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Abstract. The study of protein dynamics through analysis of conformational
transitions represents a significant stage in understanding protein function. Using
molecular simulations, large samples of protein transitions can be recorded.
However, extracting functional motions from these samples is still not automated
and extremely time-consuming. In this paper we investigate the usefulness of
unsupervised machine learning methods for uncovering relevant information
about protein functional dynamics. Autoencoders are being explored in order to
highlight their ability to learn relevant biological patterns, such as structural char‐
acteristics. This study is aimed to provide a better comprehension of how protein
conformational transitions are evolving in time, within the larger framework of
automatically detecting functional motions.
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1 Introduction

Proteins are large biomolecules having crucial roles in the proper functioning of organ‐
isms. They are synthesized using information contained within the ribonucleic acid
(RNA), when by means of the process known as translation, building blocks, the amino
acids, are chained together in a sequence. Although this sequence is linear, the protein
acquires a complex arrangement in its physiological state, as intramolecular forces
between the amino acids and the hydrophobic effect lead to a folding of the protein into
its three dimensional shape, which determines the protein’s function [27]. The stable
three dimensional structure of a protein is unique, however this shape undergoes signif‐
icant changes to deliver its biological function, according to various external factors
from the protein’s environment (e.g. temperature, interaction with other molecules).
Thus, a protein will acquire a limited number of conformations during its lifetime, having
the ability to transition between alternative conformations [26].

The study and prediction of conformational transitions represents a significant stage
in understanding protein function [21]. In this paper we investigate protein molecular
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motions and conformational transitions starting from the structural alphabet devised by
Pandini et al., a representation which provides a highly informative encoding of proteins
[22]. In this description, each fragment consists of 4 residues and is defined by three
internal angles: two pseudo-bond angles between the Cα atoms (Cα is the first carbon
atom that attaches to a functional group) of residues 1-2-3 and 2-3-4 and one pseudo‐
torsion angle formed by atoms 1-2-3-4 [22]. These internal angles entirely define each
structural fragment which can be also encoded as a letter from a Structural Alphabet
(SA) [22]. In addition to the previously mentioned representation based on angles, we
investigate whether enhancing the structural alphabet states (represented by the three
angles) with relative solvent accessibility information might bring further insight into
the matter at hand. Relative solvent accessibility (RSA) of amino acid residues is a value
indicating the degree to which the residue is exposed [20], being able to characterize the
spatial distribution of amino acids in a folded protein. RSA is significant for predicting
protein-interaction sites [20] and it is used in protein family classification [1]. The intu‐
ition is that, even if RSA values independently do not offer a unique characterization of
a protein, being individually non-specific, new structural states defined by the three
angles together with RSA values could bring additional information.

Using molecular simulations, large samples of protein transitions can be recorded.
However, extracting functional motions from these samples is still not automated and
extremely time-consuming. Therefore, we consider that computational methods such as
unsupervised learning could be a well suited solution for better understanding protein
dynamics. We are investigating the usefulness of deep autoencoder neural networks to
acquire a clearer sense of proteins’ structure, with the long term goal of learning to
predict proteins’ conformational transitions. Several approaches in the literature were
proposed for analyzing and modeling protein structural conformations using both super‐
vised and unsupervised machine learning techniques. Support vector machine’s
performance was tested in [14] by classifying gene function from heterogeneous protein
data sets and comparing results with various kernel methods. In [28], a Radial Basis
Function Network (RBFN) is proposed for classifying protein sequences. Fifteen super‐
vised learning algorithms were evaluated in [9] by automating protein structural clas‐
sification from pairs of protein domains and Random Forests were proven to outperform
the others. Additional insight into protein molecular dynamics (MD) is gained in [16]
by employing L1-regularized reversible Hidden Markov Models. Self-organizing maps
have also been used alongside hierarchical clustering in [6], for the purpose of clustering
molecular dynamics trajectories. A methodology for detecting similarity between three
dimensional structures of proteins was introduced by Iakavidou et al. in [8].

The contribution of the paper is twofold. Our first main goal is to investigate the
capability of unsupervised learning models, more specifically of autoencoders, to
capture the internal structure of proteins represented by their conformational transitions.
Secondly, we propose two internal representations for a protein (one using the structural
alphabet states defined by three angle values, as introduced in [22] and one in which
these states are extended with RSA information) with the aim of analyzing which of
them is more informative and would drive an autoencoder to better learn structural rela‐
tionships between proteins. The experiments performed are aimed at evaluating the
extent by which the combination of a reduced representation and an autoencoder is
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suitable to compress the complex MD data into a more interpretable representation. With
this aim we propose a proof of concept that considers only two similar but unrelated
proteins where learning on one can be used on the other. The literature regarding protein
data analysis reveals that a study similar to ours has not been hitherto performed. The
study can be further extended on a large scale where evolutionary relationship are
considered, with the goal of answering how much the “closeness” of proteins in evolu‐
tionary space can affect the efficiency of the encoding. To sum up, in this paper we seek
answers to the following research questions: RQ1 What is the potential of autoencoders
to unsupervisedly learn the structure of proteins and how does the internal representation
for a protein impact the learning process?; and RQ2 Are autoencoders able to capture
biologically relevant patterns? More specifically, are our computational findings
obtained by answering RQ1 and RQ2 correlated with the biological perspective?

The remainder of the paper is organized as follows. The autoencoder model used in
our experiments is described in Sect. 2. Section 3 provides our methodology and
Sect. 4 contains the results of our experiments, as well as a discussion regarding the
obtained results, both from a computational and biological perspective. The conclusions
of our paper and directions for future work are summarized in Sect. 5.

2 Autoencoders

Autoencoders were successfully applied in different complex scenarios such as image
analysis [13] and speech processing [5]. An autoencoder [7] is a feed forward neural
network. The input of the network is a real numbered vector x ∈ Rn.

An autoencoder is composed of two main components: (1) an encoder: g:
Rn

→ Rm, g(x) = h and (2) a decoder: f:Rm
→ Rn, f (h) = x̂. The two components are

stacked together, hence the goal of the autoencoder is to model a function:
f (g(x)) ≈ x. We notice that the input and the label of the model are the same vector.
Thus the autoencoders may be considered self-supervised learning techniques. If m < n
then the autoencoder is called undercomplete.

We consider the learning process of autoencoders as minimizing a loss function
L
(
x̂, x

)
=

1
n

∑n

i=1

(
x̂i − xi

)2. The optimization is performed using stochastic gradient

descent with backpropagation. One may notice that the goal of the autoencoder is to
copy the input x into the output value. However, such a model would not be useful at
all. In fact, the goal of the autoencoder is to come up with useful representation of data
in the hidden state, h. Good encoded values may be useful for various tasks such as
information retrieval and data representation. A sparse autoencoder is a technique used
to help the model avoid the simple copying of the input to the output by introducing a
sparsifying penalty to the loss function. Usually this sparsing penalty is the L1 regula‐
rization on the encoded state. The penalty term is scaled using a small real number
denoted as 𝜆. Thus the employed loss becomes L

(
x̂, x

)
=

1
n

∑n

i=1

(
x̂i − xi

)2
+

𝜆
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i=1
||hi

||.
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Denoising autoencoders represent another technique to avoid the mere copying of
the input data to the output layer, forcing the hidden layers to learn the best defining,
most robust features of the input. To achieve this, a denoising autoencoder is fed
stochastically corrupted input data and tries to reconstruct the original input data. Thus,
in the case of denoising autoencoders the loss function to be minimized is
L(g(f (x̃)), x), where the input given to the autoencoder is represented by x̃ - input data
corrupted by some form of noise [7]. Therefore, the autoencoder will not simply elicit
the input data, but will learn a significant representation of it. Various experiments
proved that autoencoders are better than Principal Component Analysis (PCA) [7]. This
is mainly because autoencoders are not restricted to perform linear mapping. One can
consider that a single layer autoencoder with linear activation function has the same
capacity as PCA. However, the capacity of autoencoders can be improved by tuning the
complexity of the encoder and decoder functions.

3 Methodology

In this section we present the experimental methodology used in supporting our assump‐
tion that autoencoders can capture, from a computational viewpoint, biologically rele‐
vant patterns regarding structural conformational changes of proteins. With the goal of
answering the first research questions formulated in Sect. 1, the experiments will inves‐
tigate the ability of an autoencoder to preserve the structure of a protein. Two types of
representations will be considered in order to identify the one that is best suited for the
analysis we are conducting. These representations will be detailed in Sect. 3.1.

3.1 Protein Representations

A protein is a macromolecule with a very flexible and dynamic innate structure [18] that
changes shape due to both external changes from its environment and internal molecular
forces. The resulting shape is a different conformation. For each conformation of a
protein, two different representations of the local geometry of the molecule will be used
in our study.

The first representation for a protein’s conformation, which we call the representa‐
tion based on angles (Angles), consists of conformational states given by the three types
of angles mentioned in Sect. 1 [22]. In this representation, a conformation of k fragments
(letters from the structural alphabet [22]) is represented as 3k dimensional numerical
sequence. This sequence contains three angles for each fragment from the conformation.
The second way to represent a protein conformation, named in the following the
combined representation (Combined) is based on enhancing the conformational states
given by angles with the RSA values of the amino acid residues (see Sect. 1). In our
second representation, a conformation of k states is visualized as a 4k dimensional
numerical vector. The first 3k positions from this vector contain the conformation’s
representation based on angles, whereas the following k positions contain the RSA
values.

82 M. Teletin et al.



3.2 Autoencoder Architecture

In the current study we use sparse denoising autoencoders to learn meaningful, lower‐
dimensional representations for proteins’ structures, considering their conformational
transitions. Hence, the loss function will be computed as shown in Sect. 2, where
x̂ = g(f (x̃)) and x̃ represents the corrupted input data. We chose a denoising autoencoder
in our experiments, because experimental measurements of biological processes and
information generated by particle methods (e.g. MD simulations) can be noisy or subject
to statistical errors. We are going to use such an autoencoder in order to reduce the
dimensionality of our data. Considering that one of our purposes is to be able to visualize
our data sets, all the techniques implied are going to encode the protein representations
into 2 dimensional vectors.

The sparse denoising autoencoder learns a mapping function from an n-dimensional
space (where n can have different values, according to the employed representation) to
a 2 dimensional hidden state. We performed several experiments, with variable numbers
of hidden layers and using various activation functions, in order to reduce dimension‐
ality. More specifically, the activation functions we employed for the hidden layers are:
rectified linear unit (ReLU), exponential linear unit (ELU) [4] and scaled exponential
linear unit (SELU) [12]. As a regularization strategy, we use the dropout technique [24],
with dropout rates in {0.1, 0.2, 0.3}. Since we have only 2 values in the encoded state
we are going to use a small value for 𝜆 hyperparameter: 10−6. The encoded values are
then reconstructed using a similar decoding architecture.

Optimization of the autoencoder is achieved via stochastic gradient descent enhanced
with the adam optimizer [11]. We employ the algorithm in a minibatch perspective by
using a batch size of 16. The batch size affects the performance of the model. Usually,
large batch sizes are not recommended since it may reduce the capacity of the model to
generalize. Adam is a good optimizer since it also deals with the adjustment of the
learning rate. The data set is shuffled and 10% is retained for validation. We keep the
best performing model on the validation phase by measuring the validation loss. The
loss obtained on the validation set was 0.555 for 1P1L and 0.378 for 1JT8 for the ReLU
activation function, with 0.2 dropout rate. Regarding the encoding architecture, we
experimented with 2 and 3 hidden layers, containing different numbers of neurons
(depending on the size of the input data), and each of the hidden layers benefit from
batch normalization. The decoding architecture is similar, having the same dimensions
for the hidden layers, but in reverse.

3.3 Evaluation Measures

In order to determine whether the representation learned by the autoencoder preserves
the similarities found in the original protein data we define the intra-protein similarity
measure, IntraPS, which evaluates the degree of similarity between conformations
within a protein and we will use this as an indication of how well the intra-protein
conformational relations are maintained in the lower-dimensional representation learned
by the autoencoder. IntraPS is based on the cosine similarity measure, which is
employed to evaluate the likeness between two conformations of a protein.
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Cosine similarity (COS) is widely used as a measure for computing the similarity
between gene expression profiles. It is a measure of the direction-length similitude
between two vectors and is defined as the cosine of the angle between the high dimen‐
sional vectors. To define the intra-protein similarity measure, we consider that a protein
p is represented as a sequence of n conformations, i.e. p =

(
c

p

1, c
p

2,… , cp
n

)
. Each confor‐

mation cp

i
 of the protein is visualized as an m-dimensional numerical vector (i.e. the

representation based on angles or the combined representation previously described).
The Intra-protein similarity of a protein p =

(
c

p

1, c
p

2,… , cp
n

)
, denoted as IntraPS(p),

is defined as the average of the absolute cosine similarities between two consecutive

conformations, i.e. IntraPS(p) =

∑n−1
i=1

|||COS
(
c

p

i
, c

p

i+!

)|||
n − 1

.

In computing the IntraP measure, we decided to use the absolute values for the cosine
between two conformations, since our assumption was that for protein data the relative
strengths of positive and negative cosine values between RSA vectors is the same. This
was experimentally confirmed in our experiments. For computing the similarity/dissim‐
ilarity between two protein conformational transitions, different methods were investi‐
gated (Euclidian distance, Pearson correlation, Biweight midcorrelation) and the cosine
similarity has proven to be the most appropriate. Since the dimensionality of the original
protein conformations is significantly reduced by the autoencoder (i.e. two dimensions),
Euclidian, Pearson and Biweight midcorrelation are not good options for measuring the
similarity: the Euclidean distance is larger between points in a high dimensional space
than in a two dimensional one; Pearson and Biweight are not suitable in 2D (the corre‐
lation between two dimensional points is always 1).

4 Results and Discussion

The experiments we performed for highlighting the potential of deep autoencoders to
capture the proteins’ structure will be further presented, using the experimental meth‐
odology presented in Sect. 3.

The proteins used in our study are described in Table 1 which shows a brief depiction
of the proteins together with their superfamily and sequence length. The proteins from
Table 1 were chosen based on data availability (conformational transitions and RSA
values), the fact that they have the same sequence length (which enables us to carry out
our investigations related to RQ2 from Sect. 1.

Table 1. Proteins selected for analysis [2].

Protein Description Superfamily Sequence length
1P1L Component of sulphur-metabolizing organisms 3.30.70.120 102
1JT8 Protein involved in translation 2.40.50.140 102

For both these proteins, 10000 conformational transitions were recovered from the
MoDEL database [17] (i.e. n = 10000), where each transition consists of a sequence of
99 fragments of the structural alphabet [22]. Thus, as described in Sect. 3.1, in the
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representation based on angles, a conformation has a length of 297, whereas in the
combined representation a conformation is visualized as a 396-dimensional point. For
both proteins, the two representations proposed in Sect. 3.1 will be further used. Before
applying the autoencoder, the protein data sets are standardized, i.e. transformed to mean
0 and standard deviation 1. Furthermore, considering that the employed technique is a
denoising autoencoder, the input data is corrupted by adding noise (random samples
from a standard normal distribution).

4.1 Results

The experiment described below is conducted with the aim of answering our first
research question RQ1 and of investigating if and how the internal representation for a
protein impacts the learning process. For each protein data set, we trained a number of
denoising sparse autoencoders (Sect. 3.2). For the autoencoder we have employed the
Keras implementation available at [3]. The autoencoders presented in Sect. 3.2 are used
to reduce the dimensionality of our data and to visualize the protein data sets. Figures 1
and 2 depict the visualization of the proteins from our data set using trained sparse
denoising autoencoders. The axes on Figs. 1 and 2 represent the range of values obtained
within the 2-dimensional encoding of the input data set (the values of the two hidden
nodes representing the encoder output). Colours were added to better emphasize the
representations of successive conformations).

Fig. 1. Visualization of protein 1JT8. Fig. 2. Visualization of protein 1P1L.

The original data fed to the autoencoder for each protein represents a timely evolution
of the protein’s structure (albeit for an extremely small interval of time - nanoseconds),
considering its transitional conformations. From one conformation to another, the
protein might remain unchanged, or certain parts of it might incur minor modifications.
The autoencoders used to obtain these representations were trained on original data in
its combined representation, they employ 6 hidden layers (3 for encoding and 3 for
decoding), with ReLU as activation function, batch normalization and a dropout rate of
0:2. Nevertheless, we experimented with the representation based on angles, as well as
with various combinations of parameters (number of neurons, layers, dropout rate, acti‐
vation functions), as described in Sect. 3.2 and all resulting plots denote an evolution of
the data output by the autoencoder (henceforth referred to as encoded data), thus
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suggesting that autoencoders are able to identify the most relevant characteristics of the
original representations.

The two dimensional representations of the proteins as captured by the autoencoders,
illustrated in Figs. 1 and 2, reflect the autoencoder’s ability to accurately learn biological
transitions. Successive conformations in the original data are progressively chained
together in the autoencoder’s output data thus denoting a visual evolution. Figures 1 and
2 also show that the considered protein data are relevant for machine learning models,
as it correctly captures biological chained events, by encoding successive conformations
into points that are close in a 2-dimensional space.

Further, to decide whether the autoencoder maintains the relationships found within
the original data, we use the IntraPS measure. Thus, first we compute these similarities
for the original data and then for the two-dimensional data output by the autoencoder,
for both considered representations. The results are shown in Table 2. For each protein,
in addition to the values for the IntraPS measure, we also present the minimum (Min),
maximum (Max) and standard deviation (Stdev) of the absolute values of cosine simi‐
larities between two consecutive conformations, for both representations. We mention
that Min, Max and Stdev were computed using batches of 100 successive conformations.
These results are also illustrated in Figs. 3 and 4, which show the comparative evolution
of average IntraPS values for each 100 conformations in the 10000 conformations that
characterize each considered protein. We notice that for both proteins 1JT8 and 1P1L
the results output by the autoencoder (denoted by “Encoded data” in the images) are
slightly larger, but, on average, particularly similar to the values computed for the orig‐
inal data. All these results suggest that the original proteins’ conformations have a high
degree of cosine similarity (highlighted in Table 2), which is still preserved in the data
resulted from the autoencoder. One observes from Fig. 3 that there is a spike in the
encoded data, which is not visible in the original data. Analyzing protein 1JT8, we
observed that there is an event in the protein structure, but it happens with about 100
conformations before the spike, thus it needs further investigation.

Table 2. IntraPS for proteins 1JT8 and 1P1L, using the two considered representations.

Protein Angles Combined Min/Max/Stdev (COS)
Angles Combined

1JT8 Original 0.9960 0.9913 0.9894/0.9995/0.0023 0.9843/0.9962/0.0022
Encoded 0.9939 0.9985 0.9213/0.9999/0.0161 0.9573/0.9999/0.0044

1P1L Original 0.9779 0.9573 0.9593/0.9896/0.0064 0.9464/0.9695/0.0054
Encoded 0.9912 0.9962 0.9315/0.9999/0.0119 0.9661/0.9999/0.0052

With regard to the used internal representations, we conclude that these do not seri‐
ously influence the learning process. This may be due to the significant reduction of data
dimensionality (two dimensions). Still, for the combined representation which is richer
in information than the representation based on angles, slightly better results were
obtained. As highlighted in Table 2, for both proteins, IntraPS values are larger for the
encoded data and the standard deviation of the cosine similarities between two consec‐
utive conformations is smaller, as well. If the data were reduced to a higher dimensional
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space, the RSA values might bring additional improvements, which induces an
interesting matter for future investigations.

Fig. 3. Protein 1JT8 (combined
representation).

Fig. 4. Protein 1P1L (combined
representation).

With the aim of answering research question RQ2, we are analyzing in the following
the biological relevance of the above presented computational results. The molecular
dynamics sampled by the ensemble of structures in the two data sets is consistent with
small consecutive changes in the protein structure occurring on the nanosecond time
scale. These changes are typical of the first stages of the functional motions and they
are generally dominated by local transitions and significant resampling of the confor‐
mational space. The autoencoder is able to capture both these features, as demonstrated
by the obtained results: changes are encoded in chained events that resample the confor‐
mational space effectively. In addition, there is evidence that evolutionary related
proteins are also similar in their functional motions [23].

The study performed in this paper with the aim to highlight the ability of autoen‐
coders to uncover relevant information about protein dynamics is new. Autoencoders
have been previously used in the literature for protein structure analysis, but from
perspectives which differ from ours.

Autoencoders were proven to be effective for analysis of protein internal structure
in [15] where the authors initialized weights, refined them by backpropagation and used
each layer’s input back to itself in order to predict backbone Cα angles and dihedrals. In
[10], autoencoders were employed for improving structure class prediction by repre‐
senting the protein as a “pseudo-amino acid composition” meaning the model consisted
of normalized occurrences of the each of the 20 amino acids in a protein, combined with
the order of the amino acid sequence. The algorithm called DL-Pro [19] is designed for
classifying predicted protein models as good or bad by using a stacked sparse autoen‐
coder which learns from the distances between two Cα atoms residues. Sequence based
protein to protein interaction was also predicted using a sparse autoencoder in [25].

5 Conclusions and Further Work

We have conducted in this paper a study towards applying deep autoencoders for a better
comprehension of protein dynamics. The experiments conducted on two proteins
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highlighted that autoencoders are effective unsupervised models able to learn the struc‐
ture of proteins. Moreover, we obtained an empirical evidence that autoencoders are
able to encode hidden patterns relevant from a biological perspective.

Based on the study performed in this paper and on previous investigations regarding
protein data analysis, we aim to advance our research towards predicting protein confor‐
mational transitions using supervised learning models. Furthermore, we plan to continue
our work by using a two-pronged strategy: from a biological viewpoint we will consider
other proteins and examine how their evolutionary relationships are reflected within the
resulting data; computationally, we will investigate different architectures for the sparse
autoencoder used in our experiments (e.g. model’s architecture, different optimizers for
the gradient descent) and we will apply variational and contractive autoencoders instead
of sparse ones.
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