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Abstract. Extreme Learning Machine (ELM), a neural network technique used
for regression problems, may be considered as a nonlinear transformation (from
the training input domain into the output space of hidden neurons) which pro-
vides the basis for linear mean square (LMS) regression problem. The condi-
tioning of this problem is the important factor influencing ELM implementation
and accuracy. It is demonstrated that rank-revealing orthogonal decomposition
techniques can be used to identify neurons causing collinearity among LMS
regression basis. Such neurons may be eliminated or modified to increase the
numerical rank of the matrix which is pseudo-inverted while solving LMS
regression.
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1 Introduction

An Extreme Learning Machine (ELM) [1, 2] – a neural network with one fixed hidden
layer and adjustable output weights - is able to solve complicated regression or clas-
sification problems. In this paper, application of ELMs for modeling multivariable,
nonlinear functions with batch data processing is considered. The main ideas behind
the standard ELM approach are that: the weights and biases of the hidden nodes are
generated at random, without ‘seeing the data’, and are not adjusted, so ‘training’
means that the output weights are determined analytically, solving a linear mean square
(LMS) problem. Therefore, the training is reduced to one step and the training time is
very short comparing to iterative training.

The numerical round-off errors of linear mean square regression are the main
reasons for ELMs’ modeling errors and are strictly connected with the number of
neurons in the hidden layer. When the number of hidden layer nodes is small, the ELM
may not be able to transform the input into the feature space effectively and the
approximation error may be unacceptably large. When the number of hidden layer
nodes is large, it increases the computation complexity, may lead to an ill-conditioned
LMS regression problem and may even result in overfitting of the ELM. The necessity
of improving the numerical properties of ELM was noticed in several recent publica-
tions [3–6]. Neurons pruning techniques were proposed in [7, 8] and incremental
learning was used in [9, 10]. Both methods try to get the optimal number of hidden
layer nodes. But, with every change of hidden layer nodes, the output weights need to
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be recalculated, so these techniques considerably increase the computation complexity
of ELM. In [11], the method called orthogonal projections to latent structures, which is
a combination of orthogonal signal correction and partial least squares, is proposed, but
it still leads to a tedious iterative procedure. Complicated methods of probability dis-
tribution optimization are proposed in [12].

The main contribution of this paper is to show that rank-revealing transformations,
known since the previous century, are effective tools to indicate neurons responsible for
numerical collinearity among the LSM regression basis. Such “non-contributing”
neurons may be eliminated or modified so that they are useful in the approximation.
In any case, the final basis for LMS regression is orthogonal and the output weights
may be obtained by solving well-conditioned LMS problem.

The standard ELM is described in Sect. 2. Instead of the most popular random
generation of weights, the application of low discrepancy sequences (LDS) [13, 14] is
considered. Rank-Revealing Orthogonal Decomposition is introduced and applied in
Sect. 3, while the proposed neuron modification procedure is presented in Sect. 4. The
paper ends with numerical experiments and conclusions.

2 Basic Extreme Learning Machine

The standard Extreme Learning Machine applied for modelling (regression) problems
may be considered as a combination of a nonlinear mapping from the input space into
the feature space and a linear least-squares regression. The training data for a n-input
ELM form a batch of N samples:

xi; tið Þ; xi 2 Rn; ti 2 R; i ¼ 1; . . .;Nf g; ð1Þ

where xi denote the inputs and ti denote the desired outputs, which form the target
(column) vector T ¼ t1 � � � tN½ �T . It is assumed that each input is normalized to the
interval [0,1].

The nonlinear mapping is performed by a single layer of hidden neurons with
infinitely differentiable activation functions. The “projection-based neurons” are used
most commonly. Each n-dimensional input is projected by the input layer weights
wT
k ¼ ½wk;1. . .wk;n�; k ¼ 1; . . .M and the bias bk into the k-th hidden neuron input.

Next, a nonlinear transformation hk , called activation function (AF) of the neuron is
applied to obtain the neuron output. The transformation of a batch of N samples by the
hidden layer is represented as an N �M matrix:

H ¼ HN�M ¼ hi w
T
i xj þ bi

� �� �
j ¼ 1; . . .;N
i ¼ 1; ::;M

: ð2Þ

It is assumed that the number of samples is greater than the number of neurons:
N[M. The impact of the selected type of AFs on the network performance is limited,
and therefore sigmoid AFs remain among the most widely used.
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According to the standard approach, the weights and biases are generated at ran-
dom, using any continuous probability distribution [2]. Using the uniform distribution
in �1; 1½ � to generate the weights and the biases is the standard procedure. Recently, an
application of Low-Discrepancy Sequences (LDS) [13, 14] was proposed to replace the
random generation of neurons’ parameters. The discrepancy measures the uniformity of
a sequence X of N points in the hypercube P ¼ 0; 1½ �n, and is defined as

DN Xð Þ ¼ supB
No X;Bð Þ

N
� L Bð Þ

����
����; ð3Þ

where B is any hypercube a1; b1½ � � . . .� an; bn½ � � P, No X;Bð Þ denotes the number of
points from X belonging to B and L Bð Þ is the Lebesgue measure (volume) of B [13].
So, low discrepancy means that the number of points in a subset is as proportional as
possible to the volume. Numerical procedures to generate various LDSs are offered by
popular software packages. For example, easy generation of Halton and Sobol
sequences [13, 14] is possible in Matlab. The distance among any LDS and a random
set tends to zero if the number of points increases (Fig. 1), so the universal approxi-
mation property of a standard (randomly-generated) ELM [15] is generalized to the
deterministic case with weights and biases taken from an LDS [16] (Fig. 2).

Hence, deterministic creation of neurons’ weights and biases from an LDS is an
interesting alternative and allows to describe features of an ELM without repeating
numerous experiments.

The output weights b are found by minimizing the approximation error

EC ¼ bk k2 þC Hb� Tk k2; ð4Þ
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Fig. 1. Maximal distance (mean in 20 exper-
iments) to the nearest neighbour: * - inside the
random set, o – inside the Halton set, + from
the Halton set to the random set. Points are
generated in the 3-dimensional cube.
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Fig. 2. 80 points generated from Halton
sequence and from uniform distribution in 2
dimensions.
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where C[ 0 is a design parameter added to improve the conditioning of the problem.
This approach is called ‘Tikhonow regularization’ [17]. For C ! 1 the problem
becomes equivalent to the minimization of

E1 ¼ Hb� Tk k2: ð5Þ

The output weights, which minimize the regularized criterion (4) are

bCopt ¼
1
C
IþHTH

� ��1

HTT; ð6Þ

while (5) is minimized by

bopt ¼ H þ T; ð7Þ

where H þ is the Moore–Penrose generalized inverse of matrix H:

H þ ¼ HTH
� ��1

HT : ð8Þ

3 ELM with Rank-Revealing Orthogonal Decomposition

When a large number of hidden layer neurons is selected, high correlations and mul-
ticollinearity always exist among the columns of the hidden layer output matrix H. It
may lead to ill-condition of the Moore–Penrose calculation or cause overfitting of the
final model. The high condition number of HTH is the main reason of numerical
difficulties in ELM implementation. The Tikhonov regularization is supposed to
improve this situation - the coefficient C is selected to decrease the condition number of
1
C IþHTH, but unavoidably degrades the approximation accuracy.

The “numerical rank” of a matrix is defined as the number of singular values larger
than a certain threshold r.

Rank-Revealing Orthogonal Decomposition, introduced in [18, 19] allows to
eliminate multicollinearity among columns of H. Rank-revealing decomposition pro-
vides information about the numerical rank of the matrix. For any numerical rank
threshold r, the algorithm called RRQR (Rank-Revealing Q-R factorization) allows to
represent the column-permuted matrix H as

H P1 P2½ � ¼ Q1 Q2 Q3½ �
R1 R2

0 R3

0 0

2
4

3
5; ð9Þ

where P1; P2 are permutation matrices, Q ¼ Q1 Q2 Q3½ � is an orthogonal matrix,
R1; R3 are upper-triangular matrices and R1 is a full-numerical-rank matrix with respect
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to the threshold r, while maximal singular value of R3 is not bigger than r. Therefore,
after calculation of the rank-revealing QR factorization, the orthogonal matrix

Q1 ¼ HP1R
�1
1 ð10Þ

may be used to replace H. The multiplication by the permutation matrix P1 represents
selection of the neurons that contribute to the numerical rank. Then, the multiplication
by R�1

1 provides normalization such that cond QT
1Q1 ¼ 1. Finally, the optimal output

weights are obtained from

bopt ¼ QT
1Q1

� ��1
QT

1T : ð11Þ

Some neurons are eliminated permanently from the initial set of neurons, hence, the
final number of neurons may be smaller than the initially planned. Therefore, the effort
to select parameters of excluded neurons is spoiled, but all remaining neurons con-
tribute to the effective approximation. The final form of the network is presented in
Fig. 3.

The applied algorithms (RRQR and triangular matrix inversion) are available in
various software packages. The computational complexity of the proposed modifica-
tion is O M3ð Þ: All operations are done “without seeing the data” and the final training
of the network (calculation of bopt) is done in one step. The only additional parameter is
the numerical rank threshold r.

The proposed procedure may lead to stagnation of the number of neurons, limited
by the numerical rank condition, in spite of the user’s plan to use more neurons.
Therefore RRQR factorization may be used to recognize “non-contributing” neurons.
Such neurons are indicated by the permutation matrix P2 and their parameters must be
modified. The modification is discussed in the next section, and the pseudo-code for the
complete design procedure is presented in Fig. 4.

b)        c)      d)      e)   f)    g) 

Fig. 3. The modified ELM: (a) input, (b) weights and biases, (c) hidden neurons, (d) elimination
of neurons, (e) normalization, (f) output weights, (g) output.
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4 Modification of Non-contributing Neurons

According to step 4.3 of the design procedure presented in Fig. 4, weights and biases of
the selected neurons need to be modified. The aim of this modification is to change
columns of the matrix H which do not contribute to the numerical rank for the given
threshold, i.e. the columns in HP2. The modification has to preserve the nature of
weights selection – at random, using a continuous probability distribution, or from an
LDS, in a compact hypercube. Several approaches are possible, but it is well-known
that multicollinearity of columns in the matrix H may be caused by an insufficient
variance of the AFs. The easy way to enhance the variance of sigmoid AFs was
proposed in [4–6] and may be applied to modify the weights and biases of the non-
contributing neurons.

The first step to enlarge variation of sigmoid activation functions is to increase the
range of weights. The weights must be large enough to expose the nonlinearity of the
sigmoid AF, and small enough to prevent saturation. Therefore, the already selected
weights of non-contributing neurons will be multiplied by a random factor taken from
the interval q; p½ �. The values q; p½ � ¼ 3; 10½ � are suitable.

Next, the biases are selected to guarantee that the range of a sigmoid function is
sufficiently large. The minimal value of the sigmoid function

hk xð Þ ¼ 1
1þ exp � wT

k xþ bk
� �� � ; x 2 0; 1½ �n; ð12Þ

1. Select weights and biases for hidden neurons.
2. Select the numerical rank threshold .  
3. Calculate the matrix using neurons parameters and 

input samples.
4. While LoopCounter < Max do

4.1 Perform the RRQR factorization of the matrix
with the numerical rank threshold . 

4.2 Use the permutation matrix to recognize the 
non-contributing neurons.

4.3 Modify the weights and biases of the non-con-
tributing neurons.

4.4 Calculate the new matrix using new neurons’ pa-
rameters and input samples.

4.5 Increment the LoopCounter and go to 4.1. 
5. Perform the RRQR factorization of the matrix with 

the numerical rank threshold . 
6. Eliminate the non-contributing neurons and calcu-

late the optimal output weights from (11). 

Fig. 4. The pseudo-code for the modified ELM
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is achieved at the vertex selected according to the following rules:

wk;i [ 0) xi ¼ 0;wk;i\0) xi ¼ 1 i ¼ 1; . . .; n; ð13Þ

and equals

hk;min ¼ 1

1þ exp � P
i:wk;i\0 wk;i þ bk

	 
	 
 : ð14Þ

The maximal value is attained at the vertex defined by

wk;i [ 0 ) xi ¼ 1;wk;i\0 ) xi ¼ 0 i ¼ 1; . . .; n; ð15Þ

and is

hk;max ¼ 1

1þ exp � P
i:wk;i [ 0 wk;i þ bk

	 
	 
 : ð16Þ

Therefore, to get hk;min\r1; hk;max [ r2 for given 0\r1\r2\1 requires to have

�b :¼ �
X

i:wk;i [ 0
wk;i � ln

1
r2

� 1
� �

\bk\� ln
1
r1

� 1
� �

�
X

i:wk;i\0
wk;i :¼ ~b:

ð17Þ

As the initial bias bk old was selected from the interval [−1,1], it is modified
according to the linear transformation

bk new ¼ 1
2

~b� �b
� �

bk old þ 1
2

~bþ �b
� �

; ð18Þ

providing the chance for �b\bk new\~b:

5 Numerical Examples

The two-dimensional function

z ¼ sinð2p x1 þ x2ð Þ; x1; x2 2 0; 1½ � ð19Þ

is considered. 200 samples selected at random constitute the training set, and 100
samples are use as the test set. The surface (18) is plotted in Fig. 5.

In all experiments, the initial values of the hidden layer neurons weights and biases
are selected from the Halton sequence. First, only orthogonalization-based elimination
of the non-contributing neurons is applied, and this approach (Orthogonalized Extreme
Learning Machine - OELM) is compared with the standard ELM. The numerical rank
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threshold is 10�9. As it is presented in Fig. 6, the number of the finally used neurons is
stabilized below 50, although up to 100 neurons were planned to be used initially. The
achieved modeling accuracy is almost the same as obtained with the standard approach
with 100 neurons (Fig. 7) and the conditioning of the output weights calculation is far
better (Fig. 8).

Of course, the increase of the numerical rank threshold reduces the number of the
finally used neurons and the approximation errors increase. If the threshold equals 10�3

the number of neurons is reduced below 15 and the errors stabilize at � 0:5, which is far
too large. Applying the procedure enhancing the variation of the AFs (r1 ¼ 0:1;
r2 ¼ 0:9Þ, it is possible to increase the number of finally used neurons and to reduce the
approximation errors, preserving numerical rank threshold of 10�3. In Fig. 9 the number
of finally used neurons is presented after the first, second and third application of the
variation enhancing procedure. In this case, the errors of the modified ELM are smaller
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Fig. 5. The surface (18) with with the
training (circles) and the testing (stars) data.
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than the standard ELM (Fig. 10), while it is still guaranteed that the condition number
equals 1 and the norm of the output weights is minimized (Figs. 11 and 12).

6 Conclusions

The rank-revealing QR decomposition is an effective tool to indicate the neurons in
ELM which do not contribute to the effective approximation due to multicollinearity of
the columns in matrix H. The indicated neurons may be eliminated and the remaining
neurons may be linearly transformed to get the orthogonal basis for the final linear
mean square problem, which provides the output weights. If this procedure generates a
too small number of neurons to get the desired approximation accuracy, the indicated
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non-contributing neurons may be modified to enhance variation of AFs. The approach
presented in Sect. 4 re-scales previously chosen weights and biases and increases the
number of contributing neurons. The numerical rank threshold is the only additional
parameter of the ELM design and it allows to control numerical properties of the
network training effectively.
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