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Abstract. We analyze the use of simultaneous perturbation stochastic
approximation (SPSA), a stochastic optimization technique, for solving
reinforcement learning problems. In particular, we consider settings of
partial observability and leverage the short-term memory capabilities of
echo state networks (ESNs) to learn parameterized control policies. Using
SPSA, we propose three different variants to adapt the weight matrices of
an ESN to the task at hand. Experimental results on classic control prob-
lems with both discrete and continuous action spaces reveal that ESNs
trained using SPSA approaches outperform conventional ESNs trained
using temporal difference and policy gradient methods.
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1 Introduction

Creating systems that learn to solve complex tasks from interactions with
their environment is one of the primary goals of artificial intelligence research.
Recently, much progress has been made in this regard, mainly achieved through
modern reinforcement learning (RL) techniques [1,21]. Examples of recent suc-
cesses include systems which exceed human level performance in playing console-
based Atari games [12] or can navigate 3D virtual environments [11], and
AlphaGo Zero [17] became the first program to beat world class GO players
by learning from self-play only. Function approximators such as deep neural net-
works, when used with off-policy and bootstrapping methods such as Q-learning,
which used to be unstable and were referred to as a “deadly-triad” [20], have
now been proven to be a competent approach using techniques such as experience
replay [8] which stabilize learning with the help of a large replay memory.

Spurred by these successes, another line of recent research has considered
alternative approaches to RL using black-box optimization methods which do
not require back propagation of gradient computations. Corresponding contribu-
tions include systems [10,14] that are trained using so called evolution strategies
which achieve competitive performance in playing Atari games. Similar perfor-
mance was obtained in [19] where genetic algorithms were found to scale better
than evolution strategies. This revived interest in black-box methods for solving
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RL problems as these can be parallelized when using modern distributed archi-
tectures. However, most real-world systems must deal with limited and noisy
state information resulting in partial observability as encountered in partially
observable Markov decision processes (POMDPs). To learn policies under such
circumstances, systems need to have internal memory. Therefore, recurrent RL
methods to cope with partial observability have recently been investigated but
were found to be difficult to train [4].

In this paper, we focus on these kind of problems and consider RL in par-
tially observable environments. Since echo state networks [5] are known for their
simple architecture and short-term memorization capabilities, we choose them
in order to train parameterized control policies. In particular, we propose to use
simultaneous perturbation stochastic optimization (SPSA), a gradient approxi-
mation technique, as a training algorithm, which at each iteration requires only
two evaluations of objective function regardless of dimension of the parameter.
Using SPSA, we devise three types of ESN training that differ in how the weight
matrices are chosen in each iteration. Finally, we use such ESNs to learn policies
and test them against baselines on classic control problems.

Previous work on black-box methods for training echo state networks seeks
to combine genetic algorithms to train internal weights of the reservoir and
stochastic gradient descent to train the output weights [3,15]. Similar work was
done in [6] where output weights and spectral radii of internal weight matrices
were evolved. Alternatively, more recent work [16] concerning different learning
strategy focused on using hebbian learning rules to adapt reservoir matrices. An
interesting hybrid of using hebbian learning and temporal difference learning was
later proposed in [7] to adapt actor-critic ESNs. In contrast to these previous
approaches, we use SPSA to optimize the entire network weights which has
several noteworthy properties: (i) it requires only two loss measurements at each
iteration, (ii) it does not require back propagation of gradients, (iii) it does not
require any maintenance of candidate solutions as in genetic algorithms, and
(iv) it can handle stochastic returns and hence does not require averaging over
multiple measurements to account for the noisy returns.

2 Simultaneous Perturbation Stochastic Approximation

In this short section, we briefly recall the main ideas behind simultaneous pertur-
bation stochastic approximation (SPSA) for derivative free optimization; readers
familiar with this technique may safely skip ahead.

Consider the general problem of maximizing a differentiable objective func-
tion f(θ) : Rd → R, that is, consider the problem of finding θ∗ = argmaxθf(θ).

For many complex systems, the gradient ∂f/∂θ cannot be computed directly
so that ∂f/∂θ = 0 can often not be solved. It is, however, typically possible
to evaluate f(θ) at various values of θ which, in turn, allows, for computing
stochastic approximations of the gradient. One method in this regard is SPSA
due to Spall [18] which iteratively updates estimates of the optimal θ as

θk+1 = θk + lk ĝk(θk) (1)
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where ĝk(θk) is an estimator of the gradient at θk and lk is the learning rate in
iteration k. To estimate the gradient, two perturbations are generated, namely
(θk +ck δk) and (θk −ck δk) where δk is a perturbation vector and ck is a scaling
parameter. Then, the possibly noisy objective function F (·) = f(·) + noise is
measured at F (θk +ck δk) and F (θk −ck δk) and the gradient is estimated using
a two-sided gradient approximation

ĝk(θk) =
F (θk + ck δk) − F (θk − ck δk)

2 ck δk
. (2)

The convergence of the SPSA algorithm critically depends on the choice of
its parameters lk, ck and δk. In particular, the learning rate lk must meet the
Robbins-Monro conditions [13], namely lk > 0 and

∑∞
k=1 lk = ∞, and a common

choice in practice therefore is lk = l
(L+k)α where l, α, L > 0. Similarly, the scaling

factor ck must satisfy
∑∞

k=1

(
lk
ck

)2
< ∞ so that a good choice amounts to ck = c

kγ

where c, γ > 0. And, essentially, each element of the perturbation vector δk is
sampled from a uniform distribution over the set {−1,+1}.

3 Learning Policies Using Echo State Networks

In this section, we first briefly review policy learning under partial observability
as well as echo state networks and then introduce our approach towards policy
learning using echo state networks trained via SPSA.

3.1 Partial Observability

Consider an agent interacting with an environment. At any time t, the agent
observes the state st of the environment and performs an action at by following
a policy π(at|st) which is a mapping of state st to the probability of choosing
action a at time t. In return, the environment responds with a reward rt and
finds itself in a new state st+1.

However, in environments that are only partially observable, the agent does
not receive all relevant state information because of limited sensory inputs. In
this case, the state st does not satisfy the Markov property because it does not
summarize what has happened in the past so that an informed decision cannot
be taken. For such non-Markovian states, it is necessary to make the policy
dependent on a history of states ht = {st, st−1, . . . } rather than on the current
state st only. Hence, the policy becomes π(at|ht).

This, however, becomes impractical to compute whenever different tasks
require arbitrary lengths of histories. In situations like these, an echo state net-
work can be used to integrate the required history in its reservoir states. In this
way, we are able to parameterize the policy with weights of an echo state net-
work θ as π(at|st,θ) which takes the current state st as the input and returns
probabilities of actions by compacting the history of input states in the reservoir
memory.
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3.2 Echo State Networks

We next briefly recall the notion of echo state networks. These belong to reservoir
computing paradigm in which a large reservoir of recurrently interconnected
neurons processes sequential input data. In our setup, given that the state of the
environment st ∈ R

ns is given as the input to the network, the hidden states and
output of our policy network are given by ht ∈ R

nh and πt ∈ R
na , respectively.

The temporal evolution of such a network is governed by the following, non-linear
dynamical system

ht = (1 − β)ht−1 + β fh

(
W hht−1 + W sst

)
(3)

πt = fπ

(
W aht

)
(4)

where β ∈ [0, 1] is called the leaking rate and W s, W h, and W a are the input,
reservoir, and output weight matrices, respectively. The function fh(·) is under-
stood to act component-wise on its argument and is typically a sigmoidal acti-
vation function. For the output layer, however, fπ(·) is usually just a linear or
softmax function depending on the application context.

3.3 Policy Learning Using Echo State Networks

At any time, the goal of the agent is to maximize the expected cumulative reward
or the return received over a period of time which is defined as RT =

∑T
t=1 rt.

Hence, the objective function that is to be maximized is f(θ) = Eπθ

[
RT

]
and

finding an optimal policy amounts to finding θ∗ = argmaxθf(θ) where we now
write θ to denote the set of weights of an echo state network used to approximate
the policy π(at|st,θ).

According to our discussion in Sect. 2, we can then iteratively learn an opti-
mal θ according to a stochastic gradient ascent rule that follows the gradient
∇θEπθ

[
RT

]
. In particular, we can resort to SPSA in order to approximate this

gradient as

∇θEπθ

[
RT

] ≈ F (θ + ε) − F (θ − ε)
2ε

(5)

where F (·) is the stochastic return from the environment by running an episode
where, in each step, the agent follows the policy π(at|st,θ) approximated by the
ESN and where ε is the perturbation generated by SPSA. A summary of this
learning method can be found in Algorithm1.

3.4 Deterministic and Stochastic Policies

An agent’s policy can either be deterministic or stochastic. In a discrete action
space, the agent may apply a deterministic, greedy, “winner-takes-all” strategy
to select an action, i.e. at = argmaxaπ(a|st,θ). However, in order to encourage
exploration, the agent can follow a stochastic softmax policy in which actions
are sampled based on action probabilities according to the policy π(at|st,θ),
i.e. at ∼ fπ where fπ is the softmax function. In a continuous action space, the
agent’s actions are sampled from a Gaussian policy parameterized by mean and
variance neurons, that is fπ is considered a Gaussian probability distribution.
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Algorithm 1. Learn policies using SPSA
Input: SPSA parameters l, c, L, α, γ and initial weight θ0

for k = 0 to k max do

lk =
l

(L + k)α

ck =
c

kγ

δk ∼ U(−1, 1)
θ+ = θk + ck δk

θ− = θk − ck δk

Compute returns F (θ+) and F (θ−) by running an episode with weights θ+

and θ− respectively

ĝk(θk ) =
F (θ+) − F (θ−)

2 ck δk

θk+1 = θk + lk ĝk(θk )
end

3.5 Three Variants of Echo State Network Training

Typically, in echo state networks, only the output weight matrix W a is opti-
mized. However some tasks require tuning of the input- and reservoir weights
W s and W h in order to extract relevant information from observations or to
construct missing state information. Therefore, we consider three variants of our
SPSA algorithm using different choices of θ at each iteration

1. output spsa: at each iteration, we optimize only the output weight matrix,
that is we let θ = W a

2. all spsa: at each iteration, all of the weight matrices are updated at once,
that is we let θ = {W s,W h,W a}

3. alternating spsa: at each iteration, we update one of these matrices and
alternate in the subsequent iteration.

4 Experiments and Results

We evaluated the above SPSA variants on a benchmark of classic control prob-
lems available from OpenAI Gym [2] and compared them against temporal dif-
ference and policy gradient learning methods.

4.1 Acrobot and Mountain Car

We considered two classic problems, namely Mountain Car and Acrobot, and
considered discrete and continuous action selection. For both problems, we
restrict state observations to include only positional information excluding veloc-
ities so that the agent has to infer velocity information in order to retrieve the
full state information. An illustration of these OpenAI Gym problems and their
state-action spaces is given in Fig. 1.



8 R. Ramamurthy et al.

State and Action space

Acrobot
State: cosine and sine of two joint angles
Action: the action is either applying +1, 0
or -1 torque on the joint between two links

Mountain Car
State: 1-dimensional position of a car
Action: for the discrete version, the action is
either push left, no push and push right; for
the continuous version, the action is a scalar
force

(a)

(b)

(c)

Fig. 1. Test environments: (a) description of observation and action space for the
acrobot and mountain car tasks; (b), (c) task illustration from OpenAI Gym.

4.2 Implementation Details

We used the same architecture of echo state networks consisting of 40 reservoir
neurons with tanh activation functions for our SPSA variants and their RL
baselines. The number of input- and output neurons, and the output activation
function are chosen depending on the task and the type of policy being learned.
The weight matrices are initialized according to parameters such as sparsity,
scaling and spectral radius which are carefully set as per the guidelines in [9].
The input and reservoir matrices are chosen from a uniform distribution over
values [−0.5, 0.5]. However, the output scaling is chosen differently for each task.
The initial spectral radius of the reservoir matrix and the leaking rate are chosen
to be 1.0 and 0.3, respectively, for all tasks. The SPSA parameters such as
learning rate, scaling factor, decay rates and similarly, parameters concerning
reinforcement learning methods such as discount factor and learning rates are
tuned for each experiment. Table 1 lists all hyper parameters and their values.

4.3 Results

First, we tested our algorithms to train deterministic greedy policies for the
discrete versions of the acrobot and mountain car tasks and found that SPSA
variants are able to solve both these tasks. In a quantitative evaluation, we
computed mean learning curves with 10 different random seeds and compared
them to similar curves obtained using echo state networks trained with temporal
difference methods such as Q-learning and SARSA learning using stochastic
gradient descent. Figures 2(a) and (b) show the learning curves in terms of the
evolution of episodic total reward in the learning process (the higher the better).
As we can observe, all SPSA variants find better policies than Q-learning or
SARSA learning.
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Table 1. Hyperparameters and their values for different experiments.

Category Parameter Deterministic Stochastic

Acrobot (discrete) Mountain car

(discrete)

Acrobot

(discrete)

Mountain car

(continuous)

SPSA Learning rate (l) 1e−6 1e−3 5e−5 5e−3

Scaling factor (c) 1e−1 1e−1 1e−1 1e−1

L 10 100 10 100

α 0.102 0.602 0.102 0.602

γ 0.101 0.101 0.101 0.101

ESN Reservoir size 40 40 40 40

Input connectivity 0.7 0.3 0.3 0.7

Reservoir connectivity 0.7 0.3 0.7 0.7

Output scaling 0.1 0.1 1e−5 1e−2

Spectral radius 1.0 1.0 1.0 1.0

Leaking rate 0.3 0.3 0.3 0.3

RL Discount factor 0.99 1.0 0.99 0.99

Learning rate 1e−2 1e−2 1e−3 1e−3

Next, we tested our algorithms to learn stochastic policies for a discrete ver-
sion of the acrobot- and a continuous version of the mountain car task. We found
that the SPSA variants are able to solve these by finding a softmax policy and
a Gaussian policy for acrobot and mountain car, respectively. In a quantitative
evaluation, we again computed mean learning curves with 10 different random
seeds and compared them to data obtained using actor-critic methods. In the
actor-critic method, two echo state networks are used, one to learn the policy
(policy network) and one to learn the state value function (value network), both
act with limited state information as in our SPSA variants. Figures 2(c) and
(d) show the learning curves and it is seen that SPSA variants perform better
than actor-critic methods. Next, in order to visualize the learned Gaussian pol-
icy for the mountain car task, we plotted action probabilities for selected input
states. As we can see in Fig. 3(b), for the same input states, the resulting action
probability distribution is a mixture of Gaussians, meaning that the actions are
sampled from appropriate mixture components based on the hidden states of
the network which constructs the missing velocity information.

Our most important evaluation results are summarized in Fig. 3(a) which
shows average episodic total rewards in the last 100 iterations with 10 different
random seeds. Here we observe: (i) training only the output weight matrix using
SPSA yields better performance than its RL counterparts in all the experiments
which indicate that SPSA is a powerful alternative to common RL methods;
(ii) updating all the weight matrices at once gives the best performance in all
tasks; however, training in an alternating fashion also seems to be a promising
approach which warrants for further investigation; (iii) for the acrobot tasks,
it is evident that SPSA works better in learning a deterministic policy than
a stochastic policy. The reason could be that it is not necessary to also intro-
duce stochasticity into action space since the exploration happens already in
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(a) deterministic (b) stochastic

(c) deterministic (d) stochastic

Fig. 2. Learning curves: (a), (c) evolution of episodic total reward in learning deter-
ministic policies for discrete versions of acrobot and mountain car. (b), (d) evolution of
episodic total reward in learning of a softmax and Gaussian policy for discrete acrobot
and continuous mountain car problems tasks, respectively. It is evident that SPSA
variants perform better than RL methods

variants
deterministic stochastic

Acrobot Mountain Car Acrobot Mountain Car
(discrete) (discrete) (discrete) (continuous)

all spsa -105.56 -121.61 -121.83 85.34
alternating spsa -110.07 -124.70 -131.01 80.41

output spsa -109.16 -144.88 -141.25 80.24
output q -123.72 -150.69 - -

output sarsa -132.28 -163.94 - -
actor critic - - -193.95 72.64

(a) (b)

Fig. 3. Performance summary: (a) evaluation results containing average episodic total
reward in the last 100 iterations of policy learning on classic problems for different
variants and their baselines (the higher the value, the better the performance) (b)
visualization of a Gaussian policy learned for the mountain car task.
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parameter space in terms of perturbations. This concurs with the work done in
[14] whose authors also seek to learn a deterministic policy when using black-
box methods. Nevertheless, our approach demonstrates the general feasibility of
learning both deterministic- and stochastic policies.

5 Conclusion

In this paper, we considered the use of SPSA in training echo state networks
to solve action selection tasks under partial observability. We proposed three
variants that seek to perform gradient updates without using back-propagation.
Experiments on classic problems indicate that SPSA is a powerful alternative
to reinforcement learning methods commonly used for policy learning. In future
work, we intend to extend the ideas reported here using LSTM units to solve
more complex RL problems that require long-term dependencies. We also plan
to examine the alternating SPSA variant further to verify their applicability in
training deep recurrent neural networks.
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