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Abstract. Tuberculosis (TB) is a widespread and highly contagious disease that
may lead serious harm to patient health. With the development of neural network,
there is increasingly attention to apply deep learning on TB diagnosis. Former
works validated the feasibility of neural networks in this task, but still suffer low
accuracy problem due to lack of samples and complexity of radiograph informa‐
tion. In this work, we proposed an end-to-end neural network system for TB
diagnosis, combining preprocessing, lung segmentation, feature extraction and
classification. We achieved accuracy of 0.961 in our labeled dataset, 0.923 and
0.890 on Shenzhen and Montgomery Public Dataset respectively, demonstrating
our work outperformed the state-of-the-art methods in this area.
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1 Introduction

Tuberculosis is a highly contagious disease that may lead serious harm to patient health.
According to the World Health Organization (WHO) [1], until the end of 2015, nearly
10 million people in the world suffered from tuberculosis and more than 1.5 million
died. The WHO pointed out that early diagnosis and appropriate treatment can avoid
the majority of tuberculosis deaths, and millions of people are saved each year. None‐
theless, huge number of people still suffers for high cost and lack of professional doctors.
Therefore, reliable tuberculosis diagnosing system is an urgent demand.

At present, a large number of medical image data has not yet been digitized, and
the level of data sharing and interoperability among hospitals is still at a low level.
It is a dilemma that advanced method usually requires big data, which is impossible
for medical dataset. Also, it is difficult to obtain reliable labeling data in the medical
imaging field for the interdisciplinary gap. In addition, medical images contain more
difficult samples and pixel-scale features, making AI image analysis in the medical
field more challenging than natural image recognition. This work proposes a neural
network specialized for pulmonary tuberculosis diagnosis in radiographs, to solve
all above difficulties.
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2 Related Works

In 2012, Hinton’s team [2] first adopted convolutional neural network into the ImageNet
classification challenge and achieved astonishing results, drastically reducing the Top5
error rate from 26% to 15%. This opened up a boom in deep learning. At present, deep
learning has achieved remarkable results in the fields like image recognition, detection,
segmentation, and so on [3, 5].

Deep learning technology was first officially applied to medical image analysis in
2015. Convolutional neural networks (CNN) soon gained increasingly popularity due
to their ability to learn mid and high-level image representations. Bar Y et al. explore
the ability of a CNN to identify different types of pathologies in chest x-ray images [6].
They used a pre-trained CNN on the ImageNet dataset as the first descriptor, and the
second descriptor is PiCoDes, which is a compact high-level representation of popular
low-level features (SIFTs [6], GIST, PHOG, and SSIM) which is optimized over a subset
of the ImageNet dataset containing approximately 70,000 images. They found that the
best performance was achieved using a combination of features extracted from the CNN
and a set of low-level features. Of course, the capacity of system will be limited for lack
of training.

U.K. Lopes et al. used a pre-trained CNN as a feature extractor, combining with
traditional machine learning methods for tuberculosis detection [8]. They first used
detached networks to extract features, then integrated CNN features and finally created
an ensemble classifier by combining the SVMs trained using the features extracted from
GoogLenet [9], ResNet [10], and VggNet [11]. The author of [12] proposed a novel
method to detect pulmonary tuberculosis. The method is divided into two steps. The
first step is to use pre-trained networks to make a two classification on chest X-rays. For
classification, the chest X-rays are resized to respectively corresponding network, and
the results of the prediction of all classification networks are averaged as the final clas‐
sification result. The second step is that the sensitivity of softmax score to occlusion of
a certain region in the chest X-Ray is used to find which region in the image is responsible
for the classification decision. But the over-resize process will sharply reduce the accu‐
racy of system.

Olaf Ronneberger et al. proposed a network called U-Net [13] for small-sample
segmentation. The network consists of two parts, a contracted path is used to obtain
contextual information and a symmetrical expansion path for precise positioning. At the
same time, in order to make more efficient use of the annotation data, they also use a
variety of data enhancement methods. In 2016, Milletari et al. proposed an extension to
the U-Net layout that incorporates ResNet-like residual blocks and a Dice loss layer,
rather than the conventional cross-entropy [14].

Inspired by all the mentioned works, we propose a combination of segmentation and
classification deep neural network through the chest X-rays to detect tuberculosis. All
chest X-rays were preprocessed to emphasize lung features. Main body of the network
has two branches: one is a designed lung segmentation network to obtain chest masks,
and the other a classification network. We achieve accuracy of 0.965 in our dataset,
0.923 and 0.890 on Shenzhen and Montgomery Public Dataset respectively, proving us
the state-of-the-art in this area.
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3 Proposed Methods

3.1 Method Overview

We proposed an end-to-end network for tuberculosis judgement. The whole system
consists of a Lung Segmentation Network, a classification backbone and an output head.
Heat maps are generated for further analysis and algorithm verification. This is the first
work to combine all the steps of tuberculosis detection in a whole network, making a
compromise between computational speed and preservation of image information. The
whole system is demonstrated in Fig. 1.
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Fig. 1. The block diagram of the proposed network.

3.2 Lung Segmentation Network

According to [14], lung segmentation is necessary for automatic tuberculosis diag‐
nosing. In this paper, we designed a simple and effective CNN with atrous convolutional
layers [18] to segment the chest from X-rays referring to U-net. Basic feature extraction
part has 3 conv-pooling blocks with different number of channels. Each conv-pooling
block contains a pooling layer after a few convolutional blocks, while each convolutional
block consists of a convolutional layer followed by a Batch-Norm layer and a ReLU
activation layer. Totally 8 times subsampling was implemented and the network struc‐
ture is shown in Fig. 2.
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Fig. 2. ConvNet configuration for feature extraction.
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Lungs in radiographs are of different sizes due to individual difference and other
factors. Therefore, multi-scale segmentation was also taken into consideration. We used
3 atrous convolutional layers with different sample rates respectively. All the feature
maps obtain by dilated convolution are added together and connected with the decoder
of the network. Segmented results are generated by continuous up-sampling. In order
to overcome the problem of low resolution after down-sampling in the FCN [17] method,
we fused the feature map of each down-sampled feature with that of the corresponding
up-sampling part. Chest segmentation results are shown in Fig. 3.

Fig. 3. Chest segmentation results. Left: original picture; Middle: segmentation result; Right:
evaluation result.

3.3 Specialized Innovations

Preprocessing. Radiographs need preprocessing before checking. The grayscale of
chest X-ray pixels usually range from tens to thousands, and it’s impossible for human
eyes to distinguish this huge change. Also, too large scales tend to cause the diagnosing
network to divergent. Therefore, the original pixel values need adjustment according to
WW (window width) and WP (window position). Because not all graphs are given
guidance values of WW and WP, a standard set of WW and WP was generated from
samples accompanied with WW and WP guidance values using cluster algorithm. We
also found that histogram equalization operation can emphasize the features in lung
while not significantly changing the gray level in other organs and background. Original
radiographs often have as many as two thousand pixels in length, which is a huge burden
for computation. But considering that some granule infections can be really small, input
images are bilinear interpolated to 1024 × 1024.

Two Branches. The main body of proposed network has two branches, one for lung
segmentation and the other for feature extraction with the network backbone. We choose
6 different popular and practical backbones in total for this work. To limit computation
memory and time, we subsampled the feature map by 32 instead of the original picture
masked by the output of segmentation branch, allowing main body of two branches to
work simultaneously.

Network Head. There are two heads in the last part of network. The classification head
of the network is specialized for this task. As input of our system is much larger than
normal classification competitions, we need more times of subsampling than the original
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networks. In practical, we adopted 128 times down sampling in our network. High simi‐
larity is a dangerous character of radiographs in this task, tending to cause over-fit.
Therefore, we added a heat map head to analysis if the correct feature of graphs has been
learned. For heat map generation, the second to last fully connected (FC) layer is
replaced by a global average pooling (GAP) [18] layer, also reducing parameters in the
network. Considering the imbalance of positive and negative samples, and also false
negative (FN) is much more harmful in medical area, focal loss [4] is introduced into
this work, giving positive samples a higher loss during training.

4 Experiments

4.1 Database

Database used in this paper comes from 2 sources. The first dataset was provided by
Huiying Medical Technology (Beijing) Co., Ltd., containing 2443 frontal chest X-ray
images (DICOM format), with labels marked by a reliable expert network. In the dataset,
2000 were randomly chosen as training set and the rest divided into validation and test
ones. There are two public datasets [20] available on the Internet. Shenzhen Hospital
dataset, which includes 662 frontal chest x-rays, was acquired from Shenzhen No. 3
People’s Hospital in Shenzhen, China. Montgomery County chest X-ray set (MC) was
collected in collaboration with the Department of Health and Human Services, Mont‐
gomery County, Maryland, USA, consisting of 138 frontal X-rays.

4.2 Experimental Results

To test the performance of network with different backbones, parallel comparisons were
made on our test dataset. Accuracy, sensitivity, specificity, AP, and AUC results are
shown in Table 1. Inception-v4 backbone without mask branch was also tested.

Table 1. Parallel comparisons of each method for our dataset

Backbone AUC Accuracy AP Sensitivity Specificity
VGG-19 0.974 0.893 0.981 0.988 0.765
ResNet-50 0.983 0.875 0.992 0.979 0.892
ResNet-101 0.989 0.879 0.992 0.972 0.932
ResNet-152 0.991 0.923 0.994 0.960 0.945
Inception v4 0.995 0.961 0.994 0.966 0.955
ResNet-Inception v2 0.982 0.934 0.984 0.948 0.915
Inception v4 (no
mask)

0.953 0.908 0.947 0.821 0.954

To be intuitive, the P-R curves and ROCs are shown in Fig. 4.
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Fig. 4. P-R curves (left) and ROCs (right).

The results show that our method made a highest accuracy of over 96.1% on our test
dataset, achieving by Inception v4. Mask branch contributed about 5.3% in accuracy.
We also reselected training set and retrained our networks from the beginning to exclude
the possibility of coincidence. We also checked the heat maps generated by our network,
finding it reasonable although slight bias and blur happens due to 128 times subsampling.
The visualized results are shown in Fig. 5.

Fig. 5. The heat map acquired in our network. Although slight positioning bias happens due to
totally 128 times subsampling, the red area roughly reflects position of infection. (Color figure
online)

Longitudinal comparisons with former works [8, 12, 15, 16] were also accomplished.
To be fair and objective, we compared the results of proposed method and the other
works on two public datasets. All the data of former works cited in this paper are the
best results the authors claimed. The models we used were still the ones we trained on
our dataset. Figure 6 shows the visualized results of our networks on Shenzhen Dataset.
Comparison with former works are shown in Table 2.
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Fig. 6. P-R curves (left) and ROCs (right) of our networks on Shenzhen Dataset.

Table 2. Performance for Shenzhen Dataset. Last three are proposed methods.

Method AUC Accuracy AP Sensitivity Specificity
U.K. Lopes et al. 0.894 0.837 - - -
Mohammad et al. 0.940 0.900 - 0.960 0.960
Sangheum et al. 0.926 0.837 0.940 - -
ResNet-152 0.967 0.923 0.971 0.978 0.986
Inception v4 0.979 0.897 0.965 0.923 0.937
Inception-ResNet v2 0.983 0.917 0.985 0.857 0.981

Results on Montgomery Dataset are shown in Fig. 7 and Table 3. We found that
many radiographs in the MC Dataset has large scale of black blocks and seriously
disturbed histogram equalization, making the background of preprocessed graphs lighter
than usual. We cut off the black blocks and resized the images, and saw an incredible
improvement in results.
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Fig. 7. P-R curves (left) and ROCs (right) of our networks on MC Dataset.
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Table 3. Performance for MC Dataset. Last three are proposed methods.

Method AUC Accuracy AP Sensitivity Specificity
U.K. Lopes et al. 0.926 0.810 - - -
Stefan Jaeger et al. 0.831 0.75 - ~0.5 ~0.9
Sangheum et al. 0.884 0.674 0.890 - -
ResNet-152 0.951 0.890 0.935 0.711 0.955
Inception v4 0.914 0.822 0.884 0.654 0.938
Inception-ResNet v2 0.957 0.844 0.965 0.618 0.913

Longitudinal and parallel experimental results show the superiority of our proposed
network. The models achieved relatively good results on our own test set. It’s hard to
explain why ResNet 152 seems to do better than other network backbones on the public
datasets. But our models undoubtedly showed adaptability to public datasets, outper‐
forming the state-of-the-art results.

5 Conclusion and Future Work

We proposed an end-to-end network for pulmonary tuberculosis classification, including
preprocessing, lung segmentation and classification. The system optimized the inference
time, while guaranteeing the accuracy.

Future work will include (1) making specialized optimization on network backbones
(2) optimization of preprocessing to increase adaptability of network (3) extending this
system to the detection of focus of infection.
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