®

Check for
updates

Kinematic Estimation with Neural
Networks for Robotic Manipulators

Michail Theofanidis®) | Saif Iftekar Sayed®), Joe Cloud, James Brady®),
and Fillia Makedon®)

HERACLEIA Human-Centered Computing Laboratory,
Department of Computer Science and Engineering,
University of Texas at Arlington, Arlington, USA

{michail .theofanidis,saififtekar.sayed, joe.cloud,
james.brady2}@mavs.uta.edu, makedon@uta.edu

Abstract. In this paper, we focus on estimating the forward kinematic
equation of robots with multilayer feed-forward neural networks. The
effectiveness of this approach is tested on a simulated kinematic model
of the 7-DOF Sawyer Robotic Arm. In the initial sections of the paper, we
discuss related work that associates with the creation of model agnostic
control schemes on a kinematic level. Moreover, we formalize the kine-
matic problem as a supervised problem and we propose an MLP archi-
tecture to solve the problem. Lastly, we present experimental results and
discuss the potential and importance to create model agnostic control
schemes with machine learning.

Keywords: Robot kinematics + Forward kinematics
Neural networks for engineering

1 Introduction

Kinematics is the branch of classical mechanics, which studies the motion of bod-
ies, without consideration of acting forces or moments. Robot kinematics provide
mathematical tools to model and analyze the motion and structure of robotic
manipulators, which is a fundamental component of robot control. In general,
robotic manipulators are composed by a series of links and joints, followed by
a gripper (the end effector). The joints of a robot can be either rotational or
prismatic and they can be controlled by a certain actuator, such as an electric
motor. To move the robot’s end effector along a particular trajectory, actuation
must be caused by the motors of the joints. The equations that describe the rela-
tionship between the position of the end effector and the position of the joints
are addressed as the kinematic equations of the robotic arm.

Specifically, the mapping from the joint space of the robot to the Carte-
sian space of the robot’s end effector is known as forward kinematics, while the
inverse of this relationship is addressed as the inverse kinematics. Traditionally,
the kinematic equations of a robot are derived from the kinematic model of the

© Springer Nature Switzerland AG 2018
V. Kuarkova et al. (Eds.): ICANN 2018, LNCS 11141, pp. 795-802, 2018.
https://doi.org/10.1007/978-3-030-01424-7_77


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_77&domain=pdf

796 M. Theofanidis et al.

robot, which describes the spacial relationship of each link and joint of the robot.
Spacial relationships can be decomposed into rotational and translational and
they can be represented mathematically by homogeneous transformations matri-
ces [3]. In this paper, we focus on estimating the forward kinematic equations of
robots with neural networks.

2 Related Work

A considerable amount of research has been conducted in the fields of both
machine learning and control theory to try and create reliable control algo-
rithms, that enable robotic arms to perform tasks autonomously and adapt to
new environments [1]. Since robotic systems can be abstracted as continuous
time systems that moves along a trajectory given a particular control input in
the joint domain, it is worthwhile to investigate control frameworks based on
neural networks that have the capability to solve nonlinear problems. According
to the relevant literature, two different network architectures have been employed
successfully to solve control problems in robotics [5]. Feed forward neural net-
works and recurrent neural networks.

The architecture of the neural network is based on whereas the system has
full knowledge, partial knowledge or no knowledge of the robot’s plant dynamics
[9]. When the system has full or partial knowledge of the dynamics, feed forward
neural networks have been used to compensate uncertainties due to modeling
or sensor error [6]. In the case of model-free control of robotic systems, neural
networks are used as function approximators that estimate the kinematic and
dynamic equations of the robot. Note though, that both the forward and inverse
kinematic and dynamic equations of robotic arms can not be fully learned by
a single feed forward neural network, but they can be partially learned with
recurrent neural networks [7].

6 Robotic Arm X
F(®)

Neuréal Network
X

Fig. 1. Learning the forward kinematics with supervised learning.




Estimation of the Forward Kinematics with Neural Networks 797

3 Problem Formulation

As previously explained, the forward kinematics is a function F' that connects
the vector of joint positions 6 with the Cartesian coordinates of the robot’s end
effector X:

X = F(0) &

A very important property of Eq. 1 is that it is a one-to-one function, regard-
less of the geometrical properties of the robotic arm [7]. This statement holds
true for every possible open loop kinematic chain and thus, every possible joint
configuration can be uniquely mapped to one and only one end effector Cartesian
coordinate [10]. Practically, this means that F' can be learned in a supervised
manner by a neural network as Fig. 1 suggests.

In addition, Fig.1 indirectly suggests that the forward kinematics problem
is independent of the robot geometry. That is not the case with the inverse
kinematics problem, whose goal is to find a set of joint configurations given a
particular end-effector position and orientation [3]. The difficulty of the inverse
kinematics problem arises from its dependence on the physical configuration
of the robot and that is has multiple solutions. Thus, any machine learning
algorithm that tries to learn the inverse kinematics problem, will only be able
to find one solution per kinematic configuration [4,8,11]. Also, the leaner might
learn different inverse kinematics solutions for different kinematic configurations
within the same workspace of a particular robot [2].

4 Experimental Testbed

The fact that the forward kinematics problem can be solved with classical super-
vised learning algorithms, means that the training process can occur off-line with
training samples that are collected from measurements. These training samples
will constitute a dataset whose input is measured from the robot joint encoders,
and the output is the equivalent Cartesian coordinates of the robot end effector.
A problem with this approach is that the Cartesian coordinates must be obtained
from an external sensor and most mechanical manipulators possess only internal
sensors. However, if the geometric characteristics of the robot are known, then
the training dataset can be also generated from a simulated kinematic model of
the robot. In this section, we present how we derived the kinematics of the 7-
DOF Sawyer Robotic arm, and how well a multilayer perceptron neural network
can learn to estimate the equation.

4.1 Kinematics of the Sawyer Robot

Figure 2 illustrates the kinematic model of the Sawyer Robotic Arm. The model
was constructed by reverse engineering the geometrical properties of the physical
robot. According to the homogeneous transformation of the joint frames from
Fig.2, the DH Table1 of the model was composed. Note though, that in the
table we do include the elevation of the robot above the world frame, which



798 M. Theofanidis et al.

is estimated to be 0.3160 m. Based on the DH table, the homogeneous coordi-
nate matrix of the frames can be derived according to matrix (2). Finally, we
computed the forward kinematic equations of the robot according to Eq. (2).

Y

Fig. 2. Kinematic model of the sawyer robot.

Table 1. DH Table for the 7TDOF sawyer robotic arm

1oy a; d; 0;
1/-90°/0.0810 0 01
2190° 0 0.1910 |6,
3/-90°0 0.3990 |05
4190° 0 —0.1683 | 64
51—=90°0 0.3965 |05
690° 0 0.1360 | 6¢
710 0 0.1785 |67
ch; —ca;s0; sa;sl; a;ch;
“Z-lT _ s0; caich; —so;ch; a;sb; @)
0 sy coy d;
0 0 0 1

T =T % 2T % 3T + 2T « 5T + 5T (3)



Estimation of the Forward Kinematics with Neural Networks 799

—175° < 6 < 175°
—175° < 0y < 175°
—175° < 03 < 175°
—170° < 6, < 170° (4)
—170° < 65 < 170°
—170° < fg < 170°
—180° < 67 < 180°

4.2 Network Architecture

To solve the forward kinematics problem of Eq. 3 the multi-layered feed-forward
neural network of Fig. 3 is proposed. The input layer of the network represents
a vector of joint angle values (01, 02, 05, 04, 05, 0, 07), while the output of the
network stands for the cartesian coordinates of the robot’s end effector. Both
the input and output units contain linear units for normalization purposes.

Hidden

(700 units) Hidden
(600 units) Hidden
(500 units)

Hidden
! Output

\(3(10 units) Hidden
(200 units) . .

A
—
—Fe=xZ e
/\

0 :

\

Fig. 3. Network architecture.

The network was trained using the backpropagation algorithm with the mean
squared error of the output units as a metric. During the backpropagation pro-
cess, we used adam optimizer. To produce the training dataset of the network,
4 million random kinematic configurations of joint angles with their equivalent
Cartesian positions were utilized. During the creation of the dataset, we made
sure that the joint angle values uniformly cover the ranges of Eq. 4. Because of
the size of the dataset, the network was trained with a batch size of 100 units
and 30 epochs. Also, 10% of the dataset was used for cross validation and 10%
was used for testing purposes.



800 M. Theofanidis et al.

4.3 Experimental Results

After the training was complete, the networks achieved 99.997% validation accu-
racy. To demonstrate the effectiveness of the network, in this section we will
compare the network estimations with the output of the forward equation as
computed by Eq.3 for the same input joint trajectory samples. Figure4 shows
the sample trajectory in joint space.

~

theta 1 (rad)
o

theta 2 (rad)
K o

&
®

°
N
8
8
2
8
8
2
2
8
®
8
3
8
8
°
N
8

400 600 800 1000
time (sec) time (sec)

theta 3 (rad)

& =)

theta 4 (rad)
o

time (sec) time (sec)

,_.J\w\/__

0 200 400 600 800 1000 “o 200 400 600 800 1000
time (sec) time (sec)

theta 6 (rad)
o

theta 5 (rad)
g o

theta 7 (rad)
o

"o 200 400 600 800 1000
time (sec)

Fig. 4. Experimental joint space trajectories.

I I I
0 100 200 300 400 500 600 700 800 900 1000
time (sec)

Fig. 5. Error between the forward kinematic equation and the network in the x dimen-
sion.

The difference between the estimations of the forward kinematic equations
and the proposed network is shown in Figs. 5, 6 and 7, where every figure repre-
sents one of the cartesian dimensions of the robot’s end effector. Note that the
scale in the vertical axis is in meters.



Estimation of the Forward Kinematics with Neural Networks 801

I I I I I )
0 100 200 300 400 500 600 700 800 900 1000
time (sec)

Fig. 6. Error between the forward kinematic equation and the network in the y dimen-
sion.

0015 1 1 1 1 1 1 1 1 1 |
0 100 200 300 400 500 600 700 800 900 1000

time (sec)

Fig. 7. Error between the forward kinematic equation and the network in the z dimen-
sion.

5 Conclusions

In this work, we presented how to estimate the forward kinematic equations of a
kinematically redundant robotic arm with a neural network. The proposed net-
work architecture showed promising results between different kinematic configu-
rations. However, it is worthy to mention that although the forward kinematics
equations can be estimated algebraically in a simple manner, learning the same
equations is an arduous process for a neural network. The proposed architecture
was found after training multiple models with different parameters, such as the
number of units per level and the number of levels, on the same dataset with
different resolution. That was possible to achieve, because the workspace of the
robot can not possibly change.

Acknowledgments. This work is supported in part by the National Science Founda-
tion under award numbers 1338118 and 1719031. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.



802 M. Theofanidis et al.
References
1. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning

10.

11.

from demonstration. Robot. Auton. Syst. 57(5), 469-483 (2009)

. Bingul, Z., Ertunc, H., Oysu, C.: Comparison of inverse kinematics solutions using

neural network for 6R robot manipulator with offset. In: 2005 ICSC Congress on
Computational Intelligence Methods and Applications, p. 5. IEEE (2005)

Craig, J.J.: Introduction to Robotics: Mechanics and Control, vol. 3. Pear-
son/Prentice Hall, Upper Saddle River (2005)

. Duka, A.V.: Neural network based inverse kinematics solution for trajectory track-

ing of a robotic arm. Procedia Technol. 12, 20-27 (2014)

Jin, L., Li, S., Yu, J., He, J.: Robot manipulator control using neural networks: a
survey. Neurocomputing 285, 23-34 (2018)

Jin, L., Zhang, Y., Li, S.: Integration-enhanced zhang neural network for real-time-
varying matrix inversion in the presence of various kinds of noises. IEEE Trans.
Neural Netw. Learn. Syst. 27(12), 2615-2627 (2016)

Jordan, M.I., Rumelhart, D.E.: Forward models: supervised learning with a distal
teacher. Cogn. Sci. 16(3), 307-354 (1992)

Karlik, B., Aydin, S.: An improved approach to the solution of inverse kinematics
problems for robot manipulators. Eng. Appl. Artif. Intell. 13(2), 159-164 (2000)
Lin, D., Wang, X., Nian, F., Zhang, Y.: Dynamic fuzzy neural networks modeling
and adaptive backstepping tracking control of uncertain chaotic systems. Neuro-
computing 73(16-18), 28732881 (2010)

Nguyen, L., Patel, R., Khorasani, K.: Neural network architectures for the forward
kinematics problem in robotics. In: 1990 IJCNN International Joint Conference on
Neural Networks, pp. 393-399. IEEE (1990)

Tejomurtula, S., Kak, S.: Inverse kinematics in robotics using neural networks. Inf.
Sci. 116(2-4), 147-164 (1999)



	Kinematic Estimation with Neural Networks for Robotic Manipulators
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Experimental Testbed
	4.1 Kinematics of the Sawyer Robot
	4.2 Network Architecture
	4.3 Experimental Results

	5 Conclusions
	References




