
Lightweight Neural Programming:
The GRPU

Felipe Carregosa1(B), Aline Paes2, and Gerson Zaverucha1

1 Department of Systems Engineering and Computer Science, Universidade Federal
do Rio de Janeiro, Rio de Janeiro, RJ, Brazil

{fborda,gerson}@cos.ufrj.br
2 Department of Computer Science, Institute of Computing, Universidade Federal

Fluminense, Niterói, RJ, Brazil
alinepaes@ic.uff.br

Abstract. Deep Learning techniques have achieved impressive results
over the last few years. However, they still have difficulty in producing
understandable results that clearly show the embedded logic behind the
inductive process. One step in this direction is the recent development
of Neural Differentiable Programmers. In this paper, we designed a neu-
ral programmer that can be easily integrated into existing deep learning
architectures, with similar amount of parameters to a single commonly
used Recurrent Neural Network. Tests conducted with the proposal sug-
gest that it has the potential to induce algorithms even without any
kind of special optimization, achieving competitive results in problems
handled by more complex RNN architectures.

Keywords: Recurrent Neural Networks
Neural Differentiable Programmers

1 Introduction

Recently there has been a renewed interest in merging traditional programming
and Neural Networks (NNs), particularly thanks to more advanced Automatic
Differentiation (AD) tools [8]. These new tools can evaluate functions written
in the host languages idiomatic structures, allowing programmers to easily and
efficiently obtain the gradient of varied units of code with respect to their argu-
ments. This enables augmenting the programming toolset with the Machine
Learning capabilities.

With a similar goal, Neural Differentiable Programmers (NDPs) [9,11] have
been developed to allow NNs to compose algorithms in more traditional ways.
This allows them to potentially tackle hard problems, involving complex arith-
metic and logical reasoning. Thus, in order to model the input-output relation-
ship, instead of applying a series of transformations directly over the input, NDPs

The authors would like to thank the Brazilian Research Agencies CNPq and CAPES
for partially finance this research.

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 218–227, 2018.
https://doi.org/10.1007/978-3-030-01424-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_22&domain=pdf

Lightweight Neural Programming: The GRPU 219

choose a sequence of transformations from a predefined instruction set, yielding
an explicit algorithm to transform the input into the solution. Furthermore,
they can also decouple its learned logic from the specific input values, allowing
for better generalization and re-usability in different contexts. However, current
NDP models focus on end-to-end solutions for specific contexts and problems,
instead of being easily integrated into current Deep Learning models.

In this paper, we propose The Gated Recurrent Programmer Unit (GRPU),
a NDP technique that can be easily integrated into any current model that uses
a Recurrent Neural Network (RNN). Moreover, GRPU uses around the same
amount of parameters as a simple Gated Recurrent Unit (GRU) [4], is agnostic
in terms of external memory structure and data inputs, and can be extended
in similar ways to RNNs, like stacking and soft attention strategies. This way
it can provide a lightweight way of augmenting Deep Learning models with the
induction of more traditional programs.

The rest of the paper is organized as follows. The next section briefly explains
the GRU and the most known NDPs in the literature. The 3rd section details
the model devised in this work. The 4th section brings the experiments we have
conducted in this work, and the last section is the conclusion.

2 Preliminaries

Here we briefly explain the GRUs, by which our model is inspired, and the most
relevant neural programmers found in the related literature.

2.1 Gated Recurrent Unit (GRU)

Recently, a new, simpler, architecture for RNNs has been developed, the Gated
Recurrent Unit (GRU) [4]. GRUs present comparative performance to the tradi-
tionally used Long Short-Term Memory (LSTM) [5], while using fewer parame-
ters, as they have only two interacting layers instead of three: the update gate and
the reset gate. When the value computed at the reset gate is close to 0, the cor-
responding previous hidden state is erased and, therefore, ignored when creating
the new state. This allows the GRU to drop information judged irrelevant. The
update gate, on the other hand, controls how much information from the previ-
ous hidden state should be directly carried over to the current hidden state. This
shortcut between the previous state and the following one allows information to
be kept untouched indefinitely, helping with the Vanishing Gradient Problem [3].

The value of the current hidden state is computed as ht = (1 − ut) ∗ ht−1 +
ut ∗ h̃t, where u and r stands for the update and reset gates, respectively, and
˜ht, the new candidate state: ˜ht = tanh(W.[rt ∗ ht−1, xt] + b). The values of the
update and reset gates are defined with their own set of parameters, where the
update gate is computed as ut = σ(Wz.[ht−1, xt] + bu) and the reset gate as
rt = σ(Wr.[ht−1, xt] + br).

220 F. Carregosa et al.

2.2 Related Work: Neural Programmers

Neural Differentiable Programming (NDP) techniques try to combine the pat-
tern matching and universal approximation nature of the neural networks with
the discrete series of operations from traditional algorithms [9]. Fundamentally,
neural networks are simply a chain of geometric transformations, and finding
one of such transformations that can fully generalize each traditional operation,
such as arithmetic and logic operations, is hard and require potentially large
amounts of data. For example, even a simple sum or product of numbers is not
a trivial task for a neural network to learn, especially considering the distortion
caused by the non linear transformations that occur at each step.

Integrating algorithmic-like aspects has been a tendency since the success of
the attention models [12]. They allow the network to learn to choose the data it
wants to access in a completely differentiable way. NDPs go one step further and
not only apply the selection to the input data, but also to the operation applied
to the data. For that, they comprise a selection of differentiable operations,
and through soft attention they are able to select an operation for each step,
and the results of each step can then become the input of the following step.
They possess, then, the ability to induce algorithms that transform the original
input into the desired output through the multiple steps. The selection operation
usually has the form result = oplist(args)T softmax(opcode), where oplist is an
N -sized vector in which each field is an operation like sum or multiplication, and
opcode is a vector with N values, generated by a RNN at each step.

Some of the most notable neural programmers are:

– The Neural Programmer [9] is a table query based model that, given an
input question, selects a series of aggregate operations and a series of columns
from the input table for each operation to be applied. The training phase
involves finding the operations and column arguments that minimizes the
error towards the given output, using two LSTMs and two softmax layers.

– The Neural Programmer Interpreter [10] is composed of a single LSTM and
a domain specific encoder for the state of the environment. The LSTM has
three selector units to choose the next operation, its arguments, and when
the subprogram terminates. It predicts the next step of a program only, and
not the full program at once, requiring the program trace as input.

– The Neural Random Access Machines [7] is a sequence-to-sequence program-
mer model, in which every data register of the virtual machine it implements
contains a pointer (a probability distribution) that can be transformed into
new pointers through look-up-table based operations. Each pointer can be
used to read or write from a memory tape using attention.

3 The Gated Recurrent Programmer Unit

We introduce a novel neural differentiable programmer architecture that focuses
on low footprint and easy integration with other neural architectures. It has
considerably fewer parameters than the models described in the previous section,

Lightweight Neural Programming: The GRPU 221

and it does not require a complex input in both training and execution (such as
tables, preprocessed lists or programs traces). Additionally, unlike the previous
models, the GRPU instructions can have any number of arguments, due to not
requiring softmax selection, and of operations transforming those arguments in
a single step.

3.1 The Architecture

Figure 1 exhibits the GRPU architecture, which is built upon the structure of
a regular GRU. GRPU is not only easily exchangeable wherever a GRU can be
used, enabling traditional algorithmic manipulation of it’s inputs, but it can also
be implemented with just a few lines of codes over the GRU. The fundamental
difference between the two models is the way the new state is produced, but this
small difference also affects how everything else is interpreted.

Thus, in GRPU, the affine transformation is replaced by an Arithmetic and
Logic Unit (ALU), a module that executes one operation for each set of fields of
the hidden state to produce the next state values. The Virtual Machine (VM)
state, which replaces the hidden state in the GRU, is hvm ∈ RN , where N
is both the ALU’s operation’s outputs sizes summed and the argument’s sizes
summed. In other words, the VM state is both the arguments for the ALU, and
the outputs of the ALU.

The ALU receives the previous VM state and returns a new candidate for
the next state from the results of each operation. The reset gate, in this context,
operates as the argument selector, responsible for determining which arguments
will be fed to the ALU, turning the ones that should be ignored to zero. The
update gate defines which operations have their results kept and which ones are
ignored. In this last case, the previous values of the VM state are restored, and
the operation is replaced by a NOP , No Operation. The algorithm is, therefore
produced by producing the GRU gates [ut, rt] based on the inputs, which is
equivalent to producing the opcode [operations, operands]t. Calculating every
step gives the final algorithm, like the example displayed in Fig. 2.

Unlike with GRUs though, the hidden state, or the VM state, shouldn’t
be used in the creation of the gates output, and therefore in the creation of
the instructions. This is done so the model can learn generic algorithms, that
can automatically deal with data not seen in the training base. In the current

Fig. 1. The basic Gated Recurrent Programmer Unit. Dashed lines are the input of
the gates, normal lines are the hidden (VM) state path.

222 F. Carregosa et al.

Fig. 2. Example of a two step algorithm: -(arg1+arg3). Each row has one argument
and one operation throughout two recurrent steps. The reset gate selects the arguments
for the ALU operations (grayed in the image with solid lines), while the update gate
selects which operation results or arguments will be kept (grayed operation results).

architecture it means that there is a direct mapping between the current input
and the respective instruction.

While this behavior is sometimes enough, we would like the model to use
past information for creating the algorithm, and, for that reason, we include
an additional controller unit, which acts in parallel to the programmer and has
the same structure as the GRU. The complete model is depicted in Fig. 3, and
represented by the following set of equations (from Eqs. 2 to 5):

rt = σ(Wr.[hc
t−1, xt] + br) (1)

ut = σ(Wu.[hc
t−1, xt] + bu) (2)

˜hc
t = tanh(W.[rct ∗ hc

t−1, xt] + b) (3)

˜hvm
t [i] = ALU(rvmt , hvm

t−1, externalt, operation[i]) (4)

ht = (1 − ut) ∗ ht−1 + ut ∗ h̃t (5)

Fig. 3. The Gated Recurrent Programmer Unit. The upper part is the virtual machine,
which executes the instruction according to the selections made by the gates. The lower
part is the controller, which encodes a representation of all past inputs for the gates,
producing instructions that aren’t just a mapping of the current input.

Lightweight Neural Programming: The GRPU 223

Where vm defines the Virtual Machine (VM) section and c the controller
section of the state and gate outputs, ht = [hvm

t , hc
t], rt = [rvmt , rct] and ut =

[hvm
t , hc

t] are the hidden state (formed by the concatenation of VM and controller
states), reset gate (which assumes the task of argument selector for the VM state)
and update gate (which assumes the task of the operation selector for the VM
state), respectively. ˜ht = [˜hvm

t ,˜hc
t] is the next state candidate. The ALU is a

function that receives the VM state (arguments), the argument selection (reset
gate output), any external data or differentiable memory that can be read/write
through specific operations, and the list of operations to apply to the arguments.

3.2 The Arithmetic and Logic Unit (ALU)

The ALU natively supports n-ary operations, with the arguments selected
directly with the argument selector. But one aspect that must be considered
is what is the neutral element in the operation. The argument selector rejects
arguments by multiplying them by zero. This behavior does not influence oper-
ations such as summation and the logical or. In other cases, though, such as the
product or the logical and, a zero valued (rejected) argument would guarantee
that the result is zero or False, respectively. To solve this issue, we introduce
a transformation that makes rejected arguments (in which rt[i] = 0) to have
value one, instead of zero, and selected arguments to have the argument value
itself, which may include zero. Table 1 shows the output we would like the both
cases have.

Table 1. Target inputs for operations with neutral element 0 and 1.

Input (i) Selector (r) Neutral 0 Neutral 1 Input (i) Selector (r) Neutral 0 Neutral 1

0 0 0 1 x 0 0 1

0 1 0 0 x 1 x x

An additional complication is that the argument selector gate is not restricted
to binary outputs, but instead, covers the entire space between 0 and 1. To
handle that we need to work on a superset of the Boolean algebra, like the
Fuzzy Logic [6]. In particular, we choose the following generalized form for the
basic logic operators, though other options are also possible: x AND y = x ∗ y,
x OR y = 1 − (1 − x) ∗ (1 − y) = x + y − x ∗ y and NOT x = 1 − x.

Converting the neutral 1 column in terms of i and r in the truth Table 1 into
a sum of products representation (where “.” is the logical and, “+” is the logical
or, and “x” is the logical negation of x) we get i.r + i.r + i.r. Next, by factoring
r on the last two terms, we reach r.(i + i) + i.r, and by applying the identity
i + i = 1), we reach Eq. 6.

r + i.r (6)

Then, replacing the boolean operators for the fuzzy operators in the form of
(NOT r) OR (i AND r), we get (1−r) OR (i∗r) = (1−r)+(i∗r)−(1−r)∗(i∗r) =
1 − r + i ∗ r − i ∗ r + i ∗ r2, which brings us the Eq. 7.

224 F. Carregosa et al.

1 − r + i ∗ r2 (7)

Similarly, the sum of product form for the neutral 0 in Table 1 is simply
i AND r, and, therefore in the generalized operators it is defined as i ∗ r, which
is already how the reset gate output is applied to the hidden state.

Thus, for any operation wherein the neutral element is zero we do i ∗ r and
for any operation wherein the neutral element is one we apply Eq. 7 as its input.

For lesser arity operations, it’s possible to simply eliminate some of the con-
nections to the arguments (for example a toggle operation only needs a connec-
tion to it’s previous result), and/or to use aggregate functions. By averaging the
reset gate outputs before multiplying the VM state, it’s also possible to have a
soft selection equivalent to the softmax.

Besides the operations that map arguments to results, algorithms also require
testing and flow control, and for that we first have to define comparison opera-
tions. Comparison operations typically have arity two (such as equal, not equal,
less than, greater than), or one (equal to zero, not equal to zero, etc.) and return
one if the condition is true, or zero otherwise. The way we implement the differ-
entiable not equal (and the equal, by simply subtracting it from 1) is by having
|arg1 − arg2|/(|arg1 − arg2| + ε) where ε is a constant to avoid division by
zero. Greater than and less − than can be implemented with a shifted sigmoid
(logistic) function, approximating the Heaviside step function.

With the comparison operator, we can implement an element of control flow
in the differentiable machine, the conditional operation. It makes the instruction
to be executed only if the condition determined by a comparison operation, or
a combination of them through logical operators, is met, and otherwise all the
instruction is rejected. This is implemented by changing the operation selection
mechanism according to Table 2, in which ũcond is the operation selector value
(update gate value) for the conditional operation, ũop is the operation selector
value for the target normal operation, hcond is the result of the comparison used
for the conditional, and uop is the final operation selector values (the value of the
operation or a NOP , or No Operation, equivalent to the update gate rejecting
the operation). Simplifying the table like with the neutral element above:

uop = ũop AND ((NOT ũcond) OR ˜hcond) (8)

And using the same transformation inspired by Fuzzy Logic we discussed
above, we arrive in the Eq. 9 below:

uop = uop ∗ (1 + ũcond ∗ (˜hcond − 1)) (9)

And for integrating it within the model equations, with ut being the final
output of the update gate for using in Eq. 5, ũc

t the controller section and ũvm
t

the VM section of the update gate calculated in Eq. 2:

ut = [ũvm
t , ũvm

t ∗ (1 + ucond ∗ (˜hcond − 1))] (10)

Lightweight Neural Programming: The GRPU 225

If the rejection condition happens, the whole programmer section of the
update gate is multiplied by a scalar zero, and the new VM state becomes hvm

t−1,
and, therefore, the algorithm does not produce any effect in that step.

Table 2. Desired output when accepting or rejecting the input.

ucond
˜hcond ũop uop ucond

˜hcond ũop uop

0 (-) 0 (-) 0 (-) 0 (nop) 1 (if) 0 (false) 0 (-) 0 (nop)

0 (-) 0 (-) 1 (do op) 1 (op) 1 (if) 0 (false) 1 (do op) 0 (nop)

0 (-) 1 (-) 0 (-) 0 (nop) 1 (if) 1 (true) 0 (-) 0 (nop)

0 (-) 1 (-) 1 (do op) 1 (op) 1 (if) 1 (true) 1 (do op) 1 (op)

3.3 Expanding the Model

Since the GRPU is similar in structure to a GRU, it can be extended in similar
ways. For instance, by stacking a number of GRPUs it is possible to have different
control flows, executing multiple operations per step, according to the number
and order of transformations over the VM state. Another possibility is to use
the encoder-decoder with soft attention [2] as inspiration, allowing the model to
learn its own sequencing through the input, while also decoupling the input size
from the program size.

4 Experimental Results

To produce the results presented here, we run all the tests with Tensorflow [1] on
a single GPU, Adam optimization, learning rate 10−4, and, otherwise, default
parameters and no regularization. The controller hidden state has size 100.

4.1 The Adding Problem

To evaluate the potential to learn long algorithms, we use a variant of the RNN
Adding Problem described in [13]. In each step the network is fed with a control
value of either −1, 0 or 1 and an input value ranged [0, 1]. If the control is 1,
which always happens in exactly two of the steps, then the corresponding input
value should be one of the operands in the sum. There are between 50 and 55
steps. With a 10,000 samples training set and a 1,000 samples test set, batch
size of 100, and using a bidirectional GRU with the outputs connected to a fully
connected linear regression layer, the cited author achieves the mean squared
error of 0.0041 on the test set.

Using the GRPU, we feed only the control vector to the controller unit to
avoid dependence between the induction of the algorithm and the processed data.
The ALU also contains 3 operations, a READ operator that returns the control
vector, an ADD operator and a PRODUCT operator. This means that each step

226 F. Carregosa et al.

has to choose to store the result of each of the 3 possible operations, or keep
the previous argument, and to choose any combination of the 3 previous results
as input for the operations, creating a very large search space with a program
up to 55 instructions long. The output of the model is the result of the sum.

Table 3. Experiments. *Bidirectional GRU results from [13]

Configuration 1,000 epochs
(training)

1,000 epochs (test)

Bidirectional GRU - batch 100
- 1,000 samples*

N/A 0.0041

GRPU - batch 100 - 10,000 samples 0.247 0.759

GRPU - batch 32 - 32,000 samples 0.0089 0.00699

GRPU - batch 10 - 10,000 samples 0.0000387 0.00709

GRPU - batch 10 - 10,000 samples
- Varying number of steps

0.000426 0.000696

GRPU - batch 10 - 10,000 samples
- (Multiplication Variant)

0.00616 0.0166

GRPU - batch 10 - 10,000 samples
(Conditional Variant)

0.06 0.06

Table 3 shows that using the same batch size leads to very poor performance,
indicating that the model is more prone to getting stuck in local minima. Either
increasing the number of samples or reducing the batch size, which increases the
stochastic effect, brings the results much closer to the more complex traditional
model. Starting with just 10 steps and increasing the number up to the target
throughout the epochs yields the best generalization.

4.2 Other Variations

Just changing the example above from addition to product, and changed the
input range to [0.5, 1.5], to prevent values frequently close to zero, allow us to
evaluate the logic for the operations with neutral element one. The network
behaved similarly, reducing the error to adequate levels after the 1,000 epochs,
as seen on the Multiplication Variant on Table 3.

To test the conditional, we moved the control vector of the Adding Problem
to the virtual machine, to be read on a second READ operator. It’s also added
a conditional operation that checks if it’s input is 1, and if otherwise it forces
a NOP in the step. This adds to 5 operations in the ALU, and the controller
in this variation has no input besides it’s state, and it’s therefore incapable of
choosing on it’s own when to select the ADD operation and when to skip. This
variation converges very fast, but gets easily stuck in a local minima worse than
the original variant.

Lightweight Neural Programming: The GRPU 227

5 Conclusions and Future Work

Here, we presented a novel Neural Programming architecture that can help build-
ing a framework connecting neural networks and traditional programming. It
has the potential of helping both models that write programs autonomously and
users to integrate their logic within the neural network operation. The experi-
ments have found some of the issues of previous neural programmer works: the
convergence of such models is not trivial, possibly since the higher restriction on
the search space may conduct to more local minima. More research in this area
could provide better insights on the model behavior during training.

A number of further tests could be conducted in future works to better
understand the potential of our model, such as tuning the hyper-parameters
and ALU settings, adding regularization, experimenting with transfer learning
and domain adaptation using the added transparency, evaluating deep GRPU
models, and also techniques to extract efficient discrete algorithms.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

3. Bengio, Y., Simard, P.Y., Frasconi, P.: Learning long-term dependencies with gra-
dient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

4. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing, pp. 1724–1734. ACL (2014)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

6. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Pren-
tice Hall, Upper Saddle River (1995)

7. Kurach, K., Andrychowicz, M., Sutskever, I.: Neural random access machines.
ERCIM News 2016(107) (2016)

8. Maclaurin, D., Duvenaud, D., Adams, R.P.: Autograd: effortless gradients in
numpy (2015)

9. Neelakantan, A., Le, Q.V., Sutskever, I.: Neural programmer: inducing latent pro-
grams with gradient descent. CoRR abs/1511.04834 (2015). http://arxiv.org/abs/
1511.04834

10. Reed, S.E., de Freitas, N.: Neural programmer-interpreters. CoRR abs/1511.06279
(2015). http://arxiv.org/abs/1511.06279

11. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural
Information Processing Systems (NIPS 2015), vol. 28, pp. 2692–2700 (2015)

12. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual
attention. In: Proceedings of the 32nd International Conference on Machine Learn-
ing, pp. 2048–2057 (2015)

13. Zhou, G.B., Wu, J., Zhang, C.L., Zhou, Z.H.: Minimal gated unit for recurrent
neural networks. Int. J. Autom. Comput. 13(3), 226–234 (2016)

https://www.tensorflow.org/
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1511.04834
http://arxiv.org/abs/1511.04834
http://arxiv.org/abs/1511.06279

	Lightweight Neural Programming: The GRPU
	1 Introduction
	2 Preliminaries
	2.1 Gated Recurrent Unit (GRU)
	2.2 Related Work: Neural Programmers

	3 The Gated Recurrent Programmer Unit
	3.1 The Architecture
	3.2 The Arithmetic and Logic Unit (ALU)
	3.3 Expanding the Model

	4 Experimental Results
	4.1 The Adding Problem
	4.2 Other Variations

	5 Conclusions and Future Work
	References

