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Abstract. Current medical practice is driven by clinical guidelines
which are designed for the “average” patient. Deep learning is enabling
medicine to become personalized to the patient at hand. In this paper we
present a new recurrent neural network model for personalized survival
analysis called rnn-surv. Our model is able to exploit censored data to
compute both the risk score and the survival function of each patient.
At each time step, the network takes as input the features characterizing
the patient and the identifier of the time step, creates an embedding,
and outputs the value of the survival function in that time step. Finally,
the values of the survival function are linearly combined to compute
the unique risk score. Thanks to the model structure and the training
designed to exploit two loss functions, our model gets better concordance
index (C-index) than the state of the art approaches.

1 Introduction

Healthcare is moving from a population-based model, in which the decision mak-
ing process is targeted to the “average” patient, to an individual-based model,
in which each diagnosis is based on the features characterizing the given patient.
This process has been boosted by the recent developments in the Deep Learning
field, which has been proven to not only get impressive results in its traditional
areas, but also to perform very well in medical tasks.

In particular, in the medical field, the study of the time-to-event, i.e., the
expected duration of time until one or more events happen, such as death or
recurrence of a disease, is of vital importance. Nevertheless, it is often made more
complicated by the presence of censored data, i.e., data in which the information
about the time-to-event is incomplete, as it happens, e.g., when a patient drops
a clinical trial. Traditionally, these issues are tackled in a field called Survival
Analysis, a branch of statistics in which special models have been proposed
to predict the time-to-event exploiting censored data, while only a few deep
learning approaches have such an ability (e.g., [13,28]). About the latter, it is
interesting to note that most of the encountered deep learning approaches are
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based on feedforward neural networks and, at least so far, there does not seem to
exist published results deploying recurrent neural networks despite the sequential
nature of the problem.

In this paper we present a new recurrent neural network model handling
censored data and computing, for each patient, both a survival function and
a unique risk score. The survival function is computed by considering a series
of binary classifications problems each leading to the estimation of the survival
probability in a given interval of time, while the risk score is obtained through
the linear combination of the estimates. rnn-surv three main features are:

1. its ability to model the possible time-variant effects of the covariates,
2. its ability to model the fact that the survival probability estimate at time t

is function of each survival probability estimate at t′ : t′ < t, and
3. its ability to compute a highly interpretable risk score.

The first two are given by the recurrent structure, while the last is given by the
linear combination of the estimates.

rnn-surv is tested on three small publicly available datasets and on two
large heart transplantation datasets. On these datasets rnn-surv performs sig-
nificantly better than the state of the art models, always resulting in a higher
C-index than the state of the art models (up to 28.4%). We further show that
if we simplify the model we always get worse performances, hence showing the
significance of rnn-surv different features.

This paper is structured as follows. We start with the analysis of the related
work (Sect. 2), followed by the background about Survival Analysis (Sect. 3).
Then, we present of our model (Sect. 4), followed by the experimental analysis
(Sect. 5), and finally the conclusions (Sect. 6).

2 Related Work

The problem of survival analysis has attracted the attention of many machine
learning scientists, giving birth to models such as random survival forest [11],
dependent logistic regressors [26], multi-task learning model for survival anal-
ysis [17], semi-proportional hazard model [27] and support vector regressor for
censored data [21], all of which not based on neural networks.

Considering the works that have been done in the field of Survival Analysis
using Deep Learning techniques, these can be divided in three main subcate-
gories, that stemmed from just as many seminal papers:

(1) Faraggi and Simon [7] generalized Cox Proportional Hazards model
(CPH) [5] allowing non-linear functions instead of the traditional linear
combinations of covariates by modeling the relationship between the input
covariates and the corresponding risk with a single hidden layer feedforward
neural network. This work has been later resumed in [13] and [28]. Contrar-
ily to rnn-surv, CPH and the models [13] and [28] assume time-invariant
effects of the covariates.
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(2) Liestbl, Andersen and Andersen [18] subdivided time into K intervals,
assumed the hazard to be constant in each interval and proposed a feed-
forward neural network with a single hidden layer that for each patient
outputs the conditional event probabilities pk = P (T ≥ tk|T ≥ tk−1) for
k = 1, ...,K, T being the time-to-event of the given patient. This work was
then expanded in [2], but even in this later work the value of the estimate
pk−1 for a given patient is not exploited for the computation of the estimate
pk for the same patient. On the contrary, rnn-surv, thanks to the presence
of recurrent layers, is able to capture the intrinsic sequential nature of the
problem.

(3) Buckley and James [4] developed a linear regression model that deals with
each censored data by computing its most likely value on the basis of the
available data. This approach was then generalized using neural networks in
various ways (e.g., [6]). Unlike rnn-surv, in [4] and in the following ones,
estimated and known data are treated in the same way during the regression
phase.

3 Background on Survival Analysis

Consider a patient i, we are interested in estimating the duration Ti of the
interval in between the event of interest for i and the time t0 at which we start
to measure time for i. We allow for right censored data, namely, data for which
we do not know when the event occurred, but only that it did not occur before a
censoring time Ci. The observed time Yi is defined as Yi = min(Ti, Ci), and each
datapoint corresponds to the pair (Yi, δi) where δi = 0 if the event is censored
(in which case Yi = Ci) and δi = 1 otherwise.

In Survival Analysis, the standard functions used to describe Ti are the sur-
vival function and the hazard function [15].

1. The survival function Si(t) is defined as:

Si(t) = Pr(Ti > t) (1)

with Si(t0) = 1.
2. The hazard function hi(t) is defined as:

hi(t) = lim
dt→0

Pr(t ≤ Ti < t + dt | Ti ≥ t)
dt

. (2)

Further, in order to offer a fast understanding of the conditions of the patient,
a common practice of the field is to create a risk score ri for each patient i: the
higher the score the higher the risk of the occurrence of the event of interest.

4 RNN-SURV

In order to transform the survival analysis problem in a series of binary deci-
sion problems, we assume that the maximal observed time is divided into K



26 E. Giunchiglia et al.

Fig. 1. rnn-surv with N1 = 2 feedforward layers, followed by N2 = 2 recurrent layers.

intervals (t0, t1], . . . , (tK−1, tK ] and that the characteristic function modeling Ti

is constant within each interval (tk−1, tk] with k = 1, . . . , K. Given a patient
i, the purpose of our model is to output both an estimate ŷ

(k)
i of the survival

probability Si for the kth time interval and a risk score ri.

4.1 The Structure of the Model

The overall structure of rnn-surv is represented in Fig. 1 and is described and
motivated below:

1. the input of each layer is given by the features xi of each patient i together
with the time interval identifier k. Thanks to this input, rnn-surv is able to
capture the time-variant effect of each feature over time,

2. taking the idea from the natural language processing field, the input is then
elaborated by N1 embedding layers. Thanks to the embeddings we are able
to create a more meaningful representation of our data, and

3. the output of the embedding layers is then passed through N2 recurrent layers
and a sigmoid non-linearity. This generates the estimates ŷ

(1)
i , . . . , ŷ

(K)
i from

which we can compute the risk score with the following equation:

r̂i =
K∑

k=1

wkŷ
(k)
i (3)

where wk for k = 1, . . . , K are the parameters of the last layer of rnn-surv.
Thanks to the linear combination, the risk score, whose quality is evaluated
with the C-index [9], is highly interpretable.
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Further, in order to handle the vanishing gradient problem, the feedforward
layers use the ReLU non-linearity [19], while the recurrent layers are constituted
of LSTM cells [10], which are defined as:

⎛

⎜⎜⎝

it
ft
ot

gt

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

σ(Wi[wt,ht−1] + bi)
σ(Wf [wt,ht−1] + bf )
σ(Wo[wt,ht−1] + bo)
f(Wg[wt,ht−1] + bg)

⎞

⎟⎟⎠

ct = ft ∗ ct−1 + it ∗ gt

ht = ot ∗ f(ct).

(4)

4.2 Training

Since the neural network predicts both the discrete survival function and the
risk score for each datapoint, it is trained to jointly minimize two different loss
functions:
1. The first one is a modified cross-entropy function able to take into account

the censored data, defined as:

L1 = −
K∑

k=1

∑

i∈Uk

[
I(Yi > tk) log ŷ

(k)
i + (1 − I(Yi > tk)) log(1 − ŷ

(k)
i )] (5)

where Uk = {i | δi = 1 or Ci > tk} represents the set of individuals that are
uncensored throughout the entire observation time or for which censoring has
not yet happened at the end of the kth time interval.

2. The second one is an upper bound of the negative C-index [23] defined as:

L2 = − 1
|C|

∑

(i,j)∈C

[
1 +

(
log σ(r̂j − r̂i)

log 2

)]
(6)

where C is the set of pairs {(i, j) | δi = 1 and (Yi ≤ Yj)}. The advantage of
minimizing (6) instead of the negative C-index is that the former still leads to
good results [23], and the latter is far more expensive to compute and would
have made the experimental evaluation impractical.

The two losses L1 and L2 are then linearly combined, with the hyperparameters
of the sum optimized during the validation phase.

In order to avoid overfitting, we apply dropout to both the feedforward lay-
ers [22] and to the recurrent layers [8], together with a holdout-based early stop-
ping as described in [20]. Further, we add L2-regularization to the linear com-
bination of the losses. The entire neural network is trained using mini-batching
and Adam optimizer [14].

5 Experimental Analysis

All our experiments are conducted on two large datasets, UNOS Transplant and
UNOS Waitlist, from the United Network for Organ Sharing (UNOS)1 and on
1 https://www.unos.org/data/.

https://www.unos.org/data/
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three publicly available, small datasets, AIDS2, FLCHAIN, NWTCO.2 In each
experiment we deploy 60/20/20 division into training, validation and test sets
and the early stopping is configured as a no validation gain for 25 consecutive
epochs. The main characteristics of these datasets are shown in Table 1, while the
structure of rnn-surv for each dataset is shown in Table 2. The performances
of our model are measured using the C-index [9].3

Table 1. Datasets description

Dataset Num. features Num. patients (%) Censored Missing data

UNOS Transplant 53 60400 51.3 Yes

UNOS Waitlist 27 36329 48.9 Yes

NWTCO 9 4028 85.8 No

FLCHAIN 26 7874 72.5 Yes

AIDS2 12 2843 38.1 No

Table 2. Structure of the model for each experiment.

UNOS Transplant UNOS Waitlist NWTCO FLCHAIN AIDS2

# FF layers 2 2 3 3 2

# recurrent layers 2 2 2 2 2

# neurons I FF layer 53 33 18 45 22

# neurons II FF layer 51 35 18 40 25

# neurons III FF layer - - 18 35 -

LSTM state size 55 26 17 32 15

5.1 Preprocessing

Our datasets present missing data and thus they require a preprocessing phase.
UNOS Transplant and UNOS Waitlist contain data about patients that reg-
istered in order to undergo heart transplantation during the years from 1985
to 2015. In particular UNOS Transplant contains data about patients who
have already undergone the surgery, while UNOS Waitlist contains data about
patients who are still waitlisted. From the complete datasets, we discard 12 fea-
tures that can be obtained only after transplantation and all the features for
which more than 10% of the patients have missing information. In order to deal
with the missing data on the remaining 53 and 27 features, we conduct 10 multi-
ple imputations using Multiple Imputation by Chained Equations (MICE) [24].

The three small datasets contain data about:

1. NWTCO: contains data from the National Wilm’s Tumor Study [3],
2. FLCHAIN: contains half of the data collected during a study [16] about the

possible relationship between serum FLC and mortality, and
3. AIDS2: contains data on patients diagnosed with AIDS in Australia [25].
2 https://vincentarelbundock.github.io/Rdatasets/datasets.html/.
3 Implementation by lifelines package.

https://vincentarelbundock.github.io/Rdatasets/datasets.html/
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Table 3. Performances, in terms of C-index, of rnn-surv, CPH, AAH, deep-surv,
rfs and mtlsa together with the 95% confidence interval for the mean C-index. The *
indicates a p-value < 0.05 while ** < 0.01.

UNOS Transp. UNOS Waitlist NWTCO FLCHAIN AIDS2

CPH 0.566**

(0.565–0.567)

0.642**

(0.637–0.647)

0.706

(0.687–0.725)

0.883*

(0.879–0.887)

0.558

(0.546–0.570)

AAH 0.561**

(0.557–0.565)

0.636**

(0.632–0.640)

0.710

(0.601–0.719)

0.885

(0.879–0.891)

0.557

(0.542–0.572)

deep-surv 0.566**

(0.560–0.572)

0.645*

(0.638–0.652)

0.706

(0.686–0.726)

0.835

(0.774–0.896)

0.558

(0.532–0.584)

rfs 0.563**

(0.561–0.565)

0.646*

(0.642–0.650)

0.663*

(0.648–0.678)

0.828

(0.765–0.891)

0.501**

(0.489–0.513)

mtlsa 0.484**

(0.480–0.488)

0.529**

(0.525–0.533)

0.595*

(0.567–0.623)

0.696**

(0.688–0.704)

0.520*

(0.500–0.540)

rnn-surv 0.587

(0.583–0.591)

0.656

(0.652–0.660)

0.724

(0.697–0.751)

0.894

(0.886–0.902)

0.573

(0.553–0.593)

For these datasets, we complete the missing data using the mean value for the
continuous features and using the most recurrent value for the categorical ones.
Once complete the missing data, we then use one-hot encoding for the categorical
features and we standardize each feature so that each has mean μ = 0 and
variance σ = 1.

5.2 Comparison with Other Models

We have compared rnn-surv with the two traditional Survival Analysis models,
CPH and Aalen Additive Hazards model (AAH) [1], and with three recent models
that try to conjugate Machine Learning with Survival Analysis: rfs [11], deep-
surv [13] and mtlsa [17]. Both CPH and AAH have been implemented using
the lifelines package4, while we deployed the randomForestSRC package5

for rfs, the deepsurv package6 for deep-surv and the mtlsa package7 for
mtlsa. The results shown in Table 3 are obtained using k-fold cross validation
(with k = 5). As it can be seen from the table, rnn-surv outperforms the other
models in all the datasets. In particular, the biggest improvements are obtained
with respect to mtlsa, with a peak of 28.4% on the FLCHAIN dataset.

5.3 Estimating the Survival Curves

To further demonstrate the good results obtained by rnn-surv, in Fig. 2 we
show some of the survival curves obtained in largest dataset available, the UNOS
Transplant dataset.

Figure 2 shows that our model is able to capture the average trend of the
survival curves, both for the whole population and for subsets of it. Further,
4 https://github.com/CamDavidsonPilon/lifelines/.
5 https://cran.r-project.org/web/packages/randomForestSRC/.
6 https://github.com/jaredleekatzman/DeepSurv/.
7 https://github.com/yanlirock/MTLSA/.

https://github.com/CamDavidsonPilon/lifelines/
https://cran.r-project.org/web/packages/randomForestSRC/
https://github.com/jaredleekatzman/DeepSurv/
https://github.com/yanlirock/MTLSA/
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Fig. 2. Performances of rnn-surv on UNOS Transplant dataset on a 36 months horizon
on the test set. (a) average Survival Function obtained with rnn-surv and Kaplan-
Meier curve [12]. (b) average Survival Functions obtained with rnn-surv and Kaplan-
Meier curves for two subgroups of patients: patients who experienced an infection and
patients who did not. (c) Kaplan-Meier curve together with the survival curves of two
different patients (P1: Patient 1, P2: Patient 2).

rnn-surv demonstrates to have a great discriminative power: it is able to plot
a unique survival function for each patient and, as it is shown in Fig. 2(c), the
survival curves can be very different one from another and from the average
survival curve.

5.4 Analysis of the Model

We now analyze how the different main components of rnn-surv contribute to
its good performances. In particular, we consider the model without the three
main features of the model:

1. We first consider the case in which we do not have the feedforward layers,
i.e., with N1 = 0;

2. Then the case in which the interval identifier k as input to the feedforward
layer is always set to 1;

3. Finally the case in which the model has only one likelihood, i.e., L2.

The C-index of the various versions and of the complete model on the different
datasets are shown in Table 4. In the Table the best results are in bold, while the
worst results are underlined. As it can be seen, the best performances are always
obtained by the complete model, meaning that all the different components have
a positive contribution. Interestingly, the worst performances are obtained when
we disable the L1 score on the large datasets and the feedforward layers in the
small ones. The explanation for the very positive contribution of using both the
L1 and L2 scores on the two large datasets is that L1 allows to take into account
the intermediate performances of the network when computing ŷ

(1)
i , . . . , ŷ

(K)
i .

On the other hand, for the small datasets, the positive contribution of using the
two scores is superseded by the feedforward layers and this can be explained by
the characteristics of the datasets presenting a majority of discrete features.
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Table 4. Performances, in terms of C-index, of the complete model compared with its
incomplete versions.

Dataset Without k input Without L1 Without FF rnn-surv

UNOS Transplant 0.583 0.501 0.562 0.587

UNOS Waitlist 0.653 0.516 0.623 0.656

NWTCO 0.683 0.665 0.578 0.724

FLCHAIN 0.874 0.874 0.865 0.894

AIDS2 0.558 0.542 0.535 0.573

6 Conclusions

In this paper we have presented rnn-surv: a new recurrent neural network
model for predicting a personalized risk score and survival probability function
for each patient in presence of censored data. The proposed model has three
main distinguishing features, each having a positive impact on the performances
on two large and three small, publicly available datasets. Our experiments show
that rnn-surv always performs much better than competing approaches when
considering the C-index, improving the state of the art up to 28.4%.
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