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Abstract
This study analyzed Groundwater Productivity Potential
(GPP) using different models in a geographic information
system (GIS) in Okcheon area, Korea. These models used
the relationship between groundwater-productivity data,
including specific capacity (SPC) and transmissivity (T),
and its related hydrogeological factors. Data about related
factors, including topography, lineament, geology, forest
and soil were constructed to a spatial database. Addition-
ally, T and SPC data were collected from 86 well
locations. Then, GPP were mapped using the Logistic
Regression (LR) and Boosted Tree Regression (BT) mod-
els. The resulting GPP maps were validated using Area
Under Curve (AUC) analysis with the well data. The GPP
maps using the LR and BT models had accuracies of
85.04 and 81.66% with T value, respectively. And the
GPP maps using the LR and BT models had accuracies of
82.22 and 81.53% with SPC value, respectively. These
results indicate that LR and BT models can be useful for
GPP mapping.
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1 Introduction

Groundwater is one of the important natural resources used
in agriculture, industry and public water supply. In Korea,
the use of groundwater increased by more than 225%
between 1994 and 2014, and the current national supply of
groundwater no longer meets the needs of society. There-
fore, reliable analytical models predicting locations of
groundwater are needed for efficient management use of
groundwater. So, the purpose of the study was to develop
and apply the GIS based Groundwater Productivity Potential
(GPP) model using Logistic Regression (LR) and Boosted
Tree (BT) models in the Okcheon country of Korea.
The GPP is defined as the probability of finding out
groundwater in an area. Especially, the study mainly used
topographical factors among various others, because
groundwater is most affected by such factors. Recently,
many GPP mapping studies that have been published used
new models such as Frequency Ratio (FR) [1], Artificial
Neural Network (ANN) [2], Random Forest (RF) [3],
Logistic Regression (LR) [4], Boosted Regression Tree
(BTR) [5] and Support Vector Machine (SVM) [2].

For the GPP mapping, T (Transmissivity) and SPC
(specific capacity) point data were obtained and randomly
classified as either training data (50%) or validation data
(50%). Geology, topography, soil texture, and land cover
data were combined into a spatial database. Hydrogeological
factors, including slope, aspect, slope gradient, relative slope
position, hydraulic slope, valley depth, topographic wetness
index (TWI), slope length (LS) factor, convergence index,
depth from groundwater, distance from lineament, distance
from channel network, and so forth, were extracted from
spatial databases. Then T and SPC data were selected
(T values � 2.6, SPC values � 4.875) as training data for
the three models. Finally, the GPP maps were assessed using
AUC techniques.
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2 Data and Method

The study area is the Okcheon country of South Korea. This
area lies between 36°10′N and 36°26′N latitude and 127°29′
E and 127°53′E longitude and covers 537.06 km2. Since
groundwater is associated with drinking and irrigation water
supplied to communities, it is very meaningful to estimate
GPP.

This study using LR and BT models are based on the
relationship between groundwater productivity data (SPC
and T) and hydrogeological factors (Table 1). To calculate
groundwater productivity, SPC and T are set as dependent
variables and various hydrogeological factors are set as
independent variables. SPC is the amount of water that can
be produced per unit drawdown. Also, T is the rate of flow
under a unit hydraulic gradient through a unit width of
aquifer of given saturated thickness. The groundwater pro-
ductivities respond to a total of 86 cells (each 43 cells (in-
cluding the T data of � 2.6 m2/d, SPC � 4.875 m3/d/m) for
training and 43 cells for validation.

The LR model is to help find the best expression to
describe the relationship between dependent variables and
various independent variables. The BT model is a general
calculation method of stochastic gradient amplification.
Ultimately, this approach allows fitting the best estimate of
the observed values to yield better results. In summary, the
GPP mapping was performed as follows: (1) geospatial data
were constructed and the related factors were extracted or
calculated, (2) a geospatial database was founded with a
grid, (3) the GPP assessment was conducted using the LR

and BT models, and (4) the validation of the potential map
was achieved using AUC.

3 Results

The GPP maps using the LR and BT models results are
shown in Fig. 1. The AUC was recalculated since the total
area used the well data that had not been used for the training
the models. From the validation, the LR and BT models
produced AUC values of 0.8113 and 0.8372 by T value,
respectively. Also, the validation of the GPP maps, the LR
and BT models produced AUC values of 0.8024 and 0.8080
by SPC value, respectively.

4 Discussion and Conclusion

This study applied and assessed the LR (statistics) and BT
(data mining) models for groundwater potential. As a result,
the accuracies were computed as 85.04 and 81.66% for LR
and BT models with T value, 82.22 and 81.53% for LR and
BT models with SPC value, respectively. Therefore, it can
be concluded that LR with T value had the best performance.
In addition, other models using T or SPC values in this study
also showed a good accuracy of over 80% when predicting
spatially groundwater potential.

From the result of calculated LR models table or predictor
importance of BT model, in order of influence, the rela-
tionships between well data and the examined factors were

Table 1 Data layers of the study area

Original data Factors Data
type

Scale

Yield T[m2/d/m], SPC [m3/d/m] Point

Topographical
mapa

Slope [°], Aspect, Relative slope position
Plan curvature, Topographic Wetness Index (TWI), Slope Length factor (LS-factor), Convergence
index, Lineament density, Drainage basin, Hydraulic slope [m], Valley depth [m], Depth to
groundwater[m]

Grid 1:5000

Geological
mapb

Hydrogeology Polygon 1:50,000

Soil mapc Soil texture Polygon 1:25,000

Land cover
mapd

Land cover, Distance from fault [m], Distance from lineament [m], Distance from channel network
[m]

Polygon 1:5000

aTopographical factors were extracted by the National Geographic Information Institute (NGII)
bThe geology map offered by the Ministry of Land, Transport and Maritime Affairs (MLTM)
cThe soil map was offered by the National Institute of Agricultural Science and Technology
dThe land cover map was offered by the Korean Ministry of Environment
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as follows. With gentle slope & hydraulic slope, lower rel-
ative slope position, and shorter slope length, GPP was
estimated to be higher. However, with steeper slope &
hydraulic slope, higher relative slope position, and longer
slope length, GPP was estimated to be higher because
rainfall running off in the upper region is accumulated in the
lower region and influences the aquifer. On the other hand,
the distance from the fault, distance from lineament, distance
from channel network showed a negative correlation with
GPP. The closer the channel is, the greater the GPP will be
because the rivers have gotten water from the underground.

The proposed GPP mapping method can be applied to
groundwater use planning and management, such as regional
groundwater development planning, water system control
based on systematic and objective planning. Finally, it can
be deduced that new models of more recently developed
statistics and data mining models could provide better results
in future studies.
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Fig. 1 GPP maps using logistic regression (LR) and boosted tree (BT) models
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