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Abstract. The automatic analysis of ultrasound sequences can substan-
tially improve the efficiency of clinical diagnosis. In this work we present
our attempt to automate the challenging task of measuring the vascu-
lar diameter of the fetal abdominal aorta from ultrasound images. We
propose a neural network architecture consisting of three blocks: a con-
volutional layer for the extraction of imaging features, a Convolution
Gated Recurrent Unit (C-GRU) for enforcing the temporal coherence
across video frames and exploiting the temporal redundancy of a signal,
and a regularized loss function, called CyclicLoss, to impose our prior
knowledge about the periodicity of the observed signal. We present exper-
imental evidence suggesting that the proposed architecture can reach an
accuracy substantially superior to previously proposed methods, pro-
viding an average reduction of the mean squared error from 0.31 mm2

(state-of-art) to 0.09 mm2, and a relative error reduction from 8.1% to
5.3%. The mean execution speed of the proposed approach of 289 frames
per second makes it suitable for real time clinical use.
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1 Introduction

Fetal ultrasound (US) imaging plays a fundamental role in the monitoring
of fetal growth during pregnancy and in the measurement of the fetus well-
being. Growth monitoring is becoming increasingly important since there is an
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epidemiological evidence that abnormal birth weight is associated with an
increased predisposition to diseases related to cardiovascular risk (such as dia-
betes, obesity, hypertension) in young and adults [1].

Among the possible biomarkers of adverse cardiovascular remodelling in
fetuses and newborns, the most promising ones are the Intima-Media Thick-
ness (IMT) and the stiffness of the abdominal aorta by means of ultrasound
examination. Obtaining reliable measurements is critically based on the accu-
rate estimation of the diameter of the aorta over time. However, the poor signal
to noise ratio of US data and the fetal movement makes the acquisition of a
clear and stable US video challenging. Moreover, the measurements rely either
on visual assessment at bed-side during patient examination, or on tedious, error-
prone and operator-dependent review of the data and manual tracing at later
time. Very few attempts towards automated assessment have been presented
[2,3], all of which have computational requirements that prevent them to be
used in real-time. As such, they have reduced appeal for the clinical use. In this
paper we describe a method for automated measurement of the abdominal aortic
diameter directly from fetal US videos. We propose a neural network architecture
that is able to process US videos in real-time and leverage both the temporal
redundancy of US videos and the quasi-periodicity of the aorta diameter.

The main contributions of the proposed method are as follows. First we show
that a shallow CNN is able to learn imaging features and outperforms classical
methods as level-set for fetal abdominal aorta diameter prediction. Second we
add to the CNN a Convolution Gated Recurrent Unit (C-GRU) [15] for exploiting
the temporal redundancy of the features extracted by CNN from the US video
sequence. Finally, we add a new penalty term to the loss function used to train
the CNN to exploit periodic variations.

2 Related Work

The interest for measuring the diameter and intima-media thickness (IMT) of
major vessels has stemmed from its importance as biomarker of hypertension
damage and atherosclerosis in adults. Typically, the IMT is assessed on the
carotid artery by identifying its lumen and the different layers of its wall on
high resolution US images. The improvements provided by the design of semi-
automatic and automatic methods based mainly on the image intensity profile,
distribution and gradients analysis, and more recently on active contours. For
a comprehensive review of these classical methods we refer the reader to [4]
and [5]. In the prenatal setting, the lower image quality, due to the need of
imaging deeper in the mother’s womb and by the movement of the fetus, makes
the measurement of the IMT biomarker, although measured on the abdominal
aorta, challenging.

Methods that proved successful for adult carotid image analysis do not per-
form well on such data, for which only a handful of methods (semi-automatic or
automatic) have been proposed, making use of classical tracing methods and mix-
ture of Gaussian modelling of blood-lumen and media-adventitia interfaces [2],
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or on level sets segmentation with additional regularizing terms linked to the
specific task [3]. However, their sensitivity to the image quality and lengthy
computation prevented an easy use in the clinical routine.

Deep learning approaches have outperformed classical methods in many med-
ical tasks [8]. The first attempt in using a CNN, for the measurement of carotid
IMT has been made only recently [9]. In this work, two separate CNNs are used
to localize a region of interest and then segment it to obtain the lumen-intima
and media-adventitia regions. Further classical post-processing steps are then
used to extract the boundaries from the CNN based segmentation. The method
assumes the presence of strong and stable gradients across the vessel walls, and
extract from the US sequence only the frames related to the same cardiac phase,
obtained by a concomitant ECG signal.

However, the exploitation of temporal redundancy on US sequences was
shown to be a solution for improving overall detection results of the fetal heart
[11], where the use of a CNN coupled with a recurrent neural network (RNN) is
strategic. Other works, propose similar approach in order to detect the presence
of standard planes from prenatal US data using CNN with Long-Short Term
Memory (LSTM) [10].

3 Datasets

This study makes use of a dataset consisting of 25 ultrasound video sequences
acquired during routine third-trimester pregnancy check-up at the Department of
Woman and Child Health of the University Hospital of Padova (Italy). The local
ethical committee approved the study and all patients gave written informed
consent.

Fetal US data were acquired using a US machine (Voluson E8, GE) equipped
with a 5 MHz linear array transducer, according to the guidelines in [6,7], using
a 70◦ FOV, image dimension 720× 960 pixels, a variable resolution between 0.03
and 0.1 mm and a mean frame rate of 47 fps. Gain settings were tuned to enhance
the visual quality and contrast during the examination. The length of the video
is between 2 s and 15 s, ensuring that at least one full cardiac cycle is imaged.

After the examination, the video of each patient was reviewed and a rele-
vant video segment was selected for semi-automatic annotation considering its
visual quality and length: all frames of the segment were processed with the
algorithm described in [2] and then the diameters of all frames in the segments
were manually reviewed and corrected. The length of the selected segments var-
ied between 21 frames 0.5 s and 126 frames 2.5 s. The 25 annotated segments
in the dataset were then randomly divided into training (60% of the segments),
validation (20%) and testing (20%) sets. In order to keep the computational
and memory requirements low, each frame was cropped to have a square aspect
ratio and then resized to 128×128 pixels. The data supporting this research are
[openly available].

https://figshare.com/s/47e9155d4a1dfb9b9be9
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4 Network Architecture

Our output is the predicted value ŷ[t] of the diameter of the abdominal aorta at
each time point. Our proposed deep learning solution consists of three main com-
ponents (see Fig. 1): a Convolutional Neural Network (CNN) that captures the
salient characteristics from ultrasound input images; a Convolution Gated Recur-
rent Unit (C-GRU) [15] exploits the temporal coherence through the sequence;
and a regularized loss function, called CyclicLoss, that exploits the redundancy
between adjacent cardiac cycles.

Our input consists of a set of sequences whereby each sequence S =
[s[1], ..., s[K]] has dimension N ×M pixels at time t, with t ∈ {1, . . . , K}. At each
time point t, the CNN extracts the feature maps x[t] of dimensions D×Nx×Mx,
where D is the number of maps, and Nx and Mx are their in-plane pixel dimen-
sions, that depend on the extent of dimensionality reduction obtained by the
CNN through its pooling operators.

The feature maps are then processed by a C-GRU layer [15]. The C-GRU
combines the current feature maps x[t] with an encoded representation h[t − 1]
of the feature maps {x[1], . . . , x[t − 1]} extracted at previous time points of the
sequence to obtain an updated encoded representation h[t], the current state,
at time t: this allows to exploit the temporal coherence in the data. The h[t]
of the C-GRU layer is obtained by two specific gates designed to control the
information inside the unit: a reset gate, r[t], and an update gate, z[t], defined
as follows:

r[t] = σ(Whr ∗ h[t − 1] + Wxr ∗ x[t] + br) (1)

z[t] = σ(Whz ∗ h[t − 1] + Wxz ∗ x[t] + bz) (2)

Where, σ() is the sigmoid function, W· are recurrent weights matrices whose
first subscript letter refers to the input of the convolution operator (either the
feature maps x[t] or the state h[t − 1]), and whose second subscript letter refers
to the gate (reset r or update z). All this matrices, have a dimension of D×3×3
and b· is a bias vector. In this notation, ∗ defines the convolution operation. The
current state is then obtained as:

h[t] = (1 − z[t]) � h[t − 1] + z[t] � tanh(Wh ∗ (r[t] � ht−1) + Wx ∗ x[t] + b). (3)

Where � denotes the dot product and Wh and Wx are recurrent weight
matrices for h[t−1] and x[t], used to balance the new information represented by
the feature maps x[t] derived by the current input data s[t] with the information
obtained observing previous data s[1], . . . , s[t − 1]. On the one hand, h[t] is then
passed on for updating the state h[t+1] at the next time point, and on the other
is flatten and fed into the last part of the network, built by Fully Connected (FC)
layers progressively reducing the input vector to a scalar output that represent
the current diameter estimate ŷ[t].
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Fig. 1. The deep-learning architecture proposed for abdominal diameter aorta pre-
diction. The blue blocks represent the features extraction through a CNN (AlexNet)
which takes in input a US sequence S, and provides for each frame s[t] a features map
x[t] that is passed to Convolution Gated Recurrent Units (C-GRU) (yellow circle) that
encodes and combines the information from different time points to exploit the tem-
poral coherence. The fully connected block (FC, in green), takes as input the current
encoded state h[t] as features to estimate the aorta diameter ŷ[t]. (Color figure online)

4.1 CyclicLoss

Under the assumption that the pulsatility of the aorta follows a periodic pattern
with the cardiac cycle, the diameter of the vessel at corresponding instants of the
cardiac cycle should ideally be equal. Assuming a known cardiac period Tperiod,
we propose to add a regularization term to the loss function used to train the
network as to penalize large differences of the diameter values that are estimated
at time points that are one cardiac period apart.

We call this regularization term CyclicLoss (CL), computed as L2 norm
between pairs of predictions at the same point of the heart cycle and from
adjacent cycles:

CL =

√
√
√
√

Ncycles∑

n=1

Tperiod∑

t=0

‖ ŷ[t + (n − 1)Tperiod] − ŷ[t + nTperiod] ‖2 (4)

The Tperiod is the period of the cardiac cycle, while Ncycles is the number
of integer cycles present in the sequence and ŷ[t] is the estimated diameter at
time t. Notably, the Tperiod is determined through a peak detection algorithm
on y[t], and the average of all peak-to-peak detection distances define its value.
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While the Ncycles is the number of cycles present, calculated as the total length
of the y[t] signal divided by Tperiod.

The loss to be minimized is therefore a combination of the classical mean
squared error (MSE) with the CL, and the balance between the two is controlled
by a constant λ:

Loss = MSE + λ · CL =
1
K

K∑

t=1

(y[t] − ŷ[t])2 + λ · CL (5)

where y[t] is the target diameter at time point t. It is worth noting that the
knowledge of the period of the cardiac cycle is needed only during training
phase. Whereas, during the test phase, on unknown image sequence, the trained
network provide its estimate blind of the periodicity of the specific sequence
under analysis.

Fig. 2. Each panel (a–c) shows the estimation of the aortic diameter at each frame
of fetal ultrasound videos in the test set, using the level set method (dashed purple
line), the naive architecture using AlexNet (dashed orange line), the AlexNet+C-GRU
(dashed red line), and AlexNet+C-GRU trained with the CyclicLoss (dashed blue line).
The ground truth (solid black line) is reported for comparison. Panels (a, c) show the
results on long sequences where more than 3 cardiac cycles are imaged, whereas panels
(b, d) show the results on short sequences where only 1 or two cycles are available.
(Color figure online)
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4.2 Implementation Details

For our experiments, we chose AlexNet [12] as a feature extractor for its simplic-
ity. It has five hidden layers with 11×11 kernels size in the first layer, 5×5 in the
second and 3 × 3 in the last three layers; it is well suited to the low image con-
trast and diffuse edges characteristic of US sequences. Each network input for the
training is a sequence of K = 125 ultrasound frames with N = M = 128 pixels,
AlexNet provides feature maps of dimension D×N ×M = 256×13×13, and the
final output ŷ[t] is the estimate abdominal aorta diameter value at each frame.

The loss function is optimised with the Adam algorithm [16] that is a first-
order gradient-based technique. The learning rate used is 1e−4 with 2125 iter-
ations (calculated as number of patients × number of ultrasound sequences)
for 100 epochs. In order to improve generalization, data augmentation of the
input with a vertical and horizontal random flip is used at each iteration. The
λ constant used during training with CyclicLoss takes the value of 1e−6.

5 Experiments

The proposed architecture is compared with the currently adopted approach in
Sect. 4. This method provides fully-automated measurements in lumen identifi-
cation on prenatal US images of the abdominal aorta [3] based on edge-based
level set. In order to understand the behaviour of different features extraction
methods, we have also explored the performance of new deeper network archi-
tectures whereby AlexNet was replaced it by InceptionV4 [13] and DenseNets
121 [14].

Table 1. The table show the mean (standard deviation) of MSE and RE error for all
the comparison models. The combination of C-GRU and the CyclicLoss with AlexNet
yields the best performance. Adding recurrent units to any CNN architecture improves
its performance; however deeper networks as InceptionV4 and DenseNets do not show
any particular benefits with respect to the simpler AlexNet. Notably, we also consider
the p-value for multiple models comparison with the propose network AlexNet+C-
GRU+CL, in this case the significant level should be 0.05/7 using the Bonferroni
correction [17].

Methods MSE [mm2] RE [%] p-value

AlexNet 0.29(0.09) 8.67(10) 1.01e−12

AlexNet+C-GRU 0.093(0.191) 6.11(5.22) 1.21e−05

AlexNet+C-GRU+CL 0.085(0.17) 5.23(4.91) “-”

DenseNet121 0.31(0.56) 9.55(8.52) 6.00e−13

DenseNet121+C-GRU 0.13(0.21) 7.72(5.46) 7.78e−12

InceptionV4 6.81(14) 50.4(39.5) 6.81e−12

InceptionV4+C-GRU 0.76(1.08) 16.3(9.83) 2.89e−48

Level-set 0.31(0.80) 8.13(9.39) 1.9e−04
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The performance of each method was evaluated both with respect to the
mean squared error (MSE) and to the mean absolute relative error (RE); all
values are reported in Table 1 in terms of average and standard deviation across
the test set.

In order to provide a visual assessment of the performance, representative
estimations on four sequences of the test set are shown in Fig. 2. The naive
architecture relying on a standard loss and its C-GRU version are incapable to
capture the periodicity of the diameter estimation. The problem is mitigated by
adding the CyclicLoss regularization on MSE. This is quantitatively shown in
Table 1, where the use of this loss further decreases the MSE from 0.093mm2 to
0.085mm2, and the relative error of from 6.11% to 5.23%.

Strikingly, we observed that deeper networks are not able to outperform
AlexNet on this dataset. Their limitation may be due to over-fitting. Neverthe-
less, the use of C-GRU greatly improve the performance of both networks both
in terms of MSE and of RE. Further, we also performed a non-parametric test
(Kolmogorov-Smirnov test) to check if the best model was statistically different
compared to the others.

The results obtained with the complete model AlexNet+C-GRU+CL are
indeed significantly different from all others (p < 0.05) also, when the signifi-
cant level is adjusted for multiple comparison applying the Bonferroni correction
[17,18].

6 Discussion and Conclusion

The deep learning (DL) architecture proposed shows excellent performance com-
pared to traditional image analysis methods, both in accuracy and efficiency.
This improvement is achieved through a combination of a shallow CNN and the
exploitation of the temporal and cyclic coherence. Our results seem to indicate
that a shallow CNNs perform better than deeper CNNs such as DenseNet 121
and InceptionV4; this might be due to the small dimension of the data set,
a common issue in the medical settings when requiring manual annotations of
the data.

6.1 The CyclicLoss Benefits

The exploitation of temporal coherence is what pushes the performance of the
DL solution beyond current image analysis methods, reducing the MSE from
0.29mm2 (naive architecture) to 0.09mm2 with the addition of the C-GRU.
The CyclicLoss is an efficient way to guide the training of the DL solution in
case of data showing some periodicity, as in cardiovascular imaging. Please note
that the knowledge of the signal period is only required by the network during
training, and as such it does not bring additional requirements on the input
data for real clinical application. We argue that the CyclicLoss is making the
network learn to expect a periodic input and provide some periodicity in the
output sequence.
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6.2 Limitations and Future Works

A drawback of this work is that it assumes the presence of the vessel in the
current field of view. Further research is thus required to evaluate how well the
solution adapts to the scenario of lack of cyclic consistency, when the vessel of
interest can move in and out of the field of view during the acquisition, and to
investigate the possibility of a concurrent estimation of the cardiac cycle and
vessel diameter. Finally, the C-GRU used in our architecture, has two particular
advantages compared to previous approaches [10,11]: first, it is not subject to the
vanishing gradient problem as the RNN, allowing to train from long sequences
of data. Second, it has less computational cost compared to the LSTM, and that
makes it suitable for real time video application.
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