to a user,
but may not modify messages.
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– After the first DtD message is sent, A is allowed to read, replay, and
delete UtD messages, but may not modify messages.

We model the user as an honest, benign, and unauthenticated third party.
However, we capture a CCA1 variant (3-PUMA1).

Queries. A may use the following queries:

– SendDevice(πI
s ,m). Using this query, A sends a message m to a session oracle

of its choice, where πI
s is an oracle for session s at a participant I ∈ ID. The

message is processed according to the protocol and any response is returned
to A.
If a session oracle πI

s , where I ∈ ID, receives m as a first message, then the
oracle checks if m consists of a special initiation message (m = (init, I ′)),
for I ′ ∈ ID, to which it responds by setting pid = I ′ and outputting the first
protocol message. Else it outputs ⊥.
If at any point a session oracle πI

s , where I ∈ ID, receives a message m from
U during a protocol run, such that m consists of a special role-setting message
m = start and πI

s has not received a message from another identity I ′ ∈ ID,
then πI

s sets role = initiator and responds according to the initiator role in
the protocol. Else, if πI

s receives a message from another identity I ′ ∈ ID
according to the protocol without having received such a message m = start
from U , it sets sets role = responder and responds according to the responder
role in the protocol.

– SendUser(πU
s ,m). Using this query, A sends a message m to a session oracle

of his choice, where πU
s is an oracle for session s at user U . The message is

processed according to the protocol and any response is returned to the A.
If a session oracle πU

s , receives m as a first message, then the oracle checks of
m consists of a special initiation message (m = (init, (I, I ′))), for I, I ′ ∈ ID,
to which it responds by setting init = I and resp = I ′. Else it outputs ⊥.

– RevealEphKey(πI
s ). This query returns the ephemeral key KIs of the s-th

session for the identity I ∈ ID. If KIs = ∅, RevealEphKey returns ⊥.

Definition 5 (Freshness). A session oracle πI
s for an identity I ∈ ID is fresh

unless

– a RevealEphKey query on πI
s occurs before the last DtD message is

sent/received by πI
s , or

– a RevealEphKey query on πI′
s occurs before the last DtD message is

sent/received by πI′
s , where πI′

s is the partner of πI
s .

3.2 Security

Definition 6 (3-PUMA Experiment). Let A be a PPT adversarial algorithm
against 3-party possession user-mediated authentication, interacting with a chal-
lenger in the experiment Exp3-PUMA

A via the queries defined above. We say that
the challenger outputs 1, denoted Exp3-PUMA

A (λ) = 1, if either of the following
conditions hold:
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1. Failure of (matching sid → acceptance). Oracles πI
s and πI′

s have matching
sid and either πI

s or πI′
s does not accept.

2. Failure of (acceptance → matching sid ). There exists a fresh oracle πI
s which

has accepted and there is no partner oracle πI′
s which is fresh.

Otherwise the experiment outputs a random bit. We define the advantage of A
in the experiment Exp3-PUMA

A (λ) as Adv3-PUMA
A (λ) := Pr[Exp3-PUMA

A (λ) = 1].

Definition 7 (Security of 3-PUMA). We say that a 3-party possession user-
mediated authentication protocol is secure if there exists a negligible function
negl(λ) such that for all PPT adversaries A interacting according to the experi-
ment Exp3-PUMA

A (λ), it holds that Adv3-PUMA
A (λ) ≤ negl(λ).

As ISO 9798-6.7a requires strict privacy with regards to R, we use the
3-PUMA3 model for analysis of ISO 9798-6.7a.

Theorem 1 (Security of ISO 9798-6.7a). Let ISO be the ISO 9798-6.7a
protocol and let A be a PPT adversarial algorithm against the 3-PUMA3. Let q
be a polynomial bound on the number of queries allowed to A and let p = |ID|.
Then we can construct adversaries B0 and B1 against the OT-SUF-CMA and
EUF-KCA security of the MAC, respectively, such that

Adv3-PUMA3
ISO,A (λ) ≤ (2p2 + 1) ·AdvOT-SUF-CMA

MAC,B0
(λ) + 2p2 ·AdvEUF-KCA

MAC,B1
(λ) + q2/2n.

where n is the prescribed bit-length of R.

Due to space restrictions, the proof is left for the full version.
The reliance of ISO 9798-6.7a security on the EUF-KCA security of the

MAC presents a significant issue. EUF-KCA security is not well understood and
is non-standard. Consequently, it is unknown whether or not basic MAC prim-
itives, such as are recommended for use in ISO 9798-6.7a, satisfy this security
requirement.
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Abstract. Online advertising forms the primary source of income for
many publishers offering free web content by serving advertisements tai-
lored to users’ interests. The privacy of users, however, is threatened by
the widespread collection of data that is required for behavioural adver-
tising. In this paper, we present BAdASS, a novel privacy-preserving
protocol for Online Behavioural Advertising that achieves significant
performance improvements over the state-of-the-art without disclosing
any information about user interests to any party. BAdASS ensures user
privacy by combining efficient secret-sharing techniques with a machine
learning method commonly encountered in existing systems. Our proto-
col serves advertisements within a fraction of a second, based on highly
detailed user profiles and widely used machine learning methods.

Keywords: Behavioural advertising · Machine learning
Secret sharing · Privacy · Cryptography

1 Introduction

Online advertising forms a primary financial pillar supporting free web content
by allowing publishers to offer content to users free of charge [4]. In recent years,
however, an increasing number of people object to advertisements being shown
on web pages they visit. A major concern for the users is their privacy which
is threatened by the widespread data collection of advertising companies [14].
The collected data is used in behavioural targeting to determine which adver-
tisements are shown to a user based on the user’s browsing behaviour. Although
such behavioural advertising is recognized as being beneficial to both users and
publishers, a mistrust of advertising companies and a lack of control hinders
acceptance of behavioural advertising [14].

The practice of showing advertisements based on previously exhibited
behaviour is known as Online Behavioural Advertising (OBA). In OBA, user
interests are inferred from data such as visited web pages, search queries, and
online purchases. Based on these user interests, advertisements are typically
personalized using campaign-specific supervised machine learning models that
c© Springer Nature Switzerland AG 2018
J. Baek et al. (Eds.): ProvSec 2018, LNCS 11192, pp. 397–405, 2018.
https://doi.org/10.1007/978-3-030-01446-9_23
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predict users’ responses to advertisements. OBA utilises the Real-Time Bidding
(RTB) model of buying and selling advertisements [15]. RTB facilitates real-time
auctions of advertising space through marketplaces called ad exchanges (AdX),
allowing buyers to determine bid values for individual ad impressions. Demand-
Side Platforms (DSPs) provide advertisers, who may not possess the expertise
required to accurately estimate impression values, with technologies to bid on
individual impressions from multiple inventories. Likewise, Supply-Side Plat-
forms (SSPs) support publishers in optimizing advertising yield.

In existing literature, a number of methods is proposed to address pri-
vacy concerns in OBA. These methods include blocking advertisements alto-
gether [10], obfuscating browsing behaviour [3], and anonymization [11], as well
as exposing only generalized user profiles to advertising companies [13]. Limit-
ing the data that is available to advertising companies, however, is expected to
decrease the targeting accuracy [5], and thus the value of advertisements to users,
advertisers, and publishers. Other work proposes cryptographic approaches to
aggregate click statistics [13] or select advertisements using secure hardware [1].
These approaches, however, are based on advertising models in which centralized
networks perform simple keyword-based advertisement selection, and as such are
unsuitable for use within the highly distributed RTB model. Recently, Helsloot
et al. [8] proposed a protocol that uses threshold homomorphic encryption to
preserve privacy in OBA within the RTB model. However, the use of expensive
cryptographic operations throughout the protocol results in prohibitively large
computational costs.

In this paper, we present BAdASS, a novel privacy-preserving protocol for
OBA that is compatible with the RTB mechanism of buying ads and supports
behavioural targeting based on highly detailed user profiles. BAdASS achieves
significant performance improvements over the state of the art, using machine
learning on secret-shared data to preserve privacy in OBA tasks. Our protocol
uses the highly fragmented nature of the OBA landscape such that no single
party can obtain sensitive information. We achieve performance multilinear in
the size of user profiles and the number of DSPs, and perform the highly time-
sensitive advertisement selection task in a fraction of a second.

2 Preliminaries

Logistic Regression: Logistic regression is one possible technique for user
response estimation which has been commonly used by advertising compa-
nies [9]. Given a d-dimensional user profile vector x and model parameters
w, it estimates the probability of a binary outcome (click or no click) using
the sigmoid function ŷ = σ(wᵀx) = 1/1 + e−w ᵀx . The model parameters are
updated as w ← w − ηg using the gradient of the logistic loss g = (ŷ − y)x
as in [9].
Feature Hashing: To avoid a high dimensional user vector in logistic regres-
sion, we use the hashing trick in [16] which enables to map the user profile
into a lower-dimensional vector x by setting xi to a count of the values whose
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hash is i. The resulting d-dimensional vector x (in [2], d = 224 is used) is the
input feature vector to the logistic regression model.
Shamir Secret Sharing: Shamir’s secret sharing scheme [12] is a t-out-of-n
threshold scheme in which a secret s ∈ Zp for a prime p is shared among n
parties, from which any subset of size at least t can reconstruct the secret. We
use the notation 〈s〉 to indicate a (t, n) secret sharing of a value s, for some
predefined t and n, and 〈v〉 denotes an element-wise sharing of the vector v.
Universal Re-encryption: Universal re-encryption allows re-randomization
of a ciphertext without access to the public key that was used during encryp-
tion. We use the notation �x�u to denote the encryption of a value x under
the public key of user u using the universal re-encryption scheme in [7].

3 Protocol Design

In BAdASS, we aim to 1. ensure profile privacy to prevent revealing information
about user interests to any party other than the user, 2. ensure model privacy
to prevent revealing model parameters of bidder to any party other than the
bidder, and 3. make the design applicable to the RTB model and integrated into
the OBA landscape. We assume a a semi-honest security model. Considering
possible collusions between the AdX and DSPs, we introduce an additional entity
called Privacy Service Provider (PSP). DSPs are the only parties that operate
on user data. We define a DSP group Γi to be a set of DSPs. Computations
on behalf of a DSP γi,j ∈ Γi are performed entirely within Γi. The AdX only
collect bids, and from these bids select the winner. SSPs are not considered in
our protocol.

BAdASS is divided into four different phases: user profiling, bidding, auction,
and model update. Prior to protocol execution, advertisers set up campaigns
such that DSPs can bid on their behalf, and the PSP splits DSPs into groups
of at least m parties. Moreover, each DSP shares campaign-specific parameters
among the DSPs in their group. Finally, each user generates a key pair using
any multiplicatively homomorphic cryptosystem and publishes their public key.

User Profiling Phase. In the user profiling phase, browsing behaviour is
recorded locally within the user’s web browser as in [6]. The resulting profile
is captured in a d-dimensional feature vector x using feature hashing. To reduce
the communication costs of sending the full d-dimensional feature vector for each
request, feature vectors are cached at DSPs. To securely share a feature vector
among DSPs, the user splits their profile into two additive shares, one of which
is given to the AdX, the other to the PSP. Both the AdX and the PSP create
Shamir shares from their additive shares, which are distributed among the DSP
groups. Every DSP within the group receives two shares which are combined
into a single share of the original value by calculating the sum of the two shares.

Bidding Phase. The bidding phase starts when a users contacts an AdX with
an ad request. Receiving the ad request, AdX sends a bid request to DSP groups



400 L. J. Helsloot et al.

each of which cooperatively calculates the bidding prices for the campaigns they
are responsible for. For each campaign, the user response ŷ is estimated using
a logistic regression model, and bidding values are derived from response esti-
mations using linear bidding functions B(ŷ) = c1ŷ + c2 for campaign-specific
constants c1 and c2. A challenge in logistic regression is to compute sigmoid
function within the secret-shared domain. Following [8], we let the PSP com-
pute the sigmoid function in the clear. In our setting, this is acceptable as the
PSP knows neither the user, nor the campaign a value is associated with. To
ensure profile privacy, each advertisement ak is encrypted using the user’s public
key. The encrypted advertisement is submitted to the PSP, via the AdX such
that the PSP cannot link the submission to a specific DSP, along with a ran-
dom number rk and the group descriptor Γi. Finally, the PSP stores a mapping
rk → (�ak�u, Γi), which is used in the auction phase to retrieve the advertise-
ment.

Auction Phase. The auction protocol uses a hierarchical auction in which
each DSP group engages in a secure comparison protocol to select the highest
of the bids within their group, along with associated information that is used in
the model update phase. Shares of the information associated with the highest
bid are stored for later use, after which each DSP group submits their high-
est bid to a global auction to select the final winner. Due to the use of secret
sharing, the global auction cannot be performed by the AdX alone. In order to
maintain the same level of trust as in the bidding protocol, at least m parties
are required in the auction protocol. Therefore, the global auction is performed
by a randomly selected DSP group Γ ∗. Later, shares of a random identifier r
associated with the highest bid are sent to the PSP, where the shares are com-
bined to retrieve the encrypted advertisement and group descriptor associated
with the highest bid. To ensure unlinkability between the encrypted advertise-
ment retrieved from the PSP after the auction and the values submitted prior to
the auction, the PSP performs re-randomization of the encrypted advertisement
using universal re-encryption. Finally, the encrypted ad, the group descriptor,
and the bid request identifier v are sent via AdX to the user, who decrypts and
displays the advertisement.

Model Update Phase. In this phase, the response prediction model associated
with the shown advertisement is updated using the update rule from Sect. 2. In
order to ensure unlinkability between users and campaigns, the model update
protocol is split into three stages: 1. The user identifier is revealed to the DSP
group responsible for the shown advertisement in order to calculate shares of the
update gradient g = η(ŷ − y)x. 2. Each DSP submits a set of multiple gradient
shares to the PSP, which mixes the received shares via random rotation. The PSP
then re-shares the set of gradient shares among the DSP group. 3. The campaign
identifiers of the set of gradients are revealed to the DSP group, allowing the
DSP group to apply the gradients calculated in the first stage to the correct
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parameter vector. Since the gradient shares have been mixed, the DSP group
cannot link values revealed in the third phase to values revealed in the first
phase.

4 Performance and Security Analyses

Computational Complexity. The computational complexity of BAdASS
depends on a number of variables, in particular the user profile dimensionality d,
the number of campaigns K, and the update aggregation threshold ζ. In the pro-
file update protocol, the user creates d additive sharings, and the AdX and PSP
both create d Shamir sharings. Moreover, each DSP performs d additions. If the
profile update protocol is invoked for all DSP groups at once, the computational
complexity becomes O(dn), where n is the total number of DSPs. In the bidding
protocol, each DSP performs a multiplication for every campaign within its DSP
group to calculate the bid value, and an encryption of the advertisement for all
its own campaigns. In the auction protocol, each DSP group Γi performs Ki − 1
comparisons, where Ki is the number of campaigns of Γi, followed by a single DSP
group Γ ∗ performing g − 1 comparisons, where g is the number of groups. Since
the group Γ ∗ is chosen at random out of g groups for every auction, the amortized
complexity of the auction phase is O(K). In the model update protocol, the total
cost of the re-sharing is equal to that of dm multiplications. The group size m,
however, can be considered a constant determined by the recombination thresh-
old, resulting in an amortized complexity of O(d).

Communication Complexity. Table 1 lists the amortized number of bits
transmitted by each party for each subprotocol, and the number of rounds of
communication required by each subprotocol. The round complexities of the pro-
file update and bidding protocols, and the amortized round complexity of the
model update protocol are constant. The round complexity of the auction phase
is logarithmic in the number of campaigns since λ is logarithmic with respect
to the number of campaigns, K. The communication complexities of the profile
update and the model update phases are linear with respect to profile size d.

Table 1. Communication bandwidth in bits and number of communication rounds per
invocation of each subprotocol. ε denotes the ciphertext size, and γ and τ the number of
bits transferred in the comparison and truncation protocols. ρ is the round complexity
of the comparison protocol, and T is the round complexity of the truncation protocol.

Protocol Rounds User AdX DSP PSP

Profiling 2 2dσ dmσ dmσ

Bidding 2 Kξ (m + 1) Kiσ + κξ Kmσ

Auction λ(ρ + 1) + 3 ξ (5Ki − 3) mσ + Kiγ + 2 1
g
σ ξ

Update T + 1 3
ζ

mσ (d + 1)mσ + τ + (d + 3)σ (d + 2)m2σ
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Note that if the user profile is distributed among multiple DSP groups, the com-
plexity of the user profiling phase becomes multilinear in the profile size and the
number of DSPs. Likewise, the total communication complexity of the bidding
and auction phase is linear in K.

Implementation. To measure the runtime of BAdASS, we made a proof-of-
concept implementation in C++. Real values, such as model weights, are rep-
resented as 16-bit fixed-point numbers. Shamir shares are operated in a prime
field of order p = 231 − 1. The reconstruction threshold t is set to 3, resulting
in a DSP group size m of 5. The key size for the ElGamal cryptosystem is set
to 2048 bits. The tests were executed on a mobile workstation running Arch�
CoreTM i7-3610QM 2.3 GHz quad-core processor with 8 GB RAM.

Fig. 1. Performance comparison between BAdASS and the state-of-the-art AHEad
protocol. The measurements for AHEad are performed using a single DSP running a
single campaign, whereas 5 DSPs with a total of 5 campaigns are used for BAdASS.

Figure 1 shows a comparison between the runtimes of BAdASS and the state-
of-the-art AHEad protocol [8]. It is evident that, for a realistically large pro-
file size d = 220, BAdASS provides significant performance improvements over
AHEad. The computation time required by the model update far exceeds that
of the profile update, bidding, and auction protocols, due to the large number
of subshare recombinations performed by the DSPs, and the large number of
sharings created by the PSP. When the computations performed by the DSPs
are parallelized, the average time for the model update protocol for d = 220 can
drop from 2.6 s to about 750 ms per invocation. The computation times of the
bidding, auction, and the profile update phase are below 150 ms, and thus seem
very well suited for use in a real-time setting as required by the RTB advertis-
ing model. The relatively large amount of computation performed in the model
update phase is less time sensitive, and can thus be periodically performed as a
background task without harming the user experience.

Security. The security of BAdASS is provided by the security of the underlying
secret-sharing and encryption schemes in the semi-honest setting. In the non-
interactive phases of the protocol, both the user profile and model parameters



Preserving Privacy in Behavioural Advertising with Secret Sharing 403

are shared among a DSP group using Shamir’s secret sharing, which provides
information-theoretic security as long as no more than t − 1 parties collude.

In the profile update protocol, the user profile is shared between the PSP
and the AdX using a two-party additive secret sharing scheme, which, given the
assumption that the PSP does not collude with any party, provides information-
theoretic security. In the bidding protocol, the PSP obtains values wᵀ

kxu and
ŷk from DSP groups, but does not know the campaign k or user u to which the
values belong, nor the specific DSP responsible for the campaign. Since the PSP
knows neither wk nor xu, inferring the values of wk or xu from wᵀ

kxu is equiv-
alent to the hardness of the subset-sum problem. If the PSP receives multiple
values of wᵀ

kxu for the same wk and xu, the PSP can link these values to the
same user, but cannot learn any information about the user’s interests as the PSP
cannot link response predictions to campaigns. The PSP also receives a mapping
between a random number and an advertisement encrypted with the universal
re-encryption, which is semantically secure under the DDH assumption [7].

In the model update protocol, the PSP obtains rotated shares of update
gradients, bid values, and campaign identifiers. Given unbounded computational
power, the PSP can perform an exhaustive search of rotation coefficients until
recombination of shares results in likely values. Choosing sufficiently large values
for the update period ζ and recombination threshold t makes exhaustive searches
infeasible. After the PSP mixes the shares, DSPs receive shares of the same values
submitted earlier in the model update phase. Since the shares are re-shared by
the PSP, however, DSPs cannot link the shares received after mixing to shares
submitted before mixing. Moreover, the random rotation performed by the PSP
prevents DSPs from linking inputs to outputs.

5 Conclusion

In this paper we present a novel protocol using machine learning over secret-
shared data to preserve privacy in OBA with minimal user-noticeable delays.
Trust is distributed among DSPs using threshold secret sharing, allowing DSPs
to collaboratively compute bid prices and determine the highest bid without
gaining any knowledge of a user’s interests. At no point are the contents of user
profiles, shown advertisements, and actual user responses revealed to any party
other than the user, nor are model parameters revealed to any party other than
the DSP responsible for the campaign. Individual bid prices are not revealed
to any party, but are aggregated for billing purposes. Finally, the protocols are
integrated into the RTB setting by forming DSP groups from existing DSPs,
with the addition of a single new party.

To the best of our knowledge, BAdASS is the first protocol to allow sub-
second behavioural targeting of advertisements while preserving user privacy.
The heavily fragmented shape of the online advertising landscape lends itself
particularly well to the use of efficient secret-sharing techniques, giving advertis-
ing companies the opportunity to cooperatively move towards acceptable forms
of behavioural advertising. Although the presented protocol should be adapted
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to the malicious setting, as DSPs may have an incentive to modify competitors’
bid values, the results obtained with BAdASS show that it is possible to serve
behaviourally targeted advertisements without disclosing those interests to any
party, all within a fraction of a second. We believe that these results provide a
first step towards adoption of privacy-preserving methods in the online adver-
tising ecosystem.
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Abstract. Signcryption is a cryptographic scheme that achieves the
functionalities of both public-key encryption and digital signatures. It
is an important scheme for realizing a mechanism of sending and/or
receiving messages in a secure way, since it is understood that sign-
cryption is a public-key based protocol to realize a secure channel from
an insecure channel. On the other hand, various post-quantum cryp-
tographic schemes have been proposed so far. Recently, several cryp-
tographic schemes have been proposed in the quantum random oracle
model where an adversary can submit quantum queries to a random
oracle. In this paper, we propose a generic construction of signcryption
in the quantum random oracle model for the first time. Our construction
achieves both of the strongest confidentiality and strongest integrity in
the multi-user setting tightly.

Keywords: Signcryption · Post-quantum cryptography
Quantum random oracle

1 Introduction

To date, various constructions of cryptographic schemes resistant to attacks
using quantum computers have been proposed. If quantum computers are real-
ized, not only honest users but also adversaries can use the quantum compu-
tation. In addition, adversaries could attack cryptographic schemes by utilizing
superpositions of states as queries to oracles (i.e., quantum queries). Therefore, it
is interesting and important to consider cryptographic schemes which are secure
against such adversaries. In particular, the quantum random oracle model is a
model where a quantum adversary can utilize both classical and quantum queries
to random oracles used in cryptographic schemes.

Regarding public key encryption (PKE) meeting indistinguishability against
chosen ciphertext attacks (IND-CCA) in the quantum random oracle model
(QROM), the constructions have been proposed so far [4,7,8,13,15]. In particu-
lar, the papers [8,13] proposed constructions meeting tight security of the exist-
ing ones. As for digital signatures (DSs), the papers [5,9] proposed generic con-
structions meeting strong unforgeability against chosen message attacks (sUF-
CMA) by using some cryptographic primitives against classical adversaries.
c© Springer Nature Switzerland AG 2018
J. Baek et al. (Eds.): ProvSec 2018, LNCS 11192, pp. 406–414, 2018.
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Signcryption is a cryptographic scheme that achieves both functionalities of
PKE and DS, which was initially proposed in [17]. It is an important scheme
for realizing a mechanism of sending and/or receiving messages in a secure way,
since it is understood that signcryption is a public-key based protocol to real-
ize a secure channel from an insecure channel. From the analysis of security
of signcryption [2], it is desirable to consider security against insiders in the
multi-user setting, called multi-user indistinguishability against insider chosen
ciphertext attack (MU-IND-iCCA) and multi-user strong unforgeability against
insider chosen message attack (MU-sUF-iCMA). There are several constructions
satisfying both MU-IND-iCCA and MU-sUF-iCMA in the classical random ora-
cle model [3,10,11] and in the standard model (i.e., without random oracles)
[6,11,12,14].

Our main purpose is to propose a signcryption scheme in QROM, where
queries to signcrypt and unsigncrypt oracles are classical. We propose a generic
construction of signcryption which meets both MU-IND-iCCA and MU-sUF-
iCMA in QROM for the first time. Our construction is provided from a PKE
meeting one-wayness against chosen plaintext attacks (OW-CPA), a data encap-
sulation mechanism (DEM) meeting one-time security, and a lossy identification
scheme (lossy ID scheme). Comparison of security bounds of our scheme and the
existing constructions is given in Tables 1 and 2. Using these tables, we explain
(dis)advantage of our construction as follows:
(i) Our construction for signcryption needs relatively weak primitives. In fact, in
terms of confidentiality, our construction needs OW-CPA secure PKE and IND-
OT secure DEM, which are weakest among the primitives required in Table 1. In
addition, in terms of integrity, ours uses only a lossy ID scheme while the con-
struction [9] uses not only a lossy ID scheme but also a pseudorandom function.
(ii) The security bounds of our construction for signcryption are better than
those of existing constructions for PKE and DS. Namely, in terms of confiden-
tiality, from Table 1, we can see that the security bound of ours is smaller than
those of existing constructions of PKE. In addition, as for integrity, we compare
ours with the construction of [9] because an ID schemes is not a stronger prim-
itive than a trapdoor function or a digital signature. From Table 2, we can see
that the security bound of ours is better than that of [9].

Table 1. IND-CCA (MU-IND-iCCA) Security bounds of PKE and our construction in
QROM: AdvPKE is the adversary’s advantage breaking the underlying PKE and AdvDEM

is the adversary’s advantage breaking the underlying DEM. δ is a probability that an
correctness error of the underlying PKE happens, ε′ is a negligible value, and q is the
number of queries to quantum random oracles

Construction Underlying primitive Security bound

[7] PKE(OW-CPA) and DEM(IND-CCA) q
√

q2δ + q
√

AdvPKE + AdvDEM

[13] PKE(IND-CPA) and DEM(IND-CCA) q
√

AdvPKE + ε′ + AdvDEM

[8] PKE(OW-CPA) and DEM(IND-CCA) q
√

AdvPKE + q
√

δ + ε′ + AdvDEM

Ours PKE(OW-CPA) and DEM(IND-OT) q
√

AdvPKE + q
√

δ + AdvDEM



408 S. Sato and J. Shikata

Table 2. sUF-CMA (MU-sUF-iCMA) Security bounds of DS and our construction in
QROM: sUUF-RMA means strongly universal unforgeability against random message
attacks. For each primitive X ∈ {DS,PSF,TDP,ID,PRF}, AdvX is the adversary’s advan-
tage breaking X. ε′ is a negligible value, and q is the number of queries to quantum
random oracles

Construction Underlying primitive Security bound

[5] DS(sUUF-RMA) AdvDS + ε′

Preimage sampleable function (PSF) AdvPSF + ε′

Trapdoor permutation (TDP) AdvTDP + ε′

[9] Lossy ID scheme (q2 + q + 2)AdvID + ε′ + AdvPRF

Pseudorandom function (PRF)

Ours Lossy ID scheme (q2 + q + 2)AdvID + ε′

2 Preliminaries

In this paper, we use the following notation: A negligible function ε in n (or
denoted by ε = negl(n)) means a function ε : N → [0, 1] such that ε(n) < 1/g(n)
for any polynomial g and sufficiently large n. For a randomized algorithm A
and its input x, A(x; r) is deterministic, where r is a random value used in A.
Probabilistic polynomial-time is abbreviated as PPT.

We describe models and security definitions of several cryptographic primi-
tives such as lossy ID schemes, public key encryption schemes, data encapsulation
mechanisms, and signcryption schemes.

(Lossy) Identification Scheme. A lossy ID scheme ID consists of five
polynomial-time algorithms (Setup, Gen, LossyGen, P, V). Let WSet be the set
of commitments, let ChSet be the set of challenges, and let ZSet be the set of
responses. Setup is a randomized (setup) algorithm that, given a security param-
eter k, outputs a public parameter prm. Gen is a randomized (key generation)
algorithm that, given prm, outputs a public key pk and a secret key sk. Lossy-
Gen is a randomized (lossy key generation) algorithm which given prm, outputs
a lossy key pkls. P := {P1,P2} is a prover algorithm which given a secret key
sk, consists of the following algorithms: P1 is a randomized algorithm which,
given sk, outputs a commitment W ∈ WSet and a state st. P2 is a randomized
algorithm which, given sk, W , a challenge c ∈ ChSet, and st, outputs a response
Z ∈ ZSet or ⊥. V is a deterministic algorithm which, given pk, W , c, and Z,
outputs 1 or 0.

To describe properties of ID, let Trans(sk) be the transcript oracle of ID
schemes which runs the protocol ID for c

U← ChSet and outputs (W, c, Z).
We require that a lossy ID scheme ID meets the following condition with

correctness error δ: For all prm ← Setup(1k) and all (pk, sk) ← Gen(prm), it
holds that V(pk,W, c, Z) = 1 for all (W, st) ← P1(sk), all c ∈ ChSet, and all
Z ← P2(sk,W, c, st) with Z �= ⊥, and it also holds that Pr[Z = ⊥ | (W, c, Z) ←
Trans(sk)] ≤ δ.
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We define the following properties of lossy ID schemes, non-abort honest-
verifier zero-knowledge (naHVZK) and computational unique response (CUR),
lossyness, and lossy-soundness (LS).

Definition 1 ([9]). ID meets naHVZK, CUR, Lossyness, and LS if for all
prm ← Setup(1k), all (pk, sk) ← Gen(prm), and all pkls ← LossyGen(prm),
it satisfies the following conditions:
(i) naHVZK. There exists a polynomial-time algorithm Sim meeting a condition
that the statistical distance between the distributions of (W, c, Z) ← Sim(pk) and
(W ′, c′, Z ′) ← Trans(sk) is at most a negligible εzk.
(ii) CUR. AdvCUR

ID (A) := Pr[Z �= Z ′ ∧ V(pk,W, c, Z ′) = 1] is negligible for any
PPT algorithm A which takes pk and (W, c, Z) as input, and outputs (W ′, c′, Z ′),
where (W, c, Z) ← Trans(sk).
(iii) Lossyness. AdvLOSS

LID (A) :=
∣
∣ Pr[A(prm, pkls) → 1] − Pr[A(prm, pk) →

1]
∣
∣ ≤ negl(k) holds for any PPT algorithm A.

(iv) LS. Pr[V(pkls,W
∗, c∗, Z∗) = 1] is at most a negligible εls for any PPT

algorithm A which takes prm and pkls as input, and outputs (W ∗, c∗, Z∗).

Public Key Encryption (PKE). A PKE scheme consists of four polynomial-
time algorithms (Setup, Gen, Enc, Dec). Let M be a message space. Setup is a
randomized (setup) algorithm which, given a security parameter k, outputs a
public parameter prm. Gen is a randomized (key generation) algorithm which,
given prm, outputs an encryption key ek and a decryption key dk. Enc is a
randomized (encryption) algorithm which, given ek and a message μ ∈ M,
outputs a ciphertext e. Dec is a deterministic (decryption) algorithm which,
given dk and e, outputs μ ∈ M or ⊥.

A PKE scheme PKE meets δ-correctness if the following holds: For all prm ←
Setup(1k), all (ek, dk) ← Gen(1k), and all μ ∈ M, it holds that Dec(dk, e) = μ,
where e ← Enc(ek, μ), with at least probability 1 − δ.

Definition 2 (OW-CPA). PKE meets OW-CPA, if the following advantage
AdvOW-CPA

PKE (A) ≤ negl(k) holds for any PPT algorithm A:

AdvOW-CPA
PKE (A) := Pr

[
μ = μ′ | prm ← Setup(1k); (ek, dk) ← Gen(prm)

μ
U← M; e∗ ← Enc(ek, μ); μ′ ← A(prm, ek, e∗)

]
.

Data Encapsulation Mechanism (DEM). A DEM scheme DEM consists of
two polynomial-time algorithm (Enc, Dec). Let K be a key space and let M
be a message space. Enc is a deterministic (encryption) algorithm which, given
a secret key K ∈ K and a message μ ∈ M, outputs a ciphertext e. Dec is a
deterministic (decryption) algorithm which, given K and e, outputs μ or ⊥. It
is required that DEM meets the following condition: For any K ∈ K and all
μ ∈ M, it holds that Dec(K, e) = μ, where e ← Enc(K,μ).
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Definition 3 (IND-OT). DEM meets IND-OT, if the following advantage
AdvIND-OT

DEM (A) ≤ negl(k) holds for any PPT algorithm A := {A1,A2}:

AdvIND-OT
DEM (A) :=

∣∣∣∣∣Pr

[
b = b′ | K

U← K; b
U← {0, 1}; (μ0, μ1, st) ← A1(λ);

e∗ ← Enc(K, μb); b′ ← A2(λ, e∗, st)

]
− 1

2

∣∣∣∣∣ .

Signcryption. A signcryption scheme SCS consists of five polynomial-time algo-
rithms (Setup, KeyGenR, KeyGenS , SC, USC) as follows:

Setup is a randomized (setup) algorithm that, given a security parameter k,
outputs a public parameter prm.

KeyGenR is a randomized (receiver’s key generation) algorithm of receivers
that, given prm, outputs a receiver’s public/secret key-pair (pkR, skR).

KeyGenS is a randomized (sender’s key generation) algorithm of senders that,
given prm, outputs a sender’s public/secret key-pair (pkS , skS).

SC is a randomized (signcrypt) algorithm that, given prm, pkR, skS and a
message μ ∈ M, outputs a ciphertext ct.

USC is a deterministic (unsigncrypt) algorithm that, given prm, pkS , skR

and ct, outputs μ ∈ M or an invalid-symbol ⊥.
It is required that for any prm ← Setup(1k), (pkR, skR) ←

KeyGenR(prm), and any (pkS , skS) ← KeyGenS(prm), μ = USC(prm, pkS , skR,
SC(prm, pkR, skS , μ)) holds with at least probability 1 − δ.

Definition 4 (MU-IND-iCCA and MU-sUF-iCMA). SCS meets MU-
IND-iCCA, if for any PPT adversary A := {A1,A2} in the following game,
the advantage AdvMU-IND-iCCA

SCS (A) :=
∣
∣Pr [b = b′] − 1

2

∣
∣ ≤ negl(k) holds:

Step 1: prm ← Setup(1k), (pkR, skR) ← KeyGenR(prm).
Step 2: (pk∗

S , sk∗
S , μ0, μ1, st) ← AUSC(·)

1 (prm, pkR).
Step 3: b

U← {0, 1}, ct∗ ← SC(prm, pkR, sk∗
S , μb).

Step 4: b′ ← AUSC(·)
2 (prm, pkR, ct∗, st).

Unsigncrypt oracle USC(pkS , ct) returns USC(prm, pkS , skR, ct), A is not
allowed to query ct∗ to the oracle USC, and st is state information.

SCS meets MU-sUF-iCMA, if for any PPT adversary A in the following
game, the advantage AdvMU-sUF-iCMA

SCS (A) := Pr[A wins] ≤ negl(k) holds:
Step 1: prm ← Setup(1k), (pkS , skS) ← KeyGenS(prm).
Step 2: (pk∗

R, sk∗
R, ct∗) ← ASC(·)(prm, pkS).

Signcrypt oracle SC(pkR, μ) returns SC(prm, pkR, skS , μ). Let q be the number of
queries to SC. Let [A wins] be an event that μ∗ = SCS.USC(prm, pkS , sk∗

R, ct∗)
and (pk∗

R, μ∗, ct∗) �= (pkR,i, μi, cti) for any i ∈ {1, 2, . . . , q} hold.
In addition, we also define MU-IND-iCCA and MU-sUF-iCMA in QROM as

follows: In the definition above, we add the condition that an adversary submits
not only classical but also quantum queries to the random oracle.
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3 Our Construction

We construct a signcryption scheme in QROM starting from an OW-CPA secure
PKE, an IND-OT secure DEM, and a lossy ID scheme. Although our construc-
tion is based on the sign-then-encrypt methodology, it is shown in [2,11] that the
construction, by combining IND-CCA secure PKE and sUF-CMA secure DS in
a trivial way of this methodology, cannot achieve MU-sUF-iCMA while they can
meet MU-IND-iCCA. The reason is as follows: Any inside adversary can obtain
a valid pair of a message and a signature from a ciphertext ct by using his/her
decryption key skR. Hence, the adversary can make a forgery in the MU-sUF-
iCMA game by encrypting the pair again. To resolve this problem, we generate
a signature on μ‖r, where μ is a message and r is a random value used in the
underlying PKE scheme. By doing this, even if an adversary decrypts μ and r,
he/she has to generate a forgery of the underlying signature scheme.

The following primitives are used in our construction: PKE = (PKE.Setup,
PKE.Gen, PKE.Enc, PKE.Dec) is a PKE scheme with a message space Mpke, and
the space Rpke of random values used in PKE.Enc algorithm. DEM = (DEM.Enc,
DEM.Dec) is a DEM scheme with a key space Kdem. ID = (ID.Setup, ID.Gen, ID.P,
ID.V) is a lossy ID scheme with sets WSet, ChSet, and ZSet. Let H : {0, 1}∗ →
ChSet, G : Mpke → Kdem, and G′ : Mpke → Rpke be random oracles.

We construct a signcryption scheme SCS-QRO = (Setup, KeyGenR, KeyGenS ,
SC, USC) as follows.

• prm ← Setup(1k): Generate prmpke ← PKE.Setup(1k) and prmid ←
ID.Setup(1k). Output prm := (prmpke, prmid).

• (pkR, skR) ← KeyGenR(prm): Generate (ek, dk) ← PKE.Gen(prmpke). Out-
put pkR := ek and skR := dk.

• (pkS , skS) ← KeyGenS(prm): Generate (pkid, skid) ← ID.Gen(prmid). Output
pkS := pkid and skS := skid

• ct ← SC(prm, pkR, skS , μ): Compute a ciphertext on μ ∈ M as follows:
1. Let κ := 0 and do the following while Z = ⊥ and κ ≤ κm:

• κ ← κ + 1, r := r1‖r2
U← Mpke

• (W, st) = ID.P1(skid; r1),
• Z = ID.P2(skid,W, c, st; r2), where c = H(W‖μ‖r‖pkR‖pkS).

2. e1 = PKE.Enc(ek, r; r̄), where r̄ = G′(r) ∈ Rpke.
3. e2 = DEM.Enc(K,μ‖W‖Z), where K = G(r).
4. Output ct = (e1, e2).

• μ/⊥ ← USC(prm, pkS , skR, ct): Unsigncrypt ct = (e1, e2) as follows:
1. M ′

1 = PKE.Dec(dk, e1) and output ⊥ if M ′
1 = ⊥. Let r′ := M ′

1 otherwise.
2. M ′

2 = DEM.Dec(G(r′), e2) and output ⊥ if M ′
2 = ⊥.

3. Parse M ′
2 = μ′‖W ′‖Z ′ and let c′ = H(W ′‖μ′‖r′‖pkR‖pkS)

4. Output μ′ if ID.V(pkid,W
′, c′, Z ′) = 1, or output ⊥ otherwise.

The security of SCS-QRO is shown by Theorem 1. We only describe its sketch
proof due to the page limitation, and a complete proof will be given in a full
version of this paper.
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Theorem 1. If PKE meets OW-CPA and DEM meets IND-OT, SCS-QRO
meets MU-IND-iCCA in QROM. In addition, if ID meets naHVZK, CUR, lossy-
ness, and LS, SCS-QRO meets MU-sUF-iCMA in QROM.

Sketch Proof of MU-IND-iCCA. Let A be a PPT adversary against SCS-QRO.
For each oracle X ∈ {USC,H,G,G′}, we define qx as the number of queries which
A submits to X. We consider the following games:

Game0: The ordinary MU-IND-iCCA game.

Game1: The same game as Game0 except that the oracle H(W‖μ‖r‖pkR‖pkS)
is replaced with Hq(W‖μ‖PKE.Enc(ek, r;G′(r))‖pkS).

Game2: The same game as Game1 except that G(r) is replaced with
Gq(PKE.Enc(ek, r;G′(r))).

Game3: The same game as Game2 except that G(r) is replaced with Gq(e1).

Game4: The same game as Game3 except that in Challenge phase, r̄∗ ∈ Rpke

and K∗ ∈ Kdem are chosen uniformly at random.

Game5: The same game as Game4 except that when A submits i-th query to
G × G′, the challenger chooses i ∈ {1, . . . , qG + qG′} and measures the argument
r̂ of the i-th query.

Notice that Hq(·) and Gq(·) are random oracles to which A cannot access
directly. For i ∈ {0, 1, . . . , 5}, let Si be the event that A wins in Gamei.

We obtain the following: we have |Pr[S0] − Pr[S1]| ≤ 2qH
√

δ and
|Pr[S1] − Pr[S2]| ≤ 2qG

√
δ by Lemma 37 of [1], Pr[S2] = Pr[S3] holds concep-

tually, we get |Pr[S3] − Pr[S4]| ≤ 2(qG + qG′)
√

Pr[S5] by Lemma 3 of [8], and
∣
∣Pr[S4] − 1

2

∣
∣ ≤ AdvIND-OT

DEM (B2) holds in the same way as the security proof of
KEM/DEM framework.

We next show Pr[S5] = AdvOW-CPA
PKE (B1) as follows: By Theorem 6.1 of [16],

we can replace each oracle X ∈ {Hq,Gq,G
′} with a 2qx-wise independent hash

function. We can construct B1 breaking OW-CPA as follows.

Setup. Take (prmpke, ek) and the challenge ciphertext e∗
1 as input, and generate

prmid ← ID.Setup(1k). Send prm = (prmpke, prmid) and pkR = ek to A.

Queries. For queries to X ∈ {H,G,G′}, simulate these by using 2qx-wise
independent hash functions. Simulate USC(pkS , ct) in the following way:
Compute μ′‖W ′‖Z ′ = DEM.Dec(K, e2), where K = Gq(e1). Return μ′ if
V(pkS ,W ′, c′, Z ′) = 1, or return ⊥ otherwise.

Challenge. When A submits (pk∗
S , sk∗

S , μ0, μ1), do the following:
Step 1. b

U← {0, 1}, K∗ U← Kdem.
Step 2. Generate (W ∗, c∗, Z∗) on μb‖e∗

1‖pk∗
S following SC algorithm,

Step 3. e∗
2 ← DEM.Enc(K∗, μb‖W ∗‖Z∗).

Step 4. Return ct∗ := (e∗
1, e

∗
2).

Output. In the i-th query to G and G′, measure the arugument r̄ of the query,
and then output r̄.
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From the above, we obtain the following inequlity, which complets the proof:

AdvMU-IND-iCCA
SCS-QRO (A) ≤ 2(qG + qG′)

√

AdvIND-CPA
PKE (B1) + 4qG

√
δ +

AdvIND-OT
DEM (B2).

Sketch Proof of MU-sUF-iCMA. We consider the following games:

Game0: The ordinary MU-sUF-iCMA game.

Game1: The same game as Game0 except for using the simulator Sim of ID in
the process of the oracle SC(·).
Game2: The same game as Game1 except that the challenger outputs ⊥ if
c∗ �= H̃(W ∗‖μ∗‖r∗‖pk∗

R‖pk∗
S).

Game3: The same game as Game2 except that pkS is a lossy key pkls.
For i ∈ {0, 1, 2, 3}, let Si be an event that A wins in Gamei. In the same

way as the proof of Theorems 3.2 and 3.3 of [9], we obtain |Pr[S0] − Pr[S1]| ≤
κmqsc · εzk, |Pr[S1] − Pr[S2]| ≤ 2−α+1 + AdvCUR

ID (B1) where α is the min-entropy
of W , |Pr[S2] − Pr[S3]| ≤ AdvLOSS

ID (B2), and Pr[S3] ≤ 8(qH + 1)2εls, where qH is
the number of queries to H.

Therefore, we have AdvMU-sUF-iCMA
SCS-QRO (A) ≤ κqsc ·εzk +2−α+1+AdvCUR

ID (B1)+
AdvLOSS

ID (B2) + 8(qH + 1)2εls, which completes the proof. ��
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7. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12

https://doi.org/10.1007/3-540-46035-7_6
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-21554-4_13
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12


414 S. Sato and J. Shikata

8. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsu-
lation mechanism in the quantum random oracle model, revisited. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 96–125. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 4

9. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 552–586. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 18

10. Libert, B., Quisquater, J.-J.: Efficient signcryption with key privacy from gap
Diffie-Hellman groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS,
vol. 2947, pp. 187–200. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24632-9 14

11. Matsuda, T., Matsuura, K., Schuldt, J.C.N.: Efficient constructions of signcryp-
tion schemes and signcryption composability. In: Roy, B., Sendrier, N. (eds.)
INDOCRYPT 2009. LNCS, vol. 5922, pp. 321–342. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10628-6 22

12. Nakano, R., Shikata, J.: Constructions of signcryption in the multi-user setting
from identity-based encryption. In: Stam, M. (ed.) IMACC 2013. LNCS, vol.
8308, pp. 324–343. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-45239-0 19

13. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 17

14. Tan, C.H.: Signcryption scheme in multi-user setting without random oracles.
In: Matsuura, K., Fujisaki, E. (eds.) IWSEC 2008. LNCS, vol. 5312, pp. 64–82.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89598-5 5

15. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp.
192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5 8

16. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 44

17. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption) <<
cost(signature) + cost(encryption). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS,
vol. 1294. Springer, Berlin (1997). https://doi.org/10.1007/BFb0052234

https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-540-24632-9_14
https://doi.org/10.1007/978-3-540-24632-9_14
https://doi.org/10.1007/978-3-642-10628-6_22
https://doi.org/10.1007/978-3-642-45239-0_19
https://doi.org/10.1007/978-3-642-45239-0_19
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-540-89598-5_5
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/BFb0052234


Formal Treatment of Verifiable
Privacy-Preserving Data-Aggregation

Protocols

Satoshi Yasuda1(B), Yoshihiro Koseki1, Yusuke Sakai3, Fuyuki Kitagawa2,3,
Yutaka Kawai1, and Goichiro Hanaoka3

1 Mitsubishi Electric, Kanagawa, Japan
Yasuda.Satoshi@ea.MitsubishiElectric.co.jp,

Koseki.Yoshihiro@ak.MitsubishiElectric.co.jp,

Kawai.Yutaka@da.MitsubishiElectric.co.jp
2 Tokyo Institute of Technology, Tokyo, Japan

kitagaw1@is.titech.ac.jp
3 National Institute of Advanced Industrial Science and Technology (AIST),

Tokyo, Japan
{yusuke.sakai,hanaoka-goichiro}@aist.go.jp

Abstract. Homomorphic encryption allows computation over encrypted
data and can be used for delegating computation: data providers encrypt
their data and send them to an aggregator, and then the aggregator per-
forms computation for a receiver with the data kept secret. However, since
the aggregator is merely the third party, it may be malicious, and par-
ticularly may submit a result of incorrect aggregation to the receiver.
Ohara et al. (APKC2014) studied secure aggregation of time-series data
while enabling the correctness of aggregation to be verified. However, they
only provided a concrete construction in the smart metering system and
only gave an intuitive argument of security. In this paper, we give gen-
eral syntax of their scheme as verifiable homomorphic encryption (VHE)
and introduce formal security definitions. Further, we formally prove that
Ohara et al.’s VHE scheme satisfies our proposed security definitions.

1 Introduction

A homomorphic encryption scheme is a useful building block for various cryp-
tographic protocols. This cryptographic primitive allows computation over
encrypted data with the data kept secret from the entity that performs the
computation. This useful property has been utilized for decades.

One of the attractive applications of homomorphic encryption is secure data
aggregation. In this application, a set of data providers provides a large dataset,
for example, time-series data from sensor devices. A third party called the aggre-
gator performs the resource-demanding computation over the dataset. Finally
the aggregator provides the result of the computation to another party called
the receiver, and the receiver utilizes the result of computation for statistical
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analysis. In this scenario, it is highly desirable that the aggregator is unable to
access the dataset as plaintext, but only helps the receiver to obtain the result
of the computation.

In this scenario, a set of security issues arises. Firstly, the data aggregator
must be unable to know the data subject to the aggregation. Secondly, the
receiver must be able to know only the aggregated dataset, but unable to know
the original dataset, say, for the privacy reason. Lastly, even when the aggregator
is malicious, it is unable to submit an incorrect result of aggregation.

Toward addressing these three issues, Ohara et al. [7] initialized a cryp-
tographic problem of verifying correctness of homomorphic data aggregation.
While they focused only on a smart-metering setting, their solution is an impor-
tant first step toward a general-purpose protocol of verifiable data aggregation.

1.1 Our Contribution

Motivated by Ohara et al.’s work [7], we formalize the aforementioned scenario
as a cryptographic primitive named verifiable homomorphic encryption (VHE).
This formalization is based on Ohara et al.’s work [7], where, in our termi-
nology, they studied secure aggregation of time-series data while enabling the
correctness of aggregation to be verified. We formalize their scheme as verifiable
homomorphic encryption. Further, since they only provided an intuitive argu-
ment of security, we define security notions for a VHE scheme and prove that
the scheme satisfies the security definitions.

In this paper, we define unforgeability and privacy for a VHE scheme. The
unforgeability assures that a valid ciphertext should not be generated without a
data provider’s secret key. Further, the unforgeability assures that the aggregator
cannot submit a valid ciphertext of a result of incorrect computation to the
receiver. We prove that Ohara et al.’s scheme satisfies the unforgeability.

Further, we introduce two kinds of privacy and call them an aggregator pri-
vacy and a receiver privacy. The aggregator privacy requires that an aggregator
cannot obtain any information about the encrypted message from ciphertexts
without the receiver’s secret key. The receiver privacy represents that even the
receiver that has the secret key should be unable to know the dataset before
computation, but only able to know the result of the computation. This prop-
erty is important for keeping the data providers’ original data secret. We prove
that Ohara et al.’s scheme satisfies these privacy notions.

1.2 Related Work

As far as we know, some VHE schemes have already been proposed [2,4,5,8].
However, the existing schemes focus on outsourcing computation to the aggre-
gator with the receiver’s own data in our terminology, and thus they are defined
in symmetric key setting, that is, it requires the same key to encrypt a message
and decrypt a ciphertext. Therefore, they cannot be used in our scenario where
there exists many data providers and they encrypt their own data. In contrast,
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our formalization for VHE is done in public key setting in order to apply VHE
schemes in scenarios with many participants.

Verifiable aggregator oblivious encryption [3,6] can compute an aggregated
sum of data with keeping the privacy of data providers. Further, it can pub-
licly verify the correctness of computation done by the aggregator. However, it
requires an honest dealer that generates secret keys for the data providers and
the aggregator. In contrast, our formalization for VHE does not need a trusted
third party like the honest dealer.

2 Preliminaries

For a positive integer n, [n] represents a set {1, . . . , n}. Let S be a set, then a ← S
represents that a ∈ S is chosen uniformly at random from S. For a function f ,
we write f(λ) = negl(λ) if f is negligible in λ. PPT stands for probabilistic
polynomial time.

We will work in bilinear groups of the form Λ = (q,G1,G2,GT , e, g, h) where

– q is a λ-bit prime, where λ is a security parameter.
– G1,G2 and GT are order q groups with efficiently computable group opera-

tions, membership tests and map e : G1 × G2 → GT .
– g generates G1, h generates G2, and e(g, h) generates GT .
– The map e is bilinear, that is, ∀a ∈ G1,

∀ b ∈ G2,
∀ x, y ∈ Zq : e(ax, by) =

e(a, b)xy.

Let G be a PPT algorithm that takes a security parameter λ as input and
generates a set of parameters of bilinear groups Λ = (q,G1,G2,GT , e, g, h).

3 Verifiable Homomorphic Encryption

In this section, we introduce a notion of verifiable homomorphic encryption
(VHE) and security definitions for a VHE scheme.

3.1 Syntax

First, we formalize VHE and this formalization is based on Ohara et al.’s
work [7]. They proposed the framework that allows to delegate computation
to an untrusted aggregator with the data kept secret and verify the correctness
of the computation performed by the aggregator. Their framework is special-
ized in a smart grid system, and thus we formalize their framework as VHE for
general purposes.

There are three kinds of participants in a typical application of VHE, that is,
data providers, an aggregator and a receiver. In the following formal definition,
data providers and a receiver corresponds to signers and a verifier, respectively.
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Definition 1 (Verifiable Homomorphic Encryption). A VHE scheme for
the class F of functions is a tuple of PPT algorithms VHE = (Setup,SKGen,
VKGen,Enc,Eval,Dec) defined as follows:

– pp ← Setup(1λ): given a security parameter λ, outputs a public parameter pp.
– (spk, ssk) ← SKGen(pp): given a public parameter pp, outputs a signer public

key spk and a signer secret key ssk.
– (vpk, vsk) ← VKGen(pp): given a public parameter pp, outputs a verifier public

key vpk and a verifier secret key vsk.
– c ← Enc(pp, ssk, vpk, τ,m): given a public parameter pp, a signer secret key

ssk, a verifier public key vpk, a tag τ and a message m, outputs a ciphertext
c.

– c̃ ← Eval(pp, vpk, (spk1, c1), . . . , (spkn, cn), f): given a public parameter pp, a
verifier public key vpk, pairs of a ciphertext and an associated signer public
key (spk1, c1), . . . , (spkn, cn) and a function f ∈ F , outputs a ciphertext c̃.

– m̃ or ⊥ ← Dec(pp, vsk, (τ1, spk1), . . . , (τn, spkn), c, f): given a public param-
eter pp, a verifier secret key vsk, pairs of a tag and a signer public key
(τ1, spk1), . . . , (τn, spkn), a ciphertext c and a function f ∈ F , outputs a mes-
sage m̃ or a special symbol ⊥.

Correctness. For any positive integers λ and n, for all functions f ∈ F , for
all tags τ1, . . . , τn and for all messages m1, . . . ,mn, the following experiment
succeeds with probability one: generate a public parameter pp ← Setup(1λ),
signer key pairs (spki, sski) ← SKGen(pp) for each i ∈ [n], a verifier key pair
(vpk, vsk) ← VKGen(pp), and ciphertexts ci ← Enc(pp, sski, vpk, τi,mi) for each
i ∈ [n], let c ← Eval(pp, vpk, (spk1, c1), . . . , (spkn, cn), f) and finally test whether
Dec(pp, vsk, (τ1, spk1), . . . , (τn, spkn), c, f) = f(m1, . . . ,mn).

3.2 Security Definitions

Below, we introduce security definitions for a VHE scheme. In Ohara et al.’s
work [7], they only provided an intuitive argument of security for their frame-
work, and thus we formally argue the security notions.

Unforgeability. First, we formally define an unforgeability for a VHE scheme.
The unforgeability assures that a valid ciphertext should not be generated with-
out a signer secret key. Further, it assures that the aggregator cannot submit a
valid ciphertext of a result of incorrect computation to the receiver. If the aggre-
gator submits a ciphertext of incorrect computation to the receiver, the receiver
can find that the ciphertext is invalid.

In the following definition, when an adversary outputs a forgery that satisfies
the condition (1), the forgery represents a valid ciphertext generated without a
signer secret key. On the other hand, when the forgery satisfies the condition
(2), it represents a ciphertext of incorrect computation.

Definition 2 (Unforgeability). Let VHE = (Setup,SKGen,VKGen,Enc,Eval,
Dec) be a VHE scheme for the class F of functions. For any integer n, we define
the following game between an adversary A and a challenger:
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– Setup Phase: The challenger generates a public parameter pp ← Setup(1λ),
signer key pairs (spki, sski) ← SKGen(pp) for i ∈ [n] and a verifier key pair
(vpk, vsk) ← VKGen(pp) and sends pp, {spki}i∈[n], and vpk to A. Let Ltag be
an empty set.

– Encryption Query Phase: On input a tag τj, an index of the signer public
key ij, where ij ∈ [n], and a message mj by A, if τj ∈ Ltag, then the chal-
lenger returns ⊥ to A. Otherwise, the challenger adds τj to Ltag, generates
a ciphertext cj ← Enc(pp, sskij , vpk, τj ,mj) and returns cj. A can make an
encryption query polynomial times.

– Forgery Phase: A outputs pairs of a tag and an index of the signer public keys
(τ∗

1 , i∗1), . . . , (τ
∗
N , i∗N ) where i∗1, . . . , i

∗
N ∈ [n], a ciphertext c∗ and a function

f∗ ∈ F .

In this game , the adversary wins if either condition is satisfied:

– (1) When τ∗
� �∈ Ltag for some � ∈ [N ], it holds Dec(pp, vsk, (τ∗

1 , spki∗
1
),

. . . , (τ∗
N , spki∗

N
), c∗, f∗) �= ⊥.

– (2) When τ∗
� ∈ Ltag for all � ∈ [N ], it holds Dec(pp, vsk, (τ∗

1 , spki∗
1
),

. . . , (τ∗
N , spki∗

N
), c∗, f∗) �∈ {⊥, f∗(m1, . . . ,mN )}, where m� for � ∈ [N ] is the

message queried with τ∗
� as the encryption query.

We say that VHE satisfies the unforgeability if for any PPT adversary A and
for any n = n(λ), it holds AdvUF

A (λ) = Pr[A wins] = negl(λ).

Privacy. We formalize two kinds of privacy and call them the aggregator privacy
and the receiver privacy. The aggregator privacy is almost the same as the IND-
CPA security for a public key encryption scheme. That is, no one can obtain any
information about the encrypted message from ciphertexts without the verifier
secret key.

Definition 3 (Aggregator Privacy). Let VHE = (Setup,SKGen,VKGen,Enc,
Eval,Dec) be a VHE scheme for the class F of functions. We define the following
game between an adversary A and a challenger:

– Setup Phase: The challenger generates a public parameter pp ← Setup(1λ),
a signer key pair (spk, ssk) ← SKGen(pp) and a verifier key pair (vpk, vsk) ←
VKGen(pp) and sends pp, spk, and vpk.

– Challenge Phase: On input a tag τ and messages (m0,m1) by A, the
challenger chooses a random bit b ∈ {0, 1}, generates a ciphertext c∗ ←
Enc(pp, ssk, vpk, τ,mb) and returns c∗ to A.

– Guess Phase: A outputs a bit b′ ∈ {0, 1}.
In this game, the adversary A wins if b′ = b. We say that VHE satisfies

the aggregator privacy if for any PPT adversary A, it holds AdvA-Privacy
A (λ) =

|Pr[A wins] − 1/2| = negl(λ).

The receiver privacy represents that even the receiver that has the verifier
secret key should be unable to know the dataset before computation, but only
able to know the result of the computation.
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Definition 4 (Receiver Privacy). Let VHE = (Setup,SKGen,VKGen,Enc,
Eval,Dec) be a VHE scheme for the class F of functions. For any integer n,
we define the following game between an adversary A and a challenger:

– Setup Phase: The challenger generates a public parameter pp ← Setup(1λ),
signer key pairs (spki, sski) ← SKGen(pp) for i ∈ [n] and sends pp, {spki}i∈[n]

to A.
– Challenge Phase: On input a verifier public key vpk, indices of the signer

public keys (i1, . . . , iN ), where i1, . . . , iN ∈ [n], tags (τ1, . . . , τN ), messages
(m01, . . . ,m0N ), (m11, . . . ,m1N ) and f ∈ F , where f(m01, . . . ,m0N ) =
f(m11, . . . ,m1N ) by A, the challenger chooses a random bit b ∈ {0, 1},
generates ciphertexts cj ← Enc(pp, sskij , vpk, τj ,mbj) for all j ∈ [N ] and
c∗ ← Eval(pp, vpk, (spki1 , c1), . . . , (spkiN , cN ), f) and returns c∗.

– Guess Phase: A outputs a bit b′ ∈ {0, 1}.
In this game, the adversary A wins if b′ = b. We say that VHE satisfies the

receiver privacy if for any PPT adversary A and for any n = n(λ), it holds
AdvR-Privacy

A (λ) = |Pr[A wins] − 1/2| = negl(λ).

4 Construction

We describe a construction of a VHE scheme VHE = (Setup,SKGen,VKGen,
Enc,Eval,Dec) in Fig. 1. We employ the scheme proposed by Ohara et al. [7]
as concrete VHE scheme. Their scheme uses the ElGamal encryption, the lifted
ElGamal encryption, the AFG+ commitment [1] and a digital signature scheme
Σ = (Gen,Sig,Ver) as building blocks.

We assume that the size of the massage space of VHE is polynomial since
messages are encrypted by the lifted ElGamal encryption, and thus the discrete
logarithm of hm needs to be computed in polynomial time. We stress that the
class Fws of the functions is restricted to the one of the weighted sums described
like f(x1, . . . , xn) = w1x1 + · · · + wnxn because the lifted ElGamal encryption
only has additive homomorphic property. Further, it is necessary to choose the
suitable weights wi so that the resulting ciphertext from homomorphic evaluation
can be decrypted efficiently.

Correctness. To see the correctness, we consider ciphertexts ci =
(ψi, ψ

′
i, Ci, σi) for i ∈ [n], where ψi = (ψi.1, ψi.2) = (hri , hmi · yri),

ψ′
i = (ψ′

i.1, ψ
′
i.2) = (hr′

i , Ri · yr′
i), Ci = e(GR, Ri)e(G1, h

mi) and a function
f(x1, . . . , xn) = w1x1 + · · · + wnxn. Here, let R′

i = logh Ri. Then, the output
ciphertext of Eval is c̃ = (ψ̃, ψ̃′, (C1, . . . , Cn), (σ1, . . . , σn)), where

ψ̃ = (ψ̃1, ψ̃2) = (
∏n

i=1 ψwi
i.1,

∏n
i=1 ψwi

i.2) = (h
∑n

i=1 wiri , h
∑n

i=1 wimi · y
∑n

i=1 wiri),

ψ̃′ = (ψ̃′
1, ψ̃

′
2) = (

∏n
i=1 ψ

′wi
i.1 ,

∏n
i=1 ψ

′wi
i.2 ) = (h

∑n
i=1 wir

′
i , h

∑n
i=1 wiR

′
i · y

∑n
i=1 wir

′
i).

In Dec, it first computes m̃ = logh(ψ̃2 · ψ̃1
−s

) =
∑n

i=1 wimi and R̃ =

(ψ̃′
2 · ψ̃′

1

−s
) = h

∑n
i=1 wiR

′
i . This can be computed efficiently if f(m1, . . . ,mn)
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Fig. 1. The concrete VHE scheme

is in the polynomial size message space and we see that it holds m̃ =
f(m1, . . . ,mn). Finally, we see if the commitment can be opened correctly
in step 4 of Dec. For the commitments C1, . . . , Cn, it holds

∏n
i=1 Cwi

i =
∏n

i=1 (e(GR, Ri)e(G1, h
mi))wi = e(GR, h

∑n
i=1 wiR

′
i)e(G1, h

∑n
i=1 wimi). Thus, it is

clear that Dec outputs the correct message m̃.

Security. For the security of VHE, the following theorems hold.

Theorem 1. VHE satisfies the aggregator privacy for the class Fws of functions
if the decisional Diffie-Hellman assumption in G2 holds.

Theorem 2. VHE satisfies the unforgeability for the class Fws of functions if the
symmetric external Diffie-Hellman assumption holds and the signature scheme
Σ = (Gen,Sig,Ver) satisfies the EUF-CMA security.

Due to the page limitation, we omit the security proofs of Theorems 1 and 2
here. See our full paper for the detailed proofs.

Theorem 3. VHE satisfies the receiver privacy for the class Fws of the func-
tions.

Proof. Let A be an adversary in the receiver privacy game against VHE. We
consider the following Game0 and Game1.

– Game0: This is the original receiver privacy game. In this game, since the
adversary A can generate the verifier key pair (vpk, vsk) by himself, A can
decrypt the challenge ciphertext, and thus A’s view is {f(mb1, . . . ,mbN ),
f(R̃1, . . . , R̃N ), Ci = e(GR, Ri)e(G1, h

mi) for i ∈ [N ]} where Ri ← G2 and
Ri = hR̃i . Here, let R = logg GR and r1 = logGR

G1.
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– Game1: Same as Game0 except following. In the challenge phase, the challenger
randomly chooses R′

i, and computes R̃i = R′
i − r1mbi.

In Game1, since R′
i is chosen uniformly at random, R̃i = R′

i − r1mbi is also
uniformly random. Thus, Game0 and Game1 are information theoretically indis-
tinguishable.

To complete the proof, we show that the view of A in Game1 does not contain
the bit b. While A can potentially know the value of αi = loge(g,h) Ci = R(R′

i −
r1mbi) + r1Rmbi = RR′

i, A cannot obtain any information about the bit b from
αi for i ∈ [N ]. Further, for f(R̃1, . . . , R̃N ), since f is a linear function, the
following equation holds: f(R̃1, . . . , R̃N ) = f(R′

1 − r1mb1, . . . , R
′
N − r1mbN ) =

f(R′
1, . . . , R

′
N ) − r1f(mb1, . . . ,mbN ). Thus, from the restriction that A should

make a challenge query satisfying f(m01, . . . ,m0N ) = f(m11, . . . ,m1N ), A does
not obtain the bit b from f(R̃1, . . . , R̃N ). From the above discussion, A cannot
obtain the information of the bit b in Game1, and thus VHE satisfies the receiver
privacy. ��
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