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Preface

Technological advances in artificial intelligence (AI) are leading the rapidly changing
world of the twenty-first century. We have already passed from machine learning to
deep learning with numerous applications. The contribution of AI so far to the
improvement of our quality of life is profound. Major challenges but also risks and
threats are here. Brain-inspired computing explores, simulates, and imitates the struc-
ture and the function of the human brain, achieving high-performance modeling plus
visualization capabilities.

The International Conference on Artificial Neural Networks (ICANN) is the annual
flagship conference of the European Neural Network Society (ENNS). It features the
main tracks “Brain-Inspired Computing” and “Machine Learning Research,” with
strong cross-disciplinary interactions and applications. All research fields dealing with
neural networks are present.

The 27th ICANN was held during October 4–7, 2018, at the Aldemar Amilia Mare
five-star resort and conference center in Rhodes, Greece. The previous ICANN events
were held in Helsinki, Finland (1991), Brighton, UK (1992), Amsterdam, The
Netherlands (1993), Sorrento, Italy (1994), Paris, France (1995), Bochum, Germany
(1996), Lausanne, Switzerland (1997), Skovde, Sweden (1998), Edinburgh, UK
(1999), Como, Italy (2000), Vienna, Austria (2001), Madrid, Spain (2002), Istanbul,
Turkey (2003), Budapest, Hungary (2004), Warsaw, Poland (2005), Athens, Greece
(2006), Porto, Portugal (2007), Prague, Czech Republic (2008), Limassol, Cyprus
(2009), Thessaloniki, Greece (2010), Espoo-Helsinki, Finland (2011), Lausanne,
Switzerland (2012), Sofia, Bulgaria (2013), Hamburg, Germany (2014), Barcelona,
Spain (2016), and Alghero, Italy (2017).

Following a long-standing tradition, these Springer volumes belong to the Lecture
Notes in Computer Science Springer series. They contain the papers that were accepted
to be presented orally or as posters during the 27th ICANN conference. The 27th
ICANN Program Committee was delighted by the overwhelming response to the call
for papers. All papers went through a peer-review process by at least two and many
times by three or four independent academic referees to resolve any conflicts. In total,
360 papers were submitted to the 27th ICANN. Of these, 139 (38.3%) were accepted as
full papers for oral presentation of 20 minutes with a maximum length of 10 pages,
whereas 28 of them were accepted as short contributions to be presented orally in 15
minutes and for inclusion in the proceedings with 8 pages. Also, 41 papers (11.4%)
were accepted as full papers for poster presentation (up to 10 pages long), whereas 11
were accepted as short papers for poster presentation (maximum length of 8 pages).

The accepted papers of the 27th ICANN conference are related to the following
thematic topics:

AI and Bioinformatics
Bayesian and Echo State Networks
Brain-Inspired Computing



Chaotic Complex Models
Clustering, Mining, Exploratory Analysis
Coding Architectures
Complex Firing Patterns
Convolutional Neural Networks
Deep Learning (DL)

– DL in Real Time Systems
– DL and Big Data Analytics
– DL and Big Data
– DL and Forensics
– DL and Cybersecurity
– DL and Social Networks

Evolving Systems – Optimization
Extreme Learning Machines
From Neurons to Neuromorphism
From Sensation to Perception
From Single Neurons to Networks
Fuzzy Modeling
Hierarchical ANN
Inference and Recognition
Information and Optimization
Interacting with the Brain
Machine Learning (ML)

– ML for Bio-Medical Systems
– ML and Video-Image Processing
– ML and Forensics
– ML and Cybersecurity
– ML and Social Media
– ML in Engineering

Movement and Motion Detection
Multilayer Perceptrons and Kernel Networks
Natural Language
Object and Face Recognition
Recurrent Neural Networks and Reservoir Computing
Reinforcement Learning
Reservoir Computing
Self-Organizing Maps
Spiking Dynamics/Spiking ANN
Support Vector Machines
Swarm Intelligence and Decision-Making
Text Mining
Theoretical Neural Computation
Time Series and Forecasting
Training and Learning
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The authors of submitted papers came from 34 different countries from all over the
globe, namely: Belgium, Brazil, Bulgaria, Canada, China, Czech Republic, Cyprus,
Egypt, Finland, France, Germany, Greece, India, Iran, Ireland, Israel, Italy, Japan,
Luxembourg, The Netherlands, Norway, Oman, Pakistan, Poland, Portugal, Romania,
Russia, Slovakia, Spain, Switzerland, Tunisia, Turkey, UK, USA.

Four keynote speakers were invited, and they gave lectures on timely aspects of AI.
We hope that these proceedings will help researchers worldwide to understand and

to be aware of timely evolutions in AI and more specifically in artificial neural net-
works. We believe that they will be of major interest for scientists over the globe and
that they will stimulate further research.

October 2018 Věra Kůrková
Yannis Manolopoulos

Barbara Hammer
Lazaros Iliadis

Ilias Maglogiannis
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Cognitive Phase Transitions in the Cerebral
Cortex – John Taylor Memorial Lecture

Robert Kozma

University of Massachusetts Amherst

Abstract. Everyday subjective experience of the stream of consciousness sug-
gests continuous cognitive processing in time and smooth underlying brain
dynamics. Brain monitoring techniques with markedly improved spatio-
temporal resolution, however, show that relatively smooth periods in brain
dynamics are frequently interrupted by sudden changes and intermittent dis-
continuities, evidencing singularities. There are frequent transitions between
periods of large-scale synchronization and intermittent desynchronization at
alpha-theta rates. These observations support the hypothesis about the cinematic
model of cognitive processing, according to which higher cognition can be
viewed as multiple movies superimposed in time and space. The metastable
spatial patterns of field potentials manifest the frames, and the rapid transitions
provide the shutter from each pattern to the next. Recent experimental evidence
indicates that the observed discontinuities are not merely important aspects of
cognition; they are key attributes of intelligent behavior representing the cog-
nitive “Aha” moment of sudden insight and deep understanding in humans and
animals. The discontinuities can be characterized as phase transitions in graphs
and networks. We introduce computational models to implement these insights
in a new generation of devices with robust artificial intelligence, including
oscillatory neuromorphic memories, and self-developing autonomous robots.



On the Deep Learning Revolution
in Computer Vision

Nathan Netanyahu

Bar-Ilan University, Israel

Abstract. Computer Vision (CV) is an interdisciplinary field of Artificial
Intelligence (AI), which is concerned with the embedding of human visual
capabilities in a computerized system. The main thrust, essentially, of CV is to
generate an “intelligent” high-level description of the world for a given scene,
such that when interfaced with other thought processes can elicit, ultimately,
appropriate action. In this talk we will review several central CV tasks and
traditional approaches taken for handling these tasks for over 50 years. Noting
the limited performance of standard methods applied, we briefly survey the
evolution of artificial neural networks (ANN) during this extended period, and
focus, specifically, on the ongoing revolutionary performance of deep learning
(DL) techniques for the above CV tasks during the past few years. In particular,
we provide also an overview of our DL activities, in the context of CV, at
Bar-Ilan University. Finally, we discuss future research and development
challenges in CV in light of further employment of prospective DL innovations.



From Machine Learning to Machine
Diagnostics

Marios Polycarpou

University of Cyprus

Abstract. During the last few years, there have has been remarkable progress in
utilizing machine learning methods in several applications that benefit from
deriving useful patterns among large volumes of data. These advances have
attracted significant attention from industry due to the prospective of reducing
the cost of predicting future events and making intelligent decisions based on
data from past experiences. In this context, a key area that can benefit greatly
from the use of machine learning is the task of detecting and diagnosing
abnormal behaviour in dynamical systems, especially in safety-critical,
large-scale applications. The goal of this presentation is to provide insight into
the problem of detecting, isolating and self-correcting abnormal or faulty
behaviour in large-scale dynamical systems, to present some design method-
ologies based on machine learning and to show some illustrative examples. The
ultimate goal is to develop the foundation of the concept of machine diagnostics,
which would empower smart software algorithms to continuously monitor the
health of dynamical systems during the lifetime of their operation.



Multimodal Deep Learning in Biomedical
Image Analysis

Sotirios Tsaftaris

University of Edinburgh, UK

Abstract. Nowadays images are typically accompanied by additional informa-
tion. At the same time, for example, magnetic resonance imaging exams typi-
cally contain more than one image modality: they show the same anatomy under
different acquisition strategies revealing various pathophysiological information.
The detection of disease, segmentation of anatomy and other classical analysis
tasks, can benefit from a multimodal view to analysis that leverages shared
information across the sources yet preserves unique information. It is without
surprise that radiologists analyze data in this fashion, reviewing the exam as a
whole. Yet, when aiming to automate analysis tasks, we still treat different
image modalities in isolation and tend to ignore additional information. In this
talk, I will present recent work in learning with deep neural networks, latent
embeddings suitable for multimodal processing, and highlight opportunities and
challenges in this area.
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Abstract. Extreme Learning Machine (ELM), a neural network technique used
for regression problems, may be considered as a nonlinear transformation (from
the training input domain into the output space of hidden neurons) which pro-
vides the basis for linear mean square (LMS) regression problem. The condi-
tioning of this problem is the important factor influencing ELM implementation
and accuracy. It is demonstrated that rank-revealing orthogonal decomposition
techniques can be used to identify neurons causing collinearity among LMS
regression basis. Such neurons may be eliminated or modified to increase the
numerical rank of the matrix which is pseudo-inverted while solving LMS
regression.

Keywords: Neural networks modelling � Extreme learning machine
Nonlinear systems

1 Introduction

An Extreme Learning Machine (ELM) [1, 2] – a neural network with one fixed hidden
layer and adjustable output weights - is able to solve complicated regression or clas-
sification problems. In this paper, application of ELMs for modeling multivariable,
nonlinear functions with batch data processing is considered. The main ideas behind
the standard ELM approach are that: the weights and biases of the hidden nodes are
generated at random, without ‘seeing the data’, and are not adjusted, so ‘training’
means that the output weights are determined analytically, solving a linear mean square
(LMS) problem. Therefore, the training is reduced to one step and the training time is
very short comparing to iterative training.

The numerical round-off errors of linear mean square regression are the main
reasons for ELMs’ modeling errors and are strictly connected with the number of
neurons in the hidden layer. When the number of hidden layer nodes is small, the ELM
may not be able to transform the input into the feature space effectively and the
approximation error may be unacceptably large. When the number of hidden layer
nodes is large, it increases the computation complexity, may lead to an ill-conditioned
LMS regression problem and may even result in overfitting of the ELM. The necessity
of improving the numerical properties of ELM was noticed in several recent publica-
tions [3–6]. Neurons pruning techniques were proposed in [7, 8] and incremental
learning was used in [9, 10]. Both methods try to get the optimal number of hidden
layer nodes. But, with every change of hidden layer nodes, the output weights need to
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be recalculated, so these techniques considerably increase the computation complexity
of ELM. In [11], the method called orthogonal projections to latent structures, which is
a combination of orthogonal signal correction and partial least squares, is proposed, but
it still leads to a tedious iterative procedure. Complicated methods of probability dis-
tribution optimization are proposed in [12].

The main contribution of this paper is to show that rank-revealing transformations,
known since the previous century, are effective tools to indicate neurons responsible for
numerical collinearity among the LSM regression basis. Such “non-contributing”
neurons may be eliminated or modified so that they are useful in the approximation.
In any case, the final basis for LMS regression is orthogonal and the output weights
may be obtained by solving well-conditioned LMS problem.

The standard ELM is described in Sect. 2. Instead of the most popular random
generation of weights, the application of low discrepancy sequences (LDS) [13, 14] is
considered. Rank-Revealing Orthogonal Decomposition is introduced and applied in
Sect. 3, while the proposed neuron modification procedure is presented in Sect. 4. The
paper ends with numerical experiments and conclusions.

2 Basic Extreme Learning Machine

The standard Extreme Learning Machine applied for modelling (regression) problems
may be considered as a combination of a nonlinear mapping from the input space into
the feature space and a linear least-squares regression. The training data for a n-input
ELM form a batch of N samples:

xi; tið Þ; xi 2 Rn; ti 2 R; i ¼ 1; . . .;Nf g; ð1Þ

where xi denote the inputs and ti denote the desired outputs, which form the target
(column) vector T ¼ t1 � � � tN½ �T . It is assumed that each input is normalized to the
interval [0,1].

The nonlinear mapping is performed by a single layer of hidden neurons with
infinitely differentiable activation functions. The “projection-based neurons” are used
most commonly. Each n-dimensional input is projected by the input layer weights
wT
k ¼ ½wk;1. . .wk;n�; k ¼ 1; . . .M and the bias bk into the k-th hidden neuron input.

Next, a nonlinear transformation hk , called activation function (AF) of the neuron is
applied to obtain the neuron output. The transformation of a batch of N samples by the
hidden layer is represented as an N �M matrix:

H ¼ HN�M ¼ hi w
T
i xj þ bi

� �� �
j ¼ 1; . . .;N
i ¼ 1; ::;M

: ð2Þ

It is assumed that the number of samples is greater than the number of neurons:
N[M. The impact of the selected type of AFs on the network performance is limited,
and therefore sigmoid AFs remain among the most widely used.
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According to the standard approach, the weights and biases are generated at ran-
dom, using any continuous probability distribution [2]. Using the uniform distribution
in �1; 1½ � to generate the weights and the biases is the standard procedure. Recently, an
application of Low-Discrepancy Sequences (LDS) [13, 14] was proposed to replace the
random generation of neurons’ parameters. The discrepancy measures the uniformity of
a sequence X of N points in the hypercube P ¼ 0; 1½ �n, and is defined as

DN Xð Þ ¼ supB
No X;Bð Þ

N
� L Bð Þ

����
����; ð3Þ

where B is any hypercube a1; b1½ � � . . .� an; bn½ � � P, No X;Bð Þ denotes the number of
points from X belonging to B and L Bð Þ is the Lebesgue measure (volume) of B [13].
So, low discrepancy means that the number of points in a subset is as proportional as
possible to the volume. Numerical procedures to generate various LDSs are offered by
popular software packages. For example, easy generation of Halton and Sobol
sequences [13, 14] is possible in Matlab. The distance among any LDS and a random
set tends to zero if the number of points increases (Fig. 1), so the universal approxi-
mation property of a standard (randomly-generated) ELM [15] is generalized to the
deterministic case with weights and biases taken from an LDS [16] (Fig. 2).

Hence, deterministic creation of neurons’ weights and biases from an LDS is an
interesting alternative and allows to describe features of an ELM without repeating
numerous experiments.

The output weights b are found by minimizing the approximation error

EC ¼ bk k2 þC Hb� Tk k2; ð4Þ

0 500 1000 1500 2000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of points

gr
id

 d
is

ta
nc

e

Rand
Halton
Rand/Halton
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where C[ 0 is a design parameter added to improve the conditioning of the problem.
This approach is called ‘Tikhonow regularization’ [17]. For C ! 1 the problem
becomes equivalent to the minimization of

E1 ¼ Hb� Tk k2: ð5Þ

The output weights, which minimize the regularized criterion (4) are

bCopt ¼
1
C
IþHTH

� ��1

HTT; ð6Þ

while (5) is minimized by

bopt ¼ H þ T; ð7Þ

where H þ is the Moore–Penrose generalized inverse of matrix H:

H þ ¼ HTH
� ��1

HT : ð8Þ

3 ELM with Rank-Revealing Orthogonal Decomposition

When a large number of hidden layer neurons is selected, high correlations and mul-
ticollinearity always exist among the columns of the hidden layer output matrix H. It
may lead to ill-condition of the Moore–Penrose calculation or cause overfitting of the
final model. The high condition number of HTH is the main reason of numerical
difficulties in ELM implementation. The Tikhonov regularization is supposed to
improve this situation - the coefficient C is selected to decrease the condition number of
1
C IþHTH, but unavoidably degrades the approximation accuracy.

The “numerical rank” of a matrix is defined as the number of singular values larger
than a certain threshold r.

Rank-Revealing Orthogonal Decomposition, introduced in [18, 19] allows to
eliminate multicollinearity among columns of H. Rank-revealing decomposition pro-
vides information about the numerical rank of the matrix. For any numerical rank
threshold r, the algorithm called RRQR (Rank-Revealing Q-R factorization) allows to
represent the column-permuted matrix H as

H P1 P2½ � ¼ Q1 Q2 Q3½ �
R1 R2

0 R3

0 0

2
4

3
5; ð9Þ

where P1; P2 are permutation matrices, Q ¼ Q1 Q2 Q3½ � is an orthogonal matrix,
R1; R3 are upper-triangular matrices and R1 is a full-numerical-rank matrix with respect
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to the threshold r, while maximal singular value of R3 is not bigger than r. Therefore,
after calculation of the rank-revealing QR factorization, the orthogonal matrix

Q1 ¼ HP1R
�1
1 ð10Þ

may be used to replace H. The multiplication by the permutation matrix P1 represents
selection of the neurons that contribute to the numerical rank. Then, the multiplication
by R�1

1 provides normalization such that cond QT
1Q1 ¼ 1. Finally, the optimal output

weights are obtained from

bopt ¼ QT
1Q1

� ��1
QT

1T : ð11Þ

Some neurons are eliminated permanently from the initial set of neurons, hence, the
final number of neurons may be smaller than the initially planned. Therefore, the effort
to select parameters of excluded neurons is spoiled, but all remaining neurons con-
tribute to the effective approximation. The final form of the network is presented in
Fig. 3.

The applied algorithms (RRQR and triangular matrix inversion) are available in
various software packages. The computational complexity of the proposed modifica-
tion is O M3ð Þ: All operations are done “without seeing the data” and the final training
of the network (calculation of bopt) is done in one step. The only additional parameter is
the numerical rank threshold r.

The proposed procedure may lead to stagnation of the number of neurons, limited
by the numerical rank condition, in spite of the user’s plan to use more neurons.
Therefore RRQR factorization may be used to recognize “non-contributing” neurons.
Such neurons are indicated by the permutation matrix P2 and their parameters must be
modified. The modification is discussed in the next section, and the pseudo-code for the
complete design procedure is presented in Fig. 4.

b)        c)      d)      e)   f)    g) 

Fig. 3. The modified ELM: (a) input, (b) weights and biases, (c) hidden neurons, (d) elimination
of neurons, (e) normalization, (f) output weights, (g) output.
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4 Modification of Non-contributing Neurons

According to step 4.3 of the design procedure presented in Fig. 4, weights and biases of
the selected neurons need to be modified. The aim of this modification is to change
columns of the matrix H which do not contribute to the numerical rank for the given
threshold, i.e. the columns in HP2. The modification has to preserve the nature of
weights selection – at random, using a continuous probability distribution, or from an
LDS, in a compact hypercube. Several approaches are possible, but it is well-known
that multicollinearity of columns in the matrix H may be caused by an insufficient
variance of the AFs. The easy way to enhance the variance of sigmoid AFs was
proposed in [4–6] and may be applied to modify the weights and biases of the non-
contributing neurons.

The first step to enlarge variation of sigmoid activation functions is to increase the
range of weights. The weights must be large enough to expose the nonlinearity of the
sigmoid AF, and small enough to prevent saturation. Therefore, the already selected
weights of non-contributing neurons will be multiplied by a random factor taken from
the interval q; p½ �. The values q; p½ � ¼ 3; 10½ � are suitable.

Next, the biases are selected to guarantee that the range of a sigmoid function is
sufficiently large. The minimal value of the sigmoid function

hk xð Þ ¼ 1
1þ exp � wT

k xþ bk
� �� � ; x 2 0; 1½ �n; ð12Þ

1. Select weights and biases for hidden neurons.
2. Select the numerical rank threshold .  
3. Calculate the matrix using neurons parameters and 

input samples.
4. While LoopCounter < Max do

4.1 Perform the RRQR factorization of the matrix
with the numerical rank threshold . 

4.2 Use the permutation matrix to recognize the 
non-contributing neurons.

4.3 Modify the weights and biases of the non-con-
tributing neurons.

4.4 Calculate the new matrix using new neurons’ pa-
rameters and input samples.

4.5 Increment the LoopCounter and go to 4.1. 
5. Perform the RRQR factorization of the matrix with 

the numerical rank threshold . 
6. Eliminate the non-contributing neurons and calcu-

late the optimal output weights from (11). 

Fig. 4. The pseudo-code for the modified ELM
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is achieved at the vertex selected according to the following rules:

wk;i [ 0) xi ¼ 0;wk;i\0) xi ¼ 1 i ¼ 1; . . .; n; ð13Þ

and equals

hk;min ¼ 1

1þ exp � P
i:wk;i\0 wk;i þ bk

	 
	 
 : ð14Þ

The maximal value is attained at the vertex defined by

wk;i [ 0 ) xi ¼ 1;wk;i\0 ) xi ¼ 0 i ¼ 1; . . .; n; ð15Þ

and is

hk;max ¼ 1

1þ exp � P
i:wk;i [ 0 wk;i þ bk

	 
	 
 : ð16Þ

Therefore, to get hk;min\r1; hk;max [ r2 for given 0\r1\r2\1 requires to have

�b :¼ �
X

i:wk;i [ 0
wk;i � ln

1
r2

� 1
� �

\bk\� ln
1
r1

� 1
� �

�
X

i:wk;i\0
wk;i :¼ ~b:

ð17Þ

As the initial bias bk old was selected from the interval [−1,1], it is modified
according to the linear transformation

bk new ¼ 1
2

~b� �b
� �

bk old þ 1
2

~bþ �b
� �

; ð18Þ

providing the chance for �b\bk new\~b:

5 Numerical Examples

The two-dimensional function

z ¼ sinð2p x1 þ x2ð Þ; x1; x2 2 0; 1½ � ð19Þ

is considered. 200 samples selected at random constitute the training set, and 100
samples are use as the test set. The surface (18) is plotted in Fig. 5.

In all experiments, the initial values of the hidden layer neurons weights and biases
are selected from the Halton sequence. First, only orthogonalization-based elimination
of the non-contributing neurons is applied, and this approach (Orthogonalized Extreme
Learning Machine - OELM) is compared with the standard ELM. The numerical rank

Rank-Revealing Orthogonal Decomposition in Extreme Learning Machine Design 9



threshold is 10�9. As it is presented in Fig. 6, the number of the finally used neurons is
stabilized below 50, although up to 100 neurons were planned to be used initially. The
achieved modeling accuracy is almost the same as obtained with the standard approach
with 100 neurons (Fig. 7) and the conditioning of the output weights calculation is far
better (Fig. 8).

Of course, the increase of the numerical rank threshold reduces the number of the
finally used neurons and the approximation errors increase. If the threshold equals 10�3

the number of neurons is reduced below 15 and the errors stabilize at � 0:5, which is far
too large. Applying the procedure enhancing the variation of the AFs (r1 ¼ 0:1;
r2 ¼ 0:9Þ, it is possible to increase the number of finally used neurons and to reduce the
approximation errors, preserving numerical rank threshold of 10�3. In Fig. 9 the number
of finally used neurons is presented after the first, second and third application of the
variation enhancing procedure. In this case, the errors of the modified ELM are smaller
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than the standard ELM (Fig. 10), while it is still guaranteed that the condition number
equals 1 and the norm of the output weights is minimized (Figs. 11 and 12).

6 Conclusions

The rank-revealing QR decomposition is an effective tool to indicate the neurons in
ELM which do not contribute to the effective approximation due to multicollinearity of
the columns in matrix H. The indicated neurons may be eliminated and the remaining
neurons may be linearly transformed to get the orthogonal basis for the final linear
mean square problem, which provides the output weights. If this procedure generates a
too small number of neurons to get the desired approximation accuracy, the indicated
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non-contributing neurons may be modified to enhance variation of AFs. The approach
presented in Sect. 4 re-scales previously chosen weights and biases and increases the
number of contributing neurons. The numerical rank threshold is the only additional
parameter of the ELM design and it allows to control numerical properties of the
network training effectively.
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Abstract. The morbidity and mortality rate of breast cancer still con-
tinues to remain high among women across the world. This figure can be
reduced if the cancer is identified at its early stage. A Computer-aided
diagnosis (CAD) system is an efficient computerized tool used to analyze
the mammograms for finding cancer in the breast and to reach a decision
with maximum accuracy. The presented work aims at developing a CAD
model which can classify the mammograms as normal or abnormal, and
further, benign or malignant accurately. In the present model, CLAHE
is used for image pre-processing, compound local binary pattern (CM-
LBP) for feature extraction followed by principal component analysis
(PCA) for feature reduction. Then, a chaotic whale optimization-based
kernel extreme learning machine (CWO-KELM) is utilized to classify the
mammograms as normal/abnormal and benign/malignant. The present
model achieves the highest accuracy of 100% and 99.48% for MIAS and
DDSM, respectively.

Keywords: Mammograms · Compound local binary pattern
Chaotic map · Whale optimization algorithm
Kernel extreme learning machine

1 Introduction

According to the statistics of cancer, the incidence and mortality scenario of
breast cancer is increasing day by day. The world health organization [17] makes
an estimation of 21 million cancer cases by the year 2030 which was only 12.7
million in 2008. 0.537 millions of women and 0.477 millions of males in India
were diagnosed with breast cancer in the year 2012 [19]. So, it becomes utmost
necessary to design an efficient detection and diagnosis tool in order to reduce
the mortality rates among women and men. In this context, mammography is
the most effective and reliable tool to detect the abnormalities in the breast at its
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earliest stage. A computer-aided diagnosis (CAD) system combines various prin-
ciples of image analysis, machine learning, and pattern recognition approaches to
examine the crucial information present in the mammograms. CAD is a fast and
cost-effective system to assist the medical practitioners or radiologists to detect
and diagnose cancer. Designing a CAD system with high efficiency is important
as well as a challenging task.

Various researchers have developed different CAD models to detect or diag-
nose the abnormalities in the mammograms. Yasser et al. [21] proposed a CAD
system which extracts features using discrete wavelet transform (DWT), con-
tourlet transform (CT), and local binary pattern (LBP) reporting the best accu-
racy of 98.63%. Bajaj et al. [4] proposed a novel approach using bi-dimensional
empirical mode decomposition (BEMD) and least-square SVM for mammogram
classification. Chithra et al. [5] used wavelet entropy and ensemble classifiers
using k-nearest neighbor (k-NN) and SVM. Singh et al. [24] proposed a wavelet-
based center-symmetric local binary pattern technique to extract the features
from the mammograms yielding an accuracy of 97.3%. Few more recently pro-
posed CAD systems can be referred in [8,14,20,26]. Motivated by the previously
developed CAD schemes, the proposed work aims at designing an efficient and
robust CAD system for accurate diagnosis of breast cancer.

The structure of the remaining article is as follows: Sect. 2 elaborates the
proposed CAD model. Section 3 analyses the results obtained with the proposed
model. Lastly, Sect. 4 presents the concluding remarks.

2 Proposed Methodology

In the present work, initially, the desired ROIs are generated from the original
mammograms using simple cropping approach. In case of abnormal mammo-
grams, the cropping is done using the given ground truth information about the
position and radius of the abnormal regions. However, for normal mammograms,
cropping is done on any arbitrary location to get the ROI. Once the ROIs are
obtained, the next step is to apply the CM-LBP technique to extract the texture
features from the ROIs. Thereafter, PCA is applied to reduce the size of the fea-
ture vector followed by CWO-KELM to classify the mammograms as normal or
abnormal, and further, benign or malignant. A detailed diagram of the proposed
CAD model is illustrated in Fig. 1.

Fig. 1. Block diagram of the proposed CAD model
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2.1 Pre-processing Using CLAHE

Pre-processing of the ROIs is considered to be a vital step before performing
any further modules in a CAD system. As some of the images collected from
the datasets are of low contrast, so it is required to enhance the contrast of
such images. Hence, in the present work, contrast limited adaptive histogram
equalization (CLAHE) [18] is utilized to improve the quality of the low-contrast
images.

2.2 Feature Extraction Using Compound Local Binary Pattern
(CM-LBP)

The original local binary pattern operator ignores the magnitude of the difference
between the center pixel value and its neighboring pixel values resulting in an
inconsistent code. So, to overcome the issues of LBP, CM-LBP is introduced [1].
In CM-LBP, a 2-bit code is utilized to encode the local texture information of
an image where the first bit indicates the sign of the difference between the
center pixel and its neighboring pixel values, and the second bit represents the
magnitude of the difference with respect to a threshold value Tavg. The term
Tavg is the average magnitude of the difference between the center pixel and its
corresponding neighbors in the local neighborhood window. If Pn is one of the
neighboring pixels, and Pc is the center pixel, then the mathematical expression
of the 2-bit code is as follows:

s(in, im) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

00 Pn − Pc < 0 and |Pn − Pc| ≤ Tavg

01 Pn − Pc < 0 and |Pn − Pc| > Tavg

10 Pn − Pc ≥ 0 and |Pn − Pc| ≤ Tavg

11 otherwise

(1)

This C(Pn, Pc) generates 16-bit codes for the eight neighbors which is again
split into two 8-bit codes, one for the diagonal neighbors and another for non-
diagonal neighbors. Then, two different histograms are plotted for the two dif-
ferent groups and are combined for generating the CLBP.

2.3 Feature Reduction Using PCA

The number of features obtained from the feature extraction module is quite
large and to prevent the ‘curse of dimensionality’ issue, it is needed to lessen
the size of the feature vector which also makes the task of classifier simple.
In addition, out of all the features, some of them are not relevant. To obtain
the set of relevant features, the PCA technique is employed. PCA generates a
reduced set of features by transforming the high-dimensional data to a set of
data having low dimension retaining maximum variance of the original data.
This transforms produces a set of linearly uncorrelated data which are called as
principal components (PCs). A deep insight about PCA can be referred in [6,9].
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2.4 Classification Using CWO-KELM

Chaotic Whale Optimization: The whale optimizer proposed in [16] is an
optimization approach based on the hunting behaviour of the humpback whales,
known as bubble-net hunting. The WOA technique considers the current best
solution to be the prey or is near to the optimal solution. When the target prey
is defined, the rest of the whales hence update their locations to move towards
the best search candidate with the increment of the iterations. This can be
mathematically represented as:

−→
W (i + 1) =

−→
W ∗(i) − −→

A.
−→
D (2)

where −→
D =

∣
∣
∣
−→
C .

−−−→
W ∗(i) − −−−→

W (i)
∣
∣
∣ (3)

−→
A and

−→
C are the two coefficient vectors and can be defined using Eqs. (4) and

(5). W ∗ and W represent the location of the prey and the whale, respectively at
the current iteration i. −→

A = 2a.−→r .a (4)

−→
C = 2.−→r (5)

where −→r is a random vector ranging between [0,1]. a linearly decreases from 2
to 0 during the iterations and can be represented using Eq. (6).

a = 2 − i.
2

maxiter
(6)

However, the humpback whales move around the target prey through a
shrinking circle and also along a spiral-like pathway at the same time. Hence, a
probability of 0.5 is assumed to select either the shrinking path or the spiral path
in order to update the location of the whales. The mathematical representation
of this behaviour can be expressed as follows:

W (i + 1) =

{ −→
W ∗(i) − −→

A.
−→
D p ≤ 0.5−→

D′.ebt.cos(2πt) +
−→
W ∗(i) p ≥ 0.5

(7)

where ∣
∣
∣
−→
D′ =

−−−→
W ∗(i) − −−−→

W (i)
∣
∣
∣ (8)

b represents a constant which defines the shape of the logarithmic spiral, t sym-
bolizes a random number ranging between [−1, 1] whereas p is taken randomly
between [0, 1].

The value of the parameter
−→
A can be randomly initialized with

−→
A > 1 or−→

A < −1 to find the target prey (exploration stage) and to make the search
candidates go away from a reference whale. The mathematical formulation for
this exploration stage can be defined as:

−→
D =

∣
∣
∣
−→
C .

−−−−−−→
Wrand(i) − −−−→

W (i)
∣
∣
∣ (9)
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−→
W (i + 1) =

−−−−→
Wrand(i) − −→

A.
−→
D (10)

where
−−−−→
Wrand is a random whale’s position vector selected from the current pop-

ulation of whales. For detail understanding of WOA, readers are referred to [16].
Though the convergence rate of WOA is considerably good, it still cannot

perform well in searching the global optimum solution which influences the con-
vergence speed of the technique. Hence, to overcome such issue, in this article, a
chaos-based WOA technique is adopted. The chaotic sequence has three impor-
tant properties, namely, ergodicity, quasi-stochastic, and sensitivity to original
conditions which helps to search the solution at a higher speed as compared to
that of the stochastic search [22]. The dynamic property of the chaotic maps
makes them acceptable in various optimization algorithms to explore the search
more robustly [27]. Almost every meta-heuristic technique achieves randomness
of the stochastic components by utilizing a probability distribution. However,
it can be more promising if such random values are replaced with the chaotic
sequences. In the present work, a logistic chaotic function [2] is incorporated in
the WOA algorithm. The mathematical representation of the logistic chaos is
given by:

Li+1 = cLi(1 − Li), c = 4 (11)

Classification Using Proposed CWO-KELM: Extreme learning machine
(ELM) is a type of single hidden layer feed-forward network (SLFN) proposed
by Huang et al. [13], which has been utilized in many research domains [3,10,
23]. Unlike other traditional algorithms like BPNN [15] and SVM [7], ELM is
capable of achieving higher classification accuracy with faster convergence rate.
In this work, one of the variants of ELM referred to as kernel ELM (KELM) is
used as it is capable of proving improved results than that of the conventional
ELM [12]. In KELM, the kernel function replaces the random feature mapping of
the traditional ELM and thus results in more stable output weights. The kernel
ELM uses two important parameters, namely, penalty parameter (C) and the
kernel parameter (γ) to obtain the final output weights. However, finding the
optimal values for the aforementioned parameters is a challenging task. This
motivates the authors to exploit an evolutionary algorithm to get the optimal
values for these two parameters to obtain better convergence. In the present
work, a chaotic whale optimization algorithm is incorporated with KELM to
find the optimized values of C and γ.

Prior to the classification module, the whole dataset is divided into training,
validation, and testing set using a 10-fold stratified cross-validation (SCV) to
prevent the over-fitting problem. The flowchart of the working principle of the
proposed CWO-KELM model is represented in Fig. 2. In addition to this, the
steps involved in the proposed CWO-KELM are given in the following:

1. Start the process with random initialization of candidate solution in the pop-
ulation so that each solution has a set of C and γ as

K = [C1, C2, ..., Cj , γ1, γ2, ..., γj ] (12)
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C and γ are initialized in a range of [2−8, 2−6, 2−4, ..., 28].
2. Initialize the values of A, p, C, a, and t.
3. For each of the candidate solutions, determine the fitness value (classification

accuracy) using KELM. The fitness value is calculated on the validation set
in order to prevent the over-fitting issue.

4. Sort the whales in descending order and select the best whale position having
the highest fitness value.

5. Update the values of A and p using the chaotic map using Eq. 11.
6. Update the position of candidate whales based on values of A and p and find

the position of the best whale.
– If p < 0.5 and |A| < 1, then update the position of the current whale

using Eq. 2.

– If p < 0.5 and |A| ≥ 1, then find a random whale and update the position
of the current whale with respect to the random whale using the Eq. 10.

– If p ≥ 0.5, then update the position of then current whale using the Eq. 7.
7. Generate the new best whale as

W (i + 1) =
{

W (i + 1) iff(W (i + 1)) > f(W (i))
W (i) otherwise

(13)

where f(W (i+1)) and f(W (i)) denote the fitness value of the updated whale
and previous whale, respectively.

8. Find the out-of-bound cases in the new solution and limit them in a range of
[2−8, 28] as

W (i + 1) =
{

2−8 if W (i + 1) < 2−8

28 if W (i + 1) > 28 (14)

9. Repeat steps 3–8 till the predefined number of iterations. Finally, the optimal
values of C and γ are obtained and validated on the test set to get the overall
performance of the proposed CWO-KELM-based model.

3 Experimental Results and Analysis

The proposed CAD model is experimented on two standard benchmark datasets,
namely, MIAS [25] and DDSM [11]. A total of 314 and 1500 images are collected
from MIAS and DDSM, respectively. The collected images are first classified as
normal or abnormal, and further, benign or malignant using the proposed CAD
system. The performance of the proposed model is evaluated in terms of different
performance metrics, namely, accuracy, sensitivity, specificity, area under curve
(AUC), and receiver operating characteristics (ROC) curve. In addition to this,
the proposed scheme is compared against some of the recently designed CAD
schemes.

Prior to the feature extraction module, ROIs are segmented from the unnec-
essary background regions using cropping. Using the ground truth informa-
tion regarding the coordinates of the abnormalities in the images, ROIs of
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Fig. 2. Flowchart of the proposed CWO-KELM

size 256 × 256 are generated. After cropping, the ROIs are pre-processed using
CLAHE to enhance the contrast. Then, CLBP technique is applied on the
extracted ROIs to obtain the feature matrix. Applying CLBP, a feature matrix
of size s × F is obtained, where s and F indicate the number of ROIs and the
number of generated features, respectively. In this work, 512 number of features
(F ) are generated from CLBP which is quite large. So, to reduce the size of
the feature vector and make the classification simpler, PCA is utilized which
reduces the number of features from 512 to 14 preserving 99% of the variance of
the original data. The reduced features are passed to the proposed CWO-KELM
classifier for classifying the mammograms as normal or abnormal followed by
benign or malignant.

Table 1 depicts the various performance results attained with the proposed
CAD model. From the table, it can be noticed that the highest accuracy achieved
for MIAS dataset is 100% in both normal-abnormal and benign-malignant classi-
fications. Similarly, for the DDSM dataset, an accuracy of 99.48% and 98.61% is
achieved for normal-abnormal, and benign-malignant classification, respectively.
Additionally, the ROC graphs generated by the proposed classifier are plotted
in Figs. 3 and 4 showing the corresponding values of AUC for MIAS and DDSM
datasets, respectively.
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Fig. 4. ROC of DDSM

Further, to add more justification, the proposed CAD model is compared
with five recently developed CAD schemes. The comparison against the other
schemes is made in terms of classification accuracy and is depicted in Table 2.

Table 1. Performance measures obtained by the proposed CWO-KELM-based model;
N-Normal, A-Abnormal, B-Benign, M-Malignant

Dataset Performance
measures

CLAHE+CLBP+
PCA+CWO-KELM

N-A B-M

MIAS Sensitivity 1 1

Specificity 1 1

Accuracy (%) 100 100

DDSM Sensitivity 0.9945 0.9886

Specificity 0.9912 0.9869

Accuracy (%) 99.48 98.61

Table 2. Comparison with some of the other existing CAD schemes

Reference Proposed scheme Classification accuracy (%)

[21] Statistical Features+LBP+SVM 98.63 (DDSM)

[26] Firefly+ANN 95.23 (DDSM)

[14] Parasitic metric learning 96.7 (MIAS), 97.4 (DDSM)

[4] BEMD+SVM 95 (MIAS)

[24] WCS-LBP+SVM-RFE+Random Forest 97.25 (MIAS)

Proposed CLAHE+CLBP+PCA+CWO-KELM 100 (MIAS), 98.61 (DDSM)
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4 Conclusion

In the present work, an enhanced CAD system has been proposed for breast can-
cer classification in digital mammograms. Initially, CLAHE is used to enhance
the low-contrast images. Then, CLBP is employed to extract the texture fea-
tures followed by a feature reduction module using PCA. The reduced feature
set is then passed through a CWO-KELM-based classifier to classify the mammo-
grams. The proposed model has been experimented on two benchmark datasets,
namely, MIAS and DDSM. Furthermore, the performance of the proposed model
has been compared with five recent schemes and it has been noticed that the
proposed model with only 14 features achieves improved results over the com-
petent schemes. The high success rate with respect to the accuracy of the pro-
posed scheme helps radiologists to make an accurate diagnosis decision to reduce
unnecessary biopsies.
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Abstract. We propose a novel Bayesian Ridge Echo State Network
(BRESN) model for nonlinear time series prediction, based on Bayesian
Ridge Regression and Independent Component Analysis. BRESN has a
regularization effect to avoid over-fitting, at the same time being robust
to noise owing to its probabilistic strategy. In BRESN we also use Inde-
pendent Component Analysis (ICA) for dimensionality reduction, and
show that ICA improves the model’s accuracy more than other reduc-
tion techniques. Furthermore, we evaluate the proposed model on both
synthetic and real-world datasets to compare its accuracy with twelve
combinations of four other regression models and three different choices
of dimensionality reduction techniques, and measure its running time.
Experimental results show that our model significantly outperforms other
state-of-the-art ESN prediction models while maintaining a satisfactory
running time.

Keywords: Echo State Network · Bayesian Ridge Regression
Independent Component Analysis · Nonlinear time series prediction

1 Introduction

Analyzing time-dependent data and forecasting future values has been widely
studied and applied in a multitude of domains, including economics, engineering,
and natural and social sciences. A practical application of time-series involves
both univariate and multivariate analysis, with linear and nonlinear dynamics
[7,11]. Consequently, various neural network and support vector machine (SVM)
based models have been proposed, such as multilayer perceptrons (MLP) [8],
radial basis function (RBF) neural network [9], extreme learning machine (ELM)
[4], and echo state network (ESN) [6].

ESN is a type of recurrent neural network (RNN) designed to solve vanishing
and exploding gradient problems, with the core idea of driving a large and fixed
number of randomly generated neurons (called the reservoir) with the input
signal to induce a nonlinear response in each neuron [5]. In other words, ESN
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avoids the gradient problem by training only the output weights; this allows
ESN to have significantly faster training time compared to other multi-layer
RNNs (e.g. Long Short Term Memory (LSTM)), which typically require powerful
Graphics Processing Units (GPUs).

In this paper, we propose a novel ESN model, namely Bayesian Ridge Echo
State Network (BRESN), to improve the prediction capability of existing ESN
models. Firstly, BRESN uses Bayesian Ridge Regression, which adds a proba-
bilistic perspective and the ‘prior’ concept to help with the regularization of the
classical ridge, and overall provides higher robustness. Secondly, we have intro-
duced Independent Component Analysis for dimensionality reduction in BRESN,
and shown that it provides more accurate prediction results with Bayesian Ridge
Regression than previous reduction techniques. Finally, we have evaluated our
BRESN model on both synthetic and real-world datasets, and shown that our
model significantly outperforms other state-of-the-art models in term of accuracy
while maintaining a satisfactory running time.

The rest of the paper is organized as follows. Section 2 provides information
on related work, and Sect. 3 gives an overview on ESN architecture. Section 4
explains the components of our BRESN model, while Sect. 5 presents and dis-
cusses our experimental setup and results. Finally, concluding remarks are pro-
vided in Sect. 6.

2 Related Work

In training the output weights of ESN, pseudoinverse is a commonly used
method. However, in practical applications, pseudoinverse can easily lead to
ill-posed problems and cause weak generalization capability of the model. To
resolve these problems, regularization methods such as Tikhonov regularization
can be used. The traditional Tikhonov regularization, or ridge regression, penal-
izes high coefficient values in order to ‘simplify’ the trained model as much as
possible. This allows the method to avoid over-fitting by minimizing the impacts
of irrelevant features. Noise injection is an alternative, but it is not as stable as
the standard Tikhonov regularization [1].

In addition to Ridge Regression, still one of the most widely applied and
well performed ESN output regression techniques, there have been various other
works on different ESN variants. This includes using Support Vector Regression
(SVR) together with ESN to replace ‘kernel trick’ with ‘reservoir trick’ in dealing
with nonlinearity; in other words, to perform linear SVR in the high-dimension
‘reservoir’ state space [12]. Another notable work is from [3], where a probabilistic
instead of regularization approach is applied in training ESN output weights.

As ESN often deals with high dimensional data, dimensionality reduction
techniques have been proposed and evaluated in [10]. In this work, Principal
Component Analysis (PCA) and kernel Principal Component Analysis (kPCA)
have been shown to consistently provide improvements in ESN prediction accu-
racy. This work has also experimented and shown promising results when using
ν-SVR, a SVR variant that uses a hyperparameter ν to control the number of
support vectors, together with PCA and kPCA.
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3 Basics of Echo State Network

The architecture of Echo State Network (without feedback, for purely input-
driven dynamical pattern recognition) is depicted in Fig. 1. The circles depict
input u, reservoir state x, and output y. The gray dashed squares depict the
input-to-reservoir weight matrix W r

i and the reservoir weight matrix W r
r . These

two matrices are randomly initialized with real values sampled from a uniform
distribution in the [−1, 1] interval. The solid squares depict the reservoir-to-
output weight matrix W o

r and the input-to-output weight matrix W o
i . The dia-

mond shape with z−1 depicts the unit delay operator, and the polygon illustrates
the non-linear transformation performed by the neurons of the network.

x y

u
z-1

Wr
o

Wr
r

Wi
r

Wi
o

Fig. 1. Echo State Network architecture

The system and output equations of the discrete-time ESN are as follow:

x[n] = f (W r
r x[n − 1] + W r

i u[n]) + ν(n − 1) (1)
y[n] = W o

r x[n] + W o
i u[n] (2)

where f is a sigmoid function (usually the logistic sigmoid or tanh function), and
ν is a noise vector added to the reservoir states.

By definition, the two weight matrices W r
i and W r

r are randomly initialized
and not trained, while W o

r and W o
i of the readout are optimized for specific

tasks. To begin with, supposed we have a training set Ttr; from this training set
input-output pairs can be formed:

(u[1], y[1]), ..., (u[Ttr], y[Ttr]) (3)

In the training phase, or state harvesting, the reservoir states x[1],...,x[Ttr] can
be harvested using Eq. 1, and the target outputs are used for Eq. 2. The inputs,
reservoir states, and outputs can be stacked into a matrix S, and the target
outputs can be stacked into a vector Y in order to train the ESN readout layer:

S =

⎡
⎢⎣

xT [1],uT [1]
...

xT [Ttr],uT [Ttr]

⎤
⎥⎦ ,Y =

⎡
⎢⎣

y[1]
...

y[Ttr]

⎤
⎥⎦ (4)
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4 Bayesian Ridge Echo State Network (BRESN)

The overall architecture of our Bayesian Ridge Echo State Network (BRESN)
model is shown in Fig. 2.

Inputs Time Series 
Reconstruction Reservoir Dimensionality 

Reduction Readout

Bayesian Ridge 
Regression

Independent 
Component Analysis

Evaluate 
Fitness

Generate next 
individual

Time Delayed 
Embedding BRESN

Genetic 
Algorithm

Fig. 2. Bayesian Ridge Echo State Network (BRESN) architecture

The input time series data is firstly reconstructed using time delayed recon-
struction method and put into BRESN. As there are a variety of hyperparame-
ters necessary to be optimized for BRESN, genetic algorithm is utilized for this
purpose. Individuals from genetic algorithm are created, and the individual with
the best cross-validation fitness result is chosen for testing of the model.

4.1 Time Series Reconstruction

In order to provide quality predictions, identifying the original phase space of
observed time series data is necessary. This can be done by converting observa-
tions into state vector by a process known as phase space reconstruction. Takens’
Embedding Theorem [14] shows that with a suitable dimension, we can obtain
a topologically equivalent structure to the original ‘attractor’ of the time series.

Given a time series [X1,X2, ...,XN ], where Xi = [x1(i), x2(i), ..., xd(i)]T

(d dimensions) and i = 1, 2, ..., N , suppose we set the time delay vector as
M = [m1,m2, ...,md], where mj(j = 1, 2, ..., d) is the jth embedding dimen-
sion, and τj(j = 1, 2, ..., d) is the time delay. Then a time delayed phase space
reconstruction can be created as follow:

V (k) =
[
x1(k), x1(k − τ1), ..., x1(k − (m1 − 1)τ1),

x2(k), x2(k − τ2), ..., x2(k − (m2 − 1)τ2),
...

xd(k), x2d(k − τd), ..., xd(k − (md − 1)τd)
]

(5)

The time series dimension after phase space reconstruction is m1 + m2 +
... + md. Suppose that ρ is the prediction horizon, then according to Takens’
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Embedding Theorem, with suitable time delay and embedding dimension param-
eters, generally there exists a function F such that:

x1(k + ρ) = F1(V (k))
x2(k + ρ) = F2(V (k))

...

xd(k + ρ) = Fd(V (k))

(6)

To determine the correct time delay τj and embedding dimension mj , methods
like autocorrelation or mutual information can be used.

4.2 Dimensionality Reduction

To deal with very high dimensional data in readout layer (Eq. 4), we have
employed dimensionality reduction techniques to overcome the multicollinear-
ity problem. Independent Component Analysis (ICA) is chosen for this purpose.
For matrix S (Eq. 4), using ICA we consider the source S to be a linear com-
bination of independent non-Gaussian components. ICA attempts to ‘un-mix’
the source into S = SiA where Si contains the independent components and
A is the mixing matrix. In other words, ICA searches for A that maximizes the
non-Gaussianity of the sources; as a result, it can also be used for dimensionality
reduction with the resulting Si being the reduced version of S.

At the center of the ICA algorithm, neg-entropy (J) can be used to mea-
sure non-Gaussianity, which is fast to compute and more robust than kurtosis-
based method. The approximation of neg-entropy for a variable s in case of one
quadratic function G is of the form:

J(s) � [E{G(s)} − E{G(v)}]2 (7)

where E denotes expectation, s is assumed to be of mean 0 and unit variance,
and v is a random variable following a normal distribution of mean 0 and unit
variance. In this work, we have chosen G to be log cosh function; more specifi-
cally, function G for a variable u has the form G(u) = 1

c log(cosh(cu)) where c
is some suitable constant (c is set to 1 in this work).

4.3 Bayesian Ridge Regression (BayeRidge)

To train ESN readout layer, linear regression can be used; however, this method
can easily cause overfitting problem. This is because both reservoir states and
inputs (with increased dimensions from reconstruction) are stacked into matrix
S of Eq. 4, making it very high dimensional and easy to overfit. As a result, one
common approach to resolve this problem is ridge regression, which penalizes
high coefficient values by solving the following regularized least-square problem:

W ∗
ls = argmin

W
(||Y − SW ||2 + λ||W ||2) (8)
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where λ is the L2 regularization coefficient, and W = [W o
i W o

r ]. Larger values
of λ will cause the components of W to shrink more towards zero. In matrix
terms, the calculation in the right hand side of Eq. 8 is the same as:

(Y − SW )T (Y − XW ) + λW T W (9)

where W T denotes the transpose of the matrix form of W .
Solving Eq. 9 we get the Ridge estimator as follows:

W = (ST S + λI)−1ST Y (10)

where I is the identity matrix.
For the Ridge Regression discussed above, we can obtain a Bayesian view

of it by considering the standard regression model Y = SW + ε with two fol-
lowing conditions: (i) the error ε has a normal distribution with mean 0 and
known variance matrix σ2I, and (ii) W has a prior normal distribution with
known mean α and known variance matrix Z. Posterior probability of W can
be obtained using Bayes’ theorem:

p(W /Y ) ∼ N [
(Z−1 + (1/σ2)ST S)−1(Z−1α + (1/σ2)ST Y );

(Z−1 + (1/σ2)ST S)−1
]

(11)

Using Eq. 11, if we set α = 0 and Z = (σ2/λ)I, the posterior mean of W
is equal to (ST S + λI)−1ST Y , which is the same as the Ridge estimator in
Eq. 10. In other words, the penalization by weighted L2 coefficient is equivalent
to setting a Gaussian prior on the weights W .

Also, in order to complete the priors’ specification, the priors for the variances
of ε and W need to be defined. Suppose ϕε = 1/σ2 and ϕw = λ/σ2 are the
precisions of ε and W , respectively, then their priors can be suitably defined by
the following Gamma distributions [2]:

p(ϕε) ∼ Gamma(α1, α2) (12)

p(ϕw) ∼ Gamma(λ1, λ2) (13)

As a result, the hyperpriors α1, α2, λ1, and λ2 are the hyperparameters necessary
to be estimated for Bayesian Ridge Regression.

The key difference between Ridge and BayeRidge is that the Bayesian app-
roach makes predictions by integrating over the distribution of model parame-
ter (W ), instead of using a specific estimated value. This key property allows
Bayesian Ridge Regression to reduce overfitting (as its predictions are basically
averaged over many possible solutions), as a result improve predictive capability
compared to the classical Ridge Regression.

4.4 Hyperparameters Optimization Using Genetic Algorithm

In order to optimize the set of hyperparameters for BRESN, genetic algorithm
is used with Gaussian mutation, random crossover, tournament selection, and
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elitism. The genetic algorithm is ran for 20 generations, population size of 50,
number of offsprings of 30 in each generation, mutation probability of 0.2, and
crossover probability of 0.5. To select the best individual, the genetic algorithm
attempts to minimize the following fitness function:

Fit(θ) = (1 − r)Err(Y ) + r ∗ d/Nr (14)

where θ is an individual, and the ratio r is set to 0.9 for this work.
The fitness function not only tries to minimize prediction errors (for targeted

outputs Y ) but also penalizes models with high complexity of dimension d.

5 Results and Discussion

5.1 Experimental Setup

Benchmark Models: In this work we compare BRESN against 12 combina-
tions of 4 other regression models and 3 other dimensionality reduction technique
choices. The 4 benchmark regression models include Ridge Regression (Ridge),
Linear Support Vector Regression (SVR), ν-Support Vector Regression (ν-
SVR), and Bayesian Regression (Bayesian). The 3 benchmark dimensionality
reduction technique choices are no reduction (Identity), Principal Component
Analysis (PCA), and kernel Principal Component Analysis (kPCA).

Datasets: To evaluate the accuracy of prediction models, we have used 2
synthetic and 2 real-world datasets. The 2 synthetic datasets include Lorenz
(Lorenz) and Rossler (Rossler) chaotic time series generated for 4000 time
steps, while the 2 real-world datasets include daily closing prices between Jan-
uary 1st, 2000 and December 31st, 2017 of Standard and Poor’s 500 stock data1

(SP500) and the 13-month smoothed monthly total international sunspot num-
ber between July 1749 and September 2017 (Sunspots) [13]. In each dataset,
the first 50% of data is used for training, the next 20% is for cross-validation,
and the last 30% is for testing. For time series reconstruction, the time delay
and embedding dimension (τ , m) for Lorenz, Rossler, SP500, and Sunspots
are (10, 1), (3, 13), (10, 1), and (10, 1), respectively.

Accuracy Metric: To evaluate the prediction accuracy of models and for the
error function Err in Eq. 14, we use Normalized Root Mean Squared Error
(NRMSE). For a testing set Tte with real values Y =

[
y[1], ..., y[Tte]

]
and

prediction results P =
[
p[1], ..., p[Tte]

]
, then NRMSE is defined as follow:

NRMSE(P ,Y ) =

√
1

Tte

∑Tte

i=1

(
p[i] − y[i]

)2
std(Y )

(15)

where std(Y ) is the standard deviation of (Y ).
1 https://finance.yahoo.com/quote/SPY/history/.

https://finance.yahoo.com/quote/SPY/history/
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Hyperparameter Optimization: The hyperparameters necessary to be opti-
mized by genetic algorithm is shown in Table 1; each hyperparameter is searched
within the interval [min,max] with resolution Δ, except reservoir spar-
sity/connectivity is fixed at 0.25 to maintain sparse weights of ESN.

Table 1. Hyperparameter intervals and resolutions. For general ESN: number of neu-
rons in reservoir (Nr ), state update noise (ξ), input scaling (wi ), teacher/output scal-
ing (wo ), spectral radius (ρ); for Ridge Regression: regularization (λ); for Linear- and
Nu-SVR: error term penalty (C), epsilon-insensitive loss function hyperparameter (ε),
nu hyperparameter (ν), kernel coefficient (γ); for Bayesian Ridge: shape and inverse
scale parameters for Gamma distribution (λ1, λ2, α1, α2); for PCA, kPCA, ICA:
dimensionality reduction ratio ( d

N r
)

ESN Ridge SVR, ν-SVR BayeRidge PCA, kPCA, ICA

Nr ξ wi wo ρ λ C ε ν γ λ1 λ2 α1 α2
d

N r

min 100 0.0 0.1 0.1 0.5 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

max 500 0.1 0.9 0.9 1.4 1.0 10.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Δ 5 0.01 0.08 0.08 0.09 0.1 1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

5.2 Dimensionality Reduction Technique

There have been experimental results showing the effectiveness of using dimen-
sionality reduction techniques, including PCA and kPCA to train ESN read-
out layer [10]. Thus, in order to demonstrate the reason for our choice of ICA
for dimensionality reduction, we have shown the accuracy comparison across 4
datasets for Bayesian Ridge Regression with different dimensionality reduction
techniques in Table 2.

Table 2. NRMSE of different dimensionality reduction techniques for Bayesian Ridge
Regression (lowest NRMSE results in bold blue text)

Identity PCA kPCA ICA

Lorenz 6.54 ∗ 10−6 4.29 ∗ 10−8 3.78 ∗ 10−8 3.62 ∗ 10−8

Rossler 1.92 ∗ 10−5 3.13 ∗ 10−7 4.34 ∗ 10−5 2.80 ∗ 10−7

SP500 3.95 ∗ 10−1 1.65 ∗ 10−1 1.37 ∗ 10−1 4.19 ∗ 10−2

Sunspots 2.59 ∗ 10−2 2.28 ∗ 10−2 2.29 ∗ 10−2 2.19 ∗ 10−2

The effectiveness of applying dimensionality reduction can clearly be seen
from Table 2, in which almost all dimensionality reduction techniques perform
better than ‘identity’ (no reduction) with only one exception of kPCA for Rossler
dataset. Also, even though kPCA provides a kernel extension to PCA, it does
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not always perform better when using together with Bayesian Ridge Regression
(PCA is better in Rossler, and similar results between the two in Sunspots).
Finally, the results in Table 2 clearly shows that ICA outperforms all other
dimensionality reduction techniques in all 4 datasets.

5.3 Accuracy Comparison

In order to evaluate the accuracy of our BRESN model, we have compared it to
4 other regression models, including Ridge, SVR, ν-SVR, and Bayesian, and 3
other dimensionality reduction approaches, including Identity (no dimensionality
reduction), PCA, and kPCA. As the 2 synthetic datasets (Lorenz, Rossler) are
generated from well-defined equations thus having less noise than the 2 real-world
datasets (SP500, Sunspots), all the models provide better prediction results for
the first 2 than the last 2. It is also worth noting that Ridge and Bayesian models
consistently perform better than SVR and ν-SVR given the same dimensional
reduction techniques.

Table 3. NRMSE of different models (lowest NRMSE results in bold blue text)

Ridge SVR
Identity PCA kPCA Identity PCA kPCA

Lorenz 2.72 ∗ 10−5 9.90 ∗ 10−7 1.02 ∗ 10−6 2.90 ∗ 10−3 5.50 ∗ 10−4 8.56 ∗ 10−4

Rossler 1.35 ∗ 10−4 1.56 ∗ 10−4 5.52 ∗ 10−5 1.68 ∗ 10−3 6.08 ∗ 10−3 1.27 ∗ 10−3

SP500 4.49 ∗ 10−1 1.03 ∗ 10−1 6.04 ∗ 10−2 6.35 ∗ 10−1 4.33 ∗ 10−1 4.91 ∗ 10−2

Sunspots 2.22 ∗ 10−2 2.24 ∗ 10−2 2.44 ∗ 10−2 3.39 ∗ 10−2 4.17 ∗ 10−2 3.11 ∗ 10−2

ν-SVR Bayesian
Identity PCA kPCA Identity PCA kPCA BRESN

Lorenz 3.76 ∗ 10−3 4.87 ∗ 10−3 2.16 ∗ 10−3 1.30 ∗ 10−4 1.96 ∗ 10−4 2.34 ∗ 10−4 3.62 ∗ 10−8

Rossler 2.56 ∗ 10−4 3.04 ∗ 10−4 2.51 ∗ 10−4 2.09 ∗ 10−4 8.12 ∗ 10−7 2.90 ∗ 10−5 2.80 ∗ 10−7

SP500 7.00 ∗ 10−1 5.84 ∗ 10−1 6.97 ∗ 10−1 4.81 ∗ 10−1 1.40 ∗ 10−1 8.67 ∗ 10−2 4.19 ∗ 10−2

Sunspots 3.32 ∗ 10−2 3.74 ∗ 10−2 3.37 ∗ 10−2 2.21 ∗ 10−2 2.27 ∗ 10−2 2.26 ∗ 10−2 2.19 ∗ 10−2

From the results of the 12 benchmark models, it is clear that dimensionality
reduction (PCA, kPCA) offers improvement in prediction capability of ESN
models. When applying either PCA or kPCA, the NRMSE results either stay
at similar levels or decrease, even significantly decrease compared to Identity
in cases like Ridge model for Lorenz dataset, or Bayesian for Rossler dataset.
Furthermore, except in the case of Bayesian for Rossler dataset, generally kPCA
either offers improvements or at least provides similar accuracy results to that
of PCA.

The NRMSE results from Table 3 clearly show that our BRESN model with
Bayesian Ridge Regression and Independent Component Analysis outperforms
all other 12 models in all 4 datasets. By combining both the regularization and
probabilistic aspects of Ridge and Bayesian, BRESN demonstrates both its high
accuracy and robustness in non-linear time series prediction.
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5.4 Running Time

We have also measured the running time of different regression models and
dimensionality reduction techniques, by varying the number of neurons in the
ESN reservoir while keeping all other hyperparameters fixed. For each model,
the running time has been obtained by averaging over 20 runs, with number of
neurons ranging from 100 to 1000 at step size of 100 (Fig. 3).
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Fig. 3. Running time of different regression models and dimensionality reduction tech-
niques. BayeRidge denotes Bayesian Ridge Regression (used in BRESN), and all hyper-
parameters except number of neurons in reservoirs are fixed, including spectral radius
ρ at 0.9 and dimensionality reduction ratio d

N r
at 0.1.

As can be seen from the figure, our BRESN model maintains a satisfactory
running time. Even without ICA to reduce dimensionality, one run still takes
a reasonable amount of 5.31 s, while a ‘full’ BRESN with all components and
1000 neurons in reservoir reduces the number to 3.69 s per run. Also, it is worth
noting that in this work we have experimented with a maximum of 500 neurons
in reservoir for all ESN models, and we have run the models concurrently for
multiple times of training and testing. These factors reduce the average running
time even further, thus making BRESN’s training and testing speed satisfactory
for real-world use.

6 Conclusion

In this paper, we have proposed a novel Bayesian Ridge Echo State Network
(BRESN), which introduces Bayesian Ridge Regression for regression and Inde-
pendent Component Analysis (ICA) for dimensionality reduction in ESN read-
out training. We have evaluated and shown that ICA provides higher accu-
racy improvements than other dimensionality techniques. Also, we have tested
BRESN on both synthetic and real-world datasets, compared it with 12 combina-
tions of 4 other regression models and 3 other dimensionality reduction technique
choices, and measured its running time. The results show that BRESN signifi-
cantly outperforms other state-of-the-art models in term of accuracy while still
having satisfactory running time.
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Abstract. We propose a new bio-plausible model based on the visual
systems of Drosophila for estimating angular velocity of image motion in
insects’ eyes. The model implements both preferred direction motion
enhancement and non-preferred direction motion suppression which
is discovered in Drosophila’s visual neural circuits recently to give a
stronger directional selectivity. In addition, the angular velocity detect-
ing model (AVDM) produces a response largely independent of the spa-
tial frequency in grating experiments which enables insects to estimate
the flight speed in cluttered environments. This also coincides with the
behaviour experiments of honeybee flying through tunnels with stripes
of different spatial frequencies.

Keywords: Motion detection · Insect vision · Angular velocity
Spatial frequency

1 Introduction

Insects though with a mini-brain have very complex visual processing systems
which is the fundamental of the motion detection. How visual information are
processed, especially how insects estimate flight speed have been met with strong
interest for a long time. Here we use Drosophila as instance whose visual pro-
cessing pathways have been researched the most among insects by using both
anatomy, two-photon imaging and electron microscope technologies, to explain
generally how signals are processed in insects’ visual systems, inspiring us to
build up new bio-plausible neural network for estimating angular velocity of
image motion.

c© Springer Nature Switzerland AG 2018
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Drosophila have tens of thousands of ommatidia, each of which has its small
lens containing 8 photoreceptors R1-R8 sending their axons into the optic lobe
to form a visual column. Optic lobe, as the most important part of the visual
system, consists of four retinotopically organized layers, lamina, medulla, lobula
and lobula plate. The number of columns in optic lobe is the same with the
number of ommatidia [1]. Each column contains roughly one hundred neurons
and can process light intensity increments (ON) and decrements (OFF) signals
in parallel way simultaneously [2]. In each column, visual signals of light change
can be transformed to motion signals by this visual system with ON and OFF
pathways [3] (see Fig. 1). Visual signals of light change can be transformed to
motion signals by these two pathways in each column [3] (see Fig. 1).
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Fig. 1. Visual system of Drosophila with ON and OFF pathways. In each column
of the visual system, the motion information are mainly captured by photoreceptors
R1-R6, and processed by lamina cells L1-L3, medulla neurons (Mi1, Mi9, Tm1, Tm2,
Tm3, Tm9) and T4, T5 neurons. The lobula plate functioning as a map of visual motion
which has four layers representing four cardinal directions (front to back, back to front,
upward and downward). T4 and T5 cells showing both preferred motion enhancement
and non-preferred direction suppression are first to give a strong directional selectivity
[5]. This figure referenced Takemura and Arenz’s figures [3,4].

How the visual system we describe above detects motions has been researched
for a long time. Hassenstein and Richardt proposed an elementary motion detec-
tor (EMD) model to describe how animals sense motion [6]. This HR detector
uses two neighbouring viewpoints as a pair to form a detecting unit. The delayed
signal from one input multiplies the signal from another without delay to get
a directional response (Fig. 2a). This ensures the motion of preferred direction
have a higher response than non-preferred direction. Another competing model
called BL model, proposed by Barlow and Levick implements the non-preferred
direction suppression instead [7]. BL detector uses signal from one input without
delay to divide the input from another delayed arm located on preferred side to
get a directional selective response (Fig. 2b). Both models can be implemented
in Drosophila’s visual system since patch-clamp recordings showed a temporal
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delay for Mi1 regard to Tm3 in ON pathway and Tm1 with regard to Tm2
in OFF pathway [8]. This also provides the neural fundamental for delay and
correlation mechanism.

Fig. 2. Contrast of the Motion detectors. (a) In Hassenstein-Reichardt detector, a
delayed signal from left photoreceptor multiplies the signal from right to give a preferred
direction enhancement response. (b) In Barlow-Levick detector, a delayed signal from
right divides the signal from left to suppress null direction response. (c) A recently pro-
posed Full T4 detector combines both PD enhancement and ND suppression. (d) Pro-
posed angular velocity detecting unit (AVDU) detector combines the enhancement and
suppression with a different structure.

Recently, a HR/BL hybrid model called Full T4 model has been proposed
based on the finding that both preferred enhancement and non-preferred sup-
pression is functioning in Drosophila’s visual circuits [9]. The motion detector
they proposed consists of three input elements. The delayed signal from left arm
multiplies the undelayed signal from middle arm, and then the product is divided
by the delayed signal from right arm to give the final response (Fig. 2c). Circuits
connecting T4 or T5 cells that are anatomically qualified to implement both two
mechanisms also give a support to this hybrid model [3]. According to their sim-
ulation, this model structure can produce a stronger directional selectivity than
HR model and BL model. However, one problem of the models we mentioned
above is that they prefer particular temporal frequency and cause the ambiguity
that a response could correspond to two different speeds. Though they can give
a directional response for motion, it’s hard to estimate the motion speed. So
these models can only explain part of the motion detection, while some of the
descending neurons, according to Ibbotson’s records, shows that the response
grows monotonically as the angular velocity increases [10]. What’s more, the
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response is largely independent with the spatial frequency of the stimulus, which
is also coincident with the corridor behaviour experiments of honeybee [11].

In order to solve this problem, Riabinina presents a angular velocity detector
mainly based on HR model [12]. The key point of this model is that it uses
the summation of the absolute values of excitation caused by differentiation of
signal intensity over time, which is strongly related to the temporal frequency
and independent of the angular velocity, as the denominator to eliminate the
temporal dependence of the final output. Cope argues that this model simulates
a circuit that separates to the optomotor circuit which requires more additional
neurons and costs more energy. Instead, Cope proposes a more bio-plausible
model as an extension to the optomotor circuit which uses the ratio of two HR
model with different delays [13]. The main idea is that the ratio of two bell
shaped response curves with different optimal temporal frequencies can make a
monotonic response to eliminate the ambiguity. The problem is that the delays
is chose by undetermined coefficients method, and need to be finely tuned which
may weaken the robustness of the model.

Neural structure under recent researches inspires us building up a new angu-
lar velocity detection model. We agree that visual motion detection systems is
complex and should have three or more input elements like Full T4 model as the
new researches indicate. But the structure of the models with both enhancement
and suppression implemented can be very different from Full T4 model. Here we
give an example AVDU (Fig. 2d) for reference. AVDU (angular velocity detector
unit) uses the product of the delayed signal from left arm and undelayed signal
from middle arm to divide by the product of the delayed signal from middle
arm and undelayed one from right arm. This structure combines the HR and BL
model together to give a directional motion response. What’s more, according
to our simulation, AVDU is suitable as a fundamental unit for angular velocity
detection model that is largely independent to spatial frequency of the grating
pattern.

2 Results

Based on proposed AVDU detector, we build up the angular velocity detecting
model (AVDM) to estimate visual motion velocity in insects’ eyes. AVDM con-
sists of an ommatidial pattern with 27 horizontal by 36 vertical ommatidia per
eye to cover the field of view which is 270◦ horizontally by 180◦ vertically. Each
3 adjacent ommatidia in the horizontal direction form a detector for horizon-
tal progressive image motion. And each detector consists of two AVDUs with
different sampling rates to produce a directional response for preferred progres-
sive motion (i.e. image motion on left eye when flying backward). The ratio of
two AVDUs with different sampling rates then produce a response largely inde-
pendent of the spatial frequencies of the sinusoidal grating. The output of all
detectors then are summed and averaged to give a response representing the
velocity of the visual image motion (see Fig. 3).

We simulated the OFF pathway of the Drosophila’s visual neural circuits
when the sinusoidal grating moving in preferred direction. The normalized
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Fig. 3. Angular velocity detecting model. The model use three neighbouring photore-
ceptors as a unit and each unit contains two AVDUs with different sampling rates. The
output is then averaged over the whole visual field to give the final response.

responses of AVDM over different velocities and spatial periods in contrast
of experimental results [14] can been seen from Fig. 4. The response curves of
AVDM are generally in accordance with the experimental data. Especially when
the spatial period is 14◦, the curve shows a notable lower response than other
spatial periods. This might be caused by the suppression of high temporal fre-
quency of T4/T5 cells [4] since the descending neurons are located downstream
of optomotor circuit. This can also be explained by Jonathan’s research on spa-
tial frequency tuning of bumblebee Bombus impatiens which indicates that high
spatial frequency affects the speed estimation [15]. And this will be discussed in
later researches.

In order to get a more general results, the spatial period of the grating and
the angular velocity of the image motion are chosen widely (Fig. 5). All response
curves under different periods show nearly monotonic increasing potential. And
the responses weakly depend on the spatial period of the grating. This coincides
with the responses of the descending neurons according to Ibbotson’s records
[10,14]. And this is important for insects estimating flight speed or gauging
distance of foraging journey in a clutter environment.

Though the results of Riabinina’s model use different velocity and spatial
frequency metric and Cope’s model use spikes as the final output, the trend of
the curves can show the performances of the models. So we give their results here
as reference (Fig. 6). In general, AVDM performs better than Riabinina’s model
whose response curves of 4 different spatial frequencies are separate from each
other [12]. Cope’s model is more bio-plausible than Riabinina’s model which
is based on optomotor circuit. But it only performs well when the speed is
around 100 deg/s, and the semilog coordinate outstands that part, while hon-
eybee mainly maintains a constant angular velocity of 200–300 deg/s in open
flight [16]. Another problem of Cope’s model is that the response of grating with
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a b

Fig. 4. Contrast of AVDM and experimental records under different angular velocities.
(a) The responses of AVDM over different spatial periods. (b) The responses of one
type of descending neuron (DNIII4) over different spatial periods based on Ibbotson’s
records [14].

very high frequency should be lower rather than maintain spatial independence
according to Ibbotson’s records on descending neuron [10,14]. Our model AVDM
uses a bandpass temporal frequency filter simulated by experimental data [4] to
deal with this problem. As you can see, AVDM produces a lower response when
the spatial period is 14◦ and shows response largely independence on spatial
period ranging from 36◦ to 72◦ (Fig. 5).
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Fig. 6. Contrast of responses of two other models. (a) Riabinina’s model uses rad/s
as the velocity metric and the spatial frequencies is 10 m−1 (solid), 20m−1 (dashed),
30m−1 (dotted) and 40 m−1 (dot-dashed) [12]. (b) Cope’s model uses spikes to repre-
sent the model response and uses method of undetermined coefficients to decide the
two delays of the correlation system [13].

3 Methods

All simulations were carried out in Matlab ( c© The MathWorks, Inc.), And the
layout of the AVDM neural layers is given below.

3.1 Input Signals Simulation

The input signal is simulated using two dimensional images frames with sinu-
soidal grating moving across the vision. AVDU1 processes all input images while
AVDU2 only samples half the total images. The spatial period λ (deg) of the
grating and the moving speed V (deg/s) are treated as variables. This naturally
induces a temporal frequency of V/λ (Hz) and an angular frequency ω = 2πV/λ.

Considering the sinusoidal grating moving in visual field of the detecting
unit with three receptors A, B and C, let I0 be the mean light intensity, then
the signal in receptor A can be expressed as I0 + m · sin(ωt). Let Δφ denotes
the angular separation between the neighbouring receptors, then the signal of
receptor B is I0 + m · sin(ω(t − Δφ/V )), and the signal of receptor C is I0 + m ·
sin(ω(t − 2Δφ/V )). So the input signal of one eye can be expressed as:

Ix,y(t) = I0 + m · sin(ω(t − yΔφ/V )), (1)

where (x, y) denotes the location of the ommatidium.

3.2 AVDM Neural Layers

(1) Photoreceptor. The first layer of the AVDM neural network receiving the
input signals of light intensity change to get the primary information of visual
motion:

Px,y(t) = Ix,y(t) − Ix,y(t − 1). (2)
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(2) ON & OFF Pathways. The luminance changes are separated to two
pathways according to the neural structures of the Drosophila visual systems,
with ON representing light increments and OFF representing light decrements:

PON
x,y (t) = (Px,y(t) + |Px,y(t)|)/2,

POFF
x,y (t) = |(Px,y(t) − |Px, y(t)|)|/2.

(3)

(3) Delay and Correlation. The signals are delayed and correlated following
the structure of AVDU. Here we take one AVDU as example, let S1, S2, S3 donate
the input signal of photoreceptor A (left), B (middle), C (right), and SD

1 , SD
2

donate the temporal delayed signal of A and B, then we have the following
expression:

SD
1 (t) = m · [sin(ω(t + ΔT )) − sin(ω(t − 1 + ΔT ))] ≈ M · cos[ω(t + ΔT )], (4)

similarly we can get S2 ≈ M ·cos[ω(t−Δφ/V )], SD
2 ≈ M ·cos[ω(t−Δφ/V +ΔT )]

and S3 ≈ M · cos[ω(t − 2Δφ/V )], where ΔT is the temporal delay of the model.
According to the structure of AVDU, the response of the detector can be

expressed as (SD
1 · S2)/(SD

2 · S3), where the bar means the response is averaged
over a time period to remove fluctuation caused by oscillatory input. What’s
more, we set a lower bound of 0.01 on denominator to avoid the output being
too high. This also can be explained by the tonic firing rate of neurons.

(4) Ratio and Average. If we set temporal delay as 6ms, and take two sam-
pling rates as 1ms per frame and 2ms per frame, then we can get the responses
of AVDU under different angular velocities, spatial periods and sampling rates.
According to our simulation, though the response curves of different sampling
rates have different values, the shapes are very similar. That means that using
the ratio of the responses under different sampling rates can largely get rid of the
influence of spatial frequency. The output of detectors each composed of three
neighboring photoreceptors are then summed up and averaged over the whole
visual field.

(5) Band-Pass Temporal Frequency Filter. We use the records of tempo-
ral tuning of the Drosophila to simulate the band-pass temporal frequency filter
here [4]. According to Arenz’s experiments, the tuning optimum of the tempo-
ral frequency will shift from 1 Hz to 5 Hz with application of the octopamine
agonist CDM (simulating the Drosophila shifts from still to flying). So we set
the temporal frequency filter as a bell-shaped response curve which achieves its
optimum at 5 Hz under semilog coordinate. In fact HR completed model can
naturally be a temporal frequency filter with little modification since it has a
particular temporal frequency preferred bell-shaped curve.
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4 Discussion

We proposed a bio-plausible model, the angular velocity detecting model
(AVDM), for estimating the image motion velocity using the latest neural cir-
cuits discoveries of the Drosophila visual systems. We presented a new structure
AVDU as a part of the model to implement both preferred direction motion
enhancement and non-preferred direction motion suppression, which is found in
Drosophila’s neural circuits to make a stronger directional selectivity. And we use
the ratio of two AVDUs with different sampling rates to give spatial frequency
independent responses for estimating the angular velocity. In addition this can
be used as the fundamental part of the visual odometer by integrating the output
the AVDM. This also provides a possible explanation about how visual motion
detection circuits connecting the descending neurons in the ventral nerve cord.

Using the ratio of two AVDUs with different sampling rates is twofold. One of
the reason is that it can be realized in neural circuits naturally since one AVDU
only needs to process part of the visual information while the structure and even
the delay of two AVDUs are the same. It’s easier than using the ratio of two
HR-detectors with different delays as Cope’s model did [13], because signals are
passed with two different delays means there should have two neurotransmitters
in one circuit or there are two circuits. Another reason is that the response of
individual AVDU is largely dependent on the spatial frequency of the grating,
and the ratio of different sampling rates, according to our simulation, can get
rid of the influence of the spatial frequency.

Here we only simulate ON pathway of the visual systems with T4 cells.
OFF pathway dealing with brightness decrements is similar. Further, models for
forward, upward and downward motion detector can be constructed using the
same structure since they can be parallel processed.
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References

1. Fischbach, K.F.: Dittrich APM: the optic lobe of drosopholia melanogaster. I. A
Golgi analysis of wild-type structure. Cell Tissue Res. 258(3), 441–475 (1989).
https://doi.org/10.1007/BF00218858

2. Joesch, M., Weber, F., Raghu, S.V., Reiff, D.F., Borst, A.: ON and OFF pathways
in Drosophila motion vision. Nature 17(1), 300–304 (2011). https://doi.org/10.
1038/nature09545

3. Takemura, S.Y., Nern, A., Chklovskii, D.B., Scheffer, L.K., Rubin, G.M.,
Meinertzhagen, I.A.: The comprehensive connectome of a neural substrate for ‘ON’
motion detection in Drosophila. eLife 6, e24394 (2017). https://doi.org/10.7554/
eLife.24394

4. Arenz, A., Drews, M.S., Richter, F.G., Ammer, G., Borst, A.: The temporal tuning
of the Drosophila motion detectors is determined by the dynamics of their input ele-
ments. Curr. Biol. 27, 929–944 (2017). https://doi.org/10.1016/j.cub.2017.01.051

https://doi.org/10.1007/BF00218858
https://doi.org/10.1038/nature09545
https://doi.org/10.1038/nature09545
https://doi.org/10.7554/eLife.24394
https://doi.org/10.7554/eLife.24394
https://doi.org/10.1016/j.cub.2017.01.051


46 H. Wang et al.

5. Haag, J., Mishra, A., Borst, A.: A common directional tuning mechanism of
Drosophila motion-sensing neurons in the ON and in the OFF pathway. eLife 6,
e29044 (2017). https://doi.org/10.7554/eLife.29044

6. Hassenstein, B., Reichardt, W.: Systemtheoretische analyse der zeit-, reihenfolgen-
und vorzeichenauswertung bei der bewegungsperzeption des rüsselkäfers chloro-
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Abstract. In this paper, we propose local decimal pattern (LDP) for pollen image
recognition. Considering that the gradient image of pollen grains has more prom‐
inent textural features, we quantify by comparing the gradient magnitude of pixel
blocks rather than the single pixel value. Unlike the local binary pattern (LBP)
and its variants, we encoding by counting the pixel blocks on different quantiza‐
tion intervals, which makes our descriptor robust to the rotation of pollen images.
In order to capture the subtle textural feature of pollen images, we increase the
number of quantization intervals. The average correct recognition rate of LDP on
Pollenmonitor dataset is 90.95%, which is much higher than that of other
compared pollen recognition methods. The experimental results show that our
method is more suitable for the practical classification and identification of pollen
images than compared methods.
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1 Introduction

The classification of pollen particles has been widely applied for allergic pollen index
forecast, drug research, paleoclimatic reconstruction, criminal investigation, oil explo‐
ration and some other fields [1]. The traditional identification of pollen grains is mainly
done by artificial inspection under microscopy, which requires the operator to have a
rich knowledge of pollen morphology and needs a high level of training to get accurate
recognition results. The commonly used discriminate criteria is the visual biological
pollen grain morphological appearance, such as shape, polarity, aperture, size, exine
stratification and thickness, and so on [2]. It takes operator much of time and effort to
observe the appearance of pollen grains, and often causes misrecognition.

With the development of image processing and pattern recognition [3–5], using
computer to extract and classify pollen features has become an effective way for pollen
recognition. The early pollen recognition algorithms focused on extracting shape
features, in which the contour shape is a prominent feature for some pollen grains with
slender oval shape or rounded triangular shape. However, most pollen grains always
have similar contour shapes, so it is difficult to identify different categories of pollen
images only by shape features. Considering that pollen images from different categories
have large differences in texture, more and more texture based feature extraction
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methods have been proposed for automatic classification of pollen images. For example,
Punyasena et al. [6] extracted the texture and shape features of pollen images using
dictionary learning and sparse coding (DLSC), which obtained a recognition rate of
86.13%, however, the recognition performance largely depends on the selection and
quantity of sample blocks. Daood et al. [7] decomposed the pollen image into multiple
feature layers using clustering, then the texture and geometric features (TGF) of each
layer were extracted using LBP and fractal dimension respectively. Finally, the SVM
classifier was used to classify pollen images and a recognition rate of 86.94% was
obtained. Whereas, the method has little robustness to the rotation of pollen grains, and
the decomposition of pollen images increases the dimension of features. Boochs et al.
[8] proposed a pollen recognition method combining shape, texture and aperture features
(STAF), which extracted 18 shape features, 5 texture features (Gabor Filters, Fast
Fourier Transform, Local Binary Pattern, Histogram of Oriented Gradients, and Haralick
features) and a surface aperture features of pollen images. The method used a random
forest classifier to identify pollen images, and obtained nearly 87% recognition rate.
Guru et al. [9] proposed a pollen classification model based on surface texture, which
combined local binary pattern (LBP), Gabor wavelet, gray-level difference matrix
(GLDM), and gray-level co-occurrence matrix (GLCM) for pollen recognition (LGGG),
and obtained 91.66% recognition rate. However, the computation cost of these two
methods is large due to high dimension of the combined features, which makes them
unpractical for real application. Marcos et al. [10] extracted texture features using Log-
Gabor filter (LGF), discrete Tchebichef moments (DTM), local binary patterns (LBP)
and gray-level co-occurrence matrix (GLCM), which obtained a recognition rate of
94.83%, whereas, the fused texture feature (LDLG) contains large amounts of redundant
information and the computational process is complex.

Local binary pattern is an effective method for representing texture feature, which
has been widely used in face recognition and texture classification [11]. The traditional
local binary pattern and its variants usually use wide quantization intervals to quantize
the neighboring pixels, which enhances the descriptor’s robustness to the illumination
changes of images, but also loses some detailed textural information at the same time.
Unlike the general texture images, the textural variation range of pollen images is rela‐
tively small, so it’s difficult to capture the subtle textural differences of pollen images
from different categories in wide quantization intervals. In order to solve the problem,
the local decimal pattern (LDP) was proposed. The advantages of our method are as
follows: Quantizing using the gradient magnitude of pixel blocks instead of single pixel
value to eliminate the effects of image noise. Encoding by referring to the number of
pixel blocks in each quantization interval making the descriptor invariant to the rotation
of pollen grains. The combination of LDP features in multiple directions increases the
descriptor’s discrimination. Experimental results on Pollenmonitor dataset show that
the recognition rate and computation speed of our method is higher than that of most
pollen recognition methods.
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2 Local Decimal Pattern (LDP)

Most of the current methods for extracting pollen features are those combining different
single features: LBP and fractal dimension as in [7], and LBP, GLCM, LGF and DTM
as in [10], and LBP, Gabor, etc. as in [8, 9]. All of these take advantages of different
features to construct the optimal representation of pollen images, but the use of multiple
features leads to a higher computational costs.

In order to build pollen feature descriptor with high computational efficiency, and
high robustness to rotation and noise, we proposed Local Decimal Pattern (LDP).
Figure 1 shows the implementation of LDP feature for representing pollen images, and
Fig. 2 presents the step of the algorithm based on LDP for pollen recognition. The
specific calculation process of LDP is as follows:

Fig. 1. Implementation of LDP feature for representing pollen.

Fig. 2. The step of the algorithm based on LDP for pollen recognition.
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Fig. 3. Calculation of gradient histogram of an image block. The lengths and directions of arrows
represent the gradient magnitude and gradient direction of pixels respectively.

First, we calculate the image gradient, the gradient information of each pixel includes
gradient magnitude and gradient angle. The gradient angle range from −𝜋 to 𝜋, and we
divide [−𝜋,𝜋) into 8 equal-sized direction intervals. Then, a histogram of gradient is
calculated by weighting all pixels’ gradient magnitude into corresponding gradient
directions, and the directions with maximum, minimum and median gradient are marked
as D1, D2 and D3 respectively (as shown in Fig. 3). The gradient magnitude of pixel
blocks under different gradient directions is calculated as follows:
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Where: D is the gradient direction; m is the pixel block size; mPK
 and 𝜃PK

 are the
gradient magnitude and gradient angle of the pixel PK.

Second, the number of pixel blocks in ith quantization interval under gradient direc‐
tion D is counted as follows:

ND

i
=

n∑

j=1

Si

(
BD

r,n,m,j − BD

m,c

)
(3)

Si(x) =

{
1 |x| ∈ Qi

0 |x| ∉ Qi

(4)

Qi =
[
li, li+1

)
(5)

Where: n is the number of neighboring pixel blocks; BD
r,n,m,j is the gradient magnitude

of the m × m pixel block in the square neighborhood with sampling radius r; j is the
serial number of pixel blocks; BD

m,c is the gradient magnitude of the central pixel block
under gradient direction D; Qi is the ith quantization interval; li is the threshold of Qi.
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After counting the number of neighboring pixel blocks located at different quanti‐
zation intervals, we can define the Local Decimal Pattern (LDP) as follows:

LDPD =

L∑

i=1

ND

i
× 10i−1 (6)

Where L is the total number of quantization intervals.
At last, we calculate the LDP feature histograms under three gradient directions, and

the final representation of pollen images is the concatenation of these LDP histograms:

LDPH =
{

LDPHD1 , LDPHD2 , LDPHD3
}

(7)

Figure 4 shows the calculation process of LDP of an image block under direction
D1, the color of the square in figure represents the gradient magnitude difference between
the neighboring pixel blocks and the central pixel block under the gradient direction
D1, and the same color indicates that the difference of gradient magnitude belongs to the
same quantization interval. In Fig. 4, the gradient magnitude of pixel blocks under
gradient direction D1 are quantized into 4 intervals, and the number of pixel blocks under
4 quantization intervals is counted as 4, 2, 1 and 1, respectively. So we can get a local
decimal pattern 1124.

Fig. 4. Calculation of LDP of an image block under direction D1.

3 Pollen Recognition Experiments

To evaluate our method, we performed experiments on pollenmonitor dataset with a
computer of Intel(R) Core(TM) i5-3210 M @ 2.50 GHz processor and 6 GB memory,
and the software we used is MATLAB R2014a. We randomly selected 60% of the pollen
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images of each category on pollenmonitor dataset as training images and the rest were
used as test images. A SVM classifier [12, 13] was used for the classification and recog‐
nition of pollen images, and the correct recognition rate (CRR), recall rate (RR), F1-
measure and recognition time (RT) were used to measure the experimental performance,
where, F1-measure is the harmonic average of CRR and RR.

3.1 Parameter Selection

(1) Neighbor number, sampling radius and block size:

We use a sampling strategy with fixed number of neighboring pixel blocks (n = 8),
and different block size and sampling radius (m = {2, 3, 4, 5, 6, 7, 8, 9, 10},
r = {2, 3, 4, 5, 6, 7, 8, 9, 10}).

(2) Quantization interval number:

We performed experiments with different number of quantization intervals and find
that 2 quantization intervals is not enough to represent pollen texture feature, but too
many (more than 4) leads to a higher dimension of LDP histogram. When the number
of quantization intervals is 3, 4, the corresponding dimensions of LDP histogram are
8 × 102 and 8 × 103, respectively. In fact, many decimal patterns do not exist, resulting
in large columns of LDP histogram are empty. That’s because the total number of quan‐
tized pixel blocks in the neighborhood is fixed (n = 8). Take 3 quantization intervals for
instance, if the number of pixel blocks located at first quantization interval is 7, the
decimal pattern only can be 107 or 017, and other patterns such as 117, 127, etc. can
never appear. So, we delete the nonexistent decimal patterns from the LDP histogram,
and the dimension of LDP histogram is 45, 165 when the quantization interval is 3, 4,
respectively.

(3) Quantization thresholds:

The quantization thresholds with L = 3, 4, are presented in Table 1, which depends
on pixel block size (m).

Table 1. The quantization thresholds of different quantization levels

l1 l2 l3 l4

L = 3 0 2 m m3 –
L = 4 0 m + 1 (m + 1)2 2(m + 1)2

3.2 Experimental Results on Pollenmonitor Dataset

The Pollenmonitor dataset comprises air pollen samples from 33 different taxa collected
in Freiburg and Zurich in 2006. The number of pollen images in this dataset is about
22700. Affected by the micro-sensors and irregular collection methods, some pollen
images have some degrees of deformation and contamination, and the image quality is
generally not high.
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By varying the pixel block size and sampling radius from 2 to 10, we get the correct
recognition rates as presented in Fig. 5. Obviously, 4 quantization intervals (L = 4)
performs better, and the best recognition rate was obtained with the block size 5.
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Fig. 5. Recognition results (%) on Pollenmonitor dataset with different block size and
quantization intervals.

Figure 6 presents the partial recognition instances of 6 representative pollen cate‐
gories on Pollenmonitor dataset. It can be seen that most pollen images with clear texture
and have not been contaminated and deformed can be correctly identified. The specific
recognition results are shown in Table 2, we can find that the correct recognition rates
of most pollen categories are more than 90%, and the recall rates of all categories are

Fig. 6. Recognition instances of 6 classic pollen taxa from the Pollenmonitor dataset.
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more than 73%. For Corylus category with varying degrees of rotation, our method
achieved 94.02% correct recognition rate. For Fagus category with severe noise, our
method can also obtained 83.18% correct recognition rate.

Table 2. Recognition results of 6 classic pollen taxa in Pollenmonitor dataset

Pollen category CRR/% RR/% F1-measure RT/s
Poaceae 90.33 79.10 84.34 6.5
Corylus 94.02 85.27 89.43 6.4
Rumex 92.15 73.64 81.86 6.4
Carpinus 88.62 78.13 83.05 6.5
Fagus 83.18 76.65 79.78 6.3
Alnus 92.50 88.74 90.58 6.9

3.3 Experimental Comparison and Analysis

We compared the best recognition rates achieved by our method using different block
size with state-of-the-art pollen recognition methods, the experimental results on Pollen‐
monitor datasets are listed in Table 3. The average correct recognition rate of our method
on Pollenmonitor datasets is 90.95%, which is on average 6.81 percentage points higher
than that of compared pollen recognition methods. The experimental results show that
our proposed method has a better recognition performance and the computational effi‐
ciency is higher than most of the compared methods.

Table 3. Comparison of the average recognition results of our method and 5 pollen recognition
methods on Pollenmonitor dataset

Method CRR/% RR/% F1-measure ART/s
DLSC 74.83 82.97 78.69 4.1
TGF 85.50 69.62 76.75 7.2
STAF 83.29 80.53 81.89 23.9
LGGG 87.21 70.15 77.76 19.2
LDLG 89.87 75.46 82.04 20.9
LDP 90.95 78.25 84.12 6.8

4 Conclusions

In this paper, we presented a LDP descriptor for pollen image recognition. Unlike most
pollen recognition methods fusing different kinds of features in recent years, our method
extracts single texture feature in three directions, which decreases the dimensionality of
pollen features and increases the discrimination at the same time. Experimental results
show that our method outperforms 5 compared pollen recognition methods in extracting
pollen texture feature, and has robustness to the noise and rotation of pollen images.
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Abstract. The paper describes a new extension of the convolutional neural
network concept. The developed network, similarly to the CNN, instead of using
independent weights for each neuron in the network uses related weights. This
results in a small number of parameters optimized in the learning process, and
high resistance to overtraining. However unlike the CNN, instead of sharing
weights, the network takes advantage of weights correlated with coordinates of a
neuron and its inputs, calculated by a dedicated subnet. This solution allows the
neural layer of the network to perform global transformation of patterns what
was unachievable for convolutional layers. The new network concept has been
confirmed by verification of its ability to perform typical image affine trans-
formations such as translation, scaling and rotation.

Keywords: Network architecture � Spatial transformation � CNN

1 Introduction

Recent approaches to object recognition make essential use of machine learning
methods [1, 2]. To increase their performance, we can collect larger datasets, learn
more powerful models, and use better techniques for preventing overfitting [3]. To
create network capable to learn to recognize thousands of objects from millions of
images, we need to build a model with a large learning capacity. Convolutional neural
networks (CNNs) constitute one such class of models. They are powerful visual models
which recently enjoyed a great success in large-scale image and video recognition
[4–6], what has become possible thanks to the large public image repositories, such as
ImageNet, and high performance computing systems, such as GPUs or large-scale
distributed clusters [7]. CNN combine three architectural ideas to ensure some degree
of shift, scale, and distortion invariance: local receptive fields, shared weights (or
weight replication), and spatial or temporal subsampling [8, 9]. The main benefit of
using CNNs is the reduced amount of parameters that have to be determined during a
learning process. CNN can be regarded as a variant of the standard neural network
which instead of using fully connected hidden layers, introduces a special network
structure, which consists of alternating so-called convolution and pooling layers [10].
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One of the limitations of CNN is the problem of global pattern transformations such
as e.g. rotation or scaling of an image. Convolutional neurons which have spatially
limited input field are unable to identify such transformations. They are only capable to
local pattern transformations such as detection of local features on the image. The size
increase of spatial transformation area would require the enlargement of the neurons
input field, therefore the increase of weight vector size and result in the loss of the
primary advantage of the CNN network, which is a small number of parameters.

In order to overcome the constraints of CNN in the paper we introduce a new
network which can replace the convolutional layer or it can be used as an independent
network able to learn any global and/or local transformations. The proposed network
consists of two networks. The main network is a single fully connected layer of
neurons, aimed at direct performing image transformation. However, weights of this
network are not determined directly, instead to limit the number of trainable parame-
ters, the weights of the neurons are obtained by the sub-network, which is relatively
small network. The second network takes advantage of the observation that for global
transformations particular weights of individual neurons are strongly correlated with
one another, hence the entire network is called the Correlated Weights Neural Network
(CWNN). Proposed network is a continuation of the earlier idea of using weights
calculated by the subnet in a Radial Basis Network (RBF) for pattern classification [11]
called the Induced Weights Artificial Neural Network (IWANN). However, in the
IWANN the values of weights were determined only based on the input coordinates,
consequently the coordinates of the neurons were ignored. This approach was related to
different structure and application of the IWANN network.

In the paper we describe and explain the structure of the CWNN network (Sects. 2
and 3), then Sect. 4 describes the training algorithm, and in Sect. 5 we demonstrate its
application to train global transformations such as scaling, translation and rotation. We
end with a summary of the obtained results and draw further research perspectives.

2 Problem Definition

Neural network presented in this paper is dedicated to global pattern transformations.
Figure 1 shows linearized representation of the main network’s neurons which are
responsible for the input-output transformation, and assume gray scale images. This
single layered network consists of linear neurons, witch without the bias, are sufficient
to implement the network. Each neuron determine the output value (the gray level of
the pixel for output image) as a linear combination of all pixels in the input image. In
case of a N size pattern, this operation can be perform by a network which has N output
neurons associated to each of the N inputs. Total number of weights for this network is
N2, which for relatively small (32 � 32 pixels) images presented in the further part of
the article leads to the number of 1 million parameters describing the network. The
number of parameters is directly reflected in the complexity of the network learning
process, and in the size requirements for training dataset.
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However, in vast majority of global transformation, network weights are correlated
with positions of neurons and their inputs. Table 1 presents the values of weights for
the network from Fig. 1, which performs translation of one-dimensional pattern, by 2
elements to the right (for simplicity we consider N = 5). The columns in the table
correspond to the inputs, and rows to the outputs, so a single row represents weights of
a single linear neuron. The final value of each output is determined as the weighted sum
of inputs described by weights in particular row.

The table content shows a clear regularity in the set of weights. The value of the
weight which connects the i-th output’s neuron with j-th input, in this network, can be
described by simple equation:

wi;j ¼ 1 j� t ¼ i
0 j� t 6¼ i

�
ð1Þ

Where: t - size of translation, i-output position, j-input position

This formula replaces 25 network weights, and it’s degree of complexity is inde-
pendent of the size of transformed pattern. The essential idea of the CWNN network
can be explained by using this example. It involve the fact that the weights of the
network are not stored as static values, but calculated based on the mutual position of
neurons and their inputs. The practical use of the relation between neuron weights,
requires a subsystem which is able to learn the dependences between neurons and its
weights. To address this issue, we utilize additional subnetwork presented in the fol-
lowing section.
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Fig. 1. Neural network for a global transformation of a pattern.

Table 1. Weights of the neural network translating a linear pattern by two elements.

I1 I2 I3 I4 5

O1 0 0 0 0 0
O2 0 0 0 0 0
O3 1 0 0 0 0
O4 0 1 0 0 0
O5 0 0 1 0 0
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3 Network Model

Figure 2 shows the structure of a single-layer network with the Correlated Weights
Neural Layer (CWNL). The network has one input layer, which topology results from
the size and dimensionality of processed input pattern. Network inputs are described by
the coordinates vector, which size is compatible with dimensionality of the input data.
The topology of the main, active CWNL layer, which have signals transmitted directly
on the network output, is compatible with dimensionality and the size of the output
pattern. It should be taken into consideration that both dimensionality and the size of
the input and the output can be completely different.

It has been assumed that for the neural network performing affine transformations
on an image, it is sufficient to use neurons with a linear transition function, that takes as
an argument a weighted sum of inputs, without the bias value (2).

y Oð Þ
i ¼

XN Ið Þ

j¼1

y Ið Þ
j x Mð Þ

i;j;1 ð2Þ

Where: y Oð Þ
i � i-th output of the layer with correlated weights, y Ið Þ

j � j-th input of the

layer with correlated weights, N Ið Þ� number of inputs for the CWNL layer, x Mð Þ
i;j;1�

output of subnet calculating weights – weight of connection between the i-th output
with the j-th input of the CWNL layer, M - the number of the last subnet layer.

The values of connected weights are calculated by the subnetwork based on the
coordinates of neuron in the CWNL layer and the coordinates of neurons inputs. These
values are determined many times by the subnet for every combination of input image

.

.

.

P(I)={1,3}
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network
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y(I)

y(O)
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Fig. 2. Structure of the neural network with correlated weights.
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pixels and output image pixels. The subnetwork inputs are represented by a vector,
which consists of coordinates of the CWNL neurons and their inputs:

Pi;j ¼ P Ið Þ
i [P Oð Þ

j ð3Þ

where: Pi
(I)
– coordinates of the i-th input of the main network, Pj

(O)
– coordinates of the

j-th output (neuron) of the main network

x Oð Þ
i;j;k ¼ Pi;j k½ � ð4Þ

where: the k-th input of the subnetwork calculating the weight of the connection
between of the i-th input and the j-th neuron of the CWNL.

The signal is processed by subsequent layers of the subnetwork:

x mð Þ
i;j;k ¼ f mð Þ XO m�1ð Þ

l¼1

x m�1ð Þ
i;j;l w mð Þ

k;l þ b mð Þ
k

 !
ð5Þ

where: x mð Þ
i;j;k – output of the k-th neuron of m-th layer of the subnetwork calculating the

weight for the connection between j-th neuron and i-th input of the CWNL layer, f mð Þ –
the transition function of neurons in the m-th layer, O(m)

– the number of neurons in the

m-th subnetwork layer, w mð Þ
k;l , b

mð Þ
k - standard weight and bias of the subnet neuron.

In the presented network structure, it was proposed to use the multilayer perceptron
as a subnetwork. However, this task can be performed by any other approximator.

4 Learning Method

The learning algorithm of the CWNN network is based on the classical minimization of
the square error function, defined as:

SSE ¼ 1
2

XN Oð Þ

j¼1

y Oð Þ
j � dj

� �2
ð6Þ

Where: N Oð Þ� number of neurons in the layer with correlated weights, y Oð Þ
j � j-th

output of the layer with correlated weights, dj – desired value of the j-th output of the
CWNN network.

Effective learning of CWNN requires the use of one of the gradient methods to
minimalize the error. In case of presented network, the parameters optimized in the
learning process include only: weights and biases of the subnetwork, that calculates the
main layer weights. This required modification of the classical backpropagation
method, to allow for an error transfer to the subnet. The error value for the output
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neuron of the subnetwork, which calculates the weight of the connection between the
j-th output and the i-th input of the main network, is determined by the equation:

r Mð Þ
i;j;k ¼ y Oð Þ

i � di
� �

y Ið Þ
j ð7Þ

where: y Ið Þ
j � i-th output of the layer with correlated weights, y Oð Þ

j � j-th output of the
layer with correlated weights, di – value of the i-th input of main network.

In the next stage the error is back propagated from the output through subsequent
network layers. The aim of the backpropagation is to update each of the weights in the
subnetwork so that they cause the actual output to be closer the target output, thereby
minimizing the error for each output neuron and the network as a whole.

r mð Þ
i;j;k ¼

XO mþ 1ð Þ

i¼1

r mþ 1ð Þ
i;j;l w mþ 1ð Þ

k;l

� �
f 0
XO m�1ð Þ

l¼1
x m�1ð Þ

i;j;l w mð Þ
k;l þ b mð Þ

k

� �� �
ð8Þ

Where:x mð Þ
i;j;k – output of the k-th neuron of m-th layer of the subnetwork calculating

the weight for the connection between j-th neuron and i-th input of the CWNL layer,

O mð Þ� the number of neurons in the m-th subnetwork layer, w mð Þ
k;l , b

mð Þ
k - standard

weight and bias of the subnet neuron.
Based on the error value it is possible to determine partial derivative for all

parameters (weights and biases) of the subnet. Determination of partial derivative
requires summation of derivatives calculated for all weights provided by the subnet:

@E

@w mð Þ
k;l

¼
XN Ið Þ

i¼1

XN Oð Þ

j¼1

XO m�1ð Þ

l¼1

r mð Þ
i;j;kx

m�1ð Þ
k;l ;

@E

@b mð Þ
k

¼
XN Ið Þ

i¼1

XN Oð Þ

j¼1

XO m�1ð Þ

l¼1

r mð Þ
i;j;k ð9Þ

where: x mð Þ
i;j;k – output of the k-th neuron of m-th layer of the subnetwork calculating the

weight for the connection between j-th neuron and i-th input of the CWNL layer, O(m)-

the number of neurons in the m-th subnetwork layer, w mð Þ
k;l , N

Oð Þ� number of neurons in

the layer with correlated weights,N Ið Þ� number of inputs for the CWNL layer
For the presented network partial derivatives were computed with the use of the

above equations.

5 Results

Effectiveness of the developed neural network has been exanimated by the imple-
mentation and analysis of the global image transformations, like scaling, rotation and
translation. The popular CIFAR-10 collection was used in the experiments [12]. This
dataset was primarily intended for testing classification models, but it can be considered
as a useful source of images also for other applications. The collection contains various
type of scenes, and consists of 60000 32 � 32 color images.
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Due to the large computational complexity of learning process calculations were
performed on the PLGRID cluster, which was created as part of the PL-Grid - Polish
Science Infrastructure for Scientific Research in the European Research Area project.
The PLGRID infrastructure contains computing power of over 588 teraflops and disk
storage above 5.8 petabytes.

For each variant of the experiment a collection of images, for both training and
testing set, contained only 50 examples. Global image transformations were used to
verify the performance of the designed system. The input of the network was a primary
image (1024 pixels). The expected response (the output of the network) was an image
after the selected transformation. The network was trained in batch mode using the
RPROP method (resilient back propagation) [13] due to the resistance of this method to
the vanishing gradient problem. This phenomenon occurs in networks with a complex,
multilayer structure as in the developed network. For small training sets this method is
more effective than the popular group of stochastic gradient descent methods due to a
more stable learning process. Weights of the subnetwork were initialized randomly
with the use of Nguyen-Widrow method [14]. Due to very low susceptibility to
overtraining by the new network, the stop procedure, based on the validation set, was
omitted in the learning procedure. The correctness of this decision was confirmed by
the obtained results. The quality of the image transformations, for: 50, 100, 1000 and
5000 epochs, was monitored during the learning process, as well as the course of
changes in the MSE for both training and testing set. The same network parameters was
applied to each variant of the experiment. In the first stage of research the network was
trained to perform the image vertical scale transformation. The goal was to resize the
image by 50% of height. The main layer with correlated weights, was compatible with
the dimensions of the images in the training and test set, and had 1024 inputs and 1024
outputs, so that each neuron correspond to one pixel in 32 � 32 grid. The subnet,
calculating weights of the main layer, consisted of 3 layers containing 8, 4, 1 neurons
respectively, with a sigmoidal transition function. So a single sigmoid neuron providing
the value in the range of [0..1] is present on the output of the sub-network. This is in
line with the nature of the mapped transformations in which there are no negative
weight values and values greater than 1. The convergence of the learning algorithm was
measured using the mean squared error (per pixel) for each training epoch:

MSE ¼ 1
S � N Oð Þ

XS
k¼1

XN Oð Þ

j¼1

y Oð Þ
kj � dkj

� �2
ð10Þ

where: S – number of examples in the set, N(O)- number of network outputs, y Oð Þ
kj � j-th

output of the network for k-th example, dkj – desired value of the j-th output (pixel
brightness) for k-th example.

Figure 3 shows the decrease of the MSE during the learning process and a sample
of images from the training set with the stages of scaling results during the learning
process. It was observed that, after 1000 learning epochs, the outline of correct
transformation appeared. After 5000 epochs, the quality of transformed image was
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satisfactory, although there were still disturbances in case of some images (see the
fourth image – the plane). The black stains are areas where pixel values have exceeded
the limit value 1. This is the result of a large proportion of bright pixels in the plane
image in comparison to other images. Based on the MSE graph it can be concluded that
the learning process can still be continued, which should result in further improvement
of the quality of the transformation.
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Fig. 3. The MSE error and quality of transformed image for vertical scaling.
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The same network was trained to perform an image translation. Quality of obtained
results was acceptable after 5000 epochs, so the learning process was terminated.
During the learning process the continuous decrease of the MSE was observed (Fig. 4)
in both training and testing set. After 1000 learning epochs, the outline of the trans-
formation appeared. The figure also shows stages of the image transformation during
the learning process.

Image rotation by 30° was the most difficult challenge for the network due to the
necessity of mapping trigonometric relations. During the learning process the decrease
of MSE error is similar to the previous cases (Fig. 5). In analyzed range there was no
overtraining of the network. After 100 epochs we can observe an outline of the rotated
image, but the picture itself is blurry. After 1000 epochs the image become clearer and
it is possible to recognize the shape and details of the source image in transformed
picture. Like in the previous calculations quality of the obtained results was acceptable
after 5000 epochs.

6 Conclusion

Proposed neural network represents a significant extension of the concept of network
with convolutional layers. It use the current CNN idea of similarity between the
weights for individual neurons in the layer, but breaks with their direct sharing concept.
Based on the observation on the correlation between, the values of weights and
coordinates of neurons inputs and the coordinates of the neurons themselves, it can be
stated that the CWNN network can implement transformations not available for the
CNN network. At the same time, the network retains main advantage of CNN, which is
the small number of parameters that should be optimized in the learning process. This
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Fig. 5. The MSE error and quality of transformed image for rotation.
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paper propose a new structure of the neural network and its learning method. The
concept of network has been verified by checking its ability to implement typical global
pattern transformations. The results confirms the ability of the CWNN to perform any
global transformations. Presented research has been conducted based on a single-layer
CWNN. Further research will focus on creation of networks with multiple layers, and
ability to combine these layers with convolution layers, as well as with standard layers
with a full pool of connections. This should give a chance to develop new solutions in
the area of deep networks, which will allow to get competitive results in more complex
tasks.
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PLGJAMA2017.
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Universidad Autónoma de Madrid, Madrid, Spain

guillermo.sarasa@predoc.uam.es, montaaron@gmail.com, f.rodriguez@uam.es
2 CES Felipe II, Universidad Complutense de Madrid, Aranjuez, Madrid, Spain

ana.granados@ajz.ucm.es

http://arantxa.ii.uam.es/∼gnb/

Abstract. Human Activity Recognition (HAR) from videos is an impor-
tant area of computer vision research with several applications. There are
a wide number of methods to classify video human activities, not with-
out certain disadvantages such as computational cost, dataset specificity
or low resistance to noise, among others. In this paper, we propose the
use of the Normalized Compression Distance (NCD), as a complemen-
tary approach to identify video-based HAR. We have developed a novel
ASCII video data format, as a suitable format to apply the NCD in
video. For our experiments, we have used the Activities of Daily Living
Dataset, to discriminate several human activities performed by different
subjects. The experimental results presented in this paper show that the
NCD can be used as an alternative to classical analysis of video HAR.

Keywords: Data mining · Normalized Compression Distance
Clustering · Dendrogram · Image processing
Human Activity Recognition · Silhouette Coefficient · Similarity

1 Introduction

Human Activity Recognition (HAR) [4,6,31] from videos represent a relevant
area of computer vision research. Its utility in many areas has increased the
demand of broader analysis in the field, producing an increase of publications
related with Computer Vision in HAR [4,26,31]. Some of its applications are:
human health care [17], video labeling [27,28], surveillance [21,26]and human-
computer interaction [1,24], among others. There are many approaches in the
literature to identify human activities from video with remarkable results. How-
ever, dealing with video implies solving certain issues that eventually lead to
some drawbacks in the final systems of HAR video processing. Some exam-
ples are high computational costs, dataset specificity or the dependency of the
temporal movement sequence.
c© Springer Nature Switzerland AG 2018
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Vision-based HAR can be summarized as a combination of extracting some
features from a sequence, and discriminating between activities by means of
a classification system. The most important difficulties of feature extraction
in video processing are: (i) overlap and variability between and within classes,
(ii) temporal differences between samples (iii) impact and complexity of the
environment and (iv) quality of the data. As an example of the first problem,
a video may contain activities that include similar movements (e.g. reading and
using a tablet) but also can include activities that are carried out differently
by different people (e.g. cooking). Following this last case we can find others
examples of the second problem. Among others, the duration, repetition or even
order of execution of an activity can differ greatly, causing variations in the
temporal structure, or sequence, of the activity. Finally, the capability to identify
the background depends on many factors such as color difference, movement of
the camera, or even quality of the recorded video.

There are a considerable variety of methods that aim to solve these problems
in the literature [4,6,31]. However, as we introduced before, the inherent draw-
backs of these methods require additional adjustments in order to be used in a
real-world application. In this work, we aim to use compression algorithms as
a parameter free dissimilarity approach (among other reasons, see Sect. 2.1) to
identify human activities in video files. The idea behind using a parameter free
method is to identify the relevant information without performing any low level
analysis on the data. This is to increase the applicability of the method (due
to the lack of specificity and parameters) while decreasing its computational
costs (that some times make the system prohibitive to real-world implementa-
tions). Also, the use of compression distances over video data represents a novel
application with remarkable applications for video analysis.

In this work, we have developed a video-to-ASCII processing method to locate
and convert the activity of the video files into suitable objects for a compression
algorithm. In order to test the capabilities of these methodology, we have per-
formed experiments over the Activities of Daily Living Dataset [22] (see Sect. 3).
This dataset is composed of different videos of human activities, performed by
different subjects. Each video is recorded from a fixed point of view and stored
in Audio Video Interleave (AVI) format, using the Motion JPEG video codec. In
our experiments we try to discriminate between each pair of activities, parsing
each video into our ASCII video format and using a widely used compression
distance (the so-called Normalized Compression Distance or NCD) together with
a hierarchical clustering. The results obtained using our methodology report a
good separability between most of the pairs of activities. These results suggest
that this measure could be used as an alternative methodology to identify video
HAR.

2 Methodology

As mentioned before, we have used the Activities of Daily Living Dataset [22].
This data set has been used in several studies on human activity recognition in
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the literature [2,20]. In this Section we will introduce the compression distances,
(as the methodology that we have used in this work) the methodology to convert
video streams into ASCII objects and the clustering procedure to measure the
identification capabilities of the NCD.

Fig. 1. Video activities examples, obtained from the Activities of Daily Living Dataset
[22]. The five upper pictures belong to the activities labeled as: “answer phone”, “chop
banana”, “dial phone”, “drink water” and “eat banana”. The five lower pictures belong
to the activities labeled as: “eat snack”, “look up in phonebook”, “peel banana”, “use
silverware” and “write on whiteboard”.

2.1 Normalize Compression Distances

Compression distances are dissimilarity measures that make use of compres-
sion algorithms to identify common properties between objects. These measures
search for the information shared between files, and use it, to define how differ-
ent, in general terms, two objects are. The Normalized Compression Distance
(NCD), is a generalization defined in [8,19] that defines the distance between
two objects x and y, as the relation between the size of each object compressed
alone (C(x) and C(y)), and the size of their concatenation (xy) compressed
(C(xy)). Hence, if the concatenation of two objects can be compressed better
than each object alone, it means that the objects share some information. The
mathematical formulation of the NCD can be defined as:

NCD(x, y) =
max{C(xy) − C(x), C(yx) − C(y)}

max{C(x), C(y)} ,

where C is a compression algorithm and C(x) and C(xy) are the size of the
C-compressed versions of x and the concatenation of x and y, respectively. The
NCD has been used in different areas of knowledge, with remarkable results, due
to its high noise tolerance, wide applicability and capabilities among different
types of data (audio, images, text, etc.). Among many others, compression dis-
tances have been used from document clustering [13,14] to spyware and phishing
detection [7,18], image analysis [10,11,16,29],earth observation [5,15] and music
clustering [12,25].

Due to the fact that compression distances are based on the skill of a com-
pressor to identify similar features in big amounts of data, one would expect that
video data should not be an exception. However, the video codecs used to store
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video streams (sequence of images) in video files, already compress the infor-
mation. In contrast to a text book or a bitmap picture, where the information
is fully accessible, a video file contains the information compressed, making its
identification by a compression algorithm almost impossible. The way in which
the information is compressed, depends on the codec used for the video file.
In the data used in this paper, each video sequence is stored using the Motion
JPEG codec (one of the few lossless video codecs), which compress each frame
individually as a separate image. This however is not the only issue that the
NCD has with video objects. Among others, the high percentage of noise or the
big heterogeneity of sizes, are examples of other drawbacks to applying NCD
directly to the video format. For all these reasons, we propose a novel video
ASCII representation, in order to mitigate some of these drawbacks.

2.2 Data Format: From Video to ASCII

In order to transform the activity videos into a format that could be appropriate
to be used by compression algorithms, we have developed a video preprocessing
method. The aim of this process is to extract the optical flow [3] of the video
objects and to obtain the motion signature of each task that takes place in
them. This motion signature is the one that will be encoded in ASCII format
to be analyzed by the compressor. This encoding allows reducing the size of the
original video files from 14.4–211 MBs to a fixed 17 KB for the ASCII format
(which also solves the size problem mentioned before).

The video preprocessing consists of the following steps:

1. We extract 10 video frames from the video, equally separated in time, on
which we perform a grayscale conversion, see panel (a) in Fig. 2

2. We calculate the optical flow (through Horn–Schunck method [30]) of the
selected frames and apply a thresholding to obtain the image points with
greater activity, see panel (b) in Fig. 2.

3. We divide the image into binary boxes (1 = movement, 0 otherwise) and
calculate the total activity produced in each one of them. This will generate
an activity map, see panel (c) of Fig. 2. The dimensions of the boxes used are
16× 16 pixels.

4. We obtain the motion signature adding the different activity maps into a
unique one, see panel (d) in Fig. 2.

5. We assign identifiers to each of the image boxes using a diagonal zigzag order
(used in image encoding such as MPEG [23]), see panel (e) in Fig. 2.

6. Once the boxes are organized by means of the identifiers, we sort them accord-
ing to the total activity (given by the optical flow) of each of the boxes. This is
the information that will be stored into an ASCII file and, later on, analyzed
by the NCD, see panel (f) in Fig. 2.

2.3 Clustering of ASCII Objects Using String Compression

Once the video objects have been parsed into our proposed ASCII video objects,
it is necessary to define a methodology to measure the effect of the NCD into
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Fig. 2. Video preprocessing for conversion from the original AVI to ASCII format.
Firstly, we extract a certain number of video frames and convert them to grayscale,
panel (a). Secondly, we calculate the optical flow of these frames and apply a threshold
on them to obtain the image points with greater activity, panel (b). Thirdly, we divide
the image into boxes and calculate the total activity produced in each of them in order
to generate an activity map, panel (c). Subsequently, we make the sum of the different
activity maps to obtain the motion signature, panel (d). Finally, we read the image
matrix (motion signature) in zigzag order, panel (e), and sort the information as a
function of the total activity of each of the boxes, panel (f).

these new ASCII objects. Due to the NCD only reports a distance between two
objects, we make use of a hierarchical clustering algorithm (based on the MQTC
algorithm [8] from the CompLearn toolkit [9]) to parse the NCDs between objects
into a dendrogram. For instance, given the case of a set of ASCII video objects,
for two of the classes of Fig. 1, we can measure the NCDs between every pair of
files and transform it into a hierarchical dendrogram. Finally, in order to measure
how well each class is separated, we have made use of the Silhouette Coefficient
(SC) (detailed in [14]) as an unbiased clustering quality measure.

3 Experiments and Results

For our experiments we have taken all the data provided by the Activities of
Daily Living Dataset [22] to measure the capabilities of our methodology. This
dataset includes 10 different tasks performed by 5 different subjects, 3 times each
one of them. The objective in these experiments is to discriminate two sets of 15
objects each, from two classes of the videos of Fig. 1. In this figure, we show a
representative frame of each class along with the names of the different tasks to
classify. As an example to motivate the complexity of this problem, in Fig. 3, we
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show 10 samples of processed activity maps before the zig-zag sort (described in
Sect. 2.2) and the dendrogram produced by the NCD-driven clustering over the
30 video objects (15 of each class). The left figures are obtained from videos of
two activities performed by 5 different subjects. In this figure, one can see that
the activity classes have different signatures, but are not easily differentiable at
simple sight. In order to identify these signatures we made use of a NCD-driven
clustering (described in Sect. 2.3) which, as the right dendrogram of the figure
shows, identify the two classes perfectly.
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Fig. 3. Sample maps of activity for Chop banana and Use silverware, for different
subjects. Each heatmap is produced by the process described in Sect. 2.2 until the
zig-zag sort. This is equivalent to the d panel of Fig. 2. The right heatmaps, A and
B, belong to Use silverware and Chop banana, respectively. As we can see, the classes
are not easily differentiable at simple sight. The dendrogram of the figure shows how
well our method identify each activity for all the subjects samples. The Silhouette
Coefficient in this case is 0.51

In Fig. 4 one can see that the proposed format, together with the NCD, report
remarkable task identification results for the majority of tasks pairs. However,
there is some tasks that are more difficult to identify than others. For example,
while “chopBanana” and “eatSnack” are very well separated, “peelBanana” and
“eatSnack” are not. Following the first case (“chopBanana” and “eatSnack”),
in Fig. 5 we show the dendrogram corresponding to the field marked with an X
of Fig. 4, with and without our video-to-ASCII process (right and left dendro-
grams, respectively). One can see that the clustering is only achieved in the right
dendrogram, where all the video objects are processed into the activity ASCII
objects. Thus, the conversion of the video objects prove to be essential to the
analysis.
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Fig. 4. Color map comparison of the clustering quality obtained from the different
experiments. Each point of the map, corresponds to the S.C. obtained from parse the
video to our video format (described in Sect. 2.2) and applying a NCD-driven clustering
(described in Sect. 2.1). The diagonal of the matrix is not defined due to the fact that
a task cannot be compared with itself. The dendrogram of the fields marked with an
X is depicted in Fig. 5 right panel.
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Fig. 5. Sample dendrograms, produced by the clustering of the activities: Chop banana
and Eat snack, for the original files and the processed files. One can easily see that
both activities are well separated in the right dendrogram (where the videos are trans-
formed into our proposed format) while the left dendrogram (obtained from the original
videos) reports almost no separability. Additionally, the Silhouette Coefficient for these
dendrograms is 0.546 and 0.123, respectively. The right dendrogram corresponds to the
fields marked with an X of Fig. 4.

4 Conclusions

The approach presented in this work aims to identify different human activities
from video sequences addressing some of the drawbacks that classical systems
have. The way in which we have performed that consist of adapting a generic, low
costly and parameter-free methodology, compression distances, to our specific
case by means of a video ASCII format. Particularly, we have used the well-
known Normalized Compression Distance (NCD).

In order to use the NCD over video streams we defined a video-to-ASCII
conversion methodology. This allows us to make use of compression distances
with video objects with successfully results. In this manner, the activity of the
video samples is located and casted into text files based on its location in the
video frames. Our assumption is that each activity should be expressed with a
particular movement signature which, on average, should be shared among var-
ious subjects. To corroborate this assumption, we have tested this methodology
over different video samples using the Activities of Daily Living Dataset [22].

The results presented in this paper show that applying our methodology
produces a remarkable clustering along the dataset, which suggests the NCD
can be applied to the context of video HAR with success. In the same vein,
Fig. 4 shows that the majority of the activities, for this specific database, are
fine identified while only a minority are not. This means, that some pairs of
activities are too similar to discriminated which videos belong to each activity
using this analysis. With this approach, we achieved reasonable results without
taking in consideration the particularities of the dataset.
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As future work we plan to test and improve our new format over different
data sets. In the same vein, we intend to produce alternative video-to-ASCII
formats to measure different characteristics of the video activity, and thereby,
to add robustness to the system (redundancy). Measuring the vector movement
(instead of the activity index) or segmenting the video into multiple ASCII files,
are examples of possible alternatives to our method. In summary, we expect to
improve the capabilities of the methodology presented in this work exploring
different compression algorithms, conversion methodologies and video represen-
tations.
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Abstract. The study of protein dynamics through analysis of conformational
transitions represents a significant stage in understanding protein function. Using
molecular simulations, large samples of protein transitions can be recorded.
However, extracting functional motions from these samples is still not automated
and extremely time-consuming. In this paper we investigate the usefulness of
unsupervised machine learning methods for uncovering relevant information
about protein functional dynamics. Autoencoders are being explored in order to
highlight their ability to learn relevant biological patterns, such as structural char‐
acteristics. This study is aimed to provide a better comprehension of how protein
conformational transitions are evolving in time, within the larger framework of
automatically detecting functional motions.

Keywords: Protein molecular dynamics · Autoencoders
Unsupervised learning

1 Introduction

Proteins are large biomolecules having crucial roles in the proper functioning of organ‐
isms. They are synthesized using information contained within the ribonucleic acid
(RNA), when by means of the process known as translation, building blocks, the amino
acids, are chained together in a sequence. Although this sequence is linear, the protein
acquires a complex arrangement in its physiological state, as intramolecular forces
between the amino acids and the hydrophobic effect lead to a folding of the protein into
its three dimensional shape, which determines the protein’s function [27]. The stable
three dimensional structure of a protein is unique, however this shape undergoes signif‐
icant changes to deliver its biological function, according to various external factors
from the protein’s environment (e.g. temperature, interaction with other molecules).
Thus, a protein will acquire a limited number of conformations during its lifetime, having
the ability to transition between alternative conformations [26].

The study and prediction of conformational transitions represents a significant stage
in understanding protein function [21]. In this paper we investigate protein molecular
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motions and conformational transitions starting from the structural alphabet devised by
Pandini et al., a representation which provides a highly informative encoding of proteins
[22]. In this description, each fragment consists of 4 residues and is defined by three
internal angles: two pseudo-bond angles between the Cα atoms (Cα is the first carbon
atom that attaches to a functional group) of residues 1-2-3 and 2-3-4 and one pseudo‐
torsion angle formed by atoms 1-2-3-4 [22]. These internal angles entirely define each
structural fragment which can be also encoded as a letter from a Structural Alphabet
(SA) [22]. In addition to the previously mentioned representation based on angles, we
investigate whether enhancing the structural alphabet states (represented by the three
angles) with relative solvent accessibility information might bring further insight into
the matter at hand. Relative solvent accessibility (RSA) of amino acid residues is a value
indicating the degree to which the residue is exposed [20], being able to characterize the
spatial distribution of amino acids in a folded protein. RSA is significant for predicting
protein-interaction sites [20] and it is used in protein family classification [1]. The intu‐
ition is that, even if RSA values independently do not offer a unique characterization of
a protein, being individually non-specific, new structural states defined by the three
angles together with RSA values could bring additional information.

Using molecular simulations, large samples of protein transitions can be recorded.
However, extracting functional motions from these samples is still not automated and
extremely time-consuming. Therefore, we consider that computational methods such as
unsupervised learning could be a well suited solution for better understanding protein
dynamics. We are investigating the usefulness of deep autoencoder neural networks to
acquire a clearer sense of proteins’ structure, with the long term goal of learning to
predict proteins’ conformational transitions. Several approaches in the literature were
proposed for analyzing and modeling protein structural conformations using both super‐
vised and unsupervised machine learning techniques. Support vector machine’s
performance was tested in [14] by classifying gene function from heterogeneous protein
data sets and comparing results with various kernel methods. In [28], a Radial Basis
Function Network (RBFN) is proposed for classifying protein sequences. Fifteen super‐
vised learning algorithms were evaluated in [9] by automating protein structural clas‐
sification from pairs of protein domains and Random Forests were proven to outperform
the others. Additional insight into protein molecular dynamics (MD) is gained in [16]
by employing L1-regularized reversible Hidden Markov Models. Self-organizing maps
have also been used alongside hierarchical clustering in [6], for the purpose of clustering
molecular dynamics trajectories. A methodology for detecting similarity between three
dimensional structures of proteins was introduced by Iakavidou et al. in [8].

The contribution of the paper is twofold. Our first main goal is to investigate the
capability of unsupervised learning models, more specifically of autoencoders, to
capture the internal structure of proteins represented by their conformational transitions.
Secondly, we propose two internal representations for a protein (one using the structural
alphabet states defined by three angle values, as introduced in [22] and one in which
these states are extended with RSA information) with the aim of analyzing which of
them is more informative and would drive an autoencoder to better learn structural rela‐
tionships between proteins. The experiments performed are aimed at evaluating the
extent by which the combination of a reduced representation and an autoencoder is
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suitable to compress the complex MD data into a more interpretable representation. With
this aim we propose a proof of concept that considers only two similar but unrelated
proteins where learning on one can be used on the other. The literature regarding protein
data analysis reveals that a study similar to ours has not been hitherto performed. The
study can be further extended on a large scale where evolutionary relationship are
considered, with the goal of answering how much the “closeness” of proteins in evolu‐
tionary space can affect the efficiency of the encoding. To sum up, in this paper we seek
answers to the following research questions: RQ1 What is the potential of autoencoders
to unsupervisedly learn the structure of proteins and how does the internal representation
for a protein impact the learning process?; and RQ2 Are autoencoders able to capture
biologically relevant patterns? More specifically, are our computational findings
obtained by answering RQ1 and RQ2 correlated with the biological perspective?

The remainder of the paper is organized as follows. The autoencoder model used in
our experiments is described in Sect. 2. Section 3 provides our methodology and
Sect. 4 contains the results of our experiments, as well as a discussion regarding the
obtained results, both from a computational and biological perspective. The conclusions
of our paper and directions for future work are summarized in Sect. 5.

2 Autoencoders

Autoencoders were successfully applied in different complex scenarios such as image
analysis [13] and speech processing [5]. An autoencoder [7] is a feed forward neural
network. The input of the network is a real numbered vector x ∈ Rn.

An autoencoder is composed of two main components: (1) an encoder: g:
Rn

→ Rm, g(x) = h and (2) a decoder: f:Rm
→ Rn, f (h) = x̂. The two components are

stacked together, hence the goal of the autoencoder is to model a function:
f (g(x)) ≈ x. We notice that the input and the label of the model are the same vector.
Thus the autoencoders may be considered self-supervised learning techniques. If m < n
then the autoencoder is called undercomplete.

We consider the learning process of autoencoders as minimizing a loss function
L
(
x̂, x

)
=

1
n

∑n

i=1

(
x̂i − xi

)2. The optimization is performed using stochastic gradient

descent with backpropagation. One may notice that the goal of the autoencoder is to
copy the input x into the output value. However, such a model would not be useful at
all. In fact, the goal of the autoencoder is to come up with useful representation of data
in the hidden state, h. Good encoded values may be useful for various tasks such as
information retrieval and data representation. A sparse autoencoder is a technique used
to help the model avoid the simple copying of the input to the output by introducing a
sparsifying penalty to the loss function. Usually this sparsing penalty is the L1 regula‐
rization on the encoded state. The penalty term is scaled using a small real number
denoted as 𝜆. Thus the employed loss becomes L

(
x̂, x

)
=

1
n

∑n

i=1

(
x̂i − xi

)2
+

𝜆
∑n

i=1
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Denoising autoencoders represent another technique to avoid the mere copying of
the input data to the output layer, forcing the hidden layers to learn the best defining,
most robust features of the input. To achieve this, a denoising autoencoder is fed
stochastically corrupted input data and tries to reconstruct the original input data. Thus,
in the case of denoising autoencoders the loss function to be minimized is
L(g(f (x̃)), x), where the input given to the autoencoder is represented by x̃ - input data
corrupted by some form of noise [7]. Therefore, the autoencoder will not simply elicit
the input data, but will learn a significant representation of it. Various experiments
proved that autoencoders are better than Principal Component Analysis (PCA) [7]. This
is mainly because autoencoders are not restricted to perform linear mapping. One can
consider that a single layer autoencoder with linear activation function has the same
capacity as PCA. However, the capacity of autoencoders can be improved by tuning the
complexity of the encoder and decoder functions.

3 Methodology

In this section we present the experimental methodology used in supporting our assump‐
tion that autoencoders can capture, from a computational viewpoint, biologically rele‐
vant patterns regarding structural conformational changes of proteins. With the goal of
answering the first research questions formulated in Sect. 1, the experiments will inves‐
tigate the ability of an autoencoder to preserve the structure of a protein. Two types of
representations will be considered in order to identify the one that is best suited for the
analysis we are conducting. These representations will be detailed in Sect. 3.1.

3.1 Protein Representations

A protein is a macromolecule with a very flexible and dynamic innate structure [18] that
changes shape due to both external changes from its environment and internal molecular
forces. The resulting shape is a different conformation. For each conformation of a
protein, two different representations of the local geometry of the molecule will be used
in our study.

The first representation for a protein’s conformation, which we call the representa‐
tion based on angles (Angles), consists of conformational states given by the three types
of angles mentioned in Sect. 1 [22]. In this representation, a conformation of k fragments
(letters from the structural alphabet [22]) is represented as 3k dimensional numerical
sequence. This sequence contains three angles for each fragment from the conformation.
The second way to represent a protein conformation, named in the following the
combined representation (Combined) is based on enhancing the conformational states
given by angles with the RSA values of the amino acid residues (see Sect. 1). In our
second representation, a conformation of k states is visualized as a 4k dimensional
numerical vector. The first 3k positions from this vector contain the conformation’s
representation based on angles, whereas the following k positions contain the RSA
values.
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3.2 Autoencoder Architecture

In the current study we use sparse denoising autoencoders to learn meaningful, lower‐
dimensional representations for proteins’ structures, considering their conformational
transitions. Hence, the loss function will be computed as shown in Sect. 2, where
x̂ = g(f (x̃)) and x̃ represents the corrupted input data. We chose a denoising autoencoder
in our experiments, because experimental measurements of biological processes and
information generated by particle methods (e.g. MD simulations) can be noisy or subject
to statistical errors. We are going to use such an autoencoder in order to reduce the
dimensionality of our data. Considering that one of our purposes is to be able to visualize
our data sets, all the techniques implied are going to encode the protein representations
into 2 dimensional vectors.

The sparse denoising autoencoder learns a mapping function from an n-dimensional
space (where n can have different values, according to the employed representation) to
a 2 dimensional hidden state. We performed several experiments, with variable numbers
of hidden layers and using various activation functions, in order to reduce dimension‐
ality. More specifically, the activation functions we employed for the hidden layers are:
rectified linear unit (ReLU), exponential linear unit (ELU) [4] and scaled exponential
linear unit (SELU) [12]. As a regularization strategy, we use the dropout technique [24],
with dropout rates in {0.1, 0.2, 0.3}. Since we have only 2 values in the encoded state
we are going to use a small value for 𝜆 hyperparameter: 10−6. The encoded values are
then reconstructed using a similar decoding architecture.

Optimization of the autoencoder is achieved via stochastic gradient descent enhanced
with the adam optimizer [11]. We employ the algorithm in a minibatch perspective by
using a batch size of 16. The batch size affects the performance of the model. Usually,
large batch sizes are not recommended since it may reduce the capacity of the model to
generalize. Adam is a good optimizer since it also deals with the adjustment of the
learning rate. The data set is shuffled and 10% is retained for validation. We keep the
best performing model on the validation phase by measuring the validation loss. The
loss obtained on the validation set was 0.555 for 1P1L and 0.378 for 1JT8 for the ReLU
activation function, with 0.2 dropout rate. Regarding the encoding architecture, we
experimented with 2 and 3 hidden layers, containing different numbers of neurons
(depending on the size of the input data), and each of the hidden layers benefit from
batch normalization. The decoding architecture is similar, having the same dimensions
for the hidden layers, but in reverse.

3.3 Evaluation Measures

In order to determine whether the representation learned by the autoencoder preserves
the similarities found in the original protein data we define the intra-protein similarity
measure, IntraPS, which evaluates the degree of similarity between conformations
within a protein and we will use this as an indication of how well the intra-protein
conformational relations are maintained in the lower-dimensional representation learned
by the autoencoder. IntraPS is based on the cosine similarity measure, which is
employed to evaluate the likeness between two conformations of a protein.
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Cosine similarity (COS) is widely used as a measure for computing the similarity
between gene expression profiles. It is a measure of the direction-length similitude
between two vectors and is defined as the cosine of the angle between the high dimen‐
sional vectors. To define the intra-protein similarity measure, we consider that a protein
p is represented as a sequence of n conformations, i.e. p =

(
c

p

1, c
p

2,… , cp
n

)
. Each confor‐

mation cp

i
 of the protein is visualized as an m-dimensional numerical vector (i.e. the

representation based on angles or the combined representation previously described).
The Intra-protein similarity of a protein p =

(
c

p

1, c
p

2,… , cp
n

)
, denoted as IntraPS(p),

is defined as the average of the absolute cosine similarities between two consecutive

conformations, i.e. IntraPS(p) =

∑n−1
i=1

|||COS
(
c

p

i
, c

p

i+!

)|||
n − 1

.

In computing the IntraP measure, we decided to use the absolute values for the cosine
between two conformations, since our assumption was that for protein data the relative
strengths of positive and negative cosine values between RSA vectors is the same. This
was experimentally confirmed in our experiments. For computing the similarity/dissim‐
ilarity between two protein conformational transitions, different methods were investi‐
gated (Euclidian distance, Pearson correlation, Biweight midcorrelation) and the cosine
similarity has proven to be the most appropriate. Since the dimensionality of the original
protein conformations is significantly reduced by the autoencoder (i.e. two dimensions),
Euclidian, Pearson and Biweight midcorrelation are not good options for measuring the
similarity: the Euclidean distance is larger between points in a high dimensional space
than in a two dimensional one; Pearson and Biweight are not suitable in 2D (the corre‐
lation between two dimensional points is always 1).

4 Results and Discussion

The experiments we performed for highlighting the potential of deep autoencoders to
capture the proteins’ structure will be further presented, using the experimental meth‐
odology presented in Sect. 3.

The proteins used in our study are described in Table 1 which shows a brief depiction
of the proteins together with their superfamily and sequence length. The proteins from
Table 1 were chosen based on data availability (conformational transitions and RSA
values), the fact that they have the same sequence length (which enables us to carry out
our investigations related to RQ2 from Sect. 1.

Table 1. Proteins selected for analysis [2].

Protein Description Superfamily Sequence length
1P1L Component of sulphur-metabolizing organisms 3.30.70.120 102
1JT8 Protein involved in translation 2.40.50.140 102

For both these proteins, 10000 conformational transitions were recovered from the
MoDEL database [17] (i.e. n = 10000), where each transition consists of a sequence of
99 fragments of the structural alphabet [22]. Thus, as described in Sect. 3.1, in the
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representation based on angles, a conformation has a length of 297, whereas in the
combined representation a conformation is visualized as a 396-dimensional point. For
both proteins, the two representations proposed in Sect. 3.1 will be further used. Before
applying the autoencoder, the protein data sets are standardized, i.e. transformed to mean
0 and standard deviation 1. Furthermore, considering that the employed technique is a
denoising autoencoder, the input data is corrupted by adding noise (random samples
from a standard normal distribution).

4.1 Results

The experiment described below is conducted with the aim of answering our first
research question RQ1 and of investigating if and how the internal representation for a
protein impacts the learning process. For each protein data set, we trained a number of
denoising sparse autoencoders (Sect. 3.2). For the autoencoder we have employed the
Keras implementation available at [3]. The autoencoders presented in Sect. 3.2 are used
to reduce the dimensionality of our data and to visualize the protein data sets. Figures 1
and 2 depict the visualization of the proteins from our data set using trained sparse
denoising autoencoders. The axes on Figs. 1 and 2 represent the range of values obtained
within the 2-dimensional encoding of the input data set (the values of the two hidden
nodes representing the encoder output). Colours were added to better emphasize the
representations of successive conformations).

Fig. 1. Visualization of protein 1JT8. Fig. 2. Visualization of protein 1P1L.

The original data fed to the autoencoder for each protein represents a timely evolution
of the protein’s structure (albeit for an extremely small interval of time - nanoseconds),
considering its transitional conformations. From one conformation to another, the
protein might remain unchanged, or certain parts of it might incur minor modifications.
The autoencoders used to obtain these representations were trained on original data in
its combined representation, they employ 6 hidden layers (3 for encoding and 3 for
decoding), with ReLU as activation function, batch normalization and a dropout rate of
0:2. Nevertheless, we experimented with the representation based on angles, as well as
with various combinations of parameters (number of neurons, layers, dropout rate, acti‐
vation functions), as described in Sect. 3.2 and all resulting plots denote an evolution of
the data output by the autoencoder (henceforth referred to as encoded data), thus
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suggesting that autoencoders are able to identify the most relevant characteristics of the
original representations.

The two dimensional representations of the proteins as captured by the autoencoders,
illustrated in Figs. 1 and 2, reflect the autoencoder’s ability to accurately learn biological
transitions. Successive conformations in the original data are progressively chained
together in the autoencoder’s output data thus denoting a visual evolution. Figures 1 and
2 also show that the considered protein data are relevant for machine learning models,
as it correctly captures biological chained events, by encoding successive conformations
into points that are close in a 2-dimensional space.

Further, to decide whether the autoencoder maintains the relationships found within
the original data, we use the IntraPS measure. Thus, first we compute these similarities
for the original data and then for the two-dimensional data output by the autoencoder,
for both considered representations. The results are shown in Table 2. For each protein,
in addition to the values for the IntraPS measure, we also present the minimum (Min),
maximum (Max) and standard deviation (Stdev) of the absolute values of cosine simi‐
larities between two consecutive conformations, for both representations. We mention
that Min, Max and Stdev were computed using batches of 100 successive conformations.
These results are also illustrated in Figs. 3 and 4, which show the comparative evolution
of average IntraPS values for each 100 conformations in the 10000 conformations that
characterize each considered protein. We notice that for both proteins 1JT8 and 1P1L
the results output by the autoencoder (denoted by “Encoded data” in the images) are
slightly larger, but, on average, particularly similar to the values computed for the orig‐
inal data. All these results suggest that the original proteins’ conformations have a high
degree of cosine similarity (highlighted in Table 2), which is still preserved in the data
resulted from the autoencoder. One observes from Fig. 3 that there is a spike in the
encoded data, which is not visible in the original data. Analyzing protein 1JT8, we
observed that there is an event in the protein structure, but it happens with about 100
conformations before the spike, thus it needs further investigation.

Table 2. IntraPS for proteins 1JT8 and 1P1L, using the two considered representations.

Protein Angles Combined Min/Max/Stdev (COS)
Angles Combined

1JT8 Original 0.9960 0.9913 0.9894/0.9995/0.0023 0.9843/0.9962/0.0022
Encoded 0.9939 0.9985 0.9213/0.9999/0.0161 0.9573/0.9999/0.0044

1P1L Original 0.9779 0.9573 0.9593/0.9896/0.0064 0.9464/0.9695/0.0054
Encoded 0.9912 0.9962 0.9315/0.9999/0.0119 0.9661/0.9999/0.0052

With regard to the used internal representations, we conclude that these do not seri‐
ously influence the learning process. This may be due to the significant reduction of data
dimensionality (two dimensions). Still, for the combined representation which is richer
in information than the representation based on angles, slightly better results were
obtained. As highlighted in Table 2, for both proteins, IntraPS values are larger for the
encoded data and the standard deviation of the cosine similarities between two consec‐
utive conformations is smaller, as well. If the data were reduced to a higher dimensional
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space, the RSA values might bring additional improvements, which induces an
interesting matter for future investigations.

Fig. 3. Protein 1JT8 (combined
representation).

Fig. 4. Protein 1P1L (combined
representation).

With the aim of answering research question RQ2, we are analyzing in the following
the biological relevance of the above presented computational results. The molecular
dynamics sampled by the ensemble of structures in the two data sets is consistent with
small consecutive changes in the protein structure occurring on the nanosecond time
scale. These changes are typical of the first stages of the functional motions and they
are generally dominated by local transitions and significant resampling of the confor‐
mational space. The autoencoder is able to capture both these features, as demonstrated
by the obtained results: changes are encoded in chained events that resample the confor‐
mational space effectively. In addition, there is evidence that evolutionary related
proteins are also similar in their functional motions [23].

The study performed in this paper with the aim to highlight the ability of autoen‐
coders to uncover relevant information about protein dynamics is new. Autoencoders
have been previously used in the literature for protein structure analysis, but from
perspectives which differ from ours.

Autoencoders were proven to be effective for analysis of protein internal structure
in [15] where the authors initialized weights, refined them by backpropagation and used
each layer’s input back to itself in order to predict backbone Cα angles and dihedrals. In
[10], autoencoders were employed for improving structure class prediction by repre‐
senting the protein as a “pseudo-amino acid composition” meaning the model consisted
of normalized occurrences of the each of the 20 amino acids in a protein, combined with
the order of the amino acid sequence. The algorithm called DL-Pro [19] is designed for
classifying predicted protein models as good or bad by using a stacked sparse autoen‐
coder which learns from the distances between two Cα atoms residues. Sequence based
protein to protein interaction was also predicted using a sparse autoencoder in [25].

5 Conclusions and Further Work

We have conducted in this paper a study towards applying deep autoencoders for a better
comprehension of protein dynamics. The experiments conducted on two proteins
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highlighted that autoencoders are effective unsupervised models able to learn the struc‐
ture of proteins. Moreover, we obtained an empirical evidence that autoencoders are
able to encode hidden patterns relevant from a biological perspective.

Based on the study performed in this paper and on previous investigations regarding
protein data analysis, we aim to advance our research towards predicting protein confor‐
mational transitions using supervised learning models. Furthermore, we plan to continue
our work by using a two-pronged strategy: from a biological viewpoint we will consider
other proteins and examine how their evolutionary relationships are reflected within the
resulting data; computationally, we will investigate different architectures for the sparse
autoencoder used in our experiments (e.g. model’s architecture, different optimizers for
the gradient descent) and we will apply variational and contractive autoencoders instead
of sparse ones.
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Abstract. Early diagnostics and knowledge of the progress of
atherosclerotic plaques are key parameters which can help start the
most efficient treatment. Reliable prediction of growing of atheroscle-
rotic plaques could be very important part of early diagnostics to judge
potential impact of the plaque and to decide necessity of immediate
artery recanalization. For this pilot study we have a large set of mea-
sured data from total of 482 patients. For each patient the width of the
plaque from left and right side during at least 5 years at regular inter-
vals for 6 months was measured Patients were examined each 6 months
and width of the plaque was measured using ultrasound B-image and
the data were stored into a database. The first part is focused on rule-
based expert system designed for evaluation of suggestion to immediate
recanalization according to progress of the plaque. These results will be
verified by an experienced sonographer. This system could be a start-
ing point to design an artificial neural network with adaptive learning
based on image processing of ultrasound B-images for classification of
the plaques using feature analysis. The principle of the network is based
on edge detection analysis of the plaques using feed-forwarded network
with Error Back-Propagation algorithm. Training and learning of the
ANN will be time-consuming processes for a long-term research. The
goal is to create ANN which can recognize the border of the plaques and
to measure of the width. The expert system and ANN are two different
approaches, however, both of them can cooperate.

Keywords: Atherosclerotic plaque · Ultrasound · Expert system
Rule-based system · Image processing with ANN · B-image recognition

1 Atherosclerotic Plaques, Their Risk and Measurement

In general, atherosclerosis is one of the most important causes of mortality. Early
diagnostics and prediction of atherosclerosis is a key part of modern medicine.
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This paper has two parts. The first part is focused on a design of rule-based
expert system which can be used for decision what next steps are needed depend-
ing on progress of the plaque. This system is based on defined rules as a decision-
making system. Designed expert system should be a valuable tool for evaluation
of the progress of the plaques during series of examinations. Early diagnostics of
the plaques and reliable evaluation of their progress are two different, but closely
related parts to avoid needless death and for starting the most optimal treatment
as well. The second part of the paper is devoted to design of a model of artificial
neural network (ANN) which could be able to recognize border of the plaque.
ANN should be designed as a feed-forward model with Error Back-Propagation
algorithm. In this paper an idea how to create ANN with supervised learning
as one of many types of neural network models designed for image processing is
discussed.

2 Input Data

For this study a set of measured width of the plaques from total of 482 patients is
used. This is a long-term study; each patient was examined for 5 years at regular
intervals of 6 months. In this study the data of width of the plaques measured
from B-image is used, see Fig. 1. More detailed description of principles of B-
imaging of the plaques is available in [1] and a general view of image processing
approaches in medicine is available in [2].

Fig. 1. Measured width of the plaque on B-image

There are different progress models of the plaque during long-term study
according to stored data:

– stable plaque with no significant changes
– stable plaque with regular increasing/decreasing, no peaks
– unstable progress of the plaques, peaks
– highly unstable plaques with many peaks and extreme changes between exam-

inations
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These four progress models are a starting point for definition of exact rules
for the expert system.

3 Design of Rules Used in the Expert System

Input data represent width of the plaque measured from left (L) and right (R)
side at regular intervals of 6 months, see Table 1.

Table 1. An example of measured width of the plaque for 4 patients

side / measurement 1 2 3 4 5 6 7 8 9 10 11 12
L 4.6 3.6 4.7 4.1 4.6 4.2 4.9 4.3 4.3 4.3 3.9 4.1
R 3.6 2.5 3.2 3.2 3.4 3.6 3.8 3.9 3.8 3.8 3.2 3.2
L 2.7 4.3 4.1 4.0 4.8 4.8 4.8 5.7 5.7 4.2 N/A N/A
R 3.1 4.2 4.2 4.2 4.3 4.5 4.5 3.4 5.0 5.5 N/A N/A
L 3.3 2.3 2.2 2.6 2.2 2.5 2.5 2.7 2.7 2.7 3.4 3.6
R 3.0 3.0 2.5 2.3 2.8 2.7 2.7 2.5 2.5 2.5 2.5 2.7
L 2.0 2.4 2.4 2.3 3.4 2.6 2.6 2.6 2.6 2.6 2.6 2.7
R 4.3 4.3 4.3 4.3 4.3 4.3 4.3 2.8 3.4 3.3 3.3 3.7

Highlighted measurement was visually judged as erroneous. Let t1, t2, t3,...tn
where n = 10 is a series of an examination during 5 years at regular intervals of
6 months. The principle of this system is based on using IF-THEN rules from
which the final consequent is decided; it is a rule-based decision system which
can be briefly described as follows. The rules are based on the four following
criteria:

– maximum and minimum value from all measured data
– difference Δt is not considered in absolute value; if Δt < 0 width increases

and if Δt < 0 width decreases
– number of occurrences of difference below or under threshold value
– trend of the progress for 4 consecutive measurements (increasing or decreas-

ing)

The difference Δt is not considered in absolute value, thus if Δt > 0, the plaque
width is growing and if Δt < 0, the width of the plaque is decreased.

The expert system is designed using the following exact if-then rules:

– Rule A: IF max(Δt) > 2 mm THEN ModerateRisk
– Rule B: IF count of Δt > 2 mm at least 2 THEN ModerateRisk
– Rule C: IF min(Δt) < −2 mm THEN ModerateRisk
– Rule D: IF count of Δt < −2 mm at least 2 THEN ModerateRisk
– Rule E: IF at least of 4 consecutive differences Δt < 0 THEN ModerateRisk
– Rule F: IF at least of 4 consecutive differences Δt > 0 THEN HighRisk
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– Rule G: IF min(Δt) < −0.8 mm ∧ max(Δt) < 0.8 mm THEN LowRisk
– Rule H: IF no previous rules are applied THEN LowRisk (the plaques with

no peaks)

So, there are 3 options (output variables) for recommended steps:

– LowRisk - no immediate steps are recommended
– ModerateRisk - check the plaque progress
– HighRisk - check if the measurement is correct (no error), immediate recanal-

ization is strongly recommended

The following rules union produces:

– A ∧ B THEN HighRisk
– E ∧ G THEN LowRisk
– F ∧ G THEN ModerateRisk

The inference engine of the system is designed to produce a reasoning on the
rules. In Table 1, there are examples of reasonings. In the past, we have designed
a similar expert system to evaluation of substantia nigra hyperechogenicity and
the results were published in technical papers [3–5] and also in clinical studies
[6,7] (Table 2).

Table 2. Output variables and their reasoning

Variable Comment

LowRisk no immediate steps are needed, the plaques seem stable

ModerateRisk check the progress which could be starting point of a problem

HighRisk critical growing of the plaque, high risk of stenosis and rupture

However, a sonographer can set more rules, their relations and reasoning; the
system is extensible and modular.

4 Evaluation of the Outputs

According to outputs of the expert system immediate recanalization should be
recommended. The next step is to verify the reliability of the designed expert
system with experienced sonographer. Consider the following example. Let

3.1; 3.8; 3.8; 3.8; 3.8; 3.0; 3.0; 3.8; 2.4; 4.1; 3.2; 3.8; 3.8; 3.8; 3.5; 3.6; 3.8

be input data of measured width into the system. Maximum difference is 1.7 mm,
the minimum difference is -0.3 mm. The plaque does not have at least 4 consec-
utive differences higher than 0. The Rule H is applied because there are no
significant peaks and extreme differences.
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In the second example:

3; 2.9; 2.8; 2.8; 2.6; 2.6; 2.6; 5.2; 5.2; 5.3

the obvious maximum difference is 2.6 mm. The Rule A is applied and the plaque
is evaluated as moderately risk (ModerateRisk).

4.1 Adaptable Rules to Quality Improvement of the Results

One of the main advantages of this system is adaptability to improving quality
of results for more reliable diagnostics. The rules can be modified and/or add
new rules. Thus, adding and modifying rules can be useful to create the expert
system with high accuracy supported by an experienced sonographer. Another
way is to create adjustable expert system; a user can modify rules depending
on measurement, e.g. set for high resolution, low resolution, different gamma
correction, etc.

5 Using Neural Network in Long-Range Research

The designed expert system should be a helpful software tool to evaluate progress
of atherosclerotic plaques using set of IF-THEN rules to decide next steps, i.e.
treatment, immediate recanalization, etc. All results must be analyzed by an
experienced sonographer. If the system is considered reliable, the next step
should be to create a model of artificial neural network (ANN) as a learning
platform which will be adapted depending on training set with many examples
of outputs and desired outputs. It is a second phase of this study and the second
approach; different from Decision-Making expert system. In 2016, the authors
published a paper focused on the idea of different approaches how to detect
atherosclerotic plaques in B-image [8].

5.1 An Idea How to Design ANN to Classification of Risk of the
Plaques

The idea of the ANN is different from the principle of the expert system.
The input data are B-images with displayed atherosclerotic plaques in differ-
ent progress of the plaque instead of stored numerical values. The goal of the
ANN is to learn how to classify the plaques according their width and other
features. On Fig. 1 the width of the plaque is displayed There are key questions:

– What features should be used?
– How to determine plaque from the artery wall?
– What accuracy of the ANN is acceptable for clinical studies?
– How to define training set to classification learning?
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We have the following idea of ANN architecture:

– a feedforward multi-layer network with supervised learning
– Error Back-Propagation algorithm to minimization of the global error
– developed in MATLAB (with NN Toolbox) [9] or similar software for ANN

modeling

Figure 2 shows an example of the ANN which could be used.

Fig. 2. ANN model with Error Back-Propagation principle

The input is B-image on input layer, each input is multiplied by a weight
w; j-th input is multiplied by weight wj . The principle of the idea is based on
weight modification depending on computed network error. The learning of the
network is based on comparison of the error for each input.

PE = yj − dj

where yj is a real output and dj is a desired output for j-th input. Global error
is the sum of all partial errors. Thus, when the large set of examples in training
set is available, the network could learn a lot of cases of plaque types. Crucial
problem is to determine features which could be used to compute width of the
plaque for final output. Designed ANN has the following properties:

– input in form of the matrix m × n of digitized B-image with detected edges
– hidden layers computes edge detection algorithm and visibility of the plaque
– output layer has 4 neurons to classification the plaque (no visible plaque,

low risk plaque, medium risk plaque and high plaque) similarly to output of
designed ES

Edge Detection. Images are preprocessed using edge detection. The network
is designed to evaluate plaques using features from edge detection.
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Fig. 3. Input B-image, extract edges with inverted colors) and the output to risk
classification

Fig. 4. Prewitt and Kirsch operator with bordered edges to training the network

Edge detection could be an efficient way how to recognize the border of the
plaque to measurement of width and evaluation of the risk. There are two major
problems:

– isolated pixels which can be considered as a part of the plaque
– artery wall can be also considered as a part of the plaques

Kirsch or Prewitt operator could reach well-bordered shape for training and
learning process. On Fig. 4 Prewitt and Kirsch edge detection with border is
applied on images from Fig. 3.

Training and Learning Process. The principle is based on a training set in
which the input-desired output pairs are paired, i.e. for each input the desired
output to learn the network is known. The training set should be supplemented
by new examples. The learning of the network is based on error minimization
depending on an improvement of the training set. A sonographer must determine
error threshold for acceptable accuracy. To determine network error MSE (Mean
Squared Error) is used in many applications to learn accuracy evaluation of the
network. For simplification, the following preconditions are required:

– all images with the same resolution, zoom level and section
– all images from the same section, e.g. cross-sectional
– all images have the same zoom level
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Nevertheless, the design of the ANN is a time-consuming process till the
network is useful with reliable results for clinical studies. The most difficult part
is selection of the most appropriate features in B-images due to many different
types of the plaques caused by fibrosis, calcification, inflammation and other
factors, see Fig. 5.

Fig. 5. Different types of the plaques on B-image

The Goal of the Learning. The goal of the learning process is to minimize
the network error. For each input desired output is assigned. It is computed
partial error PE and the global error. The training set contains well-bordered
plaques of many types. The goal is to learn ANN to recognize border and mea-
sure width depending on scale axis. To reach better accuracy the training set is
supplemented with new examples. When global error is lower than a determined
value, the learning process is ended and ANN will work with required accuracy.

5.2 First Experimental Results with ANN

As the first step, we constructed a simple feed-forward ANN with implemented
algorithm to border detection. We used a set of 20 images with significant plaque
and for each image well-bordered plaque shape determined by experienced sono-
grapher was used. When testing, we use these images to check if the border as
output from ANN is considered as well or not to correct classification, see Table 3.
The results represent the first run of the network without training/learning pro-
cess with a large set of patterns.

Table 3. Experimental first results using untrained ANN

Edge/image 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Prewitt T T F F T T F F F F T T F T F F T T F F

Kirsch T F F F F T T F T F F T F T T F F F F T

where T (true) is an acceptable result and F (false) is a rejected result by sono-
grapher. Correctness of edge detection is key for reliable risk classification of
the plaque. Untrained ANN shows error rate > 50 % for both edge detection
operators. It is strongly unsatisfactory for a clinical study. The aim is to train
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the network to reach reliability > 85 % with determined partial error between
each output and desired output. To training the network we need to use at least
482 B-images from which the data for designed expert system is extracted. Edge
detection must be trained to recognize the shape of the plaque and how to sep-
arate artery wall, see Fig. 6. Brief description of the functionality of the ANN
model:

– input m × n neurons according the image resolution
– transfer function is logistic sigmoid
– initial uniform weight distribution
– 100 epochs of training

Until the accuracy is not reached, ANN must be modified (weights, number of
hidden layers) or another ANN architecture must be used [10], e.g. convolutional
neural network (CNN) based on deep learning using GPU acceleration [11]. CNN
could be a very perspective solution how to recognize shape of the plaque but it is
a time-consuming problem. There is also possibility to use fuzzy neural network
FUZNET [12] which could be used as fuzzy-neural system for classification of
the plaques. However, after trying many ANN models could be decided that the
plaques cannot be recognized with adequate accuracy.

5.3 Cooperation of the ANN with Expert System

Even though the expert system and the ANN are considered as different
approaches, these systems can be closely related.

– designed ES is focused on evaluation of progress risk of the plaque from
measured data for 5 years

– designed ANN is focused on recognition of the plaque on B-image and eval-
uation of the risk based on edge detection (width of the plaque)

When the risk level is decided by using expert system, the same plaque can
be compared by output from ANN (concordance of measured width).

6 Conclusions and Future Work

This study is focused on application of two different approaches in neurology for
early diagnostics of atherosclerosis. The first part is to design rule-based expert
system focused on decision of risk level of the progress of atherosclerotic plaques
from a large set of measured data. This system can be modular with option to
add and/or modify the rules for better decisions. All outputs must be validated
by an experienced sonographer. The second part is to design the artificial neural
network based on Error Back-Propagation algorithm. The goal of the network
is to compute width of the plaque from B-image using image feature analysis
from edge detection. ANN can learn a lot of cases of the plaques using large
training set with examples of “good” and “bad” plaques. Well-learned neural
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network should be a useful tool to fast and reliable decisions depending on the
width of the plaque. This long-range research is at the beginning. Design of the
expert system is relatively fast; the rules are determined by a sonographer and
will be adaptable in the future. Design of the neural network is time-consuming
due to complexity of image analysis of ultrasound B-images, i.e. selection of
suitable architecture and features for computing of the width of the plaque.
This research is a challenge for a large team of experts how to create a helpful
software to early diagnostics of the atherosclerosis from measured data and from
ultrasound B-images.
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Abstract. Pancreatic cystic neoplasm (PCN) is one of the most com-
mon tumors in the digestive tract. It is still a challenging task for doctors
to diagnose the types of pancreatic cystic neoplasms by using Computed
Tomography (CT) images. Especially for serous cystic neoplasms (SCNs)
and mucinous cystic neoplasms (MCNs), doctors hardly distinguish one
from the other by the naked eyes owing to the high similarities between
them. In this work, a multi-channel multiple-classifier (MCMC) model
is proposed to distinguish the two pancreatic cystic neoplasms in CT
images. At first, multi-channel images are used to enhance the image
edge of the tumor, then the residual network is adopted to extract fea-
tures. Finally, the multiple classifiers are applied to classify the results.
Experiments show that the proposed method can effectively improve the
classification effect, and the results can help doctors to utilize the CT
images to achieve reliable non-invasive disease diagnosis.

Keywords: Non-invasive disease diagnosis · Multi-channel images
Multi-classifier · ResNet · Pancreatic cystic neoplasms (PCNs)

1 Introduction

Pancreatic cystic neoplasm (PCN) [1–4], mainly characterized by the prolifera-
tion of pancreatic ductal (or acinar epithelial cells) and the secretion of cysts, is a
type of pancreatic cystic lesions (PCLs). According to the histopathological crite-
ria, Pancreatic cystic neoplasms (PCNs) are loosely grouped into non-mucinous
tumors and mucinous tumors by World Health Organization (WTO) in 2010,
which mainly contain serous cystic neoplasms (SCNs) and mucinous cystic neo-
plasms (MCNs), respectively. Generally speaking, the levels of CEA and CA199
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are firstly detected by adopting fine-needle aspiration biopsy through the endo-
scopic ultrasonography or biopsies, and then the detection results are used to
identify the benign and malignant neoplasms during the process of preopera-
tive diagnosis. However, there are still some problems and limitations in these
methods. For example, there are improper puncture techniques, the cyst is too
small to be accurately located, and the puncture specimens are contaminated.
All these problems come down to identifying accurately the pathological types
of PCNs before operating, and these limitations have resulted in prohibiting the
widespread use of the techniques. Therefore, it is of great importance and value
for doctors to accurately diagnosis PCNs by image examination in determining
the treatment and operation chance of patients. Figure 1 shows two different
kinds of PCNs: SCNs and MCNs. According to clinical statistics, SCNs belong
to a kind of benign neoplasms, and the patients with SCNs do not need surgery
immediately. In contrast, MCNs have a high probability of malignant transfor-
mation. For instance, as shown in Figs. 1(c) and (d), it is hardly distinguished
from the other by the naked eyes owing to the high similarities between SCNs
and MCNs. Therefore, it is essential to explore some computer-aided diagnosis
methods to help clinicians to achieve reliable non-invasive disease diagnosis and
to improve the objectivity and rationality of treatment.

(a) SCN (b) MCN

(c) SCN (d) MCN

Fig. 1. Two different kinds of PCNs. (c) and (d) are almost indistinguishable, but they
belong to different kinds of PCNs.

With the development of computer vision technology, the above issue attracts
more and more attention in the society of medical image process. For example,
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Li et al. [5] verify the effectiveness of additional information from the spectral
CT for distinguishing serous oligocystic adenomas from mucinous cystic neo-
plasms using machine-learning algorithms. In [7], a method is proposed based
on a Bayesian combination of a random forest classifier and a CNN to make
use of both clinical information about the patient and fine imaging information
from CT scans. However, The above mentioned methods require the segmen-
tation of images in advance, then the obtained cysts or pancreas are classified
by using classifiers. In recent years, the deeplearning-based [6] methods are pro-
posed for classification [8–10], detection [11] and segmentation in the area of
medical image process. In 2017, Esteva et al. [12] applies deep learning in skin
cancer classification, and the effect of skin cancer classification can reach the
level of a dermatologist.

The rest of the paper is organized as follows. In Sect. 2, a MCMC method
is proposed by integrating multiple channels and multiple classifiers based on
ResNet. Section 3 describes the experimental results and discussions of the pro-
posed method on PCNs datasets. Finally Sect. 4 presents conclusions and future
Work.

2 Methods

2.1 ResNet

ResNet [13] is a ‘shortcut connection’, and as shown in Fig. 2, one or more layers
can be skipped in the network. Each skip-connected computation is called a
residual block, and its output yl is defined as

yl = yi−1 + H(yi−1) (1)

where H contains convolution, batch normalization (BN) [14] and rectified linear
units (ReLU) [15].

Fig. 2. The structure of the residual block. The convolutional layer is an important
layer in CNNs, and it realizes partial receptive fields. Relu is the most popular activa-
tion function in DNNs owing to its simplicity and efficiency, and it can partly avoid and
rectifies vanishing gradient problem. With the network deepening, the characteristic
distribution gradually shifts or changes, and the convergence g slows down during the
training process. The essential cause is that the gradient of the low-level neural net-
work disappears in the backward propagation. Therefore, the above problem is solved
by batch normalization layer.
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In this work, a ResNet-50 model is used to extract features and classify
PCNs with a Softmax classifier by the end-to-end training. The ResNet-50 model
includes 16 residual blocks, through these residual blocks, the feature information
is transmitted to avoid the gradient disappearing.

2.2 MCMC

In this section, a multi-channel multi-classifier method is proposed for the clas-
sification of PCNs in detail, and the corresponding framework is illustrated in
Fig. 3. Firstly, a single-channel image is converted into a multi-channel image
by adjusting the window width and window level of the original single-channel
image, by using the Canny edge detection, and by calculating the gradient mag-
nitude, respectively. In this way, the original image can be clearer and obtain
enhanced edge information. Secondly, the residual network is used for end-to-end
training to classify images and extract features. And then, the 2048-dimensional
features obtained from the residual network are classified by adopting Bayesian
classifier [16] and k-Nearest Neighbor (KNN) classifier [17]. Significantly, the
outputs from the residual network and the two classifier are probability values
of a class. Finally, the obtained probability values are classified by adopting a
random forest method [18].

Fig. 3. The structure consists of two parts: (i) Multi-channel and (ii) Multi-classifier.
The multi-channel is constructed by adjusting the window width and window level of
the original image, by using the Canny edge detection, and by calculating the gradient
magnitude, respectively. The multi-classifier includes Softmax, Bayesian, KNN and
random forest.

3 Experiments and Results

3.1 Datasets and Experiments

The dataset comes from the First Affiliated Hospital of Zhejiang University,
China. It contains 3,076 CT images of PCNs, and consists of the two most
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common PCNs: 1763 SCN images and 1313 MCN images. Thereinto, 615 PCNs
(about 20%) are randomly selected as a testing data set, among them including
340 SCNs and 275 MCNs. All experiments are implemented on a computer with
a E5-494 2620 2.0 GHz processor, and six nuclear of CPU, 32 GB RAM, and
single tesla K20 graphics cards.

3.2 Results and Discussions

The results are shown in Table 1, and the accuracies obtained by using traditional
methods [19,20] are all less than 80%, meanwhile, the accuracies obtained by
using convolutional neural networks is greatly improved due to the extraction
ability of features. By comparing the results among SC-Resnet and MCMC,
it shows that adding edge features in the multi-channel image can effectively
improve the evaluation index of each classification result. The number of invalid
feature values extracted from single-channel images is twice that of multi-channel
images through the statistics for the 2048-dimensional features extracted from
ResNet-50. Therefore, the increase of valid features obviously contributes to the
improvement of multi-channel image classification effect.

Table 1. Results of different methods

Methods Sensitive Specificity Precision Accuracy F-score

Gabor-KNN 94.12% 9.09% 56.14% 56.10% 70.33%

Gabor-Bayesian 75.00% 30.91% 57.30% 55.28% 64.97%

GLCM-KNN 72.65% 46.55% 62.69% 60.98% 67.30%

GLCM-Bayesian 85.29% 30.55% 60.29% 60.81% 70.64%

SC-ResNet 92.06% 68.73% 78.45% 81.63% 84.71%

MCMC 92.65% 85.45% 88.73% 89.43% 90.65%

From the results, the integrated multi-classifier (i.e., MCMC) can obtain
good effects in many performance indicators. The sensitivity by adopting the
proposed MCMC method is not the best among all these methods, but multiple
performance indicators are the best, such as specificity, precision, F-score and
accuracy.

Compared with Gabor-KNN, Gabor-Bayesian, GLCM-KNN and GLCM-
Bayesian, We find these traditional methods have high sensitivity, but the low
specificity. From Tables 2, 3, 4 and 5, the classification results under the confu-
sion matrix are further investigated, and we find that a large number of mucinous
cystic neoplasms are incorrectly identified as serous cystic neoplasms. There are
maybe two reasons for that cases: (1) No key features are extracted, (2) Overfit-
ting happens. Moreover, as shown in Tables 6 and 7, the results of classification
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Table 2. Results of Gabor-KNN

Ground Truth Prediction(%)

SCN MCN

SCN 94.12% 5.88%

MCN 90.91% 9.09%

Table 3. Results of Gabor-Bayesian

Ground truth Prediction(%)

SCN MCN

SCN 75.00% 25.00%

MCN 69.09% 30.91%

Table 4. Results of GLCM-KNN

Ground truth Prediction(%)

SCN MCN

SCN 72.65% 27.35%

MCN 53.45% 46.55%

Table 5. Results of GLCM-Bayesian

Ground Truth Prediction(%)

SCN MCN

SCN 85.29% 14.71%

MCN 69.45% 30.55%

by using ResNet have obviously been improved. Especially in Table 7, the clas-
sification results obtained by our proposed method are the best. Therefore, the
specificity of the classification in Table 1 is the highest among these methods
according to the proposed MCMC method.

Table 6. Results of SC-ResNet

Ground truth Prediction(%)

SCN MCN

SCN 92.06% 7.94%

MCN 31.27% 68.73%

Table 7. Results of MCMC

Ground truth Prediction(%)

SCN MCN

SCN 92.65% 7.35%

MCN 14.55% 85.45%

4 Conclusion and Future Work

In this work, a multi-channel and multi-classifier method is proposed for the
PCNs classification problem. A multi-channel image is transformed from an
original CT image by adjusting the window width and window level, by using
the Canny edge detection, and by calculating the gradient magnitude, respec-
tively. A series of comparison experiments are conducted, and the results show
enhancing edge features and integrating multi-classifier contribute to the clas-
sification effect. The proposed MCMC methods can obtained the best results
in the comprehensive assessment index F-score and accuracy, and the perfor-
mance parameters of sensitivity, specificity and precision have also a relatively
high ranking among all methods. The results can help doctors to utilize the CT
image to achieve reliable non-invasive disease diagnosis.

In the future, clinical information, positioning and segmentation of PCNs
will be integrated to auxiliary diagnosis.
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Abstract. Classify image into benign and malignant is one of the basic image
processing tools in digital pathology for breast cancer diagnosis. Deep learning
methods have received more attention recently by training with large-scale
labeled datas, but collecting and annotating clinical data is professional and
time-consuming. The proposed work develops a deep active learning framework
to reduce the annotation burden, where the method actively selects the valuable
unlabeled samples to be annotated instead of random selecting. Besides, com-
pared with standard query strategy in previous active learning methods, the
proposed query strategy takes advantage of manual labeling and auto-labeling to
emphasize the confidence boosting effect. We validate the proposed work on a
public histopathological image dataset. The experimental results demonstrate
that the proposed method is able to reduce up to 52% labeled data compared
with random selection. It also outperforms deep active learning method with
standard query strategy in the same tasks.

Keywords: Breast cancer � Histopathological image analysis
Deep active learning � Query strategy

1 Introduction

Breast cancer is ranked as the most common cancer in women worldwide, and it also
featured with high morbidity and mortality among women worldwide [1]. The diag-
nosis by histopathological images under microscopy is one of the golden standards in
clinical applications. With the development of imaging sensors, histopathological
slides can be scanned and saved as digital images. As the digital image sizes increase
dramatically with the magnification, it would be ideal to develop image processing and
analysis tools, e.g. classification, in computer-aided diagnosis (CAD) for breast cancer.

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11140, pp. 109–116, 2018.
https://doi.org/10.1007/978-3-030-01421-6_11

http://orcid.org/0000-0002-4145-2121
http://orcid.org/0000-0001-8496-5472
http://orcid.org/0000-0001-5264-1545
http://orcid.org/0000-0002-3913-9400
http://orcid.org/0000-0003-2288-5287
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01421-6_11&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01421-6_11&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01421-6_11&amp;domain=pdf


Hand-crafted features, such as Scale invariant feature transform (SIFT), histogram of
oriented gradient (HOG), gray-level co-occurrence matrix, kernel methods have been
reported in the recognition or classification tasks in breast cancer histopathological
image analysis. Some well-known classifiers, e.g. support vector machines (SVM), has
been reported as well. Recently, deep learning methods, for example convolutional
neural networks (CNN), has receive more attention and impressive performances in
many tasks of histopathological image processing for breast cancer research, including
recognition, classification and segmentation [2]. Chen et al. [3] detected cell mitosis in
breast histology images using deep cascading CNN, which dramatically improves
detection accuracy over other methods in 2014 ICPR MITOS-ATYPIA Challenge.
Wang et al. [4] used CNN, which includes 27-layer breast cancer metastasis test and then
won first place in Metastasis Detection Challenge of ISBI2016. Spanhol et al. [5] trained
the classification of benign and malignant breast cancer pathological images by Alexnet
[6], whose result is 6% higher than the traditional machine learning classification
algorithm. Bayramoglu et al. [7] used deep learning to magnification independent breast
pathology image classification and the recognition rate is 83%. Spanhol et al. [8] pro-
posed an assessment of BC-recognition for caffeine-free features, increasing the accu-
racy to 89%. Wei et al. [9] proposed a novel breast cancer histopathological image
classification method based on deep convolutional neural networks, named as BiCNN
model, resulting to a higher classification accuracy (up to 97%).

The reported state-of-the-art methods strongly rely on the large-scale labeled data in
training the network. However, in the view of real-world application, large-scale
labeling in medical images are tedious and extremely expensive. Strong professional
skills are usually required in the applications compared with annotating natural images.
Very limited reports have been contributed to reduce the labeling burden in the pro-
posed task. We proposed a deep domain adaptation method with PCAnet and a domain
alignment operation to reduce the labeling cost by transferring knowledge from the
source dataset to the target one [10]. We also introduced self-taught learning to PCAnet
to reduce the burden of labeling [11]. However, labeled images in the training data are
still randomly selected in the previous works.

In the proposed work, we want to improve the deep learning architecture for the
classification task in breast cancer histopathological images by a deep active learning
framework. Instead of random selection, active learning methods usually actively select
samples with lowest confidence (highest entropy) as valuable samples, and they are
added to query, and then the network can be fine-tuned incrementally [12]. In the
proposed method, inspired by boosting, the query strategy is also improved, where
samples with both high and low confidence are considered simultaneously to empha-
size the confidence boosting. We consider that the network should be fine-tuned with
additional supervision and its previous regularization simultaneously. The contribu-
tions of the proposed work can be summarized as: (1) the labeling cost can be reduced
labeling effort with random selection; (2) The method outperforms standard active
learning query strategy by the entropy boosting effect.
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2 Proposed Method

As a topic in machine learning, active learning is to seek for the most informative
samples in a large number of unlabeled dataset actively to annotation query, in order to
reduce the labeling effort. We consider introducing the idea of active learning into our
method to reduce the labeling cost required for deep learning methods in breast cancer
pathological image classification. Firstly, the network is initiated with very limited
random selected labeled data. Secondly, the key problem in active learning is how to
define the criteria of ‘valuable’ samples. In the standard query strategy, ‘worthness’ is
usually defined by the entropy calculated with deep architecture, as:

ei ¼ �
XY

k¼1
log pj;ki

� �
� pj;ki ð1Þ

Where pi is the confidence value of the network for a sample xi, and Y represents
the number of categories in the work. Entropy captures the uncertainty of classification
system in each prediction. A larger entropy value denotes higher uncertainty of the
system. In the standard query strategy, active learning methods select a certain number
of high-entropy samples to the annotation query until the query size is full. Then the
network is fine-tuned with the labeled samples incrementally.

In the proposed work, we believe that the evolution of the network should be fine-
tuned incrementally by two factors, the additional supervision from manual labeling
and the regulations from previous network. Thus in the proposed query strategy,
inspired by the idea of boosting, samples with high entropy values and low entropy
values are both considered for a boosting effect. It should be mentioned that the
samples with high confidence or low entropy values are labeled by the previous net-
work instead of manual annotation, so there is no additional cost of labeling with the
standard active learning query strategy. The algorithm is detailed illustrated as follows.

Algorithm 1: The proposed query strategy.
Input : The training set for the specified dataset ; Pre trained CNN ; Active 

learning times ; Labelled queue size ; Compare queue size 
Output : The final fine-tuned CNN model 

1
2 for do
3 for Samples UntagPool do
4 Entropy, EClass = ComputeEntropy ( ,Samples) ;
5 end
6 Labelled queue, Compare queue, UntagPool = SelectSamplebyEntropy

(Entropy, EClass, n, m);
7 Active batch = (Active batch, Labelled queue);
8 UntagPool = UpdateUntagPool (UntagPool, Active Batch) ;
9 Train batch = concatenate (Active batch, Compare queue);
10 = TrainNet(Mt−1,Train batch);
11 end
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As shown in Algorithm 1, let B represents the whole dataset with nB images, and it
is divided into training set and test set Btrain and Btest. The CNN model, denoted as M0,
is initiated with ni randomly selected samples in each category, ni is set to be very small
value, for example, two. For convenience, Btrain is divided into labeled data Bl, and
remaining unlabeled data Bu. The sizes of Bl and Bu are nl and nu respectively, where
nl þ nu ¼ nB. And nl and nu are changing during the incrementally network learning,
since the main idea of active learning is to select most valuable samples from Bu to
annotation queue At for manual annotation. In each query round, the network is fine-
tuned with all the labeled samples in At, and then nl turns to nl þ n, and Bu turns to
nu � n, where n is the size of At. A widely-used criteria is to select n=2 samples with
highest entropy values in each category. The number of query is set to Ta, so the fine-
tuned network after each query is denoted as Mj, j ¼ 0; � � � ; Tað Þ. In the proposed work,
the network in each query is fine-tuned with samples with both high entropy and low
entropy. Besides n manual annotated samples, At contains additional m samples with
lowest entropy values in each category. It should be mentioned that the labels of these
m samples are auto-labeled by the previous network.

3 Experiment

3.1 Dataset Description

The proposed framework is evaluated on a public dataset of breast cancer
histopathological images, BreaKHis [13]. The large-scale dataset contains 7909 images
from 82 patients of breast cancer. The dataset is divided into benign and malignant
tumors that are scanned with four magnification factors: 40X, 100X, 200X, and
400X. Pathological images are with size of 700 � 460 in RGB format. The details of
the database are shown in Fig. 1.

40X 100X 200X 400X

40X 100X 200X 400X

Fig. 1. Breast cancer histopathological image samples in the BreaKHis. (Top: benign. Bottom:
malignant.)
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3.2 Implementation Details

In this section, the proposed algorithm is implemented with TensorFlow framework.
The basic CNN architecture is AlexNet pre-trained at ImageNet [14]. The basic settings
of the server is intel 2.2-GHz CPU and a NVIDIA GeForce GTX 1080Ti GPU. The
dataset has also been divided into training data (70%) and testing data (30%) randomly
with no overlapping. In both training and testing set, the size of each category is
balanced to be the same. In our work, the proposed work is evaluated on the image-
level binary classification, that is, each image is predicted with benign or malignant.
Since two categories have been balanced, classification accuracy is used as the metric
in the validation, as follow:

Image level accuracy ¼ Nc

Nim
ð2Þ

Where Nim the total number of images in the dataset, and the Nc represents the total
number of images that are correctly classified.

The network is initiated with one benign sample and one malignant sample ran-
domly selected from the training data. In each experiment, there are 5 query round,
where query size for manual labeling in each round is Nm. It should be mentioned that
the network is fine-tuned incrementally with 64 labeled images after each query, 48 of
them are manual labeling, and the other 16 are auto-labeling.

3.3 Experiment Result

Experimental results on four magnification factors are demonstrated in Fig. 2 and
Table 1. It can be observed and concluded from the figures that both standard deep
active learning methods and proposed framework have consistent better performances
compared with incremental learning with random selection in all the experiments. Deep
active learning methods can save up to 52% of the labeling cost compared to random
selection to achieve a similar accuracy. This demonstrated that in the view of real-
world application, the proposed framework is a better option in recognition task with
deep learning methods. It also can be concluded that our proposed method also out-
performs deep active learning method with strategy of only high entropy.
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(a)40X (b)100X

(c)200X (d)400X

Fig. 2. Comparing the performance of entropy active learning, random active learning and our
proposed method in 5 times active learning.

Table 1. Comparing to the annotation cost of our proposed method, random active learning and
entropy active learning in similar accuracies. Thereinto, the cost refers to the number of labeled
samples, which means the annotation cost.

Strategy Magnification factors

40X 100X 200X 400X

Accuracy
cost

Accuracy
cost

Accuracy
cost

Accuracy
cost

Proposed 90.69% 288 90.46% 240 90.64% 192 90.96% 336
EntropyAL 90.96% 500 91.24% 400 91.98% 300 90.11% 450
RandomAL 90.96% 400 90.46% 400 90.37% 400 89.75% 400
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4 Conclusions

We proposed a deep active learning framework in histopathological image analysis for
breast cancer research. The main purpose of the work is to reduce the tedious labeling
burden in the medical application if deep learning methods are used. Instead of ran-
domly selecting samples for annotation as training samples, the framework actively
seeking for the most valuable unlabeled data to be manual labeled, and then fine-tune
the network incrementally. Besides, we also improve the query strategy with a confi-
dence boosting operation, where both samples predicted with high confidence and low
confidence are used in network training in each query round. The samples with high
confidence are auto-labeled with the network, so there is no additional manual labeling
cost compared with standard active learning methods. The experimental results vali-
dated on a large breast cancer histopathological images dataset have demonstrated that
our proposed method significantly reduces the labeling cost compared with random
selection. It also has better performances with higher accuracy when compared with
standard query strategy.
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Abstract. Epilepsy is a central nervous system disorder defined by spontaneous
seizures and may present a risk to the physical integrity of patients due to the
unpredictability of the seizures. It affects millions of people worldwide and about
30% of them do not respond to anti-epileptic drugs (AEDs) treatment. Therefore,
a better seizure control with seizures prediction methods can improve their quality
of life. This paper presents a patient-specific method for seizure prediction using
a preprocessing wavelet transform associated to the Self-Organizing Maps (SOM)
unsupervised learning algorithm and a polling-based method. Only 20 min of 23
channels scalp electroencephalogram (EEG) has been selected for the training
phase for each of nine patients for EEG signals from the CHB-MIT public data‐
base. The proposed method has achieved up to 98% of sensitivity, 88% of specif‐
icity and 91% of accuracy. For each subsequence of EEG data received, the system
takes less than one second to estimate the patient state, regarding the possibility
of an impending seizure.

Keywords: Seizure prediction · Self-Organizing Maps
Polling-based decision process

1 Introduction

According to the World Health Organization, epilepsy is a central nervous system
disorder that affects approximately 50 million people worldwide, making it one of
the most common neurological diseases in the world. Epilepsy is defined as sponta‐
neous seizures that start in the brain. Seizures are brief occurrences of involuntary
movement that may involve a part of the body or the entire body, and are some‐
times associated to a loss of consciousness [19]. For many patients, anti-epileptic
drugs (AEDs) can be given at sufficiently high doses to prevent seizures, frequently
causing side effects. For 20–40% of patients with epilepsy, AEDs are not effective
[8]. Patients with epilepsy may experience anxiety due to the possibility of a seizure
occurring at any time, in addition to physical integrity risk when performing some
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activities like driving or swimming. In this regard, the development of reliable tech‐
niques for seizure prediction could improve the quality of epilepsy patients’ life,
reducing the risk of injuries and offering a better management of AEDs in indi‐
vidual bases, consequently reducing the side effects, improving the use of preven‐
tive-AEDs facing an imminent epileptic seizure [8].

There is evidence that the process of seizures generation (ictogenesis) is not random,
originating from a brain region, and in most patients are associated to electroencepha‐
logram (EEG) patterns. The EEG is a measure of the electrical activity captured by the
cerebral cortex nerve cells. Epileptic EEG signals can be classified in four states: ictal
(the epileptic seizure itself), postictal (period immediately after the seizure), interictal
(period between seizures, considered a normal state of the patient) and preictal (period
immediately before the seizure onset) [4]. Success in epileptic seizures prediction
requires differentiating the preictal state from the other three states. Since the preictal
state is the transition from the interictal to the ictal, a binary classification between the
interictal and preictal states is of primary interest in seizures prediction. Patient-specific
seizure onset and pre-seizure onset patterns suggest that patient-specific algorithms offer
some advantage for epileptic seizure prediction, from the Machine Learning perspective
[11]. Thus, supervised learning techniques are used with recorded data from each patient
to discriminate characteristics between the preictal and interictal states [4].

In previous studies, patient-specific classifiers were used to separate the preictal and
interictal states. In [6], binary classification with linear Bayes classifier was used in 7
patients achieving 94% of accuracy and 93% of sensitivity. In [4], SVM, KNN, LDA
classifiers were compared. SVM has achieved the best results (94% of accuracy, 96%
of sensitivity and 90% of specificity). SVM was also used in [13], achieving 97.5% of
sensitivity. In [2], SVM and Kalman filter were combined achieving a sensitivity of
100%. These results demonstrate that the seizure prediction researches have been
improving over time: a research work achieved in 2003 a sensitivity of 62.5% [3].

The goal of the seizure prediction research works, besides good performance is real-time
hardware application. Therefore, reducing the dimensionality of the EEG processed data
may enable neural processes with lower computational costs and/or processing time.
Moreover, it can increase the results. In [4], an adaptive algorithm for EEG channel selec‐
tion was proposed and compared with the use of all channels and with the Principal
Components Analysis (PCA). The proposed adaptive algorithm for channel selection
achieved the best results. In [6], Pearson’s Correlation matrix was used as a feature selec‐
tion to eliminate redundant information. Another important characteristic for developing
real-time hardware applications is the number of EEG hours required for the training
phase, which implies in large amounts of stored data and discomfort in patients during EEG
recording. In [4], only 10 min of training data were used for each class (preictal and inter‐
ictal) indicating that methods based on short time training can predict seizures.

In an attempt to find possible consistent patterns in the EEG signals, Self-Organizing
Maps (SOM) [9] have been applied herein. This type of neural network, also known as
Kohonen neural network, is categorized as an unsupervised learning model and allows
mapping the input data into clusters. In the present proposal, SOM is used to identify
the clusters corresponding to preictal and interictal states, in order to predict the seizures.
More specifically, in this work, SOM integrates a patient-specific prediction method
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along with 4-s EEG segmentation, wavelet preprocessing and a polling-based decision
process. Only 20 min of data were used in the training phase, with 10 min for each state
(preictal and interictal), in contrast to many hours of EEG used in related works [1, 10,
11, 13, 14]. Moreover, the time consumed to process the EEG signals was measured to
quantify the computational effort required by the proposed method.

2 Methods

The EEG signals analyzed are described in Subsect. 2.1. The initial processing step
consists in segmenting each EEG channel data in 4-s windows. Then, feature extraction
is performed as detailed in Subsect. 2.2. SOM is responsible to categorize the input data
into preictal and interictal states, according to Subsect. 2.3. Finally, a sequence of 4-s
windows is classified in a polling-based approach, as the prediction output of the system.

2.1 EEG Dataset

The dataset used in this work was recorded at the Children’s Hospital Boston and is
publicly available in the CHB-MIT EEG [7, 16]. This dataset comprises scalp EEG
recordings from pediatric patients with intractable seizures. Due to the fact that scalp
EEG is not invasive, it is advantageous compared to intracranial EEG. Pediatric EEG
exhibits large variability in seizure and non-seizure activity [16]. The patients were
monitored for several days following withdrawal of AEDs. All EEG signals were
sampled at 256 Hz with 16-bit resolution, recorded mostly in 23 channels. The interna‐
tional 10–20 system [7] is used for the positioning of the EEG electrodes and for the
nomenclature of the channels. In the present work, 9 of the 24 patients have been selected
due to the fact that they have had, at least, 5 recorded seizures. Moreover, there was
available, at least, 30 min of preictal state before seizure onset. Interictal state was
defined as the period farther than 30 min from the seizure.

2.2 Feature Extraction

Methods of research in seizure predictions commonly use feature vectors built from
EEG signals. In the present work, EEG data were segmented by non-overlapping 4-
s windows. Then, for each window, the Discrete Wavelet Transform (DWT) is
computed and the number of zero-crossings of detail coefficients of level 1 is calcu‐
lated [12]. In [4] the mother Wavelet basis functions Haar, Daubechies-4 and Daube‐
chies-8 were compared. The Haar Wavelet function allowed the highest accuracy
and, in addition, it has lower computational complexity compared to the other
wavelet functions. Based on those results, in the present work, the mother wavelet
basis used is Haar. As in [4], the zero-crossings of the detail coefficients of the first
level computed for each window results in a vector of dimension D = 23 channels.
The total number of vectors is n = T/4 s, where T is the EEG period selected in
seconds. In order to allow an easy visualization of the results, the vectors were
represented in grayscale, with darker tones for the windows located temporally
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closer to the seizure (preictal state), and varying proportionality to light tones for the
windows farther from the seizure (interictal state), as in Fig. 1.

Fig. 1. Relationship between windows and grayscale attributed for n windows in training phase.
Half of the data are in preictal state and the other half is in interictal state.

2.3 SOM for Unsupervised Categorization of Epileptic EEG Signals

Originally proposed by Teuvo Kohonen in 1982 [9], SOM has been widely used for
multidimensional characterization and clustering tasks [15]. The network structure is
composed of a set of prototypes, or neurons, represented by vectors of the same dimen‐
sionality as the input data. This neural structure is organized in one, two or three-dimen‐
sional arrays and the neurons are arranged in a topological order. The clustering occurs
as a result of the comparison of the initial weights assigned to the neurons with the input
data vectors. The weights are iteratively adjusted based on the distances between them,
so that similar vectors in the input space are tend to be mapped onto neighboring neurons
in the output array [5].

In the first step of SOM training algorithm, the distance between an input vector xi
and each neuron weight vector wj is computed, and the neuron whose distance is closest
to the input is selected as the winning neuron c, or best match unit (BMU), according
to Eq. 1.

c = argminj dist
(
wj, xi

)
(1)

In the following step, the values of the neuron vectors are adjusted. The new weights
are computed by Eq. 2.

wj(t + 1) = wj(t) + 𝛼(t) ⋅ hcj(t) ⋅
(
xi −wj

)
(2)

The learning rate α(t) is a problem-dependent parameter. Usually, its value decreases
exponentially from an initial value αi towards a final value αF. The neighborhood func‐
tion hcj(t) determines the magnitude of the adjustment in the neuron vectors next to the
BMU according to the distance between them (distcj), as shown in Eq. 3.

hcj(t) = e−dist𝟐
cj
∕𝟐𝛔𝟐(t) (3)
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During the training phase, the magnitude of the adjustments in the neighboring
neuron vectors is reduced by decreasing the width of the neighborhood function σ(t).
Hence, for stabilization of the self-organization process, σ(t) usually decays exponen‐
tially between an initial value σi and a final value σf.

In this work, the input data comprises vectors of 23 dimensions resulting from the
preprocessing of the 23 EEG channels, as described in Subsect. 2.2, and the network
structure was configured as a two-dimensional array and as a one-dimensional array,
both presented in Fig. 2. The aim of the initial essays using the SOM for the prediction
of epileptic seizures was to verify the possible clustering effect in EEG signals that
precede a seizure, according to the preprocessing described in Subsect. 2.2. In the
training phase, equal amounts of preictal and interictal data were selected and presented
to the network.

Fig. 2. Top left, 2D SOMs from patients CHB01 and CHB05, where darker neurons indicate
preictal states and lighter ones indicate interictal states. Non activated neurons are represented
using the background color. The corresponding U-matrices are presented at the bottom, where
darker colors indicate larger distances and lighter ones, smaller distances. Top right, 1D SOM
from patient CHB01 and the corresponding U-matrix. Bottom right, 1D SOM from patient CHB05
and the corresponding U-matrix.

Figure 2 shows examples of typical results obtained in the tests, for the 2D SOMs,
of the mapping of EEG signals from patients 01 and 05 of the CHB-MIT dataset. It can
be seen that the SOM neurons were clustered into two distinct categories. One of the
categories (represented by darker tones) is associated to signals with a maximum of
30 min before seizure onset and the other category (represented by the lighter tones) is
associated to signals recorded farther than 30 min before seizure onset. The mapped
categories may also be seen in the U-matrix of the SOM, which denotes the vector
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distance among the neurons after the training process [18]. This favors the visual analysis
of the grouping process which means that it is possible to distinguish different patterns
in the dataset. The U-matrices associated to the SOMs of CHB01 and CHB05 patients
are illustrated at the bottom of Fig. 2. It can be noticed that the SOM was able to
successfully categorize the interictal and preictal states of EEG signals in an unsuper‐
vised manner.

Due to the consistent results obtained in the repetition of the initial experiments, in
which the neural network succeeded in mapping EEG signals (splitting it into two clus‐
ters), the second sequence of essays aimed to explore the use of a 1D SOM architecture.
The objective of using a 1D SOM architecture was to reduce the processing time of EEG
categorization towards real-time hardware applications (as described in Sect. 1). There‐
fore, the purpose of the second sequence of experiments was to verify if the behavior of
the new topology was able to achieve similar results to those obtained in the first
sequence of essays, i.e., if the 1D SOM was also able to successfully categorize the
interictal and preictal states of EEG signals in an unsupervised manner. Figure 2 shows
the typical results obtained with 1D SOM and their respective U-matrices.

As shown in Fig. 2, 1D configurations of SOM were able to categorize the EEG
signals that had been presented. In those examples, it is possible to note that the 1D
SOMs identified two clusters, similarly to what had been observed in the 2D configu‐
rations: lighter neurons indicate the interictal states and darker ones, the preictal states
(according to the grayscale depicted in Fig. 1). In the 1D U-matrices illustrated in the
Fig. 2, it is possible to note that the two classes are located at opposite positions in the
network. In both sequences of essays (1D and 2D SOMs), the training parameters
employed were Euclidean distance; 10,000 epochs; αi = 0.1; αf = 0.01; σi = 8; and σf =
1.1. 2D SOMs training took approximately 207 s on an Intel Processor Dual Core
i5-7200U, 3.1 GHZ, 8 GB DDR RAM, 3 MB cache, GNU/Linux operating system,
Ubuntu 16.04 LTS distribution. In the same system, training 1D architectures took
approximately 74 s. Besides the learning phase, decrease in processing time is also
important during the inference phase. Section 3 describes the inference time results
compared to the time periods of the EEG analyzed.

2.4 Classification and Evaluation

Subsections 2.2 and 2.3 presented EEG window segmentation, feature extraction and
the proposed SOM model to categorize each of these windows. This subsection describes
the proposal to differentiate the preictal state from the interictal state so that the seizure
prediction can be performed. Moreover, this subsection presents the methods used for
evaluating the quality of the prediction method results.

Figure 3 depicts the categorization method. As described in Subsect. 2.2, the 23-
channel EEG signals are segmented in non-overlapping 4-s windows (Fig. 1). Then, the
zero-crossings count of the DWT is computed for each one of the channels, building a
vector (d1, d2, …, d23) and a previously trained SOM is used to cluster the vectors. The
category of each window is thus indicated by the neuron that is activated at the output
of the network. Finally, the assignment of a predicted state (interictal or preictal) is
performed by counting the results in a series of windows. Hence, each sequence of SOM
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outputs is submitted to a polling-based decision process. In Fig. 3, the SOM neurons are
identified by numbers, with neurons ranging from 0 to 4 indicating preictal states
whereas neurons ranging from 5 to 9 indicate interictal states. A sequence of seven
activated neurons is also represented in the figure: 9-8-8-6-2-2-5. For illustration
purpose, assuming that a series of 3 windows is grouped in one polling, the sequence
9-8-8 results in the classification of the current state as interictal (I). In another example,
the poll groups the sequence 2-2-5, which results in the classification of the state as
preictal (P). The next section discusses seizure prediction for nine patients from the
CHB-MIT dataset and the influence on the results of the number of windows in each
series.

Fig. 3. Sequences of EEG data classified and evaluated by the proposed polling method.

3 Results and Discussion

To discuss the obtained results, three performance metrics are employed here: sensi‐
tivity, specificity and accuracy. These metrics are often used to evaluate seizure predic‐
tion methods [2, 4, 6, 11, 13].

The amount of data used for training was the same for all patients (20 min). For the
inference, the selected time was longer due to the adopted criteria and available data, as
explained in Subsect. 2.1. Table 1 shows the test time selected for each patient.

Table 1. Amount of data test time for the patients.

Patient chb01 chb03 chb05 chb06 chb08 chb10 chb11 chb20 chb20 Total
Data
test
(min)

110 212 100 150 229 279 66 166 342 1654

The experiments involved a total of 59 seizures and 24810 EEG windows were indi‐
vidually classified. For each of the patients, the sensitivity, specificity and accuracy were
calculated with nine different numbers of windows grouped in a poll: 1, 5, 15, 45, 90,
135, 180, 225 and 270. Figure 4 shows the average over all patients for sensitivity
(circles), specificity (squares) and accuracy (triangles) of the obtained results. These
values and the corresponding standard deviations are presented in Table 2.
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Fig. 4. Average values for sensitivity, specificity and accuracy.

Table 2. Averages (μ) and standard deviations (σ) for the accuracy, sensitivity and specificity
for different numbers of windows in each poll.

1 5 15 45 90 135 180 225 270
Accuracy μ 85.95% 86.01% 86.85% 87.31% 87.67% 88.56% 88.93% 90.60% 91.10%

σ 11.92% 12.71% 13.07% 14.20% 14.89% 14.92% 15.44% 15.69% 15.32%
Sensitivity μ 87.29% 87.86% 88.95% 89.62% 90.12% 92.14% 93.36% 97.41% 98.09%

σ 14.02% 14.22% 13.67% 13.18% 14.44% 12.44% 11.53% 6.65% 5.72%
Specificity μ 85.58% 85.98% 86.65% 86.98% 87.38% 87.51% 87.18% 87.41% 87.99%

σ 17.32% 17.72% 18.15% 19.11% 20.43% 20.97% 21.69% 21.44% 20.57%

According to Fig. 4, sensitivity is the metric that mostly increases with the number
of the windows in a polling sequence, varying from 87% to 98%. In [4, 6, 13], the
sensitivity values reported are 93%, 96% and 97.5%, respectively. The best value
achieved in the present work is higher than those in related works, although no dimen‐
sionality reduction technique is applied here. This means that the evaluation by polling
seems to be a reasonable tool for seizure prediction. On the other hand, specificity is
less sensitive to the increase of the number of windows in a sequence (about 3% higher).
This value is related to the false positives. In [4] and [11], the specificity value achieved
90% and both works has used dimensionality reduction techniques, which suggests that
specificity improvement may be related to dimensionality reduction. Finally, accuracy
varied from 86% to 91% while in [4] and [6], it has reached 94%. In [17], SOM was used
to distinguish preictal from interictal data, achieving 89.68% of accuracy. As the accu‐
racy can be improved through the specificity optimization, thus reducing the data
dimensionality can also improve the accuracy of the method. This means that the results
can be even better after a preprocessing for data dimensionality reduction.

In summary, increasing the number of windows improves the performance of the
classifier. Moreover, this does not significantly affect the processing time to infer a result.
This is because the system waits for the total number of windows only at the initializa‐
tion. From then on, the inference happens with each new window received, that is, every
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4 s. This new window simply replaces the oldest window in the sequence, and then a
new polling is performed with the remaining windows.

It takes 0.912 s to process and infer a window of 4 s and a SOM inference takes 3 ms.
These times were measured in a notebook, where other background tasks were being
executed concurrently. Towards real-time hardware application, the time spent can be
reduced by using a dedicated chip (ASIC or FPGA). Techniques for dimensionality
reduction may also diminish the processing time further and improve the results, as
already discussed. Moreover, reducing the number of data acquisition channels helps
decreasing the computational costs, besides taking into account that a 23-channel device
may be uncomfortable for a day by day wearable application.

4 Conclusion

In this paper, a patient-specific seizure prediction method was proposed involving first
level of discrete wavelet transform, zero-crossings of the detail coefficients, SOM unsu‐
pervised learning algorithm and a polling-based decision process to estimate the patient
state as preictal or interictal. By increasing the number of windows in the polling process,
improvements have been achieved in terms of accuracy, specificity and sensitivity, up
to 91%, 88% and 98%, respectively. These values are close to the best results found in
related works. The main contributions of this work are the short EEG time employed in
the training phase and also the low processing time, even without using any technique
of dimensionality reduction. Such characteristics are relevant for future real time hard‐
ware applications. Following this work, different techniques for feature selection and
data dimensionality reduction will be explored, in order to adapt a real-time monitoring
system to continuous learning scenarios in which the EEG data may suffer from drift
effects.
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Abstract. Classification of bone tumor plays an important role in treatment. As
artificial diagnosis is in low efficiency, an automatic classification system can help
doctors analyze medical images better. However, most existing methods cannot
reach high classification accuracy on clinical images because of the high simi‐
larity between images. In this paper, we propose a super label guided convolu‐
tional neural network (SG-CNN) to classify CT images of bone tumor. Images
with two hierarchical labels would be fed into the network, and learned by its two
sub-networks, whose tasks are learning the whole image and focusing on lesion
area to learn more details respectively. To further improve classification accuracy,
we also propose a multi-channel enhancement (ME) strategy for image prepro‐
cessing. Owing to the lack of suitable public dataset, we introduce a CT image
dataset of bone tumor. Experimental results on this dataset show our SG-CNN
and ME strategy improve the classification accuracy obviously.

Keywords: Bone tumor classification
Super label guided convolutional neural network · Multi-channel enhancement

1 Introduction

Bone tumors are tumors that occur in bones or their affiliated tissues. The incidence of
bone tumors among all tumors is 2%–3% and rising in recent years [1]. In practice, bone
tumor is not easy to detect accurately in the early time, and it is difficult to cure
completely in the later stage, often treated with extremely surgical methods such as
resection. During diagnosis, to accurately diagnose doctors often use multiple methods
like imaging, observing the clinical manifestations. And CT images have been proved
to be an effective imaging method [2]. To diagnose more efficiently, the introduction of
effective computer-aided CT image diagnosis system is very meaningful.
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However, classification of bone tumor using CT images is a challenging task. We
first try SVM [3] algorithm, but it does not work well. In recent years, deep learning
algorithms develop fast, and have been shown to exceed human performance in visual
tasks. Deep convolutional neural networks (CNNs) show a great advantage in image
classification. Many works tend to introduce deep learning methods to the field of medi‐
cine image analysis. For example, Andre Esteva et al. [4] use GoogleNet to categorize
skin cancer images and reach dermatologist-level classification accuracy. Wang et al.
[5] evaluate four classic CNN architectures, AlexNet [6], VGGNet [7], GoogLeNet [8],
ResNet [9], on the classification of thorax diseases. Also [10–13] prove CNNs have the
potential in processing clinical images. However, CNNs may perform worse on medical
images compared with on natural images. For example, when to categorize skin cancer
images with GoogleNet the classification accuracy is only 55% on nine-class disease
partition [4] while the top-1 error rate of VGG-16 (VGG-16 has similar performance
with GoogleNet, but there is only top-5 error rate of GoogleNet in [9]) is 28% on
ImageNet [14] in which has 1000-class images [9].

In this paper, we apply CNNs to classification of bone tumor on CT images. To the
best of our knowledge, there is no suitable public datasets. The first step is to make a
CT image dataset of bone tumor. The dataset that we make contains 9 kinds of CT images
of bone tumor, and every image in this dataset has a super label and a fine-grained label.
Later we train CNNs with our dataset, experiments are executed on AlexNet and
VGG-13 network respectively to verify the performance on classic networks. But the
results do not perform well enough.

To improve classification accuracy, we propose a super label guided convolutional
neural network (SG-CNN) to classify bone tumor images. The network architecture can
be seen as a fine-grained image classification network with two branches. We use images
and their two hierarchical labels to feed the network without image annotations, then
network can automatically crop the image under the guide of super label sub-network
and generate a new image which is a copy of the lesion area. After this step, background
area in global image is largely cut, which makes the network more focused on lesion
area. The experimental results show the classification accuracy is greatly improved by
SG-CNN compared with genetic CNNs. To further improve the classification accuracy
we also introduce a multi-channel enhancement (ME) strategy to preprocess the CT
images of bone tumor. We utilize two morphological methods to preprocess the input
image to enhance the contrast of the edges of the lesion in the image, and then we merge
the original image and the processed images together into a three channel image. The
experimental results show this strategy also improve the classification accuracy.

2 The Proposed Method

2.1 SG-CNN

There are many classic CNN models to choose for categorization tasks such as AlexNet,
VGGNet. These networks show good performance on natural images classification like
ImageNet. In natural images, the objects are usually in center position, and the difference
between objects is obvious. But when it comes to fine-grained visual classification tasks
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like medical images categorization, classic CNNs cannot reach a high level of classifi‐
cation accuracy. To solve the fine-grained classification problems, scholars usually
introduce new CNN structures. For example, Wei et al. [15] propose a novel end-to-end
Mask-CNN model based on the part annotations of images. Zhang et al. [16] propose a
part-based R-CNN model for fine-grained categorization. Huang et al. [17] propose an
architecture for fine-grained visual categorization which consists of a fully convolutional
network to locate multiple object parts and a two-stream classification network that
encodes object-level and part-level cues simultaneously based on manually-labeled
strong part annotations. However, all these methods require image annotations which
means these methods can consume too much time on making datasets. To tackle this
issue, we design a new CNN that can generate ROI regions automatically by the network
itself without using image annotations.

Fig. 1. The SG-CNN structure. One raw CT image and its two labels are fed into the network,
without any annotations. The input image will be cropped under the guide of heat map created by
one of the convolution layer and input into the other network branch. The guide layer conv x for
cropping image can be any convolution layer. The output of network includes two predicted labels.

The proposed SG-CNN framework is presented in Fig. 1. It is an end-to-end network,
the input includes CT image with two labels in hierarchical relationship, and the output
contains two predicted labels. When making dataset, some different fine-grained labels
share a same super label. And we use both super label and fine-grained label to train
SG-CNN and gain their classification accuracies. In practice, we focus on classification
accuracy of fine-grained label. The basic network for building sub-networks can be any
CNN model, in this paper we choose AlexNet. For the architecture inside SG-CNN,
basically, it has three components including super label sub-network, fine-grained label
sub-network, and the connection part of them. When we train the network, images are
first fed to the super label sub-network, and then all feather maps of the guide convolution
layer of the sub-network would be summed up together and generate a heat map like
Fig. 2. For CT images, the image background is less complex than natural images, the
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feature points in the heat map are distributed near lesion area. In heat map, the red part
represents hot points whose value is large, the blue represents cold points whose value
is small. We choose the hottest part in the heat map. The center point of hottest part is
determined by formula 1, where k is the radius of the hottest part. For each (2k + 1) ×
(2k + 1) heat map area, we sum up all its values. Then we choose the largest one.

H(x, y) =
∑k

i=−k

∑k

j=−k
X(x − i, y − i) (1)

Fig. 2. Raw input image and heat maps. (a) is one input image. (b) is the heat map generated by
conv1. (c) is the heat map generated by conv2. (d) is the heat map generated by conv3. The images
show that with the network going deeper, heat map contains more abstract and semantic meanings.
(Color figure online)

Next we find the corresponding point in the original image and select a 56 × 56
image whose center is the corresponding point of hottest point. After this selection,
background interference can be greatly reduced. We then send the selected new
image to the fine-grained label sub-network. In fine-grained label sub-network the
fc8 layer is not only connected to the fc7 layer of fine-grained label sub-network, but
also to the fc7 layer of super label sub-network. Also, in SG-CNN some deep
learning techniques like dropout [6] and batch normalization layer [18] are applied
to improve the generalization capability.

The inspiration for designing SG-CNN comes from the thinking form of human
being: start with a rough sketch, and then pay more attention to details, finally do a
comprehensive judgment. In a CT image of bone tumor, the lesion area takes up only a
limited part of the image. After we crop the image, most of background areas can be
removed. In this way the network pays more attention to the lesion area. The location
accuracy of cropped area is determined by super label sub-network. When to extract the
cropped image, we can select any convolutional layer as the guide layer. Finally, the
network output predicted fine-grained label whose classification accuracy is determined
by two network branches simultaneously.

2.2 Multi-channel Enhancement

In this paper, to further improve the classification accuracy of CNNs, we propose an
image preprocessing method to make the lesion area more distinct. We conduct dilation
and erosion operation on images, and combine the processed images and the original
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image together into a three channel image. As in CT images of bone tumor the lesion
area and their surrounding areas are in high contrast, one of the new images can expend
the border area between lesion area and normal area, thus CNNs can more easily locate
the lesion area.

Like in Fig. 3, the lesion area is in black color, dilation operation can expand the
border area and make it more palpable. For images with white lesion area, erosion oper‐
ation will realize the same effect. The complete steps of multi-channel enhancement
strategy are shown in Fig. 3.

Fig. 3. Full steps of multi-channel enhancement. First, on the original 256 × 256 image we
randomly cut a 224 × 224 image, then conduct dilation operation and erosion operation
respectively, after these operations, we merge the processed images and original image into a three
channel image.

3 Experiments

3.1 Dataset

The CT images used in this paper are obtained from Shenzhen No. 2 People’s Hospital.
Data is collected from patients diagnosed with bone tumors from 2014 to 2017. Original
data is stored in DICOM format in which contains image data, patient information and
tags. We extract the image data and resize the image to 256 × 256. In this paper, we use
CT images in 2D form, which means we classify the bone tumor using just one layer
CT image. As CT is a continuous scan, not every image in the sequence can clearly show
the lesion features. The different kind of images are shown in Fig. 4. To address this
issue, we pick images that clearly show the features of the lesion. After all steps above,
we get proper JPG format CT images.
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Fig. 4. (a)–(d) show the lesion features clearly, we select CT images like these, (d)–(f) are in the
same CT sequence, however (e)–(f) show the features of the lesion not clearly as (d), we delete
the two images. In this way, we get 2D CT images with clear lesion areas.

When training CNNs, the uniform distribution of different sorts of images is a crucial
issue. Although bone tumors can occur throughout the body, the incidence between
organs exists a significantly difference. It is not an easy work to collect more bone tumors
CT images to balance the distribution, due, for instance, to the high costs in terms of
money and time required to cooperate with other institutions. In this case, we only choose
CT images of limbs to make the dataset and we finally get 6422 CT slices of bone tumor.
The diagnosis results of each image is confirmed by two or more doctors (including
orthopedic surgeons and imaging doctors) and finalized with clinical manifestations, we
use these diagnosis results as the label of CT images.

In fact, there are over two hundred kinds of bone tumors, however, most of them are
in low incidence. As it is not an easy work to get enough data of all kinds of bone tumors,
thus, in this work, the bone tumors that we analyze contain only 9 class. It is noting that
the similarities among the nine diseases are different. Diseases in high similarity can
have a same super label. We use two super label schemes, one being benign tumor and
malignant tumor, the other being cartilage tumor, osteogenic tumor, and other tumor.
Based on WHO2012, we develop a two-rank classification strategy as shown in Table 1.
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Table 1. The bone tumor classification strategy

Benign tumor Malignant tumor
Cartilage tumor Endogenous

chondroma
Osteochondroma
Synovial chondroma

Chondrosarcoma

Osteogenic tumor Osteoid osteoma
Osteoma

Osteosarcoma

Other tumor Fibrous bone tumor Giant cell tumor of bone

When training, we randomly divide the dataset, 75% images of the dataset are used
for training, and the rest of image are used for test.

3.2 Experiments and Results

In this work, we use Tensorflow 1.0 as our CNN programming framework, run codes
on a desktop PC equipped with a Intel i7-6700 K CPU, a NVIDIA TITAN X(Pascal)
GPU and Ubuntu16.04 operating system.

In experiment, we first try traditional machine learning methods to classify CT
images on our dataset. We use HOG [19] algorithm to extract image features and PCA
[20] to do dimensionality reduction and the output dimensionality is 100, finally use a
SVM classifier with RBF kernel to classify images.

Then we use CNN methods to do experiments. It is well-known that deep CNNs
require a great deal of data for training. A small number of images can lead to over-
training. Before we feed images into the network, we use data augmentation to prepro‐
cess the input images [6]. When it comes to training mode, there are currently three
major techniques that successfully employ CNNs to medical image classification [21]:
(1) training the CNN from scratch; (2) using off-the-shelf CNN features (without
retraining the CNN) as complementary information channels to existing handcrafted
image features; and (3) performing pre-training on natural or medical images and fine-
tuning on medical target images. One key important factor in the choice of training
strategies is the size of the dataset. In this paper, when training SG-CNN, we first use a
pre-trained CNN model to initialize the network.

In practice, we first perform our experiment with AlexNet on our dataset. Next, to
see the performance on deeper classification network, we use VGG-13 network to clas‐
sify the images. Then we do experiment to get the performance on our proposed SG-
CNN. Later we add the multi-channel enhancement method. Moreover, we do experi‐
ments using two series of super labels to test how the selection of super label schemes
affect the classification accuracy. Additionally, we test how the selection of generation
layer of the heat map influence classification accuracy.

We use Top-k error rate to evaluate our strategies. The results are shown in Table 2.
From the table, it is obvious that all deep learning methods perform better than traditional
machine learning method. For classic CNNs, with networks getting deeper, the error
rate declines. But the best top-1 error rate is still 0.44 which is high. Our proposed SG-
CNN significantly outperforms VGG-13 network and AlexNet.
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Table 2. Comparison of five methods

Methods Top-1 error rate (%) Top-2 error rate (%)
HOG+PCA+SVM 76 59
Alexnet 54 43
VGG-13 44 21
SG-CNN 28 5

The comparison of two super label guided strategies is shown in Table 3. From the
table we can see that the top-1 error rate of super label classification has a relative 10%
increase while the top-1 error rate of fine-grained label classification has a relative 3%
reduction and top-2 error rate has a relative 1% reduction, when 2-class super label
strategy is replaced by 3-class super label strategy. We can suppose that the classification
accuracy of fine-grained label is determined by not only classification accuracy of super
label but also the number of super labels. In practice, optimizing only one factor may
not improve the classification accuracy of fine-grained label.

Table 3. Comparison of two super label schemes for SG-CNN

Strategies Top-1 error rate of
super label (%)

Top-1 error rate of
fine-grained label (%)

Top-2 error rate of
fine-grained label (%)

2-class super label 7 28 5
3-class super label 17 25 4

The error rate comparison between different generation layers of heat map is shown
in Table 4. With the network going deeper, the heat map becomes more abstract and
shows less edge information like Fig. 2. From Table 4 we can see conv1 is in high error
rate. The later layers show better performance than conv1. But conv3-5 do not show
obviously better performance than conv2, we assume that the reason is the feather map
size getting smaller as layers going deeper.

Table 4. Comparison of five cropping image generation layers

Selected layers Top-1 error rate (%) Top-2 error rate (%)
Conv1 35 16
Conv2 28 5
Conv3 29 6
Conv4 30 6
Conv5 28 8

Finally, we do experiments to test our ME strategy. From Table 5 we can observe
that with the use of multi-channel enhancement, there are further reductions of top-1
and top-2 error rate on every networks. The results show that our ME strategy is useful
for improving the performance of CNNs.
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Table 5. Performance tests for ME strategy

Methods Top-1 error rate (%) Top-2 error rate (%)
AlexNet 54 43
AlexNet+ME 49 28
VGG-13 44 21
VGG-13+ME 37 13
SG-CNN 28 5
SG-CNN+ME 26 5

4 Conclusion and Future Work

In this paper, we have presented a novel end-to-end fine-grained classification network
named SG-CNN and an image multi-channel enhancement strategy. Moreover, we
produced a bone tumor CT image dataset based on the WHO2012 standard. With our
dataset, we compared experimental performance of SVM, AlexNet, VGG-13 network,
and our SG-CNN. Experimental results show our proposed SG-CNN can significantly
outperform SVM and classic CNNs. Additionally, our multi-channel enhancement
strategy proves that it can achieve higher accuracy. Among all experimental results, the
lowest top-1 error rate is 0.25 and top-2 error rate is 0.04. As future work, we would
focus on obtaining more image data, 3D CNN modeling, and MRI image recognition.
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Abstract. Liver segmentation is a crucial step in computer-assisted diagnosis
and surgical planning of liver diseases. However, it is still a quite challenging
task due to four reasons. First, the grayscale of the liver and its adjacent organ
tissues is similar. Second, partial volume effect makes the liver contour blurred.
Third, most clinical images have serious pathology such as liver tumor. Forth,
each person’s liver shape is discrepant. In this paper, we proposed DSL (de-
tection and segmentation laboratory) method based on Faster R-CNN (faster
regions with CNN features) and DeepLab. The DSL consists of two steps: to
reduce the scope of subsequent liver segmentation, Faster R-CNN is employed
to detect liver area. Next, the detection results are input to DeepLab for seg-
mentation. This work is evaluated on two datasets: 3Dircadb and MICCAI-
Sliver07. Compared with the state-of-the-art automatic methods, our approach
has achieved better performance in terms of VOE, RVD, ASD and total score.

Keywords: Faster R-CNN � DeepLab � Detection � Segmentation

1 Introduction

Liver disease is largely endangering the health of men and women worldwide. As
reported in 2015, the number of people suffering from liver disease worldwide reached
1.3 billion, including about 500 million in Europe and the United States. At present,
non-alcoholic liver disease affects one-third of the world’s adults or about one billion
people [25]. Liver disease is one of the main causes of premature death, so we need
liver surgery to treat patients suffering from liver disease. Liver surgery is one of the
main treatment methods for common liver benign and malignant diseases of the liver.
Liver segmentation is a fundamental and essential step in the diagnosis and surgical
planning of computer assisted liver disease. Manual segmentation is very time con-
suming, boring and poorly reproducible, because of the high similarity between liver
tissue and its adjacent organs, and the difference between livers and the lesion.
Therefore, an automatic liver segmentation method is promising to reduce the burden
of manual segmentation and avoid the subjectivity of the experts.

Medical image segmentation has attached more and more attention in the
enhancement of the accuracy and efficiency of diagnosis and treatment. Automatic liver
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segmentation is a key prerequisite for tasks such as living donor liver transplant, 3D
reconstruction of medical images, 3D positioning in radiotherapy programs, and so on.

In general, there are four reasons why liver segmentation is completely challenging,
as shown in Fig. 1. First, the liver shares the similar intensity with its surrounding
organs, such as heart and stomach. Second, most clinical images have serious
pathology, such as large tumors and cirrhosis of the liver, which should be part of the
liver. But their intensity is significantly different from normal liver. Third, each per-
son’s liver is different in shape. Fourth, partial volume effect makes the liver contour
become blurred. Up to now, many methods have been used for liver segmentation and
reviewed in [2]. However, to the best of our knowledge, the existing methods are
difficult to segment small and contour complex liver.

In this paper, we proposed a fully automatic liver segmentation method using Faster
R-CNN and DeepLab. This work makes three main contributions which are experi-
mentally shown to have substantial practical merit. Firstly, Faster RCNN and DeepLab
are combined for the first time and applied to liver segmentation for achieving good
results. Secondly, we solve the high similarity between liver tissue and its adjacent
organs by detecting liver areas. Thirdly, we can segment small and contour complex
livers, which is not found in the present methods. Our DSL method has achieved a
promising performance on the liver segmentation with respect to VOE, RVD, ASD and
total score.

Fig. 1. Four challenges in liver segmentation.
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2 Related Work

In this section, we will briefly introduce previous work on liver segmentation. Con-
sidering whether human interaction is required, we simply categorize previous work as
interactive segmentation method [6, 21, 22], semi-automatic segmentation method [6,
14, 27], automatic segmentation method [1, 11, 28].

The effect of interactive liver segmentation method is often superior to the effect of
automatic and semi-automatic segmentation method, because it requires complete
control by the researchers. But its interaction is very frequent and the workload is the
largest. Dong et al. [7] raised an interactive liver segmentation method making use of
random walks and narrow band threshold, which used minimal guidance to segment
liver. Semi-automatic segmentation method can better segment the target contours that
meet the willing of the researches, and the stability is stronger. But the workload is
slightly larger. Yang et al. [29] came up with a classic hybrid semi-automatic seg-
mentation method, which consisted of a customized fast-marching level-set method and
a threshold-based level-set method. Liao [18] presented an efficient liver segmentation
method based on graph cut and bottleneck detection using intensity, local context and
spatial correlation of adjacent slices.

Automatic segmentation method mainly includes region growing based methods,
rule based methods, graph cut based methods, statistical shape model based method,
convolution neural network based method and so on. Gambino et al. [9] proposed an
automatic texture based volumetric region growing method. Subsequently, Li et al. [17]
used the graph cut method to effectively integrate the properties and correlations of the
input image and the initialized surface. The effect of graph cut method was very well in
the split larger CT images. To date, deep convolutional neural networks (DCNNs) have
dominated many tasks in computer vision such as classification, detection and seg-
mentation. In recent years, DCNNs [20, 28] has been widely used in liver segmenta-
tion. Lu et al. [20] combined the convolution neural network and graphic cutting
method. Yang et al. [28] put forward an Adversarial Image-to-Image Network to
comply automatic liver segmentation. Although many automatic liver segmentation
methods have been used to segment liver, the metrics have yet to be improved. In this
paper, our work explores a novel DSL method which greatly improves the metrics.

3 Method

3.1 Overview

An overview of the proposed DSL method is described in Fig. 2. Its framework is
based on Faster R-CNN and DeepLab. We divide the procedure into two parts: training
part and testing part. In the training part, we firstly need to manually annotate the
proposed CT volume image using bounding box, which accurately marks the position
of the liver. Then the Faster R-CNN is trained making use of annotated image of the
training data. Meanwhile, DeepLab is trained using the data that the pixel value beyond
the bounding box of the annotated image is set as zero. In the testing part, the testing
images are input into the trained Faster R-CNN to get the detection results. Then the set
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images, in which the pixel value outside the bounding box of the detection results is set
as zero, are input into the trained DeepLab to obtain the liver segmentation results.

3.2 Liver Detection Based on Faster R-CNN

Faster R-CNN [23] is proposed to reduce the computational burden of proposal gen-
eration. Faster R-CNN is improved by Fast R-CNN [10], which is developed from
R-CNN. Faster R-CNN has evolved into a powerful framework for computer vision.

Faster R-CNN has the state-of-the-art performance in terms of accuracy in image
detection. The procedure of liver detection using Faster R-CNN is introduced in Fig. 3.
First of all, we input test CT volume images. Then to extract features, the entire image
is entered into CNN. VGG 16, which has a more accurate valuation of the image and
space saving, is adopted as the fundamental network. Thirdly, we use region proposal
network (RPN) to generate three hundred region proposals for each liver image. Each
region proposal has several anchors. Fourthly, region proposals are mapped to the last
layer of convolution feature map on CNN. Fifthly, each region of interest (ROI) en-
genders a fixed size of feature map through the ROI pooling layer. Finally, classifi-
cation probability and bounding box regression are jointly trained by softmax loss and
smooth L1 loss. The Faster R-CNN loss function is

Fig. 2. Overview of the proposed framework.

Fig. 3. The procedure of detecting liver using Faster R-CNN.
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where i is index of an anchor and pi denotes the probability that anchor predicts the
liver. p�i is the ground truth label, where the label value is 0 or 1. ti is a vector that
indicates the four parameterized coordinates of the predicted bounding box, and t�i is
the coordinate vector of the ground truth of the bounding box corresponding to the
positive anchor. The classification loss Lcls pi; p�i

� �
is log loss on two classes (liver vs.

not liver). The classification loss is computed using Eq. 2.
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where R represents smooth L1 function. pif g and tif g form the output of the classi-
fication layer and the regression layer. In this paper, we take advantage of Faster R-
CNN to detect liver, getting good performance, as shown in Fig. 4.

3.3 Liver Segmentation Based on DeepLab

In this section, we will address the key aspects of DeepLab V2, which is developed by
DeepLab V1 [3]. More detail technical acknowledge can be referred to the original
paper [4].

To deal with reduced feature resolution, atrous convolution is introduced in the
DeepLab V2. Atrous convolution has many advantages: atrous convolution magically
recover full resolution feature maps, which are reduced by the repeated combination of
max pooling and downsampling. Atrous convolution also can effectively enlarge the
field of view of filters without increasing the number of parameters, which is employed
in subsequent convolution layers. Using the atrous convolution with rate = k can get

Fig. 4. Detection results by fast R-CNN.
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the output feature map which increases k − 1 times than traditional convolution.
However, the use of atrous convolution method has some shortcomings. For example,
its computational cost is relatively high, and the need to deal with a large number of
high-resolution feature map will consume a lot of memory resource. Therefore, Dee-
pLab V2 takes a compromise approach that some feature maps use the bilinear
interpolation method, and the others use the atrous convolution method.

Taking into account the different scales of information, the most direct method is to
input into the DCNN rescaled versions of the same image, and then these CNN feature
maps are combined to generate the final results. It proved to be a good performance, but
operation is too cumbersome and too time consuming.

Thus, DeepLab V2 uses atrous spatial pyramid pooling (ASPP), which can di-
ametrically extract the multi-scale information on the basis of the input of the original
image. ASPP is that we use multiple parallel atrous convolutional layers with different
sampling rates. The features extracted for each sampling rate are further processed in
separate branches and merged to produce the final results.

4 Experiment and Analysis

Faster R-CNN training is divided into four stages: training region proposal network
(RPN), VGG-16, RPN and VGG-16. The learning rate of each stage is set as 0.001. We
run the stochastic gradient descent (SGD) solver for 70000 in the training stage of RPN
and 50000 in the training stage of VGG-16. We finetune the model weight of DeepLab
composed of VGG-16, atrous convolution and fully connected CRF, to adapt them to
the segmentation task, following the procedure of [4]. We replace the 1000-way
ImageNet classifier in the VGG-16 last layer with a two-class (including the back-
ground and liver) classifier and run the SGD solver for 100000 iterations with a base of
learning rate of 0.001.

We evaluate the proposed method on the 3Dircadb data set and MICCAISliver07
data set, which are well-known challenge datasets. We first report the main results on
MICCAI-Sliver07, and immediately introduce the results of 3Dircadb.

4.1 MICCAI-Sliver07

Five metrics are calculated as in [13], Volumetric Overlap Error (VOE), Relative
Volume Difference (RVD), Average Symmetric Surface Distance (ASD), Root Mean
Square Symmetric Surface Distance (RMSD) and Maximum Symmetric Surface Dis-
tance (MSD). The score of VOE, RVD, ASD, RMSD, MSD are 80.2%, 94.1%, 80.5%,

76.4%, 71.9%, respectively. The metric comparison of the proposed methods and
the other eight fully automatic liver segmentation methods [1, 12, 15, 17, 19, 20, 24,
26] based on MICCAI-Sliver07 test set, is shown in Table 1. It is obvious that the
proposed method is better than DeepLab. Figure 5 presents the segmentation results of
the proposed method and DeepLab. As can be seen, small and complex liver can be
successfully segmented. Meanwhile, we also can observe that our proposed method
performs very well. It achieves 80.6 total score, surpassing all the compared methods.
The reasons why the proposed method has achieved much better performance are these:
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first, Faster R-CNN detects the liver area, which reduces the scope of follow-up liver
segmentation and avoids the challenge that the grayscale of the liver and its adjacent
organ tissues is similar. Second, because DeepLab is a method of semantic

Table 1. Compared with other state-of-the-art methods on MICCAI-Sliver07 test set

Method VOE
(%)

Score- RVD
(%)

Score
-

ASD
(mm)

Score
-

RMSD
(mm)

Score
-

MSD
(mm)

Score
-

Total
score

Li et al. [17] 6.24 – 1.18 – 1.03 – 2.11 – 18.82 – –

Shaikhli
et al. [1]

6.44 74.9 1.53 89.7 0.95 76.3 1.58 78.1 15.92 79.1 79.6

Kainmüller
et al. [15]

6.09 76.2 −2.86 84.7 0.95 76.3 1.87 74 18.69 75.4 77.3

Wimmer
et al. [26]

6.47 74.7 1.04 86.4 1.02 74.5 2 72.3 18.32 75.9 76.8

Linguraru
et al. [19]

6.37 75.1 2.26 85 1 74.9 1.92 73.4 20.75 72.7 76.2

Heimann
et al. [12]

7.73 69.8 1.66 87.9 1.39 65.2 3.25 54.9 30.07 60.4 67.6

Kinda et al.
[24]

8.91 65.2 1.21 80 1.52 61.9 3.47 51.8 29.27 61.5 64.1

Fang et al.
[20]

5.9 77 2.7 85.6 0.91 77.3 1.88 73.8 18.94 75.1 77.8

Only
DeepLab

6.38 75.1 2.14 87.1 1.05 73.8 2.24 68.9 24.04 68.4 74.7

The
proposed

5.06 80.2 -0.09 94.1 0.78 80.5 1.7 76.4 23.42 71.9 80.6

Fig. 5. Example of liver segmentation results with the ground truth in green. The result by the
proposed method is in red and the result by the only DeepLab is in blue. (Color figure online)
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segmentation, there are serious pathologies in the pathological images that will not
affect the results. Third, fully connected CRF can segment the contours of liver, which
can address the challenge that partial volume effect makes the liver contour blurred. All
in all, the proposed method outperforms the others, especially its VOE, RVD and ASD
obtained the highest score.

4.2 3Dircadb

Table 2 displays the result of other state-of-the-art automatic segmentation methods
[5, 8, 16, 17, 20] with our work on 3Dircadb data set. It can be seen that our explored
method achieves much better performance than all the compared methods in terms of
the measure of VOE, RVD and ASD. For the RMSD and MSD metric, the results of
Chuang’s method and Erdt’s method show slightly better performance than ours. The
segmentation result is shown in Fig. 6. We can observe that small and contour complex
liver can be accurately segmented and the effect of our proposed method is better than

Table 2. Compared with other state-of-the-art methods on 3Dircadb data set.

3Dircadb VOE [%] RVD [%] ASD [mm] RMSD [mm] MSD [mm]

Chuang et al. [5] 12.99 ± 5.04 −5.66 ± 5.59 2.24 ± 1.08 – 25.74 ± 8.85
Kirscher et al. [16] – −3.62 ± 5.50 1.94 ± 1.10 4.47 ± 3.30 34.60 ± 17.70
Li et al. [17] 9.15 ± 1.44 −0.07 ± 3.64 1.55 ± 0.39 3.15 ± 0.98 28.22 ± 8.31
Erdt et al. [8] 10.34 ± 3.11 1.55 ± 6.49 1.74 ± 0.59 3.51 ± 1.16 26.83 ± 8.87
Lu et al. [20] 9.36 ± 3.34 0.97 ± 3.26 1.89 ± 1.08 4.15 ± 3.16 33.14 ± 16.36
The proposed 8.67 ± 0.815 0.57 ± 2.53 1.37 ± 0.41 4.15 ± 3.16 27.01 ± 7.28

Fig. 6. Example of liver segmentation results with the ground truth in green. The result by the
proposed method is in red and the result by the only DeepLab is in blue. (Color figure online)
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DeepLab’s, because we first use the Faster R-CNN to detect the liver area and then use
DeepLab to segment. Overall, our proposed method achieves much better performance
than the other compared methods.

5 Conclusion

In this paper, we proposed DSL method for automatic liver segmentation in abdominal
CT images. Specifically, to handle the high similarity between liver and its adjacent
tissues, Faster R-CNN is used to detect liver region. The detection results are input to
DeepLab for segmenting liver. The main advantage of our approach is that small and
contour complex liver can be accurately segmented. Besides, Faster R-CNN and
DeepLab are combined for the first time and applied to a new scene, where no manual
feature extraction or user interaction is required during the training and testing
procedure.

Experimental results prove the efficiency of our method. Compared with the state-
of-the-art automatic liver segmentation methods, our proposed method is ranked in the
front according to the total score. Especially, the VOE, RVD and ASD metrics are
much higher than the other compared method’s. We plan to study new liver seg-
mentation algorithm to boost our model’s ability in future work.
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Abstract. The automatic analysis of ultrasound sequences can substan-
tially improve the efficiency of clinical diagnosis. In this work we present
our attempt to automate the challenging task of measuring the vascu-
lar diameter of the fetal abdominal aorta from ultrasound images. We
propose a neural network architecture consisting of three blocks: a con-
volutional layer for the extraction of imaging features, a Convolution
Gated Recurrent Unit (C-GRU) for enforcing the temporal coherence
across video frames and exploiting the temporal redundancy of a signal,
and a regularized loss function, called CyclicLoss, to impose our prior
knowledge about the periodicity of the observed signal. We present exper-
imental evidence suggesting that the proposed architecture can reach an
accuracy substantially superior to previously proposed methods, pro-
viding an average reduction of the mean squared error from 0.31 mm2

(state-of-art) to 0.09 mm2, and a relative error reduction from 8.1% to
5.3%. The mean execution speed of the proposed approach of 289 frames
per second makes it suitable for real time clinical use.

Keywords: Cardiac imaging · Diameter · Ultrasound
Convolutional networks · Fetal imaging · GRU · CyclicLoss

1 Introduction

Fetal ultrasound (US) imaging plays a fundamental role in the monitoring
of fetal growth during pregnancy and in the measurement of the fetus well-
being. Growth monitoring is becoming increasingly important since there is an
c© Springer Nature Switzerland AG 2018
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epidemiological evidence that abnormal birth weight is associated with an
increased predisposition to diseases related to cardiovascular risk (such as dia-
betes, obesity, hypertension) in young and adults [1].

Among the possible biomarkers of adverse cardiovascular remodelling in
fetuses and newborns, the most promising ones are the Intima-Media Thick-
ness (IMT) and the stiffness of the abdominal aorta by means of ultrasound
examination. Obtaining reliable measurements is critically based on the accu-
rate estimation of the diameter of the aorta over time. However, the poor signal
to noise ratio of US data and the fetal movement makes the acquisition of a
clear and stable US video challenging. Moreover, the measurements rely either
on visual assessment at bed-side during patient examination, or on tedious, error-
prone and operator-dependent review of the data and manual tracing at later
time. Very few attempts towards automated assessment have been presented
[2,3], all of which have computational requirements that prevent them to be
used in real-time. As such, they have reduced appeal for the clinical use. In this
paper we describe a method for automated measurement of the abdominal aortic
diameter directly from fetal US videos. We propose a neural network architecture
that is able to process US videos in real-time and leverage both the temporal
redundancy of US videos and the quasi-periodicity of the aorta diameter.

The main contributions of the proposed method are as follows. First we show
that a shallow CNN is able to learn imaging features and outperforms classical
methods as level-set for fetal abdominal aorta diameter prediction. Second we
add to the CNN a Convolution Gated Recurrent Unit (C-GRU) [15] for exploiting
the temporal redundancy of the features extracted by CNN from the US video
sequence. Finally, we add a new penalty term to the loss function used to train
the CNN to exploit periodic variations.

2 Related Work

The interest for measuring the diameter and intima-media thickness (IMT) of
major vessels has stemmed from its importance as biomarker of hypertension
damage and atherosclerosis in adults. Typically, the IMT is assessed on the
carotid artery by identifying its lumen and the different layers of its wall on
high resolution US images. The improvements provided by the design of semi-
automatic and automatic methods based mainly on the image intensity profile,
distribution and gradients analysis, and more recently on active contours. For
a comprehensive review of these classical methods we refer the reader to [4]
and [5]. In the prenatal setting, the lower image quality, due to the need of
imaging deeper in the mother’s womb and by the movement of the fetus, makes
the measurement of the IMT biomarker, although measured on the abdominal
aorta, challenging.

Methods that proved successful for adult carotid image analysis do not per-
form well on such data, for which only a handful of methods (semi-automatic or
automatic) have been proposed, making use of classical tracing methods and mix-
ture of Gaussian modelling of blood-lumen and media-adventitia interfaces [2],
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or on level sets segmentation with additional regularizing terms linked to the
specific task [3]. However, their sensitivity to the image quality and lengthy
computation prevented an easy use in the clinical routine.

Deep learning approaches have outperformed classical methods in many med-
ical tasks [8]. The first attempt in using a CNN, for the measurement of carotid
IMT has been made only recently [9]. In this work, two separate CNNs are used
to localize a region of interest and then segment it to obtain the lumen-intima
and media-adventitia regions. Further classical post-processing steps are then
used to extract the boundaries from the CNN based segmentation. The method
assumes the presence of strong and stable gradients across the vessel walls, and
extract from the US sequence only the frames related to the same cardiac phase,
obtained by a concomitant ECG signal.

However, the exploitation of temporal redundancy on US sequences was
shown to be a solution for improving overall detection results of the fetal heart
[11], where the use of a CNN coupled with a recurrent neural network (RNN) is
strategic. Other works, propose similar approach in order to detect the presence
of standard planes from prenatal US data using CNN with Long-Short Term
Memory (LSTM) [10].

3 Datasets

This study makes use of a dataset consisting of 25 ultrasound video sequences
acquired during routine third-trimester pregnancy check-up at the Department of
Woman and Child Health of the University Hospital of Padova (Italy). The local
ethical committee approved the study and all patients gave written informed
consent.

Fetal US data were acquired using a US machine (Voluson E8, GE) equipped
with a 5 MHz linear array transducer, according to the guidelines in [6,7], using
a 70◦ FOV, image dimension 720× 960 pixels, a variable resolution between 0.03
and 0.1 mm and a mean frame rate of 47 fps. Gain settings were tuned to enhance
the visual quality and contrast during the examination. The length of the video
is between 2 s and 15 s, ensuring that at least one full cardiac cycle is imaged.

After the examination, the video of each patient was reviewed and a rele-
vant video segment was selected for semi-automatic annotation considering its
visual quality and length: all frames of the segment were processed with the
algorithm described in [2] and then the diameters of all frames in the segments
were manually reviewed and corrected. The length of the selected segments var-
ied between 21 frames 0.5 s and 126 frames 2.5 s. The 25 annotated segments
in the dataset were then randomly divided into training (60% of the segments),
validation (20%) and testing (20%) sets. In order to keep the computational
and memory requirements low, each frame was cropped to have a square aspect
ratio and then resized to 128×128 pixels. The data supporting this research are
[openly available].

https://figshare.com/s/47e9155d4a1dfb9b9be9
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4 Network Architecture

Our output is the predicted value ŷ[t] of the diameter of the abdominal aorta at
each time point. Our proposed deep learning solution consists of three main com-
ponents (see Fig. 1): a Convolutional Neural Network (CNN) that captures the
salient characteristics from ultrasound input images; a Convolution Gated Recur-
rent Unit (C-GRU) [15] exploits the temporal coherence through the sequence;
and a regularized loss function, called CyclicLoss, that exploits the redundancy
between adjacent cardiac cycles.

Our input consists of a set of sequences whereby each sequence S =
[s[1], ..., s[K]] has dimension N ×M pixels at time t, with t ∈ {1, . . . , K}. At each
time point t, the CNN extracts the feature maps x[t] of dimensions D×Nx×Mx,
where D is the number of maps, and Nx and Mx are their in-plane pixel dimen-
sions, that depend on the extent of dimensionality reduction obtained by the
CNN through its pooling operators.

The feature maps are then processed by a C-GRU layer [15]. The C-GRU
combines the current feature maps x[t] with an encoded representation h[t − 1]
of the feature maps {x[1], . . . , x[t − 1]} extracted at previous time points of the
sequence to obtain an updated encoded representation h[t], the current state,
at time t: this allows to exploit the temporal coherence in the data. The h[t]
of the C-GRU layer is obtained by two specific gates designed to control the
information inside the unit: a reset gate, r[t], and an update gate, z[t], defined
as follows:

r[t] = σ(Whr ∗ h[t − 1] + Wxr ∗ x[t] + br) (1)

z[t] = σ(Whz ∗ h[t − 1] + Wxz ∗ x[t] + bz) (2)

Where, σ() is the sigmoid function, W· are recurrent weights matrices whose
first subscript letter refers to the input of the convolution operator (either the
feature maps x[t] or the state h[t − 1]), and whose second subscript letter refers
to the gate (reset r or update z). All this matrices, have a dimension of D×3×3
and b· is a bias vector. In this notation, ∗ defines the convolution operation. The
current state is then obtained as:

h[t] = (1 − z[t]) � h[t − 1] + z[t] � tanh(Wh ∗ (r[t] � ht−1) + Wx ∗ x[t] + b). (3)

Where � denotes the dot product and Wh and Wx are recurrent weight
matrices for h[t−1] and x[t], used to balance the new information represented by
the feature maps x[t] derived by the current input data s[t] with the information
obtained observing previous data s[1], . . . , s[t − 1]. On the one hand, h[t] is then
passed on for updating the state h[t+1] at the next time point, and on the other
is flatten and fed into the last part of the network, built by Fully Connected (FC)
layers progressively reducing the input vector to a scalar output that represent
the current diameter estimate ŷ[t].
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Fig. 1. The deep-learning architecture proposed for abdominal diameter aorta pre-
diction. The blue blocks represent the features extraction through a CNN (AlexNet)
which takes in input a US sequence S, and provides for each frame s[t] a features map
x[t] that is passed to Convolution Gated Recurrent Units (C-GRU) (yellow circle) that
encodes and combines the information from different time points to exploit the tem-
poral coherence. The fully connected block (FC, in green), takes as input the current
encoded state h[t] as features to estimate the aorta diameter ŷ[t]. (Color figure online)

4.1 CyclicLoss

Under the assumption that the pulsatility of the aorta follows a periodic pattern
with the cardiac cycle, the diameter of the vessel at corresponding instants of the
cardiac cycle should ideally be equal. Assuming a known cardiac period Tperiod,
we propose to add a regularization term to the loss function used to train the
network as to penalize large differences of the diameter values that are estimated
at time points that are one cardiac period apart.

We call this regularization term CyclicLoss (CL), computed as L2 norm
between pairs of predictions at the same point of the heart cycle and from
adjacent cycles:

CL =

√
√
√
√

Ncycles∑

n=1

Tperiod∑

t=0

‖ ŷ[t + (n − 1)Tperiod] − ŷ[t + nTperiod] ‖2 (4)

The Tperiod is the period of the cardiac cycle, while Ncycles is the number
of integer cycles present in the sequence and ŷ[t] is the estimated diameter at
time t. Notably, the Tperiod is determined through a peak detection algorithm
on y[t], and the average of all peak-to-peak detection distances define its value.
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While the Ncycles is the number of cycles present, calculated as the total length
of the y[t] signal divided by Tperiod.

The loss to be minimized is therefore a combination of the classical mean
squared error (MSE) with the CL, and the balance between the two is controlled
by a constant λ:

Loss = MSE + λ · CL =
1
K

K∑

t=1

(y[t] − ŷ[t])2 + λ · CL (5)

where y[t] is the target diameter at time point t. It is worth noting that the
knowledge of the period of the cardiac cycle is needed only during training
phase. Whereas, during the test phase, on unknown image sequence, the trained
network provide its estimate blind of the periodicity of the specific sequence
under analysis.

Fig. 2. Each panel (a–c) shows the estimation of the aortic diameter at each frame
of fetal ultrasound videos in the test set, using the level set method (dashed purple
line), the naive architecture using AlexNet (dashed orange line), the AlexNet+C-GRU
(dashed red line), and AlexNet+C-GRU trained with the CyclicLoss (dashed blue line).
The ground truth (solid black line) is reported for comparison. Panels (a, c) show the
results on long sequences where more than 3 cardiac cycles are imaged, whereas panels
(b, d) show the results on short sequences where only 1 or two cycles are available.
(Color figure online)
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4.2 Implementation Details

For our experiments, we chose AlexNet [12] as a feature extractor for its simplic-
ity. It has five hidden layers with 11×11 kernels size in the first layer, 5×5 in the
second and 3 × 3 in the last three layers; it is well suited to the low image con-
trast and diffuse edges characteristic of US sequences. Each network input for the
training is a sequence of K = 125 ultrasound frames with N = M = 128 pixels,
AlexNet provides feature maps of dimension D×N ×M = 256×13×13, and the
final output ŷ[t] is the estimate abdominal aorta diameter value at each frame.

The loss function is optimised with the Adam algorithm [16] that is a first-
order gradient-based technique. The learning rate used is 1e−4 with 2125 iter-
ations (calculated as number of patients × number of ultrasound sequences)
for 100 epochs. In order to improve generalization, data augmentation of the
input with a vertical and horizontal random flip is used at each iteration. The
λ constant used during training with CyclicLoss takes the value of 1e−6.

5 Experiments

The proposed architecture is compared with the currently adopted approach in
Sect. 4. This method provides fully-automated measurements in lumen identifi-
cation on prenatal US images of the abdominal aorta [3] based on edge-based
level set. In order to understand the behaviour of different features extraction
methods, we have also explored the performance of new deeper network archi-
tectures whereby AlexNet was replaced it by InceptionV4 [13] and DenseNets
121 [14].

Table 1. The table show the mean (standard deviation) of MSE and RE error for all
the comparison models. The combination of C-GRU and the CyclicLoss with AlexNet
yields the best performance. Adding recurrent units to any CNN architecture improves
its performance; however deeper networks as InceptionV4 and DenseNets do not show
any particular benefits with respect to the simpler AlexNet. Notably, we also consider
the p-value for multiple models comparison with the propose network AlexNet+C-
GRU+CL, in this case the significant level should be 0.05/7 using the Bonferroni
correction [17].

Methods MSE [mm2] RE [%] p-value

AlexNet 0.29(0.09) 8.67(10) 1.01e−12

AlexNet+C-GRU 0.093(0.191) 6.11(5.22) 1.21e−05

AlexNet+C-GRU+CL 0.085(0.17) 5.23(4.91) “-”

DenseNet121 0.31(0.56) 9.55(8.52) 6.00e−13

DenseNet121+C-GRU 0.13(0.21) 7.72(5.46) 7.78e−12

InceptionV4 6.81(14) 50.4(39.5) 6.81e−12

InceptionV4+C-GRU 0.76(1.08) 16.3(9.83) 2.89e−48

Level-set 0.31(0.80) 8.13(9.39) 1.9e−04
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The performance of each method was evaluated both with respect to the
mean squared error (MSE) and to the mean absolute relative error (RE); all
values are reported in Table 1 in terms of average and standard deviation across
the test set.

In order to provide a visual assessment of the performance, representative
estimations on four sequences of the test set are shown in Fig. 2. The naive
architecture relying on a standard loss and its C-GRU version are incapable to
capture the periodicity of the diameter estimation. The problem is mitigated by
adding the CyclicLoss regularization on MSE. This is quantitatively shown in
Table 1, where the use of this loss further decreases the MSE from 0.093mm2 to
0.085mm2, and the relative error of from 6.11% to 5.23%.

Strikingly, we observed that deeper networks are not able to outperform
AlexNet on this dataset. Their limitation may be due to over-fitting. Neverthe-
less, the use of C-GRU greatly improve the performance of both networks both
in terms of MSE and of RE. Further, we also performed a non-parametric test
(Kolmogorov-Smirnov test) to check if the best model was statistically different
compared to the others.

The results obtained with the complete model AlexNet+C-GRU+CL are
indeed significantly different from all others (p < 0.05) also, when the signifi-
cant level is adjusted for multiple comparison applying the Bonferroni correction
[17,18].

6 Discussion and Conclusion

The deep learning (DL) architecture proposed shows excellent performance com-
pared to traditional image analysis methods, both in accuracy and efficiency.
This improvement is achieved through a combination of a shallow CNN and the
exploitation of the temporal and cyclic coherence. Our results seem to indicate
that a shallow CNNs perform better than deeper CNNs such as DenseNet 121
and InceptionV4; this might be due to the small dimension of the data set,
a common issue in the medical settings when requiring manual annotations of
the data.

6.1 The CyclicLoss Benefits

The exploitation of temporal coherence is what pushes the performance of the
DL solution beyond current image analysis methods, reducing the MSE from
0.29mm2 (naive architecture) to 0.09mm2 with the addition of the C-GRU.
The CyclicLoss is an efficient way to guide the training of the DL solution in
case of data showing some periodicity, as in cardiovascular imaging. Please note
that the knowledge of the signal period is only required by the network during
training, and as such it does not bring additional requirements on the input
data for real clinical application. We argue that the CyclicLoss is making the
network learn to expect a periodic input and provide some periodicity in the
output sequence.
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6.2 Limitations and Future Works

A drawback of this work is that it assumes the presence of the vessel in the
current field of view. Further research is thus required to evaluate how well the
solution adapts to the scenario of lack of cyclic consistency, when the vessel of
interest can move in and out of the field of view during the acquisition, and to
investigate the possibility of a concurrent estimation of the cardiac cycle and
vessel diameter. Finally, the C-GRU used in our architecture, has two particular
advantages compared to previous approaches [10,11]: first, it is not subject to the
vanishing gradient problem as the RNN, allowing to train from long sequences
of data. Second, it has less computational cost compared to the LSTM, and that
makes it suitable for real time video application.

Acknowledgement. This work was supported by the Wellcome/EPSRC Centre for
Medical Engineering at Kings College London (WT 203148/Z/16/Z). Dr. Lamata holds
a Wellcome Trust Senior Research Fellowship (grant n.209450/Z/17/Z).

References

1. Visentin, S., Grumolato, F., Nardelli, G.B., Di Camillo, B., Grisan, E., Cosmi, E.:
Early origins of adult disease: low birth weight and vascular remodeling. Atheroscle-
rosis 237(2), 391–399 (2014)

2. Veronese, E., Tarroni, G., Visentin, S., Cosmi, E., Linguraru, M.G., Grisan, E.:
Estimation of prenatal aorta intima-media thickness from ultrasound examination.
Phys. Med. Biol. 59(21), 6355–6371 (2014)

3. Tarroni, G., Visentin, S., Cosmi, E., Grisan, E.: Fully-automated identification and
segmentation of aortic lumen from fetal ultrasound images. In: IEEE EMBC, pp.
153–156 (2015)

4. Molinari, F., Zeng, G., Suri, J.S.: A state of the art review on intimamedia thick-
ness (IMT) measurement and wall segmentation techniques for carotid ultrasound.
Comp. Meth. Prog. Biomed. 100(3), 201–221 (2010)

5. Loizou, C.P.: A review of ultrasound common carotid artery image and video
segmentation techniques. Med. Biol. Eng. Comp 52(12), 1073–1093 (2014)

6. Cosmi, E., Visentin, S., Fanelli, T., Mautone, A.J., Zanardo, V.: Aortic intima
media thickness in fetuses and children with intrauterine growth restriction. Obs.
Gyn. 114, 1109–1114 (2009)

7. Skilton, M.R., Evans, N., Griffiths, K.A., Harmer, J.A., Celermajer, D.S.: Aortic
wall thickness in newborns with intrauterine growth restriction. Lancet 365, 1484–
14846 (2005)

8. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image
Anal. 42, 60–88 (2017)

9. Shin, J.Y., Tajbakhsh, N., Hurst, R.T., Kendall, C.B., Liang, J.: Automating
carotid intima-media thickness video interpretation with convolutional neural net-
works. In: IEEE CVPR Conference, pp. 2526–2535 (2016)

10. Chen, H., et al.: Automatic fetal ultrasound standard plane detection using knowl-
edge transferred recurrent neural networks. In: Navab, N., Hornegger, J., Wells,
W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 507–514. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24553-9 62

https://doi.org/10.1007/978-3-319-24553-9_62


Temporal Convolution Networks for Real-Time Abdominal Fetal Aorta 157

11. Huang, W., Bridge, C.P., Noble, J.A., Zisserman, A.: Temporal HeartNet: towards
human-level automatic analysis of fetal cardiac screening video. In: Descoteaux, M.,
Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI
2017. LNCS, vol. 10434, pp. 341–349. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66185-8 39

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: NIPS 2012, pp. 1097–1105 (2012)

13. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-ResNet and the
impact of residual connections on learning. In: AAAI 2017, pp. 4278–4284 (2017)

14. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: IEEE CVPR Conference, pp. 2261–2269 (2017)
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Abstract. Tuberculosis (TB) is a widespread and highly contagious disease that
may lead serious harm to patient health. With the development of neural network,
there is increasingly attention to apply deep learning on TB diagnosis. Former
works validated the feasibility of neural networks in this task, but still suffer low
accuracy problem due to lack of samples and complexity of radiograph informa‐
tion. In this work, we proposed an end-to-end neural network system for TB
diagnosis, combining preprocessing, lung segmentation, feature extraction and
classification. We achieved accuracy of 0.961 in our labeled dataset, 0.923 and
0.890 on Shenzhen and Montgomery Public Dataset respectively, demonstrating
our work outperformed the state-of-the-art methods in this area.

Keywords: Tuberculosis · Classification · DNN

1 Introduction

Tuberculosis is a highly contagious disease that may lead serious harm to patient health.
According to the World Health Organization (WHO) [1], until the end of 2015, nearly
10 million people in the world suffered from tuberculosis and more than 1.5 million
died. The WHO pointed out that early diagnosis and appropriate treatment can avoid
the majority of tuberculosis deaths, and millions of people are saved each year. None‐
theless, huge number of people still suffers for high cost and lack of professional doctors.
Therefore, reliable tuberculosis diagnosing system is an urgent demand.

At present, a large number of medical image data has not yet been digitized, and
the level of data sharing and interoperability among hospitals is still at a low level.
It is a dilemma that advanced method usually requires big data, which is impossible
for medical dataset. Also, it is difficult to obtain reliable labeling data in the medical
imaging field for the interdisciplinary gap. In addition, medical images contain more
difficult samples and pixel-scale features, making AI image analysis in the medical
field more challenging than natural image recognition. This work proposes a neural
network specialized for pulmonary tuberculosis diagnosis in radiographs, to solve
all above difficulties.
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2 Related Works

In 2012, Hinton’s team [2] first adopted convolutional neural network into the ImageNet
classification challenge and achieved astonishing results, drastically reducing the Top5
error rate from 26% to 15%. This opened up a boom in deep learning. At present, deep
learning has achieved remarkable results in the fields like image recognition, detection,
segmentation, and so on [3, 5].

Deep learning technology was first officially applied to medical image analysis in
2015. Convolutional neural networks (CNN) soon gained increasingly popularity due
to their ability to learn mid and high-level image representations. Bar Y et al. explore
the ability of a CNN to identify different types of pathologies in chest x-ray images [6].
They used a pre-trained CNN on the ImageNet dataset as the first descriptor, and the
second descriptor is PiCoDes, which is a compact high-level representation of popular
low-level features (SIFTs [6], GIST, PHOG, and SSIM) which is optimized over a subset
of the ImageNet dataset containing approximately 70,000 images. They found that the
best performance was achieved using a combination of features extracted from the CNN
and a set of low-level features. Of course, the capacity of system will be limited for lack
of training.

U.K. Lopes et al. used a pre-trained CNN as a feature extractor, combining with
traditional machine learning methods for tuberculosis detection [8]. They first used
detached networks to extract features, then integrated CNN features and finally created
an ensemble classifier by combining the SVMs trained using the features extracted from
GoogLenet [9], ResNet [10], and VggNet [11]. The author of [12] proposed a novel
method to detect pulmonary tuberculosis. The method is divided into two steps. The
first step is to use pre-trained networks to make a two classification on chest X-rays. For
classification, the chest X-rays are resized to respectively corresponding network, and
the results of the prediction of all classification networks are averaged as the final clas‐
sification result. The second step is that the sensitivity of softmax score to occlusion of
a certain region in the chest X-Ray is used to find which region in the image is responsible
for the classification decision. But the over-resize process will sharply reduce the accu‐
racy of system.

Olaf Ronneberger et al. proposed a network called U-Net [13] for small-sample
segmentation. The network consists of two parts, a contracted path is used to obtain
contextual information and a symmetrical expansion path for precise positioning. At the
same time, in order to make more efficient use of the annotation data, they also use a
variety of data enhancement methods. In 2016, Milletari et al. proposed an extension to
the U-Net layout that incorporates ResNet-like residual blocks and a Dice loss layer,
rather than the conventional cross-entropy [14].

Inspired by all the mentioned works, we propose a combination of segmentation and
classification deep neural network through the chest X-rays to detect tuberculosis. All
chest X-rays were preprocessed to emphasize lung features. Main body of the network
has two branches: one is a designed lung segmentation network to obtain chest masks,
and the other a classification network. We achieve accuracy of 0.965 in our dataset,
0.923 and 0.890 on Shenzhen and Montgomery Public Dataset respectively, proving us
the state-of-the-art in this area.
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3 Proposed Methods

3.1 Method Overview

We proposed an end-to-end network for tuberculosis judgement. The whole system
consists of a Lung Segmentation Network, a classification backbone and an output head.
Heat maps are generated for further analysis and algorithm verification. This is the first
work to combine all the steps of tuberculosis detection in a whole network, making a
compromise between computational speed and preservation of image information. The
whole system is demonstrated in Fig. 1.

Lung Segmentation 
Network ConvNet

Output
Network Backbone

GAP

FC layer

Heat Map

Fig. 1. The block diagram of the proposed network.

3.2 Lung Segmentation Network

According to [14], lung segmentation is necessary for automatic tuberculosis diag‐
nosing. In this paper, we designed a simple and effective CNN with atrous convolutional
layers [18] to segment the chest from X-rays referring to U-net. Basic feature extraction
part has 3 conv-pooling blocks with different number of channels. Each conv-pooling
block contains a pooling layer after a few convolutional blocks, while each convolutional
block consists of a convolutional layer followed by a Batch-Norm layer and a ReLU
activation layer. Totally 8 times subsampling was implemented and the network struc‐
ture is shown in Fig. 2.
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Fig. 2. ConvNet configuration for feature extraction.
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Lungs in radiographs are of different sizes due to individual difference and other
factors. Therefore, multi-scale segmentation was also taken into consideration. We used
3 atrous convolutional layers with different sample rates respectively. All the feature
maps obtain by dilated convolution are added together and connected with the decoder
of the network. Segmented results are generated by continuous up-sampling. In order
to overcome the problem of low resolution after down-sampling in the FCN [17] method,
we fused the feature map of each down-sampled feature with that of the corresponding
up-sampling part. Chest segmentation results are shown in Fig. 3.

Fig. 3. Chest segmentation results. Left: original picture; Middle: segmentation result; Right:
evaluation result.

3.3 Specialized Innovations

Preprocessing. Radiographs need preprocessing before checking. The grayscale of
chest X-ray pixels usually range from tens to thousands, and it’s impossible for human
eyes to distinguish this huge change. Also, too large scales tend to cause the diagnosing
network to divergent. Therefore, the original pixel values need adjustment according to
WW (window width) and WP (window position). Because not all graphs are given
guidance values of WW and WP, a standard set of WW and WP was generated from
samples accompanied with WW and WP guidance values using cluster algorithm. We
also found that histogram equalization operation can emphasize the features in lung
while not significantly changing the gray level in other organs and background. Original
radiographs often have as many as two thousand pixels in length, which is a huge burden
for computation. But considering that some granule infections can be really small, input
images are bilinear interpolated to 1024 × 1024.

Two Branches. The main body of proposed network has two branches, one for lung
segmentation and the other for feature extraction with the network backbone. We choose
6 different popular and practical backbones in total for this work. To limit computation
memory and time, we subsampled the feature map by 32 instead of the original picture
masked by the output of segmentation branch, allowing main body of two branches to
work simultaneously.

Network Head. There are two heads in the last part of network. The classification head
of the network is specialized for this task. As input of our system is much larger than
normal classification competitions, we need more times of subsampling than the original
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networks. In practical, we adopted 128 times down sampling in our network. High simi‐
larity is a dangerous character of radiographs in this task, tending to cause over-fit.
Therefore, we added a heat map head to analysis if the correct feature of graphs has been
learned. For heat map generation, the second to last fully connected (FC) layer is
replaced by a global average pooling (GAP) [18] layer, also reducing parameters in the
network. Considering the imbalance of positive and negative samples, and also false
negative (FN) is much more harmful in medical area, focal loss [4] is introduced into
this work, giving positive samples a higher loss during training.

4 Experiments

4.1 Database

Database used in this paper comes from 2 sources. The first dataset was provided by
Huiying Medical Technology (Beijing) Co., Ltd., containing 2443 frontal chest X-ray
images (DICOM format), with labels marked by a reliable expert network. In the dataset,
2000 were randomly chosen as training set and the rest divided into validation and test
ones. There are two public datasets [20] available on the Internet. Shenzhen Hospital
dataset, which includes 662 frontal chest x-rays, was acquired from Shenzhen No. 3
People’s Hospital in Shenzhen, China. Montgomery County chest X-ray set (MC) was
collected in collaboration with the Department of Health and Human Services, Mont‐
gomery County, Maryland, USA, consisting of 138 frontal X-rays.

4.2 Experimental Results

To test the performance of network with different backbones, parallel comparisons were
made on our test dataset. Accuracy, sensitivity, specificity, AP, and AUC results are
shown in Table 1. Inception-v4 backbone without mask branch was also tested.

Table 1. Parallel comparisons of each method for our dataset

Backbone AUC Accuracy AP Sensitivity Specificity
VGG-19 0.974 0.893 0.981 0.988 0.765
ResNet-50 0.983 0.875 0.992 0.979 0.892
ResNet-101 0.989 0.879 0.992 0.972 0.932
ResNet-152 0.991 0.923 0.994 0.960 0.945
Inception v4 0.995 0.961 0.994 0.966 0.955
ResNet-Inception v2 0.982 0.934 0.984 0.948 0.915
Inception v4 (no
mask)

0.953 0.908 0.947 0.821 0.954

To be intuitive, the P-R curves and ROCs are shown in Fig. 4.
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Fig. 4. P-R curves (left) and ROCs (right).

The results show that our method made a highest accuracy of over 96.1% on our test
dataset, achieving by Inception v4. Mask branch contributed about 5.3% in accuracy.
We also reselected training set and retrained our networks from the beginning to exclude
the possibility of coincidence. We also checked the heat maps generated by our network,
finding it reasonable although slight bias and blur happens due to 128 times subsampling.
The visualized results are shown in Fig. 5.

Fig. 5. The heat map acquired in our network. Although slight positioning bias happens due to
totally 128 times subsampling, the red area roughly reflects position of infection. (Color figure
online)

Longitudinal comparisons with former works [8, 12, 15, 16] were also accomplished.
To be fair and objective, we compared the results of proposed method and the other
works on two public datasets. All the data of former works cited in this paper are the
best results the authors claimed. The models we used were still the ones we trained on
our dataset. Figure 6 shows the visualized results of our networks on Shenzhen Dataset.
Comparison with former works are shown in Table 2.
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Fig. 6. P-R curves (left) and ROCs (right) of our networks on Shenzhen Dataset.

Table 2. Performance for Shenzhen Dataset. Last three are proposed methods.

Method AUC Accuracy AP Sensitivity Specificity
U.K. Lopes et al. 0.894 0.837 - - -
Mohammad et al. 0.940 0.900 - 0.960 0.960
Sangheum et al. 0.926 0.837 0.940 - -
ResNet-152 0.967 0.923 0.971 0.978 0.986
Inception v4 0.979 0.897 0.965 0.923 0.937
Inception-ResNet v2 0.983 0.917 0.985 0.857 0.981

Results on Montgomery Dataset are shown in Fig. 7 and Table 3. We found that
many radiographs in the MC Dataset has large scale of black blocks and seriously
disturbed histogram equalization, making the background of preprocessed graphs lighter
than usual. We cut off the black blocks and resized the images, and saw an incredible
improvement in results.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

P-R

Inception v4

Resnet 152

Inception Resnet

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

ROC

Inception v4

Resnet 152

Inception Resnet

Fig. 7. P-R curves (left) and ROCs (right) of our networks on MC Dataset.
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Table 3. Performance for MC Dataset. Last three are proposed methods.

Method AUC Accuracy AP Sensitivity Specificity
U.K. Lopes et al. 0.926 0.810 - - -
Stefan Jaeger et al. 0.831 0.75 - ~0.5 ~0.9
Sangheum et al. 0.884 0.674 0.890 - -
ResNet-152 0.951 0.890 0.935 0.711 0.955
Inception v4 0.914 0.822 0.884 0.654 0.938
Inception-ResNet v2 0.957 0.844 0.965 0.618 0.913

Longitudinal and parallel experimental results show the superiority of our proposed
network. The models achieved relatively good results on our own test set. It’s hard to
explain why ResNet 152 seems to do better than other network backbones on the public
datasets. But our models undoubtedly showed adaptability to public datasets, outper‐
forming the state-of-the-art results.

5 Conclusion and Future Work

We proposed an end-to-end network for pulmonary tuberculosis classification, including
preprocessing, lung segmentation and classification. The system optimized the inference
time, while guaranteeing the accuracy.

Future work will include (1) making specialized optimization on network backbones
(2) optimization of preprocessing to increase adaptability of network (3) extending this
system to the detection of focus of infection.
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Abstract. Counting of white blood cells (WBCs) and detecting the
morphological abnormality of these cells allow for diagnosis some blood
diseases such as leukemia. This can be accomplished by automatic quan-
tification analysis of microscope images of blood smear. This paper
is oriented towards presenting a novel framework that consists of two
sub-systems as indicators for detection Acute Lymphoblastic Leukemia
(ALL). The first sub-system aims at counting WBCs by adapting a deep
learning based approach to separate agglomerates of WBCs. After sepa-
ration of WBCs, we propose the second sub-system to detect and count
abnormal WBCs (lymphoblasts) required to diagnose ALL. The perfor-
mance of the proposed framework is evaluated using ALL-IDB dataset.
The first presented sub-system is able to count WBCs with an accuracy
up to 97.38%. Furthermore, an approach using ensemble classifiers based
on handcrafted features is able to detect and count the lymphoblasts with
an average accuracy of 98.67%.

1 Introduction

Counting of white blood cells (WBCs) is a diagnostic procedure to detect blood
malignancies. Leukemia is a blood cancer developing from the stem cells of the
bone marrow, that affects the function of WBCs and their number. Leukemia
can be preliminary classified based on progression of disease i.e. acute or chronic.
In addition, classification can be based on the cell lineage of the stem cells
i.e. lymphoid or myeloid. In this paper, we only consider Acute Lymphoblastic
Leukemia (ALL) which affects a specific type of WBCs called lymphocytes.

Manual morphological observation of blood cells under the microscope and an
automated haematology counting are two diagnostic procedures to diagnose ALL
[1]. Observation of blood cells by the microscope requires a few drops of blood
sample from a patient on a slide. Then different stains are added to the slide
to assist specialists to identify different blood cells. Afterward, this blood slide
is examined under the microscope with different magnifications to count WBCs
and detect lymphoblasts. Detecting at least 20% of lymphoblasts in the bone
marrow or peripheral blood can be an indicator for ALL diagnosis. Although
c© Springer Nature Switzerland AG 2018
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this process is very basic, the exhausting part is when a medical expert needs to
observe blood samples under the microscope collected from numerous patients
to count the normal and abnormal blood cells. Typically, this approach can
be difficult even for the specialist because it requires experience and extensive
knowledge to be able to distinguish the morphological abnormalities of the blood
cells. On the other hand, an automated haematology counter, which is another
way for counting WBCs, produces the output in timely manner and differenti-
ates between blood cells by measuring cell volume and the blood cell morphol-
ogy based on mechanical and electronic approaches. However, this automatic
system has the ability to just count cells and cannot identify the abnormalities
of these cells. For this reason, WBCs have to be analyzed manually under the
microscope [2].

In this paper, we propose a computer-aided system that comprises of two
sub-systems. The first one is to separate and count WBCs, including normal
and abnormal cells, by adapting a deep-learning-based approach to overcome
agglomerates of WBCs and comparing the results with related works. The goal
of the second sub-system is to detect lymphoblasts that lead to diagnose ALL.
To the best of our knowledge the presented system is the first automated system
for counting lymphoblasts from microscopic images.

This paper is structured as follows: Sect. 2 presents background and related
works. Section 3 describes the used dataset. Section 4 presents a detailed process
of both sub-systems for counting WBCs and lymphoblasts. Section 5 reports the
experimental results and discussion. Finally, Sect. 6 presents conclusions.

2 Related Work

In this section will only consider the automated systems for detection and count-
ing WBCs and lymphoblasts. For example, Tan Le et al. [3] have proposed a
framework for counting WBCs. To extract WBCs from the background, a thresh-
old value has been applied on Haematoxylin-Eosin-DAB (HED) color space.
Then, the edges of the segmented WBCs are detected using canny edge detector
followed by separating the touching cells by using watershed segmentation algo-
rithm. Though this approach achieved 90% of accuracy, no specific method has
been mentioned to determine the threshold value. A different approach has been
proposed by Putzu et al. [4] to count WBCs. The identification of WBCs is based
on a threshold value that is determined by Zack algorithm on Y-component of
CMYK color space. Then, watershed segmentation is performed to separate the
adjacent cells. The performance of the proposed approach achieved an accuracy
of 92%. However, it is mentioned that when the overlapping between WBCs
is significant, no good results have been obtained. In [5], Bhavnani et al. have
used Otsu’s method and morphological operations on green component of RGB
color space for isolating WBCs. Then, connected label component is used to
count WBCs. Although the performance of the system is 94.25% for counting
WBCs, a complex degree of overlapping and irregular cells toleration is limited.
Moreover, Otsu's method may not be a suitable approach when the background
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and foreground of an image are not clearly represented. Also, this framework is
partially developed because of using the morphological operations for isolation
the touching cells of WBCs. This is in turn leads to change the morphologi-
cal characteristics of blood cells and can’t be used for fully detection system.
Basima and Panicker [6] have utilized K-means algorithm on Y component of
CMYK color space to segment WBCs followed by watershed segmentation to
separate WBCs. However, segmentation WBCs by K-means causes losing in
cytoplasm region which is an essential part needed to distinguish the lympho-
cytes from lymphoblasts. Also, the obtained accuracy to count WBCs by the
proposed approach is not mentioned. Alomari et al. [7] have proposed another
method for counting WBCs. The detection of WBCs is based on thresholding.
Then, the counting of the cells is carried out by an iterative structured circle
detection approach. This proposed framework exhibits an average accuracy of
98.4% for counting WBCs. However, the proposed algorithm can tolerate the
overlapping cells only with a certain degree producing a noticeable amount of
false positives. Moreover, selecting the optimum threshold value is very challeng-
ing. Loddo et al. [8] have introduced an approach to detect and count WBCs.
Pixel based classification approach using support vector machine is performed for
segmenting WBCs. Then, all the single WBCs are counted using connected label
component, and the remaining of agglomerates of cells are counted by Circular
Hough Transform (CHT). Although this approach exhibits an average accuracy
of 99.2% for WBCs, this work is partially developed and neglects adjacent cells
which limits counting and the analysis of lymphoblasts. Hence, further human
visual inspection is required to detect the abnormal cells.

It can be observed from the available literature that the only work for count-
ing the lymphoblasts for detecting the abnormality has been done by Halim et al.
[9] who have proposed an automatic framework to count blasts (lymphoblasts
and myeloblast) for acute leukemia in blood samples. To segment blasts from
the background, thresholding based on histogram is performed on S-component
in HSV color space. After that, morphological erosion is used to segregate the
touching cells. While this approach is able to provide an accuracy of 97.8%,
determination of the optimal threshold is not an easy task and may work suc-
cessfully for some images but fails for others due to lighting condition. Moreover,
the blood sample images included in this study consist of only blasts and no other
WBCs are involved. There are several attempts for effective counting of WBCs,
while there are few authors have proposed methods regarding the cells counting
with considering adjacent cells and detecting the abnormality among them.

To tackle the issues previously mentioned, we propose an automated system
for detecting the presence of ALL. This system consists of two sub-systems which
can be as indicators to diagnose patients who may suffer from ALL. The first
sub-system is directed to count WBCs, and the second sub-system aims to detect
and count lymphoblasts.
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3 Dataset

For testing the proposed approach, Acute Lymphoblastic Leukemia Image
Database (ALL-IDB) has been used [10]. It is a public dataset proposed by
Donida Labati. All-IDB includes microscopic images of peripheral blood sam-
ples of healthy individuals and unhealthy patients suffering from leukemia as
shown in Fig. 1. The microscopic images have been collected by the M. Tetta-
manti Research Center-Monza, Italy, that specializes in childhood leukemia and
hematological diseases. The ALL-IDB dataset is subdivided into two versions.
The first version, ALL-IDB1, contains 59 healthy and 49 unhealthy images that
are in full size of 1712× 1368. The second version, ALL-IDB2, contains cropped
subimages of 130 normal and 130 lymphoblasts of size 257× 257. The images in
both versions are manually labeled by expert oncologists to be used as a ground
truth. In ALL-IDB1 version, each image has a related text file including the
coordinates of the centroid of each lymphoblast. In this study, images belong
to ALL-IDB1, which consists of 108 microscopy images of blood samples, are
used. To evaluate the proposed system for counting, 50% of the images are used
for training, 15% for validation set to tune a model’s hyperparameters, and the
remaining images are used to test our model.

Fig. 1. Samples from ALL-IDB1 for unhealthy patients with high (a) and low magni-
fications (b).

4 Proposed Method

The method proposed in this work aims to count WBCs and lymphoblasts
for acute lymphoblastic leukemia using blood smear images as illustrated in
Fig. 2.
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Fig. 2. Proposed approach diagram.

4.1 Counting of WBCs

WBCs Segmentation. The segmentation of WBCs, including nuclei and their
cytoplasm, takes an advantage of Ruberto et al. [8] approach which uses support
vector machine (SVM) based segmentation. This approach is characterized by
its robustness against different staining procedures and illumination problems.
To achieve this, three different regions represent WBCs (positive class), RBCs
and background (negative classes) are selected to train binary-class SVM with
a Gaussian radial basis kernel function (RBF). These regions are selected from
a few images of ALL-IDB1 training set. 255 regions are selected to represent 85
and 170 regions for positive and negative classes respectively. As in the work
of Ruberto et al. [8], from all selected regions color and statistical features are
extracted from each pixel: the color features represent R, G, B intensity val-
ues of a pixel, and the statistical features represent average, entropy, uniformity
and standard deviation for 3× 3 neighborhood of that pixel. The obtained aver-
age accuracy of segmentation computed by means of 10 fold cross-validation is
95.21%. Figure 3 shows the results of WBCs segmentation.

Separation of Grouped WBCs. To segregate the touching cells of WBCs,
we adapted deep learning approach with stacked Restricted Boltzman Machines
(RBMs) followed by a discriminative fine-tuning layer as used by Duggal et al.
[11] applying the approach to the results of SVM as a segmentation method
rather than K-means algorithm. The discriminative fine-tuning layer is applied
on the top of the features learned by the RBMs to identify ridge pixels of grouped
WBCs, pixels that are inside WBCs, and pixels that are located on the boundary
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Fig. 3. WBCs segmentation for microscopic images of unhealthy patients with high
(a) and low magnifications (b).

of WBCs but not ridges. Then, the ridge pixels are neglected resulting in sepa-
rating the grouped WBCs. From 12 images of the training set, 12 single clusters
of grouped WBCs are extracted. 80% of these clusters are used for training and
20% are used for validation. The system is trained by considering three layers
of RBMs. The number of neurons in the hidden layers are 100, 300, and 1000
respectively. Figure 4 shows segregation of WBCs by considering a patch of size
31× 31 as a feature vector for training.

Fig. 4. Separation of grouped healthy WBCs and lymphoblasts for unhealthy patients
with high (a) and low magnifications (b).

Image Cleaning and WBCs Counting. In order to avoid misidentification
of WBCs for counting and mis-detection of lymphoblasts which is required for
next steps, WBCs that appear partially on the edge of the microscopic images
should be neglected. Discarding the partial WBCs is accomplished by suppress-
ing the light structures that are connected to the image border using the value 8
as a connectivity value. After segmentation and separation of the agglomerates
of WBCs, WBCs can be counted using connected label component with a con-
nectivity of 8. Details related to the performance of WBCs counting are reported
in the experimental results section.
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4.2 Detection and Counting of Lymphoblasts

Separation of Nucleus and Cytoplasm. Once the WBCs have been sepa-
rated, sub-images containing each WBC are obtained using bounding box. It is
observed that WBC cytoplasm has high contrast in the green channel of RGB
colour space [12]. So, to extract the cytoplasm, the green component is obtained
from a sub-image of an individual cell of WBC. Afterwards, a binary image is
calculated by using Otsu’s algorithm [13]. To separate the WBC nucleus, the a*
component of the Lab colour space is obtained. Then, a binary image is calcu-
lated by using Otsu’s algorithm and this binary image is subtracted from the
binary image containing only the cytoplasm.

Feature Extraction. To differentiate lymphoblasts from other healthy WBCs
representing neutrophils; eosinophils; basophils; lymphocytes; and monocytes,
three categories of handcrafted features including morphological, textural, and
color features are computed. These features describe the nuclear, cytoplasmic,
and cellular (a nucleus and its cytoplasm) changes of each sub-image containing
an individual cell. The first group reflects the deformations resulting from transi-
tion to malignant case of blood cells. Therefore, 17 morphological features reflect
the maturity of a cell, i.e., aspect ratio of nucleus and cytoplasm, size of a cell;
nucleus; and cytoplasm, nucleus shape descriptors, and the marginal coarseness
or irregularity. We compute marginal features using the fractal geometry and the
variance of signature of a nucleus and cytoplasm as defined in [14]. To embody
the granularity existing in some WBCs such as eosinophil and basophil, we use
median robust extended local binary pattern (MRELBP) [15]. To measure the
textural changes of the modifications of nuclear chromatin distribution, that
indicates the malignant lymphocytes, 6 wavelet coefficients based statistical fea-
tures and 21 Gray-Level Co-occurrence Matrix (GLCM) features are extracted
as well [16,17]. Moreover, 6 color features are calculated for a nucleus and also
for cytoplasm to reflect hyperchromatism of malignant lymphocytes. These fea-
tures are computed from each color space of RGB and HSV. Finally, we add
a specific measure that reflects that lymphoblasts contain variably prominent
nucleoli [18]. To figure out the number of nucleoli, K-means algorithm is applied
and the complement of the binary image obtained from Otsu’s algorithm can
reflects the elements that represent nucleoli. Grouping of all the features previ-
ously mentioned altogether we generate the set of 52 features.

Feature Selection. To identify highly predictive a subset of discriminative fea-
tures among a large set of features for predicting a response, Maximum Relevance
Minimum Redundancy criteria (MRMR) which is based on mutual information
is applied [19]. MRMR tends to select the features having the most correlation
with a class label and the least correlation between the features themselves.

Classification. In order to build a model for lymphoblast detection in micro-
scopic blood images, we make use of different types of multiple-classifier approach
(MCA). The first type consists of a single classifier with different parameters
setting. In this case, we use SVM classifier with different kernels: linear, polyno-
mial, and RBF. The second MCA consists of 3 different independent classifiers.
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The used classifiers are SVM, Decision Tree (DT) and K-Nearest Neighbors
(KNNs). The last MCA consists of 5 different independent classifiers: SVM, DT,
Naive Bayes (NB), KNNs and Random Forest (RF)[20,21]. In all different archi-
tectures of MCA, the majority voting of class labels of independent classifiers are
combined to classify WBCs of an image and count the lymphoblasts belonging
to that image.

5 Experimental Results

5.1 WBCs Counting Performance

To present the results of the system performance for WBC counting with an
appropriate and fair comparison, we follow the same testing strategy as in [4].
33 images are selected from the testing set and subdivided into 11 sets. These
images contains 267 WBCs and have been used for testing, then the ground truth
of manual counting is compared with the results of the proposed sub-system for
counting WBCs in each image.

As it can be observed from Table 1 that 260 of 267 WBCs are identified prop-
erly by the proposed approach with an accuracy of 97.38% which outperforms
the results of [4]. Moreover, the proposed approach shows consistent results over
sets from 6 to 11 with results of [4].

Table 1. Performance of the proposed automated WBCs counting system.

Set Manual counting Auto count [4] Proposed method Performance improvement of

counting WBCs in percentage ratio

by the proposed approach over [4]

1 31 26 29 10%

2 49 41 47 12%

3 31 30 31 3%

4 39 36 38 5%

5 32 27 30 9%

6 27 27 27 0%

7 17 17 17 0%

8 15 15 15 0%

9 11 11 11 0%

10 9 9 9 0%

11 6 6 6 0%

5.2 Lymphoblasts Counting Performance

For detecting lymphoblasts, the significance of the extracted features are evalu-
ated using mutual information. Therefore, the ranked list of the top 43 features
are used to represent the optimal discriminative ones and are indicated to be
informative out of 52 extracted features. In all different architectures of MCA,
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the hyperparameters of each independent classifier are chosen experimentally
on the validation set. To evaluate the effectiveness of our model, we divide the
tested images into 5 sets. For each set, we determine the average test accuracy
which is calculated by averaging all the accuracies resulting from each image
belongs to that set. Then, we calculate the average values of True Positive Rate
(TPR), True Negative Rate (TNR), and Positive Predictive Value (PPV) for
that set as well.

Table 2 shows the results of majority voting of SVM classifier with differ-
ent kernels: linear, polynomial, and RBF. It can be concluded that the overall
average test set accuracy is 89.34%. Also, the overall performance for counting
lymphoblasts (TPR) using the proposed method is 98.33%. However, the over-
all misclassification rate of lymphocytes classified as lymphoblast (false positive
rate), which affects the correct counting of lymphoblasts, achieves 29% error
rate.

Table 2. The experimental results using MCA of SVM classifier with different kernels.

Set Manual counting
of lymphoblasts

Proposed
method
counting

TP FN FP Average
test set
accuracy

TPR TNR PPV

1 47 52 47 0 5 91.94% 100% 66.67% 90.38%

2 8 11 8 0 3 85.71% 100% 76.92% 72.73%

3 45 47 42 3 5 85.71% 93.33% 54.55% 89.36%

4 60 63 59 1 4 93.33% 98.33% 73.33% 93.65%

5 9 11 9 0 2 90% 100% 81.82% 81.82%

Total 169 184 165 4 19 89.34% 98.33% 70.66% 85.59%

The performance of our system using the majority voting of 3 different classifiers:
SVM (RBF kernel), DT, and KNNs (k = 5) is presented in Table 3. It can be
concluded that the overall average test set accuracy is 96.75%. Also, the overall
performance of TPR is 97.6%. Moreover, it can be noticed that in some sets
such as 3 and 5, the proposed system is able to count the lymphoblasts correctly
which shows a very good influence on the overall misclassification rate of false
positive rate achieving a 11% error rate.

The proposed computer-aided system for counting the lymphoblasts using
the majority voting of 5 different classifiers: SVM (RBF kernel), DT, NB, KNNs
(k = 5), and RF shows an apparent increase in the overall average test set
accuracy which reaches 98.67%. Also, as it can be seen clearly from Table 4 that
the proposed method for counting lymphoblasts by using our proposed approach
matches the manual counting by the hematologists in most of sets. Therefore,
the overall misclassification rate of false positive rate is only 7% and the overall
performance of TPR is 100%.

It can be observed from the experiments that the architecture that consists of
5 different classifiers achieves the best performance for counting the lymphoblasts
significantly. It achieves the lowest recorded average error rate of 1.33% while the
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Table 3. The experimental results Using MCA of 3 different classifiers: SVM, DT, and
KNNs.

Set Manual counting
of lymphoblasts

Proposed
method
counting

TP FN FP Average
test set
accuracy

TPR TNR PPV

1 47 50 47 0 3 95.16% 100% 80% 94%

2 8 7 7 1 0 95.24% 88% 100% 100%

3 45 45 45 0 0 100% 100% 100% 100%

4 60 65 60 0 5 93.33% 100% 67% 92%

5 9 9 9 0 0 100% 100% 100% 100%

Total 169 176 168 1 8 96.75% 97.6% 89.4% 97.2%

Table 4. The experimental results using MCA of 5 different classifiers: SVM, DT, NB,
KNNs, and RF.

Set Manual counting
of lymphoblasts

Proposed
method
counting

TP FN FP Average
test set
accuracy

TPR TNR PPV

1 47 47 47 0 0 100% 100% 100% 100%

2 8 8 8 0 0 100% 100% 100% 100%

3 45 45 45 0 0 100% 100% 100% 100%

4 60 65 60 0 5 93.33% 100% 67% 92%

5 9 9 9 0 0 100% 100% 100% 100%

Total 169 174 169 0 5 98.67% 100% 93.4% 98.4%

Fig. 5. AUC for all different MCA.

overall average error rates for MCA of 3 different classifiers and SVM classifier
with different kernels are 3.25% and 10.66% respectively. Moreover, based on
analyzing the area under the Receiver Operating Characteristic (ROC) curve
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(AUC) to compare the performance of the used classification models, Fig. 5 shows
that for MCA of 5 different independent classifiers the area is larger than for
any other architectures of MCA taken into account in this study.

6 Conclusions

We have introduced an innovative counting-based framework consisting of two
sub-systems which can be used as indicators for detection the patients who
may suffer from ALL. By providing a microscopic blood image as an input to
the proposed framework, it produces outputs including the number of WBCs
and lymphoblasts. The first sub-system is directed to count WBCs. Therefore,
medical systems such as haematology counters can be supported by the results
of the first sub-system. The second sub-system aims to address the detection
of the abnormalities of WBCs. An advantage of this proposed sub-system is
overcoming major limitations of automated haematology counters. We would like
to point out that we are proposing the first study from its kind for counting the
lymphoblasts. The proposed counting-based framework seems quite promising as
it can be used in the medical laboratories to aid hematologists in their diagnosis
of ALL and make their decisions more precise and objective. In future work we
plan to develop an automated prognostic system for subclassification of ALL
based on French-American-British (FAB) and/or World Health Organization
(WHO) classification systems.
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18. Smetana, K., Jirásková, I., Starỳ, J.: The number of nucleoli and main nucleolar
types in lymphoblasts of children suffering from acute lymphoid leukemia. Hematol.
J. 4(3), 231–236 (1999)

19. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information crite-
ria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern
Anal. Mach. Intell. 27(8), 1226–1238 (2005)

20. Bishop, C.: Mach. Learn. Pattern Recogn. Springer, Heidelberg (2006)
21. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

https://homes.di.unimi.it/scotti/all/


Right Ventricle Segmentation in Cardiac
MR Images Using U-Net with Partly

Dilated Convolution

Gregory Borodin and Olga Senyukova(B)

Faculty of Computational Mathematics and Cybernetics,
Lomonosov Moscow State University, 2nd Education Building,
GSP-1, Leninskie Gory, 119991 Moscow, Russian Federation
grihabor@mail.ru, olga.senyukova@graphics.cs.msu.ru

Abstract. Segmentation of anatomical structures in cardiac MR images
is an important problem because it is necessary for evaluation of mor-
phology of these structures for diagnostic purposes. Automatic segmen-
tation algorithm with near-human accuracy would be extremely helpful
for a medical specialist. In this paper we consider such structures as
endocardium and epicardium of right ventricle. We compare the perfor-
mance of the best existing neural networks such as U-Net and GridNet,
and propose our own modification of U-Net which implies replacement
of every second convolution layer with dilated (atrous) convolution layer.
Evaluation on benchmark dataset RVSC demonstrated that the proposed
algorithm allows to improve the segmentation accuracy up to 6% both for
endocardium and epicardium compared to original U-Net. The algorithm
also overperforms GridNet for both segmentation problems.

Keywords: Right ventricle segmentation · U-Net
Dilated convolution · Atrous convolution

1 Introduction

Morphological analysis of right ventricle (RV) on cardiac magnetic resonance
images (MRI) is necessary for diagnostics of such serious diseases as coronary
heart disease, congenital heart disease and others. The greatest attention is paid
to myocardium, a layer located between endocardium and epicardium. Thus it is
important to obtain accurate delineation of endocardial and epicardial contours.
Automatic segmentation algorithm would significantly reduce the amount of
routine work of a radiologist allowing him to process more cases.

There are several existing works devoted to RV segmentation. The algorithms
not using deep learning, such as [1,2] provide rather good results. However, it
is known that deep learning algorithms generalize better and are less prone to
overfitting on a certain dataset since they learn the best features independently
and do not need expert knowledge. The work [3] describes a combination of
deep convolutional neural network (CNN) and regression forests for RV volume
c© Springer Nature Switzerland AG 2018
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prediction. The authors of [4] propose a two-stage solution, one deep CNN for
localization of a region containing RV, and another CNN for RV segmentation.
The only automatic one-stage algorithm for segmentation of right and left ven-
tricles endocardium and epicardium that uses only one deep CNN is [5].

Among CNN architectures used for other medical image analysis problems,
according to [7] the most well-known is U-Net [8]. This network is modification
of fully convolutional network (FCN) [6]. It is also fully convolutional and it is
constructed of a convolution (downsampling) and deconvolution (upsampling)
paths. High resolution output feature maps from the convolution path are com-
bined with the upsampled feature maps from the opposite block in order to
perform better object localization. A large number of features in the upsam-
pling part makes it almost symmetric to downsampling part and yields U-shape.
This allows the network to propagate context information to higher resolution
layers. U-Net and its various modifications have already been applied to plenty
of medical image analysis problems, including left ventricle (LV) segmentation.

GridNet architecture [9] is inspired by U-Net. Additional convolution blocks
are added between each pair of opposing convolution and deconvolution blocks.
There is also a convolution block for automatic estimation of the center of mass
of the object of interest. The algorithm is evaluated on the Automated Cardiac
Diagnostics Challenge (ACDC) dataset [13]. The results are presented for RV,
LV and myocardium.

In this work we propose a U-Net modification by including dilated convolu-
tion [12] layers in it. We neither introduce additional layers nor replace all the
convolution layers by dilated convolution, we just replace every second convolu-
tion layer in each block of the contracting path.

The rest of the paper is organized as follows. In the Sect. 2, we describe
the proposed CNN architecture in detail. In the Sect. 3 we provide description of
experiments and results of evaluation of the proposed method and its comparison
with existing state-of-the-art methods. Conclusions are drawn in the Sect. 4.

2 Method

2.1 Original U-Net

U-Net [8] consists of a contracting (convolution) path and an expansive (decon-
volution) path. Each block of the contracting path consists of two convolution
layers with kernel size 3 × 3 where each layer is followed by a rectified linear
unit (ReLU). Each block is followed by 2×2 max pooling operation, after which
the number of feature channels is doubled. Each block of the expansive path
consists of 2×2 up-convolution that halves the number of feature channels, con-
catenation with the correspondingly cropped feature map from the contracting
path and two 3× 3 convolution layers with ReLU. At the final layer a 1× 1 con-
volution is used to map each 64-component feature vector to the classes of the
segmentation map.
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2.2 Dilated Convolution

Dilated (atrous) convolution [12] is a new type of convolution that allows aggre-
gation of multi-scale context. It was successfully applied to different tasks [11].
Dilation of the convolution kernel k of size M by the factor l means that we
sample the input image with the stride l (1):

y[i, j] =
M∑

n=1

M∑

m=1

x[i + l ∗ m, j + l ∗ n]k[m,n]. (1)

This operation allows to enlarge the field of view of the filter without losing
image resolution (Fig. 1). The receptive field grows exponentially while the filter
size grows linearly.

Fig. 1. Illustration of convolution kernel dilated by factor 2.

Setting dilation factor l to 1 means that traditional convolution is performed.

2.3 The Proposed Architecture

The main idea of the proposed method is to replace every second convolution
layer in contracting path of U-Net by dilated convolution layer with kernel size
M = 3 and dilation factor l = 2 (Fig. 2). Therefore, the receptive field is 5 × 5.
Leaving the first 3 × 3 convolution layer in each block of the contracting path
allows taking into account all the elements of the corresponding feature map,
while introducing a dilated convolution layer after it allows capturing larger
context which promotes correct inference. So only one of two convolution layers
was replaced by dilated convolution layer. Kernel size 3×3 was kept the same as
in the original U-Net. It was not increased in order to prevent the network from
fast growth. Dilation factor with minimum value 2 was chosen in order keep as
much information as possible.

The image size does not change after convolution and dilated convolution
because the image is padded before the operation.
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Fig. 2. The proposed CNN architecture. Convolution layers in U-Net replaced by
dilated convolution layers are shown in yellow. (Color figure online)

3 Experimental Results and Discussion

3.1 Dataset

The proposed algorithm and existing algorithms were evaluated on Right Ventri-
cle Segmentation Challenge (RVSC) dataset [10] provided as part of the MICCAI
2012 challenge on automated RV endocardium and epicardium segmentation
from short-axis cine MRI. The dataset consists of images of 48 patients with
various cardiac pathologies. The images are in DICOM format. The dataset is
divided into three equal disjoint parts, one of which is for training, and the other
two are for testing. Manual expert contours for endocardium and epicardium are
provided only for the training images (16 cases).

The images were preprocessed by mean-variance normalization (MVN).
In order to artificially increase the training database we used data augmen-

tation procedure involving image rescaling (4 scales), vertical and horizontal
flipping and rotations (10 angles).

3.2 Training and Evaluation

All the networks participating in our comparison were implemented in Python
3 using Keras library [14]. They were trained with the same protocol and tested
on the same datasets described below. Since the expert labeling on RVSC was
provided only for 16 patients, we used 12 of them for training and the other
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4 for testing. We used 4-fold cross-validation and took the segmentation result
as the average between four results. Training protocol is the same as described
in [5]. A learning algorithm is stochastic gradient descent with momentum of
0.9. Dropout ratio is 0.5 and L2 weight decay regularization is 0.0005. All the
networks were trained for 10 epochs. Initial learning rate is base lr = 0.01 and
it is annealed according to the polynomial decay:

base lr × (1 − iter

max iter
)power, (2)

where iter is the current iteration, max iter is the maximum number of iterations
equal to 10 epochs, and power = 0.5 controls the rate of decay.

We reduced the problem of finding endocardial/epicardial contour to the
problem of finding the area enclosed by this contour. This makes it possible to
use Dice index [15] for evaluation of similarity (overlap) between segmentation
result and manual expert labeling (ground truth):

D(X,Y ) = 2
X ∩ Y

X ∪ Y
. (3)

3.3 Results

The results for segmentation of RV endocardium and epicardium on RVSC
dataset for original U-Net and the proposed algorithm (U-Net with dilated con-
volution layers) are provided in Table 1. Also, we compared the proposed algo-
rithm with the other U-Net modification, GridNet [9] that was also used, in
particular, for RV segmentation, but on the other dataset.

Table 1. Segmentation results (Dice index) on RVSC dataset.

Method Endocardium Epicardium

GridNet (Zotti et al. 2017) 0.82 0.81

U-Net (Ronneberger et al. 2015) 0.79 0.77

Our method 0.85 0.83

It can be seen that introduction of dilated convolution into U-Net increases its
accuracy by 6% both for endocardium and epicardium. The proposed algorithm
shows better accuracy than GridNet for both anatomical structures up to 3%.
We also tried to introduce dilated convolution to GridNet but it did not help to
improve the quality of segmentation.

The authors of [5] that proposed to apply fully convolutional network [6] also
evaluated their algorithm on RVSC dataset, but they used all 16 cases for train-
ing, and sent predicted endocardial and epicardial contours on unlabeled test
sets to challenge organizers for independent evaluation. The reported accuracy
in this case is 80% for endocardium and 84% for epicardium. It seems that our
method performs better for endocardium because it demonstrated 85% accuracy
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after training only on 12 cases, however the objective comparison could be done
if there was a labeled test set.

The results example is shown in Fig. 3.

Fig. 3. Results example. Epicardial (external) contour is shown in yellow. Endocardial
(internal) contour is shown in red. (Color figure online)

Further comparison with more existing methods is warranted.
In general, RV segmentation is more challenging problem than LV segmen-

tation because of more complex shape of RV across slices and phases. Therefore
the state-of-the-art accuracy of deep CNNs for this problem is still 80–85% while
LV segmentation accuracy is over 90%. Also, apical slices introduce more difficul-
ties to the segmentation process. Exploring dilated convolution for 3D networks,
such as 3D U-Net [16] is a part of future work.

4 Conclusion

In this work we proposed a modification of one of the most widely used deep
CNNs for medical image segmentation, U-Net, and demonstrated that it signif-
icantly overperforms the original U-Net in the context of right ventricle endo-
cardium and epicardium segmentation problem. Moreover, it overperforms the
other U-Net modification, GridNet, that contains more convolution blocks. The
results are provided for real MR images from benchmark dataset which makes
possible objective comparison with different algorithms. Although we managed
to improve segmentation accuracy of RV, this is still an open problem and fur-
ther research is warranted. The proposed CNN architecture can be used for other
medical image analysis tasks.

Acknowledgments. The work was supported by the Grant of President of Russian
Federation for young scientists No. MK-1896.2017.9 (contract No. 14.W01.17.1896-
MK).
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Abstract. This paper shows the design, implementation and analysis of a
Machine Learning (ML) model for the estimation of Heart Rate Variability
(HRV). Through the integration of devices and technologies of the Internet of
Things, a support tool is proposed for people in health and sports areas who
need to know an individual’s HRV. The cardiac signals of the subjects were
captured through pectoral bands, later they were classified by a Support Vector
Machine algorithm that determined if the HRV is depressed or increased. The
proposed solution has an efficiency of 90.3% and it’s the initial component for
the development of an application oriented to physical training that suggests
exercise routines based on the HRV of the individual.

Keywords: Heart Rate Variability (HRV) � Internet of Things (IOT)
Support Vector Machine (SVM) � Heart Rate Monitor (HRM)

1 Introduction

The heart rate variability (HRV) is the difference per unit of time between heartbeats in
any given interval [1]. It is a useful tool to evaluate the control of the autonomic
nervous system over the heart rate (HR), as it is shown by the changes given in the
balance between the sympathetic and parasympathetic systems. Obtaining the HRV
does not require invasive processes as it is carried out through the analysis of the
electrical signals of the heart, reflecting the regularity of heartbeats [2].

Through the Internet of Things (IOT), it is possible to monitor and control a great
diversity of systems through the use of sensor sets which facilitate the capture of data
for further analysis and processing [3]. In order to obtain HR specifically, there are HR
monitors (HRM), commonly used in medicine and sports sciences by doctors, athletes,
coaches and researchers, as a reliable and robust means of recording the activity of the
heart [4]. Among these HRM, there are wristbands and wireless chest straps with
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electrodes connected with services and web/mobile applications so as to send the
captured information. These applications also offer complementary information asso-
ciated with the statistics and individual’s profile, which is something beneficial for
physical training purposes [5].

HRV has gained relevance in recent decades due to its association with heart
diagnosis. For this reason, several authors have developed tools for their analysis and
use [1]. Among the most commonly used traditional methods for calculating HRV, the
frequency and time domain measurements as well as the non-linear methods can be
found [6]. Song et al. [7] claim that, for the analysis of HRV, these conventional
practices have some limitations to make predictions and diagnosis. Due to this fact,
new techniques and mechanisms based on the usual mathematical models have
emerged. These, when combined with computational systems, are more accurate in
their calculation, as Matta et al. [8] who applied neural networks to obtain HRV
through the recognition and categorization of patterns.

From this perspective, the work presented below is a model based on Support
Vector Machine (SVM) for the classification of HRV using low cost equipment such as
chest straps with HR sensors that allow monitoring and obtaining the activity of the
heart. The aim of this is to generate a tool which could provide any person - an expert
or not - with the value of HRV in a practical and simple way so that this can be applied
afterwards in order to make decisions with regard to health areas.

The following article is organized as follows: Sect. 2 provides a context for the
topic as well as related work and background information. Section 3 presents the
methodology used for the work conducted. Section 4 describes the proposed model.
Section 5 expresses the results obtained. Subsequently, Sect. 6 shows the analysis of
results and discussions. Finally, Sect. 7 covers the conclusions and future works.

2 Related Works

The most widely used resource for the capture of HRV is the electrocardiogram (ECG),
which registers the origin and propagation of electric potential through the cardiac
muscle [9], and is the means by which the most information about the activity of the
heart is obtained [1]. The ECG consists of waves, segments and intervals. Such waves
are expressed with deflection of the electrical activity, finding either positive deflec-
tions (when the deflection is upward) or negative (when it is downward) in relation to
the baseline of the heart rate. On the other hand, the segments are understood as the
space lying between two consecutive waves, whereas the intervals are the period
resulting from the sum of a wave and a segment. Another determining factor given by
the ECG is the QRS complex, which indicates the depolarization of the ventricular
muscle. In this way, the time between each heartbeat is determined by the interval
between the QRS complexes, more commonly known as R-R intervals [10].

HRV is a valuable tool to examine the sympathetic and parasympathetic functions
of the autonomic nervous system and is inversely proportional to the regularity of the
HR; that is to say, the higher the regularity there is, the lower HRV there is and vice
versa. Additionally, it serves as a measure of the balance between sympathetic and
parasympathetic mediators. The former ones reflect the effect of epinephrine and
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norepinephrine that sympathetic nerve fibers release on the sinoatrial and atrioven-
tricular nodules, which leads to an increase in the rate of cardiac contraction. The latter
ones influence on the release of acetylcholine by parasympathetic nerve fibers that
decrease HR [11]. Sao et al. [12] state that the combination between the electrical
signals of the heart and the HRV generate a good basis for the analysis of its state.
According to Giles et al. [4], from several clinical studies undertaken, it was found that
the decrease in HRV is related to the diagnosis of cardiovascular diseases, diabetic
neuropathy and hypertension, among others. Such authors also claim that the HRV
serves as a measure in the sports environment when facing diverse conditions such as
overtraining, recovery, endurance training and exercise.

Karim et al. [11] describe the calculation of heart rate variability using different
methods. Time domain is among one the most known and simplest to apply, in which
R-R intervals, which are necessary for the generation of statistical metrics as well as
indexes for calculating HRV, are identified based on the ECG. SDNN corresponds to
the standard deviation of all the R-R intervals. Besides, RMSSD and PNN50 can also
be found, the former one being the square root of the mean squared difference in
successive heartbeats, whereas the latter one is the number of successive intervals that
differ by more than 50 ms, expressed as a percentage of the total number of heartbeats.

Some other classic measurements to determine HRV are those of the frequency
domain. McCraty et al. [6] state that the heart rate oscillations are divided into 4
primary frequency bands: high frequency (HF), low frequency (LF), very low fre-
quency (VLF) and ultra-low frequency (ULF). The first two will be vital for the present
study since they are directly related to the HRV. The HF goes from 0.15 Hz to 0.4 Hz,
which is equivalent to rhythms with periods between 2.5 and 7 s, whereas the LF lays
between 0.04 Hz and 0.15 Hz, which means rhythms of 7 and 25 s respectively.
The HF reflects the parasympathetic or vagal activity and is also called the respiratory
band because it responds to the variations of the HR that occurs in the respiratory cycle.
On the other hand, the LF shows the sympathetic activity of the system. The HR is
regulated by the balance between the actions of the sympathetic and the parasympa-
thetic nervous system, so it is vital to know the HF and LF bands to determine the
HRV.

Among the non-linear methods, there is the Poincaré plot, which is a non-linear-
visual technique that allows examining the behavior of the R-R intervals, through the
classification of the forms of the ECG plot. Analysis and recognition allow to identify
degrees of heart failure. This differentiation can be done through the calculation of the
standard deviations SD1 and SD2 that are related to HRV [12].

To classify HRV, multiple authors have resorted to fields and techniques derived
from artificial intelligence, like fuzzy logic, neural networks, ML, among others. Such
as Patel et al. [13], who designed a neural network for the detection of early fatigue in
people who drive for long periods of time, not only warned about the lethargy which
seriously affects the performance of drivers but also claimed that this could be a very
common cause of accidents. Through the classification of time domain measurements
and the frequency of HRV, they were able to quantify somnolence with an accuracy of
90%, for which they distinguished the levels of sympathetic (LF) and parasympathetic
(HF) activity of the organism. This technique of fatigue detection, based on HRV, was
recommended as a countermeasure for fatigue.
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Asl et al. [14] applied SVM for the identification of 6 different types of arrhythmias:
normal sinus rhythm, premature ventricular contraction, atrial fibrillation, sick sinus
syndrome, ventricular fibrillation and heart block. They did this by classifying 15
characteristics of the HRV calculated through linear and non-linear methods. The
accuracy of this algorithm for each case was greater than 98%.

On the other hand, Liu et al. [15] classified the combination of cardiac variability
and complexity to determine those patients who required lifesaving interventions. Such
authors captured information from 104 patients through the use of wireless vital signs
monitoring systems from which they obtained their heart rate data. They applied
classification techniques such as neural networks and multivariable logistic regression,
which were evaluated and compared by statistical analysis. The conclusions indicated
that in the neural network model, the multilayer perceptron (MLP) algorithm demon-
strated more efficiency and effectiveness in the classification of patients who needed a
rescue measure in contrast with the logistic regression algorithm.

Considering the aforementioned reference points, the following study intends to
determine the classification of HRV suggesting an algorithm based on SVM, as Song,
et al. [7] did. The authors applied the same technique for the analysis and identification
of patients who suffered acute myocardial infarction, based on the fact that the decrease
in HRV was associated with a potential risk of ventricular arrhythmias for patients who
had had such episodes. The aim of this work is to develop a tool which can support
decision-making strategies for the areas of health and physical training. In view of the
above, it is important to consider that classification is a problem which may be solved
through ML, in which there could exist from one to two or more classifications in a
sample data. The study included a process of design and implementation of the pro-
posed algorithm, established a work methodology described in the following section.

3 Work Methodology

The working method to carry out the following study was quasi-experimental and
applied. Then, in Fig. 1 a series of phases that define it and that allowed to glimpse a
navigation map for the study are shown.

Fig. 1. Work phases used for study.
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The first phase involved the search and analysis of literature on conventional
techniques for the calculation of HRV, from them, specific methods were identified and
explored in Phase 2. In stage 3, the definition of the process was carried out of capture of
cardiac signals through IoT devices and the generation of a strategy for the transfer of
collected data. During phase 4, a method based on SVM was implemented to classify
HRV, this was applied through a case study in phase 5. The results and their analysis
were performed in Phase 6, where the efficiency of the algorithm was determined.

3.1 Case Study

The case study included the capture of cardiac signals from a group of individuals
through chest straps that obtained the HR value. Table 1 presents the characteristics of
used strap [16].

These non-invasive records were made in 33 people whose HR was obtained for
12 min. In total, 56 data constituted the training set that served as the input for the
learning of ML algorithm. The average age of the individuals ranged between 25 and
35 years, mostly healthy people with few exceptions, such as thyroid dysfunctions and
hypertension. Close amounts of women and men, although no data was taken on
children because their nervous system has not yet fully matured as in the case of adults.
During each session, the person was required to remain at rest for approximately
12 min, which included sitting without speaking and minimizing movements. In
addition of HR, other information was recorded such as age, weight, height, gender,
pre-existing diseases and the use of regular medications or treatments. By means of
these cardiac registers the necessary information was obtained to feed the ML algo-
rithm, its model will be described in the following section.

4 Proposed Working Model

The model that was carried out has two main components that can be observed in
Fig. 2. The first is the IoT system that aims to define the capture and disposition of the
information, this being the input for the following component: the HRV classification

Table 1. Characteristics of the Polar H10 chest strap.

Polar H10 heart rate sensor

Battery type CR 2025
Battery sealing
ring

O-ring 20.0 � 0.90 Material Silicone

Battery lifetime 40 h
Operating
temperature

−10 °C to +50 °C/14 °F to 122 °F

Connector
material

ABS, ABS + GF, PC, Stainless steel

Strap material 38% polyamide, 29% polyurethane, 20% elastane,
13% polyester, silicone impressions
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system, which takes the data and processes it by classifying the HRV as depressed or
increased. IoT system used pectoral bands to record the HR, its transmission was made
through a mobile application that communicated with the sensor via bluetooth.

Pitale et al. [1] describe two steps for the implementation of classification algo-
rithms: the definition of the model and the selection and application of a method to
classify it. For our study, the first one included the processing of the information given
by the IoT system to obtain the entries of the classification algorithm, which were
diverse variables on the domains of time, frequency and non-linear methods. Among
the first were the nnxx which is the number of successive R-R intervals that differ by
more than xx milliseconds and pnnxx, which is its corresponding in percentage [17]. In
the domain of frequency, the HF and LF were taken, due to their direct relationship
with the activity of the sympathetic and parasympathetic systems of the organism [6].
Finally, variables from nonlinear methods such as SD1 and SD2 were analyzed, which
are the standard deviations of the Poincaré plot perpendicular and along the identity
line respectively [18]. In addition, alpha1 and alpha2 were obtained, short and long-
term fluctuations of the detrended fluctuation analysis [19]. The expected results were a
reduced or increased HRV as explained by Task Force et al. [20].

The classification technique chosen was SVM, due to its efficiency and reliability as
described in the background section. Song et al. [7], state that SVMs are supervised
learning models that are used in regression and classification problems because they are
based on data analysis and pattern recognition, generating n-dimensional hyperplanes
to distinguish and separate various sets of characteristics, thus finding the optimal
hyperparameters. The algorithm was trained with the variables generated from the 56
records obtained with the chest strap, the results of its application are described in the
following section.

5 Results Obtained

Multiple combinations of inputs were applied for the algorithm training with the
purpose of obtaining the best model for the HRV classification. Zhao et al. [21]
describe a multiclass classification function in Matlab fitcecoc, which was used in the
present study with a linear kernel and its parameters were optimized using automatic
hyperparameter optimization. The corresponding evaluation was carried out through
obtaining two types of errors: the classification error in the sample, and the error
generated from cross validation. He et al. [22], state that the cross-validation technique

Fig. 2. Proposed working model.
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divides the training data into several non-contiguous parts with similar length. Each
one is selected as test data, while the rest are used as training. Then, the prediction
model is applied with these data and this process is repeated with each of the divisions
obtained. All predictions are averaged to give an estimate of the performance of the
algorithm.

As a first result, the most efficient inputs set was: HF, alpha1, alpha2 and nnxx.
With an error of classification of the sample of 8.9% and a cross-validation error of
9.7%, the behavior of the algorithm with this configuration is presented in Fig. 3. The
evaluation carried out by the optimization function to compare the expected behavior
with the real one, decreasing the cross-validation error, returning 90.3% of
effectiveness.

6 Analysis of Results and Discussions

During the algorithm tests, multiple cases with negative behaviors were evidenced,
such as the use of frequency domain variables only: HF and LF, because it did not grant
a satisfactory classification rate for the algorithm, it presented an error of 19.6%.
Likewise, the inclusion of the 8 entries in the model generated an overfitting problem,
same case was perceived when modifying the algorithm’s Kernel to Gaussian, pre-
senting a perfect fit to the training set with a sample classification error of 0%, but with
cross validation, the error was greater than 30%. This situation was propitiated by the
amount of data for the training set being very small in contrast to a high number of
features or entries, very common difficulty that is presented in the classification
algorithms with few data.

The most efficient set presents a mixture between the three methods that generate
variables for the HRV calculation, time and frequency domains and non-linear meth-
ods, which outlines a complementary behavior of these variables in HRV obtaining.

Fig. 3. Optimization of the proposed classification model.
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7 Conclusions

One of the main advantages presented in this study is the low cost in the acquisition of
the cardiac registry. The use of chest straps is a non-invasive method that does not
generate any secondary effects on the individual and does not present environmental
requirements, it can be applicable in any person who is doing any activity. Its use is
recommended in conjunction with applications that allow its consumption to be carried
out, because they have shown high reliability in its evaluation.

The integration and combination of variables of time and frequency domains and
nonlinear methods is a viable and effective alternative for the classification of HRV.
The proposed solution is suggested as a useful and practical tool for people who need
to know the HRV, since it is a health indicator and is related to various deficiencies and
diseases as expressed in the section of background. As future work and continuation of
this study we propose the improvement of the propounded model, increasing its effi-
ciency through the enrichment of the training set, providing greater experience to the
algorithm for its learning. Also, we want to make use of this solution as a component of
an application for physical training, supporting an athlete and personal trainers sug-
gesting exercise routines according to their physical condition, by tracking their HRV,
analyzing their progress and history, making use of GPS, to know changes of altitude
and length of routes.
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Abstract. For many years, synthesizing photo-realistic images has been
a highly relevant task due to its multiple applications from aesthetic or
artistic [19] to medical purposes [1,6,21]. Related to the medical area,
this application has had greater impact because most classification or
diagnostic algorithms require a significant amount of highly specialized
images for their training yet obtaining them is not easy at all. To solve
this problem, many works analyze and interpret images of a specific
topic in order to obtain a statistical correlation between the variables
that define it. By this way, any set of variables close to the map gener-
ated in the previous analysis represents a similar image. Deep learning
based methods have allowed the automatic extraction of feature maps
which has helped in the design of more robust models photo-realistic
image synthesis. This work focuses on obtaining the best feature maps
for automatic generation of synthetic histological images. To do so, we
propose a Generative Adversarial Networks (GANs) [8] to generate the
new sample distribution using the feature maps obtained by an autoen-
coder [14,20] as latent space instead of a completely random one. To
corroborate our results, we present the generated images against the real
ones and their respective results using different types of autoencoder to
obtain the feature maps.
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1 Introduction

Since its conception, the focus of deep learning has been to design high hier-
archy architectures which extract the best feature maps to represent probabil-
ity distributions over many kinds of data (images, audio, texts, etc.) [2]. This
approach has been successful for applications related to discriminative models
because feature maps are obtained to maximize the separation between labeled
or segregated groups in high-dimensional space. Hence, feature maps extraction
is associated with the discrimination process instead of prioritizing a precise rep-
resentation of the data [5,15]. On the other hand, deep generative models have
generated high impacts, since a few years ago, and several works [9,14,17,19,21]
have overcome the most significant problems that involved them. Goodfellow
et al. [8] proposed a generative model based on adversarial training, known as
GAN, which overcame the approximation of intractable probabilistic computa-
tions arising in maximum likelihood strategies, and the problem of leveraging
piecewise linear units in generative context.

Evidently, GANs are among the hottest topics in Deep Learning currently,
but synthesizing photo-realistic images is not an easy task. Images do not have a
sequential correspondence but spatial correspondence, so it is normal that edges
have generation and continuity errors because GANs include a discriminator D
that competes against the generator G and ideally they tie or G wins, however
in practice D usually wins which implies that the feature maps obtained in
the generation are more linked to D than to G. To overcome this problem,
several works have proposed improvements over the original pipeline including
regularization [16], re-defining cost function [17] and setting a convenient latent
space [11,13].

This work is based on the improvements proposed by several authors regard-
ing the common problems of the GAN regarding the synthesis of photo-realistic
images. Our proposal is to improve the quality of the generated images using
a Teacher-Network based on autoencoders to obtain a suitable latent space.
Finally the results using pre-trained latent spaces are visualized in order to eval-
uate their relevance. We use histological images as dataset because they are used
as reference for detection and diagnostic applications [1,10,12,18].

2 Proposed Approach

In the following, we describe the background techniques and methods, and pro-
vide further details on the proposed approach.

2.1 Generative Adversarial Networks

Generative adversarial networks [8] allow to model complex databases like a re-
sampling function, to do so a generative network G is pitted against an adversary
which is a discriminative network D. The discriminator model, D(x), learns to
determine whether a sample x came from G(z) or from the original training
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data while the generator model, G(z), maps samples z from the prior p(z) to
the data space and trains to maximally confuse D(x) by leveraging the gradient
and using that to modify its parameters, this interaction establishes a min-max
adversarial game between G(z) and D(x). The solution to this game is expressed
as following considering V (D,G) as the value function:

minGmaxDV (D,G) = Ex∼Pdata
[log(D(x))] + Ez∼P (z)[log(1 − D(G(z)))] (1)

G and D alternate the SGD training in two stages: (1) Train D to distinguish
the true samples from the fake samples generated by G. (2) Train G so as to
fool D with its generated samples.

In practice, Eq. 1 does not provide enough gradient for G to learn. Therefore,
at the beginning of the learning process G generates poor results and D rejects
z with high confidence, since z is clearly fake.

2.2 Autoencoders

An autoencoder (AE) is an unsupervised neural network that learns the proba-
bility distribution of a dataset by setting the target values equal to the inputs. In
other words, it tries to learn the function FW,b(x) ∼ x that resembles the iden-
tity function. An autoencoder has two parts: an encoder network h = f(x) and
a decoder network r = g(h). According to Goodfellow et al. [7], autoencoders
learn to generate compact representations and reconstruct their inputs well, but
they are fairly limited for most of the important applications. Autoencoders
latent space may not be continuous and does not allow easy interpolation, which
is a big problem considering knowledge representation spaces normally have
discontinuities.

Similar to GANs case, there are many variations done over the original
autoencoders architecture. Doersch et al. [5] presented variational autoencoders
(VAEs) as an unsupervised learning solution for complicated distributions. VAEs
work well for both feature extraction and generative modeling; their latent
spaces are continuous allowing easy random sampling and interpolation. Like-
wise, Makhzani et al. [15] proposed an adversarial autoencoder (AAEs) which is a
probabilistic autoencoder improved to perform variational inference by matching
the posterior encoded features, from the autoencoder, with an arbitrary prior dis-
tribution, from the GAN. AS Hitawala [9] mentions, the AAEs are trained using
a dual cost function, a reconstruction error criteria and an adversarial training
function that matches the aggregated posterior distribution of the latent space
to an arbitrary prior distribution.

3 Related Studies

Synthesizing photo-realistic images has allowed to explore new solutions based
on computer-aided diagnosis (CAD) [1,3,6,21]. Calimeri et al. [3] applies a GAN
to synthesize MRI images of brain slices considering visual resolution improved
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by a Laplacian Pyramid in order to avoid contrast loss. Zhang et al. [21] combines
GAN with wide-field light microscopy to achieve deep learning super-resolution.
Finally, [21] achieved synthesize many high-quality images. Tom et al. [18] pro-
posed a stacked GAN for the fast simulation of patho-realistic ultrasound images
refining synthesized ones from an initial simulation performed with a pseudo B-
model ultrasound image generator.

On the other hand, Coates et al. [4] mentions that several simple factors, such
as the number of hidden nodes in the model, may be more important achieving
high performance than the learning algorithm or the depth of the model. The
feature learning is a high-level specialized set of algorithms that prioritizes the
descriptors or feature maps over hierarchy or complexity of the learning model.
Hitawala et al. [9] compares different models and improvements based on GAN,
but adversarial autoencoders, in particular, lets us appreciate the impact of an
adequate selection of latent space, respect to other improvements made based
on the architecture. Considering feature maps as latent space, Kumar et al.
[13] mentions that semi-supervised learning methods using GANs have shown
promising empirical success. To do so, [13] uses the inverse mapping (the encoder)
which improves semantically the reconstructed sample with the input sample and
analyze the relationship between the number of fake samples and the efficiency
in semi-supervised learning using GANs.

4 Experimental Analysis

4.1 Dataset Description

The dataset consists of 670 RGB segmented nuclei images and their respective
masks. The images were acquired for Kaggle competition “Data Science Bowl
2018 - Find the nuclei in divergent images to advance medical discovery”1 under a
variety of conditions and cell types, magnification, and imaging modality (bright-
field vs. fluorescence) (Fig. 1).

Fig. 1. Original images from Data Science Bowl 2018 - “Find the nuclei in divergent
images to advance medical discovery” hosted by kaggle

1 https://www.kaggle.com/c/data-science-bowl-2018/data.

https://www.kaggle.com/c/data-science-bowl-2018/data
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In order to increase the dataset for training, we apply many classical methods
of data augmentation: divide into 9 sub-images and random rotations.

4.2 Experiments

To run experiments, we used a PC with the following settings: 3,6 GHz Intel
Core i7 processor, 16 GB 3000 MHz DDR4 memory and NVIDIA GTX 1070
and for the implementation we used Pytorch-0.4.0. Framework.

Our model consists on transferring the feature maps obtained from an autoen-
coder as the latent space of a GAN to improve its resolution in image generation.
For this, it is necessary to consider a parallel training. The autoencoder trains
to represent a feature map as close as possible to the dataset, while the GAN
specializes in performing the generation. For a fast implementation, we used the
Pytorch tutorials for autoencoders and GANs using MNIST dataset as refer-
ence2. To test our model and evaluate the impact of pre-trained feature maps,
the synthetic images are processed in a new pre-trained discriminator specialized
on nuclei detection3.

Table 1 shows the results (acceptance ratio ra of synthetic images) achieved
by the pre-trained discriminator using a simple autoencoder (AE), a variational
autoencoder (VAE) and the classic GAN model as feature maps generator. To
consider that a sample meets similar standards like the original ones, it is taken
into account how many nuclei it has based on the original images statistics and
how good it looks considering the originals.

Table 1. Statistics of the generated groups of images respect to the originals

Dataset µ ra

Original 7.20 -

GAN-AE 5.32 0.737

GAN-VAE 5.91 0.843

GAN 3.44 0.522

As Table 1 shows, the best statistical results and acceptance ratio are
obtained using a VAE as the feature maps generator. Visually, Figs. 2 and 3
present the results for the classic GAN and VAE-GAN model respectively.

2 https://github.com/MorvanZhou/PyTorch-Tutorial.
3 https://github.com/aksharkkumar/nuclei-detection.

https://github.com/MorvanZhou/PyTorch-Tutorial
https://github.com/aksharkkumar/nuclei-detection
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Fig. 2. Synthetic results using a simple GAN architecture. Detected nuclei in generated
images are inside white circles

Fig. 3. Synthetic results using pre-trained feature maps from a VAE as latent space.
Detected nuclei in generated images are inside red circles (Color figure online)
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5 Conclusions and Future Works

After the tests we carried out, it is concluded that the feature maps are essential
to adequately describe any dataset and in turn the detail of description depends
on the cost functions that define the main task. To synthesize images, a con-
siderable improvement is observed (greater than 0.2) by correctly defining the
feature map which is used as a latent space in GAN model. From that point,
the improvements become less and less noticeable for the VAE, but leave open
two direct future jobs. First, improving the resolution of synthetic images using
the RS-GAN or LAP-GAN cost function. Second, exploring more deeply the
usefulness of feature maps as well as evaluate their quality inside more complex
learning structures.
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Abstract. In many real-life applications data can be described through
multiple representations, or views. Multi-view learning aims at combining
the information from all views, in order to obtain a better performance.
Most well-known multi-view methods optimize some form of correlation
between two views, while in many applications there are three or more
views available. This is usually tackled by optimizing the correlations
pairwise. However, this ignores the higher-order correlations that could
only be discovered when exploring all views simultaneously. This paper
proposes novel multi-view Kernel PCA models. By introducing a model
tensor, the proposed models aim to include the higher-order correlations
between all views. The paper further explores the use of these models as
multi-view dimensionality reduction techniques and shows experimental
results on several real-life datasets. These experiments demonstrate the
merit of the proposed methods.

Keywords: Kernel PCA · Multi-view learning · Tensor learning

1 Introduction

Principal component analysis (PCA) [12] is an unsupervised learning technique
that transforms the initial space to a lower dimensional subspace while maintain-
ing as much information as possible. The technique is wildly used in applications
like dimensionality reduction, denoising and pattern recognition. PCA consist of
taking the eigenvectors corresponding to the np largest eigenvalues, also known
as the principal components, of the covariance matrix of a dataset, which span a
subspace that retains the maximum variance of the dataset. For dimensionality
reduction these principal components make up the lower dimensional dataset,
and thus the new dimension equals np.

Several nonlinear extensions to PCA were proposed. One well-known exten-
sion is kernel PCA (KPCA) [21]. Instead of working on the data directly, it first
applies a, possibly nonlinear, transformation on the data that maps the input
data to a high-dimensional feature space.

In multi-view learning the input data is described through multiple represen-
tations or views. A dataset could for example consist of images and the associ-
ated captions [14], video clips could be classified based on image as well as audio
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11140, pp. 205–215, 2018.
https://doi.org/10.1007/978-3-030-01421-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01421-6_21&domain=pdf
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features [13], news stories could be covered by multiple sources [7], and so on.
Multi-view learning has been applied in numerous applications both as super-
vised [3,28] and unsupervised [2,4] learning schemes. Multi-view dimensionality
reduction reduces the multi-view dataset to a lower dimensional subspace to
compactly represent the heterogeneous data, where each datapoint in the newly
formed subspace is associated with multiple views. Dimensionality reduction is
often beneficial for the learning process, especially when the data contains some
sort of noise [6,8].

Most multi-view methods optimize a certain correlation between variables of
two views. For example, in CCA [10] the correlation between the score variables
is maximized, and in Multi-view LS-SVM [11] the product of the error vari-
ables is minimized. In real-world applications, however, data is often described
through three views or more. This is usually accounted for by optimizing the
sum of the pairwise correlations between different views. Due to this approach,
higher-order correlations that could only be discovered by simultaneously con-
sidering all views, are ignored. This issue was pointed out by Luo et al. [16],
where the authors propose an extension to CCA, called Tensor CCA, that ana-
lyzes a covariance tensor over the data from all views. The model is formed
by performing a tensor decomposition, which has a computational cost that is
significantly higher than the cost of regular CCA. This idea of including tensor
learning is presented in Fig. 1.

View 1

View 2

View 3View 3

View 2

View 1

View 2

View 3

View 1

Fig. 1. An example with three views to motivate tensor learning in multi-view learning.
(left) The standard coupling: only the pairwise correlations between the views are taken
into account. (right) The tensor approach: the higher-order correlations between all
views are modeled in a third order tensor.

Tensor learning in machine learning methods has been studied before. For
example, Signoretto et al. [22] propose a tensor-based framework to perform
learning when the data is multi-linear and Wimalawarne et al. [27] collect the
weight vectors corresponding to separate tasks in one weight tensor to achieve
multi-task learning.

This paper investigates the use of tensor learning in multi-view KPCA, in
order to include the higher-order correlations. The paper proposes three multi-
view KPCA methods, where the first two are special cases of the last method.
Experiments, where the multi-view KPCA methods are used to reduce the
dimensionality for clustering purposes, show the merit of our proposed methods.
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We will denote matrices as bold uppercase letters, vectors as bold lowercase
letters and higher-order tensors by calligraphic letters. The superscript [v] will
denote the vth view for the multi-view method. Whereas the superscript (j) will
correspond to the jth principal component.

2 Kernel PCA

Suykens et al. [26] formulated the kernel PCA problem in the primal-dual
framework typical of Least Squares Support Vector Machines (LS-SVM) [25],
where the dual problem is equivalent to the original kernel PCA formulation of
Schölkopf et al. [21]. An advantage of the primal-dual framework is that it allows
to perform estimations in the primal space, which can be used for large-scale
applications when solving the dual problem becomes infeasible. The formulation
further provides an out-of-sample extension to deal with new unseen test data.

Suykens [24] later formulated the kernel PCA in the Restricted Kernel
Machines (RKM) framework, which preserves the advantages of the previous for-
mulation. The primal and dual model are formed by means of conjugate feature
duality, and give an expression in terms of visible and hidden layers respectively,
in analogy with Restricted Boltzmann Machines (RBM) [9]. The dual problem
is equivalent to the LS-SVM formulation (and hence the original formulation)
up to a parameter. Furthermore it is shown how multiple RKMs can be coupled
to form a Deep RKM, which combines deep learning with kernel based methods.

Given data {xk}N
k=1 ⊂ R

d, the primal formulation of KPCA in the RKM
framework is as follows:

min
w,hk

η

2
wTw −

N∑

k=1

ϕ(xk)Tw hk +
λ

2

N∑

k=1

h2
k (1)

for k = 1, . . . , N . The feature map ϕ(·) : Rd → R
dh maps the input data to a

high-dimensional (possible infinite) feature space. λ and η are positive regular-
ization constants and the hidden features hk correspond to the projected values.
The dual problem related to this primal formulation is:

1
η
Ω h = λ h (2)

where h = [h1; . . . ;hN ] and Ω ∈ R
N×N is a centered kernel matrix defined as

Ωkl = (ϕ(xk) − μ̂)T (ϕ(xl) − μ̂) , k, l = 1, . . . , N (3)

with μ̂ = (1/N)
∑N

k=1 ϕ(xk). The feature map ϕ(·) is usually not explicitly
defined, but rather through a positive definite kernel function K : Rd × R

d →
R. Based on Mercer’s condition [20] we can formulate the kernel function as
K(xk,xl) = ϕ(xk)T ϕ(xl).

Every eigenvalue-eigenvector pair (λ−h) can be seen as a candidate solution
of Eq. (1). The first principal component, i.e. the direction of maximal variance in
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the feature space, is determined by the eigenvector corresponding to the highest
eigenvalue of 1

η Ω. The maximum number of components that can be extracted
equals the number of datapoints N .

For an unseen test point x, the projection into the subspace spanned by the
jth principal component, i.e. the score variable ê(x)(j), can be obtained as

ê(x)(j) =
1
η
Ωtesth(j) (4)

where h(j) is the eigenvector corresponding to the jth largest eigenvalue λ and
Ωtest is the centered test kernel matrix calculated through the kernel function
K(xk,x) = ϕ(xk)T ϕ(x) for all k = 1, . . . , N .

If KPCA is used to perform dimensionality reduction, the new dimension of
the data equals the number of selected components np.

3 Multi-view Kernel Principal Component Analysis

In this section we conceive a KPCA model when the data is described through
different representations, or views. Instead of coupling the different views pair-
wise, we formulate an overall model so that also higher order correlations between
the different views are considered.

3.1 KPCA-ADD: Adding Kernel Matrices

A first model, called KPCA-ADD, is formed by adding up the different KPCA
objectives and assuming that all views share the same hidden features h.

Let V be the number of views, given data {x[v]
k }N

k=1 ⊂ R
d[v]

the primal
formulation is stated as follows:

min
w[v],hk

η

2

V∑

v=1

w[v]Tw[v] −
V∑

v=1

N∑

k=1

ϕ[v](x[v]
k )Tw[v] hk +

λ

2

N∑

k=1

h2
k (5)

The stationary points of this objective function, denoted as J , in the primal
formulation are characterized by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂J
∂hk

= 0 → λhk =
V∑

v=1

w[v]T ϕ[v](x[v]
k ),

∂J
∂w[v]

= 0 → w[v] =
1
η

N∑

k=1

ϕ[v](x[v]
k )hk,

where k = 1, . . . , N and v = 1, . . . , V.

(6)

By eliminating the weights w[v], the dual formulation is obtained:

1
η

(
Ω[1] + . . . + Ω[V ]

)
h = λ h (7)
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where Ω[v] is the centered kernel matrix corresponding to view v, defined as

Ω
[v]
kl =

(
ϕ[v](x[v]

k ) − μ̂[v]
)T (

ϕ[v](x[v]
l ) − μ̂[v]

)
for k, l = 1, . . . , N .

Notice that this coupling results in adding up the kernel matrices belonging
to the different views.

The score variables corresponding to a test point x can be calculated by:

ê(x)(j) =
1
η

V∑

v=1

Ω
[v]
testh

(j). (8)

4 Including Tensor Learning in Multi-view KPCA

Even though in the KPCA-ADD formulation the views are coupled by the shared
hidden features, there is still a model weight vector w[v] ∈ R

d
[v]
h for each view

v. In order to introduce more coupling, a model tensor W ∈ R
d
[1]
h ×...×d

[V ]
h is

presented. By using a tensor comprised of the weights of all views, instead of
coupling them pairwise, it becomes possible to model higher order correlations.

4.1 KPCA-PROD: Product of Kernel Matrices

The introduction of a model tensor W leads to the KPCA-PROD model, where
the primal formulation is given by:

min
W,hk

η

2
〈W,W〉 −

N∑

k=1

〈Φ(k),W〉 hk +
λ

2

N∑

k=1

h2
k (9)

where 〈·, ·〉 is the tensor inner product defined as

〈A,B〉 :=
I1∑

i1=1

· · ·
IM∑

iM=1

Ai1···iM Bi1···iM (10)

for two M -th order tensors A,B ∈ R
I1×...×IM . The rank-1 tensor Φ(k) ∈

R
d
[1]
h ×...×d

[V ]
h is composed by the outer product of the feature maps of all views,

i.e. Φ(k) = ϕ[1](x[1]
k ) ⊗ . . . ⊗ ϕ[V ](x[V ]

k ).
The stationary points of the objective function J in the primal formulation

are characterized by:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂J
∂hk

= 0 →λhk = 〈Φ(k), W〉 =

d
[1]
h∑

i1=1

· · ·
d
[V ]
h∑

iV =1

ϕ[1](x
[1]
k )i1 · · · ϕ[V ](x

[V ]
k )iV Wi1...iV

∂J
∂Wi1...iV

= 0 → Wi1...iV =
1

η

N∑

k=1

ϕ[1](x
[1]
k )i1 · · · ϕ[V ](x

[V ]
k )iV hk,

where k = 1, . . . , N and iv = 1, . . . , d
[v]
h for v = 1, . . . , V.

(11)
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By eliminating the weights, the following dual problem is derived:

1
η

(
Ω[1] � . . . � Ω[V ]

)
h = λ h (12)

where � denotes the element-wise product. Notice that the dual problem results
in element-wise multiplication of the view-specific kernel matrices.

The score variable corresponding to an unseen test point x can hence be
calculated by:

ê(x)(j) =
1
η

V⊙

v=1

Ω
[v]
testh

(j) (13)

where
⊙

is the element-wise multiplication operator.

4.2 KPCA-ADDPROD

Taking the element-wise product of kernel matrices can have some unwanted
results. Take for example kernel matrices comprised of linear kernel functions.
An element of such a linear kernel matrix could be negative, indicating a low sim-
ilarity between two points. By multiplying the elements of the kernel matrices,
highly negative values could result in a high positive value for a certain data-
point pair, which would indicate a very high similarity which is clearly unwanted.
Even for kernel matrices comprised of RBF kernel functions, where the values
lie between zero and one, a poor view indicating a certain datapoint pair as
non-similar and hence assigning a value close to zero, could influence the final
result to harshly.

Therefore a last model is proposed, called KPCA-ADDPROD, where the two
principles of the previous models are combined. A parameter ρ is added in order
to determine the influence of each part. The primal formulation is given by:

min
W,w[v],hk

η

2
〈W,W〉 − √

ρ

N∑

k=1

〈Φ(k),W〉 hk +
λ

2

N∑

k=1

h2
k

+
η

2

V∑

v=1

w[v]Tw[v] −
√

(1 − ρ)
V∑

v=1

N∑

k=1

ϕ[v](x[v]
k )Tw[v]hk

(14)

where ρ ∈ [0, 1] ⊂ R. By deriving the stationary points of the objective and
eliminating the weights, the following dual problem is obtained:

1
η

(
(1 − ρ)

V∑

v=1

Ω[v] + ρ

V⊙

v=1

Ω[v]

)
h = λ h. (15)

Note that if ρ = 0 the model is equivalent to KPCA-ADD, and if ρ = 1 it is
equivalent to KPCA-PROD.
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5 Experiments

This section describes the experiments performed to evaluate the multi-view
KPCA models, as dimensionality reduction techniques. To assess the perfor-
mance, the KPCA methods are used as a preprocessing step for clustering, and
the clustering accuracy is regarded as the evaluation criterion.

Two clustering methods are considered: k-means (KM) [18], a well known
linear clustering algorithm and Kernel Spectral Clustering (KSC) [1], a non-
linear clustering technique within the LS-SVM framework. To determine the
clustering accuracy, the NMI [23] is reported1. Due to the local optima solutions
found by KM, these results are averaged over 50 runs.

The performances of the proposed multi-view models are compared to the
performances on the views separately. Both by clustering the views directly, and
by clustering after KPCA was performed.

Model Selection. The parameter η is set to 1 in all experiments, since this
parameter is of most importance when multiple RKMs are stacked to form a deep
RKM. The RBF kernel function was used for all experiments, both for the KPCA
methods as for KSC. The performance of the (multi-view) KPCA models depend
on the (view-specific) kernel parameter and the number of principal components
np. For KPCA-ADDPROD it will also depend on the parameter ρ. Both KSC and
KM depend on the number of clusters, and KSC also on the kernel parameter.
These parameters are tuned through a grid search with 5-fold crossvalidation.
Since the methods are all unsupervised, the model selection criteria has to be
unsupervised as well. Here the Davies-Bouldin index (DB) [5] criterion is used.

Datasets. A brief description of each dataset used is given here:

– Image-caption dataset: A dataset comprised of images, together with their
associated captions. We thank the authors of [14] for providing the dataset.
Each image-caption pair represent a figure related to sport, aviation or paint-
ball. For each of these categories, 400 records are available. The first two
views consist of different features describing the image (HSV colour and image
Gabor texture). The third view describes the associated caption text by its
term frequencies. Gaussian white noise is added to the first two views.

– YouTube Video dataset: A dataset describing YouTube videos of video
gaming, was originally proposed by Madani et al. [19]2. The videos are
described through textual, visual and auditory features. For this paper we
selected the textual feature LDA, the visual Motion feature through CIPD
[29] and the audio feature MFCC [17] as three views. From each of the seven

1 To calculate the NMI, and hence asses the performance, the labels of the dataset are
used. However, notice that they are never used in the training or validation phase
of KM, KSC or the proposed multi-view KPCA models.

2 http://archive.ics.uci.edu/ml/datasets/youtube+multiview+video+games+dataset.

http://archive.ics.uci.edu/ml/datasets/youtube+multiview+video+games+dataset
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most occurring labels (excluding the last label, since these datapoints rep-
resent videos not belonging to any of the other 30 classes) 300 videos were
randomly sampled.

– UCI Ads dataset: This dataset, as described by Kushmerick [15]3, was
constructed for the task of predicting whether a certain hyperlink corresponds
to an advertisement or not. The features are divided over three views in the
same way as was done by Luo et al. [16]. The dataset consist of 2821 instances
not corresponding to advertisements, and 458 instances that do.

Results. The results of the performed experiments are depicted in Table 1. The
table shows the clustering accuracy found by using the clustering techniques on
the views directly, and when KPCA was applied as a dimensionality reduction
technique first. It further shows the accuracy when the proposed multi-view
KPCA techniques are applied. For the KPCA-ADDPROD method, also the
found optimal value for ρ is noted.

Table 1. NMI results, where the proposed methods function as dimensionality reduc-
tion methods for KM and KSC. The best performing methods, are indicated in bold.

Method Image-caption YouTube Video Ads
View 1 2 3 1 2 3 1 2 3
KM 0.502 0.301 0.206 0.434 0.200 0.052 0.068 0.028 0.071
KPCA+KM 0.516 0.328 0.412 0.375 0.207 0.065 0.016 0.021 0.047
KPCA-ADD+KM 0.596 0.273 0.016
KPCA-PROD+KM 0.154 0.076 0.291
KPCA-ADDPROD+KM 0.643 (ρ = 0.4) 0.279 (ρ = 0.2) 0.291 (ρ = 1)

KSC 0.061 0.107 0.066 0.028 0.025 0.030 0.017 0.077 0.312
KPCA+KSC 0.474 0.330 0.295 0.243 0.167 0.037 0.013 0.094 0.046
KPCA-ADD+KSC 0.520 0.166 0.085
KPCA-PROD+KSC 0.031 0.025 0.147
KPCA-ADDPROD+KSC 0.568 (ρ = 0.4) 0.248 (ρ = 0.2) 0.147 (ρ = 1)

A first observation is that the performance usually improves when using
KPCA as a dimensionality reduction method, when clustering the views sep-
arately. This encourages the use of dimensionality reduction in these datasets.
A notable exception is the accuracy when using KM on the first view of the
YouTube Video dataset.

A second observation is that the multi-view KPCA methods are able to
improve the clustering accuracy in five out of the six experiments, suggesting
the merit of using the multi-view techniques independently of the choice of clus-
tering technique. Only for YouTube Video dataset, the (multi-view) dimension-
ality reduction is not able to improve the result of applying KM on the first

3 http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements.

http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
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view directly. Another interesting observation is that the found optimal ρ for
each dataset is equal for both clustering methods. Since ρ determines the impor-
tance of the tensor model vector, this could be an indication of the number of
relevant higher order correlations in a dataset. For the first two datasets ρ is
relatively small. For these two datasets KPCA-ADD outperforms KPCA-PROD
considerably, which is to be expected as it is shown that these two models are
actually special cases of KPCA-ADDPROD with ρ = 0 and ρ = 1 respectively.
For the Ads dataset the found optimal ρ equals 1, and hence only the tensor
model vector is taken into account, suggesting a high importance of higher order
correlations.

6 Conclusion

This paper introduced novel Multi-view Kernel Principal Component Analysis
methods to perform KPCA when the data is represented by multiple views.
Techniques from tensor learning are applied in order to account for higher order
correlations between the views.

The paper starts from the primal RKM formulation of KPCA and shows
three approaches for a multi-view extension. It is shown that, when assuming
shared hidden features, the dual model results in kernel addition. It further shows
that introducing a model tensor, containing the information of all views, results
in kernel product in the dual formulation. Finally a third method is suggested
combining the two techniques.

The gain of these multi-view techniques is shown by using it as a dimen-
sionality reduction step before clustering. Experiments on multiple real-world
datasets with two well known clustering techniques, show the improvement of
using multiple views. The parameter controlling the importance of the model
tensor seems to indicate the importance of the higher order correlations.
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Abstract. The collaboration of multiple agents is required in many real world
applications, and yet it is a challenging task due to partial observability. Com-
munication is a common scheme to resolve this problem. However, most of the
communication protocols are manually specified and can not capture the dynamic
interactions among agents. To address this problem, this paper presents a novel
Attentional Communication Model (ACM) to achieve dynamic multi-agent
cooperation. Firstly, we propose a new Cooperation-aware Network (CAN) to
capture the dynamic interactions including both the dynamic routing and mes-
saging among agents. Secondly, the CAN is integrated into Reinforcement
Learning (RL) framework to learn the policy of multi-agent cooperation. The
approach is evaluated in both discrete and continuous environments, and out-
performs competing methods promisingly.

Keywords: Multi-agent � Communication � Cooperation � Attention
RL

1 Introduction

Many real-world applications, such as autonomous vehicle control, resource manage-
ment systems, etc., can be naturally modeled as multi-agent problems. Many solutions
have been proposed to address the multi-agent problem. For example, [2] has regres-
sively learned the strategy using a rate distortion theory-based information framework.
However, it has poor adaptability to complex decentralized problems. Recently, the
field of multi-agent RL has attracted massive attention [12, 13, 18], since it is one of the
main methods to train the system of self-learning through interaction with environment,
which is more in line with human learning model. Practically, RL can be successfully
utilized to solve single agent problems [16, 19, 20]. Unfortunately, it is difficult to solve
multi-agent problem via traditional RL models. One of the major challenges is the
instability of the environment. The environment of multi-agent RL relies on the actions
of multiple agents and involves the interactions among agents, which implies that the
key problem in multi-agent environment is how to do collaboration.
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Collaboration is an important manifestation of intelligence, making agents appear
as a whole rather than a collection of individuals. Communication is a common scheme
to achieve collaboration, of which the kernel is the construction of communication
protocol, including routing and messaging. Recently, manually specified communica-
tion protocols are basically applied in the field of RL [5, 10]. Most of them adopt the
action strategy of each agent as a message to stabilize the environment, which can not
adapt to changing environment and strategies. In addition to Hoshen’s dynamic con-
struction of communication routing, considering the different relationships among the
agents can lead to distinct influence [9]. However, except for determining the com-
munication routing, distilling the state information into the message is important for the
multi-agent problems. Because the action strategy contains a lot of useless information
so that it not only consumes communication resources but also distracts the attention of
agents, leading the policy to be difficult to achieve collaboration.

To address this problem, we propose an Attentional Communication Model
(ACM), so as to adaptively construct the communication routing and messaging. For
this purpose, we adopt the attention mechanism, which derives from the attention
model of the human brain [1, 8]. To introduce ACM for multi-agent collaboration, we
construct two networks, i.e., the policy network of agents as well as the Cooperation-
aware Network (CAN). CAN, which is a two-branch network, enables the dynamic
construction of communication protocols and services to the policy network. Two
networks are iteratively updated to obtain collaborating agents. ACM can effectively
use the information to achieve collaboration.

The main contributions of this paper are listed as follows:

(1) We propose the CAN, which dynamically calculates the relationships among
agents to ascertain the routing, and distills the state information into the message.
It not only saves the communication resources but also makes better use of the
action strategy so that the agents can get smart cooperation strategies and improve
the stability of training. Most importantly, CAN dynamically builds the com-
munication protocols to adapt to the changing environments and strategies.

(2) The CAN is successfully combined with the policy network built by RL algo-
rithms to construct ACM. The ACM demonstrates the outstanding ability in
collaboration with the environment after sufficient training.

2 Related Work

Early approaches of multi-agent interactions include no communication. M. Tan has
experimented with Q-learning using independent agents, but does not perform well in
practice [22]. This is due to the fact that each agent is partially observable and lacks the
necessary information because of a limited field of view. Under the constant learning and
changing of the agent’s strategy, the environment is extremely unstable, resulting in the
strategy of the agent being difficult to collaborate and converge. Another approach is
parameter sharing, such as [7, 11]. They can sample more from training strategies, but
lack the necessary information in partially observable environments, which makes the
strategy poor and converge slowly. Therefore, the recent work mainly focuses on
transmitting information through communications to stabilize the environment.
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The core of communication is the communication protocol. Some work has passed
on all the parameters of the policy [5] or simplified information about the training
strategy [10]. [3, 21] have used the deep Q-network (DQN) to construct agents, except
that [3] directly transmits the actions, while [21] broadcasts the communication vector
which is the mean value of the states. [4, 14, 15] have used a more sophisticated actor-
critic mechanism to deliver action strategies: all agents of [4] share a unique critic; [14]
has studied a critic for each agent, which is applicable to both cooperative and com-
petitive scenarios; but [15] has compared the above two settings and joined the
coordinator to encode the states and actions. [6] applies to GAN which passes images
to other generators. In a word, the above work has transmitted the action strategies of
other agents to stabilize the environment. They adopt the manually predefined com-
munication protocol. However, as the strategy and environment change, the necessary
information is constantly changing. So in this paper, the dynamic learning of the
communication protocol is adopted, and the communication messaging and routing are
determined through learning. The useful information of current state is selected to
prevent consuming the channel resources and distracting the attention.

Hoshen’s work [9] is most similar to ours. Hoshen has proposed VAIN which uses
the attention mechanism to compute the relationships among agents. This means that
VAIN has constructed the routing dynamically. The most important difference between
VAIN and ACM is that we dynamically build communication protocol, including
routing and more sophisticated message. The benefits of our work are to save the
communication resources, focus on the current useful state information, and train
agents with collaboration capabilities finally.

3 Approach

Among multi-agent problems, the construction of the communication protocol is one of
the most effective ways to achieve collaboration. Dynamically built the communication
protocol can adapt to the changing environment. Therefore, we introduce Attentional
Communication Model (ACM). In the following, we first define the model. Second, we
construct the framework and explain how to determine the communication routing.
Third, we elaborate how to dynamically distill the state information into the message.
Finally, the routing and messaging are combined to construct the communication
protocol.

3.1 Definition

The multi-agent problem is so complex, and in reality, it is usually partially observable.
To address this difficulty, it is a good choice to use Shared Parameters Partial
Observable Markov Decision Process (SP-POMDP) which is a classical approach
among multi-agent problem. Inspired by SP-POMDP, our problem model consists of
an ten-tuple \An;S;O;R;M;U;P;R;X; t[ , in which
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An ¼ fa1; a2; . . .; ang is the collection of all agents. n is the number of agents.
st 2 S is the state at the current time step t.
Oi

t ¼ foitjst 2 S; oit ¼ Oðst; iÞg is the observation space of player i. The observation
function O : S � f1; . . .; ng ! R

d specifies each agent’s d-dimensional view on the
state space. For the sake of simplicity we will write ot ¼ fo1t ; o2t ; . . .; ont g.

Ri
t 2 R, Ri

t ¼ fRi1
t ; . . .;Rin

t g, Ri
t are the relationships among agent i and all the

other agents at the current time step t.
Mt 2 M, Mt distills the observations information for all agents into message at

the current time step t.
ut 2 U, ut ¼ fu1t ; u2t ; . . .; unt g, is the collection of actions for all agents at the current

time step t. ut ¼ piðoit; ut�1;Ri
t;MtÞ, and pi is the policy of agent i.

Pðstþ 1jst; utÞ is the state transfer function of the agent.
R : oit � uit � ut�1 �Ri

t �Mt ! Ri
t, R

i
t is the reward function of the agent i.

X : oit � uit � ut�1 �Ri
t �Mt � Ri

t ! X stores all samples.

3.2 The Framework

ACM is a multi-agent communication model constructed by combining of CAN and
the policy network, as shown in Fig. 1. We first train the policy until it converges and
keep it fixed to train CAN. CAN uses the observations and actions of the agents to
construct the communication routing and messaging which are transmitted to the policy
network to get the action. Then the policy network calculates advantage values for
training parameters of CAN, which only exists in training. The calculation of the
advantage value is shown in Eq. 1, and c 2 ½0; 1Þ. The trained CAN remains fixed and
then integrates with the RL to obtain the final cooperative strategy.

Qðoit; uit; ut�1;Ri
t;MtÞ ¼ Eotþ 1;utþ 1;...½

X1
t¼0

ctRðoit; uit; ut�1;Ri
t;MtÞ�

Vðoit; ut�1;Ri
t;MtÞ ¼ Eut ;otþ 1;...½

X1
t¼0

ctRðoit; uit; ut�1;Ri
t;MtÞ�

Aðoit; uit; ut�1;Ri
t;MtÞ ¼ Qðoit; uit; ut�1;Ri

t;MtÞ � Vðoit; ut�1;Ri
t;MtÞ

ð1Þ

Fig. 1. The framework of ACM.
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CAN is a two-branch network consisting of Cooperation-aware Network Routing
(CANR) and Cooperation-aware Network Messaging (CANM). The role of CANR is
to dynamically ascertain the routing, while CANM is used to dynamically distill the
state information into the message. CAN originates from the attention mechanism. The
architecture of the network is shown in Fig. 2.

Attention is essentially a content-based addressing mechanism, so as to followup
information distillation. CAN uses the classic attention mechanism which is the
additive attention [1]. Hence, the core of the network can be interpreted by the fol-
lowing equation,

fattðai; ajÞ ¼ vTsigmoidðW ½ai; aj�jjW ½o�Þ ð2Þ

fatt is the attention function of CAN. v and W are the weight matrix of CAN. CANR
uses W ½ai; aj�, and CANM applies W ½o�. The use of the fully connected layers for CAN
facilitates the processing and distilling of all the information. The inputs of CAN are
the observations of all current agents, which are transmitted to two branches separately
after dimension reduction (Encoder). Inspired by the idea of [9], we here propose
CANR to determine the routing in a similar way.

CANR. CANR dynamically constructs routing. There are different relationships
between agents, which make different effects. Therefore, we dynamically model the
relationships between agents for determining the influence of others on the current
agent.

Fig. 2. Cooperation-aware Network (CAN) architecture diagram. Cooperation-aware Network
Routing (CANR) consists of a fully connected layer (snaking blue line symbolizes sliding of each
filter across inputs), followed by a softmax output layer, with a single output for each valid agent;
Cooperation-aware Network Messaging (CANM includes two fully connected layers, followed
by a softmax output layer, and each valid observation dimension has a unique output. Each
hidden layer is followed by a sigmoid nonlinearity. (that is, 1

1þ e�x) (Color figure online)
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Rij
t ¼ softmaxðait � a j

t Þ ð3Þ

where Rij
t represents the current attention of agent i to j. ait ¼ EðoitÞ is the observations

of agent i. E indicates the encoded process. CANR can construct the real-time com-
munication routing based on the relationships constructed above.

3.3 Message

CANM dynamically distills the state information into the message. The purpose of
communication is to transfer the state information for the agent to make the policy
achieve collaboration, thus the message plays a crucial role. When the information
dimension is large, the agent can not handle all the information well. Accepting too
much redundant information may distract agents and make agent not effectively utilize
the state information. Therefore, we propose to distill the message based on the
attention mechanism in a dynamic manner. As agents have different information
requirements in different periods, we distill the message before each iteration of the
agent’s policy.

CANM learns from the Trust Region Policy Optimization (TRPO) algorithm of RL.
TRPO [17] is a deterministic strategy gradient algorithm, which is characterized by
guaranteeing a monotonous increase of policies and is effective for optimizing large-
scale nonlinear strategies. At each time step, the goal of TRPO algorithm is to optimize
the policy under constraints:

maximize
h

Es� qhold ;u� q½phðujsÞqðujsÞ Ahold ðs; uÞ�

s:t:Es� qhold
½DKLðphold ð�jsÞjjphð�jsÞÞ� � d

ð4Þ

where qðujsÞ ¼ phold ðujsÞ indicates using existing phold for importance sampling. qhold ¼
qphold is the state-access frequency defined by phold . DKL shows the KL variance between

the two strategy distributions, and d controls the maximum change between two
strategies at each time step. A is the advantage value likes Eq. (1).

CANM updates the network parameters as in Eq. (5) according to the advantage
value passed by the policy network.

maximize
x

Eo� qph ;u� ph ½DDt
Ahðoit; uit; ut�1;ui

t;DtÞ�
s:t:Eo�qph

½DKLðDtjjD� � d
ð5Þ

where D ¼ Mx is the CANM network distribution. i is the index of agent. ui
t ¼ Ri

t
indicates the relationships among agent i to others at current time step. The advantage
value is still calculated by the policy network, but the parameters of the policy network
are currently fixed (h), with the only variable being the parameters of CANM. For the
policy network, we add an input that dynamically distills message for the current step
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to measure the impact of the currently selected message on the agent’s reward value.
The goal is to update the parameters of CANM in a direction that increases the reward.

Eventually, the optimization problem of CANM is shown in Eq. (6):

maximize
x

Eo�qph ;u�ph ½MxðEðotÞÞ
Mxt ðEðotÞÞAhðoit; uit; ut�1;Ri

t;MxtÞ�
s:t:Eo� qph

½DKLðMxtð�jEðotÞÞjjMxð�jEðotÞÞÞ� � d
ð6Þ

where EðotÞ is the input to the CANM network, which is the encoded value of the
observations for all current agents. We propose using TRPO to update the CANM as it
ensures monotonically increasing.

The CANM iteration algorithm, as shown in Algorithm 1, iterates the parameters
until convergence under the fixed policy network.

Algorithm 1 CANM Iteration Algorithms
Initialize 0

Obtain θπ
for t=0,1,2,... until convergence do

Compute all advantage values 1( , , , , )i i i
t t t t tA o u uθ − by θπ

Solve the constrained optimization problem
max

1

2

( ) maximize ( ) ( , )

4
(1 )

tt KL tL CD

whereC

η

εγ
γ

+ = −

=
−

and 

11( ) ( ) ( | , , , ) ( , , , , )
tt

i
t t

i i i i i i
M t M t t t t t t t t t t

o u

L M M u o u A o u uθθη ρ π −−= + ∑ ∑
end for

Algorithm 2 Attentional Communication Model
Obtain 1, ,t to u n− // to is the observations of all agents at time step t

( ( ))ttM CANM E o
for i=1 to n do

for j=1 to n do
( ( ))ij

ttR CANR E o

1[ ;[ ( ( )) ];[ ]]ij j ij
i i t t t t t tc c E o o u −⋅ ⋅ ⋅

end for
( , )jt i tu Policy c o

end for
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3.4 Attentional Communication Model

The final communication is:

ci ¼ ½½½Ri1MxðEðotÞÞ � o1t �; ½Ri1 � ut�1��; . . .; ½½RinMxðEðotÞÞ � ont �; ½Rin � ut�1��� ð7Þ

where ci represents the communication of agent i.
The ACM algorithm is illustrated in Algorithm 2. Firstly, the observations of the

agents are distilled into the communication message by CANM. Secondly, the com-
munication routing is determined by CANR. Thirdly, the communication routing and
messaging are combined to construct the communication protocol. And finally, com-
munication is passed to the policy for selecting the action.

4 Experiment

In this section, we compare the performance of our algorithm ACM with benchmark
experiments to demonstrate that our model achieves better results than competing
approaches. We test two tasks covering discrete and continuous environment. In all
experiments, we apply TRPO algorithm for learning the policy. The number of agents
is 10.

4.1 Environment

Pursuit. The state action space of pursuit is discrete. The environment contains two
types of agents - pursuer and evader. We train pursuer, and the goal is to catch the
evaders as soon as possible. In the experiment, evader takes a random policy. The agent
receives a reward (+5) when pursuers catch an evader. We also set a shaping reward of
0.01 for encountering an evader to ease exploration. Agents’ observations include the
information of surroundings, such as the locations of their nearest pursuer and evader.

Coordinating Bipedal Walkers. Multi-walker is a continuous environment. Each
walker, consists of a pair of legs, with the goal of multiple agents coordinated delivery
of a box. When the box drops, the reward minus 100, and with the reward 1 when
moving forward. They also receive an action penalty defined as the square norm of the
force applied. Each walker observes the terrain, adjacent walker location information
and package.

4.2 Experimental Settings

• Shared Parameters-TRPO (SP-TRPO): Shared parameters among all agents is the
basic form of TRPO algorithm applied in the field of multi-agent.

• Communication All-TRPO (CA-TRPO): The current observations and the last
move of all agents are taken as message. All agents use the same communications.
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• CANR-TRPO1: The current observations and previous actions of all agents are used
as the communication contents. CANR dynamically calculates the relationships
among agents to determine the routing.

• ACM: The messaging and routing of the agent are constructed dynamically based
on the environment using ACM.

4.3 Experimental Results Evaluation

In Fig. 3 we compare the performance of our method ACM with SP-TRPO, CA-TRPO
and CANR-TRPO in different environments. We can clearly contrast ACM of which
the average reward is higher than several other benchmark experiments in both discrete
and continuous environments. As expected, this indicates that ACM is effective in
multi-agent collaboration.

It can be seen in Fig. 3(a) that for the discrete problem, the final results of ACM
and CANR-TRPO are not significantly different. Because the dimension of the action
state space is small, the agent can handle it well. On the contrary, in Fig. 3(b) the
results of ACM are much higher than CANR-TRPO which are slightly higher than CA-
TRPO, indicating that distilling for information has a significant impact on experi-
mental results. Therefore, the proposed ACM is more suitable for continuous problems
with complex state space.

The message distillation results are visualized in Fig. 4. It can be seen that the
importance of information changes with the update of the strategy. Compared with
pursuit, the difference between final message distillation of multi-walker is greater. In
Fig. 4(b), the overall velocity of the agent, that is the 2,3,4-dimensional values,
compared with the velocity of each joint in each leg of each agent, which is values of 5
to 12-dimension, can be defined as abstract information. The values of 2,3,4-
dimensional information show an upward trend, indicating that more attention is paid

(b) Multi-Walker(a) Pursuit

Fig. 3. Average returns for multi-agent policies.

1 CANR-TRPO is built using the idea of [9], except that the TRPO algorithm is used here to build the
strategy.
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to the overall speed of the agent. The values of 5 to 12-dimensional information
decrease, indicating the attention on the turning point for each joint decreased, and pay
more attention to abstract information. This shows that the need for information is
different among agents with different mentalities. The junior agents may require more
specific information; advanced agents may require more emphasis on abstract infor-
mation and less on specific information.

5 Conclusions

Recently, the single agent tasks have made great progress, but the problem of multi-
agent is still beset with difficulties. We develop a new ACM for multi-agent collabo-
ration within the SP-POMDP framework. ACM is a multi-agent attentional commu-
nication model used to dynamically build the communication protocol. The
experimental results show that the proposed ACM can promote the agent to collaborate
as well as accelerate the learning of the agent.
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Abstract. This paper presents a system for calculating the optimum
velocities and trajectories of an electric vehicle for a specific route. Our
objective is to minimize the consumption over a trip without impact-
ing the overall trip time. The system uses a particular segmentation of
the route and involves a three-step procedure. In the first step, a neu-
ral network is trained on telemetry data to model the consumption of
the vehicle based on its velocity and the surface gradient. In the second
step, two Q-learning algorithms compute the optimum velocities and the
racing line in order to minimize the consumption. In the final step, the
computed data is presented to the driver through an interactive applica-
tion. This system was installed on a light electric vehicle (LEV) and by
adopting the suggested driving strategy we reduced its consumption by
24.03% with respect to the classic constant-speed control technique.

Keywords: Trajectory optimization · Velocity profile · Racing line
Topographical data · Electric vehicle · LEV · Neural network · LSTM
Reinforcement learning · Q-Learning

1 Introduction

Over the last decade there has been a great effort to reduce fuel consumption
and dependence on fossil fuels. Electric cars have limited autonomy due to the
poor energy density of current batteries. The need for ever improving autonomy
has stimulated research aiming at developing control strategies that exploit the
characteristics of a particular terrain [1,2]. These strategies regard the best over-
all velocities and trajectory that a vehicle has to maintain in order to minimize
energy consumption. We will refer to these strategies as trajectory optimization.

A plethora of research has been conducted on vehicle trajectory optimization
[3–7]. Most of the publications use theoretical analysis and Newtonian physics
in order to model the consumption characteristics of a vehicle. In this paper, we
present an architecture based on Long Short Temp Memory Networks (LSTM)
[8] that model the consumption of a light electric vehicle (LEV). The Neural
Network (NN) has been trained with data acquired from the vehicle during the
European Shell Eco Marathon.
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Researchers have identified that real time speed guidance decreases long-term
fuel consumption up to 47% [6]. For the purpose of this paper we conducted a
parametrical analysis of a Q-Learning algorithm [9] to approximate the optimum
velocity profile for a LEV. The optimum velocity profile is a sequence of elements
which correspond to the velocities that a vehicle has to maintain on every part
of a specific route and leads to consumption minimization. A second Q-Learning
algorithm approximates the racing line [10,11], which is the optimum trajectory
the driver has to follow on the track.

The driver has to remain focused on the road. The calculated data has to
be presented to the driver in a simple and intuitive way. For that reason, we
propose an interactive system which can be mounted on the steering wheel of a
vehicle and guide the driver through a simple graphical interface.

The completed system was installed on a LEV and was tested in a closed
test track during the European Shell Eco Marathon 2017.

2 Onboard Systems

2.1 Vehicle Characteristics

The vehicle under study is a three-wheel light electric vehicle (LEV) equipped
with an In-wheel Surface Mounted Permanent Magnet (SMPM) motor with
Fractional Slot Concentrated Windings (FSCW) and unequal stator teeth, com-
prising of 16 poles and 18 slots, which is mounted in the back wheel [7]. The
electric motor is driven by a three phase, two-level-bridge voltage source inverter.
The system is fed by lithium batteries.

2.2 Data Gathering System

The vehicle is equipped with a telemetry system, which takes measurements of
the phase current of the motor and a Global Positioning System (GPS) which
calculates elevation, velocity, latitude and longitude of the vehicle. The sam-
pling rate of the system is 50 Hz. The gathered data is used to train the NN
consumption model and the Q-Learning algorithms offline.

2.3 Online Monitoring System

The online monitoring system uses sensors to oversee the dynamics of the vehicle
and present the guiding application to the driver. The exact position of the
vehicle is calculated by two Lidar V3 sensors, which measure the distance of
it from the boundaries of the testing track, and one GPS sensor. The vehicle
current speed is measured with a speedometer and the exact position of the
steering wheel is captured by a linear potentiometer mounted on the steering
wheel column. As a computational unit we use a Raspberry pi 3 with a monitor.
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3 Neural Network Consumption Model

The LSTM NN [8] consumption model uses elevation, E(n), and velocity, V(n),
sequences as inputs. The output is the consumed phase current of the electric
motor, I(n). For the hidden layers we chose LSTM units with a sigmoid activation
function. Finally, the output layer is a fully connected node.

The selected architecture has 50 LSTM nodes in the first layer and 35 LSTM
nodes in the second. We concluded to this particular layout by examining all the
combinations of nodes between 0 and 100 for a two layer NN. This architecture
minimizes the mean square error of the training process.

The data acquired from the telemetry system is first passed through a clean-
ing process. In this stage, we remove data corresponding to negative phase cur-
rent values. These are invalid elements as the vehicle does not have regenerative
braking and the phase current is always positive. Also, zero latitude and longi-
tude measurements are removed. The zero values correspond to loss of signal on
the GPS sensor. At a 50 Hz sampling rate the percentage of the removed values
is significantly smaller than the size of the training set and therefore we did not
alter the sequence of the data.

The inputs fed into the network are sequences of 300 elements each and the
output is the sum of the consumed phase current from these measurements.

The training process was conducted with a training data set of 658.500 mea-
surements which correspond to 13 laps from the eco-marathon 2016 and 9 rounds
from the eco-marathon 2017. The validation set consisted of 36.000 elements from
1 lap on the 2017 track.

The neural network was implemented with the KERAS library. We used the
RMSprop optimizer and early stopping with the patience parameter set to 13
epochs. Finally, the learning rate was set to 0.001. After training, the mean
squared error was 0.3972 (Figs. 1 and 2).

Fig. 1. The real consumption of the vehicle and the approximation of the NN for an
unknown dataset are shown in this figure. The vertical lines represent the changes of
monotony on the consumption curve. The network is able to identify the areas of the
track in which the vehicles consumption monotony differs. The difference between the
consumed current of the test round and the approximation of the network is 17.48%.
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Fig. 2. As a baseline we designed a Multilayer Perceptron (MLP) network [13] with
the same architecture as the LSTM NN described above. The approximation of the
MLP is presented here.

4 Velocity Optimization

4.1 Q-Learning Algorithm Design

The grade of the driving surface is the most important factor when deciding the
fuel optimum velocity profile [1]. Therefore to set the states of the environment
we examined the elevation data from the GPS system. We made a segmentation
in accordance with the monotony of the elevation. Every time the monotony
changes we set a different state. The results of this segmentation are presented
in Fig. 3b. According to our research a larger set of track slots does not lead to
better results.

The second step of the algorithm design involves the appropriate values of
action, which correspond to the appropriate values of speed. All velocities that
the agent is able to choose from have been described as follows:

v min ≤ v ≤ v max (1)

Where v min = 10 km/h (2.778 m/s) and v max = 45 km/h (12.5 m/s)
The policy has been initialized with the desirable average velocity for every

state. The other constants of the algorithm have been set to the following values.
The discount factor has been set to 0, as the reward from the next state is not
affected from the taken action. Moreover, the learning rate has been set to 0.7.
Finally we assume that the policy has converged when it does not change for
2000 epochs.

4.2 Reward Function

The Reward function has the greatest impact on successfully training the agent.
It consists of two important factors. Firstly, it evaluates if the desirable average
speed is being maintained. Secondly, it evaluates whether the policy of the agent
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is an improvement on the consumption of the previous strategy. These are the
two criteria that the algorithm has to meet.

The time reward concerning the average velocity of the vehicle has been set to
a constant. Specifically, if the average speed is within the desirable margin then
the reward is set to 0.5, otherwise it has the value of −0.5. To approximate the
average velocity, the algorithm computes the weighted average from the length
of each state (wi) and the corresponding velocity (vi).

μ =
∑

wi × vi∑
wi

(2)

The desirable margin is (m − 1, m + 1), where m is the desirable average
speed.

To approximate the consumption of the vehicle for every velocity profile the
NN described above has been used. Every time the agent makes the choice to
maintain a specific speed into the boundaries of a state, the NN calculates the
consumed energy for the entire trip. Then, this approximation is being sub-
tracted from the policy’s consumption. Finally, the result from the subtraction
is multiplied by a discount factor k. We used this discount factor to keep the
balance between the two rewards. To set the optimum value for the parameter
k we conducted a statistical analysis of the used data. We discovered that the
expected value of the subtraction between the policy consumption and the new
approximation (d) was:

E[d] = 32.369 (3)

Thus, in order to balance these two amounts we set the value of k as 0.02.
With this specific setting the expected value of the consumption reward is:

k × E[d] = 0.647 (4)

That means there is balance between the two rewards. The final reward is
equal to the sum of the time reward and the consumption reward.

Fig. 3. (a) The testing track map. (b) Track segmentation based on the elevation data.
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4.3 Action Selection Strategy

The primary challenge is choosing the agent’s action. We used the ε-greedy
strategy to balance the exploitation and the exploration by behaving most
of the time greedily, while choosing a uniform random action with a small
probability p.

selectionstrategy =

{
random choise of action with probability p
argmax a ∈ A Q(s, a) with propability 1 − p

(5)

The probability that we used is:

p = e−n×ε (6)

An initial analysis has been conducted to establish the most suitable explo-
ration rate. To test the decaying setting, the value of ε as in Eq. 6 had been set to
have a varying rate at 0.001, 0.0001, and 0.00001. For the gradually decreasing
exploration method the value of ε = 0.0001 has been selected for this study as
it provides the best performance over other values (Table 1).

Table 1. Experimentation with ε-Value

ε − V alue Convergence Speed Consumption Approximation

0.001 3870 4.449

0.0001 4970 4.408

0.00001 8620 4.428

5 The Racing Line

5.1 Introduction

The racing line is the trajectory that a driver should follow to achieve the best
lap-time on a given track with a given car. The racing line depends on several
factors [10,11] including the track shape, the tire grip and the mass of the vehicle.
Besides engine dynamics, the maximum velocity of a vehicle depends on the
following parameters:

vmax =

√
F × r

m
(7)

F is the gripping force from the tires, m is the mass of the vehicle and r
is the radius of the circle which is tangent to the trajectory of the vehicle. To
approximate the racing line we calculate the trajectory that maximizes the radius
of the tangent circle.



236 A. Bougiouklis et al.

Fig. 4. (a) The chosen optimum velocity profile for the track of Fig. 3a with a desirable
average speed of 25 km/h. The actual average velocity of the profile is 25.975 km/h.
(b) In orange we distinguish the elevation profile of the test track and in blue the
velocity profile. (c) Velocity profiles with different average speeds of 24.8, 25.9, 27.1,
28.7, 29.8 km/h, the same strategy is being used for various trip times. (Color figure
online)

5.2 Algorithm Design

The trajectory has been represented by points of the track. Each element of the
trajectory is a state of the environment.

The agent is able to move each point across the width of the track. The
average width of this specific route is 6 m and we have set the movement step
to 1 m. All the calculations were conducted with the latitude and longitude
coordinates.

The policy has been initialized with the trajectory which corresponds to the
middle of the track. We set the discount factor to 0, the learning rate to 0.001
and we assumed that the policy has converged when it does not change for 10000
epochs.

5.3 Reward Function

As Eq. 7 shows, the goal of the agent is to approximate the trajectory of the
vehicle which maximizes the radius of the tangent circle. For the purpose of this
study every circle is tangent to three elements of the trajectory (A, B and C). In
order to calculate the radius, firstly, we approximate the two lines which connect
these elements. Secondly, we approximate the common point of their mediators
(M). Finally, we measure the distance between A and M, this measurement is
the radius of the tangent circle of the trajectory.
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In every iteration one point Pi of the trajectory is moved and the radii of
three tangent circles is calculated. Every circle is tangent to three successive
points. The first circle (a) is tangent to the point being moved and the two
previous points on the trajectory (Pi−1, Pi−2), the second one (b) to Pi and two
points ahead (Pi+1, Pi+2) and the third one (c) to Pi−1, Pi, Pi+1. The reward
is equal to the sum of the radial differences from the policy of the agent and the
new action.

r = (ra − rpolicya
) × i + (rb + rpolicyb

) × j + (rc + rpolicyc
) × k (8)

Where ra, rb, rc correspond to the radiuses of the new trajectory and the
rpolicya

, rpolicyb
, rpolicyc

to the policy’s trajectory. Furthermore, the i, j, k are
constant parameters the value of which has been set to i =1, j = 0.1 and k =
0.1. These values have been optimized for this particular track and they were
the result of experimentation in the range [0, 1].

5.4 Action Selection Strategy

An initial analysis has been conducted to establish the most suitable exploration
rate for the ε in ε-greedy strategy. The value of ε as in Eq. 6 has been set to have
a varying rate at 0.01, 0.001, 0.0001, and 0.00001.

For the gradually decreasing exploration method the value of ε = 0.001 has
been selected for this study as it provides the best performance over other values
(Table 2 and Fig. 5).

Table 2. Experimentation with ε-Value

ε − V alue Convergence Speed %Total State Action Pair V isited

0.01 1800 84.877

0.001 9600 85.34

0.0001 68000 85.031

0.00001 999996 94.256

Fig. 5. The red points indicate the racing line approximation of the algorithm and the
green points the middle line of the track. As it is shown the tangent circles of the racing
line always have bigger radii, thus the racing line approximation is a better solution
than the middle line. (Color figure online)
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6 Interface

We developed an application which can be mounted on the steering wheel of a
vehicle and present in real time the optimum trajectory and the velocity profile.
The interface includes a red ball which moves up or down if the vehicle’s cruising
speed is too fast or too slow and tends to go right or left if the vehicle does not
follow the racing line. The driver can make the appropriate corrections by moving
the steering wheel or pushing the throttle. The behavior of the driver is always
monitored by the system described in Sect. 2.

The completed system is simple and its minimalistic design leaves the con-
centration of the driver unaffected.

Fig. 6. (a) The implementation of the graphical interface into the raspberry pi. (b)
Illustration of a game scenario.

7 Testing and Results

The presented system has been installed on the LEV described in Sect. 2. To
test the results of the system and the behavior of the driver when the system
is running we conducted the following experiment during the Europe Shell Eco
Marathon event 2017. First, we asked the driver to maintain a constant velocity
on the closed track mentioned above, which is 1.7 km in length, as a regular

Fig. 7. Graph 7a shows the generated power from the engine of the LEV when the
driver maintains a constant velocity of 25 km/h in the testing track. Graph 7b shows
the generated power when the driver uses our system with the velocity profile of Fig. 4a
and the racing line of Fig. 6a.
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cruise control system would do. Second, we used the suggested system and the
driver tried to follow the optimum trajectory while driving with the same desired
average velocity. The experiment showed that the driver was able to follow the
instructions of the system and by adopting the suggested driving strategy the
total consumption was reduced by 24.03% (Fig. 7).

Acknowledgements. We would like to thank Prometheus research team of National
Technical University of Athens for providing the LEV for the research.
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Abstract. Recent work on learning in multi-agent systems (MAS) is
concerned with the ability of self-interested agents to learn cooperative
behavior. In many settings such as resource allocation tasks the lack
of cooperative behavior can be seen as a consequence of wrong incen-
tives. I.e., when agents can not freely exchange their resources then
greediness is not uncooperative but only a consequence of reward max-
imization. In this work, we show how the introduction of markets helps
to reduce the negative effects of individual reward maximization. To
study the emergence of trading behavior in MAS we use Deep Rein-
forcement Learning (RL) where agents are self-interested, independent
learners represented through Deep Q-Networks (DQNs). Specifically, we
propose Action Traders, referring to agents that can trade their atomic
actions in exchange for environmental reward. For empirical evaluation
we implemented action trading in the Coin Game – and find that trading
significantly increases social efficiency in terms of overall reward com-
pared to agents without action trading.

1 Introduction

The success of combining reinforcement learning (RL) and artificial neural net-
works (ANNs) in single agent settings has also respawned interest in multi agent
reinforcement learning (MARL) [8,9,16,20]. In so called independent learning
each agent is represented by a neural network which is trained according to a
specific learning rule such as Q-learning [12]. When agents are self-interested the
emergent behavior is often suboptimal as agents learn behavior w.r.t. their indi-
vidual reward signal. In tasks such as resource allocation problems this leads to
first-come, first-served strategies. The resulting allocations from such strategies
are in general inefficient. An allocation is said to be inefficient, if there is another
allocation under which at least one agent has higher reward and all other agents
have at least equally high rewards compared to the former allocation.

While some work tries to mitigate greedy behavior based on game theoretic
strategies such as Tit-for-Tat [9] we argue that inefficiency can also be seen as a
consequence of market failure. Specifically, many settings provide no incentives
for agents to increase efficiency. I.e., as long as an agent’s best alternative in
terms of utility is being greedy then the learned behavior is rational rather than
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11140, pp. 240–249, 2018.
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Fig. 1. Two agents competing for a coin: while pure self-interested behavior without
trading incentivizes agents to act greedily the introduction of a market can help to
increase both agents’ expected value. (Color figure online)

uncooperative. However, individual utility maximization can originate efficiency
when agents are enabled to incentivize other agents. We call such a mechanism
a market for behavior as it enables agents to trade behavior in exchange for
other resources e.g. environmental reward. In the presence of a behavior market
a utility maximizing agent can invest to stimulate behavior.

Figure 1 illustrates how the introduction of a behavior market helps to over-
come inefficiency in a stylized scenario. Suppose two agents are competing for a
coin where agent 1 (yellow) gains a reward of +1 while agent 2 (blue) gains a
reward of +2 from gathering the coin. When there is a probability of 0.5 for both
agents to get it when they step forward then they will have an expected value
of 0.5 (agent 1) and 1 for agent 2. As each agent only considers it’s own reward
there will be no incentive for agent 1 to dedicate the coin to agent 2 while this
would maximize the overall outcome. This changes when agents are enabled to
exchange reward for behavior. When being able to trade, agent 2 could propose
agent 1 a reward +1 when agent 1 steps back. In this case, expected values are
both 1 which increases overall reward.

The main contributions of this paper are:

– A definition of action trading as a realization of a behavior market.
– Empirical evidence that the introduction of markets is sufficient in order to

increase efficiency in MAS.

The rest of this paper is organized as follows: Sect. 2 gives an overview
about related work. Section 3 describes the learning methods. Section 4 intro-
duces action trading. Finally, in Sect. 5 we evaluate action trading in two exper-
iments comparing self-interested agents with and without action trading in a
matrix game and the Coin Game.

2 Related Work

Independent and cooperative RL in multi-agent systems has been researched for
decades [10,14,21]. Recent successes of both model-free and model-based deep
RL extending classical approaches with learned abstractions of state and action
spaces [12,17,19] motivated the use of deep RL also in multi-agent domains [1,3].
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The tensions of cooperation, competitiveness, self-interest and social welfare
have traditionally been researched in the framework of game theory [13]. Game
theory has also been a central theoretic tool for studying multi-agent systems
[18]. A recent line of research investigates game-theoretic considerations in multi-
agent (deep) RL settings, extending the idea of classical games into the setting
of sequential decision making under uncertainty [8,9,16,20].

In particular, to bring the concept of social dilemmas closer towards real-
world problems the authors of [8] propose sequential social dilemmas (SSDs)
where cooperation and competition cannot be seen as an atomic action but are
represented through complex policies. In different experiments the authors show
how learned behavior depends on the choice of environmental factors such as
resource abundance. Through variation of these external properties the authors
train different policies and classify these as cooperative or competitive respec-
tively. In this work we adopt the idea of SSDs with multiple independent agents
each represented through deep Q-networks. Still, in our analysis we do not focus
on the emergence of cooperative policies through variation of environmental fac-
tors. Instead we were interested in answering the question whether in a system
of autonomous, self-interested agents the chance to make economical decisions
leads to efficient allocation of resources and hence increases social welfare.

In [20] the authors demonstrated how cooperative behavior emerges as a
function of the rewarding scheme in the classic video game Pong. Agents, repre-
sented by autonomous Deep Q-Networks, learned strategies representing cooper-
ation and competition respectively through modification of the reward function.
In our approach we do not specify the rewarding scheme as a static property of
the environment but rather as a changing structure through which agents can
express their willingness to cooperate.

To deal with resource allocation in MARL the authors in [11] propose resource
abstraction where each available resource is assigned to an abstract group.
Abstract groups build the basis for new reward functions from which learn-
ing agents receive a more informative learning signal. Whereas the building of
abstract resource groups and hence the shaping of rewards is done at design
time, in this work the transformation of reward schemes is part of the learning
process.

An approach to carry the successful Prisoner’s Dilemma strategy tit-for-tat
into complex environments has been recently made by Lerer and Peysakhovich
[9]. In their work they construct tit-for-tat agents and show through experi-
ments and theoretically their ability to maintain cooperation while purely reac-
tive training techniques are more likely to result in socially inefficient outcomes.
The analysis of reward trading agents is more interested in emergent properties
than in implementing a fixed strategy. We therefore make no other assumption
than agents maximizing their own returns.

3 Reinforcement Learning

For the purpose of this work we follow the line of descriptive approaches similar to
[8]. Rather than asking what learning rule agents should use we model each agent
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as a specific learner and observe the emergent system behavior. In this sense we
model agents as independent learners, i.e., agents cannot observe each other but
only recognize a changing environment which is the result of the learning of
other agents. We apply methods from the framework of reinforcement learning
where it is known that indepenent learning results in non-stationarity as well as
to the violation of the Markov property [4,7]. However, as [8] points out in the
descriptive approach this can be considered as a feature rather than a bug as it
is an aspect of the real environment that the model captures.

Reinforcement learning (RL) are methods where an agent learns a policy π
from repeated interaction with an environment. If multiple agents are involved
the problem can be described with a so called Stochastic Game (SG). Formally,
a SG is a tuple (S,N ,A, T ,R) where: S is a finite set of states, N is a finite set
of I players, A = A1 × ... × AI describes the joint-action space where Ai is the
finite action set of player i, T : S × A × S → R is the transition function and
R = r1, ..., rI where ri : S × A → R is the reward function for player i [4].

An agent’s goal is to maximize its expected return which is Rt :=∑∞
t=1 γt−1Rt. An agent decides which actions to take in a certain state accord-

ing to a policy π which is a function π : S → P(A) from states to proba-
bility distributions over A. Over the course of training the agent is supposed
to learn a policy that maximizes the expected return. One way to obtain
a policy is to learn the action value function Q : S × A → R that gives
the value of an action in a certain state. A popular way to learn the action
value function is Q-learning where an agent i updates its values according to:
Qi(s, a) ← Qi(s, a)+α

[
ri+γ maxa′∈Ai Qi(s′, a′)−Qi(s, a)

]
where α is the learn-

ing rate and γ is a discount factor. From Q a policy π can be derived by using
e.g. ε-greedy action selection where with probability 1 − ε the agent selects an
action with argmaxa∈AQ(s, a) and with probability ε the agent selects an action
random uniform from the available actions.

In this work, we model agents as independent Q-Learners. Deep RL refers
to methods that use deep neural networks as function approximators. In deep
multi-agent RL each agent can be represented by a deep Q-network (DQN) [12].
For independent learners, each agent stores a function Qi : S × Ai → R that
approximates the state-action values.

4 Action Trading

This section formally introduces action trading which is realized through extend-
ing agents’ action spaces. The idea of action trading is to let agents exchange
environmental reward for atomic actions. Learning then comprises two parts:
policies for the original action space of the stochastic game and a trading policy
that represents an agent’s trading behavior. To keep notation simple we define
action trading for the two agent case i.e., N = {1, 2}.

For a given stochastic game (S,N ,A, T ,R), action trading is realized
through extending action spaces A1 and A2 in the following way: A′

1 =
A1×(A2×[0, .., N ]) and A′

2 = A2×(A1×[0, .., N ]). I.e., action spaces A′
i comprise
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the original actions aorig ∈ Ai and also trading actions atrade ∈ Aj × [0, .., N ].
A trading action atrade is a tuple (aij, p) that defines the amount of reward
p ∈ [0, ..., N ] that agent i is offering agent j for an action aij . p therefore is
the price an agent pays and is transferred from agent i to agent j if a trade is
established.

In this work we require a successful trade to satisfy two conditions. Firstly,
agent i made an offer to agent j at time-step t for action a written as aij .
Secondly, also at time-step t agent j actually chose action a, written as aj . Thus,
a trade will only be established if offer and supply match at the same time step.
The resulting rewards at time-step t in the two agents scenario for agent 1 are
r1t = R1 + p2 ∗ δ21 − p1 ∗ δ12 and for agent 2 r2t = R2 + p1 ∗ δ12 − p2 ∗ δ21 where
Ri represents the original environmental reward and δij are boolean values to

define successful trades i.e., δij =

{
1, if aij = aj ,

0, otherwise
.

Fig. 2. Action trading describes a mechanism to offer other agents environmental
reward in exchange for specific actions. Agents therefore choose in addition to their
original actions also trading actions. A trade is realized when an offer matches an actual
action.

Figure 2 visualizes how action trading is realized. Agents select actions from
their original action space and from the trading action space. Trading actions
describe agents’ offers towards other agents for specific actions. Whenever an
offer matches an actual performed action a trade is realized i.e., a fixed amount
of reward is transferred between the two involved agents.

5 Experiments

In this section, we describe two experiments. The first experiment is an iterated
matrix game that has been extended to enable agents to trade actions. The
second experiment is the Coin Game, which is used for studying sequential social
dilemmas in the recent literature for multi-agent learning [2,9]. In all experiments
we compared action traders with self-interested agents.

To measure the social outcomes of multi-agent learning, it is necessary to
define a metric as the value function cannot be used as a performance metric
like in single agent RL. To measure efficiency, we use the total sum of rewards
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obtained by all agents over an episode of duration T , also called the Utilitarian
metric (U), which is defined by [15]: U = E[

∑N
i=1 Ri

T ] where Ri =
∑T

i=1 rt
i is the

return for agent i for a sequence of rewards {ri
t|t = 1, ..., T} over an episode of

duration T . For the Coin Game the Utilitarian is complemented by the total
number of collected coins, and the share of correctly collected coins within one
episode.

5.1 Iterated Matrix Game

To study the effects of action trading in a simple matrix game, we used a game
with pay-offs as given in Fig. 3a. Action trading in the matrix game was realized
by extending action spaces Ai = {1, 2} to Ai = {(1, 0), (1, 1), (1, 2), (2, 0), (2, 1),
(2, 2)}, i.e., each agent decides what action to take from the original action space
in combination with a trading action. The price in terms of reward is fixed with
p = 1 for all actions. As learning rule we used tabular Q-learning with learning
rate α = 0.001. For action selection we used the ε-greedy Q-Function with ε
decaying from 1.0 to 0.1 over 2500 steps.

The results from 100 runs each comprising 2500 steps are shown in Fig. 3.
Independent learners without trading (blue) start to select the dominating action
(1, 1) with high probability which is reasonable as agent 2 only ever receives
reward when choosing action 1. Likewise, agent 1 learns to choose action 1 as a
best response to the selection of agent 2. In contrast, independent learners with
action trading (green) have decreasing reward for around 1000 steps. Afterwards
overall reward constantly increases.

1 2

1 0.5 / 0.5 4.0 / 0.0

2 0.0 / 1.0 1.0 / 0.0

Agent1

Agent2

(a) Payoffs

0 500 1000 1500 2000
Step

0.5

1.0

1.5

2.0

2.5

3.0

3.5

re
w
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d

trading
no-trading

(b) Overall reward

Fig. 3. 100 runs of the iterated matrix game with payoffs as given in the table (left).
Whereas non-trading agents (blue) fail to find a global optimum agents with action
trading (green) eventually learn to maximize overall and individual reward (Color figure
online)

5.2 The Coin Game

To study the effects of action trading in a problem with sequential decision
making we adopt the Coin Game first proposed in [9]. The Coin Game is a
2-dimensional grid world that includes 2 agents (blue and yellow) and their
respective coins. The task is to collect the coins and agents get a reward of +1
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for collecting coins of any color. However, whenever an agent collects a coin that
is different from its own color the other agent loses two points. To evaluate the
performance of action trading for n > 2 we also tested an extended version of
the Coin Game comprising 4 agents. The 4 agents Coin Game works in the same
way, i.e., agents have their associated coins and impose costs on a fellow agent
whenever they collect a differently colored coin.

From the perspective of this work, the Coin Game can be seen as a task where
resources (coins) need to be allocated to agents. When efficiency is measured as
overall reward then it would be best if agents only collected their own coins to
prevent imposing costs on the other agent. As a consequence agents have an
incentive to pay the other agent for not collecting their own coins. Consider the
situation, when agent 1 (yellow) is about to collect the blue coin. This will bring
agent 1 a reward of +1 and −2 for agent 2 (blue). Consequently, agent 2 would
be willing to pay a price p ≤ 3 to agent 1 in exchange for the coin.

Action spaces Ai in the Coin Game have four actions: Ai = {North,South,
East,West}. To reduce the trading options for agents at any step, we decided to
define a single tradeable action StepBack which is any action that increases the
distance between an agent and the current coin. The trading decision an agent
has to make is whether to offer another agent the fixed price p in exchange for
a StepBack action. I.e., each agent i chooses actions from: Ai ×

∏
j �=i sj where

Ai describes the original action space of agent i and sj = {0, 1} describes the
binary choice to trade with any other agent j.

Learning. Agents in the Coin Game were represented as deep Q-Networks
(DQNs). During learning, exploration was encouraged by using a linear Boltz-
man policy, defined by: π(s) = argmaxa(Va), where Va is sampled from Va ∼

exp(qt(a)/τ)∑n
i=1 exp(qt(i)/τ) for each a ∈ A. All agents updated their policies from a stored

batch of transitions {(s, a, ri, s
′)t : t = 1, ..., T} [6]. For the Coin Game exper-

iments, the batch size was limited to 50k transitions, where older transitions
are discarded after inserting new transitions. The network was trained with
the Adam optimization algorithm with a learning rate of 1e−3 [5]. Coin Game
episodes lasted for 100 steps and after 25 episodes we logged 50 test episodes.
The discount rate γ was 0.99.

Modeling trade in the Coin Game required to set a couple of trading related
parameters. Firstly, the price p for an action a. In our experiments, we set
p = 1.25 as it exceeds an agents profit from collecting a coin and is less than the
designated owner of the coin would lose if the other agent collected the coin.

The second parameter of interest is the trading budget m i.e., the available
budget until the current coin is collected. We experimented with different bud-
gets and chose m to be 2.5 which allowed for a maximum of 2 trades when
p = 1.25. A third critical question was whether agents should be allowed to
accumulate wealth over steps or even episodes. Although this seems an inter-
esting aspect we decided not to let agents gather their earnings and leave the
analysis of such a setting for future work.
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(a) Rewards (b) Share collected coins (c) Number of trades

(d) Overall reward (e) Share collected coins (f) Number of trades

Fig. 4. Coin Game results for 2 agents (upper row) and 4 agents (lower row). Results
comprise 1000 (2 agents) and 10000 (4 agents) episodes and show mean values and
confidence intervals from 80 runs for 2 agents and 10 runs for 4 agents. Each plot shows
results for agents with action trading (green) and without trading (blue). Action traders
show increasing individual and overall rewards (left column) along with an increasing
share of correctly collected coins (middle column). The number of trades (third column)
decreases after a steep rise during the early learning period (best viewed in color).
(Color figure online)

Results. Figure 4 shows Coin Game results for 2 agents (upper row) and 4
agents (lower row) respectively. Experiments involve agents without trading
(blue) and trading (green) for 80 runs (2 agents) and 10 runs (4 agents) where
runs last for 1000 episodes (2 agents) and 10000 episodes (4 agents). Shaded
areas show .95 confidence intervals. The left column shows the overall reward
and the individual rewards in the 2 agents setting. While non-trading agents’
reward never increases, action traders manage to increase individual and overall
reward. This comes from an increasing share of correctly collected coins (middle
column). The number of trades sharply increase during the first 200 episodes
and continuously decrease afterwards.

6 Discussion

Action trading in the iterated matrix game outperformed pure self-fish agents.
Nevertheless, prices for actions were given at design time which renders the
question on the ability of agents to find prices on their own.

The results from the Coin Game clearly confirm that action trading effec-
tively increases social welfare, measured through overall increase of reward for
all agents. It also shows that a given number of available resources (coins) are
allocated more efficiently as the proportion of correctly collected coins also
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constantly increases. This is the consequence of agents’ trading activity that
increases sharply at early learning phases and is kept at a high level afterwards.
In learning to trade, agents realize Pareto improvements and empirically con-
firm the first fundamental theorem of welfare economics according to which
competitive markets will tend towards Pareto efficiency. From the experiments
we realized that the trading budget is a critical parameter with respect to the
problem of interest which will be left for future work.

An interesting point seems the slow decrease in the number of trades. This
might be caused by an agent speculating for short-term profits by not offering
a trade in the hope that the other agent might be doing the expected action
anyway. This could cause distrust which threatens future trades.

We recognize that trading actions in MARL presumes that a trade can be
controlled, i.e., agents cannot cheat on each other by making offers which they
do not hold afterwards. While this seems like a strong assumption, it appears
less restrictive from a practical point of view. The only extension with respect
to the environment is that agents’ rewards need to include the net earnings that
where realized by their trading activity. I.e., the environment adopts the role of
an neutral auctioneer that matches supply and offer and returns the resulting
rewards for each agent.
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Abstract. As the brain purportedly employs on-policy reinforcement
learning compatible with SARSA learning, and most interesting cognitive
tasks require some form of memory while taking place in continuous-time,
recent work has developed plausible reinforcement learning schemes that
are compatible with these requirements. Lacking is a formulation of both
computation and learning in terms of spiking neurons. Such a formulation
creates both a closer mapping to biology, and also expresses such learning
in terms of asynchronous and sparse neural computation. We present
a spiking neural network with memory that learns cognitive tasks in
continuous time. Learning is biologically plausibly implemented using
the AuGMeNT framework, and we show how separate spiking forward
and feedback networks suffice for learning the tasks just as fast the analog
CT-AuGMeNT counterpart, while computing efficiently using very few
spikes: 1–20Hz on average.

Keywords: Reinforcement learning · Working memory
Spiking neurons

1 Introduction

Reinforcement Learning [17] describes how animals can learn to act effectively
given sparse and possibly delayed rewards from their environment. For many
tasks, optimal action selection requires some form of memory: the shortest path
to a parked car relies on remembering where the car was parked, and under-
standing text requires the integration of information over the length of the sen-
tence, if not from earlier paragraphs. For event-based and discrete-time optimiza-
tion problems, Reinforcement Learning has been used to successfully train deep
[11,16] and recurrent neural networks [1]. For working memory tasks, [1] demon-
strated that LSTMs can be trained with the RL Advantage Learning algorithm,
but this type of “off-policy” RL based on error-backpropagation is considered
biologically implausible given the preponderance for “on-policy” RL like SARSA
[12]. How animals can learn such tasks with SARSA-like RL and neural network
models has been the topic of much research in neuroscience, with implications
also in fields like deep learning and neuromorphics.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11140, pp. 250–262, 2018.
https://doi.org/10.1007/978-3-030-01421-6_25
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Recent work [15,20] has suggested how working memory tasks can be learned
in neural network models equipped with memory neurons, where memory neu-
rons learn which stimuli need to be remembered for later use; learning is then
made local and plausible using feedback connections [13]. While standard RL is
formulated in an event-based manner, that is, framed in terms of state-changes,
animals operate in a continuous-time setting and Zambrano et al. showed in
[20] that a continuous-time version of AuGMenT (CT-AuGMenT) can be real-
ized using an action selection mechanism that integrates evidence - drawing
inspiration from the brain’s basal ganglia structures - combined with a separate
feedback network for learning. Missing so far is a model of biologically plausible
RL based on spiking neurons: here we present such a model, and we show how
learning can in fact be based on the (sparse) relative timing of spikes.

We show how the CT-AuGMenT framework can be extended to asynchronous
and sparsely active spiking neural networks. Recent work has shown how spik-
ing neurons can be used to computed convolutional neural networks [5,18] and
compute control [7]; RL versions are lacking. We turn to adaptive spiking neu-
rons [2] and develop two spike-based approaches: the first where spikes carry
approximations of both forward and feedback signals, and the CT-AuGMenT-
derived learning mechanism uses these signal approximations. In the second,
we develop spike-triggered learning by exploiting the fact that the dynamics of
the tasks are much slower than the timescale of timesteps in the simulation,
and CT-AuGMenT weights-updates can be approximated by sparse sampling of
the learning components – spike-triggered learning then uses the asynchronous
nature of adaptive spike-coding where changes in signals elicit more spikes in
the network, and hence higher precision sampling.

We show how these approaches can be applied to two standard RL work-
ing memory tasks (T-Maze and Saccade-anti-Saccade), and find that networks
trained with both spike-based learning methods successfully and efficiently learn
the tasks. When using spike-based learning, we find that very low firing rates
in the network suffice, where the spike-triggered learning approach requires only
slightly higher firing rates, as can be expected since so very learning events take
place. Together, we demonstrate spiking neural networks to learn cognitive tasks,
capable of online-learning using sparse spike-triggered learning.

2 CT-AuGMEnT

In [14,15], AuGMEnT was developed as an artificial neural network (ANN)
implementation of the on-policy SARSA reinforcement learning algorithm for
solving Markov Decision Processes (MDPs) that require learnable working mem-
ory to construct Markov states in the hidden layer of the neural network model.
AuGMEnT implements a biologically plausible local learning rule based on four
factors: attentional feedback, forward activation, the local derivative of the trans-
fer function, and a global neuromodulatory scalar value that signals the temporal
difference error (TD-error) δ (Fig. 1a). This learning rule is local and enables the
learning of XOR-like non-linear function mappings in multi-layer networks [15].
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Fig. 1. (a) The CT-AuGMEnT architecture. The feedforward layers include memory
units in the association layer (diamonds) to compute Q-values in the Q-layer. The Q-
values are integrated in the action-selecting Z-layer, where the most inhibited action is
selected at any point in time. Feedback from the (sole) selected action induces tags and
traces on the synapses, which in combination with TD-error (δ) determines changes in
synaptic weights. (b) In continuous-time, the feedback activity from the selected action
is carried by a separate feedback network with its own weights (orange network). (Color
figure online)

In [19,20] the CT-AuGMEnT framework was developed as an extension
of AuGMEnT to include a realistic notion of continuous-time, introducing a
dynamic action selection system and demonstrating an explicit feedback network
with layer-wise delays and separately learned feedforward and feedback weights.
The inclusion of an action selection system decouples the typical timescale of
actions from the time resolution of the simulation, allowing for continuous-time
on-policy SARSA learning. The resulting network is depicted in Fig. 1b.

As described in [20], the CT-AuGMENT network comprises of four layers
(Fig. 1a, b): a sensory input layer, a hidden “association” layer, a Q-layer, and
an action layer Z. In the sensory layer, instantaneous units directly represent
the stimulus intensity x(t), and transient “on/off”units represent positive and
negative changes in stimulus intensity, x+(t) (“on”) and x−(t) (“off”):

x+(t) =
1
dt

[x(t) − x(t − dt)]+, x−(t) =
1
dt

[x(t − dt) − x(t)]+, (1)

where [.]+ is a thresholding operation returning 0 for negating inputs. The hidden
layer is comprised of regular units and memory units, where the instantaneous
units i connect to the regular units j via connections vR

ij and the transient units
l connect to the memory units m via connections vM

lm. Activations are then
computed as:

aR
j (t) =

∑
i
vR

ijxi(t) yR
j (t) = f(aR

j (t)) (2)

aM
m (t) = aM

m (t − dt) +
∑

l
vM

lmx′
l(t) yM

m (t) = f(aM
m (t)). (3)

where f(.) denotes the neuron’s transfer function, here the standard sigmoid
transfer function; for brevity of notation, x′

l(t) = [x+(t) x−(t)]. The third layer
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is connected to the association layer via connections wM
mk and wR

jk, computing
Q-values for every possible action k in the current state s, qk(t):

qk(t) =
∑

m

wM
mkyM

m (t) +
∑

j

wR
jkyR

j (t). (4)

The Z-layer, modeled after action selection in the basal ganglia [8], imple-
ments an action-selection model based on competition between possible actions
by connecting the Z-layer to the Q-layer with off-center on-surround connectiv-
ity: each q-unit inhibits its corresponding Z-unit and excites all other Z-neurons
(Fig. 1a, top). The input to a Z-layer unit ui is thus:

ui(t) = −w−qi(t) + w+
n∑

j �=i

qj(t), (5)

where we set w−/w+ = ν, with ν the number of possible actions in the task; the
activation of the Z units can then be modeled as a leaky integrator:

ȧi(t) = −ρ(ai(t) − ui(t)), (6)

where ρ is a rate constant that determines how fast equilibrium is reached. The
Z-layer output yi(t) is bounded using the sigmoid activation function:

yi(t) = σ(ai(t)). (7)

The Q-layer thus determines the degree of inhibition in the Z-layer, where, some-
what counterintuitive, the selected action is the one that receives the most inhi-
bition. Exploration is implemented as the addition of an external current to the
explorative action unit in Eq. (5) [20].

Learning: In the CT-AuGMenT network, network plasticity is modulated by
two factors: a global neuromodulatory signal and an attentional feedback signal.
At every time-step, the Z-unit corresponding to the winning action a creates
synaptic tags (equivalent to eligibility traces) by sending feedback activity to
earlier processing levels. Tags in the Q-layer decay and are updated as:

Tagjk(t + dt) = − 1
φ

Tagjk(t) + dt[yj(t)zk(t)], (8)

with zk = 1 for the selected action and zk = 0 for the other actions. The
association units that provided strong input to the winning action a thus also
receive the strongest feedback. Tags - mimicking eligibility trace - on connections
between regular units and instantaneous units are equivalently computed as:

Tagij(t + dt) = − 1
φ

Tagij(t) + dt[xi(t)f ′(aR
j (t))wR

kj ], (9)

where f ′(·) denotes the local derivative of the transfer function f , and the feed-
forward connections wR

jk and the feedback connections wR
kj may have different
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Fig. 2. ASN-based neural coding. Input spikes (red ticks), induce a smoothed activation
S(t) in the post-synaptic neurons. The neuron emits spikes (blue ticks) when the input
activation exceeds a variable threshold ϑ(t), and a refractory response scaled by the
momentary adaptation is subtracted from the activation at the time of spiking. The
resulting total refractory response Ŝ(t) approximates the rectified activation S(t)+. At
the next target neuron, the emitted spike-train induces an (unweighted) activation y(t);
the transfer function (inset) describes the average relationship between the activation
S(t) and the target activation y(t). (Color figure online)

strength [13]. Synaptic traces between sensory units l and memory cells m enable
the proper learning of working memory:

sTracelm(t + dt) = sTracelm(t) + dt[x′
l(t)]

Taglm(t + dt) = − 1
φTaglm(t) + dt[sTracelm(t)f ′(aM

m (t))wM
km].

(10)

To implement on-policy SARSA temporal difference (TD) learning [17], the
predicted outcome qa(T − 1) is compared to the sum of the reward r(t) and the
discounted action-value qa′(T ) of the unit a′ that wins the competition at time
T , resulting in a TD error δ(T ) = r + γqa′(T ) − qa(T − 1). For continuous-time
TD learning, [20] gives the following TD error:

δ(t) = r(t) +
1
dt

[(
1 − dt

τ

)
qa′(t) − qa(t − dt)

]
, (11)

with learning rate β, weight updates are then defined as:

vij(t + dt) = vij(t) + dt[βδ(t)Tagij(t)],

vlm(t + dt) = vlm(t) + dt[βδ(t)Taglm(t)],

wjk(t + dt) = wja(t) + dt[βδ(t)Tagjk(t)].

(12)
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3 Adaptive Spiking Neurons

Adaptive Spiking Neurons (ASNs) [2] are a variant of standard Leaky-Integrate-
and-Fire spiking neurons incorporating a fast multiplicative adaptation mecha-
nism, where the fast adaptation limits the neuron’s asymptotic firing rate. The
ASN includes spike-triggered adaptation and a dynamical threshold that allows
it to match neural responses while maintaining a high coding efficiency.

Illustrated in Fig. 2, adaptive spike-based neural coding is described as a
Spike Response Model (SRM) [6], where the input to a neuron j is computed
as a sum of spike-triggered post-synaptic currents (PSCs) from pre-synaptic
input neurons i. The total PSC, I(t), is computed as a sum over spike-triggered
(normalized) kernels κ(tis − t) each weighted by synaptic efficacies wij :

I(t) =
∑

i

∑

tis

wij κ(ts − t), (13)

where tis denotes the timing of spikes from input neuron i. A normalized expo-
nential filter φ(t) is applied to I(t) to obtain the neuron’s activation S(t):

S(t) = (φ ∗ I)(t). (14)

In the SRM formulation [2], the membrane potential of the neuron is obtained
as the neuron’s activation S(t) from which the total refractory response Ŝ(t)
is subtracted, where Ŝ(t) is computed as the sum of spike-triggered refractory
response kernels η(t) each scaled by the (variable) value of the neuron’s threshold
at the time of spiking (ϑ(tj)); Ŝ(t) then approximates the rectified S(t): S(t)+.

A spike is emitted by neuron j at time t whenever S − Ŝ(t) > θ(t) and the
membrane potential is reset by subtracting a scaled refractory kernel η(t) which
is then added to the total refractory response Ŝ(t). Spike-triggered adaptation is
incorporated into the model by multiplicatively increasing the variable threshold
θ(t) with a decaying kernel γ(t) at the time of spiking, and by controlling the
speed of the firing rate adaptation using the multiplicative parameter mf :

θ(t) = θ0 +
∑

ts

mfθ(ts)γ(ts − t), Ŝ(t) =
∑

ts

θ(ts)η(ts − t). (15)

We set the PSC kernel as equal to the refractory response kernel η(t), and
model this kernel and the threshold kernel γ(t) as decaying exponentials with
corresponding time-constants τη, τγ ; as is the membrane filter φ(t) (τφ):

κ(t) = η(t) = exp
(

ts − t

τη

)
, (16)

γ(t) = exp
(

ts − t

τγ

)
, φ(t) = φ0 exp

(
ts − t

τφ

)
, (17)

where the timing of outgoing spikes is denoted by ts, θ0 is the resting threshold.
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Given a fixed input current I(t) resulting in a fixed activation S(t), the
emitted spike-train from the post-synaptic neuron has an (unweighted) fixed size
impact y(t) on the next target neuron. We characterize the relationship between
activation S(t) and target impact y(t) as the effective ASN transfer-function
(inset); this function has a half-sigmoid like shape and can be either computed
analytically for particular parameter choices (i.e. [18]) or approximated. For the
analog spike-like network in Sect. 4, we approximate the shape of this transfer-
function with the positive rectified tanh() function: tanhP ().

Sensory 
Layer

Association 
Layer

Q Layer

Z Layer 

Instantaneous On Off

a b

Fig. 3. (a) Spiking CT-AuGMent. Indicated by the half-sigmoid graphs are the neurons
that are set to have tanhP () as transfer functions (in the analog rectified network),
which are substituted by ASN neurons in the spiking network versions. Ticks along
network connections indicate which part of the network “spikes”. (b) Spike-based and
spike-triggered learning: spike-based learning uses the analog global δ and local y′(t)
signals and those derived from feedforward spikes, x(t) and feedback spikes, z(t); spike-
triggered learning considers those signals only at spike times ts,n.

4 Spike-Based CT-AuGMenT

Analog Rectified CT-AuGMenT. To convert the CT-AuGMenT network
to a spiking neural network, we replace the analog neurons by ASN models.
The main obstacle here is that ASNs effectively have a rectified half-sigmoid-
like transfer function, as illustrated in Fig. 2. The CT-AuGMenT network uses
sigmoidal transfer-functions for the feedforward stage, and linear neurons for
Q-layer and the feedback network [20]. While for instance [10,13] suggest that
there is some flexibility with regard to the feedback network, we create an analog
network where the neurons in the feedforward Sensory and Association layer use
the tanhP () transfer-function, as well as the feedback network from the Q-layer
projecting to the Association layer (illustrated in Fig. 3a). We train this network
on the tasks to ascertain the feasibility of training spike-based networks with
rectified half-sigmoid-like transfer functions.
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Spike-Based Learning. Spiking-AuGMenT incorporates ASNs in the
feedback-learning network to include spike-based learning. Inspecting the learn-
ing rules (8)–(12) we see that four terms are involved in updating a synapse
between a neuron i and j: the feedforward activation xi(t), the TD-error δ(t),
the gradient of the transfer function f ′(ai(t)), and, for the hidden layer neurons
j, the feedback activity from the winning action k, zk(t).

In the spiking-AuGMenT formulation, we use ASNs in both the forward and
the feedback network, also while training the network. The feedforward and feed-
back activations xi(t) and zk(t) are both computed as a sum of spike-triggered
kernels, corresponding to S(t) in the ASN model. Reformulating CT-AuGMeNT,
we denote the spiking neurons of spiking-AuGMenT with s and we use the same
subscripts with the analog CT-AuGMenT. Instantaneous and transient units
emit spikes to the regular and memory spiking neurons, respectively:

aR
φj(ts) =

∑
ts

∑
i
vR

ijxi(ts) ∗ φ(ts), sR
j (ts) = f(aR

φj(ts)), (18)

aM
φm(ts) = aM

m (ts − dt) +
∑

ts

∑
l
vM

lmx′
l(ts) ∗ φ(ts), sM

m (ts) = f(aM
φm(ts)),

(19)
where ts is the time of outgoing spikes, f is the effective transfer function and
φ(t) an exponential decay filter. As before, the Q-layer is fully connected to the
association layer and the values are updated when there are input spikes:

qk(ts) =
∑

ts

(∑

m

wM
mkσM

m (ts) +
∑

j

wR
jkσR

j (ts)
)

. (20)

Equivalently to the analog network, the Z-layer involves the action mechanism
and determines the amount of inhibition an action receives. Note that now the
transfer-function is implicit. The spiking neurons in the feedback network are
defined as:

aZ
φk(ts) =

∑

ts

∑

k

zk(ts) ∗ φ(ts), (21)

sR
kj(ts) = f

( ∑

ts

∑

k

wR
kj(ts)a

Z
φk(ts)

)
, sM

kj(ts) = f
( ∑

ts

∑

k

wM
kj (ts)a

Z
φk(ts)

)
.

(22)
Equations (8)–(10) and (12) are reformulated accordingly, where we approximate
the local gradient of the transfer-function as the derivative of the positive part of
the tanh-function: tanhP ′ = max(0, 1 − tanh2) - while a rough approximation,
we find this works well in practice. Tags between the association layer and the
Q-layer are then defined as:

Tagjk(t + dt) = − 1
φ

Tagjk(t) + dt[yj(t)aZ
φk(ts))]. (23)
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For tags that are formed between the sensory layer and the association layer:

Tagij(t + dt) = − 1
φ

Tagij(t) + dt[xi(ts)tanhP ′(aR
φj(ts))s

R
kj(ts)]. (24)

sTracelm(t + dt) = sTracelm(t) + dt[x′
l(ts)],

Taglm(t + dt) = − 1
φTaglm(t) + dt[sTracelm(t)tanhP ′(aM

φm(ts))sM
kj(t)].

(25)

In the spike-based learning process the weights are updated again by (12),
where the TD-error δ(t) is still an analog broadcasted signal.

In both tasks the initial weights are positive uniformly distributed, moti-
vated by the rectified-positive nature of the spike-based feedback network (22)
(Fig. 3a).
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N

ds

ds

Road sign

Goal

Agent

Corridor

T-junction

a

Empty (1,000ms)

Fixation (2,000ms)

Cue presentation
(1,000ms)

Delay (1,000ms)
Go

Anti L Anti R

Pro L

Time

dt

Pro L
Pro R

Anti R
Anti L

b Antisaccade
Prosaccade

Pro R

Fig. 4. Tasks. (a) T-Maze task, (b) Saccade-anti-Saccade task. See text for explanation.

Spike-Triggered Learning. In the spiking-AuGMenT formulation, each
weight is updated every dt, even though the typical dynamics of the tasks have
substantially longer temporal dynamics - milliseconds versus hundreds of mil-
liseconds: a more sparse sampling approach to learning should suffice. Rather
than fixed interval learning, we here propose to exploit the asynchronous nature
of adaptive spike-coding: we only update the weights when a neuron receives
or emits a spike (illustrated in Fig. 3b). The benefit of this sampling scheme is
that with adaptive neural coding, the spike-rate increases there is a large change
in signal, thus allowing for more and more precise sampling when needed. In
more detail, whenever a neuron emits a spike we update the weights, otherwise
the learning process pauses. Here, we denote with n the number of the current
learning update. Hence, the rule for the update of the weights is:

vij(ts,n+1) = vij(ts,n) + δt[βδ(t)Tagij(ts,n)],

vlm(ts,n+1) = vlm(ts,n) + δt[βδ(t)Taglm(ts,n)],

wjk(ts,n+1) = wjk(ts,n) + δt[βδ(t)Tagjk(ts,n)],

(26)
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where δt equals the time between two successive spikes: δt = ts,n+1 − ts,n (note
that here each neuron updates only for its “own” spikes ts,n).

5 Results

We demonstrate the spike-based CT-AuGMenT model of Fig. 1 on two working
memory tasks: the T-Maze task from the machine learning literature [1,14] and
the Saccade/Antisaccade task from the neuroscience literature (both as in [20]).

The T-Maze task is a working memory task where information that is pre-
sented at the start of the maze has to be maintained to make optimal decisions
at the end of the corridor. The agent can choose actions to move in directions
N,E, S,W ; the corridor length N scales the task difficulty. The same details for
corridor representation, reward and time-out conditions as in [20] were applied.
For the simulations, we gave each network at most 10,000 trials to learn the
task. Convergence was determined by checking at 90% optimal choices as in
[20] for each condition. The parameters of the network for the T-Maze task are:
β = 0.02, λ = 0.3, γ = 0.9, ε = 0.025, τ = 0.5 and corridor length N = 10. The
ASNs use fixed values for θ0 = 0.1 and τφ = 2.5 ms. The network is updated at
time increments of dt = 0.01, equivalent to 10 ms. The network consists of 24
neurons: a sensory layer with 9 input neurons (3 instantaneous and 6 transient
units), an Association layer with 7 neurons (4 memory neurons and 3 regular
neurons), and, matching the number of possible actions, both the output and
the action layer have 4 neurons. Weights between the Sensory and Association
and Q-layer are randomly initialized from the uniform distribution U [0, 0.25].

In the Saccade/Antisaccade (SaS) task, the agent has to learn that the
color of the fixation mark determines the strategy. Every trial started with an
empty screen, shown for one second. Then a fixation mark was shown, either
black or white, indicating that a pro- or anti-saccade was required. The model
had to fixate within ten seconds, otherwise the trial was terminated without
reward. If the model fixated for two consecutive seconds, we presented a cue
on the left or the right side of the screen for one second and gave the fixation
reward rfix. This was followed by a memory delay of two seconds during which
only the fixation point was visible. At the end of the memory delay the fixation
mark turned off. To collect the final reward rfin in the pro-saccade condition,
the model had to make an eye-movement to the remembered location of the cue
and to the opposite location on anti-saccade trials. The trial was aborted if the
model failed to respond within eight seconds. The maximum number of trials
the model is allowed to learn the task is set to 35,000. As to the implementation
in [20], we kept the same temporal sequence of the events, and we updated the
network at an increased rate of dt = 0.01 (corresponding to 10 ms per time
step). The chosen parameters for the simulation are: β = 0.01, λ = 0.2, γ = 0.9,
ε = 0.025, τ = 0.5, θ0 = 0.1 and τφ = 2.5 ms. The initialization of the weights is
also uniformly distributed U [0, 0.25]. In this task the network is comprised of 26
neurons, with 12 neurons in the sensory layer (4 instantaneous and 8 transient
units), 8 neurons in the Association layer (4 memory and 4 regular units) and
both output and action layers have 3 neurons.
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Fig. 5. First row: the convergence rate over the average firing rate (Hz) for the
two tasks. In the T-Maze task we used τγ = [50, 150, 450, 1000, 1750] ms and τη =
[150, 450, 1000, 1750, 2500] ms. In the SaS task we have τγ = 50 ms fixed and τη =
[100, 150, 200, 250, 300] ms. Bottom row : The average number of trials for each model
and task for spiking network that match the analog network’s convergence rate.

In both tasks, the spiking neuron time-constants τγ , τη are varied to generate
spiking neurons that have varying asymptotic activation rates. We tested 50
randomly initialized networks for each set of τη and τγ . At the end of each
learning phase we set β = ε = 0 to validate the convergence.

We plot the results for both tasks in Fig. 5, both in terms of convergence
rate of the networks (top row) and the number of trials required for learning
the tasks. We find that both spiking methods, spike-based and spike-triggered
CT-AuGMenT, are able to learn the tasks with convergence rates similar to
that of CT-AuGMenT [19,20] and the analog rectified version (dashed line)
for sufficiently high firing rates. We also compare the average number of trial
needed for those spiking networks where the convergence rate matches the analog
network (bottom row): we find that for all three learning models, the networks
need a similar number of trials to converge. We note also that for both tasks, a
majority of networks still converge even for very low average firing rates (<1 Hz
for the T-Maze, <8 Hz for SaS).

6 Conclusion

We demonstrated how a continuous-time spiking neural network with working
memory can be constructed with plausible spiking neuron models and plausible
learning rules that uses on-policy reinforcement learning to learn hard cognitive
tasks, a first such network to the best of our knowledge. These spiking neural
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networks learn the tasks equally fast as their analog counterparts, while needing
very few spikes to both learn and carry out the neural computations. As such, this
work can be considered an important milestone for creating efficient, sparsely-
active and always-on neural networks, with promise for emerging neuromorphic
paradigms like the Intel Loihi architecture [4].

Here, we focused on creating a spiking network to learn and compute Q-
values, while using an analog action-selection system as we chose to focus here
on the learning aspect of the tasks; we see no principled problem to create a spike-
based version of this system. The spike-based transmission of potentially negative
Q-values represents the greatest challenge, as we found that replacing the linear
transfer functions in the Q-layer with half-sigmoid-like rectified functions - or
the spiking equivalent, did not work; this is a challenge we presently tackling.

Compared to LSTM networks [9], the presented architecture lacks gating
mechanisms and recurrence; LSTM-like gating however is notoriously hard to
implement with spiking neurons in continuous time, and we find that for many
tasks these structures however are not necessary. We will consider this in future
research, incorporating for instance subtractive gating [3].
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Abstract. Entity and relation extraction is an important task in nat-
ural language processing (NLP). Most existing researches handle this
issue in a pipelined work or joint learning methods relied on human-
annotated corpora, which are vulnerable to errors cascading. On the
other side, in order to obtain large training data for methods of super-
vised learning, distant supervision are used in previous work whereas
largely suffer from noisy labeling problem. To solve these problems, we
propose a reinforcement learning framework for joint extraction of enti-
ties and relations. First, we construct a relation extractor based on a
tagging scheme to extract entities and relations jointly. Meanwhile, a
data cleaner is designed to select high-quality sentences and feed them
into relation extractor, by means of cleaning noisy sentences generated by
distant supervision hypothesis. Afterwards, the two modules are trained
jointly with reinforcement learning to optimize models. In experiments,
our model achieved better performance than comparative methods on
the public dataset.

Keywords: Relation extraction · Reinforcement learning
End-to-end model · Deep learning · Distant supervision

1 Introduction

Joint extraction of entity and relation is aiming to detect entity mentions and
recognize their semantic relations simultaneously from unstructured text. It is
an important problem in natural language processing, especially for knowledge
graph completion and question answering systems.

Traditional methods treat this task as a pipeline of two separated tasks, i.e.,
named entity recognition (NER) [13] first and then relation classification (RC)
[4]. This separated processing method makes the mission more manageable and
flexible, while it neglects the connection between these two sub-tasks. Further-
more, it leads to errors cascading due to that the results of entity recognition
will affect the performance of relation classification. Different from the pipelined
methods, recent studies focus on joint extraction methods to resolve error prop-
agation.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11140, pp. 263–272, 2018.
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Joint learning framework is to extract entities and relation together using
a single model. It can effectively capture the inherent linguistic dependencies
between relations and entity arguments, which could also avoid cascading of
errors. However, most existing joint learning framework are feature-based struc-
tural systems [7,12,18]. They need complicated feature engineering and heavily
rely on the supervised NLP toolkits, which might also lead to error propaga-
tion. In order to reduce the manual work in feature extraction, recently, [11,23]
present neural network-based method for entity and relation extraction. Never-
theless, they also extract the entities and relations separately, even if entities
and relations are jointly represented with shared parameters in a single model.
In our work, we solve this problem use an end-to-end model.

The task we deal with is a classification problem and the method we proposed
is a supervised learning algorithm requiring a large amount of labeled data.
Due to the high cost of manually tagging samples, existing relation extraction
methods obtained data rely on distant supervision proposed by [10], assuming
that if two entities have a relation in a given knowledge base, all sentences
that contain the two entities will mention that relation, result to largely suffer
from the noisy labeling problem. To address the issue of noisy labeling problem,
multi-instance learning are adopted to relieve the noisy of instances [5,8,16,20].
Unfortunately, these methods performing classification at the bag level, cannot
identity the mapping between a relation and a sentence, also suffer from the
noisy sentences in each bag.

To handle the above two limitations, we propose a novel end-to-end model to
extract entities and relations simultaneously, which consists of two modules: a
relation extractor based on a tagging scheme, and a data cleaner with reinforce-
ment learning. The relation extractor takes advantage of a tagging scheme [24]
that devise some tags which contain the information of entities and relationships
they carry. In this way, the task can be transformed into a tagging problem with-
out use of complicated features engineering. For another, the data cleaner is used
to select high quality sentences from noisy data for better relation extraction.
Under the guidance of reinforcement learning, two modules are trained jointly
to optimize the relation extractor and data cleaner processes.

The major contribution of our work are:

– We apply reinforcement learning method to learn data cleaner module, which
enables selecting clean instances at the sentence level and feed them into
another module for better relation extraction.

– We conduct our experiments on a widely used dataset and outperform the
comparative baselines significantly.

2 Related Work

Entity and relation extraction is a common and important task in natural
language processing used for complete knowledge graph and improve question
answering systems. In summary, there are two main frameworks to address this
problem, one is pipelined method and another is joint learning method.
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The pipelined method mostly are utilized on those traditional systems that
treat entity and relation extraction as a pipeline of two separated tasks, extract
named entity first and then classify relation. Some early models for named entity
recognition are linear statistical models, such as Hidden Markov Models and
Conditional Random Fields [9,14]. Recent researches focus on utilizing neural
network architecture [1,6] for NER and have achieved big improvements, which
regarded it as a sequential token tagging task. As for relation classification,
existing methods can also be divided into handcrafted feature based methods [17]
and neural network based methods [19,21,22]. With this method, the results of
entity recognition may affect the performance of relation classification and lead
to errors cascading.

The joint learning models extract entities and relations simultaneously by
means of using a single model. Most of previous studies belong in this method
are feature based structured systems [7,12,15] such as prior knowledge get from
knowledge map and dependency parsing. Recently, neural network architectures
are used to jointly extract entities and relations. For example, [11] use a LSTM-
based model to extract entities and relations, which contribute to reduce the
manual work. [23] construct a hybrid neural model consists a CNN and a RNN
to tackle this joint learning task. However, they also extract the entities and
relations separately through two submodels.

In general, a large amount of labeled data are required for training neural
network models. To address this issue, distant supervision [10] are proposed to
generate mass data while largely suffers from noisy labeling problem. In order
to solve the problems we mentioned above, we propose a new framework of
reinforcement learning inspired by [2] which consists two modules, an end-to-
end model for relation extraction and a data cleaner for cleaning noisy data, to
jointly extract entities and relations.

3 Methodology

We propose an end-to-end model based on a reinforcement learning framework
to jointly extract entities and their relations. Figure 1 gives an illustration of how
the proposed framework works. The model is trained based on a reinforcement
learning framework which consists of two modules: the relation extractor and the
data cleaner. The relation extractor we construct adopts a bi-directional Long
Short Term Memory (Bi-LSTM) layer and a LSTM-based layer to automatically
determine the entity and relation tag in a sentence. As for the data cleaner, each
sentence xi has a corresponding action ai to indicate whether or not xi will
be selected as a training instance for relation extractor according to the current
state of xi, represented as si. And then, the data cleaner distills the training data
to the relation extractor to train the LSTM network. Meanwhile, the relation
extractor gives feedback to the data cleaner to refine its policy function.
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Each selected sentence

Input Embeddings

Bi-LSTM Layer to Encode

LSTM Layer to Decode

(BIES, Relation, Role) as Tag

likelihood Sentence sequence

Reward
function

Policy
function

Action

Update
Parameters

Fig. 1. Overall architecture for LSTM-LSTM-RL

3.1 Relation Extractor

In this module, we cast relation extractor as a sequence labeling problem and
construct an end-to-end model to solve this task.

The Tagging Scheme. In our tagging scheme, each word in a sentence is
assigned a label that contribute to extract the results. Tag “O” represents the
“Other” tag, means that the word is excluded as the entity we want. The other
tags consists of three parts: the word position in the entity, the relation type,
and the relation role. “BIES” is used to represent the position of a word in the
entity. The relation type is acquired from a predefined set of relations. As for
the third part of the tag, we use “1” to express that the word belongs to the
first entity in a triplet (a triplet like “Entity1, RelationType, Entity2”), and “2”
to express the second. Figure 2 gives an example of how the results are tagged
based on the tagging scheme.

It should be noted that, if two or more triplets with the same relation type
appeared in a sentence, we combine every two entities into a triplet based on the
nearest principle.

Fig. 2. A standard annotation for an example sentence based on the tagging scheme,
where “CP” is short for “Country-President”.



Reinforcement Learning for Joint Extraction of Entities and Relations 267

The End-to-End Model. End-to-end model based on neural network has been
widely used in sequence tagging task and have shown promising results. In this
paper, we adopt an end-to-end model to train the tags sequence as Fig. 1 shows.

The Bi-LSTM Encoding Layer. The Bi-LSTM encoding layer has been shown
their superiority to capture the semantic information of each word in sequence
tagging problems. In our model, it contains forward lstm layer, backward lstm
layer and the concatenate layer. The detail operations are defined as follows:

it = δ(Wwiwt + Whiht−1 + Wcict−1 + bi) (1)

ft = δ(Wwfwt + Whfht−1 + Wcfct−1 + bf ) (2)

zt = tanh(Wwcwt + Whcht−1 + Wcfct−1 + bc) (3)

ot = δ(Wwowt + Whoht−1 + Wcoct−1 + bo) (4)

ct = ftct−1 + itzt ht = ottanh(ct) (5)

The LSTM Decoding Layer. A layer of LSTM structure is adopted to produce
the tag sequence. The inputs of decoding layer are: ht obtained from Bi-LSTM
encoding layer, former predicted tag embedding Tt−1, former cell value c(2)t−1,
and the former hidden vector in decoding layer h(2)

t−1. The detail operations are
defined as follows:

i
(2)
t = δ(W (2)

wi ht + W
(2)
hi h

(2)
t−1 + WtiTt−1 + b

(2)
i ) (6)
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(2)
t = δ(W (2)

wf ht + W
(2)
hf h

(2)
t−1 + WtfTt−1 + b

(2)
f ) (7)
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(2)
t = tanh(W (2)

wc ht + W
(2)
hc h

(2)
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wo ht + W
(2)
ho h
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(2)
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(2)
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(2)
t c

(2)
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(2)
t z

(2)
t h

(2)
t = o

(2)
t tanh(c(2)t ) (10)

Tt = Wtsh
(2)
t + bts (11)

Loss Function. We train our model to maximize the log-likelihood of the data
and the optimization method we used is RM-Sprop. The objection function can
be defined as:

L = max

| ̂X|∑

j=1

Lj∑

t=1

(log(p
(j)
t = r

(j)
t |xj , θ) · I(O) + α · log(p

(j)
t = r

(j)
t |xj , θ) · (1 − I(O)))

(12)
in which | ̂X| is the size of training set,Lj is the length of sentence xj , r

(j)
t indicate

the label of word t in sentence xj and p
(j)
t denote the normalized probabilities

of tags. Besides, I(O) is a switching function defined as follows:

I(O) =
{

1, if tag = ′O′

0, if tag �= ′O′ (13)
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3.2 Data Cleaner

With the help of data cleaner, our model could directly filters out noisy sentences.
The data cleaner is a agent, which interacts with the environment that consists
of data and the relation extractor [2]. The agent is to decide which action at
each state, and then receive a delayed reward from the relation extraction when
the selection on all the training instances are finished.

To make the training process more efficiently, we divide the training sentences
into N bags, and compute a reward when we finish samples selection in a bag.
When all selections on all the training data completed, we merge all the selected
sentences in each bag to obtain a cleansed dataset ̂X. Then, the cleaned data
will be used to train the relation classifier at the sentence level.

State. When making decision on the i -th sentences of the bag B, we use state
si to represent the state that we need to consider: (1) The vector representation
of the current sentence, which is obtained from the relation extraction; (2) The
representation of the chosen sentence set, which are the average of the vector
representations of all chosen sentences; (3) The vector representations of the two
entities in a sentence.

Action. We define the action ai ∈ {0, 1} to indicate whether the i -th sentence
of the bag B will be selected or not. In our work, we adopt a logistic function as
the policy function of ai, where Θ is the parameters to be learned and F (si) is
the state feature vector:

πΘ(si, ai) = PΘ(ai|si)
= aiσ(W ∗ F (si) + b) + (1 − ai)(1 − σ(W ∗ F (si) + b)) (14)

Reward. The reward function is an indicator of the worth of the chosen sen-
tences. We only receive a delayed reward at the terminal state s|B|+1 owing
that the model has a terminal reward only when it finished all the selection. In
consequence, the reward is defined as follows:

r (si|B) =

⎧

⎨

⎩

0 i < |B| + 1
1

| ̂B|
∑

xj∈ ̂B

log p (r|xj) i = |B| + 1 (15)

where ̂B is the set of selected sentences, which is a subset of B, and r is the
relation label of bag B. p(r|xj) is calculated by the relation extractor.

Optimization. For a bag B, we aim to maximize the expected total reward.
Our objective function is defined as:

J(Θ) = VΘ(s0|B)

= Es0,a0,s1,...,si,ai,si+1...[
|B|+1
∑

i=0

r(si|B)]
(16)
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We compute the gradient int following way: For each bag B, we sample an
action for each state sequentially according to the current policy. We then get a
sampled trajectory and a corresponding terminal reward.

3.3 Model Training

In order to make two modules correlated mutually, we train them jointly. Algo-
rithm1 demonstrate the complete process of joint learning.

Algorithm 1. Overall Training Procedure
1. Initialize the parameters of the RE model of relation extraction with random
weights
2. Initialize the parameters of policy network of data cleaner with random weights
3. Pre-train the RE model to predict relation ri given the sentence xi by maximizing
logp(ri|xi)
4. Pre-train the policy network with the RE model fixed.
5. Jointly train the RE model and the policy network until convergence.

In step 5 of jointly training process, the relation extractor provides a mech-
anism that computing the rewards of the cleansed sentences to refine the data
cleaner. Correspondly, the data cleaner provides high-quality sentences by means
of dispose of wrongly labeled sentences to better train the relation extractor. We
update the parameters in the policy network and relation extractor network
respectively by linear interpolation: Θ′ ← (1 − τ)Θ′ + τΘ, φ′ ← (1 − τ)φ′ + τφ,
where τ � 1 is a hyper-parameter.

4 Experiments and Results

4.1 Experimental Setting

Dataset. We conduct experiments on a widely used public dataset1 generated
by the sentences in NYT2. There are total 522,611 sentences, 281,270 entity
pairs, and 18,252 relational facts in the training data; and 172,448 sentences,
96,678 entity pairs and 1,950 relational facts in the test data. Besides, the size of
relation set is 26. We adopt the official evaluation metric to evaluate our systems,
which is based on macro-averaged F1-score for the nine actual relations.

Hyperparameters. For the parameters of the relation extractor, we utilize the
word embeddings with 300 dimensions initialed by running word2vec3 on NYT
training corpus. We leverage dropout method to training the neural network with
1 http://iesl.cs.umass.edu/riedel/ecml.
2 New York Times, a widely used text corpus.
3 https://code.google.com/archieve/word2vec.

http://iesl.cs.umass.edu/riedel/ecml
https://code.google.com/archieve/word2vec
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Table 1. Experimental results of our model and comparative methods

Methods Prec. Rec. F1

DS-logistic 0.306 0.397 0.320

FCM 0.553 0.154 0.240

DS-Joint 0.574 0.256 0.354

CoType 0.423 0.511 0.463

LSTM-CRF 0.693± 0.007 0.310 ± 0.007 0.428 ± 0.008

LSTM-LSTM-Bias 0.615 ± 0.008 0.414 ± 0.005 0.495 ± 0.006

LSTM-LSTM-RL 0.684 ± 0.008 0.387 ± 0.005 0.529± 0.006

0.5 dropout ratio. The bias parameter α corresponding to the results in Table 1
is 10. We use 300 lstm units in encoding layer and 600 lstm units in decoding
layer. As for the parameters in data cleaner, the delay coefficient is 0.001. An
initial learning rate of 0.001 and a 0.99 learning rate exponential decay factor at
each training step.

Baselines. To evaluate the effectiveness of our model, we compare its perfor-
mance with notable pipelined methods, jointly extracting methods and classical
end-to-end tagging models. The comparative methods are introduced in the fol-
lowing.

The Pipelined Methods. DS-logistic [10]: a distant supervised and feature-
based method, combines the advantages of supervised IE and unsupervised IE
features. FCM [3] is a compositional model utilize lexicalized linguistic context
for relation extraction.

The Jointly Extracting Methods. DS-Joint [7]: using structured perceptron
on human annotated dataset. CoType [15]: a domain independent framework
by jointly embedding several wonderful features like entity mentions, relation
mentions and type labels.

Classical Tagging Models. LSTM-CRF [6]: using a bidirectional LSTM to
recognize entity and a conditional random fields to predict the tag sequence.
LSTM-LSTM-Bias [24]: convert the task as a sequence to sequence problem,
jointly extracting based on a novel tagging scheme.

4.2 Results Analysis

Table 2 presents the best F1 score achieved by our reinforcement learning based
model (LSTM-LSTM-RL) and comparative methods. It shows that the effec-
tiveness of our proposed method. Furthermore, we also could summarize that
the jointly extracting methods are better than traditional methods of pipelined
framework.

We also find that the LSTM-CRF have better effect than our model on
precision. Because, CRF is good at capturing the joint probability of the entire
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sequence of labels. While LSTM-LSTM models can be better to balance the
precision and recall. Maybe it’s just because that these end-to-end models use
a LSTM layer to encoding input and another LSTM layer to decode the results
which could better learning deep linguistic features and well fit the data.

It should be noted that our model is better than LSTM-LSTM-Bias on all
indicators, attributed to that the reinforcement learning frame we employed
could help to distill the training data and feed cleansed samples into relation
extractors. Therefore, in this task, our method perform better than the compet-
itive methods.

5 Conclusions and Outlook

In this paper, we proposed a reinforcement learning framework for joint extrac-
tion of entities and relations, named LSTM-LSTM-RL, to improve the perfor-
mance and noise immunity of relation extraction. Experimental results demon-
strate that, training with reinforcement learning outperformed the method of
pipelined framework and other joint learning methods. Besides, our model based
on a tagging scheme transformed the task into a sequence to sequence problem
without use of NLP toolkits or human-annotated corpora. In the future work,
we will construct various relation classifier models and apply the reinforcement
learning framework on other tasks.

Acknowledgement. This work was supported by the National Key Research and
Development program of China (No. 2018YFB1004703).
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Abstract. With the rapid increase of consumer photos, annotating and
retrieving such images with text are becoming more significant, which
requires optical character recognition (OCR) techniques. However, to
predict OCR accuracy, text-related image quality assessment (TIQA) is
necessary and of great value, especially in online business processes. With
more interests in text, TIQA aims to compute the quality score of an
image through predicting the degree of degradation at textual regions.

To assess text-related quality on detected textlines, this paper pro-
poses a deep neural network, TextNet, which mainly includes three lay-
ers: encoder, decoder, and prediction. The decoder layer combines the
encoded feature map with the decoded map through deconvolution and
concatenation. The prediction layer is designed for textline detection and
quality assessment with a new loss function. Under the TIQA framework,
the overall text-related image quality is computed through pooling the
quality of all detected textlines by way of weighted averaging. Experimen-
tal results show that the proposed framework can work well in jointly
assessing text related image quality and detecting textlines, even for
unknown scene images.

Keywords: Text-related image quality
Document image quality assessment · Textline detection · TextNet

1 Introduction

With the pervasive use of smart devices in our daily life, mobile captured docu-
ment images are often required to be submitted in business processes of Internet
companies. For the purpose of intelligent analysis of such document images,
three sequential processing steps are generally needed: document image quality
assessment, text detection and text recognition, each of which is active as an
independent research topic in most cases.

The success of text recognition, however, is highly dependent on the quality of
acquired document images. The text recognition performance of mobile captured
document images is often decreased with the low document image quality due to
artifacts introduced during image acquisition [18], which probably hinders the
following business process severely.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11140, pp. 275–285, 2018.
https://doi.org/10.1007/978-3-030-01421-6_27
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Document image quality is closely related to text, where the major concern
is word/text. Moreover, text is frequently scattered throughout natural scene or
web images. Obviously, text-related image quality assessment (TIQA) is of great
value in scene understanding and document image analysis.

The judgement on image quality is often biased by interest. Traditional image
quality assessment methods are not suitable in the TIQA case since they pay
more attention to striking objects in scene images. Inspired by the fact that
textual areas can be found with textline detection methods, this paper proposes
a neural network, TextNet, to achieve TIQA while detecting textlines.

Fig. 1. Architecture of the proposed network composed of encoder, decoder and pre-
diction layers.

The proposed network can be divided into three parts: encoder, decoder, and
prediction layers, as shown in Fig. 1. The encoder layer is a light weight network
to extract implicit features of input images at varied levels. The decoder layer
aims to merge feature maps gradually. The prediction layer will produce a score
map for text quality as well as rotated boxes for textlines. To estimate the overall
text quality of an image, textline quality scores are pooled by way of weighted
averaging.

According to the point of view in [18], blur seems the most common issue in
text-related images, which suggests that detecting the blur degradation is more
attractive and useful in practical applications. To train the proposed network,
we synthesize a set of training images with both labels involving text quality and
textline position. The proposed method has been tested on three benchmarks
and our collected web image dataset. Experimental results demonstrate that the
proposed method is feasible and promising in TIQA and textline detection.

2 Related Work

This study is closely related to two active, but disjoint, research topics, document
image quality assessment (DIQA) and text detection. This section will briefly
introduce the current progress in both fields.

Many no-reference quality assessment algorithms have been developed to
estimate the quality of document images. According to the difference of fea-
ture extraction, these methods can be categorized as two groups: metric-based
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assessment and learning-based assessment. The metric-based methods are usu-
ally based on hand-crafted features that have shown to correlate with the OCR
accuracy. Around 30 degradation-specific quality metrics have been proposed to
measure noise and character shape preservation [10]. Although much progress
has been made in metric-based assessment, the performance of such features
is relatively poor and sensitive to surrounding noise. The learning-based DIQA
methods take advantage of learning techniques, such as [4,12], to extract discrim-
inant features for different types of document degradations. In [4], the authors
proposed a deep learning approach for document image quality assessment, which
crops an image into patches and then uses the CNN to estimate quality scores
for selected patches. However, the strategy of selecting text patches is based
upon the simple technique, Otsu’s binarization, which often can not work well
for consumer photos.

Fig. 2. Details of the proposed network

Comprehensive reviews about text detection can be found in survey papers
[19,22].The core of text detection is the design of features to distinguish text from
backgrounds. Previous text detection approaches [2,16] have already obtained
promising performances on various benchmarks and deep neural network based
algorithms [16,20,21] are becoming the mainstream in this field. [20] proposes
to utilize fully convolutional networks (FCN) for heatmap generation and to use
component projection for orientation estimation. [21] presents a scene textline
detector that directly predicts word/text with a FCN based network. Deep fea-
tures have been shown to be effective for both textline detection and document
quality assessment [4], which motivates us to jointly achieve textline detection
and quality assessment in a deep neural network.
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3 Methodology

3.1 Network Design

To take advantage of valid textlines to assess text-related image quality, this
paper designs a deep neural network, TextNet, which simultaneously achieves
text quality assessment and detection.

Text quality assessment needs high-level information in late stages of a neural
network, and textline detection would require features from both early and late
stages due to the various size of text. Therefore the network must use features
from different levels to fulfill these requirements. To meet these conditions on
features maps, we designed a network that can be decomposed into three parts:
encoder, decoder, and prediction layers, as illustrated in Fig. 1.

The encoder layer can be a convolutional network pretrained on the ImageNet
dataset [3], with interleaving convolution and pooling layers. Since PVANET [7]
is a light weight network for feature extraction in object detection, we adopt
PVANET as the encoder.

In the decoder layer, we gradually merge the encoded feature map with the
decoded base map through deconvolution and concatenation along the channel
axis level by level. In each merging stage, the decoded base map from the last
stage is first fed to a 3 × 3 deconvolutional layer to double its size and cut
down the number of channels, and then delivered to a ReLU layer for activation.
Next, the base map is concatenated with the current feature map to fuse the
information in the following deconvolutional layer. The feature map produced in
the last deconvolutional layer is finally fed to the prediction layer. The number
of output channels for each deconvolution, depicted in Fig. 2, is kept small in
decoder, which makes the network efficient in computation.

We designed a new prediction layer for joint textline detection and quality
assessment, and proposed a new loss function for this network. The prediction
layer contains several 1 × 1 operations to project 16 channels of feature maps
into two branches: a quality score map Qs with 1 channel, and textlines with
6 channels. In the quality score map, pixel values are in the range [0, 1]. The
geometry shape for textlines is described with rotated boxes. In the textline
branch, 4 channels are for bounding boxes, 1 channel for rotation angle and the
other 1 channel for text confidence. For bounding boxes, each channel represents
a distance from the pixel location to the top, right, bottom, or left boundary of
the rectangle.

In summary, the proposed network can not only predict textline quality
but also simultaneously detect textlines that are applicable in following text
recognition.

3.2 Loss Functions

In order to complete both tasks of textline detection and quality assessment in
the prediction layer, the total loss L in the network should include two com-
ponents: one for the quality loss Lq and the other for the textline detection
loss Lt.
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The quality loss Lq represents the difference between the predicted quality
pq and the ground truth gq in the textline, and can be measured in the L2 norm,

Lq =
√

(pq − gq)2. (1)

The textline detection loss Lt is composed of three parts: rotation loss Lr, text
confidence loss Lc, and bounding box loss Lb. For simplicity, we use the cosine
loss as the rotation loss Lr to measure the difference between the predicted and
ground truth angles.

In [21], the cross-entropy loss is used to describe text confidence. However,
this loss is not essentially good at binary clustering. To make text confidence
loss Lc more beneficial to evaluating the performance of binary clustering, we
utilize dice score coefficient [15] to define Lc as follows,

Lc = 1 −
∑

i gipi + ε∑
i(gi + pi) + ε

−
∑

i(1 − gi)(1 − pi) + ε∑
i(2 − gi − pi) + ε

, (2)

where pi is text confidence prediction and gi is ground truth. The ε term is used
to ensure the stability of the loss function by avoiding the numerical issue of
dividing by 0.

To predict accurate geometry for both large and small textlines, the bounding
box loss Lb should be scale-invariant, and can be described as,

Lb = −log
Pb ∩ Gb

Pb ∪ Gb
, (3)

where Pb represents the predicted bounding box and Gb is its corresponding
ground truth.

The textline detection loss Lt can be finally expressed as the weighted sum
of these three parts, Lt = αLc + βLr + γLb. In this case, α, β and γ are the
weighted cofficients to balance the importance among three losses. α and γ are
set to 1, and β is 10 in our experiments.

Through combining the quality loss and the textline detection loss, the total
loss L used in the network is formulated as:

L = Lt + cLq, (4)

where c weighs the importance between two losses. Parameter c is set to 0.5 in
our experiments.

3.3 Framework for Text-Related Image Quality Assessment

A high-level overview of the proposed framework for text-related image quality
assessment is illustrated in Fig. 3. In this framework, an image is first fed into
the proposed network TextNet and the network outputs 1 channel for pixel-level
text quality and 6 channels for textlines. Valid textline are extracted through
thresholding the text confidence channel and running non-maximum-suppression
(NMS).
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Fig. 3. Framework for text-related image quality assessment.

The overall text-related image quality is predicted with a weighted pooling
strategy on the basis of textline areas and text quality. To compute the over-
all image quality, textline quality is required to be worked out. The textline
quality qt can be computed through averaging the pixel-level text quality on
the textline areas: qt = 1

N

∑
i∈Rt

pq(i). Here pq(i) represents the text quality at
pixel i outputed by TextNet, and N is the total number of pixels in the textline
region Rt.

The overall quality q̂ with regard to text is defined as the weighted pooling
of the quality of all textlines in the image. It can be computed in the following
form, q̂ =

∑
j wjqt(j), where wj is a weight on the j-th textline of the image.

The weight is linearly proportional to the textline area, wj = Rt(j)∑
k Rt(k)

, where
Rt(j) represents the area of the j-th textline in the image.

4 Experiments

To train the proposed network, it is required that the training samples must
contain two types of labels, quality scores and rotated boxes of textlines. This
section introduces a new way of generating training data with both types of
labels.

To compare the proposed framework with existing methods, we conducted
experiments of text-related image quality assessment on two public benchmarks:
DIQA and SmartDoc-QA. In addition, we evaluated the proposed method on
our collected web image dataset.

4.1 Data Generation for Training

For now, the publicly available datasets have only a type of ground truth labels,
for example, ICDAR2013 [6] with bounding boxes for textline detection, and
DIQA [8] with OCR accuracies as the quality metric. As a result, we need to
collect data with both labels to train the proposed network model. The whole
process is briefly introduced as follows:

Step1: label textlines manually from images;
Step2: pick some high-quality textlines and blur them using a Gaussian function

with a random kernel size s;
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Step3: put the blurred textlines back into the original images to replace the
corresponding textlines.

Since blur seems the most common issue in text-related images, we model the
Gaussian blur to smooth textual regions and produce images with blurry text.
In the above process, the ground truth quality for each textline is computed as
qt = 1 − s/2.5, in terms of the kernel size s with a range [0,2.5]. In this case, the
originally labeled textlines are assumed to be of high quality, qt = 1.

4.2 Datasets and Protocols

The DIQA dataset [8] contains a total of 175 color images with resolution
1840 × 3264. These images are captured from 25 documents containing machine-
printed English characters using a smartphone. 6–8 photos were taken for each
document to generate different levels of blur degradations.

In SmartDoc-QA [11], there are 30 different documents used to capture 4260
images, where 142 different images are captured per document. Those captures
are taken using representative values of different distortions. For each image,
the information about the document and capture conditions is stored as ground
truth for evaluation purposes.

One traditional quality indicator for document images is the OCR accuracy
[17]. We define the OCR accuracy as ground truth for each document image in
our quality assessment task. To compute the correlation between the predicted
quality scores and ground truth OCR accuracies, we use the Linear Correla-
tion Coefficient (LCC) and the Spearman Rank Order Correlation Coefficient
(SROCC) to evaluate the performance of the proposed method.

ICDAR2013 and ICDAR2015 were used in ICDAR Robust Reading Compe-
tition [5,6]. In our experiments, 229 pictures were selected from ICDAR2013 and
1000 from ICDAR2015 for training. The textual regions are originally annotated
by 4 vertices of the quadrangle, and the rotation angle is assumed to be zero in
ICDAR2013. In addition, a web image dataset1 was collected with high-quality
textlines from Internet. This dataset includes 600 posters, where 500 posters
were selected for training.

4.3 Implementation Details

To produce both types of lables, we run the above data generation process on the
selected pictures. The obtained training samples, composed of total 1729 images,
were used to train a base model. In our experiments for comparative analysis, we
randomly sampled 60% from the DIQA and SmartDoc-QA datasets to finetune
the base model. The remaining data were averagely separated into a validation
set and a test set. The random split in the DIQA dataset was conducted at
the group level, where each group corresponds to a document. We repeated the
random split tests 100 times to compute 100 LCCs and SROCCs, and reported
the median LCC and SROCC.
1 https://pan.baidu.com/s/1sRPuedHEwdvUYVcGh86uqg.

https://pan.baidu.com/s/1sRPuedHEwdvUYVcGh86uqg
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We implemented the proposed network in the Tensorflow framework. The
encoder layer is pretrained on the ImageNet dataset [3]. The network was trained
end-to-end using ADAM optimizer, with learning rate starting from 1e-4, decay-
ing to one-tenth every 30000 minibatches, and stoping at 1e-6. To speed up
learning, we resized images to a fixed size and formed the minibatch size of 12.
Meanwhile, the ground truth labels about textlines are also resized.

After the network inference, the obtained results need to be resized back to
the original size. On average, the whole process spends about 100ms in compu-
tation for each image on a server using a single Nvidia 1080 Ti graphic card with
an Intel i7-6800k @3.40 GHz CPU.

4.4 Comparative Analysis

We conducted experiments of text-related image quality assessment with the fin-
tuned models on two datasets, DIQA and SmartDoc-QA. Three state-of-the-art
approaches, a deep learning approach (DLA) [4], the Focus [13], the BRISQUE
[1], the Sharpness [8], and the CG-DIQA [9], are selected for comparative anal-
ysis. The DLA approach uses a convolutional neural network to predict quality
scores for a document image, and the other four approaches adopts hand-crafted
features to compute the quality prediction.

Table 1 presents the quantitative results with LCC and SROCC on both
DIQA and SmartDoc-QA datasets. It is observed that, for DIQA over the Fin-
erReader OCR accuracy, the proposed method obtains a higher median LCC
(0.960) than the other five approaches. With the median SROCC indicator, how-
ever, our method performs only better than the DLA and BRISQUE approaches,
and a little worse than the other three hand-crafted methods (Focus, Sharpness
and CG-DIQA). The cause is probably that the ground truth text quality is
labelled as the value linear to the Gaussian kernel size s. In essence, the degree
of blur degradation of textlines is not linearly in accordance with the change
of s, thus the current ground truth can not reflect the degree of degradation in
training samples well enough.

Table 1. Comparison on DIQA and SmartDoc-QA datasets

DLA Focus BRISQUE Sharpness CG-DIQA Proposed

DIQA Median LCC 0.950 0.9378 −0.0097 0.8488 0.9523 0.960

Median SROCC 0.898 0.9643 0.0574 0.9524 0.9429 0.9286

SmartDoc-QA Median LCC N/A N/A 0.1851 0.6242 0.6250 0.6841

Median SROCC N/A N/A 0.0753 0.5964 0.6305 0.6729

In [4] and [13], the authors did not conduct experiments on SmartDoc-QA,
and the original codes are unavailable, so these two methods are not compared
on the SmartDoc-QA dataset. Our method outperforms the other three methods
in the median LCC (0.6841) and SROCC (0.6729) over the Tesseract accuracy. It
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is worth noting that the SmartDoc-QA dataset is greatly complicated compared
to the DIQA dataset. That is why the overall evaluation indicators seem lower
in general.

From the comparative tests, it is observed that the proposed framework for
TIQA is better than or comparable to the state-of-the-art. In addition, this
framework is characterized by the ability of better embodying the linear corre-
lation than the monotonicity between the predicted and ground truth.

4.5 Other Results

With the base model, we have tested the proposed framework on the remaining
100 web images and the ICDAR2017 [14]. Some results are shown in Fig. 4, where
the top row is originally from our collected test set and the bottom from the
ICDAR2017. In the results, each textline is bounded with yellow boxes and the
quality prediction score is added beside the textline. It is easily observed that
the clear textlines have higher quality scores, and the textline is generally quite
blurry if its predicted quality score is below 0.80.

Under the proposed framework, the overall text quality score for images is
computed in a weighted pooling way. For these images, the corresponding scores

(a) 0.83 (b) 0.88 (c) 0.77

(d) 0.89 (e) 0.86 (f) 0.61

Fig. 4. Results of textline quality assessment and detection. Top row: samples from our
collected dataset, bottom row: samples from the ICDAR2017. Each sample is overlaid
with quality scores and rotated boxes for textlines. The overall text quality prediction
score is shown in the corresponding caption.
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are respectively, 0.83, 0.88, 0.77, 0.89, 0.86, and 0.88, where the higher quality
score means the better image quality with respect to text. With the generated
ground truth, the overall LCC and SROCC for these 100 web images are respec-
tively, 0.6649 and 0.6134. Due to unavailability of the ground truth involving
text quality in the ICDAR2017, we cannot compute the LCC or SROCC indica-
tors. But the perceptual judgement is basically consistent with the overall text
quality score. For example, the image in Fig. 4(e), assessed with the text qual-
ity of 0.86, is perceptually a lot clearer than the one in Fig. 4(f) with the text
quality prediction 0.61. Moreover, the ICDAR2017 images never appeared in the
training set of the base model, which proves that the proposed approach has the
good scalability to new real scene images.

5 Conclusion and Future Work

This paper proposes a new deep neural network, TextNet, to estimate text-
related image quality while detecting textlines. The proposed network mainly
includes three parts: encoder, decoder, and prediction layers. The decoder layer
combines the encoded feature map with the decoded map through deconvolution
and concatenation. The prediction layer is designed for textline detection and
quality assessment with a new loss function. For the purpose of TIQA, the overall
text quality of an image is computed through weighted pooling of textline quality.
Experimental results show that the proposed TIQA framework can work well
in jointly assessing text related image quality and detecting textlines, even for
unknown scene images.

One of our future work is to design a novel strategy of generating the ground
truth quality for textlines, which helps to create a better general-purpose network
model for text quality assessment and detection.
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Abstract. The dominant sets clustering algorithm has some interest-
ing properties and has achieved impressive results in experiments. How-
ever, with the data represented as feature vectors, we need to estimate
data similarity and the regularization parameter influences the clustering
results and number of clusters significantly. To obtain a specified num-
ber of clusters efficiently with the dominant sets algorithm, we present
a target dominant set clustering algorithm. Our algorithm detects clus-
ters in the first step, and then extracts dominant sets around the cluster
centers based on a specially designed game dynamics. In addition, we
show that this game dynamics can be utilized to reduce the computa-
tion and memory load significantly. Experiments show that our algorithm
performs favorably to the original dominant sets algorithm in clustering
quality with much smaller computation load than the latter.

Keywords: Clustering · Dominant set · Cluster center

1 Introduction

The commonly used clustering algorithms include k-means, EM, DBSCAN [6]),
mean shift [5], normalized cuts (NCuts) [17] and their variants. In general, the
problems afflicting existing algorithms include inability to generate clusters of
arbitrary shapes, low clustering accuracy, parameter dependence and large com-
putation load. In order to solve one or more of the aforementioned problems,
in recent developments the robust spectral clustering [21], affinity propagation
(AP) [1], density peak (DP) [16] algorithms are proposed and they reported
impressive clustering results in certain applications.

While the majority of existing clustering algorithms work in the partitioning
mode, i.e., all clusters are obtained from a partitioning process simultaneously,
the dominant sets (DSets) algorithm [15] is a notable exception. This algorithm
presents dominant set as a formal definition of a cluster, and detects the clusters
sequentially. Compared with existing approaches, the DSets algorithm has some
special properties. First, the clusters are detected following a certain order. In
contrast, the obtained clusters from DBSCAN do not follow any specific order.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11140, pp. 286–295, 2018.
https://doi.org/10.1007/978-3-030-01421-6_28
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In contrast, the DSets algorithm tends to extract large-density clusters firstly,
and large-size clusters are also given priority in the clustering process [3]. Sec-
ond, this algorithm assigns a weight to each data in a cluster, which reflects the
relationship of the data with others in the cluster. Third, with the data rep-
resented as a pairwise similarity matrix, this algorithm has no dependence on
any parameters. These nice properties enable the DSets algorithm to be applied
in various fields including image segmentation [11], object classification [12,13],
object detection [19] and human activity analysis [9].

Although the DSets algorithm is shown to be effective in many applications,
we have found that it has its own problems. If the data for clustering are rep-
resented as pairwise similarity matrix, this algorithm involves on parameters.
However, with data represented as feature vectors, it is necessary to estimate
the data similarity and construct the pairwise similarity matrix firstly. With the
common similarity measure s(x, y) = exp(−d(x, y)/σ) where d(x, y) denotes the
Euclidean distance between data x and y, the parameter σ is introduced. We
have found that this parameter influences the number of clusters and cluster-
ing results significantly. If we intend to obtain a specified number of clusters
with the DSets algorithm so that the nice properties can be utilized, a tuning
of the parameter σ is necessary, which often means a large computation load.
To solve this problem, we present a target dominant sets clustering algorithm in
this paper. We firstly detect the cluster centers following the method proposed
in [16]. With the cluster centers available, we then extract clusters around the
cluster centers with a specially designed dynamics [10] motivated by the one
proposed in [2]. This algorithm also allows us to reduce the computation load
significantly without degrading the clustering results. Experiments are provided
to compare our algorithm with the original DSets algorithm with parameter
tuning.

2 Dominant Sets Algorithm

The majority of clustering algorithms generate the clusters from the partition-
ing process, and no definition is provided as to what subset of data form a
cluster. In contrast, the DSets clustering algorithm defines a cluster formally
and then detects the clusters one by one. Specifically, this algorithm defines
a non-parametric measure of internal coherency, and it extracts a cluster by
maximizing the subset which is internally coherent. Based only on the pairwise
similarity matrix, the DSets algorithm requires no input parameters. A brief
introduction is provided below.

We denote n data to be clustered by V , and A = (aij) stands for the pairwise
n × n similarity matrix. As the data similarities are used to group data into
clusters, we force the similarity of one data with itself to be zero, namely aii = 0
for i ∈ V .

To define a cluster formally, the DSets algorithm designs a non-parametric
measure of internal coherency on the basis of the pairwise similarity, and treats
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a maximal, internally coherent subset as a cluster. With D ⊆ V denoting a
non-empty subset, i ∈ D and j /∈ D, it is defined that

φD(i, j) = aij − 1
|D|

∑

k∈D

aik, (1)

where |D| denotes the size of D, and

wD(i) =

{
1, if |D| = 1,∑

j∈D\{i} φD\{i}(j, i)wD\{i}(j), otherwise.
(2)

The wD(i) is a key in defining the internal coherency, and can be interpreted
approximately as follows. With one data p and a subset H ⊆ V , we define

Φ(p,H) =
1

|H|
∑

k∈H

apk, (3)

Φ(H) = Φ(H,H) =
1

|H|(|H| − 1)

∑

p∈H,k∈H

apk. (4)

Evidently, Φ(p,H) measures the average similarity between p and the data
in H, and Φ(H) evaluates the overall average similarity inside H. Furthermore,
wD(i) can be regarded as the difference between Φ(i,D \ {i}) and Φ(D \ {i})
approximately, with D\{i} denoting the subset D excluding i. Therefore wD(i) >
0 means that i has a large similarity with the other data in D, and wD(i) < 0
implies that i is loosely connected to the other data in D.

With W (D) =
∑

i∈D wD(i), we call the subset D a dominant set if

1. W (T ) > 0, for all non-empty T ⊆ D.
2. wD(i) > 0, for all i ∈ D.
3. wD

⋃{i}(i) < 0, for all i /∈ D.

Here we observe that a dominant set is a maximal, internally coherent subset.
The three conditions guarantee that a dominant set has large internal similarities
and small external similarities, and enable a dominant to be regarded as a cluster.

The work in [15] detects a dominant set with the replicator dynamics. Specif-
ically, with x ∈ Rn denoting the weight vector of the n data, the weights are
updated iteratively by

x
[k+1]
i =

x
[k]
i (Ax[k])i

x[k]′Ax[k]
. (5)

At convergence, the data whose weights are larger than a threshold form a dom-
inant set. In addition, it is shown that the weight of data i equals to wD(i)

W (D) ,
reflecting the relationship of i with the other data in D. Specifically, a large
weight indicates that the data has a large similarity with the other data. Fur-
thermore, [2] proposes the infection and immunization dynamics (InImDyn) to
improve the computation efficiency. The InImDyn calculates data weights by

x(t+1) = θF (x(t))(x
(t))[F (x(t)) − x(t)] + x(t), (6)
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where F is used to calculate the most infective strategy y for x, and θ represents
the minimum share of y to make (1 − θ)x + θy immune to y. For space reason,
the details of this dynamics are skipped in this paper.

After one dominant set (cluster) is obtained, the included data are removed.
Then the next cluster is detected in the remaining unclustered data. By repeating
this process we are able to accomplish the clustering.
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Fig. 1. DSets clustering results and obtained number of clusters with different σ’s.

3 Our Approach

The DSets algorithm has some interesting properties and has been applied in
diverse tasks. However, with data represented as feature vectors, the parameter
σ impacts on the clustering results significantly. In this section we discuss this
problem and present target dominant sets clustering as a solution.

3.1 Problems

The DSets algorithm detect clusters based only on the pairwise similarity matrix.
With data represented as feature vectors, we use s(x, y) = exp(−d(x, y)/σ) to
estimate data similarity and introduce the parameter σ. We study the impact of
σ on clustering results below.

The eight datasets used in experiments are Aggregation [8], Compound [20],
Pathbased [4], D31 [18], R15 [18], Flame [7] and the Wine and Iris datasets from
UCI machine learning repository. The parameter σ is tested with the values
σ = αd, where d denotes the mean of pairwise distances and α takes values
from 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 30, · · · , 100. We use NMI (Normalized Mutual
Information) to evaluate the clustering results, which are reported in Fig. 1(a).
Evidently the clustering results on all the eight datasets are influenced by σ
significantly. To find out the reason of this influence, we further have a look
at the obtained numbers of clusters with different σ’s. As shown in Fig. 1(b),
the numbers of clusters decrease or remain unchanged with the increase of σ.
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This means that σ influences the number of clusters, cluster sizes and then the
clustering results.

We discuss the observations from Fig. 1 as follows. By definition, a domi-
nant set is a maximal, internally coherent subset, and only the data with large
internal similarities can be grouped into one dominant set. With a small σ,
s(x, y) = exp(−d(x, y)/σ) generates small similarity values, and one data has
large similarities with only a limited number of nearest neighbors, resulting in
many small clusters. With a large σ, the similarity values are large and we
obtain large clusters correspondingly. This explains why the numbers of clusters
decrease or keep unchanged with the increase of σ in Fig. 1(b). As the cluster
sizes increase with the increase of σ, the clusters are smaller than the real ones at
first, and become larger than the real ones gradually. Consequently, σ improves
the clustering results at first, and then results in a degradation when σ is too
large, as shown in Fig. 1(a).

The experiments above imply that a tuning process of σ is need to obtain
the desired clustering result and number of clusters. In the case that the number
of clusters is specified beforehand, and we also intend to make use of the special
properties of dominant set, we have to try different σ’s to obtain the specified
number of clusters. In general, this means a large computation load.

3.2 Target Dominant Set Extraction

In order to generate a specified number of clusters with the DSets algorithm
efficiently, we present a target dominant sets algorithm. We detect cluster centers
and treat them as seeds in the first step, and then extract clusters containing
the seeds. As the extracted cluster contain a specified data, i.e., the seed, we call
the obtained cluster (dominant set) as target cluster (dominant set). These two
steps are described in details below.

The first step is to detect cluster centers. While there are different methods
for this task, in our implementation we adopt the one proposed in [16]. Each
data is represented by local density ρ and the distance δ to the nearest data
of larger local density. By regarding local density peaks as cluster centers, it is
found that both ρ’s and δ’s of cluster centers are large, whereas either ρ’s or δ’s
of the other data are small. Based on this difference, we sort the data according
to their γ = ρδ, and those with the largest γ’s are selected as the cluster centers.

While the original DSets algorithm detects clusters sequentially, we don’t
know which data will be included in extracting each cluster. In order to extract
a target cluster containing a specified data, the game dynamics must be modified
to serve this purpose [10]. With InImDyn, the weights of data are updated
iteratively according to Eq. (6). Even if we assign the initial weight of the seed to
be 1, it is still possible that the seed data is assigned a zero weight, which means
it is not in the obtained cluster. Therefore we need a different weight updating
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method. In the iteration, each state x(t) can be regarded as an approximation
of the final weight vector, and the final weights are shown to be equal to

xD
i =

{
wD(i)
W (D) , if i ∈ D,

0, otherwise.
(7)

Consequently, each time the most infective strategy y is selected with the F
function in Eq. (6), we can use Eq. (7) to update the weights, instead of Eq. (6).
In this way, once one data is selected, it will never be assigned a zero weight,
and it will stay in the obtained cluster. This guarantees that the obtained cluster
contains the seed, since the seed is the first selected data.

However, the recursive form of wD(i) in Eq. (2) means a large computation
load, especially if the cluster size is large. We therefore explore an approximation
of wD(i) to improve the computation efficiency. As discussed in Sect. 2, wD(i)
measures the relationship between Φ(i,D \ {i}) and Φ(D \ {i}). We make use of
this relationship to estimate wD(i) as

wD(i) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if |D| = 1,∑
j∈D\{i}

aij , if |D| = 2,

Φ(i,D\{i})
Φ(D\{i}) , otherwise.

(8)

Given a dataset, we firstly detect the cluster centers. For each cluster center,
we then extract the target cluster containing the cluster center. In this process, it
is possible that some data are grouped into more than one clusters. We make use
of the data weights to solve this problem and obtain the final result. As a large
data weight means a large probability of one data in one cluster, we compare
the weights of one data assigned by each cluster, and group the data into the
cluster where it is assigned the largest weight.

As a special type of dominant sets clustering, our approach is proposed to
eliminate the impact of σ and generate a specified number of clusters with the
DSets algorithm. While non-parametric similarity measures, e.g., cosine, can
also be used to estimate data similarity, the work in [14] indicates that non-
parametric measures usually generate unsatisfactory results. In addition, with
non-parametric similarity measures we are not guaranteed to obtain the specified
number of clusters.

3.3 Improvement Measure

The DSets algorithm is computationally expensive in comparison with some
other algorithms, e.g., k-means, DBSCAN and NCuts. The running time com-
parison of these four algorithms is shown in Table 1, where σ = 30d is adopted
for the best average result for the DSets algorithm. It is evident that on all the
datasets except for Iris, the running times of DSets algorithm are much more
longer than those of the other algorithms. Even on the Iris dataset, only the
DBSCAN algorithm consumes more running time than the DSets algorithm.
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Table 1. Running time (ms) comparison of different clustering algorithms.

Aggregation Compound Pathbased D31 R15 Flame Wine Iris

DSets 473.9 132.5 66.9 12377.9 1275.0 51.3 52.9 19.7

k-means 4.5 2.2 1.8 100.2 9.3 1.2 2.0 1.5

NCuts 193.0 56.6 29.5 3701.5 113.8 19.3 12.6 10.5

DBSCAN 46.4 25.3 16.2 487.0 108.4 8.9 10.3 42.5

As our approach is based on dominant set extraction, it is also afflicted by the
large computation load.

In our opinion, the reason of the large computation load of the DSets algo-
rithm is two folds. First, the clusters are obtained sequentially and each cluster
is extracted by updating the data weights iteratively. This means a large number
of iterations and leads to a large computation load, especially if there are a large
amount of clusters. Second, each cluster is detected in all the unclustered data,
although the data in a cluster usually correspond to a small subset of unclustered
data. Considering it is inherited in the DSets algorithm to extract clusters by
updating the data weights, we choose to explore measures to reduce the com-
putation load based on the second reason. Since one cluster usually corresponds
to a subset of the unclustered data, one natural solution is to extract a cluster
within a part, instead of all, of the unclustered data. However, with the original
DSets algorithm it is not clear which data will be included into one cluster before
the cluster is obtained. In this case, it is not possible to reduce the computation
load by extracting a cluster in a subset of unclustered data.

Fortunately, in our algorithm the cluster centers are detected in the first
step, and the clusters are then extracted to include these cluster centers. As one
cluster center and the farthest data are unlikely to be in the same cluster, it is not
necessary to extract the target cluster in all the unclustered data. Instead, we can
safely discard the farthest data and work with only the nearest neighbors of the
cluster centers. As the data used in calculation is reduced, the computation load
is expected to decrease correspondingly. Furthermore, since the major memory
load is caused by the pairwise data similarity matrix, and the matric size is
square of data amount, the memory load can be reduced significantly.

4 Experiments

In this part, we firstly illustrate the effect of the improvement measure in reduc-
ing computation load presented in Sect. 3. Then we compare the running time
and clustering results of our approach with the original DSets algorithm based
on tuning of the parameter σ.

4.1 Effect in Reducing Computation Load

In Sect. 3 we show that it is possible to reduce computation load by discarding
the farthest data to the cluster centers. In order to test to which degree the
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farthest data can be discarded without degrading the clustering results, the
data are sorted based on to their distances to the cluster center. Then different
percentages of data in the farthest part are discarded and the corresponding
clustering results are recorded in Fig. 2(a).
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Fig. 2. Clustering results and running time with respect to different percentage of
discarded data.

It can be observed from Fig. 2(a) that on all the datasets except for Iris, at
least 50% of the farthest data can be discarded without degrading the clustering
results. Especially with the D31 and R15 datasets, we can discard up to 90% of
the farthest data safely. In our opinion, the reason for this observation is that
these two datasets contain 31 and 15 clusters respectively, and all the clusters in
one dataset have the same amount of data. In this case, in extracting one cluster,
the contained data are often less than 10% of the data. Therefore we can remove
up to 90% of data without influencing the clustering results. In contrast, with the
Iris dataset, discarding even 10 percent of data results in an evident decrease in
the clustering accuracy. One possible reason is that on this dataset the features
are extracted from iris flowers and it is not suitable to measure the difference
with Euclidean distance. On the other datasets, the number of clusters ranges
from 2 to 7, and we can discard 50 to 60 percent of farthest data safely in
extracting target clusters. This means that the new matrix size is about 25% or
smaller of the original one, indicating a significant reduction in memory load.

Intuitively, the reduction of data in computation will result in the reduction
of computation load. Similar to the last experiment, we show the running time
with respect to different percentage of discarded data in Fig. 2(b). With all the
datasets the computation load is reduced evidently with the reduction of data
in computation.

It is worth noticing that in our implement we discard the farthest data to the
cluster centers in all the data, instead of the unclustered data. This is helpful to
determine a fixed ratio to discard the farthest data. Otherwise, with the extrac-
tion of clusters, the amount of unclustered data becomes smaller and smaller,
and it is difficult to find out such a fixed ratio.
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4.2 Comparison

To obtain a specified number of clusters with the DSets algorithm, we present
the target dominant sets algorithm. Since Fig. 1(b) indicates that we can also
achieve this purpose by selecting a proper σ, we compare the running time of
these two methods. With our approach, we use the original version and no data
are discarded to reduce the computation load. With DSets, we firstly use σ = d
to obtain the clustering results. If the obtained number of clusters is smaller
than the real one, we find the σ which generates the real number of clusters by
bisection between [0, d]. Otherwise, we continue to test 10d, 20d, · · · and also
determine the σ by bisection. Here we call this algorithm with parameter tuning
as parameter-tuned DSets (PT-DSets) for ease of expression. The running time
of our approach and PT DSets is shown in Table 2, where it is evident that on the
majority of datasets our approach is much more efficient than parameter-tuned
DSets.

Table 2. Running time (seconds) comparison between our algorithm and PT-DSets.

Aggregation Compound Pathbased D31 R15 Flame Wine Iris

PT-DSets 4.80 1.05 1.01 128.39 2.44 0.64 0.28 0.24

Ours 2.75 0.37 0.17 17.39 0.41 0.11 0.14 0.20

Table 3. Clustering results comparison between our algorithm and PT-DSets.

Aggregation Compound Pathbased D31 R15 Flame Wine Iris

PT-DSets 0.90 0.75 0.39 0.87 0.97 0.12 0.49 0.60

Ours 0.85 0.79 0.53 0.91 0.96 0.87 0.60 0.76

Finally, we compare the clustering accuracy of our approach and PT-DSets
in Table 3. Our algorithm outperforms PT-DSets on 6 out of the 8 datasets, is
outperformed by the latter slightly on the other two datasets. This observation
indicates that our approach performs better than PT-DSets in both clustering
accuracy and computation efficiency.

5 Conclusions

We present a target dominant sets algorithm to obtain a specified number of
clusters with the dominant sets algorithm efficiently. In the first step cluster
centers are determined based on the local density relationship among the data.
Then we extract the target clusters around the cluster centers, which is based on
a revised infection and immunization dynamics. We further show that the com-
putation and memory load of our approach can be reduced significantly without
degrading the clustering results by discarding the farthest data to the cluster
centers. Experiments on some datasets indicate that our algorithm outperforms
the dominant sets algorithm with parameter tuning in both clustering accuracy
and computation efficiency.
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Escuela Politécnica Superior, Universidad Autónoma de Madrid,

28049 Madrid, Spain
aaron.montero.m@gmail.com, jessicalopezhazas@gmail.com,

f.rodriguez@uam.es

Abstract. Neural heterogeneity has been reported as beneficial for
information processing in neural networks. An example of this het-
erogeneity can be observed in the neural responses to stimuli, which
divide the neurons into two populations: specialists and generalists. Being
observed in the neural network of the locust olfactory system that a bal-
ance of these two neural populations is crucial for achieving a correct
pattern recognition. However, these results may not be generalizable
to other biological neural networks. Therefore, we took advantage of
a recent biological study about the Drosophila connectome to study the
balance of these two neural populations in its neural network. We con-
clude that the balance between specialists and generalists also occurs in
the Drosophila. This balancing process does not affect the neural network
connectivity, since specialist and generalist neurons are not differentiable
by the number of incoming connections.

Keywords: Pattern recognition · Bio-inspired neural networks
Neural computation · Supervised learning · Connectivity
Specialist neuron · Generalist neuron · Neural variability
Olfactory system

1 Introduction

In a recently published study [7], we observed that in a neural network that
simulated the locust olfactory system, pattern recognition was influenced by
the balance of specialist and generalist neurons. These neurons are defined in
this way based on their neural responses to different stimuli, for which the spe-
cialists respond to few of them and the generalists to a wide number of them.
Because of this, it is suggested that specialists are essential for discrimination,
while generalists extract common features [15]. However, these results may not
be generalizable to other insects, so we have taken advantage of a recent and
extensive study on Drosophila [3] to test our results using a computational model
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that simulates its olfactory system. Some of the differences between the locust
neural network and the Drosophila one are the number of neurons in the anten-
nal lobe (AL) (∼1, 000 [8] vs ∼250 [3]), the number of Kenyon cells (KCs) in the
mushroom body (MB) (∼50, 000 [8] vs ∼2, 500 [3]) and the connection probabil-
ity between the AL and the KCs (∼0.2 [6,8] vs ∼0.01 [3]), see Fig. 1. The study
of specialism/generalism on Drosophila will not only serve to strengthen our
results, since we will also use the data of Drosophila to analyze the connectome
obtained by the balance of these two types of neurons.

The computational model to perform this study on Drosophila is a single-
hidden-layer neural network (Fig. 1) which represents in its input layer the AL,
in the hidden layer the KCs and in the output layer the MB output neurons
(MBONs). AL and KCs are connected by a non-specific connectivity matrix [5]
that increases the separability between different encoded stimuli. On the other
hand, the connectivity matrix that links KCs with MBONs is subjected to a
learning process that can be emulated by using Hebbian rules [2]. Finally, the
information received by the MBONs is subject to a process of lateral inhibition,
which is similar to the winner-take-all principle [9].

Fig. 1. Neural network model. Panel (a) shows the biological structure of the olfac-
tory system of the Drosophila. When the olfactory receptors react to odor plumes the
olfactory receptor neurons (ORNs) send the odor information using a fan-in connectiv-
ity network to the AL. AL codifies this information and relays it via fan-out connections
to the MB. Inside MB, the odor information is received by KCs, which are responsible
for increasing its separability. Finally, the KC send the stimulus signal to the MBONs,
which are responsible for its final classification process by means of convergent synaptic
connections. Panel (b) shows the computational model used, which is a single-hidden-
layer neural network with the AL layers as input (X), the KCs as hidden layer (Y )
and the MBONs as output (Z). The connectivity matrices C and W link AL to KCs
and KCs to MBONs respectively. The thresholds or biases for the hidden and output
layer are θj and εl respectively.

In this computational model, we introduced Gaussian patterns for analyzing
input data of different complexities, since this complexity can be easily con-
trolled through overlap between classes of these patterns. On the other hand,
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to analyze the role of specialist and generalist neurons in the KC layer, we cal-
culated the classification success for different combinations of these neurons.
We started with a network with only generalists neurons moving to a network
with only specialists, going through several intermediate states. The results
obtained by this process are consistent with those previously obtained for
locust [7]. Furthermore, we noted that the number of incoming connections to
specialist and generalist neurons is similar. This suggests that the neural sensi-
tivity of KCs seems to be due only to the spatial distribution of stimuli in the
AL layer.

2 Methods

2.1 Gaussian Patterns

The AL encodes the olfactory stimuli so that a specific odorant stimulates specific
glomeruli of it [10]. This activity can be propagated to the rest of the glomeruli
according to the intensity of the stimulus [10]. This behavior has led us to sim-
ulate the odor patterns as Gaussians. The specific glomeruli are represented by
the expected value of the Gaussians and the propagated activity because of the
stimulus intensity by their standard deviation. The variation of the standard
deviation of these Gaussians will determine the degree of overlap between pat-
tern classes and, therefore, their complexity level. In Fig. 2 we can see examples
of these Gaussian patterns for 10 classes used and 3 different complexity levels,
these examples show a pattern example for each of their classes and different
configurations. These patterns are defined in a two-dimensional space: the X-
axis defines the spatial location of AL neurons and the Y -axis shows their neural
activity. Finally, since the neural response to a stimulus is not always identical,
we added noise to the activity generated by stimuli.

Fig. 2. Gaussian patterns. This figure shows an example of Gaussian pattern for each
of the 10 classes used and 3 different complexities. The Gaussian patterns represent
the AL neurons by the X-axis and their activity by the Y -axis. The variation of the
standard deviation of these Gaussians determines the overlap degree and, therefore,
their complexity level. Furthermore, we added noise to the activity generated by stimuli,
since the neural response to them can change.
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2.2 Neural Network and Neuron Model

The network model is a single-hidden-layer neural network that retains the most
relevant structural properties of the insect olfactory system [4,6,7] (see Fig. 1).
The input layer represents the AL, the hidden one is the KCs and the output layer
is composed of MBON populations, between which there is lateral inhibition.
The dimensions of this network are based on the Drosophila ones, 250 input
neurons [13], 2500 hidden neurons [14] and 100 output neurons (which are divided
into populations of 10 neurons, one for each of the 10 pattern classes).

These three layers are connected by the matrices C and W , which are ini-
tialized at the beginning of each learning process. The connectivity matrix C
is established randomly by independent Bernoulli processes with probability
pc = 0.01 in the Drosophila [3] for each existing connection and 1 − pc for
each lack of it [4]. The reason for this non-specific connectivity matrix is due
to the individual connection variability of insects of the same species [5]. On
the other hand, the matrix W is initialized by a random matrix N0, because its
weights will be gradually strengthened or weakened using a supervised Hebbian
learning [7]. According to the learning rules, if the hidden layer neuron yj has
fired and the output neuron zl should fire due to the output target, then the con-
nection between these neurons (wlj) is reinforced with a probability p+. In case
of the output neuron should not fire, the connection is weakened with the same
probability. Instead, If the hidden layer neuron yj has not fired and the output
neuron zl should fire, then the connection between these neurons is weakened
with a probability p−. The value chosen for these Hebbian probabilities were
p+ = 1 and p− = 0.05 because of their good learning performance [4,7].

In terms of the neuron model, and taking into account the simple dynamics
of KCs (mostly silent, a single spike followed by a reset and its response is
produced by the coincidence of concurrent spikes) [8], we choose the McCulloch-
Pitts model. This neuron model changes slightly for the MBONs given the lateral
inhibition present in them [12]. Hence, the equations for the KCs and MBONs
are as follows:

yj = ϕ(
NAL∑

i=1

cjixi − θj), j = 1, . . . , NKC , (1)

zl = ϕ

⎛

⎝
NKC∑

j=1

wljyj − 1
Nclass

Nclass∑

k=1

NKC∑

j=1

wkjyj − εl

⎞

⎠ , l = 1, . . . , Nclass, (2)

where xi, yj and zl are activation states for an input neuron, a hidden neuron
and a group of MBONs specialized in a certain pattern class, respectively. The
input and hidden layer are linked by cji weights, and the hidden and output
layer by wlj ones. On the other hand, the neural thresholds (bias) for the hidden
and output layer are θj and εl. Finally, the Heaviside activation function ϕ is
0 when its argument is negative or 0 and 1 otherwise. In the case of MBONs,
where we used the winner-take-all concept [9], the activation function ϕ is only
1 for the winner MBON group.

Finally, we used different thresholds for KCs (heterogeneous thresholds) and
the same threshold for all MBONs (homogeneous threshold). The reasons for
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using heterogeneous thresholds in KCs is their existence in this kind of neu-
rons [8] and their use in neural networks can improve pattern recognition [6]. To
select different threshold values for KCs, we used the concept of limit threshold
in the training phase [6,7]. Limit threshold is the neural activity of a neuron
generated by a given stimulus and, therefore, the minimum value for which the
neuron will not react to it. We extracted the distribution of limit thresholds for
each KC and used these values to made the KCs react randomly to a percentage
of patterns in order to introduce a greater differentiation between specialists and
generalists in KC layer [7]. However, this variability was not needed in MBON
layer, since a homogeneous threshold for all neurons is enough because of the
learning process in the matrix W and, furthermore, there are no records in biol-
ogy about their presence in these neurons.

2.3 Selection Criteria of Specialist and Generalist Neuron

Specialist neurons are selective responding to stimuli, while generalists code for
multiple stimuli [1]. Based on this definition, we can assume the extreme case
that specialists respond only to one odorant class and generalists respond to all
of them (10 pattern classes in our case). However, in a previous study [7], we
observed that the computational model worked better when we did not exclude
intermediate sensitivities (number of neural responses of a neuron to different
stimuli). Therefore, we decided to divide neural sensitivities equally between spe-
cialist and generalist neurons. Specialists will be those with a neural sensitivity
from 1 to 5 and generalists the ones with neural sensitivity from 6 to 10.

Once specialists and generalists had been defined, we made two sets of each
type of neurons. These sets will be used to create a new KC layer with the
same dimensions than the original but with the percentages of these two types
of neurons that we choose. To observe their impact on the classification success,
the KC layer starts with all generalist neurons and they are gradually replaced
by specialist neurons. This balancing process will allow us to estimate which
combination is the most suitable for pattern recognition.

3 Results

The following results are the average of 10 simulations with 5-cross-validation
and supervised Hebbian learning for a total of 1000 Gaussian patterns (100 for
each of the 10 pattern classes).

3.1 Balance of Specialists and Generalists

In Fig. 3, we can see that when the overlap is less than 28%, the maximum
success is achieved for all combinations of specialist and generalist neurons in
the KCs. Once this percentage of overlap has been overcome, the maximum
classification success rate is only achieved for a specific balance of these neurons.
This balance initially requires a small number of specialists (10 − 20%), but for
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overlaps greater than 70% this number increases quickly. This growth causes
the neural network of the Drosophila finally only needs specialists to achieve
the highest classification success, for input patterns with extremely high overlap
(∼90%) and, therefore, high complexity.

These results are consistent with those observed for locust [7]. The only
remarkable difference between both results is that the region of balance between
specialists and generalists is greater in Drosophila, as well as the percentage of
specialist neurons required on it is usually lower. A variation that may be due to
the fact that the connection probability between AL and MB in Drosophila (pc ∼
0.01) [3] is much lower than the one estimated for the locust (pc ∼ 0.2) [6,8].
Therefore, the amount of odor information transmitted by this lower connectivity
will be also lower and the Drosophila system requires initially a larger number
of generalists to offset this loss.

Fig. 3. Relationship between overlap, the required percentage of specialist
neurons and classification success. This picture shows the evolution of the classi-
fication success and the percentage of specialists required to achieve this success based
on the overlap between patterns. When the overlap is less than 28%, the maximum
success is achieved for all combinations of specialists and generalists in KCs. For an
overlap from 28% to 90%, the system requires a balance between these two types of
neurons to classify correctly. During this period, the number of specialists required by
the system increases quickly. Finally, for overlaps higher than 90%, the classification
gets worse and the system only needs specialists for improving its performance.

3.2 Neural Sensitivity Independent of the Number of Connections

As we mentioned previously, we have based on a recent and extensive study
on Drosophila [3] to analyze the role of specialist and generalist neurons in
its olfactory system. This study differentiates KCs according to their incoming
connections, which led us to wonder if the randomness of the network that
connects AL to KCs, matrix C (see Fig. 1), disappears after the balance between
specialists and generalists.

As shown in panel (a) of Fig. 4, the connectivity distributions between the
initial matrix C and the solution matrix C ′ (after the balancing process) are
similar. The reason for not losing the random structure of connectivity by the
balancing process could be due to the similarity between the connectivity dis-
tributions of specialists and generalists, panel (b) of Fig. 4. Therefore, when we
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modify the specialist and generalist populations in the KC layer, Subsect. 2.3,
we do not affect the number of connections between AL and KCs and how they
are distributed. This leads us to think that the neural sensitivity of a neuron is
not directly proportional to the number of incoming connections, if not mainly
is due to the spatial distribution of stimuli in the input layer of AL.

Fig. 4. Number of connections to Kenyon cells for initial and solution con-
nectivity matrices and specialist and generalist neurons. These panels show
the mean values for different simulations and overlap degrees, the standard deviations
of these values are represented by error bars. Panel (a) shows the connectivity distri-
butions of the initial random matrix and the solution matrix obtained by the optimal
balance between specialists and generalists. Panel (b) shows the connectivity distribu-
tions of specialist and generalist neurons.

4 Discussion and Conclusions

In a previous study [7], we analyzed computationally what proportion of special-
ist and generalist neurons was suitable to improve the neural network learning of
the olfactory system. We noted that when the complexity of the patterns was low,
the system could reach the maximum classification success with almost any ratio
of specialists and generalists and, therefore, their roles in pattern recognition was
unspecific. For intermediate complexities, the system required a balance between
these types of neurons (both were relevant). Finally, when the input complexity
was high, the pattern recognition problem was such that only specialist neurons
could improve the classification success. However, it was not clear that these
results in the locust olfactory system would be generalized to other insects. So
we decided to also study it for Drosophila and analyze the resulting connectome
from the balance between specialists and generalists.

We observed by using Gaussian patterns with different levels of overlap (com-
plexity) and a Drosophila-inspired neural network that the results obtained
are consistent with the ones obtained for the locust. Furthermore, the balance
between specialist and generalists neurons does not affect the randomness of the
connections between AL and MB in agreement with the biological facts. This
fact is due to the similar number of incoming connections of these two types of
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neurons, which means that the neural sensitivity of KCs seems to be related only
to the spatial distribution of stimuli in the AL. Therefore, the regularization of
the ratio of specialists and generalists could be applied in randomized neural
networks [11] to improve their classification without removing its randomness.
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Abstract. In this paper, we propose a goal-directed navigation system
consisting of two planning strategies that both rely on vision but work
on different scales. The first one works on a global scale and is respon-
sible for generating spatial trajectories leading to the neighboring area
of the target. It is a biologically inspired neural planning and navigation
model involving learned representations of place and head-direction (HD)
cells, where a planning network is trained to predict the neural activi-
ties of these cell representations given selected action signals. Recursive
prediction and optimization of the continuous action signals generates
goal-directed activation sequences, in which states and action spaces are
represented by the population of place-, HD- and motor neuron activ-
ities. To compensate the remaining error from this look-ahead model-
based planning, a second planning strategy relies on visual recognition
and performs target-driven reaching on a local scale so that the robot can
reach the target with a finer accuracy. Experimental results show that
through combining these two planning strategies the robot can precisely
navigate to a distant target.

Keywords: Navigation · Place cell · Head-direction cell
Vision-recognition

1 Introduction

Studies in neuroscience have revealed that animals’ spatial cognition and plan-
ning behaviors during navigation involve certain types of location- and direction-
sensitive cells in the hippocampus, which support an animal’s sense of place and
direction [1,2]. More recent studies suggest that these spatially related firing
activities also underlie animals’ behavioral decisions [3].
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Considering existing approaches for modeling hippocampal cells, most of
them just focus on how to develop the location- or direction-related firing pat-
terns while only few care about the computational principle underlying the for-
mation of these firing activities [4]. Slow feature analysis (SFA) [5] tries to explain
this problem by an unsupervised learning algorithm that extracts slowly varying
features from fast-changing source signals based on the slowness principle. In
our previous work, place- and HD cells were simultaneously learned from visual
inputs using a modified SFA learning algorithm which can develop separated
populations of place and HD cell types by restricting their learning to separate
phases of spatial exploration [6]. However there remains a question of how to
use the metric information hidden in these cell activities, which are obtained by
unsupervised learning, to support a navigation task.

In this paper, based on the learned cell representations, we propose a naviga-
tion model that performs forward look-ahead planning and predicts a sequence
of neural activities encoding intermediate waypoints from a starting position
to a goal position, where the spatial positional state and directional state are
represented by the learned place and HD cell representations, respectively. Fur-
thermore, inspired by the biological finding that place cells are able to gener-
ate future sequences encoding spatial trajectories towards remembered goals,
which demonstrates their predictive role in navigation [7], we propose a model
of their functional role in directing spatial behaviors. Here, we mainly introduce
the look-ahead planning whose architecture is shown in Fig. 1. The front part
(visual processing part) consists of two parallel image-processing channels with
a different network for the emergence of place and HD cells, respectively. For the
unsupervised training and network parameters please refer to our previous work
[6]. The latter (route planning part) is a world model that supports the imagi-
nary planning in goal-directed navigation, where the world state is represented
by the ensemble activity of place and HD cells.

Fig. 1. An overview of the system architecture. The immediate response of the trained
place or HD cell network to an image resembles the firing activity of place and HD cells
at a certain position or to a certain direction where the image is captured. The world
model trained based on the learned cell representations is used to support look-ahead
planning.
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However such model-based forward planning suffers from significant accu-
mulation errors when dealing with long-range predictions. Furthermore, it takes
into account only the place cell representations of the target, irrespective of spe-
cific visual properties of a target. In many cases, this planning can only lead the
robot to the neighboring areas of a target, instead of to the precise target posi-
tion. To solve this problem, we propose a second planning strategy that starts to
perform after the look-ahead planning. Its aim is to recognize the target based
on vision and to move directly towards it after recognizing it.

2 Hybrid Planning Strategy

Based on information learned from vision, the proposed hybrid planning strategy
uses two different coordinate systems. The first one is based on space represen-
tations which are obtained in an unsupervised way. The second one is based
directly on visual representations of the goal. The concept of switching between
different planning strategies during navigation can be found in similar work [8,9].

2.1 Model-Based Look-Ahead Planning

For look-ahead planning, we first train a predictive world model network which
predicts the subsequent state given the current state and action. The continu-
ous spatial state is represented by the ensemble activity of place and HD cells
and the continuous action determines the change of moving direction during a
transition, assuming a forward movement of constant speed. The world model is
represented by a multi-layer perceptron (MLP) with 81 inputs (30 place cells + 50
HD cells + 1 rotation angle) and 80 outputs (30 place cells + 50 HD cells).

The planning process is based on the recursive use of the fully trained world
model which generates a sequence of neural activations encoding the spatial
trajectory from an initial location to a given target location (represented in the
same place- and HD space), together with corresponding action commands [10].
To generate an optimal route, the planner first constructs a multi-step forward
look-ahead probe by sequentially simulating the execution of each command
in a given action sequence on a world model chain, as shown in Fig. 2. Then it
optimizes the actions recursively in the direction of the desired goal location. The
planning trajectory is optimized by modifying the actions via gradient descent to
minimize the distance to the goal location. With this approach, routes towards a
desired goal are imaginatively explored prior to execution by activating the place
cell activities, while corresponding moving directions along the route are encoded
by HD cell activities. For each optimization iteration, the action is updated as
follows:

Δa(t) = −η
∂Eplan

∂a(t)
, where Eplan =

K∑ 1
2
(Sgoal

k − Spred
k )2 (1)

The state vector S consists of an ensemble firing activity of place and HD
cells (K in total), η is a constant learning rate. The training objective is to
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optimize the action sequence a(t) such that the predicted ending state Spred is
close to the goal state Sgoal, which is calculated by the SFA network given the
image taken at the target position.

Fig. 2. An overview of the planning architecture. The world model which has been
trained based on the learned cell representations is used to support look-ahead plan-
ning. Left (inset), the MLP used for one-step prediction. Right, multi-step prediction
in the planning phase with feedback of the prediction error.

Note that planning assumes a predefined prediction depth according to the
distance to a goal location, while prior information about the optimal depth is
not always available. To overcome this assumption of the existing model [10],
we propose an adaptive-depth approach where the planning starts with a 1-step
prediction and incrementally increases the depth until adding one more predic-
tion step would let the ending position of the current plan go beyond the goal
location. During depth increase, the previous plan naturally provides a good pro-
posal for the initialization of the next plan whose prediction increases in depth.
Since the previous plan is already optimized but fails due to its small prediction
depth, this enables the planner to find the best prediction depth towards a goal
without any prior information to efficiently optimize the trajectory.

2.2 Vision-Directed Reaching Based on Target Recognition

While the look-ahead planning can approximately navigate the robot towards
the target position, the robot will either overstep or stop short of the target by
about one step size and will rarely stop precisely on the target. To solve this
problem, we adopt a second planning strategy that is based on object/scene
recognition. The goal-directed planning will be activated after the robot has
executed the plans optimized by the look-ahead planning, in which case the
robot is supposed to be close to the target and will be able to see the target.
Since a target always refers to particular objects (like chair, computer. . . ) or
specific scenes (like kitchen, corridor. . . ), the robot can recognize the target.
After perceiving the target, the robot will adjust its head direction to keep the
target in the center of its view and move towards it.
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3 Experiments and Results

3.1 Simulation Experiment for Look-Ahead Planning

To test the look-ahead planning, we first used a simulated robot moving in
a RatLab virtual-reality environment which also generated the visual data for
training place- and HD cell networks [11]. RatLab is designed to simulate a
virtual rat doing random explorations and allows to modify the environmental
parameters and movement patterns according to the user’s purposes.

We first trained place- and HD cell networks by learning from the visual input
with SFA, where the images generated during turning movements are used to
train the place cell network, while the HD cell network is mainly trained using
images from forwarding movements [6]. We trained 30 place cells and 50 HD cells
whose ensemble activity encodes the spatial position and direction, respectively.
Training results are partly shown in Fig. 3.

Fig. 3. Firing patterns of learned place and HD cells to different positions or directions.
(a) Firing patterns of 9 representative place cells. (b) Polar plots showing the firing
patterns of 9 representative HD cells.

For the planning result, Fig. 4(a) and (b) show separately plans with a fixed
depth of 10 and adaptive-depth plans, where the planning in the place cell space
is mapped to the 2D space through finding the position that yields the most simi-
lar firing pattern. The prediction depth of 10 for Fig. 4(a) is obtained empirically
and the initial route 0 is gradually optimized towards the desired goal location.
The given example shows plans with a quite good initialization, while if given
a starting route 0 that extends into a very different direction from the desired
one, the planning may not be successful. This is because a long prediction makes
the planning optimization based on back-propagating through a long chain of
world models very difficult. Due to a vanishing gradient, initial segments receive
too little correction. While the adaptive-depth planning could start with a bad
initialization, as route 0 shown in Fig. 4(b), the planning starts with a 1-step
prediction and is optimized immediately to a better direction through the world
model chain which currently contains only one model step. This optimized plan
then works as a good basis for initializing the next plan with one step more.
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This explains why the initial part of each route in Fig. 4(b) clusters in a narrow
area. The planning depth increases incrementally until finding an appropriate
plan (route 8) to the goal location.

To evaluate the look-ahead planning performance over the global area, we
fixed the starting position and uniformly sampled 120 positions from the envi-
ronment as the target. As shown in Fig. 5, the planning performance deteriorates
as the distance between the target and the starting position increases. Especially
when the target lies in the areas behind the second obstacle, which is far away,
planning becomes very difficult and may fail. This might be due to the accumu-
lation error in the long world model chain and also the optimization based on
backpropagation is difficult for a long-step planning.

Fig. 4. The proposed look-ahead trajectories with (a) a fixed depth of 10 steps and (b)
an adaptive depth. The solid dots represent the intermediate locations from the starting
position to the target position (red star). The dashed line (route 9) represents a route
that exceeds the goal. Planning is performed in place- and HD cell representation space
and the trajectory based on actions of the plan is shown in x, y- space for visualisation.
(Color figure online)

3.2 Real-World Experiment for Target Object Approaching

As a second step in our hybrid model, we test the vision-based target approaching
in a real-world environment with a Turtlebot3 robot in a simple goal reaching
task. The robot is placed at a position where the target is in the range of its vision
(which refers to the state after executing the look-ahead planning) and its goal is
to find the target object and move close to it. For detecting and recognizing the
target, we used the YOLO network which is fast and can accurately recognize,
classify and localize objects [12]. If the robot cannot see the target object at
the initial state, it will rotate locally with a constant speed until perceiving
and recognizing the object with a certain probability. While trying to keep the
target object in the center of the view, the robot moves directly towards it until
reaching the threshold distance to the target (Fig. 6).
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Fig. 5. (a) The prediction error of the world model increases with the number of
the planning steps. (b) The planning error over the whole environment, where the
starting position is fixed (the black dot) and the target is sampled uniformly from the
rectangular environment which has a size of 14×10 units and 120 positions are sampled
from it. The error value is represented by the color. (Color figure online)

Fig. 6. Test of the object recognition and target approaching. The robot starts from a
neighboring area and needs to reach the target orange. Left: The robot starts without
the target in the current view (shown in the red box) and starts rotating. Middle: The
robot perceives and recognizes the target and starts moving towards it. Right: The
robot reaches the orange and stops just next to it. (Color figure online)

4 Conclusion and Future Work

We have proposed a navigation system that relies on a hybrid navigation strategy
in order to precisely reach a target location, which consists of two planning
strategies that work on different distance scales but both rely on vision. The
first one is look-ahead planning that works on a global coordinate system and
proposes a spatial trajectory close to the desired goal location. The spatial state
is represented by the ensemble activity of place and HD cells, which are modeled
by learning directly from visual input based on an unsupervised SFA learning
algorithm. The planning network allows looking into the future based on a chain
of world model predictions and adaptively proposes optimized prediction steps
to the goal location. The second part is a target approaching strategy working
on a local scale, which enables object recognition and goal-directed reaching.
Through combining these two complementary strategies, the robot can move
from a random position to a target position with a high accuracy using just its
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vision system. As future work, we will extend the simulated scenario to a physical
world where place and HD cells are modeled on a real robot using its vision sensor
and the planning is validated in a challenging dynamic environment.
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9. Oess, T., Krichmar, J.L., Röhrbein, F.: A computational model for spatial nav-
igation based on reference frames in the hippocampus, retrosplenial cortex, and
posterior parietal cortex. Front. Neurorobotics (2017). https://doi.org/10.3389/
fnbot.2017.00004
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Abstract. Catastrophic forgetting, which means that old tasks are for-
gotten mostly when new tasks are learned, is a crucial problem of neural
networks for autonomous robots. This problem is due to backpropaga-
tion overwrites all network parameters, and therefore, can be solved by
not overwriting important parameters for the old tasks. Hence, regular-
ization methods, represented by elastic weight consolidation, give the
globally stable equilibrium points to the optimal parameters for the old
tasks. They unfortunately aim to hold all parameters, even if the regular-
ization is weak. This paper therefore proposes a regularization method,
named Check regularization, to consolidate only the important param-
eters for the tasks and to initialize the other parameters preparing for
the future tasks. Simulations with two tasks to be learned sequentially
show that the proposed method outperforms the previous method under
a condition where the interference between the tasks is severe.

Keywords: Continual learning · Locally stable equilibrium point
Reinforcement learning

1 Introduction

Highly versatile robots, such as humanoid robots, gain a high demand to perform
various tasks on behalf of human [3,8]. It is however difficult to preliminarily
design all kinds of the various tasks, hence the versatile robots are desired to
learn new tasks through their daily activities in the real world like human does.
Development of such “autonomous robots” is the final goal of this research.

Reinforcement learning (RL) is a methodology to let an agent learn the opti-
mal policy, which maximizes accumulation of rewards (i.e., return) from the
environment by sampling the optimal action, through trial and error of interac-
tions between the agent and the environment [19]. RL is absolutely suitable to
control the autonomous robots described above.

Recently, the state-of-the-art RL algorithms have outperformed human as
video and board games players [18]. Even in applications of real autonomous
c© Springer Nature Switzerland AG 2018
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robots, they have acquired complicated tasks that could not be learned to
date, such as manipulating deformable clothes [20]; and picking from bulked
objects [12]. What is essential behind these successes is a function approximator
by (deep) neural networks (NN or DNN) [9]. Specifically, the policy and value
functions in RL are precisely approximated by NN, even when state space is
extremely large like raw images. Note that, in general, the methods to stably
learn them have been employed since the convergence of parameters in NN is
not guaranteed.

However, backpropagation of gradients of loss (or objective) functions would
cause a crucial problem, so called “catastrophic forgetting,” which means that
old tasks are mostly forgotten when new tasks are learned [2,13]. This problem
must be solved to let the autonomous robots continuously learn the new tasks in
the real world as human does, although it can easily be ignored by preparing huge
data sets including all the tasks in fields where offline learning is allowable such as
image recognition. Storing all of data is of course intractable since it ultimately
requires infinite storage and memory. This problem can also be ignored when
different networks are prepared corresponding to respective tasks, however the
cost of switching networks is not allowable in the autonomous robots, which
require to switch tasks seamlessly.

To solve such catastrophic forgetting, three approaches have mainly been
studied as follows (their details are in the next section): (i) data for the old
tasks are augmented by a generative model [5,17]; (ii) network is modularized to
avoid interferences in the new tasks [1,10,22,23]; and (iii) parameters are given
elasticity to the optimal values for the old tasks [7,11,14,24]. In the approach (i),
it would be possible to reliably mitigate the catastrophic forgetting by using a
sophisticated generative model by DNN in recent years [6,15], while the genera-
tive model also requires to mitigate its catastrophic forgetting. The approach (ii)
tackles the cause of the catastrophic forgetting, while it basically has no function
to keep the parameters in the optimal values. The approach (iii) has recently
been established as a powerful method by designing the elasticity according to
the importance of parameters for the old tasks, while it has no function to select
only the minimum necessary parameters from all of them.

To compensate respective functions of the approaches (ii) and (iii), this paper
proposes a new regularization method, named Check regularization, which com-
bines the modularization of network and the elasticization of parameters. These
two, however, give different globally stable equilibrium points, and therefore,
they cannot be combined without any consideration. Hence, a log regulariza-
tion term is heuristically introduced to derive two locally stable equilibrium
points corresponding to the approach (ii) and (iii). All parameters are regular-
ized toward either the two depending on the importance of parameters for the
old tasks. That is, the necessary/unnecessary parameters for the tasks are regu-
larized for the elasticization/initialization, respectively. Check regularization was
evaluated through RL for two types of tasks in three kinds of simulations for
each. As a result, its effectiveness was verified in the simulations where there was
strong interference between the tasks. To the best of my knowledge, this is the
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first study for combining the modularization of network and the elasticization
of parameters, i.e., the approaches (ii) and (iii), as regularization.

2 Related Work

2.1 Data Augmentation

The most straightforward approach to mitigate the catastrophic forgetting is to
learn the generative model of input (and output) data, instead of storing all data.
The costs for storage and memory would be constant when the generative model
is obtained as NN, such as variational autoencoder [6] and generative adversarial
network [15] (or their relatives). The pseudo data related to the old tasks can
be generated from the generative model, and mini batch, which includes the
generated and observed data, is used for learning the parameters [5,17]. In that
case, NN would maintain the performance of the old tasks without being biased
to the new tasks. However, the generative model is not desired to be prepared
for each tasks from the viewpoint of cost, but if a single NN is used to explain
the multiple tasks, the catastrophic forgetting would be caused.

2.2 Modular Network

Switching perfectly different networks for respective tasks is inappropriate from
the viewpoint of control. It is however effective to divide a single NN implicitly
and modularize the area of NN (i.e., the parameters) used for respective tasks.
Ellefsen et al. [1] employed evolutionary algorithm to promote such the modular-
ization, which certainly mitigated the catastrophic forgetting although the task
performance just after switching was somewhat deteriorated. Since it is a waste
of resources that can be shared among tasks when NN is completely modular-
ized, Velez and Clune [22] developed a diffusion-based neuromodulation, which
not only induced task-specific learning but also produced functional parameters
for each subtask. Yu et al. [23] also proposed the way to select whether the
parameters should be shared/specialized among tasks/for single task depending
on the gradients of loss function.

Alternatively, NN can easily be modularized by L1 regularization, in partic-
ular, its truncated version [10] would have a capability to keep the parameters
for the old tasks. Here, the gradient of the truncated L1 regularization is defined
as following equation and is illustrated in Fig. 1(a).

LL1 = λL1‖θ‖1 (1)

∴ gL1 =

{
λL1sign(θ) |θ| > Threshold
0 Otherwise

(2)

where λL1 is the magnitude of regularization and θ are the parameters in NN.
The threshold is given as a half of maximum value among all parameters in this
paper. θ is updated as θ ← θ − gL1. L1 regularization can be interpreted that
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Fig. 1. Gradients of regularization to mitigate the catastrophic forgetting: (a) the
parameters smaller than a threshold converge to 0 for modularization, and the other
parameters are no longer regularized for keeping their values although they easily
move by the gradients of loss function; (b) all parameters converge to θ∗, while the
convergence speed and strength depend on F .

it has a globally (locally if the truncated version) stable equilibrium point to
θ = 0. Even when the truncated version, however, the catastrophic forgetting
would be caused because the parameters are never fixed.

2.3 Elastic Parameters

If the important parameters for the old tasks are discriminated, letting their
values be invariant would avoid to overwrite them. The methods, represented
by elastic weight consolidation (EWC) [7], regularize the parameters toward the
optimal values for the old tasks, θ∗, by a following gradient (see Fig. 1(b)).

LEWC =
λEWC

2
F �(θ − θ∗)2 (3)

∴ gEWC = λEWCF � (θ − θ∗) (4)

where λEWC is the magnitude of regularization and F is the importance of the
parameters, which have been defined as the diagonal of Fisher information matrix
in the paper of EWC. Specifically, θ∗ and F correspond to the mean and the
precision of diagonal multivariate Gaussian distribution of θ, respectively. Note
that several types of relatives have been proposed: incremental moment matching
is employed to approximate θ∗ and F [11]; F is defined in a biologically plausible
manner [24]; and LEWC is converted from sum squared error to Kullback-Leibler
divergence through variational inference [14]. Due to a non-verification target,
this paper employs a moving average to estimate θ∗ and F for simplicity.

This design means that the parameters with high precision (small variance)
are forced to converge to θ∗, and the other parameters have room to learn the
new tasks. Even with the room to learn the new tasks, however, it would not
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fully be utilized because this approach set globally stable equilibrium points to
θ∗. That is, all parameters aim to converge to θ∗ regardless of the magnitude of
regularization (i.e., F ), thereby not minimizing the number of parameters that
are used for the old tasks.

3 Check Regularization

3.1 Formulation

As mentioned in the above section, the modularization of network and the elas-
ticization of parameter let the parameters converge to respective globally (to be
exact, locally in the truncated L1 regularization) stable equilibrium points. To
achieve both properties, the globally stable equilibrium points should be con-
verted into locally stable ones with an appropriate boundary, although it cannot
be decided easily (see the left side of Fig. 2).

Our proposal, named Check regularization, gives the appropriate boundary
automatically depending on the mean and the precision of the parameters, as
shown in the right side of Fig. 2. Here, the name “Check” comes from the shape
of this gradient like a check mark. Its formulation is given as follows:

LCheck =

⎧⎪⎨
⎪⎩

λL1‖θ‖1 θ � θ∗ < 0
λEWC

2 F �(θ − θ∗)2 |θ| > θ∗(
λ0
κ

)�
ln(1 + κ � |θ|) + λ�

1 |θ| + 1
2λ�

2 θ2 Otherwise

(5)

where λ0,1,2 and κ are design parameters, which are analytically derived in
the next subsection. λL1 and λEWC are given as hyperparameters with almost
the same values as the original ones. The boundary whether the parameter is
assigned to the modularization or elasticization is given in the third equation.

Fig. 2. Concept of Check regularization: to combine the modularization of network and
the elasticization of parameters, a boundary between them is difficult to be determined;
by adding a log regularization term, the boundary can be determined automatically
depending on the precision of parameter.
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The gradient of Check regularization is derived as follows:

gCheck =

⎧⎪⎪⎨
⎪⎪⎩

λL1sign(θ) θ � θ∗ < 0
λEWCF � (θ − θ∗) |θ| > θ∗(

λ0
1+κ�|θ | + λ1

)
� sign(θ) + λ2 � θ Otherwise

(6)

The gradients of the first and second equations in Check regularization are almost
the same as Eqs. (2) and (4), respectively (difference is whether there is the
threshold or not).

3.2 Derivation of Design Parameters

Now, λ0,1,2 and κ are uniquely designed to give the appropriate boundary to
separate the two locally stable equilibrium points. Note that θ∗ is limited to
be positive in this subsection without losing generality. In addition, only λ0,1,2

and κ for a single parameter θ (with θ∗ and F ) are derived as below since all
parameters are independent.

First, to make it branch naturally, the following three conditions are given.

lim
θ→+0

gCheck = λL1,
∂gCheck

∂θ

∣∣∣∣
θ=θ∗

= λEWCF, gCheck|θ=θ∗ = 0 (7)

Next, an additional design parameter, η, which corresponds to the boundary
explicitly, are given so that the boundary exists in [0, θ∗].

gCheck|θ=(1−η)θ∗ = 0 (8)

The conditional equations are still insufficient and this derivation becomes an ill-
posed problem, and therefore, a constraint, where κ that gives two intersections
of the gradient and θ axis is uniquely determined, is additionally given as follows:

κ = 4λ2/λ0 (9)

From the above five conditional equations, λ0,1,2, κ, and η are uniquely solved
as follows (their derivations are omitted due to page limitation).

κ =
1
θ∗

⎧⎨
⎩λEWCFθ∗ − λL1

λEWCFθ∗ + λL1
+

√(
λEWCFθ∗ − λL1

λEWCFθ∗ + λL1

)2

+ 3

⎫⎬
⎭ (10)

β =
(κθ∗ − 1)(κθ∗ + 3)

κθ∗(κθ∗ + 1)
(11)

λ2 =

{
λL1
θ∗ κθ∗ = 1
λEWCFθ∗(κθ∗+1)
(κθ∗−1)(κθ∗+3) Otherwise

(12)

λ0 = 4λ2/κ (13)
λ1 = λL1 − λ0 (14)
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As for λ2, two cases are prepared to obtain a numerically stable solution. In
addition, a very small amount ε is added to θ∗ since θ∗ is desired not to be 0 for
stable calculation.

Let us confirm that the gradient formed by the derived design parameters
changes depending on the precision F . Note that the mean θ∗ is fixed to be
0.1 since it would not change the property of the gradient. The gradients gCheck

with low, middle, and high precisions are depicted in Figs. 3(a)–(c), respectively.
As shown in Fig. 3(a), we found that the boundary (the intersection with lower
value) is very close to θ∗, thereby prioritizing the modularization of network.
The boundary becomes close to 0 continuously, and finally, e.g., Fig. 3(c), the
elasticization of parameters becomes dominant. In this way, Check regulariza-
tion decides the boundary between the initialization/elasticization of parameters
automatically without any additional hyperparameters.

Fig. 3. Examples of the gradients of Check regularization formed by the design param-
eters: the intersection of the gradient and θ axis (not θ∗ = 0.1), i.e., the boundary
between the modularization of network and the elasticization of parameters, is auto-
matically determined depending on the precision of the parameter, F .

Fig. 4. RL simulation environments: (a) Pendulum aims (i) to keep balance on the top
and (ii) to maximize its angular velocity; (b) BallArm aims (i) to be close to the tip
of arm and the ball and (ii) to maximize velocity of the ball; (c) Acrobot aims (i) to
keep balance from swinging up and (ii) to maximize angular velocity of the root axis.
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4 Simulations

4.1 Conditions

The performance of Check regularization is verified in three kinds of RL simu-
lations, i.e., (a) Pendulum, (b) BallArm, and (c) Acrobot in Fig. 4. Respective
environments have two different tasks, which tend to interfere with each other.
As a learning procedure, the target task to be learned is switched every 300
episodes by turns, and after third switching, the remaining two are used for
evaluation. A score is defined as a weighted mean with inversely proportional to
the number of episodes of average rewards normalized by the maximum one, and
is mainly affected by up to 50 episodes. This procedure is conducted 20 times.

To clarify the adverse effect of the interference between the tasks, a reservoir
computing [4] is used as one of the NN. It updates only readout parameters,
namely it is regarded to be a linear regression model, which has an advantage that
the parameters used for the task are in clear. Here, the number of parameters is
roughly given as product of the number of neuron (500 in this paper) and action
space ((a) 1, (b) 3, and (c) 2). In addition, experience replay is not applied not
to reuse the observations for the old tasks. Instead, an actor-critic algorithm
combining eligibility trace [16,21] enables to learn the current tasks efficiently.

As baselines, the truncated L1 regularization [10] in Eq. (2) and EWC [7] in
Eq. (4) are evaluated in the same manner. Learning rate is set as 0.01/500 so
as to avoid local optima, and other hyperparameters for RL are set as typical
values (e.g., discount rate is 0.99). λEWC is given as 10−14 since F is large when
the learning rate is small. λL1 is heuristically given as 10−3, but only for Check
regularization, it is multiplied by 10 since the gradient is small near θ∗.

4.2 Results

Learning curves and scores were summarized in Figs. 5(a)–(c). Note that, in leg-
ends, the means and standard deviations of the scores for respective methods
were additionally described. As can be seen in Fig. 5, in Acrobot and BallArm,
Check regularization outperformed both the baselines, although all methods suc-
ceeded in avoiding the catastrophic forgetting in Pendulum. The catastrophic
forgetting was observed in Acrobot and BallArm, except Pendulum, with all
methods, in particular, the truncated L1 regularization. This is due to subtasks
in the tasks, e.g., a swing-up motion in Acrobot and a motion approaching to
ball in BallArm, which would cause the interference between the tasks.

Although the catastrophic forgetting could be mitigated to a certain extent
by EWC, the performance in the second task was sluggish. Check regulariza-
tion, in contrast, succeeded in acquiring both tasks. This difference implies the
importance of the modularization of network. Note that the elasticity in EWC
and Check regularization would be too strong as can be deduced from the higher
average rewards at the last episodes in the truncated L1 regularization.

Nevertheless, significant differences between Check regularization and the
other methods could not be observed due to the fixed random network in the
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Fig. 5. Learning curves and scores for respective environments: before and after dashed
lines, the target task was changed; (a) all methods could avoid the catastrophic for-
getting since the tasks hardly interfered with each other in practice; (b) EWC and
Check regularization could keep the performances of both tasks in comparison with
the truncated L1 regularization, although the performance of the first task seemed to
be deteriorated by their elasticity; (c) Check regularization could immediately recover
the performances of both tasks from the catastrophic forgetting.

reservoir computing. Depending on the network structure, the number of param-
eters required to learn the task was increased, and the parameters that memorize
multiple tasks were insufficient. More trials with fixed random seeds may show
the validity of Check regularization statistically.

5 Conclusion

This paper proposed the regularization method, named Check regularization, to
combine the two important functions for mitigating the catastrophic forgetting:
the modularization of network and the elasticization of parameters. In Check
regularization, two locally stable equilibrium points corresponding to respective
functions are given each parameter. Their boundary is automatically determined
according to the precision (and mean) of each parameter. As a result, the nec-
essary/unnecessary parameters to the tasks are initialized/fixed. Indeed, Check
regularization outperformed the state-of-the-art method, i.e., EWC, in the three
kinds of RL simulations. Future work in this study is to apply the proposed
method to curriculum learning in real autonomous robots.
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Abstract. Reinforcement learning algorithms play an important role in modern
day and have been applied to many domains. For example, personalized recom-
mendations problem can be modelled as a contextual multi-armed bandit problem
in reinforcement learning. In this paper, we propose a contextual bandit algorithm
which is based on Contexts and the Chosen Number of Arm with Minimal Esti-
mation, namely Con-CNAME in short. The continuous exploration and context
used in our algorithm can address the cold start problem in recommender systems.
Furthermore, the Con-CNAME algorithm can still make recommendations under
the emergency circumstances where contexts are unavailable suddenly. In the
experimental evaluation, the reference range of key parameters and the stability of
Con-CNAME are discussed in detail. In addition, the performance of Con-
CNAME is compared with some classic algorithms. Experimental results show
that our algorithm outperforms several bandit algorithms.

Keywords: Recommender systems � Reinforcement learning
Multi-armed bandit � Context-aware
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1 Introduction

Reinforcement learning (RL) is an important part in machine learning [1]. RL has
gained much attention in last decade which can be used in combination with collab-
orative filtering, Bayesian networks etc. for recommendations [2, 3]. In this work, a RL
based contextual Multi-Armed Bandit (MAB) algorithm named Con-CNAME is dis-
cussed to implement a personalized recommendation.

The primary target of recommender systems is to propose one or several items
which users might be interested in. The books, articles or music provided by the
recommender systems are items [4, 5]. Recommender systems need to focus on items
that raise users’ interest and explore new items to improve users’ satisfaction at the
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same time. That creates an exploration-exploitation dilemma, which is the core point of
Multi-Armed Bandit (MAB) problems [6]. The payoff of a recommendation is widely
measured by Click-Though Rate (CTR) [7]. Then the goal of recommendations is to
maximize the CTR over all users. Personalized recommendation services identify the
preferences of users and appropriately show the web content to suit to their preferences
[8]. The classic collaborative recommender systems may not retain high CTR if large
number of users or items are new to the system. Such an issue is referred to as a cold-
start problem [9] and in such situations the recommendation task can be modelled as a
contextual Multi-armed bandit problem [10].

Contextual bandit approaches are already studied in many fields of recommender
systems [11]. We propose a context-aware bandit algorithm which tries to further
improve the obtained CTR in personalized recommendations. The recommendation is
made based on the user feedback and priori information of contexts. The cold start issue
is addressed by continuously exploration and contexts. Exploration means learning new
items’ payoff for a particular user by recommending new items. Exploitation means
recommending the optimal items based on the payoffs observed so far. Experiments are
made on the user click log dataset of Yahoo! Front Page Today Module. The aim of our
algorithm is to achieve higher CTRs than some existed bandit approaches.

The rest of the paper is organized as follows. Section 2 describes some related
works. In Sect. 3, we introduce our algorithm and discuss the influence of key
parameters. Section 4 discusses experimental results. Conclusion is made in Sect. 5.

2 Related Work

Filtering-based and reinforcement learning methods are two main categories of rec-
ommendation algorithms [12]. In this paper, we focus on reinforcement learning
methods. Reinforcement learning methods, such as MAB and Markov Decision Pro-
cesses (MDPs) [13], are widely used in recommender systems. MDP-based approaches
model the last k choices of a user as the state and the available items as the action set to
maximize the long-run payoff. [14]. MAB-based approaches make recommendations
by balancing exploration and exploitation, such as e-greedy [15], softmax [16], EXP3
[17] and UCB1 [6]. The e-greedy is the simplest approach among these context-free
approaches, which always has competitive performance and is easy to be extended to
various applications. Softmax makes recommendations according to a probability
distribution based on user feedbacks. As a complicated variant of softmax, the main
idea of EXP3 is to divide the payoff of an item by its chosen probability. UCB1 always
recommends the item with the highest upper confidence index. However, UCB1 needs
to sweep all items during the initial period, it may be inappropriate for recommender
systems whose items are huge.

Contexts are considered, aiming at improving the effectiveness of recommenda-
tions. In a contextual MAB setting, there is a set of arms available to the algorithm at a
time step which is associated with the contextual information vector. Generally, con-
texts represent the situations of the user when a recommendation is made, such as time,
gender and age [18, 19]. Using the previously acquired knowledge and the context at
the current time step, the algorithm chooses to show an arm and obtains a reward.
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This reward is dependent on the contextual features and the chosen arm. The LinUCB
algorithm is proposed to solve news article recommendation problems [20]. The
Naive III and Linear Bayes approaches define a user-group via a set of features that
individual users may have in common, but not that must have in common [21].
A MAB-based clustering approach constructs an item-cluster tree for recommender
systems [22]. The CNAME and Asy-CNAME algorithms are based on the chosen
number of minimal estimation, which are applied to recommender systems where the
prior information is unavailable [23]. Specifically, the CNAME algorithm choses an
arm according to exploration probability which is based on the chosen number of arm
with minimal estimation. The exploration probability changes with the practical
environment since the chosen number of minimal estimation can make full use of user
feedback. To further improve the efficiency of the CNAME algorithm, the Asy-
CNAME algorithm is updated in an asynchronous manner.

3 Our Approach

In this section, we present a context-aware bandit approaches for personalized rec-
ommendations. This approach is based on Contexts and the Chosen Number of Action
with Minimal Estimation, namely Con-CNAME.

Almost all the multi-armed bandit algorithms use the average rewards of actions as
an estimation method. Inspired by the prior probability of contexts, we put forward
another kind of estimation method: the chosen probability. There is initial probability
distribution for actions, we adjust the chosen probability of every selected action
according to the actual user feedback. Specifically, when the reward is 1 after choosing
an action, i.e. the recommended article is clicked by users, the chosen probability of
this action will be improved; when the reward is 0 after choosing an action, i.e. the
recommended article is not clicked by users, and the chosen probability of this action
will not be updated. Combining chosen probability of actions and prior probability of
contexts, this paper proposes the Con-CNAME algorithm, which introduces weight b
to control the influences of chosen probability and prior probability. The framework of
Con-CNAME algorithm is shown in Fig. 1:

Here, the prior probability is based on Naïve III algorithm, which defines a user-
group by a set of features that individual users may have in common [21]. Then, we
define that clicks½a�½i� ¼P

t
xtðiÞgt and selections½a�½i� ¼P

t
xtðiÞ for at ¼ a, where

each context xt contains some binary vectors indicating user’s contextual features, such
as gender, age, language and so on. gt is user click status (i.e. 1 if article obtained click
and 0 otherwise). The article at recommended by Naive III algorithm at trial t is

at ¼ arg maxa
P

i6¼0 Ptða; iÞ
� �

, where Pða; iÞ ¼ clicks½a�½i�=selections½a�½i�.
Different from Naive III algorithm, our Con-CNAME combines prior probabilityP

i6¼0 Ptða; iÞ and chosen probability StðaÞ by weight b. The article at recommended by

Con-CNAME at trial t is at ¼ arg max
a

bStðaÞþ ð1� bÞP
i6¼0

Ptða; iÞ
 !

during

exploitation. Besides, different from most contextual bandit algorithm, Con-CNAME
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explores randomly according to exploration probability, and the exploration probability
is updated based on user feedbacks (the classic estimation QtðaÞ) which has been
proposed in our context-free algorithm named CNAME [23]. The full Con-CNAME
algorithm is as follows:

Fig. 1. The framework of Con-CNAME algorithm
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The Con-CNAME starts by setting the parameters w, a and b(Line 1), where
w 2 (0,1) affects the speed at which the exploration probability is changed, the learning
rate a 2 (0,1) affects the update of chosen probability and the weight b controls the
proportion of chosen probability and prior probability in Values. After initializing the
estimations (the classic estimation Q(a) and our proposed chosen probability S(a)) and
the chosen number N(a) of each action a (Line 2–6), it initializes the click vector and
selection vector for a not in possibleActions (Line 7–10). Here, possibleActions is the
list of actions (articles) that are available to user during that particular visit. Elements
clicksFeature½a�½i� and selectionsFeature½a�½i� of clicksFeature[a] and selectionsFea-
ture[a] represent clicks½a�½i� and selections½a�½i� respectively. Then calculate the prior
probability and Values(a) for every action a in possibleActions (Line 11–14). The
Con-CNAME iteratively chooses an action to play (referred to recommend an item in
recommender systems) based on the exploration probability (Line 15–18), and receives
a reward Xat ;t (Line 19). The exploration probability w=ðwþm2

t Þ is adjusted according
to the chosen number of action with minimal estimated payoff, defined by mt. The
chosen probability St atð Þ is improved only when Xat ;t [ 0 (Line 20–22). Finally,
updates the chosen number and classic estimation at time step t (Line 23–24).

There are three key points of Con-CNAME algorithm. Firstly, Values includes
chosen probability (based on user feedback) and prior probability (based on contexts).
Secondly, different from most contextual algorithm, the Con-CNAME algorithm keeps
the exploration process, which can also help address cold start problem. Besides,
exploration may bring surprise to users and help to learn users’ interest. Thirdly, there
are a lot of emergency in practical process, the Con-CNAME algorithm can still work
as CNAME algorithm normally if the contextual information is unobtainable suddenly.

Similar to our proposed context-free Asy-CNAME algorithm, the Con-CNAME
algorithm can be updated in an asynchronous manner. Asynchronous manner weakens
the impact of the user’s short-term behavior to a certain extent, which plays a role in
improving the CTR. On the other hand, the implementation complexity is reduced in an
asynchronous manner, which can help decrease the calculation time.

4 Experimental Evaluation

Evaluating a contextual multi-armed bandit algorithm by online evaluation has always
been a challenging task mainly due to limited availability of data. The evaluator ideally
desires for datasets that explicitly contain the data which forms the basis of evaluation,
such as the changes in users’ preferences, demographics etc. In this section, the user
clicks log dataset of Yahoo! Front Page Today Module, which has been widely used, is
applied to evaluate the Con-CNAME algorithm. We discuss the influence of key
parameters a and b, then provide the reference ranges of these two parameters through
simulation on Yahoo! dataset. Furthermore, we compare the performance of our
algorithm with other bandit algorithms.
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4.1 Yahoo! Front Page Today Module User Click Log Dataset (R6B)

This dataset contains a fraction of user click log for news articles displayed in the
Featured Tab of the Today Module on Yahoo! Front Page1. This dataset includes 15
days of data from October 2 to 16, 2011 and some raw features. There are 28,041,015
user visits to the Today Module on Yahoo!’s Front Page. Each of these user visits is a
single line in the data file. For example, the structure of the data line is like tuples as
follows:

“1317513293 id-563643 0 |user 1 8 12 13 22 16 18 54 24 26 17 42 19 25 15 61 14 21 |id-
552077 |id-555224 |id-555528 |id-559744 |id-559855 |id-560290 |id-560518 |id-560620 |id-
563115 |id-563582 |id-563643 |id-563787 |id-563846 |id-563938 |id-564335 |id-564418 |id-
564604 |id-565364 |id-565479 |id-565515 |id-565533 |id-565561 |id-565589 |id-565648 |id-
565747 |id-565822”

Table 1 shows the meaning of each tuple in data line. Timestamp is considered as a
unique user. Article ID corresponds to the arms or actions in multi-armed bandit
problem. Click status has two values: 1 if the article is clicked by a user and 0
otherwise. User’s contexts start from string “user” which is followed by binary vectors.
Binary vectors indicate user’s contextual features, such as user’s age and gender. The
list of recommended articles contains articles that are available to users during this
particular visit.

4.2 Influence of Key Parameters

In this part, we study the influence of two parameters in Con-CNAME algorithm. We
design learning rate a to affect the update of chosen probability and weight b to control
the proportion of chosen probability and prior probability in Values. The performance
of different parameter values evaluated through CTR are shown in Table 2. We make
recommendations over the first 200000 lines and 1200000 lines respectively. In the
experimental setting, we adopt a step of 0.1, through 0.1 to 0.9, only to find the
variations of the results are not that obvious, so we choose to demonstrate the final
results with 0.2 and 0.8. The corresponding results are shown in Table 2. Two values
of a and b are experimented with 0.5 as a benchmark. In detail, a ¼ 0:2 represents that

Table 1. Meanings of tuples in the data line of Yahoo! R6B dataset

Tuple of data line Tuple’s meaning

1317513293 Timestamp
id-563643 Article ID
0 Click Status
user Start of user’s contexts
1 8 12 13 22 16 18 54 24 26 17 42 19 25 15 61 14 21 User’s contexts
|id-552077 |id-555224 …|id-565822 List of recommended articles

1 https://webscope.sandbox.yahoo.com
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chosen probability increases slightly each time while a ¼ 0:8 represents that chosen
probability increases greatly each time. b ¼ 0:2 means the context has a larger impact
than chosen probability on recommendations while b ¼ 0:8 means the context has a
smaller impact. In Table 2, the best results are highlighted respectively in boldface.

We can see that the values of learning rate a does not have obvious impact on
CTRs. That’s easy to explain, no matter how fast chosen probability is updated each
time, each updated chosen probability increases in same degree. From the results in
Table 2, we can figure out that when the number of lines is small, there is little context
information obtained through parameter a, the CTR is most influenced by b. As for
weight b, it has an important influence on obtained CTRs: larger value of b brings
lower CTR over the first 200000 lines. When processed lines increase to 12200000,
larger value of b is more likely to obtain higher CTR, but the influence of b is relatively
weaken. In detail, when b ¼ 0:2, it means the context information contributes signif-
icantly, the results of smaller number of lines implies that context information are fully
exploited, and when the number of lines increases, it leads to the local optimum.

In order to confirm the stability of Con-CNAME algorithm, we make recommen-
dations over the first 87400000 lines of Yahoo! R6B dataset with a = 0.8 and b = 0.8.
Figure 2 shows the CTR obtained by Con-CNAME. At the beginning, the CTRs grow
fast. Then the speed of CTRs increasing slow down with the increasing lines, but it still
keeps increasing. Hence, it is indicated that the Con-CNAME algorithm can be applied
to personalized recommendations.

Table 2. Obtained CTR with different parameter values

Lines = 200000                                                             Lines = 12200000

0.2 0.8 α           βα           β 0.2 0.8 

0.2 0.0499 0.0461 0.2 0.0718 0.0719 
0.8 0.0489 0.0469 0.8 0.0719 0.0721 

Fig. 2. CTR obtained over the first 87400000 lines of Yahoo! R6B dataset
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4.3 Performance Comparison

In this section, performance comparison of various MAB-based approaches on rec-
ommendations for large-scale recommender systems is conducted. The Random
approach randomly chooses an item each time. This can be seen as the benchmark for
other approaches. The Most click approach always recommends the article which
obtained the most clicks. The Click rate approach recommends article with the highest
CTR. The Contextual click approach makes a recommendation according to the con-
textual information of the clicked article. Naïve III algorithm and Linear Bayes algo-
rithm are also based on the context information. In addition to context-aware
approaches, we compare Con-CNAME with our context-free approaches CNAME and
Asy-CNAME. The CTR performance of these 9 approaches are summarized in
Table 3, and Table 4 shows the relative variance of Con-CNAME over other com-
parison approaches, where the best results are highlighted respectively in boldface.

Table 3. Performance in CTR on the Yahoo! R6B dataset

Algorithm Lines

2:0� 105 3:6� 106 7:2� 106 1:06� 107 1:4� 107

Random 0.036 0.034 0.034 0.034 0.034
Most click 0.047 0.043 0.043 0.043 0.042
Click rate 0.046 0.068 0.068 0.069 0.070
Contextual click 0.040 0.068 0.070 0.071 0.072
Linear Bayes 0.033 0.034 0.034 0.034 0.034
Naive III 0.047 0.066 0.067 0.068 0.069
CNAME 0.043 0.067 0.069 0.070 0.071
Asy-CNAME 0.044 0.068 0.069 0.070 0.072
Con-CNAME 0.047 0.069 0.071 0.072 0.073

Table 4. Relative variance of Con-CNAME over other comparison approaches in CTR on the
Yahoo! R6B dataset

Algorithm difference Lines

2:0� 105 3:6� 106 7:2� 106 1:06� 107 1:4� 107

Con-CNAME over
Random

31% 103% 109% 112% 115%

Con-CNAME over
Most click

0% 60% 65% 67% 74%

Con-CNAME over
Click rate

2% 1% 4% 4% 4%

Con-CNAME over
Contextual click

18% 1% 1% 1% 1%

(continued)
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As shown in Tables 3 and 4, the Con-CNAME algorithm can get the highest CTRs
over the first 200000 to 14000000 lines with a = 0.8 and b = 0.8. The CTRs obtained
by Con-CNAME is significantly higher than those of Random, most click and Linear
Bayes algorithm, and slightly higher than those of Click rate, Contextual click and
Naïve III algorithm. Besides, compared with CNAME and Asy-CNAME, Con-
CNAME algorithm further improves CTR by using contextual information.

With the increase of processed data, the CTR obtained by Most click approach does
not continue to increase, but has a downward trend. Most click algorithm makes a
recommendation only based on clicks, which may cause the recommended article is
always popular article. Thus the articles recommended are stultifying or repeated in
terms of the content. The Click rate approach makes use of user feedback, and obtains
higher CTRs than Most click approach. On the other hand, the Click rate approach can
get higher CTR than Contextual Click approach and Naïve III algorithm at the
beginning of experiment. With the increase of lines, Contextual Click approach and
Naïve III algorithm can learn more about users’ interests, the recommended articles are
more likely to meet users’ interests. So the CTRs of Contextual Click approach and
Naïve III algorithm catch up with and surpass the CTRs of Click rate approach in the
later stages of the experimental process.

To sum up, user feedback and contextual information are both helpful to improve
the CTRs with various emphasis. Making a recommendation based on user feedback
always prefers to maximize the short-term reward, which is easy to fall into local
optimum. Based on the contextual information, the users’ interest can be better learned
in the long run with the increase of contexts. The Con-CNAME algorithm combines
user feedback and contextual information, and finally contributes to the highest CTRs.

5 Conclusion

In this paper, we study recommender systems based on contextual MAB problems. The
Con-CNAME algorithm makes good recommendations combining user feedback and
contextual information. The cold start problem is addressed by continuous exploration
and contexts in our approach.

Table 4. (continued)

Algorithm difference Lines

2:0� 105 3:6� 106 7:2� 106 1:06� 107 1:4� 107

Con-CNAME over
Linear Bayes

42% 103% 109% 112% 115%

Con-CNAME over
Naive III

0% 5% 6% 6% 6%

Con-CNAME over
CNAME

9% 3% 3% 3% 3%

Con-CNAME over
Asy-CNAME

7% 1% 3% 3% 1%
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Different from the classic contextual MAB algorithms, our algorithm keeps the
exploration. And the Con-CNAME algorithm can still work as CNAME algorithm
normally if the contexts are unobtainable during some sudden emergencies. The
influences of key parameters of our algorithm are discussed, besides, the performance
of our algorithm and other MAB-based recommendation approaches are compared on
Yahoo! Front Page Today Module user click log dataset. Experimental results show
that our algorithm outperforms other algorithms in terms of CTR. The Con-CNAME
algorithm is effective and steady for personalized recommender systems. Although our
algorithm achieves significant result, a possible improvement can be made by updating
it in an asynchronous manner.
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Abstract. Recurrent neural networks have successfully been used as
core elements of intelligent recommendation engines in e-commerce plat-
forms. We demonstrate how LSTM networks can be applied to recom-
mend products of interest for a customer, based on the events of the
current session only. Inspired by recent advances in natural language
processing, our network computes vector space representations (VSR) of
available products and uses these representations to derive predictions
of user behaviour based on the clickstream of the current session. The
experimental results suggest that the Embedding-LSTM is well suited
for session-based recommendations, thus offering a promising method
for attacking the user cold start problem. A live test gives proof that
our LSTM model outperforms a recommendation model created with
traditional methods. We also show that providing the learned VSR as
features to neighbourhood-based methods leads to improved performance
as compared to standard nearest neighbour methods.

Keywords: LSTM · Neural embeddings
Session-based recommendations · Real-time recommendations

1 Introduction

Real-time session based recommendations become increasingly important for
state of the art e-commerce platforms. Recommendation systems predict use-
ful items for users, providing them with a richer experience and increasing the
success of the website in consequence [10]. Conventional approaches for recom-
mendation systems typically use collaborative (CF) or content-based filtering
(CBF).
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Whenever a user rejects cookies or has not visited the website before, only
information of the current session can be exploited. No historic data about pre-
vious purchases is available and therefore the challenge of creating recommen-
dations is then referred to as the (user) cold-start problem [13]. Session based
recommendations (SBR) view the user as being anonymous and algorithms can
only make use of implicit user feedback, since no explicit ratings are available.
However, SBR plays an increasingly important role for modern e-commerce web-
sites. As collaborative filtering methods heavily rely on historic data they are not
applicable in session-based recommendation settings. The alternative of item-to-
item recommendations often only has myopic access to items clicked and can’t
exploit context-dependent preferences of the user.

Other than most of the previously published research in SBR we focus on deep
learning techniques to predict products of interest based on the current browsing
session. We use vector space representations (VSR) of the items as input to the
network, as it has been recently done with words in the context of NLP [9].
Different from typical VSRs implementations which use an additional network
for learning, our approach does not require pre-training of product features and
can be learned in an end-to-end fashion, i.e. the product embeddings and network
weights are learned simultaneously.

We show that the Embedding-LSTM model provides more accurate and
more diverse recommendations than other frequently used SBR approaches when
applied to real-world datasets. In a case-study we demonstrate this by deploying
an Embedding-LSTM into a production environment to capture live feedback
from users.

The ability to test models online gives access to new metrics beyond those
mostly used in literature, e.g. we can evaluate our model performance based on
how much revenue is generated by the recommendations. From an economic and
business point of view this seems to be of higher relevance compared to merely
counting the products an algorithm can correctly recommend. We demonstrate
the applicability of the proposed approach with an LSTM generating higher click
counts from a higher number of overall users, selling more products and creating
a higher overall revenue compared to the currently implemented association rule
model.

2 Related Work

The idea to use RNNs for session-based recommendations has gained much atten-
tion recently. [5] demonstrated the general applicability of RNNs in SBR and
the improved performance of RNNs in comparison to widely used approaches.
[6] showed how additional information can significantly improve the performance
of RNN based recommendation systems. We improve these approaches with an
extended architecture using product embeddings as done by Barkan and Koenig-
stein [1], who propose a collaborative filtering method based on neural network
embeddings which they call item2vec. The authors use the Word2Vec algorithm
to learn product embeddings similar to our approach. However, they follow the
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original shallow architecture. This means they discard the sequential information
since they represent the history of events as a vector with only a single time step.
They predict the most similar items to the current item based on the cosine sim-
ilarity between the calculated VSRs. Their results were better than the baseline
model used, which was item-based collaborative filtering using singular value
decomposition. [12] show that increasing the amount of training data through
data augmentation techniques improves the performance of RNNs in SBR. [2]
uses the item dwell time as an additional indicator of interest for specific items.
The authors show that this leads to an increased performance as compared to
the pure sequence based approach.

3 Session Based Recommendations
with Embedding-LSTM

In order to achieve reasonable recommendations every information contained in
a given sequence of events must be processed. Using recurrent neural networks
allows us to easily frame the recommendation problem as a sequence prediction
problem. Not only do we take into account the set of previously clicked items, but
we also consider the order in which the items appeared, thus explicitly capturing
how the preference of a user evolved over time.

In Long Short-Term Memory (LSTM) [7] networks the hidden layer activa-
tion is split into multiple interacting computations. Using an elaborate archi-
tecture of gated cells LSTMs can keep information over a series of input steps.
LSTMs have successfully been applied to model temporal and sequential aspects
of data e.g. machine translation [11] and are an adequate tool for analysing
sequential user activity.

Learning vector space representations of products allows to capture fine-
grained relationships and regularities between products. We use an embedding
method to represent products in a continuous high-dimensional vector space in
which multiple relations for a single product can be represented. We therefore
expect to capture the sequential relationships between items in such item vec-
tors. The VSRs replace the extremely sparse one-hot encoding by a dense vector
representation. The reduction of computational complexity as compared to a
one-hot encoding scheme is one of the benefits of this approach. Additionally,
the learned embeddings can be reused as meaningful representations of input
data for other machine learning models, e.g. we experimentally demonstrate
how the learned VSR can be used as input to nearest neighbour recommenda-
tion methods to improve the recommendation performance. Investigation of the
learned embeddings allows to learn more about relationships between products
and the reasoning of the model.

4 Experiments

4.1 Datasets

Our dataset contains data collected in three different web-shops, which we
denote by A,B,C covering a period of roughly 9 months (November 2016 to
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August 2017). Table 1 details descriptive statistics of the datasets. Users is the
number of unique users, Items the number of unique products and Observations
is the number of recorded events per web-shop. Avg observations per item shows
the average number of interactions between users and items and Avg daily events
is the mean number of events recorded per day.

Table 1. Descriptive statistics

Data set A B C

User Sessions 701,773 1,296,748 4,396,280

Items 5,937 7,829 8,999

Observations 1,679,144 3,820,461 13,837,585

Avg observations per item 283 488 1537

Avg daily events 6261 14,250 51,623

Max date 2017/07/25 2017/07/25 2017/07/25

Min date 2016/10/31 2016/10/31 2016/10/31

We evaluate the performance of our model for three different dictionary sizes
D ∈ {500, 2000, 5000}. For each D the most popular items are identified. Popu-
larity based pre-filtering is common in practical RS, since discarding unpopular
products has negligible effects on the evaluations [6]. The network then has D
output nodes in a softmax layer that applies a cross-entropy loss function.

4.2 Baseline Algorithms

The following algorithms are commonly used baselines for session-based recom-
mendations [5,6].

– POP: Popularity predictor always recommends the most popular items in
the training set.

– Item-KNN (I-KNN): This approach is inspired by traditional content-
based filtering methods for session-based recommendations and recommends
items similar to the item currently viewed. Similarity is measured based on
the co-occurrence of items within sessions and calculated for each pair of
products. See [5] for details. During inference, the top k items with the highest
similarity to the current item are selected for recommendation. Item-KNN is
one of the most commonly used item-to-item solutions in real world systems
[5].

– Embedding-KNN (E-KNN): E-KNN also recommends products based
on their similarity. The content-based filtering approach uses learned vector
space representations (VSR) extracted from an Embedding-LSTM and re-
uses them as features. Cosine similarity of two VSRs is used as similarity
measure for the corresponding products.
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4.3 Metrics

The top-k metric is similar to the sps metric described in [4]. The top-k metric
for a single example is one, if the next click of a user appears in the top-k
recommendations provided by the model, otherwise zero. Formally, this can be
written as shown in Eq. 1.

top-k =
1
n

n∑

i=1

{
1, if yi ∈ ŷk,i
0, else (1)

For a given example i, ŷk,i denotes the top k items with the highest predicted
probability. Let yi be the actual target item and n the number of examples.
We measure the top-k for k ∈ {1, 10, 20, 30}. For k = 1 the top-k metric equals
the accuracy, i.e. the recommendation with the highest probability is indeed the
correct label.

The reciprocal rank metric measures the position of the relevant item in
the list of recommended items. This is important in cases where the order of
recommendations is relevant, for example if the lower ranked items are only
visible after scrolling. The mean reciprocal rank (MRR) is the average of the
reciprocal ranks for all examples and is calculated as

MRR =
1
n

n∑

i=0

1
ranki

(2)

with n denoting the number of training instances and ranki the position in the
recommendation list in which the correct item occurred.

5 Results

5.1 Embedding Visualization

Dimensionality reduction techniques convert high-dimensional embeddings into
lower dimensional data vectors while preserving local and global structures using
t-SNE [8]. Figure 1 shows the two dimensional representation of the learned
item embeddings for web-shop C with a dictionary size D = 2000 using the
t-SNE algorithm in which points are coloured and annotated according to their
product category. Housekeeping, Gardening & Recreation and Living

are located closely together in the representation, Textile, Underwear and
Shoes are interconnected with each other and Baby & Toddlers products
while Wellbeing is close to Shoes and Housekeeping. This shows that the
learned embeddings align with intuition. Moreover, items that are intuitively
considered to be similar from a perspective of taste are close in the embedding
space from what we can conclude that the network is able to learn meaningful
representations of items that can be used to produce valuable recommendations.
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Fig. 1. 2D Item Embeddings from t-SNE for web-shop C (D = 2000) Two dimensional
representation of the embeddings from web-shop C (D = 2000) with the t-SNE algo-
rithm (perplexity = 12). Items are coloured according to their affinity to a product
category.

5.2 Top-K

Table 2 provides the top-k and MRR metrics for our experiments. Results which
we discuss in detail are printed in bold type.

The table contains the results of the tested algorithms and the difference
between LSTM and the second best competitor (column DIFF ) for different
shops, dictionary sizes D and values of k.

LSTM outperforms the baseline algorithms in all data sets, with the POP
algorithm being the weakest model throughout. As expected, results deterio-
rate with increasing dictionary size. Interestingly, I-KNN outperforms E-KNN
in terms of plain accuracy (k = 1) in all data sets. However E-KNN has an edge
over the I-KNN for all other k ∈ {10, 20, 30} except in data sets (A, 500) and
(A, 5000), where the I-KNN is higher for k = 10. A possible interpretation for
this effect is that I-KNN learned a more problem specific solution (high k = 1)
compared to E-KNN, in which the VSR captured the structure of the problem
on a more general level (better performance for all other k). The mean value of
the differences between E-KNN and I-KNN is 2.39 pp. which can be interpreted
such that using VSR as features in the nearest-neighbour approach improved the
recommendations. Therefore, an LSTM does not have to be implemented in a
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Table 2. Metrics: Top-k and MRR

Shop D K LSTM E-KNN I-KNN POP DIFF

A 500 1 11.18 4.75 7.69 0.62 3.48

10 38.51 24.59 26.03 6.01 12.48

20 48.84 33.32 32.93 9.99 15.53

30 54.96 38.75 38.49 13.80 16.22

MRR 0.20 0.18 0.08 0.01 0.02

2000 1 8.74 2.42 6.52 0.42 2.21

10 31.91 22.62 21.87 2.96 9.28

20 40.50 30.39 27.34 4.92 10.11

30 45.94 35.22 31.79 6.74 10.72

MRR 0.16 0.12 0.07 0.00 0.04

5000 1 6.54 3.55 6.10 0.24 0.44

10 26.10 19.25 20.21 2.25 5.89

20 35.31 26.26 25.48 3.87 9.06

30 40.84 30.40 29.91 5.35 10.44

MRR 0.13 0.12 0.06 0.00 0.01

B 500 1 6.21 4.13 5.02 0.85 1.19

10 28.54 22.94 17.74 6.71 5.6

20 39.54 32.57 23.98 11.71 6.98

30 46.96 38.64 29.41 16.19 8.32

MRR 0.14 0.11 0.05 0.01 0.03

2000 1 5.60 2.92 4.48 0.46 1.11

10 23.78 16.67 14.71 3.38 7.11

20 32.88 23.64 19.90 5.88 9.24

30 38.46 27.80 24.36 8.06 10.66

MRR 0.12 0.10 0.05 0.01 0.02

5000 1 5.01 2.63 4.40 0.29 0.61

10 22.11 15.36 13.49 2.54 6.75

20 30.97 21.85 18.14 4.49 9.12

30 36.35 25.97 22.28 6.54 10.38

MRR 0.11 0.10 0.04 0.00 0.01

C 500 1 10.79 4.46 7.40 0.89 3.39

10 38.33 30.22 25.41 6.44 8.11

20 48.59 39.88 31.65 11.51 8.7

30 54.69 45.43 38.02 15.95 9.26

MRR 0.20 0.14 0.08 0.01 0.05

2000 1 8.47 4.14 5.90 0.68 2.57

10 31.12 23.07 19.53 3.15 8.05

20 40.83 31.82 25.11 5.39 9.01

30 46.73 36.80 30.08 7.11 9.94

MRR 0.16 0.13 0.06 0.01 0.03

5000 1 7.03 3.83 5.41 0.43 1.62

10 27.82 22.12 17.36 2.23 5.7

20 36.92 30.17 22.35 3.74 6.75

30 42.34 34.98 27.15 5.13 7.37

MRR 0.14 0.13 0.05 0.00 0.01
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production environment to benefit from its sequential knowledge, simply replac-
ing the features in existing implementations with learned embeddings already
improves the results instead.

5.3 MRR

The MRR can be translated back to the average position in the list of recom-
mendations by taking 1

MRR . The result is detailed in the boxplot in Fig. 2. In the
upper figure all algorithms are shown, while the lower figure leaves out POP to
allow for a better comparison between the remaining algorithms. The inner line
represents the median value, the edges of the box indicate the upper and lower
quartile and the whiskers detail the extreme values. For the LSTM, the median
position of the correct recommendation is 7.31, the E-KNN at position 8.25,
the I-KNN at position 16.81 and the POP at position 198.11. During the live-
test of the model (next section), the number of recommendations shown at once
is eight1, so theoretically the LSTM would be the only algorithm where users
would (given the median value) see the correct recommendation without using
the slider. The LSTM also has the lowest uncertainty involved in the recommen-
dation quality, indicated by the smaller overall range of the box plot (4.350 for
the LSTM compared to 4.595 for the E-KNN), so the results are the most stable
over all datasets.

Fig. 2. Average position of the correct recommendation over all datasets. The upper
image displays all algorithms. In the lower image the POP predictor is not shown.
Whiskers represent minimum and maximum values.

To see whether the predictions align with intuition it is useful to visualize
some example predictions. Here we only provide the recommendations from the
LSTM model, as this is the model of interest. Results are visualized in Table 3.

Each row holds a single example of inputs and predictions. Column Input
on the left contains the inputs to the model with the currently viewed item

1 This is dependent on the display size. Here we assume a 24 in. monitor.
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in column (xt) and the previously viewed item in (xt−1). Column Predictions
contains the predictions, sorted from left to right in descending order of their
probabilities, so that the item for which is most likely to be clicked. In the first
row we assume a user has only clicked on the product ‘cabinet’ before. Without
sequential information and only a single input this is simply an item-to-item rec-
ommendation. The big cabinet that is on the top position is quite similar to the
currently viewed cabinet. In line with intuition more cabinets and commodes
follow. In the second row a another piece of furniture is clicked and sequen-
tial information is now available. The model accounts for this by adjusting the
importance of different products. The big cabinet that has already been the top
prediction in row 1 again is on top, now with a commode which has not been in
the top 8 recommendations before as second best recommendation. Obviously,
the model found evidence that the commode is an important recommendation
given the sequence of previous inputs. In the third row the currently viewed
article is again the cabinet, however this time another product has been viewed
before. Again the top prediction has not changed but the previous article influ-
ences the order of the recommendations. This is seen in row 3 in which the list of
top recommendations changes, e.g. rank 8 has not been in the recommendation
list before at all and rank 4 was not listed in row 2.

Table 3. LSTM example predictions from (C, 5000)

Input Predictions

xt−1 xt Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8
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In row 4 the previously viewed product is identical to row 3, but the one cur-
rently viewed is now a shoe. The model completely ignores the previous item and
only recommends items that are similar to the currently viewed product which
might be explained by the fact that shoes ‘score’ on other shoes significantly, so
the importance of other shoes regarding the current session is greater than the
importance of more furniture.

5.4 Model Deployment

The best performing model for web shop C with D = 5000 has been deployed
into production giving us the opportunity to capture metrics, which are typically
not available without user interaction.

The model was benchmarked with an A/B test for one week against the
currently deployed prediction model which uses association rule mining (see [3]
for details). The model creates predictions exploiting user history (if available)
combined with short-term predictions based on the current browsing session to
come up with the final set of recommendations. Intuitively, this should give the
model an advantage whenever the system can identify a user and access the
explicit purchasing history of this user. Rather than predicting the next item to
be clicked, the benchmark model has been optimized to generate high revenue
by increasing the importance of more expensive articles.

Table 4 provides an overview of the metrics for both models as well as the
sum or average of the metric. The recorded metrics are the number of users
who clicked on a recommendation (Users), the number of clicks on recommen-
dations (Clicks), the ratio of clicks per user (Clicks/Users), the average price
of the clicked items (Clicked Avg price), the total value of the clicked items
(Clicked Price), the number of different products sold (Unique Products), the
number of total sold products (Sold Quantity), the total revenue generated by
the recommendations (Sold Value) and the average price of sold products (Sold
Avg Value). 27.290 users saw the LSTM recommendations and 27,836 users saw
the baseline recommendations. The LSTM attracted nearly twice as many users
(2, 508 vs 4, 390), who more than doubled the number of overall clicks (4, 495 vs
9, 924). Additionally the users also spent more time clicking through the recom-
mendations as can be seen by the higher Clicks/User metric (1.81 vs 2.31). The
LSTM clicked price is 486,222 e higher and the average clicked price is 15.24
e above the baseline model. 95 additional unique products and 131 additional
total products were sold by the recommendations generated by the LSTM model.
This results in 18,131.4 e revenue generated by the model in one week, which
is 2,238.7 e extra revenue compared to the currently deployed model. Over the
course of a year, the LSTM would generate 826,420.4 e in revenues, which is an
increase of 116,412.4e compared to the baseline2.
2 From a marketing perspective, an interesting metric is the revenue/click. However,

this neglects the cost of running the systems which is indeed high so that only looking
at the revenue/click does not incorporate all relevant costs and is therefore only a
skewed metric. Unfortunately, we cannot publish details about the associated cost
structures.
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Table 4. Live-test results

Model Baseline LSTM

Users 2,508 4,390

Clicks 4,495 9,924

Clicks/User 1.81 2.31

Clicked Price e 274,350 e 760,572

Clicked Avg price e 70.26 e 85.50

Unique Products 298 393

Sold Quantity 339 470

Sold Value e 15,892.7 e 18,131.4

Sold Avg price e 52.52 e 42.42

Sold Avg Value e 55.10 e 46.09

Interestingly, the average price of each unique product sold is over 10 e
higher in the baseline model, while the average purchase value (users can buy
several products at once) is 9.01 e higher in the benchmark. This stands in
contrast to the average click price which has been around 15 e higher for the
LSTM. A possible explanation might be the explicit usage of user histories by
the baseline model. Since known users already interacted with the company, the
initial interaction hurdle might be gone, so providing these users with improved
recommendations can lead to a multiplying effect. Furthermore, the baseline
model has been optimized to maximize revenue, while the LSTM was optimized
to predict the next click. Another interpretation of the differences is that users
enjoy the recommendations from the LSTM and curiously click on the products
to learn more about them without the intention to actually buy something. As
users signal interest through clicking on recommendations, the high click rate
leads to the suggestion that the LSTM architecture learned useful dependencies
from the data to provide interesting recommendations.

6 Conclusion

We have demonstrated that recurrent neural networks can successfully be applied
as real-time session-based recommendation engines. Our deep learning architec-
ture outperformed standard algorithms in all metrics when applied to practice-
relevant datasets. A live test provided proof for the superiority of Embedding-
LSTMs compared to the baseline model. Its recommendations lead to a sig-
nificantly higher number of users with higher clickrates and in consequence to
an increase of products sold thus generating a higher overall revenue. Further-
more, we showed the emergence of meaningful vector space representations for
the products using an efficient end-to-end training approach. Our architecture
enables smart marketing based on machine learning algorithms for a variety of
customer orientated businesses in a scalable way. Future research will focus on
further improving the proposed architecture.
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Abstract. The imbalanced classification problem is often a problem in classi-
fication tasks where one class contains a few samples while the other contains a
great deal of samples. When the traditional machine learning classification
method is applied to the imbalanced data set, the classification performance is
bad and the time cost is high. As a result, mini batch with cluster distribution K-
means (MBCDK-means) undersampling method and GA-ANN model is pro-
posed in this paper to solve these two problems. MBCDK-means chooses the
samples according to the clusters distribution and the distance from the majority
class clusters to the minority class cluster center. This technology can keep the
original distribution of cluster and increase the sampling rate of boundary
samples. It is helpful to improve the final classification performance. At the
same time, compared with the classic K-means clustering undersampling
method, the presented MBCDK-means undersampling method has lower time
complexity. Artificial neural network (ANN) is widely used in data classification
but it is easily trapped in a local minimum. Genetic algorithm artificial neural
network (GA-ANN), which uses genetic algorithm to optimize the weight and
bias of neural network, is raised because of this. GA-ANN achieves better
performance than ANN. Experimental results on 8 data sets show the effec-
tiveness of the proposed algorithm.

Keywords: Imbalanced classification � Clustering sampling
Artificial neural network � Genetic algorithm

1 Introduction

Imbalanced classification problem refers to the pattern classification problem in which
the number of training samples is distributed unevenly among classes [1]. When tra-
ditional classification methods are applied to imbalanced data, in order to improve the
overall accuracy of the classification, the classifier will reduce the attention of minority
classes and thus tend to favor the majority class. It makes that the minority class
samples are difficult to be identified and leads to a bad classification performance. The
literature [2] shows that in some applications, it is difficult to build a correct classifier
when the class distribution imbalance ratio exceeds 1:35. Furthermore, Some
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applications make it difficult to establish a correct classifier when the imbalance ratio
reaches 1:10.

Data resampling is an effective way to solve data imbalance problem. Resampling
mainly contains two methods: over sampling [3–5] and under sampling [6–8]. Over-
sampling technique increases samples of minority class artificially. However, this will
introduce redundant information. Under sampling technique balances the data set by
reducing the number of majority class samples. Random under sampling (RUS) ran-
domly reduces samples which will probably lose important information. Recently,
some resampling methods based on clustering technology have been discussed. After
clustering, the data in the same cluster is similar while the data in different cluster is
unlike. Because of this, clustering technology is appropriate to be applied in resam-
pling. Lin et al. [9] applied K-means to under sampling approaches. However, the time
complexity of K-means undersampling algorithm is huge especially on big data.
Besides, the distribution of clusters is not considered in this approach. Based on that,
MBCDK-means is proposed in order to solve these two problems. At the same time,
artificial neural network is prevailing in classification task. Unfortunately, it is easy to
be trapped in local minimum. That’s why we propose GA-ANN. Genetic algorithm is
used here to optimize the weight and bias of neural network.

The rest of this paper is organized as follows. Section 2 presents the proposed
method including the construction of model and the algorithm flow. Results, discus-
sions and comparative analysis are made in Sect. 3. Final conclusion is drawn in
Sect. 4.

2 Methodology

2.1 MBCDK-means Undersampling

MBCDK-means undersampling divides the majority class samples into k clusters while
the minority into a separate class. Assuming that M is the number of majority class and
mi is the number of the ith cluster, then M ¼ Pk

i¼1 mi. Supposing that the distance
between the ith majority class cluster center and the minority class cluster centers is
di: di is denoted as follows:

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXi � XNÞ2

q
ð1Þ

where Xi represents the ith majority class cluster center and XN is the minority class
cluster center. Then the average distance from the majority class clusters to the
minority class cluster davg can be defined as follows.

davg ¼ 1
k

Xk

i¼1
di ð2Þ

The calculation formula of the sample number ni that needs to be extracted in the ith
cluster is as follows:
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ni ¼ N
M

* mi þ davg
di

ð3Þ

The number that needs to be extracted from each cluster is determined by the number
of samples in the cluster and the distance between the majority class cluster centers and
the minority class cluster center. The original distribution of the majority class samples
can be retained. At the same time, it can increase the sampling number of boundary
samples of the majority class. This contributes to the identification of boundary
samples.

Moreover, mini batch K-means uses Mini Batch to calculate the distance. The
advantage of Mini Batch is that it is not necessary to use all the data samples in the
calculation process. Instead, some samples are taken from different types of samples to
compute on behalf of each type.

For each small batch, updated centroid is created by calculating the average value.
Data in the small batch are assigned to the centroid. With the iteration, the changes in
these centroids gradually decrease until the centers of clusters are stable or the specified
number of iterations are reached. Then the calculation will be stopped. Assuming that
the size of a batch is b, the number of cluster is k, sample number is m, feature number
is n and the iteration number is t. As the number of clusters in the K-means under-
sampling algorithm is set to a small number of N, the time complexity is O tNmnð Þ.
However, the time complexity of MBCDK-means algorithm becomes O tbknð Þ.
Obviously, the under-sampling algorithm proposed in this paper has faster convergence
rate than the K-means under-sampling algorithm.

2.2 GA-ANN

ANN is widely used in data classification but it is easily trapped in a local minimum.
Fortunately, genetic algorithm can solve this problem. Because of this, GA-ANN is put
forward which uses genetic algorithm to optimize the weight and bias of neural
network.

GA-ANN mainly deals with two key problems, namely, the encoding mapping
from weights to chromosome bit strings and fitness function of genetic algorithm.

1. The encoding mapping from weights to chromosome bit strings.

Considering a simple artificial neural network that has a input layer nodes, b hidden
layer nodes and c output layer nodes, the neural network will generate 4 matrices.

The weight matrix of input layer and hidden layer: W ¼
W11 � � � W1b

. . . . . . . . .
Wa1 . . . Wab

2
4

3
5

The threshold value matrix of hidden layer: a ¼
a1
. . .
ab

2
4

3
5

The weight matrix of hidden layer and output layer: V ¼
V11 � � � V1c

. . . . . . . . .
Vb1 . . . Vbc

2
4

3
5
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The threshold value matrix of output layer: b ¼
b1
. . .
bc

2
4

3
5

Using GA to optimize the weights of ANN, and the above four matrices are
optimized. The four matrices are converted to the chromosome strings in GA operation.

A binary string is used as the chromosome encoding. x chromosome bits represent
a coefficient value, and the range of x values is determined according to the range and
accuracy of the weight range. The mapping relationship between chromosome bit
strings and weight values is shown in Fig. 1.

2. The fitness function.

The fitness function f of GA-ANN used to evaluate the chromosome is the area under
ROC curve (AUC). AUC is based on the concept of confusion matrix, and a matrix
used to represent the situation of sample identification in binary classification case. In
this situation, the minority class is positive and the majority class is negative. TP
indicates the prediction of positive samples is still positive; FN indicates the prediction
of positive samples is negative; FP indicates negative samples’ prediction is positive,
and TN indicates negative samples’ prediction is still negative. Each sample in the
classification has a corresponding probability value that belongs to a different category.
The final category prediction changes according to the set threshold on different
probabilities. Each threshold corresponds to a set of metrics ðFPrate; TPrateÞ:FPrate
is the false positive rate and TPrate is true positive rate. FPrate and TPrate are defined
as follows:

FPrate ¼ FP
FPþ TN

ð4Þ

TPrate ¼ TP
TPþFN

ð5Þ

Then the fitness function f of GA-ANN is defined as follows:

f ¼ AUC ¼
Z 1

0
TPrate d FPrate ð6Þ

Fig. 1. Mapping relationship between chromosome bit strings and weight values
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2.3 Imbalanced Classification Based on MBCDK-means Undersampling
and GA-ANN

The flow of Imbalanced classification based on MBCDK-means undersampling and
GA-ANN is given by Fig. 2. The imbalanced dataset is split into training data and
testing data. MBCDK-means is applied to training data and then gains balanced
training data. GP-ANN is used to train balanced data and then test testing data.

3 Computer Experiment Results

3.1 Datasets

This article discusses three experimental studies. 8 datasets are used in these experi-
ments. 6 data sets with small scale are from UCI machine learning repository.
Imbalanced ratio of these datasets is between 3.23 to 32.78, and the amount of sample
is between 214 to 1484. A European credit card transaction record data set is used in
our experiments. There are 284,807 records in this dataset, which only includes 492
fraud records. Feature number is 30, and the imbalanced ratio of data reaches up to 578.

Fig. 2. Flow of Imbalanced classification based on MBCDK-means undersampling and
GA-ANN
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The last dataset is KKBox’s Churn Prediction Challenge dataset in 2017. It includes
more than 400 million data and feature number is 30, which includes 12 features
extracted on our own. Training dataset’s imbalanced ratio is 14.58. The description of
dataset is in Table 1.

3.2 Results

Experiment 1: Since the six UCI data sets are small, there is no need to compare the
time complexity of the two under-sampling algorithms. We only compare the time
complexity of the two under-sampling algorithms on the credit card and KKBox user
churn prediction data sets. In the European credit card transaction recording experi-
ment, K-means under-sampling took 801 s, while MBCDK-means took only 1 s to
complete under-sampling. In the KKBox experiment, memory overflow happened in
K-means under-sampling process after running for 7 h. In contrast, MBCDK-means
took only 3 h to complete the sampling process. Apparently, the time complexity of
MBCDK-means is much lower than that of K-means under-sampling.

At the same time, we used C4.5 decision tree as a classifier on 8 data sets to
compare the difference in classification performance after using MBCDK-means under-
sampling and K-means under-sampling respectively. Figure 3 shows the results of this
comparative experiment. Obviously, on these 8 data sets, the under-sampling algorithm
proposed in this paper achieves better classification performance than K-means under-
sampling algorithm in classification performance. It can be seen that the algorithm
proposed in this paper can deal with the imbalanced dataset more effectively than
K-means under-sampling algorithm.

Table 1. Description of datasets

Dataset No. of
samples

No. of minority
class

No. of majority
class

No. of
features

Imbalance
ratio

Glass0 214 51 163 9 3.19
Glass2 214 13 201 9 15.47
Glass4 214 9 205 9 22.81
Vehicle0 846 200 646 18 3.23
Yeast5 1484 44 1440 8 32.78
Yeast6 1484 37 1447 8 39.15
Credit
card

284807 492 284315 30 577.88

KKBOX-
train

992931 63741 929490 30 14.58

KKBOX-
test

970960 87330 883630 30 10.12
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Experiment 2: After the MBCDK-means under-sampling on 8 datasets, GA-ANN
model and ANN model were sequentially used to compare the classification perfor-
mance of the two models. The experimental results are shown in Fig. 4. It can be seen
that GA-ANN achieves better classification performance than ANN. It shows that the
genetic algorithm is effective for the improvement of ANN.

Experiment 3: the classification performance is compared between traditional
machine learning methods and the classifier based on MBCDK-means under-sampling
and GA-ANN model. The traditional machine learning models used in this experiment
are C4.5 classification tree, bagging, random forest, and ANN and gradient boosting.
The experimental results are shown in Fig. 5. Obviously, on small datasets, the clas-
sification performances of the proposed algorithm, bagging, boosting and random
forest are similar while ANN and C4.5 decision tree achieve bad results. On big
datasets such as European credit card and KKBox user churn prediction, the proposed
algorithm achieves better performance than traditional machine learning algorithm.
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Fig. 3. Comparison of classification performance of MBCDK-means and K-means
undersampling
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Fig. 5. Comparison of classification performance between traditional classifiers and the
classifier based on MBCDK-means undersampling and GA-ANN
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4 Conclusion

This article proposes a new sampling method called MBCDK-means undersampling
and a classification model named GA-ANN. MBCDK-means undersampling fuses
mini batch into K-means resampling. Meanwhile, this resampling method chooses
samples according to the distribution of cluster samples and the distance between the
cluster centers of majority class samples and that of the minority class samples. It
remains the information of original data distribution. Besides, it increases the sampling
rate of boundary samples. It is effective to improve final classification performance.
After acquiring balanced data, these data should be classified. ANN is a common
classifier but it is easy to be trapped in a local minimum. That’s why GA-ANN is
presented. Genetic algorithm is a method to find the optimal solution. Introducing GA
to ANN helps ANN to find the optimal weights and biases. In 8 datasets, compared
with K-means undersampling algorithm, MBCDK-means achieves better classification
performance on the AUC. In the meantime, the time and space complexity of MBCDK-
means is much lower than K-means undersampling in the experiments of credit card
and KKBox churn prediction. In addition, GA-ANN gains better classification per-
formance in contrast to ANN. In the end, the classification performance based on
MBCDK-means and GA-ANN is competitive in 6 small UCI datasets and is better than
traditional machine learning methods in big datasets. Experiment results show that our
method is efficient in imbalanced data classification.
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Abstract. Adjusting parameters of a neural network model to repro-
duce complete sets of biologically plausible behaviors is a complex task,
even in a well-described neural system. We show here a method for evolv-
ing a model of the mormyrid electromotor command chain to reproduce
highly realistic temporal firing patterns as described by neuroethologi-
cal studies in this system. Our method uses genetic algorithms for tun-
ing unknown parameters in the synapses of the network. The developed
fitting function simulates each evolved model under different network
inputs and compare its output with the target patterns from the living
animal. The obtained synaptic configuration can reveal new information
about the functioning of electromotor systems.

Keywords: Genetic algorithms · Complex firing patterns
Neural models · Network parameter optimization
Information sequences · Pulse intervals · Electroreception

1 Introduction

To accomplish the robustness and flexibility that shape characteristic temporal
patterns in neural activations is a complex task that networks in the nervous
system seem to perform in a robust manner. However, mimicking these temporal
patterns in models is not an easy task, particularly taking into account that the
same network has to generate different patterns without changes in its structure.
This is so even in simplified models with a reduced number of parameters.

The main objective of this paper is to present an evolutionary method to
adjust the parameters of a model in order to reflect the different temporal struc-
tures of neural activations that occur in its biological counterpart. Genetic algo-
rithms (GAs) are a convenient tool for computing global optimization, includ-
ing temporal matching, inspired by biological evolution [14]. GAs have been
extensively applied to parameter adjusting in neuron models [8,20] and modeled
neural networks [19]. It has enable improvements in robot locomotion [15,23]
c© Springer Nature Switzerland AG 2018
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and in the development of biomimetic neuroprosthesis [11]. Also, regarding tem-
poral patterns of electrical activity, GAs have been applied, for instance, to
design sequences of neural stimulation that improve clinically-standard patterns
in biophysically-based models [6]. It is worth noting that multi-objective opti-
mization for constraining a model by experimental data using GAs allows more
flexible and realistic models [10]. In this paper a method for adjusting the param-
eters of a neural network model to reproduce a set of different temporal patterns
of activity using the same topology is presented.

The electromotor command network in pulse mormyrids, a family of weakly
electric fish, is a well-known system [1] commonly used for studying information
processing in the nervous system [12,16,17]. The rapid voltage transients (pulses)
produced by the electric organ of these fishes (known as electric organ discharges,
or EODs) can be detected in the fish surroundings. This EODs are 1:1 correlated
with pulses of a neural ensemble known as the command nucleus (CN - Fig. 1).
As a result, pulse mormyrids constitute a well suited system for non-invasively
monitoring a living nervous system during long-time periods.

This system has other advantages. First, ethological studies have described
stereotyped sequences of pulse intervals (SPI) in these animals (see Sect. 1.2).
Furthermore, temporal patterns produced in the EOD are related with over-
all fish behavior, for example aggression of courtship [5]. Finally, physiological
studies have described the network topology of the electromotor system [3]. The
neural ensembles responsible for the generation of different SPI patterns have
also been described [2,4].

Information from these studies have been used to develop an initial model
of this system (see Sect. 1.1). The topology of the network was composed as
four neurons and five synapses [4,18]. The preliminary hand-tuned model was
able to show some of the characteristics of the real system, but it was not able
to reproduce the temporal structure of all the target SPIs with the described
connectivity.

Due to the intrinsic complexity of the network, hand-fitting to experimen-
tal data is a hard and time-consuming process [24], which in most cases fails
to achieve the expected results. Even though several studies have successfully
hand-tuned neural models [21], an automatic approach for model optimization
has many advantages. In particular, it allows for searches that meet several
requirements in shaping specific temporal patterns using modern high perfor-
mance computing systems.

Two different GAs were used to improve the initial electromotor model and
reproduce the temporal structure of all the target SPIs patterns (see Sect. 2).
These GAs are described in Sect. 2.1 and both use the same evaluation func-
tion, which is described in Sect. 2.2. The development of an adequate evaluation
function is crucial. This function will guide the evolutionary process scoring the
individuals. Here, a function based on the mean square error between the model
output sequences and the target SPIs is presented. The convergence results of
both GAs is showed in Sect. 3, aside with a simulation of the best individual.
These results are analyzed and discussed in Sect. 4.
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1.1 Electromotor Command Network

The electromotor system commands the activity of the electric organ [2]. Each
EOD is initiated by a pulse of the medullary command nucleus (CN) [4]. CN
integrates influences mainly from two sources: the mesencephalic precommand
nucleus (PCN) and the adjacent thalamic dorsal posterior nucleus (DP). After
an EOD, motor outputs return to the command network through a corollary
discharge pathway that activate the dorsal region of the ventroposterior nucleus
(VPd). Finally, VPd provides inhibition feedback to DP and PCN, regulating
the resting electromotor rhythm. Figure 1 shows a simplified representation of
this network.

Fig. 1. Stereotyped sequences of pulse intervals (Scallop, acceleration, rasp and ces-
sation) and simplified representation of the electromotor command network (center),
based in [2,4]. Each SPI chart represents inter-pulse intervals (or IPIs, Y axis) along
time (X axis). In the schematic, the neurons (VPd, DP, PCN, CN) are connected by
five synapses, three of them are excitatory (those ended by arrows) and two of them
inhibitory (those ended by circles). The dashed line represents the corollary discharge
pathway. CN is the output of the network. Colors relate each SPI pattern with the neu-
ron ensemble: DP activation is related with accelerations, PCN activation is related
with scallops, VPd activation is related with cessations and activation of both DP and
PCN is related with rasps.
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1.2 Stereotyped Sequences of Pulse Intervals (SPIs)

Sequences of EODs are not random. They are grouped composing stereotyped
patterns of pulse intervals [2,5]. Four SPI patterns have been well-described:
accelerations, scallops, rasps and cessations.

Accelerations are prolonged decreases of electrical inter-pulse intervals (IPIs)
to a series of nearly regular shorter intervals, as a result of activation in the DP
nucleus. This kind of pattern is variable both in the final duration and in the
minimum IPI reached. They are related to aggressive behaviors.

Scallops are sudden drops to very short IPIs followed by an immediate recov-
ery, where IPIs rapidly increase to regular values. PCN activation is related to
this electrical signalling. It may function as an advertisement signal.

Rasps have an initial sudden decrease to very short IPIs, similar to the ones
observed in scallops, followed by a sustained slow increase like in accelerations.
Both DP/PCN nuclei activations lead to this EOD pattern, which is used by
male fish for courtship.

Cessations are a stop in the EOD generation during long time periods of
around one second. It has been related with both aggressive and submissive
behavior. This firing modality is triggered by activation of VPd.

The model was built to reproduce the temporal structure of these patterns
as a function of the network inputs, without changing the network topology.
Inputs were different stimuli that corresponded to the neuron ensemble activa-
tions described by the experimental studies. Due to the complexity of the task,
an automatic method for synaptic parameter adjusting was developed.

2 Evolving the Network

We started from a previously developed electromotor model ([18] and unpub-
lished work). Both the neuron and synapse models were initially hand-tuned
to mimic the main characteristics of the real system. We improved the model
through a trial-and-error process. Manual fitting of individual parameters was
followed by an analysis of the results obtained, which iteratively leads to new
changes in the parameters. Nevertheless, hand-fitting the synaptic parameters
became almost impossible, as little is known about synaptic conductances in
the system. As a result, a GA method was developed to refine the synaptic
parameters.

The method selected for modeling the synapses describes receptor bindings
to describe the dynamics of synaptic conductances [9]. The synaptic current
received by the post-synaptic neuron is calculated as follows:

I(t) = g · r(t) · (Vpost(t) − Esyn)

where g is the synaptic conductance, Vpost(t) the postsynaptic potential, Esyn

the synaptic reversal potential and r(t), the ratio of bound chemical neurotrans-
mitter receptors, which is given by:

ṙ =
{

α[T ](1 − r) − βr, if t ≤ tmax

−βr, otherwise
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Fig. 2. Schematic representation of the GA fitting process. Iterations continue until
100 generations are reached.

where α and β are the forward and backward rate constants for transmitter
binding and [T] is the neurotransmitter concentration. As [T] is described as a
pulse in this model, it is maximum while t ≤ tmax and, when t > tmax, [T ] = 0.

According to the insight gained from the manual fitting process, a set of
synaptic parameters controlling the time evolution of the conductance were
selected for being evolved. Four parameters of each of the synapses were mod-
ified: (i) α, forward rate constant (chemical neurotransmitter binding); (ii) β,
backward rate constant (chemical neurotransmitter unbinding); (iii) g, synaptic
conductance; (iv) tmax, maximum release time. Validity ranges for each param-
eter were limited by different percentages (5%, 20% and 50%) relative to its
initial value, set from the hand-tuned model.

2.1 Genetic Algorithms

Different kind of GAs and operators were tested: a simple GA (SGA) [13] and
a steady-state GA (SSGA) [7]. Individuals in both GAs were different sets of
parameters and each parameter was represented by a real value. In both SGA
and SSGA, the initial population was formed by clones of the initial hand-tuned
model, provided as an input.

In SGA, each generation created an entirely new population of individuals.
First, it selected individuals from the previous population, by elitism (best fitting
individual remained unchanged between generations) and roulette wheel selec-
tion (the fitness value of each individual determined its probability for being
selected). Selected individuals were crossed to produce individuals for the new
population. This process continued for 100 generations.

In SSGA, the initial population was created in the same way. Nevertheless, in
each generation, a temporary population was created and added to the previous
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population. Then, individuals were ranked and the worst of them were removed
to return the population to its original size, with a 10% overlap between gener-
ations.

2.2 Evaluation Function

Each individual I in the population contained different synaptic parameter val-
ues for the model. I was formed by a set of 20 parameter values, the ones
indicated above (α, β, g, tmax) for each synapse (Fig. 1). On each generation,
parameters of all individuals were used for building a model. Then, it was eval-
uated with a set of simulations (Fig. 2).

Four different simulations (S) were defined, each one corresponding to a
target SPI: acceleration (Sacc), scallop (Ssca), rasp (Srasp), cessation (Scess).
Each simulation S established the inputs to the network. Each I was simu-
lated under all four simulation cases. The fitness function (F (I)) of the overall
individual was defined as the sum of the evaluation results under each case
(F (Ii) = facc(I) + fsca(I) + frasp(I) + fcess(I)).

The four target patterns P (acceleration, scallop, rasp and cessation) were
defined in terms of an ordered sequence of IPIs (P = p0, ..., pn) where pi is each
interval. For evaluating a pattern (fS(I), where S was one of the four simulations
Sacc, Ssca, Srasp, Scess), the individual I was simulated and the output of CN was
obtained in term of IPIs: PS(I) = pS(I)0, ..., pS(I)m. The evaluation searched in
the output for the best fitting sequence with the target pattern. Mean squared
error (MSE) was used for the evaluation. If m < n (i.e. the number of IPIs in
the simulation was smaller than those in the target pattern) the fit value was 0.
Otherwise, the fitting value was calculated as follows:

MSE = minl(
∑n

i=0(pi − pS(I)l+i)2

n
)

where 0 <= l < n − m, is an index to search for the best fitting SPI in the
output. Then,

fP (I) =
100

1 + MSE

Finally, several examples of the same pattern were provided. The fitness
function compared the output of the network with all of them and selected the
optimal one (i.e. the one that minimized MSE).

2.3 Implementation

The implementation of the GA was done in C++ using the MIT library GAlib1.
The primary goal of the implementation was efficiency. The random search per-
formed by the GA is computationally expensive, as it generates a wide range
of individuals. Simulation of the neural model in each individual under differ-
ent simulation conditions also implies a huge execution cost. Finally, an extra
computational cost is added by the evaluation function.
1 http://lancet.mit.edu/ga/.

http://lancet.mit.edu/ga/
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3 Results

The best hand-fitted model obtained a fitness score of 0.019 according to the
evaluation function. It could not reproduce all four target patterns, so it did not
meet the goal. All results of the GA largely improved this result. The best fitting
model was obtained by the SSGA algorithm after 61 generations (see Table 1 and
Fig. 3). The fitness score of this final model was 61.11 and reproduced all the
target patterns. Both the target patterns and the simulated patterns which were
obtained using the best fitting model are represented in Fig. 4. The results of
the best fitting model were not equally good. While the scallop incremented the
overall error, all other patterns were accurately reproduced. This constitutes a
paradigmatic case, as in most examples the scallop was the pattern that con-
tributed more to increase the MSE.

SGA and SSGA (the GAs used in the evolutionary process) produced quite
different results (as it can be seen in Fig. 3). Even though SGA improved the
fitness results from the initial hand-fitted model (from 1.19 to 2.28, see Table 1),
SSGA lead to significantly better fitting results (up to 61.11). In addition, it
produced the best fitting results in a smaller number of generations. In their
best cases, SSGA obtained the best fit individual after 60 generations, while
SGA did not obtain its best individual until generation 98.

According to the change percentage allowed for each parameter, results
showed better fitting when a wider range of changes was allowed (see Table 1).

Fig. 3. (A) SGA and (B) SSGA evaluation results per generation: Average fitting value
per generation (left) and best individual results per generation (right). In (B), once
an individual improved the previous BFV, all generations reached that score in a few
generations.
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Fig. 4. Target patterns and simulation results from the best fitting individual. The
fitting result for this simulation is 61.11, obtained using SSGA.

4 Discussion and Conclusions

Replicating the flexibility and adaptability of the nervous system with models is
a difficult problem, especially regarding the temporal structure of the wide diver-
sity of sequential activity observed in living systems. Hand-fitting the parameters
of a neural model to produce this sequential information is difficult and time-
consuming, but in some cases it is possible to manually tune the model to a
specific behavior [21]. Nevertheless, when a model aims to reproduce a wider set
of characteristics under the same network configuration, the problem becomes
almost impossible to address manually. Genetic algorithms, as a powerful method

Table 1. Best fitting values (BFV) for each GA, and number of generations required
to reach BFV (100 individuals per generation).

GA change % BFV Generation GA change % BFV Generation

SGA 5% 1.19 96 SSGA 5% 17.74 37

20% 2.23 63 20% 21.57 62

50% 2.80 98 50% 61.11 61
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for a wide variety of optimization problems, can help in the parameter adjusting
process [6,22].

This work presents a GA-based approach for parameter optimization in a
computational model of a biological neural network. It has been applied to
develop of a model of the electromotor system of mormyrids, a family of pulse
type weakly electric fish which constitutes a remarkable example of temporal
coding in sensory-motor systems [1,16]. In our case, an initial hand-fitting gave
insight about how changes in the parameter space affected the entire network.
However, as the hand-fitted model failed to reproduce the target temporal pat-
terns, the automatic adjustment method described in this paper was developed
and the resulting network could effectively reproduce all targets. The result-
ing best fitting model largely improves the results obtained by hand-tuning and
accurately reproduces the temporal structure of the patterns.

The electromotor command chain is a well-described neural network. How-
ever, most of the underlying signaling mechanisms are yet unknown. In spite of
vast experimental work on electric fish, there have been very few attempts to
model the networks that generate electrical signaling [21]. In part, this is because
of the difficulty to reproduce the temporal patterns of neural activations observed
experimentally. The network configurations produced by our evolutionary app-
roach can be used to address the study of encoding of behavioral signals in a
widely used animal model.
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Abstract. In this paper we give an overview about utilizing Frank Wolfe
optimization to find interpretable constrained matrix and tensor factor-
izations. We will particularly concentrate on imposing stochasticity con-
straints and show how factors of Archetypal Analysis as well as Decom-
position Into Directed Components can be found using Frank Wolfe opti-
mization to respectively decompose bipartite matrices and asymmetric
similarity tensors. We will show how the derived algorithms perform by
presenting case studies from behavioral profiling in digital games.

1 Introduction

As popular representation learning tools, matrix and tensor factorization meth-
ods have been widely used for variety of descriptive, predictive and prescrip-
tive machine learning applications including user profiling [1,12,13], behav-
ior prediction [15], natural language processing [4,11] and recommender sys-
tems [10,16,17]. The main idea behind matrix and tensor factorization methods
is to decompose data matrices or tensors into combinations of low-rank matri-
ces that are usually found by minimizing a predefined objective function for
assessing the reconstruction quality.

When they are used as descriptive features, the resulting factors are usually
expected to be interpretable to human experts. A popular choice of assuring
interpretability of the resulting factors is to constrain them to possess a cer-
tain set of characteristics [11,14,15,17]. Among the numerous possibilities for
such constraints, enforcing stochasticity not only allows for interpreting the fac-
tors as probabilities but also, due to particular mathematical properties of the
solution space, provides a way to find optimal factors without requiring any
projections [2,14]. Our main focus in this paper is to review Frank-Wolfe Opti-
mization algorithm [6,8] to come up with stochasticity constrained matrix and
tensor factorizations. To this end, we will give an overview of the optimization
procedure and show its applicability to find factors of Archetypal Analysis [5],
c© Springer Nature Switzerland AG 2018
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which is a two factor matrix factorization model to represent the factorized data-
points as convex combinations of artificially created extremal datapoints (called
archetypes) that are as well defined to be convex combinations of selected data-
points. In addition, we extend our previous work in [14] to factorize asymmetric
similarity tensors by deriving a new algorithm to find stochasticity constrained
Decomposition into Directed Components (DEDICOM) factors [7]. So as to bet-
ter understand the outcomes of the studied algorithms, we will present two case
studies covering behavioral profiling [13] from a digital game, where our focus
will be mainly on the interpretability of the resulting factors.

2 Frank Wolfe Optimization on Standard Simplices

For matrix and tensor factorization, imposing stochasticity constraints to fac-
tors is usually tantamount to obtaining column (and/or row) stochastic matrices.
Formally, an arbitrary factor vector h ∈ R

p is stochastic (or stochasticity con-
strained) when all of its elements are nonnegative and its l1-norm is 1, which is
equivalent to state that hi ≥ 0 ∀ i ∈ [1, 2, . . . , p] and hT1 = 1. Following these
properties, we note that stochastic vectors in R

p reside in the standard simplex
Δp−1, which is the convex hull of the standard basis vectors of Rp. That is, we
define the standard simplex Δp−1 as

Δp−1 =
{ p∑

i=1

βivi |
p∑

i=1

βi = 1 ∧ βj ≥ 0 ∀ j ∈ [1, 2, . . . , p]
}

, (1)

where V = {v1,v2, . . . ,vp|vi = [δi1, δi2, . . . , δip]T } is the set of standard basis
vectors and δij represents the Kronocker delta. Considering that we assess the
quality of the data representation through the resulting factors using a differ-
entiable and continuous convex function, Frank-Wolfe optimization allows us to
efficiently find proper factors minimizing our objective function by performing
the optimization process in the standard simplex [2,3,14]. As an iterative opti-
mization method, Frank-Wolfe algorithm aims to minimize differentiable convex
functions by linear approximation over their predefined compact convex domains
till achieving provable ε-convergence [6,8] (for its neural network implementation
we refer to [3]). Namely, Frank-Wolfe algorithm aims to solve

min
x∈S

f(x) (2)

for a differentiable convex function f : S → R and a compact convex set S, by
iteratively solving for

st = min
s ∈ S

sT ∇f(xt), (3)

where ∇f(xt) is the gradient of the optimized function f evaluated at the current
solution xt. We then consider the subgradient updates with a monotonically
decreasing learning rate αt ∈ [0, . . . , 1] as

xt+1 = xt + αt(st − xt). (4)
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It is worth mentioning that, the update in (4) for the case of stochasticity con-
straints amounts to choosing a standard basis vector minimizing (3) due to the
equivalence S = V [2,14].

3 Archetypal Analysis: Representing Data with Extremes

As our first application of this work, we will now present a Frank-Wolfe algorithm
from [2] to find factors of Archetypal Analysis [5] and show a case study on
user profiling from game analytics [12,13]. The main idea behind archetypal
data representations is to first find a set of prototypical extreme data points,
called archetypes, that encapsulate the entire dataset as well as possible to later
represent every data point as a convex combination of the archetypes [2,5,13].
Such data representations have numerous advantages when used for descriptive
analytics applications such as behavior profiling, as they not only allow us to
compare extreme behavior in terms of variety but also allow us to obtain compact
data representations that are easily interpretable and can also be used as features
in more advanced applications such as behavior prediction [12,13,16]. Formally,
given a column data matrix X ∈ R

m×n, Archetypal Analysis factorizes it as
X ≈ ZHT = XBHT , where the column matrix Z ∈ R

m×k contains the k
archetypes, H ∈ R

n×k contains the row stochastic coefficient vectors and finally
B ∈ R

n×k contains column stochastic data mixing coefficients to construct the
archetypes as convex mixtures of data points in X.

Finding appropriate archetypes can be formulated as solving a constrained
optimization problem to minimize the residual sum of squares as

min
B ,H

E(B,H) =
∥∥∥X − XBHT

∥∥∥
2

(5)

with the following constraints

bij ≥ 0 ∧
n∑

i=1

bij = 1 ∧ hij ≥ 0 ∧
k∑

j=1

hij = 1. (6)

Due to not being convex on the optimized factors, algorithms to optimize (5)
usually follow an alternating least squares (ALS) scheme, where the objective
function is iteratively optimized while updating each factor independently and
keeping the other factors fixed (see [2,14,17] for examples).

Taking a look at the optimization setting for finding archetypal representa-
tions, note that the minimized objective in (5) is a convex function and owing
to the stochasticity constraints imposed in (6), columns of B and rows of H
live in the standard simplices Δn−1 and Δk−1 respectively. In the light of this,
we can now derive a Frank-Wolfe based projection-free ALS algorithm to find
respectively optimal row and column stochastic archetypal factor matrices H
and B. Starting with feasible random solutions or with one of the vertices of
the corresponding simplices for H and B, we iteratively update the rows and
columns of H and B as in (4), where at each iteration the Frank-Wolfe updates
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Randomly initialize H and B to be respectively row and column stochastic

Let Vq = {vq
1,v

q
2, . . . ,v

q
n|vq

i = [δi1, δi2, . . . , δiq]
T }

Let TH and TB be the maximum number of local iterations for resp. H and B
while Stopping condition is not satisfied do

while tH �= TH and updates of H are not small do

G = ∂E(H )
∂H

= 2
(
HBT XT XB − XT XB

)

αH ← 2/(tH + 2)
for b ∈ {1, . . . , n} do

j = argmin
l

gbl

hb: ← hb: + αH (vk
j − hb:)

tH ← tH + 1

while tB �= TB and updates of B are not small do

O = ∂E(B )
∂B

= 2
(
XT XBHT H − XT XH

)

αB ← 2/(tB + 2)
for c ∈ {1, . . . , k} do

i = argmin
l

olc

bc ← bc + αB (vn
i − bc)

tB ← tB + 1

Algorithm 1. A Frank-Wolfe based projection-free ALS algorithm with
monotonically decreasing learning rates for Archetypal Analysis. The algo-
rithm iteratively update to find respectively the row and column stochastic
archetypal factor matrices H and B.

move the considered factors into the direction of selected standard basis vec-
tors till convergence is achieved. To this end, we calculate the gradient matrix
G = ∂E(H )

∂H = 2
(
HBT XT XB − XT XB

)
and define updates for each bth

row of H (denoted as hb:) by first finding the minimizer simplex vertex j as
j = argmin

l
gbl, where gbl corresponds to the lth element of the bth row of G.

After that we move the current solution hb: in the direction of the corresponding
jth standard basis as hb: ← hb:+αH (vk

j −hb:), where αH is the learning rate for
updating the rows of H and vq

i = [δi1, δi2, . . . , δiq]T is the corresponding basis
vector defined as vk

j . These are repeated until the number of iterations hit the
maximum number of iterations TH or updates of rows of H become relatively
small. Similarly, an update rule for columns of B can be defined by first cal-
culating the gradient matrix O = ∂E(B )

∂B = 2
(
XT XBHT H − XT XH

)
and

then finding the minimizer simplex vertex i = argmin
l

olc and defining an update

for each cth column of B as bc ← bc + αB (vn
i − bc), where vn

i ith is the basis
vector in R

n and αB is the learning rate to assure convexity and convergence.
In Algorithm 1 we summarize the steps for finding optimal H and B with a
Frank-Wolfe algorithm.
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Cardinality

z1z2z3z4z5z6z7z8
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M60 (LMG)
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T194 (S)
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(d) archetypal profiles

c1 c2 c3 c4 c5 c6 c7 c8

RPG7 (R)
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M9 (H)
TQ (H)
M16 (A)

AK47 (A)
F2000 (A)

M4 (C)
AKS74u (C)
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P90 (C)

M249 (LMG)
M60 (LMG)
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SV98 (SNP)
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G3 (SNP)
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-9.30 -4.05 1.20 6.45

(e) SVD based profiles

Fig. 1. Profiling players with respect to their weapon proficiency by means of Archety-
pal Analysis using Frank Wolfe algorithm and unconstrained matrix factorization for
k = 8. (a, b) illustrate mixing coefficients from (the same) example players, that are
resp. extracted from Archetypal Analysis and SVD. (c) shows the hard clustering
assignments as a result of maximizing the probability of the archetypal coefficients.
Turning our attention to the basis matrices, (d) illustrates the basis matrix that is
calculated as the convex combination of selected data points (i.e. Z = XB), whereas
(e) shows the profiles generated by factorizing the data matrix without constraints.

To illustrate the use of Archetypal Analysis for user profiling in games, we
used the item-proficiency dataset from [13], which contains score-per-minute
(SpM) values of 23 weapons of a first person shooter game for more than 23,000
players. The analyzed game offers its player three different solider roles: spe-
cial ops, rifleman and sniper, whereas, eight different weapon categories which
include (with their abbreviations) rocket launchers (R), handguns (H), assault
(A) and carbine (C) rifles, light machine guns (LMG), shotguns (S), snipers
(SNP) and a stationary weapon (ST). In Fig. 1 we illustrate how Archetypal
Analysis can be used for profiling by decomposing the weapon-player matrix
using our Frank-Wolfe based algorithm from Algorithm1 for k = 8 and com-
pare the profiles to the ones obtained from factorizing the data matrix with-
out constrains as X = CP T . To this end we considered the popular refac-
torization of Singular Value Decomposition (SVD) factors to obtain two fac-
tor decompositions [9,16,17] by considering the SVD of the data matrix as
X = UΣV T = UΣ

1
2 Σ

1
2VT to obtain C = UΣ

1
2 and P = V Σ

1
2 , where

U and V are the basis matrices whereas the diagonal Σ contains the sorted
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nonnegative singular values. Compared to the archetypal factors in Fig. 1(a, d),
the unconstrained factors in Fig. 1(b, e) contain negative values (although the
factorized data is nonnegative) and hence the results are very difficult to inter-
pret. Whereas, the resulting profiles extracted from archetypal factors show
extreme (w.r.t behavior) yet interpretable player like profiles summarizing the
main behavior of the analyzed dataset (see also examples from [13]).

Analyzing the resulting profiles from Fig. 1(d), represented by z5 and z7, we
note the presence of the typical elite behavior [13] with high SpM values over-
all except the light machine guns and, for the latter, the stationary gun. This
is followed by the newbie behavior with very low weapon performance values
that is represented by the archetype z4. Dissecting the rest of the profiles, we
observe specialized players that perform well with one or a group of weapons,
which (similar to the results from [13]) are primarily based on expertise in par-
ticular weapon types. That is, z1 represents players with very high hand gun
performance, z2 represents specialized players with the basic character weapons,
z3 represents shotgun experts, z6 represents players with extremely high rocket
launcher performance and z8 has overall good results with very high stationary
weapon performance.

Another key advantage of Archetypal Analysis for such descriptive analyt-
ics tasks is soft clustering [5,11–13], which can be performed by analyzing the
stochastic mixing coefficients in H and turned into hard clustering by probability
maximization or sampling (see results from the former in Fig. 1(c)). To illustrate
this, we compare the mixing coefficients from Archetypal Analysis and SVD for
four different players respectively in Fig. 1(a) and (b). Dissecting the results from
Fig. 1(a), we note that the stochastic coefficients for the first player (represented
by h1:) show that they belong to the elite class due to the high belongingness
values to z5 and z7. Following that, the second and the third players share com-
mon characteristics with respect to having high belongingness values for profiles
z1 and z6 indicating proficiency in hand guns and rocket launchers. In addition,
with high belongingness value to z2, the third player is good at using the assault
and carbine weapons. Finally, with high belongingness values to z3 and z8, the
fourth player is proficient in using shotguns and the stationary weapon HMG.
As for the profiles, coefficients from SVD are difficult to interpret since they
contain negative entries.

4 DEDICOM: Factorizing Similarity Tensors

In some analytics applications the analyzed data matrices might inherently have
special structures such as for the case of similarity matrices, where each entry in
such a matrix encodes pairwise similarities between a predefined set of entities.
Additionally, considering the involvement of another dimension into the analysis
such as time [1] or predefined categories [15], a collection of matrices, that share
the same characteristics with respect to the entities they are representing, is
known to form a tensor [1,9,15]. In this section, we will study how we can
factorize similarity tensors that are asymmetric by nature. Since asymmetric
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square tensors cover their symmetric counterparts, the method we propose here
can be used to analyze symmetric similarity tensors as well. We will base our
method on factorizing similarity tensors into combinations of low rank matrices
by means of Decomposition into Directed Components (DEDICOM) [7] and
extend the Frank Wolfe algorithm introduced in [14] to factorize tensors in an
interpretable fashion.

Formally, we group a set of d asymmetric similarity matrices (a.k.a slices)
{S1,S2, ...,Sd} in a three dimensional array (or a third order tensor) S ∈
R

n×n×d where sijp defines the directional relation between ith and jth entity
in the pth slice (which we denote as Sp ∈ R

n×n). Namely given a tensor S,
Tensor-DEDICOM partitioning is defined as Sp ≈ ARpA

T ∀ p ∈ [1, 2, . . . , d],
where A ∈ R

n×k is the global loading matrix containing the latent factors and
Rp ∈ R

k×k(the pth slice of R ∈ R
k×k×d) is an affinity matrix describing the

asymmetric relationships between the structures in columns of A. In this work
we will consider the stochasticity constrained nonnegative (STNN) DEDICOM
factorization from [14] by incorporating stochasticity constraints to the columns
of A, while having nonnegative affinities in R. This becomes especially useful
when we are dealing with data sets with only non-negative values for which
the resulting affinity matrices will be equivalent to their compressed versions
encoding the importance of relations between structures defined in the columns
of A. In this case an arbitrary loading value aij encodes how much element i
contributes to (or belongs to) structure j.

Turning our attention to finding proper factors, we note that similar to
Archetypal Analysis, finding a three way DEDICOM partitioning can be cast as
a norm minimization problem for the loading matrix A and tensor of affinities
R as

min
A ,R

G(A,R) =
d∑

p=1

∥∥∥Sp − ARpA
T
∥∥∥
2

. (7)

Following an alternating least squares scheme we can minimize (7) for A and
each slice of R by keeping the rest of the factors constant. It is important to
note that, yet unlike (5), our loss function in (7) is convex in any slice of R but
not in A, which typically requires approximate solutions for A [1,14,15] while
keeping ALS updates for each slice of R.

Since each affinity matrix is updated independently from each other, at each
ALS step, we find optimal non-negative slices of R by solving a nonnegative
least squares problem for G(Rp) =

∥∥vec
(
Sp

)− (
A⊗A

)
vec

(
Rp

)∥∥2 [14,15], such
that rijp ≥ 0 ∀ p ∈ [1, 2, ..., d] ∧ i, j ∈ [1, 2, ..., k].

Similar to our previous derivation, we can generalize the STNN algorithm for
DEDICOM [14] to find stochasticity constrained basis matrix A by evaluating
the partial derivative of the objective function ∂G(A)

∂A in (7). To this end, we
start by considering the trace representation of the error function in (7) and
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Randomly initialize A with stochastic columns and R with nonnegative entries

Let V = {v1,v2, . . . ,vn|vi = [δi1, δi2, . . . , δin]T }
while Stopping condition is not satisfied do

while t �= tmax and updates of A are not small do

W = ∂G(A )
∂A

= 2
d∑

p=1

(
ART

p AT ARp +ARpAT ART
p −ST

p ARp −SART
p

)

α ← 2/(t + 2)
for b ∈ {1, . . . , k} do

i = argmin
l

wlb

ab ← ab + α(vi − ab)

t ← t + 1

for p ∈ [1, 2, ..., d] do

Rp ← argmin
Rp

∥
∥vec

(
Sp

) − (
A ⊗ A

)
vec

(
Rp

)∥∥2
for rijp ≥ 0 ∀ i, j, p

Algorithm 2. A Frank-Wolfe based ALS algorithm to find Tensor DEDI-
COM factorizations constraining the columns of the loading matrix A to
be column stochastic and the affinity tensor R to be nonnegative.

eliminating the factors that are independent of A to obtain the gradient matrix
for the tensor representation [14,15] as

∂G(A)
∂A

= 2
d∑

p=1

(
ART

p AT ARp + ARpA
T ART

p − ST
p ARp − SART

p

)
, (8)

which, can be used to define a set of Frank Wolfe updates for each column of A
to come up with Tensor DEDICOM partitioning with column stochastic A. In
Algorithm 2 we summarize the necessary steps to find Stochastic Nonnegative
DEDICOM factors.

In order to understand how Tensor DEDICOM partitioning works in practice,
we will now present a new case study on analyzing asymmetric relationships
between weapons of the same dataset as above based on grouping the players
with respect to the total playtime they spent in the game. To this end, we
first split the players based on whether they have played more or less than the
average playtime (133 hours). This split has created two groups forming a 76.5%
to 23.5% split of the analyzed players, whose playtime was respectively below
and above the average. We will refer to these groups as regular and long-term
players respectively. After splitting the players into two groups, using the method
from [14], we constructed a bipartite indicator matrix and created a directional
square weapon similarity matrix S for each group. In this case, sij indicates
the empirical conditional probability value of proficiency in weapon j given the
proficiency in weapon i. Following that, we constructed a tensor S with two
slices containing the weapon similarities for the regular and long-term players
and factorized it using our tensor DEDICOM algorithm with k = 3.
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r1 r2 r3

r1:

r2:

r3:
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(c) long-term players

Fig. 2. The resulting Tensor DEDICOM factors from factorizing the asymmetric
weapon association tensor by means of our stochasticity constrained nonnegative
(STNN) DEDICOM. (a) shows the loading matrix A that is column stochastic and
(b) and (c) show the resulting nonnegative affinity matrices for respectively the regular
and long-term players.

Analyzing the resulting factors in Fig. 2, we observe three different weapon-
type based separations. Loading matrix of our STNN DEDICOM partitioning
in Fig. 2(a) shows that the active weapons for the first mode are primarily the
secondary weapons, elite assault weapons and the light machine gun M249, the
third mode’s active weapons are the basic assault and carbine weapons and
finally the second mode covers the remaining ones (the elite carbine weapons,
light machine guns, snipers, T194 and the stationary weapon HMG).

Comparing the affinities of our regular and long-term players (see respectively
Fig. 2(b) and (c)), we note similarities between relative relationships of particular
affinities. For instance the self affinities of the first and the second mode are the
highest, whereas, the third mode has the lowest self affinity for both of the
player groups. Yet the higher self affinity in the first mode indicates that long-
term players, for instance, that handle rocket launchers or handguns are also
better at using the elite assault weapon F2000 and the light machine gun M249.
Relationships among elite carbine weapons, light machine guns, the T194, snipers
and the stationary weapons is the highest affinity for both of the player groups,
yet, the affinity towards the first mode is higher for long-term players. Analyzing
the affinities corresponding to the third mode (i.e. values of r3: in Fig. 2(b) and
(c)), we note that with higher self affinity the long-term players handle basic



378 R. Sifa

assault and carbine weapons better than the regular players. Additionally, long-
term players that are good at basic assault and carbine weapons are better at
using weapons active in the first and second modes (we usually observe 30–40%
difference in probability when analyzing individual differences).

5 Conclusion

In this work we gave an overview of using Frank Wolfe optimization to come up
with stochasticity constrained matrix and tensor factorizations. Our case studies
on user profiling illustrated that through their interpretable factors, Archetypal
Analysis and DEDICOM allowed us to discover interesting insights about the
behavior of the analyzed population. With a given convex differentiable objective
function, the derivations we showed here can also be easily utilized to obtain
interpretable matrix and tensor factorizations of numerous kinds, such as, CUR,
PARAFAC, and INDSCAL [9,15].
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Abstract. The neurophysiological view considers the working memory
(WM) as a persistence of neural information in the cerebral cortex [1], that
external stimulation will activate some pyramidal cells and their continuous
activation after stimulus being removed indicates the memory of stimulus, but
with the fading of activities, memory will be gradually decaying. More and more
studies [2] have shown that the mechanism of neural activities persisting and
decaying is not only related to the structure of neural circuits, but also closely
related to the synaptic mechanisms. In this paper, we design the neural com-
putational circuit of persistence of neural activities by combining the synaptic
mechanism and the structure of neural circuit. Firstly, in the aspect of circuit
structure, the recurrent circuit of pyramidal neurons was used as the main circuit
to achieve the persistence, and then an auxiliary circuit was designed to regulate
the firing rate of main circuit to achieve the “decaying” of neural activities;
Secondly, in the computational circuit, we consider the mechanism of synaptic
depression and slow synapse. From the structure of neural circuits and synaptic
mechanism, we try to explore the neural computational mechanism of neural
information persisting and decaying over the time, which is beneficial to explore
the true neural mechanism of WM.

Keywords: Synaptic depression � Slow synapse � Neural circuit

1 Introduction

In cognitive behavior, WM is considered instantaneous processing and storage of finite
information. The previous studies [3] have shown that WM plays an important role in
advanced cognitive behaviors. The neurophysiological view considers WM a persis-
tence of the neural information in the brain. External stimulation can activate some
pyramidal cells. Their continued activation of pyramidal cells after the stimulus being
revoked indicates the memory of the stimulus. Understanding the working mechanism
of the persisting and decaying of neural activities is crucial to interpret the WM. At
present, two main types of neural structure have been used widely to achieve the
persistence function: (1) recurrent connections [4, 5], and (2) random connections
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(a type of loop structure) [1]. The advantage of the first structure is that only a small
number of neurons (dozens, hundreds) are needed to achieve persistence of neural
information and it has an anatomical basis [6]. For the second, which uses random
connections between pyramidal neurons, the basic principle for maintaining informa-
tion is that there must be many loops. Since, activation of one neuron requires syn-
chronous and continuous stimulation by multiple neurons. Therefore, each neuron must
participate in formation of multiple loop circuits. Thus, this type of circuit requires a
large number of neurons to achieve persistent function.

The ability of a neural circuit to achieve a specific function depends not only on its
structure, but also on complex electrophysiological functions. Neural circuits are the
basic functional units of the nervous system, and a neuron is the smallest component of
a neural circuit, and neurons form different neural circuits by establishing different
synaptic connections with each other. A synapse is a functional connection between
neurons and a key part of information transmission. Therefore, properties of synapses
inevitably affect functional performance of neural circuits [2, 7].

In this paper, first, we used recurrent connections as the main circuit to achieve
persistence of neural information based on the spike neuron model, and an auxiliary
neural circuit was designed to regulate firing rate of the main circuit. Second, we
considered the computational mechanisms of synaptic depression and slow synapses in
the model. Results show that the neural computational model can achieve the func-
tional of persisting and decaying of neural activities.

2 Biological Neuron and Synapse

2.1 Neuron Model

Artificial neural network models had achieved great success in both numerical opti-
mization and behavior modeling. Although, ANN model can replicate the macro
behavior, which is not suite to model and interpret the neural mechanism of behaviors
[8, 9]. A simple spiking neuron model [10] that reduces the HH model to a 2-D system
was used in this paper, which has good biological plausibility and high computational
efficiency. Ordinary differential equations were of the form (1). Interpretation of
parameters refers to [10]. In this paper, typical values of parameters for an excitatory
neuron were: a = 0.02, b = 0.2, c = −65, and d = 8. Typical values of parameters for
an inhibitory neuron were: a = 0.1, b = 0.25, c = −60, and d = 2. Typical firing mode
of excitatory and inhibitory neuron is shown in Fig. 1.

dv
dt ¼ 0:04v2þ 5vþ 140� uþ I
du
dt ¼ a bv� uð Þ
If v� 30;Then

v c;
u uþ d;

� ð1Þ
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2.2 Time Delays in Action Potential Transmission and Neuron’s
Asynchronous Working

As we know, the delays exist in the process of action potential transmission (action
potential transmission delay, ATD) [11]. The difference of ATD may be one of the
reasons to the asynchrony working of neurons, which plays an important role in neural
encoding [12]. Two of the reasons are considered in this paper: (1) Due to different
positions of synapses that are distributed on axons or different positions of dendrites
that receive AP, there are different delays when AP propagates from presynaptic
neurons to postsynaptic neurons in the nervous system. In particular, the transmission
of the action potential from the receptor to the nerve center along hundreds or even
thousands of millimeters of nerve fiber, and there must be a time delay of more than a
few hundred milliseconds; (2) APs propagate from upstream neurons to downstream
neurons, which were regulated by neural circuit and delayed a specific time. A wide
range of time delays (up to hundred ms) could occur [13]. Thus, ATD may be one of
factors to produce the asynchrony working of the neurons. In this paper, we do not try
to explore the specific electrophysiological and neural circuit mechanism of ATD, but
only uses such mechanism in the circuit.

The current view is that time is involved in advanced cognitive processes such as
memory, learning and reasoning [14]. The firing rate of neurons is considered to be
involved in information encoding, and the firing of neurons has the property of “all or
nothing”. From a single neuron’s perspective, the duration from when the AP is
generated to its arrival at the postsynaptic neuron is time-critical or time-sensitive,
which should not be ignored. In this paper, the different delays of APs may be similar
to “time multiplexing” in signal processing, which may play an important role in
behavioral decision logic.

From a computational view, the different neurons in the neuron group naturally
have different delays. In computational simulation, by setting the transmission delay
(ATD) parameter. Action potential transmission delay and simulation were shown in

Time(ms)

Sp
ik

e

(b)

(a)

Fig. 1. Two typical firing modes of neuron. (a) Regular spiking for Excitatory neurons; (b) Fast
spiking for Inhibitory neurons.
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Fig. 2. We simulated the ATD by using different queue lengths. For example, using 4
different queue lengths, as shown in Fig. 2(d, Queue 1–4). If the length of a queue is n,
then the AP is delayed n milliseconds. Four queues with sequential increases in length
indicated that as the location of the synapse on the axon moved away from the cell
body, the delays increased. If an AP was generated in the presynaptic neuron, we added
1 to the head of the queue; otherwise, we added 0. When the end of queue element was
1, it indicated that the postsynaptic neuron received an AP.

2.3 Synaptic Depression

Synapse is the key component in transmission of information. When an AP is gener-
ated and propagated to the presynaptic axon terminal. Neurotransmitters then diffuse
through the synaptic gap and bind to receptors in the postsynaptic membrane, which
generate the excitatory postsynaptic potentials (EPSPs) or inhibitory postsynaptic
potentials (IPSPs).

When a presynaptic neuron releases neurotransmitters to generate EPSPs or IPSPs
in a postsynaptic neuron, the amount of neurotransmitters in presynaptic vesicles will
decrease in a short time and then gradually recover in a long time. However, how large
is the postsynaptic potential generated by a single AP? Since, the conduction of an AP
along the axon is attenuated. Therefore, range of a postsynaptic potential depends on at
least two factors: how much neurotransmitter is released once time and how many
receptors are activated in the postsynaptic neuron? When only the first factor is con-
sidered, which involves storage of neurotransmitters in synapses, we regard the neu-
rotransmitters as a kind of “resource” as shown in Fig. 3. Two cases as follows. Case 1:
When a neuron fires at a high rate, the rate of resource depletion can be faster than that
of recovery, which means that the “resource” is reduced for subsequent APs. In this
case, subsequent APs produce smaller postsynaptic potentials. Case 2: When a neuron
fires at a low rate, the rate of resource depletion is slower than that of recovery, which
means that the “resource” is constant for each AP. In this case, subsequent APs produce
the same size of postsynaptic potential. Consider the second factor, when the number of
postsynaptic receptors is much enough for the neurotransmitters receiving from
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postsynaptic
neuron

postsynaptic
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Queqe4

Spike train

presynaptic
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Fig. 2. AP transmission delay and simulation. (a) ATD of presynaptic neurons as shown by
points 3 and 4. (b) Delays of postsynaptic neurons as shown by 1 and 2. (c) A specific ATD was
controlled by a circuit, when APs propagate from upstream neurons to downstream neurons.
(d) Simulation of the delays in AP transmission along an axon using queues.
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presynaptic neurons, then EPSP or IPSP size depends primarily on the amount of
neurotransmitter received. However, when the number of postsynaptic receptors is not
enough for the coming neurotransmitters, then EPSP or IPSP size depends on the
number of available receptors in the postsynaptic neuron.

The above description is a complex electrochemical process, which may differ
among organisms or even different brain regions of the same organism. However, we
can describe the above process from the function approximately. Based on a study by
research [7], we formalized the above process as shown in Table 1. C1 is the attenu-
ation coefficient of resources, and C2 is the recovery coefficient of resources. R is the
residual proportion of resources, and W_i_0 is the synaptic connection strength of the
ith neuron at initial time. T is time (milliseconds). When neuron i generates an AP, the
amount of its “resources” is reduced once by constant C1, and the amount of resources
gradually recovers in between APs. The second factor can be described simply in that
the postsynaptic current produced by the presynaptic neuron cannot be larger than a
given value. The influence of synaptic depression mechanism on the firing of neuron
was shown in Fig. 4.

(b)

(c) 

(d)

Spike train of 
Presynap c 

neuron

membrane 
poten al of 
postsynap c 

neuron

Residual 
propor on of 

resources

Presynaptic 
neuron

Postsynaptic 
neuron

(a)

SynapseSynapse

t

Fig. 3. (a) Presynaptic and postsynaptic neurons; (b) Spike sequence generated by the
presynaptic neuron, which fires at a high rate before time t and at a low rate after time t;
(c) Surplus of “resource” of the presynaptic neuron depends on the rate of release and the rate of
recovery; (d) Membrane potential of the postsynaptic neuron raises (EPSPs) following APs in the
presynaptic neuron (excitatory neuron).

Table 1. Algorithm of synaptic depression
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In a recurrent neural circuit, as the firing rate increases with an increase in the
number of neurons in both the presence and absence of synaptic depression, but firing
rate saturates with synaptic depression, as shown in Fig. 5. It is because of the
depression mechanism of synapses (i.e. “resource limitation”) that although neurons
may receive connections from thousands of presynaptic neurons in the nervous system,
neurons do not fire at high rate.

2.4 Slow and Fast Synapse

Fast and slow postsynaptic potentials can be observed by recording membrane
potentials of sympathetic ganglionic neurons and cerebral cortex neurons. The duration
of fast postsynaptic potentials is within milliseconds, and the duration of slow post-
synaptic potentials can range from hundreds of milliseconds to several seconds. Slow
EPSPs are generally attributed to a decrease in membrane permeability to K+, and slow

Fig. 4. The influence of synaptic depression mechanism on the firing of neuron (from [7]).

The number of neurons

M
ean of feedback Isyn

Fig. 5. Effects of synaptic depression on feedback intensity in recurrent circuit.
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IPSPs are due to an increase in membrane permeability to K+. Generation of slow
postsynaptic potentials is a complex electrochemical process involving different neu-
rotransmitters, different receptors, and various ions.

In a previous neuron model, the input is current stimulation (external stimulus
current and synaptic current), and APs of presynaptic neurons generate postsynaptic
potentials by generating postsynaptic currents. Therefore, fast and slow postsynaptic
potentials can be understood as a continuous postsynaptic current (positive and neg-
ative ion flow) generated by one AP. It is assumed that a neuron generates an AP at
time k and generates a postsynaptic current of Isyn(k). At time t (after time k), the AP
can also generate synaptic current, which results from gradual attenuation of synaptic
current Isyn(k), as shown in Eq. (2). Fast and slow postsynaptic potentials are shown in
Fig. 6. Since, single AP only can generate small EPSP, to generate a AP in postsy-
naptic neuron, many of presynaptic Aps are required during a very short time.
Therefore, the slow synapse makes the persistence of neural activities easy to be
achieved in nervous system and simulation.

Isyn tð Þ ¼ Isyn kð Þ �
Yi¼t

i¼k
e�ci ð2Þ

3 Neural Circuit

A neural circuit with recurrent connections of pyramidal neurons (excitatory neurons)
was used as the basic neural circuit for persistence of neural activity. Using a recurrent
neural circuit, it is very easy to achieve a steady state firing rate with addition of
synaptic depression. Thus, how can the circuit produce gradual fading of neuronal
activity? The answer is the inhibitory neurons, which can regulate the firing rate of
pyramidal neuron and stronger inhibitory effect causes a greater decrease in firing rate
[9]. However, this inhibitory process is too fast (milliseconds). Information in WM
shows a process of “continuous” fading over time that lasts for several seconds, which
mean that the inhibitory effect was not added once time. Therefore, we introduced a
“continuous” (at the set intervals) negative feedback effect to the positive feedback

Time (ms) 

M
em

brane potential

Fig. 6. Fast and slow postsynaptic potentials.
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neural circuit. As shown in Fig. 7 (Maintenance and fading of neural activity are also
information processes. The neurons are distributed in the second and third layers of the
cerebral cortex, and the input neurons are distributed in the fourth layer [15]). Neuron
cluster A is the memory module, and B is an inhibitory neuron cluster. Neural circuit C
continuously introduces negative feedback, and D is an input neuron cluster.

(1) Neuron cluster A is the memory module, which receives APs from multiple
sources, including the input neuron cluster D, which can be regarded as the
external stimuli, self-positive feedback input, and inhibitory input from cluster C.

(2) Inhibitory neuron cluster B receives APs from the input neuron cluster, which
acts as a switch. The negative feedback input of neural circuit C to A is closed
before external input from D removed. When neuron cluster A receives external
stimuli, the memory mechanism has not started yet. If negative feedback is
introduced during this period, it will greatly reduce normal activity of A. After the
external input being removed, and establishing self-maintenance of A (memory
begins), B begins to be used to open the “gradual” inhibition of C to A.

(3) Circuit C is a chain neural circuit that receives APs from neuron cluster A. Each
node of the chain is a pyramidal neuron cluster including 30 excitatory neurons,
which is connected to an inhibitory neuron cluster (including 5 inhibitory neu-
rons) and the next pyramidal neuron cluster. Each inhibitory neuron cluster
connected to neuron cluster A.

ATD between each node ranged from 20–50 ms randomly; Neuron cluster A
contains 100 pyramidal neurons and 20 inhibitory neurons, Wa = 0.2 (Connection
weight in A); B contain 120 inhibitory neurons, Wb = 0.4; C contain 150 pyramidal
neuron nodes (each node contain 30 neurons) and 100 inhibitory neuron node (each
node contain 5 neurons), Wc_a = 0.4. The principle of designing parameters is to ensure

Fig. 7. Neural circuit for persistence and fading of neural information.
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that upstream neurons are able to activate downstream neurons at least, and then fine
tune. Neural circuit C continuously introduces negative feedback to A so that firing
activity of neuron cluster A gradually fades over time.

Neural activities of neuron cluster A are shown in Fig. 8. Following gradual
introduction of negative feedback, the intensity of negative feedback (postsynaptic
current) for neuron cluster A is gradually enhanced, which lead to the firing rate of A
gradually decreasing, as shown in Fig. 8(a), (b). Fine tune the parameters (Connection
strength of negative feedback, Wc_a) of circuit, we can obtain the different duration of
persistence. For example, the larger the Wc_a is, the shorter the duration of persistence
is; the smaller the Wc_a is, the longer the duration of persistence is.

4 Discussion

How do microscopic activities of neurons in circuits support achievement of cognitive
ability? However, the gap between circuits and behavior is too wide, neural compu-
tation that occurs in neurons is an intermediate level [16]. Since we cannot get the
details of circuit in the brain, design a biologically feasible circuit for a specific neural
computation maybe an efficient method to understand the brain.

In this paper, we integrated known neurophysiological principles as much as
possible to design the computational neural circuit. We designed a neural circuit for the
persistence of neural information by combining synaptic mechanisms and structure of
the neural circuit. We try to explore the neural computational mechanism of neural
information persistence and gradual degradation over time, which may help in
exploring neural mechanisms that underlie the WM.

Acknowledgments. This work was supported by the NSFC project (Project Nos. 61771146 and
61375122), and (in part) by Shanghai Science and TechnologyDevelopment Funds (13dz2260200,
13511504300).
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Fig. 8. The persistence of neural activities of neuron cluster A, external stimuli from neuron
cluster D was removed after 500 ms. (a) Neural activities of neuron cluster A; (b) Firing rate of
neuron cluster A in the self-maintenance process.
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Abstract. In this study we analyze simultaneously recorded spike trains
at several levels of the basal ganglia-thalamocortical circuit in freely
moving parvalbumin (PV)-deficient and wildtype (WT) (i.e., express-
ing PV at normal levels) mice. Parvalbumin is a Calcium-binding pro-
tein, mainly expressed in GABAergic inhibitory neurons, that affects the
dynamics of the Excitatory/Inhibitory balance at the network level. We
apply Granger causality analysis in order to measure the functional con-
nectivity of different selected brain areas and their possible alterations
due to PV depletion. Our results show that connections between ventro-
medial prefrontal cortex and Nucleus Accumbens are not affected by PV
depletion.

Keywords: Basal ganglia-thalamocortical circuit
Nucleus accumbens · Spike train analysis · Granger causality

1 Introduction

The basal ganglia-thalamocortical network is formed by several parallel and
segregated circuits involving different areas of the cerebral cortex, striatum, pal-
lidum, thalamus, subthalamic nucleus and midbrain [3,4]. This network is char-
acterized by a combination of “open” and “closed” loops with ascending sensory
afferences reaching the thalamus and the midbrain, as well as with descending
motor efferences from the midbrain (the tectospinal tract) and the cortex (the
corticospinal tract). Brain imaging studies in human patients have emphasized
that learning impairment in Parkinson’s disease was directly related to gray mat-
ter loss in the ventromedial prefrontal cortex, inferior frontal gyrus and nucleus
accumbens [19]. The reticular nucleus of the thalamus (RTN), formed by a thin

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11140, pp. 393–402, 2018.
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Fig. 1. A. Simplified schematic of the targeted areas of this experiment alongside with
major dopaminergic, glutamatergic and GABAergic connections to and from the ven-
tral tegmental area (VTA) and nucleus accumbens (NAcc) in the rodent brain, modified
from [23]. B. Parallel circuits link the caudate-putamen (CPu), nucleus accumbens core
and shell with pallidal and thalamo-cortical systems, adapted from [20]. C. Model by
which the lateral septum (LS) contributes to regulation of NAcc function [26].

sheet of neurons whose majority are GABAergic cells expressing PV, plays a
pivotal role in the basal ganglia-thalamocortical network (Fig. 1).

The RTN is a unique gateway in filtering and sorting sensory information that
passes through the thalamocortical and corticothalamic axis and its activity is
strongly regulated by the basal ganglia via the dopaminergic (DA) afferences
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from the substantia nigra compacta and by the GABAergic inhibitory projec-
tions from the pallidum and from the substantia nigra pars reticulata. In partic-
ular, the DA-mediated effect on the GABAergic inhibitory neurons expressing
PV affects the balance between Excitatory/Inhibitory (E/I) balance at the level
of the basal ganglia-thalamocortical system and dysfunction of RTN is likely
to be involved in several behavioural or psychiatric conditions [27]. PV is a
Calcium-binding protein, mainly expressed in GABAergic inhibitory neurons,
that affects the dynamics of the Excitatory/Inhibitory balance at the network
level [2,16,24]. Therefore, it is essential to reappraise the model of the basal
ganglia-thalamocortical network in the light of what we can experimentally study
in the absence of PV.

Multivariate time series analyses of point processes have been recently aimed
to identify causal relationships between the recorded neurons and analysis of
multiple spike trains by Granger causality (GC) has proven its potential to
provide insights in determining functional neural connectivity [10,14,15]. This
approach allows to extract the directed information flow pattern in neuronal
networks and has between used to study functional connectivity between brain
areas in neuroimaging [25] and electroencephalographic recordings [22]. In this
study we analyze simultaneously recorded spike trains at several levels of the
basal ganglia-thalamocortical circuit in freely moving WT and PV-deficient mice
(PVKO). We extend our previous work [13] with the application of GC analysis
in order to measure the functional connectivity of different selected brain areas
and their possible alterations due to PV depletion. This method has never been
applied in studying changes in causal interactions due to protein depletions in
mutant mice and it is used here as a complementary tool to crosscorrelation
analysis previously applied to PVKO mice [16] and mutual information [5] and
partial coherence analysis [8].

2 Materials and Methods

2.1 Experimental Data

WT and PVKO of approximately 3 months of age weighing 15–21 g were
anesthetized with 0.8–1.5% isoflurane and implanted with multiple electrodes
(50µm, Teflon-coated, tungsten wires) aimed at ventromedial prefrontal cortex
(vmPFC), thalamus (Thal), Nucleus Accumbens (Nacc), lateral septum (LS)
and hippocampus (CA1) for chronic recordings (as show in Fig. 1A). A bare
silver wire was affixed to the bone as ground and all the implanted wires were
soldered to a six-pin socket that was fixed to the skull with two small bone
screws and dental cement [12].

Electrophysiological signals sampled at 20 kHz were band-pass filtered and
recorded simultaneously from multiple electrodes in WAV format for computer-
ized offline analysis with template matching spike sorting algorithm at a time
resolution of 1 ms [6]. The recording sessions were performed during 20 min while
the animals were roaming freely in the cage before the operant behavioral train-
ing session was started. We analyzed the discrete time series derived from spike
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trains by means of time-domain [1], frequency-domain [7] and Granger causality
analysis [11,21] to study the fine dynamic relationships within different elements
of the circuit and study differences between PVKO and WT.

2.2 Granger Causality

Estimating Granger causality (GC) for the frequency domain between two time
series consists of two steps [11]. The first step is to fit a two-variable autoregres-
sive model to these time series, i.e., to find coefficient matrix (a, b, c, and d) of
the equations

Xt =
n∑

i=1

(aiXt−i + biYt−i) + εt

Yt =
n∑

i=1

(ciYt−i + diXt−i) + ηt

(1)

so as to minimize regression error terms εt and ηt. The second step is
obtaining both the transfer function of the frequency domain and the noise
covariance from the fitted model. These procedures were performed using the
nitime.analysis.granger module of Nitime v0.7 [28]. Notice that it is nec-
essary to determine the order n of autoregressive equations, which is shown
in Eq. (1), in advance. While it is conventional to estimate it by minimizing a
well-known information criterion such as the Bayesian Information Criterion,
in this study we varied several values of n in the range 10–100 to confirm the
consistency of the Granger causality with different orders of the autoregressive
model. Numerical integration of Granger causality was approximated by the
trapezoidal rule.

3 Results

We have analyzed spike trains from 18 recording sites along 3 tracks for the WT
and 3 tracks for PVKO mice. An example of raster analysis from a WT mouse
display four cells recorded simultaneously in the vmPFC (cell #294), NAcc (cells
#227, #178) and LS (cell #394) of a freely-moving WT mouse (Fig. 2A). All
cells are characterized by a firing rate in the range 3.2–4.6 spikes/s. We have
computed the bidirectional Granger causality (GC) among all these cells and the
results obtained with an autoregressive model of order 20 are shown in Fig. 2B.

This result illustrates two kind of aspects. Firstly, notice that mutual causal
connectivity strengths may be very asymmetrical. For instance, the projection
394 → 227 is about twice stronger than in the opposite direction #227 → #394.
Secondly, the overall causal connectivity strength is also very different from
region to region. In particular, we observed a rather strong and similar (GC ≈
0.5) causal connectivity between cells #394 and #209. The weakest values in
this group (GC ≈ 0.2) were observed between cells #178 and #209. Hence, it is
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Fig. 2. A. Raster display of four cells recorded simultaneously in the ventromedial
prefrontal cortex (vmPFC), nucleus accumbens (NAcc) and lateral septum (LS) of
a freely-moving WT mouse. The horizontal time scale corresponds to 1000 ms. B.
Connectivity diagram as determined following the Granger causality analysis using
autoregressive model of order 20.

possible to estimate whether a direct causality may be assummed as a compo-
sition of indirect projections. For example consider #209 � #178 (GC = 0.18)
as a composition of #209 → #227 → #178 (GC1 = 0.36 × 0.28 = 0.10) with
#209 → #394 → #178 (GC2 = 0.51×0.25 = 0.13). The sum GC1+GC2 = 0.23
is similar or less than the direct value (GC = 0.18), thus suggesting that the
direct causal interaction is marginal and that causality from cell #209 to #178
is mainly due to the other connections.
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Fig. 3. Granger causality (GC) is a measure of causal or directional influence from one
time series to another and is based on linear predictions of time series by higher orders
of autoregressive models. A. GC with autoregressive model of order 20. B. Same GC
with autoregressive model of order 100.
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To evaluate the influence of different orders used in autoregressive models
over our analysis, we compared resulting GC values. Figure 3 has shown a typical
line graph of frequency-domain GC with two distinct orders.

In principle, larger order n in Eq. (1) allows the model to recognize the linear
effect of a wider time window to current spiking status. However, calculating
numeric GC values with larger order accumulates more computational demands
as well as more numerical errors. In the preliminary analysis performed in this
paper, we refrained from drawing any conclusion from the case when the GC
values depends too much on the choice of orders and consider an order n = 20
as a convenient value for spike train analysis (Fig. 3).

We have extended the previous approach by grouping and averaging all causal
interactions between brain areas of the basal ganglia-thalamocortical circuit
recorded in freely moving WT and PVKO mice (Fig. 4). We would like to illus-
trate the principle of this analysis, but more data are presently collected from
new experiments and the neurophysiological significance of the results presented
here should be considered carefully. The values of GC strength between vmPFC
and NAcc were not affected by depletion of PV as illustrated in Fig. 4. In the
data sample analyzed here it was not possible to find comparable recording sites
in the thalamus (Thal) and in the lateral septum (LS) of WT and PVKO mice,
unfortunately. However, these areas have a similar pattern of projections with
the prefrontal cortex and the Nucleus Accumbens (NAcc). To this respect, it is
interesting to notice that in PVKO the strengths of GC between LS/Thal cells
with NAcc and vmPFC were decreased to about half of the values observed in
WT mice.

Fig. 4. Granger causality analysis of the connectivity diagram, based on autoregressive
models of order 20 between different nodes of the basal ganglia thalamocortical network
in freely moving WT and PVKO mice. Results are obtained by pooling and averaging
four pairs of spike trains GC analysis for each arrow.

4 Discussion

This paper presents for the first time, to our knowledge, an analysis of causal
interactions between neural spike trains and brain areas of the basal ganglia-
thalamocortical circuit of PVKO freely-moving mice. We have applied Granger
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analysis and confirmed the potential of this analytical tool for the understand-
ing of functional neural interactions [14,18]. It has been reported that Granger
causality cannot detect inhibitory connections with the same accuracy as excita-
tory ones [9], which could be a serious hindrance in our study because Calcium-
binding protein expressed in GABAergic inhibitory neurons of the thalamic retic-
ular nucleus, a brain structure playing a key role in controlling the dynamics of
the E/I balance at the network level [2,16,24]. The results presented here con-
cern only a limited data sample, but they represent an exemplar application of
this analysis. We have observed that an important pathway, such as the projec-
tions between the ventromedial prefrontal cortex and the Nucleus Accumbens,
which is an area involved in decision-making processes and cognitive process-
ing of reward and aversion, is not affected by PV depletion. Our preliminary
results suggest also that other circuits, such as those involving the thalamus and
the lateral septum are responsible of the disruption of the E/I balance leading
to schizophrenia, autisme and other neural dynamic psychiatric disorders [17].
Additional data currently analyzed in our laboratory are expected to provide
further results and shed new insights in the functional connectivity of the basal
ganglia thalamo-cortical network.
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Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 109–114. Springer,
Heidelberg (2005). https://doi.org/10.1007/11550822 18

7. Brillinger, D.R.: Nerve cell spike train data analysis: a progression of technique. J.
Am. Stat. Assoc. 87(418), 260–271 (1992)

https://doi.org/10.1007/11550822_18


Granger Causality in Multiple Spike Trains Recordings 401

8. Brillinger, D.R., Villa, A.E.P.: Assessing connections in networks of biological neu-
rons. In: Brillinger, D.R., Fernholz, L.T., Morgenthaler, S. (eds.) The Practice of
Data Analysis: Essays in Honor of John W. Tukey, pp. 77–92. Princeton University
Press, Princeton (1997)

9. Cadotte, A.J., DeMarse, T.B., He, P., Ding, M.: Causal measures of structure and
plasticity in simulated and living neural networks. PLoS One 3(10), e3355 (2008)

10. Chen, Y., Rangarajan, G., Feng, J., Ding, M.: Analyzing multiple nonlinear time
series with extended granger causality. Phys. Lett. A 324(1), 26–35 (2004)

11. Ding, M., Chen, Y., Bressler, S.L.: Granger causality: basic theory and application
to neuroscience. In: Schelter, B., Winterhalder, M., Timmer, J. (eds.) Handbook of
Time Series Analysis, Chap. 17, pp. 437–460. Wiley-Blackwell, Weinheim (2006)
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Abstract. A major challenge in computational and systems neuro-
science concerns the quantification of information processing at various
scales of the brain’s anatomy. In particular, using human intracranial
recordings, the question we ask in this paper is: How can we estimate
the informational complexity of the brain given the complex temporal
nature of its dynamics? To address this we work with a recent formulation
of network integrated information that is based on the Kullback-Leibler
divergence between the multivariate distribution on the set of network
states versus the corresponding factorized distribution over its parts. In
this work, we extend this formulation for temporal networks and then
apply it to human brain data obtained from intracranial recordings in
epilepsy patients. Our findings show that compared to random re-wirings
of the data, functional connectivity networks, constructed from human
brain data, score consistently higher in the above measure of integrated
information. This work suggests that temporal integrated information
may indeed be a good starting point as a future measure of cognitive
complexity.

Keywords: Computational neuroscience · Brain networks
Complexity measures · Functional connectivity

1 Introduction

The human brain is an extremely complex non-linear dynamical system that
processes information from the external world, coming in through sensory chan-
nels, in order to determine the sequence of actions necessary for goal-oriented
behavior, given the agent’s internal drives and emotional states. Investigat-
ing the mechanisms of information integration, flow and distribution provide a
vital ingredient in advancing our understanding of brain function and cognition.
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This is point at which information theory meets neuroscience. The former pro-
vides rigorous theoretical tools that can effectively be employed to quantify bio-
physical processes that encode and assimilate knowledge from the world, which is
then used to generate goal-oriented action. In this paper, we focus on quantifying
the amount of information integrated by functional connectivity networks con-
structed from local field potentials (LFPs) obtained using intracranial recordings
from human epilepsy patients. The underlying non-linearities in neural process-
ing are reflected in the fact that these functional connectivity (FC) networks are
not static, but dynamic. For our purposes, this can be analyzed as a stack of
temporal networks, signifying the multitude of functional states the brain can
occupy. This also calls for new dynamical measures of information processing to
investigate these temporal networks.

Such measures are part of a larger class of complexity measures that seek to
quantify information generated by all causal sub-processes in such a network.
One candidate measure for global information processing is integrated informa-
tion, usually denoted as Φ. It was introduced as a complexity measure for neural
networks, and by extension, as a possible correlate of consciousness itself [30].
It is defined as the quantity of information generated by a network as a whole,
due to its causal dynamical interactions, and one that is over and above the
information generated independently by the disjoint sum of its parts. As a com-
plexity measure, Φ seeks to operationalize the intuition that complexity arises
from simultaneous integration and differentiation of the network’s structural
and dynamical properties. The earliest proposals defining integrated information
were made in the pioneering work of [27,29,30]. Since then, considerable progress
has been made towards development of a normative theory of consciousness as
well as applications of integrated information [1,4–11,15,17,23,28]. In fact, there
are now several candidate measures of integrated information such as neural
complexity [30], causal density [25], Φ from integrated information theory: IIT
1.0, 2.0 & 3.0 [27], [15], [23], stochastic interaction [14,31], empirical Φ [17] and
synergistic Φ [22], plus several variations of these (see [26] for an overview).

We will work with a recent formulation of network integrated information
that is based on the Kullback-Leibler divergence between the multivariate dis-
tribution on the set of network states versus the corresponding factorized dis-
tribution over its parts [12]. This formulation is particularly suited for large
networks with stochastic dynamics. In this paper, we extend this formulation
for temporal networks. Note that in an ideal setting, to use the measure in [12]
one would need the realistic anatomical connectivity of neural populations gener-
ating LFPs as well as details of the non-linear model generating those dynamics.
In the absence of both these pieces of information, we rely on temporal FC net-
works as proxy to the realistic non-linear processes in the brain and compute
the temporal integrated information of these networks.

2 Mathematical Formulation of Integrated Information

Let us begin this discussion considering networks endowed with linear stochastic
dynamics. The state of each node is given by a random variable pertaining to
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a given probability distribution. These variables may either be discrete-valued
or continuous. However, for many biological applications, Gaussian distributed,
continuous-valued state variables are fairly reasonable abstractions (for example,
aggregate neural population firing rate, EEG or fMRI signals). The state of
the network Xt at time t is taken as a multivariate Gaussian variable with
distribution PXt(xt). xt denotes an instantiation of Xt with components xi

t (i
going from 1 to n, n being the number of nodes). When the network makes a
transition from an initial state X0 to a state X1 at time t = 1, observing the final
state generates information about the system’s initial state. The information
generated equals the reduction in uncertainty regarding the initial state X0.
This is given by the conditional entropy H(X0|X1). In order to extract that
part of the information generated by the system as a whole, over and above
that generated individually by its parts, one computes the relative conditional
entropy given by the Kullback-Leibler divergence of the conditional distribution
PX0|X1=x′(x) of the system with respect to the joint conditional distributions∏r

k=1 PMk
0|Mk

1=m′ of its non-overlapping sub-systems demarcated with respect
to a partition Pr of the system into r distinct sub-systems. Denoting this as ΦPr

,
we have

ΦPr
(X0 → X1 = x′) = DKL

(

PX0|X1=x′
∣
∣
∣
∣

r∏

k=1

PMk
0|Mk

1=m′

)

(1)

where for an r partitioned system, the state variable X0 can be decomposed as
a direct sum of state variables of the sub-systems

X0 = M1
0 ⊕ M2

0 ⊕ · · · ⊕ Mr
0 =

r⊕

k=1

Mk
0 (2)

and similarly, X1 decomposes as

X1 = M1
1 ⊕ M2

1 ⊕ · · · ⊕ Mr
1 =

r⊕

k=1

Mk
1 (3)

For stochastic systems, it is useful to work with a measure that is independent of
any specific instantiation of the final state x′. So we average with respect to final
states to obtain an expectation value from Eq. (1). After some algebra, we get

〈Φ〉Pr
(X0 → X1) = −H(X0|X1) +

r∑

k=1

H(Mk
0|Mk

1) (4)

This is our definition of integrated information, which we use in the rest of
this paper. Note that the measure described in [15] is not applicable to networks
with stochastic dynamics. They do use Eq. (1) as their definition but endow their
nodes with discrete states. On the other hand, [17] uses a different definition of
integrated information, where conditional entropies as in Eq. (4) are replaced by
conditional mutual information. This definition only matches the definition of
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Eq. (1) in special cases but not in general for any distribution. From an infor-
mation theory perspective, the Kullback-Leibler divergence offers a principled
way of comparing probability distributions, hence we follow that approach in
formulating our measure in Eq. (4).

The state variable at each time t = 0 and t = 1 follows a multivariate
Gaussian distribution

X0 ∼ N (x̄0,Σ(X0)) X1 ∼ N (x̄1,Σ(X1)) (5)

The generative model for this system is equivalent to a multi-variate auto-
regressive process

X1 = A X0 + E1 (6)

where A is the weighted adjacency matrix of the network and E1 is Gaussian
noise. Next, taking the mean and covariance respectively on both sides of this
equation, while holding the residual independent of the regression variables,
yields

x̄1 = A x̄0 Σ(X1) = A Σ(X0) AT + Σ(E) (7)

In the absence of any external inputs, stationary solutions of a stochastic linear
dynamical system as in Eq. (6) are fluctuations about the origin. Therefore, we
can shift coordinates to set the means x̄0 and consequently x̄1 to the zero. The
second equality in Eq. (7) is the discrete-time Lyapunov equation and its solution
will give us the covariance matrix of the state variables.

The conditional entropy of a multivariate Gaussian variable is computed to be

H(X0|X1) =
1
2
n log(2πe) − 1

2
log [detΣ(X0|X1)] (8)

which is fully specified by the conditional covariance matrix. Inserting this in
Eq. (4) yields

〈Φ〉Pr
(X0 → X1) =

1
2

log
[∏r

k=1 detΣ(Mk
0|Mk

1)
detΣ(X0|X1)

]

(9)

To compute the conditional covariance matrix we use the following identity (the
proof for the Gaussian case can be found in [16])

Σ(X|Y) = Σ(X) − Σ(X,Y)Σ(Y)−1Σ(X,Y)T (10)

The appropriate covariance we will need to insert in this expression is

Σ(X0,X1) ≡
〈

(X0 − x̄0) (X1 − x̄1)T
〉

= Σ(X0)AT (11)

which gives for the conditional covariance

Σ(X0|X1) = Σ(X0) − Σ(X0)AT Σ(X1)−1A Σ(X0)T (12)
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And similarly for the sub-systems

Σ(Mk
0|Mk

1) = Σ(Mk
0) − Σ(Mk

0)AT
∣
∣
k
Σ(Mk

1)
−1A∣

∣
k
Σ(Mk

0)
T

(13)

where k indexes the partition such that Mk
0 denotes the kth sub-system at t = 0

and A∣
∣
k

denotes the restriction of the adjacency matrix to the kth sub-network.
Further, for linear multi-variate systems, a unique fixed point always exists.

We try to find stable stationary solutions of the dynamical system. In that
regime, the multi-variate probability distribution of states approaches station-
arity and the covariance matrix converges, such that

Σ(X1) = Σ(X0) (14)

t = 0 and t = 1 refer to time-points taken after the system converges to the fixed
point. Then the discrete-time Lyapunov equations can be solved iteratively for
the stable covariance matrix Σ(Xt). For networks with symmetric adjacency
matrix and independent Gaussian noise, the solution takes a particularly sim-
ple form

Σ(Xt) =
(
1 − A2

)−1
Σ(E) (15)

and for the parts, we have

Σ(Mk
0) = Σ(X0)

∣
∣
k

(16)

given by the restriction of the full covariance matrix on the kth sub-network. Note
that Eq. (16) is not the same as Eq. (15) on the restricted adjacency matrix as
that would mean that the sub-network has been explicitly severed from the rest
of the system. Indeed, Eq. (16) is precisely the covariance of the sub-network
while it is still part of the network and 〈Φ〉 yields the integrated and differen-
tiated information of the whole network that is greater than the sum of these
connected parts. Inserting Eqs. (12), (13), (15) and (16) into Eq. (9) yields 〈Φ〉
as a function of network weights for symmetric and correlated networks. For
the case of asymmetric weights, the entries of the covariance matrix cannot be
explicitly expressed as a matrix equation. However, they may still be solved by
Jordan decomposition of both sides of the Lyapunov equation.

For partitioning the network, we will use the Maximum Information Partition
(MaxIP). Following [21] and [1], the MaxIP is defined as the partition of the
system into its irreducible parts. This is the finest partition and is unique as
there is only one way to combinatorially reduce a system into all of its sub-
units. 〈Φ〉 computed using this partition was shown to accounts for the maximum
amount of information that the network can integrate compared to any other
partitioning of the system and is therefore a natural choice for quantifying whole
versus parts [12].

3 Experimental Protocol

Intracranial EEG data for a single subject performing a navigation task was col-
lected as part of a pre-surgical procedure in an epileptic patient. The participant
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provided written informed consent to participate in the study. The protocol of
the experiment was approved by the local Ethical Committee “Clinical Research
Ethical Committee (CEIC) Parc de Salut Mar” (Barcelona, Spain). Record-
ings were performed using a standard clinical EEG system (XLTEK, subsidiary
of Natus Medical) with 500 Hz sampling rate. A unilateral implantation was
performed, using 10 intra-cerebral electrodes (Dixi Medical, Besancon, France;
diameter: 0.8 mm; 5 to 15 contact points, 2 mm long, 1.5 mm apart) that were
stereotactically inserted using robotic guidance (ROSA, Medtech Surgical, Inc).

The subject navigated a squared virtual environment in which discrete
visual stimuli were presented at specific locations in a 5× 5 grid formed by red
boxes located on the ground. Navigation was performed with a joystick. Boxes
remained visible during the whole navigation period. When subjects were close
to one of the boxes, the item pertaining to that specific location was presented
through a small inset in the top-right of the user interface. Participants were
instructed to visit all boxes. The subject completed six blocks of three minutes
each. Navigation data (i.e., positions and orientations) of the subject during the
active condition was recorded at 1000 Hz. We band-pass filtered the signal for
the selected electrodes from 1 to 200 Hz using EEGLAB [20] before building the
FCs. Functional correlation matrices were constructed by binning the activity
of all electrodes in sliding windows of 500 ms. We calculated the Spearman’s
correlation of the activity of all pairs of electrodes over time. Electrode local-
ization included frontal, parietal and temporal lobes, including brain structures
such as the hippocampus and the amygdala (these locations were checked using
the BrainX3 system [2,3,13,18,19,24]). After filtering the data for removal of
artifacts, we were left with a stack of 1797 FC networks of size 60 × 60.

4 Results

As described above, the data extraction process gives us a stack of 1797 tempo-
ral networks. We apply the mathematical machinery of integrated information
to this stack. The measure being defined at each time-point yields a profile of
〈Φ〉 values reflecting variations in informational complexity across time. As men-
tioned earlier, we use the structure of these temporal FC networks as proxy to
the underlying complex neural connectivity and dynamics. Equation (9) is com-
puted at each time-point using the corresponding FC network as the connectivity
matrix A. We use all positive correlations for this analysis. Furthermore, network
weights are normalized by an overall scaling factor of 19.2 for all networks in
order to ensure that all eigenvalues of all networks are bounded by 1 for reasons
of stability. This yields the temporal 〈Φ〉 profile for the FC networks, shown in
red in Fig. 1. As a possible null model, we randomize the data by shuffling the
edges of each FC network while preserving the total network degree at each point
of time. Computing 〈Φ〉 for these randomized networks yields the green profile
in Fig. 1. Figure 2 shows the corresponding histograms of these 〈Φ〉 profiles.

Given these profiles, we can now perform test statistics on 〈Φ〉 itself in order
to compare the temporal FC with their randomized counterparts. More, gener-
ally this method may also be used for making statistical statements for 〈Φ〉 under
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Fig. 1. Temporal 〈Φ〉 for data (red profile) versus randomized networks
(green profile) Here 〈Φ〉 is computed as bits of information, while time runs in steps
of 100ms. (Color figure online)
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Fig. 2. Histograms of 〈Φ〉 for data (left) and randomized networks (right)

different experimental conditions. We compute the mean, median and variance
of the 〈Φ〉 profiles for both the data and the randomized case. Since the 〈Φ〉
profiles do not follow a normal distribution, we use then use the Mann-Whitney-
Wilcoxon test to compare the medians between the two 〈Φ〉 profiles and we find
a significant difference in favor of the brain FCs. For comparing the variances we
employ the Brown-Forsythe test (for non-parametric and non-symmetric distri-
butions) and again find significant difference in favor of the data. Our results are
shown in Table 1 below. What these results show is that integrated information
is a useful measure for quantifying the plethora of patterns observed in temporal
FC networks corresponding to various brain states. Compared to random re-
wirings, the original FC networks scored consistently higher values of 〈Φ〉 with a
greater mean and median (statistically significant). Additionally, the data net-
works show a much greater variance (statistically significant) in 〈Φ〉 than their
random counterparts. This suggests that realistic temporal FC networks of the
brain explore a greater region of state space than random configurations. For
future work, it might be interesting to look closer at the occasional strong peaks
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in 〈Φ〉 that we observe in the FC networks, which may be driven either by task
complexity or by spontaneous neural activity.

Table 1. Test statistics on 〈Φ〉 profiles showing the median, mean and variance in
values of 〈Φ〉 for brain data versus the randomized network. The last column shows
p-values for each test.

〈Φ〉 (FC) 〈Φ〉 (Randomized) p-value

Median 0.45 0.41 < 10−40

Mean 0.51 0.43 N.A.

Variance 0.28 0.01 < 10−20

5 Discussion

Information-based methods offer a useful way to quantify complexity of brain
functions. Integrated information is interesting as a global measure of a sys-
tem’s collective behavior. In this work, we extend the computational frame-
work of network integrated information for temporal networks and applied it to
local field potential (LFP) data obtained from human intracranial recordings.
This generates a time-series profile of Φ reflecting the dynamical nature of the
brain’s informational complexity. As a null model we generate another profile of
Φ obtained from randomizing the FC networks at each instance of time (while
preserving total degree for each network). This enables a statistical comparison
of complexity under two conditions. More specifically, for brain functional net-
works we find that compared to random re-wirings, the original FC networks
scored consistently higher values of 〈Φ〉 with a greater mean and median (statis-
tically significant). Additionally, the data networks show a much greater variance
(statistically significant) in 〈Φ〉 than their random counterparts, thus suggest-
ing that realistic temporal FC networks of the brain explore a greater region
of state space than random configurations. This work demonstrates that tem-
poral integrated information may be a good starting point as a future measure
of cognitive complexity. This can have potential impact in the clinic for iden-
tifying information-based differences between healthy subjects and patients of
neurodegenerative diseases.
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Abstract. Ensembles of SVMs are notoriously difficult to build because
of the stability of the model provided by a single SVM. The application
of standard bagging or boosting algorithms generally leads to small accu-
racy improvements at a computational cost that increases with the size
of the ensemble. In this work, we leverage on subsampling and the diver-
sification of hyperparameters through optimization and randomization
to build SVM ensembles at a much lower computational cost than train-
ing a single SVM on the same data. Furthermore, the accuracy of these
ensembles is comparable to a single SVM and to a fully optimized SVM
ensemble.
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1 Introduction

The SVM algorithm has received much attention in the machine learning com-
munity because of its strong theoretical foundations and its state-of-the-art per-
formance in a wide range of applications [1,2]. In a binary classification problem,
an SVM is built by finding the maximum-margin hyperplane that separates the
two classes. The parameters of the hyperplane are determined by solving a con-
vex optimization problem that can be formulated in terms of scalar products.
To allow for the possibility of class overlap, a regularization term that penalizes
errors in the training set and preserves the convexity of the optimization problem
is included in the objective function. The strength of this regularization is quan-
tified by a non-negative constant C whose value needs to be carefully adjusted.
Finally, a non-linear classifier that maximizes the margin can be built by replac-
ing the scalar products that appear in the objective function of the optimization
problem by the corresponding inner products in a Reproducing Hilbert Space
associated to a kernel. Linear, polynomial, or RBF kernels are typically used for
this embedding. In practice, SVMs built with an RBF kernel have good gener-
alization capacity provided that the value of the kernel width (1/γ) is properly
adjusted [3].

c© Springer Nature Switzerland AG 2018
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In spite of their success, there are some difficulties in the practical application
of SVMs. The main one is the high computational cost of training. This disad-
vantage is exacerbated by their sensitivity to the values of the hyperparameters
(C, γ), which are commonly selected by grid search using a costly cross-validation
procedure. A possible way to improve the performance of a single SVM is to build
ensembles [4–9]. If subsampling is used to train the individual SVMs, building
an ensemble can be faster than training a single SVM [7] on the same data.
In general, the improvements of an ensemble over a single SVMs are generally
small. The reason is that SVM are strong and stable classifiers. In consequence,
they are difficult to diversify without introducing large distortions that reduce
their accuracy. The goal of this work is to design ensembles of SVMs that are
at least as accurate as a single SVM at a reduced computational cost. To this
end, we leverage on subsampling and explore the interplay between optimization
and randomization methods in the determination of the hyperparameters of the
individual SVMs in the ensemble.

2 SVM Ensembles

In this work we analyze three strategies to build bootstrapped ensembles
of SVMs: The completely-optimized SVM ensemble (COSE), the partially-
optimized SVM ensemble (POSE), and the randomized-optimized SVM ensem-
ble (ROSE). The individual SVMs in all these ensembles are built using inde-
pendent bootstrap samples drawn from the original training data. The strategies
differ in the way that the hyperparameters for the individual SVMs are chosen.
In the completely-optimized SVM ensemble (COSE), optimal values of C and γ
are selected for each individual SVM in the ensemble. In the partially-optimized
SVM ensemble (POSE), optimal combinations of the SVM hyperparameters
{(Cb, γb)}Bb=1 are determined for B = T/M � T different bootstrap samples of
the original training data, where T is the desired size of the complete ensemble.
The final ensemble is built in B batches. For each of these batches (b = 1, . . . , B),
we fix the hyperparamters (Cb, γb) and build M different SVMs on independent
bootstrap samples of the training data. Finally, in the randomized-optimized
SVM ensemble (ROSE), T SVM’s are built on independent bootstrap samples
using randomized values of the hyperparamters C and γ. From these, we select
the best {(Cb, γb)}Bb=1, for B = T/M � T . The final ensemble is built in B
batches, in the same way as the POSE ensemble.

3 Experimental Evaluation

We now present the results of an empirical evaluation of the strategies to build
SVM ensembles introduced in the previous section. Specifically, the accuracy
and training costs of the proposed methods are compared with those of SVM
in 8 binary classification problems from the UCI repository [10] and two syn-
thetic ones (Threenorm and Twonorm). For the UCI problems, stratified random
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train/test partitions are used. The training set is composed of 2/3 of the labeled
instances available for learning. The remaining 1/3 are set aside for testing. In
the synthetic classification problems we generate 300 examples for training and
2000 for testing. The attributes of the instances are normalized so that they
have zero mean and unit variance in the training set. The results reported are
averages over 10 realizations of the classification problems: either random par-
titions for real-world data, or independent generations of the training/test sets
for synthetic data. The methods are implemented in Python using Scikit-learn
library [11].

We have considered the use of bootstrap samples built either with replace-
ment, as in standard bagging, or without replacement, as in subbagging [12,13].
The size of the bootstrap samples with replacement coincides with the original
training data. The size of the bootstrap samples without replacement is 50 % of
the original one. Subbagging using this ratio is expected to yield similar results
as standard bagging [13,14]. In the classification problems considered, the overall
accuracy of subbagging is slightly better than bagging. Even though the differ-
ences in accuracy are not statistical significant, there is a marked computational
advantage of using subbaging. For this reason, only the results of subbagging
are reported.

In all three ensemble methods considered and in the single SVMs, an RBF
kernel is used. The values of the hyperparameters are selected from a grid in
which C = 2q with q = −5, . . . , 15 and γ = 2p with p = −15, . . . , 3. C is the
regularization parameter that controls the complexity of the learning model.
A smaller C corresponds to a model with higher margin in which more errors
are allowed to occur during the fitting phase. Larger values of C promote more
complex models that fit the training data with more precision. The second tuned
hyperparameter is γ, which is the inverse of the width of the gaussian RBF
kernel. This parameter controls the local influence of the support vectors. For
very small values of γ, all support vectors influence the classification of most
training examples, which means that the data complexity cannot be captured
by the model. Choosing a large γ can potentially over-fit the data as each support
vector influences only its vicinity.

For the single SVM and for the individual SVMs in COSE, 10-fold cross-
validation within the corresponding training sets is used to select the optimal
values of these hyperparameters. In POSE and ROSE, B = 10 different pairs of
hyperparameter values, {(Cb, γb)}10b=1, are selected using out-of-bag data. Accord-
ing to the empirical investigation carried out, the behavior of POSE and ROSE
ensembles is not particularly sensitive to this parameter: ensembles built using
values of B between 5 and 50 exhibit similar accuracies in the problems con-
sidered. The size of the ensembles generated is T = 501, which is sufficiently
large for convergence of the classification errors to their asymptotic (optimal)
limit [15].

A summary of the results of the experiments performed is given in
Table 1. For each dataset the errors rate of a single SVM, the completely-
optimized (COSE), the partially-optimized (POSE), and the randomized-
optimized (ROSE) SVM ensemble are shown. The values displayed are averages
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Table 1. Generalization error for a single SVM and for SVM ensembles

Dataset SVM COSE POSE ROSE

Australian 15.70± 2.32 14.09±1.62 14.17± 0.97 14.22± 2.62

Boston 13.85± 2.93 13.73± 1.93 13.43±2.14 14.26± 1.56

Colic 20.74± 1.64 20.57± 2.55 20.66± 2.07 20.41±2.43

German 23.96± 1.56 23.51± 1.54 23.75± 1.46 23.48±1.63

Heart 17.78± 3.78 17.22± 2.58 16.78±2.69 19.44± 3.24

Parkinsons 8.62± 2.73 9.85± 3.26 10.77± 3.40 8.31±3.18

Pima 23.28± 2.24 22.15± 2.16 21.95±2.60 22.23± 2.74

Spambase 6.30±0.65 6.38± 0.28 6.36± 0.34 6.51± 0.24

Threenorm 14.01± 0.63 13.51±0.56 13.74± 0.64 13.90± 0.73

Twonorm 2.73± 0.64 2.46±0.15 2.53± 0.17 2.63± 0.21

1.0 1.5 2.0 2.5 3.0 3.5 4.0

SVM
ROSE

COSE
POSE

CD

Fig. 1. Average ranks for SVM, COSE, POSE and ROSE (more details in the text)

over 10 realizations of the classification problems considered, followed by the
corresponding standard deviations after the ± sign. For each dataset, the most
accurate method is highlighted in boldface. The second best is underlined. In
addition, we have used the methodology proposed in [16] to perform an overall
comparison of the classifiers’ performance across the different datasets. Follow-
ing this methodology, in Fig. 1 the average ranks of the different methods are
displayed. The ranks of the investigated methods are determined in terms of
their test errors. For each dataset the best model is ranked first, the second best
is ranked second and so on. The figure shows, for each method, its average rank
over all dataset. In this diagram, the differences in accuracy of methods that are
connected by a horizontal solid line, are not statistically significant according
to a Nemenyi test (p-value < 0.05). From this figure, it can be observed that
the proposed strategies have an average rank better than the average rank of
SVMs, although the differences are not statistically significant according to the
Nemenyi test. Finally, in Table 2 we report the training time in seconds to build a
single SVM with grid search (second column) and speed-up obtained in training
for each method relative to the SVM training time (last three columns). These
times were measured on a single core of a CPU Intel Core i5, 64 bits, 2.30 GHz
with 8 GB of memory.
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From Table 1 one observes that the single SVM is the most accurate predic-
tor only in one dataset (Spambase). By contrast, each of the ensemble methods
considered achieves the highest accuracy in three problems. The best overall
accuracy, in terms of average ranks, correspond to COSE. However, the compu-
tational cost of COSE is enormous: around 50–100 times slower to train than
a single SVM. Even though the differences are not statistically significant, the
average rank of POSE and ROSE ensembles are higher than single SVMs. As
shown by the speedup factors displayed in Table 2, these improvements in accu-
racy are achieved with much lower training costs: POSE ensembles are between
2 and 3 times faster to build than a single SVM. More impressively, the speedup
factors for ROSE are between 5 and 20. Furthermore, the differences between
the average ranks between each of these and COSE, which is the best ensemble
according to this measure, are not statistically significant.

Table 2. Training times in seconds for a single SVM and speedup factors for COSE,
POSE and ROSE with respect to SVM

Dataset SVM (s) COSE POSE ROSE

Australian 63.9 1.8e−02 2.7 15.4

Boston 23.8 9.7e−03 2.3 9.6

Colic 23.2 9.7e−03 2.3 9.6

German 186.9 2.7e−02 2.8 18.4

Heart 10.8 5.6e−03 2.2 6.9

Parkinsons 7.3 4.1e−03 2.2 5.4

Pima 127.8 2.7e−02 3.3 19.6

Spambase 2892.4 2.7e−02 2.0 14.4

Threenorm 30.2 1.1e−02 2.4 10.6

Twonorm 18.8 8.4e−03 2.1 8.5

Average 1.5e−02 2.4 11.8

Stdev 9.1e−03 0.4 4.8

4 Conclusions

In this work, we have proposed and analyzed three types of fast and accurate
SVM ensembles built using subagging. Each individual SVM is induced from a
bootstrap sample that includes 50% of the original instances, without repetitions.
The behavior of a subagging ensemble with this sample size is expected to be
similar to the corresponding standard bagging ensemble. Different combinations
of optimization and randomization are used to determine the hyperparameters
of the individual SVMs in the ensemble: In COSE, the strength of the regulariza-
tion term (C) and the inverse width of the RBF kernel (γ) are fully optimized.
In POSE and ROSE, a small number of different values of these parameters
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{(Cb, γb)}Bb=1 is used repeatedly to build individual SVMs. Specifically, each of
these combinations of values is used M = T/B times to build an ensemble of
size T . In POSE the combinations of values are determined by optimization in B
independent bootstrap samples. In ROSE, the best B out of T randomly gener-
ated combinations is selected. For ensembles of size T = 501, values of B between
5 and 50 lead to very accurate POSE and ROSE ensembles whose accuracy is
comparable to the completely optimized ensemble (COSE) and slightly better
than a single SVM. In addition, the training speed of POSE and ROSE is over
2 and 10 times faster than the training time of a SVM optimized using a stan-
dard grid search procedure. This training speed improvement can be specially
beneficial in the context of large datasets.

Acknowledgments. The research has been supported by the Spanish Ministry of
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Abstract. We present a new self-organized neural model that we term
ReST (Resilient Self-organizing Tissue). ReST can be run as a convolu-
tional neural network (CNN), possesses a C∞ energy function as well as
a probabilistic interpretation of neural activities, which arises from the
constraint of log-normal activity distribution over time that is enforced
during learning. We discuss the advantages of a C∞ energy function
and present experiments demonstrating the self-organization and self-
adaptation capabilities of ReST. In addition, we provide a performance
benchmark for the publicly available TensorFlow-implementation.

Keywords: SOM · Convolutional neural networks · Self-adaption

1 Introduction

This article is in the context of self-organized map (SOM) models that have a
continuous energy function. The lack of such an energy function for the original
SOM model [7] has been the subject of many articles [2,10]. As it was shown that
the original SOM learning rule cannot be derived from a continuous energy func-
tion [2], several proposals were made to remedy this problem [4,6]. In general,
one may cite the following advantages of energy-based SOM models:

– Estimation of learning success and parameter selection A big issue
for SOMs is to know whether the model has converged to a “desirable” state.
For problems that do not allow a visual quality inspection, there is no uni-
versal criterion to determine optimal values for the model parameters (final
neighbourhood radius, final learning rate etc.), whereas an energy function
provides a simple quality measure.

– Proof of stability If a continuous energy function exists and is bounded
from below, this automatically guarantees the eventual convergence of SOM
learning.

– Use of advanced stochastic gradient descent methods With a contin-
uous energy function, many widely-used methods for performing stochastic
gradient descent (SGD) in the domain of deep learning can be transferred to
SOM learning.

c© Springer Nature Switzerland AG 2018
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– Outlier detection A sudden increase of energy (which is supposed to be
minimized by learning) is a strong indication for a change in data statistics
and can thus be used for outlier or concept drift detection. The latter prop-
erty is especially relevant for our own ongoing work on incremental learning
methods [3].

1.1 Related Work on Energy-Based SOM Models

There has been a huge amount of primarily mathematical literature about It
was shown conclusively in [2] that the original Kohonen learning rule cannot be
exactly derived from the minimization of any error function. In the same article,
it is mentioned that the Kohonen learning rule follows instead from the indi-
vidual minimization of per-neuron energy functions [10], but these functions are
very complex, non-unique and do not lend themselves to a simple interpretation
(e.g., minimization of a distortion measure or similar). Another approach was
proposed by Kohonen [7] and taken further by Heskes [6]: instead of finding error
functions whose minimization would lead to the Kohonen learning rule, these
authors attempted to very slightly modify the Kohonen rule itself. Obviously,
the modification should in no way impair the self-organization capabilities of the
model while allowing an intuitive interpretation through a (preferably simple)
energy function. An modification satisfying these requirements was proposed in
[5,6], offering a continuous energy function for discrete as well as continuous
data distributions. While this was an important theoretical result, there was no
real follow-up in terms of applications in data visualization and/or clustering.
It may be supposed that this lack of interest was due to the added computa-
tional complexity (an additional convolution needs to be calculated), as well as
the problems that convolutions encounter at boundaries. Similar SOM variants
having an energy function were proposed in [4] but they suffer from the same
“convolution problem”.

2 Methods and Data

We rely on the well-known MNIST benchmark [8] for handwritten digit recogni-
tion that is a standard problem in machine learning. For our purposes, it is ideal
for testing our implementations as it allows a visual inspection of the learned
prototypes, facilitating the detection of implementation errors through obviously
corrupted prototypes. The MNIST dataset contains 60.000 training samples in
10 classes that are approximately equiprobable, as well as 10.000 samples in the
test set.

2.1 The ReST Model

We assume a dataset (or a mini-batch) of input vectors xn ∈ R
k and a two-

dimensional set of K × K neurons with non-negative activities ai ≥ 0, i =
1 . . . ,K2. It is convenient to express activities computed for an input xn as
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a one-dimensional vector an ∈ R
K2

. A neuron with (linear) index i and coor-
dinates xi, yi has an associated prototype pi ∈ R

k, i = 1, . . . ,K2, as well as
an K × K neighbourhood matrix that we write as a one-dimensional vector
g i ∈ R

K2
in analogy to the vector of activities. Differing from the SOM model,

each neuron possesses two internal variables oi and si that play a role in enforcing
log-normal statistics for the activities an which are computed as:

dni =
√

(pi − xn)2 (1)

ãni = oi − sidni (2)
ani = exp (ãni) . (3)

The adaptation of the prototypes pi is now achieved by minimizing the energy
function

cni = 〈g i, log an〉 = 〈g i, ãn〉 (4)

E =
1
N

∑
n

〈cn,S (cn)〉. (5)

The first equation essentially represents a convolution operation as the per-
neuron vectors g i are (for self-organized models) represented by Gaussians cen-
tered on neuron i. Generally, one assumes such Gaussians to be periodic where
they exceed the map boundaries (for neurons that are close to these boundaries).
In this article, we investigate the possibility to simply cut off the Gaussians at
map boundaries but to re-weigh them according to the part that is “lost”. The
logarithm and the vector-valued softmax function S(v) in Eq. (4) are applied in
a component-wise fashion as

ei = exp(βvi) (6)

S(v)i =
ei∑
j ej

≡ Si, (7)

β being a parameter that controls the selectivity of the softmax: for higher β
values, the output S(v) will tend to be more strongly peaked, the maximal value
closer to 1.0 and the rest to 0.0. For lower β values, this relationship is inversed.
The minimization of the energy function is performed as a constrained optimiza-
tion problem, the constraint being that the temporal distribution of activities an

is log-normal with parameters μ and σ. This implies that log an (with logarithm
applied component-wise!) is normally distributed, with the empirical mean and
standard deviation μ̂, σ̂ coinciding with μ, σ:

μ̂ ≡ 1
N

∑
n

log ani =
1
N

∑
n

ãni
!= μ (8)

σ̂ ≡
√

1
N

∑
n

(log ai − μ̂)2 =

√
1
N

∑
n

(ãi − μ̂)2 != σ (9)
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From these requirements, the per-neuron parameters oi and si can be determined
unambiguously from the first two moments of the input-prototype distances

si =

√
σ2

d2i − di
2 (10)

oi = μ + sidi, (11)

which can be computed empirically over a dataset of N samples:

di =
1
N

∑
n

dni

d2i =
1
N

∑
n

d2ni (12)

In a mini-batch setting, we instead take averages over the current mini-batch of
N samples (the extreme case being fully online learning where N = 1). If we
wish to compute the averages di and d2i over periods longer than the mini-batch
size N , we replace Eq. (12) by exponential smoothing of mini-batches averages:

di(ν) = (1 − αdN)di(ν − 1) + αd

∑
n

dni (13)

d2i (ν) = (1 − αdN)d2i (ν − 1) + αd

∑
n

d2ni (14)

where variable ν expresses the number of the current mini-batch. We scale the
adaptation rate αd < 1 with the mini-batch size N since a larger N implies that
more samples are used per step in Eq. (13), and thus adaptation can proceed
more quickly. Please note that by setting αd = 0 we can turn off the moving
average mechanism. In this case only the current mini-batch is considered, as it
is the case in Eq. (12).

ReST Learning Rule. For performing gradient descent for the energy function
of Eq. (4), we take its derivative w.r.t. to the k-th element of prototype i:

∂E

∂pik
=

∂

∂pik

1
N

∑
nj

cnjS(c)nj = (15)

=
1
N

∑
nj

(
S(cn)j

∂cnj

∂pik
+ βS(cn)i (δij − S(cn)j)

)
(16)

≈ 1
N

∑
n

∂cn∗
∂pik

(17)

where we have used the expression ∂jSi = βSi(δij −Sj) for the derivative of the
softmax function. If we assume that the softmax function puts 1.0 at the position
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of the maximal value (whose index is expressed by ∗), and 0 everywhere else, we
obtain the approximation result of Eq. (17) and arrive at the update rule

pi ← pi +
εsig∗i

2N

∑
n

pi − xn

||pi − xn|| (18)

where we have one more time designed the index of the best-matching unit
(BMU) by a star: ∗ = arg maxici. If we had omitted the square root in the
definition of input-prototype distances in Eq. (1), we would have arrived at the
equivalent rule

pi ← pi +
εsig∗i

N

∑
n

(
pi − xn

)
(19)

which differs (for the online case of N = 1) from the energy-based SOM model
proposed in [6] only by a factor of si for each neuron, an additional difference to
[7] being that BMU is not determined from input-prototype distances but from
the convolution c of activities with the neighbourhood matrix, see Eq. (4). We
observe that the learning rules (18, 19) scale each neuron’s prototype adaptation
by a factor which is, by Eq. (10), inversely proportional to the activity variance
of that neuron. Thus, neurons whose prototypes are either too unspecific or too
generic (resulting in uniformly low or high activations with low variance) receive
a competitive advantage. This mechanism is self-limiting: increased prototype
adaptation usually increases the variance of a neuron’s activities, thus eventually
annulling the competitive advantage and leading to stable competitive learning
dynamics.

Implementation of Constrained Optimization. Minimizing the energy
function (4) is performed by performing repeated gradient descent steps using
learning rule (18) on the whole available training data set or mini-batch, each
step followed by an explicit enforcement of the constraints by applying Eq. (10),
this again being followed by an update of the averages using Eq. (12). For speed-
ing up convergence, the neighbourhood matrix g i of neuron i is modelled as a
Gaussian whose standard deviation S(ν) is decayed exponentially over time, as
it is usual with SOMs:

gij = exp
(

− (xj − xi)2 + (yj − yi)2

2S(ν)2

)
(20)

In contrast to normal SOM learning, we do not decay the ReST learning rate α
over time, since this complicates advanced gradient descent strategies and intro-
duces unnecessary parameters. Additionally, we impose an initial period without
prototype adaptation where only neural statistics are adapted. This allows “adi-
abatic” prototype updates, causing only small corrections to the already con-
verged oi and si, which avoids potentially problematic feedback loops between
the two adaptation processes. The training procedure, as well as all relevant
parameters, is detailed in Algorithm 1.
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Algorithm: Constrained ReST optimization

Parameters :

– nr of iterations T
– mini-batch size N
– initial and final neigh. radius S0, S∞
– learning rate α
– self-adaptation rate αd

– time parameters tA, t0 and t∞
– target values σ, μ for self-adaptation

Result: trained prototypes pi

begin
Initialize all prototypes pi to small random values ;

Initialize moving averages di(0) = 0 and d2
i = 0 ;

Initialize per-neuron parameters si = 0.5, oi = 0 ;

Compute decay time constant λ = − log(−S∞/S0)
t∞−t0

;

for mini-batch ν < T do
compute nb.radius S(ν) and learning rate α(ν): begin

if ν < tA then α(ν) = 0, S(ν) = S0;
else if ν < t0 then α(ν) = α, S(ν) = S0;

else if ν < t∞ then α(ν) = α, S(ν) = S0e
−λν ;

else α(ν) = α, S(ν) = S∞;

end
recompute nb. matr. g i based on S(ν) ;
select a random mini-batch xn, 0 < n < N ;
update prototypes pi according to Eq. (18) ;
enforce constraint using Eq. (10) ;

adapt averages di(ν) and d2
i (ν) using Eq. (13) ;

end
return pi

end
Algorithm 1. Mini-batch based learning with the ReST model.

Choice of ReST Parameters. The self-adaptation process is governed by
the parameters μ and σ of the log-normal distribution that the activities ai are
required to obey, which raises the question of what their intrinsic significance
could be, especially within the context of self-organizing maps and incremental
learning. First of all, from the properties of log-normal distributions we know
that the quantity eμ represents both the geometric mean and at the same time
the median of a log-normally distributed variable, so essentially we could just
fix a median value M and compute μ = log M from it. The median for this
distribution is smaller but usually close to the arithmetic mean as well so we can
also see M as a rough indicator for the arithmetic time average of a neuron’s
activity. The quantity eσ is sometimes termed the geometric standard deviation
and can be expressed as
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eσ = exp

(√
1
N

∑
n

(
log

ani

eμ̂

)2
)

=

= N

√
Πn exp

((
log

ani

eμ̂

)2
)

= Eg
n

√
exp

((
log

ani

eμ̂

)2
)

(21)

and is thus related to the geometric mean of the expression
√

exp
((

log ani

eµ̂

)2).

This expresses the multiplicative spread of values around their empirical geo-
metric mean eμ̂, regardless of the direction. Higher values of eσ will push the
activities further away from their geometric mean, forcing them to be more spe-
cific, either close to 0 or far away from it. We can thus think of σ as a parameter
controlling the sparsity of neural responses, which previous studies on transfer
functions for self-organized maps [9] found to be an important factor for per-
forming classification based on SOM activities.

In order to guarantee identical functioning of the WTM mechanism for vari-
able map sizes, the softmax function needs to be parameterized correctly, and
more specifically as a function of the number of neurons in the SOM. We there-
fore need to set the parameter β such that qualitatively identical behavior ensues
for any map size. We measure identical behavior by demanding that the max-
imal response of the softmax function be ξ when given a vector x ∈ R

n that
consists of n − 1 times value B and 1 time value λB. Solving this for β gives us
the expression

β =
ln(ξ−1 − 1) − ln(n − 1)

B(1 − λ)
(22)

The softmax function is a very useful tool for obtaining a “hard” yet differ-
entiable winner selection, in addition to allowing a steady transition between
“hard” and “soft” winner selection. In some cases, problems can occur: first of
all, sensible choices for B and λ may be hard to obtain because they depend on
the learning dynamics. Furthermore, when β > 700, numerical issues arise due to
the exponentials involved. Fortunately there is a simple rule-of-thumb solution
for both problems that consists of applying a softmax function with “best guess”
parameters several times in Eq. (4). This complicates the gradient, but as long
as the final softmax function gives a sufficiently hard winner assignment, the
learning rule (18) remains valid. Software frameworks like TensorFlow can com-
pute the gradient symbolically, so even the exact gradient can be used regardless
of how often softmax was applied. We found that a three-fold application was
always sufficient to guarantee a unique winner selection.

The parameter S0 is usually made to depend on the map size. A rule of
thumb that always worked well is to choose it proportional to the diagonal of
the quadratic K × K map, i.e., S0 = K

4 . In contrast, classification experiments
always give best results the smaller S∞ is, so this is always fixed at small values
like S∞ = 0.01. The values of t0, tA and t∞ can be determined empirically be
requiring that (i) self-adaptation has occurred before tA (ii) the energy function
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has converged to a stable value before t0 and (iii) that the energy function is
as low as possible while still satisfying all constraints at t∞. Here, we see the
value of an energy function as it can be used to determine convergence, so these
parameters which for SOMs have to be obtained by visual inspection, can be
determined by cross-validation. By a similar reasoning, a good value for the
learning rate can be obtained, where smaller values are always acceptable but
lead to increased training time. The mini-batch size is generally assumed to be
N = 1 in this article. The self-adaptation rate, αdN , should be chosen such that
the constraints are approximately upheld during prototype adaptation, meaning
it will depend on the choice of α and is thus not a free parameter but can be
indirectly obtained by cross-validation.

3 Experiments

The ReST model used in all experiments is implemented in Python using Tensor-
Flow 1.5 [1]. The gradients (18, 15) are computed automatically by the software.
Energy minimization is done by plain stochastic gradient descent, although more
advanced optimizers minimize the ReST energy function equally well.

3.1 Self-organization and Self-adaptation in the ReST Model

In this section we will demonstrate that the ReST model, while differing from
both the original SOM model [7] and the energy-based “Heskes model” [6],
achieves the same basic type of prototype self-organization. At the same time, we
will demonstrate the effectiveness of ReST’s self-adaptation process as described
in Sect. 2.1 and comment on its beneficial effects. To this end, we will con-
duct simulations with the dataset described in Sect. 2. ReST parameters are
chosen as follows (in the terms of Sect. 2.1): K = 10, T = 40000, tA = 5000,
t0 = 10000, t∞ = 30000, S0 = K/4, S∞ = 0.1, αd = 0.01, α = 0.05, eσ = 3 and
eμ = 0.1. After ReST convergence at t∞, statistics is collected for 5000 iterations
and subsequently evaluated. Histograms of all neural activities during these 5000
iterations are computed and compared to the theoretical log-normal distribution
determined by μ and σ. From Fig. 1, it can be observed that self-organization
proceeds exactly in the same manner as in a SOM, starting with a coarse “global
ordering” of prototypes followed by refinement as S(ν) is decreased, showing that
ReST performs essentially the same function as a SOM, only with convergence
in 2D guaranteed and a self-adaptation process that give a probabilistic inter-
pretation to the computed activities. As can be seen in Fig. 2, the fit between
theoretical and measured distribution is generally acceptable for all datasets,
although of course a perfect fit is not to be expected. This is because we only fit
the first two moments of the log activities to defined values. For a better fit, at
least the third moment of the log activities should be controlled, which would
however result in a more complex constrained optimization scheme. Figure 1
shows this homogeneity is achieved by quite heterogeneous settings of the per-
neuron parameters oi and si, see Eq. (1).
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Fig. 1. Upper two rows: Different stages of ReST training on the MNIST dataset.
Upper row, from left to right: ReST prototypes with long-term geometric activity
averages superimposed on them for times t = 7000, 12000, 24000. Middle row, from left
to right: ReST prototypes with long-term geometric standard deviation averages super-
imposed on them for times t = 7000, 12000, 24000. We observe that activity averages
and deviations are strictly adhered to, as well as the SOM-like topological organiza-
tion of prototypes. Lower row: distribution of per-neuron parameters oi and si after
convergence of the ReST layer at iteration 24000.

Fig. 2. Activity histograms for neuron (4, 4) in a ReST layer trained on MNIST both
for the case of enabled (left) and disabled (right) self-adaptation. The theoretical log-
normal density is superimposed onto the histograms as a solid green line, showing a
very good match.



An Energy-Based Convolutional SOM Model 431

3.2 Convolutional ReST Experiments

As with CNNs, convolutional ReST layers have a great number of possible con-
figurations for the filter sizes (fH

x , fH
y ) and step sizes (ΔH

x ,ΔH
y ), of which we

can test only a few. Experimental outcomes are the learned filters for each con-
figuration as shown in Fig. 3, where we see that ReST performs both topological
organization (as in a SOM) as well as feature extraction (as in a CNN layer).

Fig. 3. Prototypes for convolutional/independent ReST architectures (left to right),
defined by fH

x , ΔH
x , y, x: ind-14-7-0-0, ind-14-7-1-1, ind-14-7-2-2, conv-14-7, ind-7-3-3-

3, ind-7-3-6-6.

3.3 Intuitive Interpretation of the Self-adaptation Process

To better understand what the self-adaptation mechanism in ReST actually does,
we create a set of 10.000 two-dimensional data points x i ∈ R

2 which are drawn
from a normal distribution with mean µ = (0.5, 0.5)T and standard deviation
Σ = 0.15. We subsequently train a non-convolutional ReST layer of size K = 10
using the parameters of Sect. 3.1. The final prototype positions and values of
the per-neuron parameters si and oi are shown in Fig. 4 and show the following
things:

– where data points are more dense(sparse), overall offsets oi are lower(higher).
This is intuitive since prototypes that react to less frequently occurring sam-
ples need to have a higher offset to maintain a constant average activity.

– where data points are more dense(sparse), selectivities si are higher(lower),
meaning that a neuron will react less(more) strongly to nearby samples.

Fig. 4. Prototype positions overlaid in color with per-neuron parameters oi (left) and
si (right) when training a ReST layer on a 2D normal distribution.
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Fig. 5. ReST execution speed depending on batch size and map size, measured on:
CPU without updating(left), GPU without updating (middle), GPU with updating
(right).

This is intuitive as well, since a higher number of nearby samples would mean
a near-constant activity, with low variance, if neurons could not become more
selective in their reactions.

These results show that ReST neurons can adapt to the sample density in their
Voronoi cell, a behavior that closely mimicks self-adaptation mechanisms in bio-
logical neurons.

3.4 Implementation and GPU Speed-Up

Unless otherwise stated, benchmark experiments always use the following param-
eters: Map size HH = WH = 10, Σ0 = 2, ε0 = 0.1, ε∞ = 0.0001, Σ∞ = 0.01,
Tconv = 3000, Tconv = 10000. We compare the execution time per sample by
feeding the ReST model 2000 randomly selected samples, either running it on
CPU or GPU (NVIDIA GeForce 1080), and vary the map size WH = HH ∈
{10, 15, 20, 30, 50} and the input batch size N I ∈ {1, 5, 10, 20, 50, 100} indepen-
dently. The results of Fig. 5 show that, first of all, GPU acceleration is most
effective at high batch sizes and amounts to a factor of roughly 10–20 w.r.t.
CPU speed. Secondly, as expected, for high batch and map sizes the GPU is
saturated, resulting in no more speed improvements from parallelization. And
lastly, updating the ReST layer incurs a heavy speed penalty even on GPU,
probably because of the convolution in Eq. (4).

4 Discussion and Conclusion

The experiments of the last section have shown that the energy-based ReST
model is both efficient and can profit from GPU acceleration, that it behaves
as one would expect a SOM to behave, and that the self-adaptation process is
both feasible and leads to a clear probabilistic interpretation of ReST activities.
We believe that the new ReST model (in its non-convolutional form) can be
used as a drop-in replacement anywhere SOMs are used, albeit in a much more
intuitive way because both the ReST energy function as well as ReST activities
have a clear interpretation. In its convolutional form, ReST layers can be stacked
in deep hierarchies, which we believe can be a very interesting approach when
creating “deep” versions of incremental learning methods as proposed, e.g., in [3].
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Abstract. Influence maximization refers to mining top-K most influential
nodes from a social network to maximize the final propagation of influence in
the network, which is one of the key issues in social network analysis. It is a
discrete optimization problem and is also NP-hard under both independent
cascade and linear threshold models. The existing researches show that although
the greedy algorithm can achieve an approximate ratio of 1� 1=eð Þ, its time cost
is expensive. Heuristic algorithms can improve the efficiency, but they sacrifice
a certain degree of accuracy. In order to improve efficiency without sacrificing
much accuracy, in this paper, we propose a new approach called Hierarchy
based Influence Maximization algorithm (HBIM in short) to mine top-
K influential nodes. It is a two-phase method: (1) an algorithm for detecting
information diffusion levels based on the first-order and second-order proximity
between social nodes. (2) a dynamic programming algorithm for selecting levels
to find influential nodes. Experiments show that our algorithm outperforms the
benchmarks.

Keywords: Social networks � Influence maximization � Hierarchy

1 Introduction

Influence maximization is to find K nodes (called the seeds) in a social network, so that
the expected spread of the influence can be maximized by activating these nodes.
Kempe et al. [9] first formulated influence maximization as a discrete optimization
problem. Besides, they proposed a greedy algorithm that can approximate the optimal
solution within a factor of 1� 1=eð Þ, which is the best approximation guarantee one
can hope for according to Feige’s approximation threshold for max k-cover [5].
However, due to the large scale of social network data, greedy algorithms have poor
efficiency although their accuracy is high. Despite the fact that many more efficient
algorithms [2, 3, 8, 10, 11, 13] have been proposed, most methods still spend a lot of
time calculating the expected spread of influence.

In this paper, we propose a new approach called Hierarchy based Influence Max-
imization algorithm, the basic idea is that nodes rely on social groups to spread
information and nodes with similar social attributes are more likely to influence each
other. We describe a group of nodes by a hierarchical structure which is segmented into
levels according to the belonging coefficients of nodes. The belonging coefficients [1]
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reflect the strength of relation between a node and its social group. Nodes with similar
belonging coefficients are in the same level. Intuitively, a level is a densely connected
subset of nodes that are only sparsely linked to the remaining network [1, 6]. If we find
influential node in these levels instead of the whole network, then the prohibitive cost
of mining K seeds will be greatly reduced. The method we propose is two-phase.
Firstly, we assume that the information publisher is known, then we calculate
belonging coefficients by random walk according to the first-order proximity and the
second-order proximity between nodes, and then the nodes are segmented into levels
by linear regression and dynamic programming. The first-order proximity [14]
describes whether the two nodes have an edge, that is, pairwise proximity. The second-
order proximity [14] describes whether two nodes have common neighbors, that is, the
similarity degree of the neighbor structure of a pair of nodes. Secondly, we use
dynamic programming to find the level where influential nodes lie in, then in order to
find the influential nodes in the level, we exploit the expected spread value of nodes
instead of the traditional Monte-Carlo simulation to calculate the optimization function
which significantly improves the efficiency of our algorithm. Our method achieves a
good performance compared with benchmark algorithms on three real world datasets.

In summary, the contributions of the paper are given as follows.

1. we propose a new approach called Hierarchy based Influence Maximization.
The method exploits the first-order and second-order proximity between nodes to
detect information diffusion levels, and then mines the influential nodes from these
levels by dynamic programming. To the best of our knowledge, we are among the
first to use both the first-order and second-order proximity to divide the levels,
which is robust to sparse network.

2. we conduct experiments on three real world datasets, compared to benchmark
algorithms, our algorithm outperforms in mining influential nodes in social
networks.

2 Related Work

The influence maximization problem is first proposed by Domingos and Richardson
[4]. Later, Kempe et al. [9] formulated it as a discrete optimization problem, besides,
they proposed a greedy climbing approximation algorithm to approximate the optimal
solution. Leskovec et al. [11] proposed the CELF (Cost- Effective Lazy Forward)
schema, an optimized greedy algorithm to reduce the running time. However, since the
greedy algorithms use Monte-Carlo simulation to accurately calculate the influence of
candidate nodes, when the network size increases, the running time will increase
sharply. As a result, some researchers began to consider using heuristics. Chen et al. [3]
presented the DegreeDiscount heuristic which assumes that influence propagation is
related to the degree of nodes, and it cut reduces the running time while not sacrificing
too much accuracy. In recent years, there are some other heuristics, such as SIMPATH
[7], IRIE (Influence Rank Influence Estimation) [8], TIM [13]. Although these
heuristics improve the efficiency to some extent, the accuracy is more or less affected.
Given that nodes disseminate information and influence each other in the form of social
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groups, some researchers began to study the influence maximization problem from the
perspective of community structure. Wang et al. [15] proposed the CGA (Community-
based Greedy Algorithm) for mining top-K influential nodes. Unlike other community
detection, CGA takes into account information diffusion between nodes when detecting
community. Zhu et al. [16] put forward the hierarchical community structure based
algorithm (HCSA) for influence maximization, which gains a wider range of influence
spread and less running time compared with heuristic algorithms. The aforementioned
approaches handle the efficiency or accuracy issues by improving greedy or heuristic
algorithms or by leveraging the community structure of social networks, but, none of
them take into consideration the hierarchical structure of nodes according to the first-
order and second-order proximity.

3 Method

3.1 Problem Definition

In order to clarify the main idea, we list the major notations used in the paper in
Table 1.

In the paper, we use Independent Cascade (IC) model as information diffusion
model. The principle of IC model can be stated as:

Given a social network graph G V ;Eð Þ, V represents the set of nodes ð Vj j ¼ NÞ,
E represents the set of edges ðE ¼ u; vð Þju; v 2 VÞ, and pp represents the propagation
probability. For each edge u; vð Þ 2 E, ppuv 2 0; 1½ �. In IC model, if a node changes
from an inactive state to an active state at the moment t, it only has once opportunity to
try to activate its inactive neighbor nodes. Moreover, once the node is activated, it will
remain active in the whole process. This process terminates until there are no more new
nodes are activated.

Table 1. Major notations used in the paper.

Notations Descriptions

G(V, E) A social network graph
V The set of nodes, Vj j ¼ N
E The set of edges
pp The propagation probability
K The seed set size
Ik The set of influential nodes obtained in the previous k steps
M The number of levels
levelm The mth level
R Ikð Þ The influence degree in G of set Ik
Rm Ikð Þ The influence degree, in levelm of set Ik
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3.2 The Hierarchy Based Influence Maximization

The Hierarchy based Influence Maximization algorithm proposed in this paper is
divided into two stages. The first stage is to divide the information diffusion into levels,
and the second stage is to find influential nodes in each level.

Detection of Information Diffusion Levels. To better measure the closeness of other
nodes with respect to the information publisher, we use random walk to calculate the
belonging coefficient of other nodes relative to the source node (publisher) to ensure the
comparability and continuity of results when detecting the information diffusion levels.
The main idea of random walk is: at each step, a walker standing at a node selects one
node from its neighbors to move according to a transition probability. As the walking
proceeds, the probability of reaching a node gradually decreases, this process ensures
that every node has a path to the source node, thus ensuring the continuity of infor-
mation diffusion.

The measurement of the belonging coefficient consists of the first-order proximity
and the second-order proximity between the nodes. S1ij and S2ij are used to represent
the first-order proximity and second-order proximity between node vi and vj, respec-
tively, then their definitions are as follows:

S1ij ¼ Aij

di
ð1Þ

S2ij ¼ N ið Þ \N jð Þj j
N ið Þ [N jð Þj j ð2Þ

Where, Aij indicates whether there is an edge between node vi and node vj, if it
exists, Aij ¼ 1, otherwise, Aij ¼ 0. di indicates the degrees of node vi. N ið Þ and N jð Þ
represent the neighbor node set of node vi and vj, respectively. And then we give the
definition of transition probability pij between two nodes vi and vj:

pij ¼ aS1ij þ 1� að ÞS2ij ð3Þ

Where, the corresponding matrix P is called the transition matrix, the adjustment
factor a 2 0; 1½ �. Given a information publisher s, the probability of walking from node
vi to node s within T steps is the belonging coefficient:

CT
s ¼ PT

t¼1
qts ið Þ ð4Þ

Where qts ið Þ ¼
PN

j¼1 q
t�1
s jð ÞQij is equals to the transition matrix except

Qsi ¼ 0; i ¼ 1; � � � ;N.
The belonging coefficient measures the closeness degree of the node vi relatives to

the source node s. Nodes with more paths and fewer steps from the source node have a
higher belonging coefficient. We sort the nodes according to the belonging coefficient
and use L to represent the result sequence. Nodes at the same level tend to form a line
segment, and the combination of multiple line segments constitutes the entire sequence.
We use linear regression to fit the line segment of each level. Because there are more
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connections within the information hierarchy than that in the outside, the gaps of the
ranked belonging coefficient can represent the boundaries of the information diffusion
levels. For a given M (representing the number of levels to be detected), we choose
M � 1ð Þ breakpoints to minimize the inconsistency. To solve this problem, we design
an algorithm based on dynamic programming. We define the state fij using the mini-
mum value of inconsistency of the first j nodes within i levels. Assuming that
fi�1;j0 j0 ¼ 1; 2; . . .; jð Þ is known, we can calculate fij by enumerating the last breakpoint.
The definition of the transition function fij is as follows:

fij ¼ min fi�1;x þ cost xþ 1; jð Þ� �
;x ¼ i� 1; � � � ; j� 1 ð5Þ

Where, cost p; qð Þ represents the minimum residual error to fit the part of order from
the p th node to the q th node, which is defined as follows:

cost p; qð Þ ¼ Pq
i¼p

y ið Þ � Lið Þ2 ð6Þ

y ið Þ ¼ xiþ b ð7Þ

x ¼ n
P

i
iL ið Þ�

P
i
i
P

i
L ið Þ

n
P

i
i2�

P
i
i
P

i
i

ð8Þ

b ¼
P

i
i2
P

i
L ið Þ�

P
i
i
P

i
iL ið Þ

n
P

i
i2�

P
i
i
P

i
i

ð9Þ

Where, i ¼ p; � � � ; q; n ¼ q� pþ 1. Then we use gij to record the breakpoint
selected by fij. The definition of gij is as follows:

gij ¼ argmax
x

fi�1;x þ cost xþ 1; jð Þ� �
;x ¼ i� 1; � � � ; j� 1 ð10Þ

By iteratively computing, we can obtain the division of the information diffusion
levels by the breakpoints stored in g. For the number of the final levels, we set it
according to the stability of the hierarchical structure. The stability of the hierarchical
structure is determined by the fitting function FLm ¼ Fitness Cmð Þ ¼

din
din þ dout

Cm ¼ Sm
m0 levelm0

� �
, where, Cm consists of top-m levels, din and dout represent

the internal and external degrees of the nodes in these levels, respectively. A hierar-
chical structure with a local maximum quality is considered stable, as M increases,
although more segments can better match the order of the nodes’ belonging coeffi-
cients, the structure’s inconsistency is also increasing. Therefore, we use as few lines as
possible to obtain a good hierarchical structure.

Finding the Influential Nodes. In stage one, we have divided social networks into
levels. The remaining challenge is to choose which level to find top-K influential nodes.
We use a dynamic programming algorithm to select the level of the k th ðk 2 1;K½ �Þ
influential node lies in. Let Ik�1 denote the set of influential nodes obtained in the
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previous k � 1ð Þ steps, if the k th node is mined in levelm, the maximal increase DRm of
the influence degree of levelm is calculated as follows:

DRm ¼ max Rm Ik�1 [ jf gð Þ � Rm Ik�1ð Þjj 2 levelmf g ð11Þ

R Ikð Þ ¼ r Ikð Þ
N

ð12Þ

Where, r Ikð Þ represents the number of nodes influenced by the set Ik in the process
of information dissemination. N indicates the number of network nodes.

In order to find the k th influential node, we need to select the level that produces the
largest increment of influence among all levels. Let R m; k½ � (m 2 1;M½ � and k 2 1;K½ �)
expresses the influence degree of mining the k th influential node in the first m levels,
we have:

R m; k½ � ¼ max R m� 1; k½ �;R M; k � 1½ � þDRmf g; Rm m; 0½ �;R 0; k½ � ¼ 0ð Þ ð14Þ

We select one of the first m levels to mine the k th influential node. We use a sign
function s m; k½ � to record the selected level, and the sign function is defined as follows:

s m; k½ � ¼ s m� 1; k½ �; R m� 1; k½ � �R M; k � 1½ � þDRmj
m; R m� 1; k½ �\R M; k � 1½ � þDRmj

(
s 0; k½ � ¼ 0 ð14Þ

After finding the level s m; k½ � where the k th influential node locates, we need to find
this influential node in the level and add it to the seed set.

When calculating r Ikð Þ, the existing influence maximization algorithm mostly uses
Monte Carlo simulation to calculate the average influence of a solution set, resulting in
a time consuming operation. In this paper, we use the expected spread value of Ik
instead of the Monte Carlo simulation when calculating r Ikð Þ to reduce the compu-
tational cost. Let NB Ikð Þ denote the one-hop area of the set Ik, and E denote the set of
edges of the social network, then NB Ikð Þ is defined as follows:

NB Ikð Þ ¼ uju 2 Ikf g[ vj9u 2 Ik; uv
!2 E

� � ð15Þ

r vð Þ ¼ uju 2 Ik; uv
!2 E

� ��� �� ð16Þ

We extract the edges between the nodes in NB Ikð Þ and NB Ikð Þ to form a subgraph of
graph G. Then given a small propagation probability pp in the IC model, we use the
expected number of nodes activated by Ik in the one-hop area as the fitting function
r Ikð Þ which is given as follows:

r Ikð Þ ¼ Ikj j þ P
v2NB Ikð Þ�Ik

1� 1� ppð Þr vð Þ
� �

ð17Þ

To sum up, we use dynamic programming to find out the level that the influential
node lies in firstly, then we find the influential node in the level and add it to the seed
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set. The aforementioned process is repeated until the size of the seed set reaches the
target K.

4 Experiments

4.1 Datasets

We adopt the three datasets: Facebook, Twitter and Epinions downloaded from the
Stanford Large Network Dataset Collection http://snap.stanford.edu/data/index.html as
experimental datasets. Table 2 lists the statistical properties of these three datasets.

4.2 Baseline Algorithms

We compare the performance of the proposed HBIM algorithm with several existing
algorithms as follows:

Greedy: a greedy algorithm [11] that makes use of 20,000 Monte-Carlo simulations
to evaluate the influence spread.

Degree-Discount: a single degree discount heuristic algorithm [3] that based on
nodes’ out-degree. The node’s out-degree decreases by 1 if its neighbor is selected as a
seed node.

CGA: a community-based greedy algorithm [15], which first detects communities
by considering into information diffusion, then exploits dynamic programming algo-
rithm to find influential nodes in these communities.

TIM: an influence maximization algorithm [13] based on the-state-of-the-art ran-
dom sampling with theoretical support.

4.3 Parameter Settings

In order to obtain the influence spread of the seed set, we run 20000 Monte Carlo
simulations on the network, and then take the average of the results as the final
influence spread. As for the benchmark algorithms, we use the parameter settings
mentioned in their papers [3, 11, 13, 15].

As for the HBIM algorithm proposed in this paper, We implement the algorithm
under the IC model, besides, we assign the propagation probability ppuv of the link
u; vð Þ in the following way.

Table 2. Statistical properties of datasets.

Dataset Nodes Edges Average degree Directed

Facebook 4,039 88,234 43.7 False
Twitter 81,306 1,768,149 43.5 True
Epinions 75,879 508,837 6.71 True
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ppuv ¼ min puv; 0:01f g ð18Þ

Where, puv denotes the transition probability from node u to node v, which is
calculated by the first-order proximity and the second-order proximity between u and v,
and its calculation method was mentioned as Eq. (3).

4.4 Experiment Results

Influence Spread. In order to estimate the influence spread of the HBIM algorithm
and the benchmark algorithms, we run a Monte-Carlo simulation with 20000 times and
take the average of all the simulation results as the final influence spread of the selected
seed sets returned from the experiments. We run the five algorithms to be compared on
the three datasets to obtain influence spread results with regards to the seed set size K
which increases from 5 to 50 with a spacing of 5. We list the results in Fig. 1(a)–(c).

According to Fig. 1(a)–(c), the influence spread results increase with the increment
of K, and HBIM gains significant performance on three datasets. An important
observation result is that in the three figures, the influence spread of HBIM is com-
parable to that of Greedy which indicates that the accuracy of the HBIM algorithm is
guaranteed. The idea of nodes segments can divide nodes with similar social attributes
into the same level, which avoids the overlapping problem of influence in the process
of finding seed set, and that results in a higher accuracy of the influence spread.
Although the influence spread of TIM algorithm is comparable to that of HBIM, the
TIM algorithm has a technical flaw in that it will run again to obtain a smaller set than
the one it gets for the first time, that is, it does not guarantee the sequence of the seed
set is the order of the influential nodes. The CGA detects communities based on label
propagation, the main principle of label propagation is that the community to which the
node belongs is a community that contains the maximum number of its influenced
neighbors. The algorithm neglects the influence of common neighbors on the detection
of communities, therefore, the accuracy of CGA is not as high as that of HBIM. The
influence spread of DegreeDiscount is relatively small on three datasets, this is because
it reduces time cost at the expense of accuracy. Furthermore, as the scale of the datasets
increase, the gap between DegreeDiscount and the other algorithms is gradually
increased, that is, the scalablity of DegreeDiscount is not as good as other algorithms.

Fig. 1. (a)–(c). Influence spread results varying from seed set size K on the three datasets.
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Running Time. Figure 2 shows the time cost of the four algorithms on the three
datasets. Particularly, compared to other algorithms, Greedy has a much more orders of
magnitude of running time, especially when the dataset is large-scale, so we did not
show it in the figure. From Fig. 2, we can see that the order of the magnitude of
running time of HBIM proposed in this paper is equivalent with that of DegreeDiscount
and CGA, which shows that HBIM guarantees the accuracy while improving the
efficiency.

5 Conclusions and Future Work

In this paper, we propose HBIM, an influence maximization method based on the
hierarchical structure of social network nodes, to mine the top-K influential nodes.
HBIM has two main contents. One is to detect information diffusion levels by con-
sidering into nodes’ first-order and second-order proximity, and the other is to use
dynamic programming to select levels to discover seed nodes. Empirical studies on
three real-world social network datasets show that our algorithm outperforms in both
accuracy and efficiency. In addition, it scales well to big networks. In the future, we can
take into account the semantic mechanisms [12] in the process of detecting of infor-
mation diffusion levels at the first phase of the HBIM algorithm.
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Abstract. Trying to extract features from complex sequential data for
classification and prediction problems is an extremely difficult task. Deep
Machine Learning techniques, such as Convolutional Neural Networks
(CNNs), have been exclusively designed to face this class of problems.
Support Vector Machines (SVMs) are a powerful technique for general
classification problems, regression, and outlier detection. In this paper we
present the development and implementation of an innovative by design
combination of CNNs with SVMs as a solution to the Protein Secondary
Structure Prediction problem, with a novel two dimensional (2D) input
representation method, where Multiple Sequence Alignment profile vec-
tors are placed one under another. This 2D input is used to train the
CNNs achieving preliminary results of 80.40% per residue accuracy (Q3),
which are expected to increase with the use of larger training datasets
and more sophisticated ensemble methods.

Keywords: Convolutional Neural Networks
Support Vector Machines · Deep learning · Machine learning
Bioinformatics · Protein Secondary Structure Prediction

1 Introduction

Learning, is a many-faceted phenomenon. The learning process includes the
acquisition of new declarative knowledge, the development of cognitive skills
through instructions and practice, the organizing of new knowledge into gen-
eral, the effective representation of data and finally, the discovery of new the-
ories and facts through practice and experimentation. Analysis of sequential
data, feature extraction and prediction through Machine Learning (ML) algo-
rithms/techniques, has been excessively studied. Nevertheless, the complexity
c© Springer Nature Switzerland AG 2018
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and divergence of the big data that exist nowadays keep this field of research
open. When designing ML techniques for complex sequential data prediction, one
must take into account, (a) how to capture both short- and long-range sequence
correlations [1], and (b) how to focus on the most relevant information in large
quantities of data [2].

A Convolutional Neural Network (CNN) is a class of deep, feedforward artifi-
cial neural networks (NN) that has successfully been applied to analyzing visual
imagery [3,4]. CNNs were inspired by the human visual system, where individ-
ual cortical neurons respond to stimuli, only in a restricted region of the visual
field, known as the receptive field. The receptive fields of different neurons par-
tially overlap such that they cover the entire visual field. CNNs have enjoyed
a great success in large-scale image and video recognition [5]. This has become
possible due to the large public image repositories, such as ImageNet [3], and
high-performance computing systems, such as GPUs or large-scale distributed
clusters [6]. Overall, CNNs are in general a good option for feature extraction,
immense complexity sequence and pattern recognition problems [3–10].

Support Vector Machines (SVMs) were introduced by Cortes and Vapnik
[11], initially for binary classification problems. SVMs are a powerful technique
for linearly and non-linearly separable classification problems, regression, and
outlier detection, with an intuitive model representation [11].

A challenging task for ML techniques is to make predictions on sequential
data that encode high complexity of interdependencies and correlations. Applica-
tion examples include problems from Bioinformatics such as Protein Secondary
Structure Prediction (PSSP) [12–15]; even though the three dimensional (3D)
structure of a protein molecule is determined largely by its amino acid sequence,
yet, the understanding of the complex sequence-structure relationship is one of
the greatest challenges in computational biology. A ML model designed for such
data has to be in position to extract relevant features, and at the same time
reveal any long/short range interdependencies in the sequence of data given.
The major key point that needs to be considered when trying to solve the PSSP
problem is the complex sequence correlations and interactions between the amino
acid residues of a protein molecule. In order to maximize the prediction accuracy
of a proposed NN technique for a specific amino acid in a protein molecule, the
adjacent amino acids have to be considered by the proposed NN architecture.

In this paper we present a hybrid machine learning method based on the
application of CNNs in combination with SVMs, for complex sequential data
classification and prediction. The implemented model is then tested on the PSSP
problem for 3-state secondary structure (SS) prediction.

2 Methodology

2.1 The CNN Architecture

CNNs are biologically-inspired variants of Multi-Layer Perceptrons (MLPs). The
CNN architecture consists of an input layer (inactive), multiple hidden layers and
an output layer. Generally speaking, CNNs combine three architectural ideas to
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ensure some degree of shift, scale, and distortion invariance: local receptive fields,
shared weights, and spatial subsampling/pooling [7]. The hidden layers of a CNN
typically consist of convolutional layers, pooling layers and fully connected lay-
ers. There are four main operations performed by a CNN: (a) convolution, (b)
non linearity (Rectifier Linear Unit - ReLU), (c) pooling or sub sampling, and
(d) classification. One of the major characteristics of CNNs is that they take
advantage of the fact that the input would be like an “image”, so they constrain
the architecture in a more sensible way. Every layer of a CNN transforms one
volume of activations to another through a differential function. The arrange-
ment of a CNN’s neurons, unlike a regular NN, is in 3 dimensions: width, height
and depth. The Convolutional Layer (CL) is the core building block of a CNN
that basically performs the feature extraction process. The key hyperparame-
ter of a CL is the kernel. The kernel is basically a 2D array initialized with
random values, and it is used to compute dot products between the entries of
the filter and the input volume at any position. The stride is another impor-
tant hyperparameter that defines the amount of sliding of the kernel across the
width and height of the input volume. The result of the kernel sliding over the
width and height of the input volume is the feature map, a 2D array holding the
responses/activations of the kernel at any spatial position. Moreover, the CNNs’
ability to handle complex sequential data relies in part to the sparse connections
of neurons. More specifically, each neuron is connected to only a local region
of the input volume (i.e., receptive field), and as a result CNNs are capable of
encoding complex sequential data correlations in their structure. The Pooling
Layer (PL) is another critical block, for building a CNN. Generally speaking, a
common technique for constructing a CNN is to insert a pooling layer in-between
successive CLs. The main purpose of a pooling layer is to (a) reduce the repre-
sentation size, (b) reduce the amount of computation in the NN, and (c) control
overfitting. The PL uses a filter of a certain dimension and resizes the input
given spatially, by striding the filter across the input volume and performing
usually the MAX operation. The last layer of a CNN is usually a fully-connected
Softmax output layer. Nevertheless, this final step can be practically realized
with any suitable classifier. In particular, a small advantage was reported when
the softmax output layer of a CNN was replaced by a linear SVM [16].

In this work, the libraries used for CNN and SVM implementations are
Deeplearning4j (https://deeplearning4j.org) and LibSVM [17] with Scikit-learn
front-end (http://scikit-learn.org), respectively.

2.2 Data Representation

As mentioned above, CNNs are capable of analyzing image-like inputs. The
major obstacle on trying to solve a complex sequential data classification problem
with CNNs is the representation of the data, in such a way that the network is
able not only to understand the shape of the input volume, but also to track
the complex sequence correlations among the input volume. Transforming the
sequential data shape so as to make it look like an “image”, allows CNNs to
capture the complex sequence-structure relationship, including to model the SS

https://deeplearning4j.org
http://scikit-learn.org
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interactions among adjacent or distant amino acid residues in the PSSP problem.
Along these lines, we reorganised the input data shape so that the vectors of
each sample in the sequential data are placed one under another, and in such
a way create an “image-like” input that will be effectively read correctly and
understood by the CNN. In particular, for PSSP we have created a new input
volume by placing Multiple Sequence Alignment (MSA) [18] profile vectors of
each amino acid one under another to construct a 2D representation of the MSA
profiles of a certain number of neighbouring amino acid residues (Fig. 1). By
sliding the kernel over the newly constructed input volume, CNNs are able to
perform feature extraction for each record data, but also consider neighboring
correlations and interactions, if any exist. Note that unlike other techniques, the
attention given to any neighboring record correlations is equally weighted across
all the input volume, for each sample given. This lets the CNN discover and
capture any short, mid- and long range correlations among the input records
and consider them all equally in terms of the output volume created. One of the
major contributions of this paper is this innovative input data representation,
especially designed for the complex sequential data of the PSSP problem.

Fig. 1. Example of Data Representation Method: An example of data represen-
tation of an input sample using a window size of 15 amino acids. Each line represents
the MSA profile vector for the specific amino acid. The SS label for the example input
sample showed in this figure, is the SS label for the middle amino acid.

2.3 Application Domain and Data

High quality datasets for training and validation purposes are a prerequisite when
trying to construct useful prediction models [2]. Therefore, we have chosen PSSP
a well known bioinformatics problem, which is characterized by the complexity
of the correlations between the data records due to the existence of combinations
of short, mid and long range interactions.

The PSSP, which is based on the Primary Structure (PS) of a protein
molecule is considered to be an important problem, since the SS can be seen
as a low-resolution snapshot of a protein’s 3D structure, and can thus shed light
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on its functional properties and assist in many other applications like drug and
enzyme design. As mentioned above, the understanding of the complex sequence-
structure relationship is one of the greatest challenges for the PSSP problem.
Since the currently known experimental methods for determining the 3D struc-
ture of a protein molecule are expensive, time consuming and frequently ineffi-
cient [12], different methods and algorithms for predicting the secondary struc-
ture of a protein molecule have been developed [8,12,14,15,19,20]. In particular,
Recurrent Neural Networks (RNNs) were successful in the PSSP problem [20],
as their architecture may capture both short- and long-range interactions needed
for PSSP. CNNs though can detect and extract high complexity features from
an input sequence and at the same time track any short-, mid- or long-range
interactions depending on the window size. Thus we decided to use CNNs in
combination with our novel data representation method for the PSSP problem.

A protein is typically composed by 20 different amino acid types which are
chemically connected to form a polypeptide chain, folding into a 3D structure by
forming any-range interactions. There are eight main SS states that each amino
acid can be assigned to, when a protein 3D structure is available, which are typ-
ically grouped in three classes, namely: Helix (H), Extended (E) and Coil/Loop
(C/L) with different geometrical and hydrogen-bonding properties. In this work,
we use CB513 [19], a non-redundant dataset which has been heavily used as a
benchmark for the PSSP problem that contains 513 proteins excluding eight pro-
teins with names: 1coiA 1-29, 1mctI 1-28, 1tiiC 195-230, 2erlA 1-40, 1ceoA 202-
254, 1mrtA 31-61, 1wfbB 1-37 and 6rlxC -2-20 due to corrupted MSA profiles.
The use of MSA profiles enhanced the performance of PSSP ML algorithms, since
they incorporate information of homologous sequences, which may facilitate the
detection of subtle, yet important, patterns along the sequences [14]. In partic-
ular, for representing each protein sequence position, we use a 20-dimensional
vector, which corresponds to the frequencies of 20 different amino acid types as
calculated from a PSI-BLAST [21] search against the NCBI-NR (NCBI: https://
www.ncbi.nlm.nih.gov/) database. Note that we have also performed an exper-
iment on a much larger dataset, namely PISCES [22] which shows promising
results.

2.4 Support Vector Machines (SVMs)

The main idea behind SVMs is that the input vectors are non-linearly mapped
to a higher dimensional feature space using an appropriate kernel function with
the hope that a linearly inseparable problem in the input space becomes linearly
separable in the new feature space, i.e., a linear decision surface can constructed
[23]. An important advantage of SVMs is that the search for the decision sur-
face that maximizes the margin among the target class instances ensures high
generalization ability of the learning machine [24]. Their robust performance
with respect to sparse and noisy data makes them a good choice in a num-
ber of applications from text categorization to protein function prediction [25].
Moreover, SVMs were shown to be the best technique for filtering on the PSSP
problem [13]. Given this, we decided to test the filtering capabilities of SVMs

https://www.ncbi.nlm.nih.gov/
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on the CNNs’ SS prediction results, to see whether the accuracy is improved,
and correct the predicted SS of a protein molecule gathered from an ensemble
of CNNs.

3 Results and Discussion

3.1 Optimising the Parameters

The CNN implementation using the innovative input data representation
described in Sect. 2.2 has been used and tested on the PSSP problem. To train
the CNN, we have used the already mentioned CB513 dataset. More specifically,
the model’s input was a combination of a certain number of neighboring amino
acids MSA profile record vectors, one under another, forming a 2D array. The
target output label was the SS class for the middle point amino acid that had
been examined.

A single CNN has been trained each time. We have decided to track the opti-
mal hyperparameter values using a specific fold after dividing CB513 dataset into
ten (10) folds. The main reason for optimizing the hyperparameters on a spe-
cific fold is the small size of CB513 dataset. Accuracy results using different
hyperparameter values on the other folds are not expected to vary considerably.
During this phase, multiple experiments were performed in order to tune up
our model and finally achieve the highest results using the CNN. These were
Q3 of 75.155% and Segment OVerlap (SOV [30]) of 0.713. CNNs with different
numbers of CLs, PLs, kernel sizes, strides, number of parallel filters in each CL,
and Gradient Descent (GD) optimization algorithms (Fig. 2) have been tested
for optimising the parameter values. The optimization algorithms used are: Gra-
dient Descent (GD), Gradient Descent with momentum (GD with momentum),
Adaptive Gradient Algorithm (AdaGrad) [26], RMSprop [27], AdaDelta [28],
Adaptive Moment Estimation (Adam) [29]. The two most critical hyperparam-
eters that showed a big impact on the results are: (a) the optimization method
used and (b) the number of neighboring amino acids to be considered in each
sample (window size). More specifically, the parameter W is the number of total
amino acids to be considered by the CNN when trying to predict the SS of the
floor(W/2) + 1 amino acid. Then, according to the W parameter we reconstruct
the input sample so as to become a 2D array with shape W ×20. The results are
shown in Fig. 3. Unlike Wang’s et al. [8] method, where they use 42 input fea-
tures for each residue in an one dimensional input vector format, we use 20×W
(20 input features for each amino acid × window size) input features for each
residue in a two dimensional input vector format where each line represents the
MSA profile of an amino acid at any specific position. Generally speaking Wang’s
et al. [8] 42 input features used include our 20 input features (MSA profile for
each amino acid) plus extra 22 input features for each amino acid. In this way,
our method reduces the dimensionality of the problem without losing too much
important information. Moving forward, we had to tune up the parameters that
determine the network’s architecture.
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Fig. 2. Optimizers: CNNs Q3 accuracy results using different Gradient Descent (GD)
optimization algorithms.

Fig. 3. Window Size: CNNs Q3 accuracy results with different window (W) sizes.

To get a general idea about the CNN performance we have trained it using
the CB513 dataset. After tuning up the network architecture, the following opti-
mal CNN parameter values resulted: (a) Number of convolutional layers: 3, (b)
Number of Pooling Layers: 0, (c) Kernel/Filter size: 2 × 2, (d) Stride: 1, (e)
Number of Parallel Filters per Layer: 5, (f) Neurons Activation Function: Leaky
ReLU, and (g) Optimization method: Gradient Descent with momentum = 0.85.
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The number of neighboring amino acids (W) that leads to some among the high-
est Q3 results and at the same time limiting the complexity of information been
used (i.e., minimizing the window) was 15. Moreover, no significant change on
Q3 accuracy results was noticed using larger window (W) sizes (Fig. 3). Based
on the results, we realized that (i) smaller W values do not provide enough
information to the network regarding the adjacent interactions between amino
acids, and (ii) larger W values contain way too much (unnecessary in some way)
information for the network to be handled and decoded properly.

We did not use pooling layers for our CNN architecture due to the fact
that subsampling the features gathered from CNN is not relevant in the PSSP
problem. Getting only the maximum value of a spatial domain does not work
in PSSP as every value extracted from CLs may represent interactions of amino
acids in a certain region. These are the most important factors that lead to low
Q3 and SOV results using PLs.

3.2 10-Fold Cross-Validation on CB513

In order to validate the robustness of the model as well as to prove its efficiency
to the exposure of various training and testing data, we had to complete the
evaluation of the PSSP problem on the CB513 dataset, using a 10-fold cross-
validation test. All the experiments made are with the optimal parameters of the
model as described in Sect. 3.1. As shown in Table 1, the Q3 and SOV accuracy
results of CNN with 10-fold cross-validation are 75.15% and 0.713 respectively.

Table 1. Summary of the results for all methods.

Method Q3(%) QH(%) QE(%) QL(%) SOV SOVH SOVE SOVL

CNN 75.155 69.474 67.339 84.566 0.713 0.696 0.669 0.734

CNN Ensembles 78.914 72.748 68.854 85.385 0.744 0.738 0.722 0.737

CNN Ens. + ER Filt. 78.692 70.147 66.921 87.053 0.756 0.669 0.713 0.731

CNN Ens. + SVM Filt. 80.40 80.911 70.578 85.165 0.736 0.724 0.716 0.743

3.3 Ensembles and External Rules Filtering

After tracking the optimal parameters for the CNN, we have performed six (6)
experiments for each fold. Then, in an attempt to maximize the quality of the
results gathered as well as to increase the Q3 and SOV accuracy, we proceeded
with using the winner-take-all ensembles technique [31,32] on every single fold
separately. This technique obtains the predictions of a number of same ML model
experiments, and applies the winner takes all method on each amino acid residue
SS class predicted. The dramatically improved results are shown in Table 1.

Filtering the SS prediction using external empirical rules is usually the last
step made, as a final attempt to improve the quality of the results. This is
accomplished by removing conformations that are physicochemically unlikely to
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happen [15]. Applying the external rules filtering on the CNN’s SS prediction,
interestingly, does not improve the Q3 score, but it improves the SOV. The
results are shown in Table 1.

3.4 Filtering Using Support Vector Machines (SVMs)

CNNs showed very good results on the PSSP (Figs. 2, 3 and Table 1). Neverthe-
less, as mentioned above, we tried to use SVMs to perform the filtering task.
More specifically, after gathering the predictions from the CNN we have trained
a SVM using a window of SS states predicted by the CNN. After performing
several experiments using different kernels, misclassification penalty parameters
(C) [11], Gamma values (G) [11] and window sizes (WIN), we have decided for
the optimal SVM parameters that lead to the highest Q3 and SOV accuracy on
the PSSP problem and which are: (a) Kernel: Radial Basis Function, (b) C = 1,
(c) G = 0.001 and (d) WIN = 7. The results are shown in Tables 2 and 3.

3.5 Summary of the Results

The results shown in Table 1 summarize the Q3 accuracy and SOV results gath-
ered, with all the methods discussed in this paper, using 10-fold cross-validation.
It is shown that the CNN can achieve relatively high Q3 and SOV results
(75.155% and 0.713 respectively) by its own. Nevertheless, the CNN using ensem-
bles improved the Q3 accuracy results by approximately 3% and SOV score by
0.031. Moving on, filtering the results using External Rules mentioned above,
decreases the overall Q3 accuracy results to 78.692%, but dramatically increases
the SOV score from 0.744 to 0.756. This was expected as filtering with External
Rules has previously been reported to improve SOV scores, but at the same
time decrease the overall Q3 accuracy [12]. Finally, using the combination of
CNN ensembles and SVM as a filtering technique, achieves the highest Q3 accu-
racy results (80.40%). The Q3 values for different folds vary from 78.96% to
83.91% and the SOV from 0.71 to 0.78 (Table 2). This indicates that the results
for different folds are of comparable quality. Moreover, the accuracies for the
three classes, H, E, L, are calculated separately (see QH , QE , QL and SOVH ,
SOVE , SOVL in Table 2) for getting deeper insight on the quality of the classifier,
and mispredictions are quantified in a confusion matrix, graphically represented
in Fig. 4. As we can see from Table 2, Q3 accuracy results gathered using CNN
Ensembles and SVM filtering are just over 80%, which is considered to be a high
enough percentage when it comes to PSSP, and which also makes this combina-
tion of NN techniques a good option when it comes to complex sequential data
classification and prediction problems. Heffernan’s et al. [20] method achieves
84.16% Q3 accuracy using Bidirectional Recurrent Neural Networks without
using a window, but these results are not directly comparable with our results,
as they make use of a much larger dataset that contains 5789 proteins, compared
to CB513 which contains 513 proteins.

As a conclusion to all the results presented in this paper, we can see that the
CNNs can effectively detect and extract features from complex sequential data,
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Table 2. CNN Ensembles and SVM Filtering: Q3 and SOV Results for each
Fold.

Fold Q3(%) QH(%) QE(%) QL(%) SOV SOVH SOVE SOVL

0 79.69 79.77 70.05 84.75 0.74 0.73 0.71 0.75

1 79.74 78.69 68.06 86.77 0.73 0.73 0.71 0.74

2 78.96 78.64 68.27 84.94 0.72 0.71 0.71 0.73

3 79.55 79.09 67.89 86.12 0.71 0.72 0.70 0.73

4 79.26 78.55 70.00 84.79 0.73 0.72 0.73 0.72

5 79.70 80.27 70.18 84.31 0.73 0.71 0.72 0.73

6 79.64 79.85 68.87 85.26 0.73 0.73 0.71 0.74

7 83.70 87.68 76.86 83.91 0.76 0.73 0.71 0.77

8 83.91 87.53 76.33 84.62 0.78 0.75 0.74 0.79

9 79.85 79.04 69.27 86.18 0.73 0.71 0.72 0.73

Avg. 80.40 80.91 70.57 85.16 0.736 0.724 0.716 0.743

Table 3. CNN Ensembles and SVM Filtering: Statistical Analysis

Q3 SOV

Sample standard deviation (s) 1.8140 0.0141

Variance (Sample standard) (s2) 3.2906 0.0002

Mean (Average) 80.4 0.736

Standard error of the mean (SEχ̄) 0.5736 0.0044

Fig. 4. Confusion Matrix: Predictions and mispredictions of the secondary structure
classes H, E and C/L after applying ensembles on each fold using CB513 dataset. Q3
accuracy scores are shown for each class.
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by utilizing our proposed “image” like data representation method used to train
the CNNs for the PSSP problem. This is due to the fact that our CNN archi-
tecture was exclusively designed to face such problems. In addition, SVMs seem
to be a good technique to be used for filtering the CNN output. The combina-
tion though, of these two ML algorithms seem to be a great option for complex
feature extraction and prediction on sequential data, as we take advantage of
the benefits of both techniques. Finally, by observing the results from the con-
fusion matrix of Fig. 4, we can conclude that the combination of CNNs with
SVMs filtering is a robust and high quality methodology and architecture, as
it maximizes the correct predictions for each SS class. Results are expected to
be improved by collecting more experiments for each fold, using larger datasets
(e.g., PISCES) and deploying more sophisticated ensemble techniques.

References

1. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850 (2013)

2. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine
learning. Artif. Intell. 97(1–2), 245–271 (1997)

3. Krizhevsky, A., Sutskever, I., Hinton, G. E.: ImageNet classication with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems 25: Proceedings
of the 26th International Conference on Neural Information Processing Systems,
pp. 1097–1105. Curran Associates, Lake Tahoe, Nevada, Red Hook, NY (2012)

4. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification:
a comprehensive review. Neural Comput. 29(9), 2352–2449 (2017)

5. Srinivas, S., Sarvadevabhatla, R.K., Mopuri, K.R., Prabhu, N., Kruthiventi, S.S.,
Babu, R.V.: A taxonomy of deep convolutional neural nets for computer vision.
Front. Robot. AI 2, 36 (2016)

6. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

7. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series.
In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp.
255–258. MIT Press, Cambridge (1998)

8. Wang, S., Peng, J., Ma, J., Xu, J.: Protein secondary structure prediction using
deep convolutional neural fields. Sci. Rep. 6, 18962 (2016)

9. Bluche, T., Ney, H., Kermorvant, C.: Feature extraction with convolutional neural
networks for handwritten word recognition. In: Proceedings of the 12th IEEE Inter-
national Conference on Document Analysis and Recognition, pp. 285–289 (2013)

10. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent
neural networks. In: Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing, Vancouver, BC, Canada, pp. 6645–6649 (2013)

11. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

12. Baldi, P., Brunak, S., Frasconi, P., Soda, G., Pollastri, G.: Exploiting the past
and the future in protein secondary structure prediction. Bioinformatics 15(11),
937–946 (1999)

http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1409.1556


CNNs in Combination with SVMs, for Sequential Data Classification 455

13. Kountouris, P., Agathocleous, M., Promponas, V.J., Christodoulou, G., Hadji-
costas, S., Vassiliades, V., Christodoulou, C.: A comparative study on filtering
protein secondary structure prediction. IEEE/ACM Trans. Comput. Biol. Bioin-
form. 9(3), 731–739 (2012)

14. Rost, B., Sander, C.: Combining evolutionary information and neural networks
to predict protein secondary structure. Proteins: Struct. Funct. Bioinform. 19(1),
55–72 (1994)

15. Salamov, A.A., Solovyev, V.V.: Prediction of protein secondary structure by com-
bining nearest-neighbor algorithms and multiple sequence alignments. J. Mol. Biol.
247(1), 11–15 (1995)

16. Tang, Y.: Deep learning using linear support vector machines. arXiv preprint
arXiv:1306.0239 (2013)

17. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2(3), 27 (2011)

18. Wallace, I.M., Blackshields, G., Higgins, D.: Multiple sequence alignment. Curr.
Opin. Struct. Biol. 15(3), 261–266 (2005)

19. Cuff, J.A., Barton, G.J.: Evaluation and improvement of multiple sequence meth-
ods for protein secondary structure prediction. Proteins: Struct. Funct. Bioinform.
34(4), 508–519 (1999)

20. Heffernan, R., Yang, Y., Paliwal, K., Zhou, Y.: Capturing non-local interactions
by long short-term memory bidirectional recurrent neural networks for improving
prediction of protein secondary structure, backbone angles, contact numbers and
solvent accessibility. Bioinformatics 33(18), 2842–2849 (2017)

21. Schaffer, A.A., et al.: Nucl. Acids Res. 25, 3389–3402 (1997)
22. Wang, G., Dunbrack Jr., R.L.: PISCES: a protein sequence culling server. Bioin-

formatics 19(12), 1589–1591 (2003)
23. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw.

10(5), 988–999 (1999)
24. Meyer, D., Wien, F.T.: Support vector machines. R News 1(3), 23–26 (2001)
25. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler,

D.: Support vector machine classification and validation of cancer tissue samples
using microarray expression data. Bioinformatics 16(10), 906–914 (2000)

26. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

27. Tieleman, T., Hinton, G.: Lecture 6.5 - RMSProp, Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Netw. Mach. 4(2), 26–31
(2012)

28. Zeiler, M. D.: ADADELTA: An Adaptive Learning Rate Method. arXiv preprint
arXiv:1212.5701 (2012)

29. Kingma, D. P., Ba, J. L.: Adam: a method for stochastic optimization. In: Suthers,
D., Verbert, K., Duval, E., Ochoa, X. (Eds.) Proceedings of the 3rd International
Conference on Learning Representations (ICLR 2015), Leuven, Belgium, pp. 1–13.
ACM, New York, NY, USA (2015)

30. Rost, B., Sander, C., Schneider, R.: Redefining the goals of protein secondary
structure prediction. J. Mol. Biol. 235(1), 13–26 (1994)

31. Granitto, P.M., Verdes, P.F., Ceccatto, H.A.: Neural network ensembles: evaluation
of aggregation algorithms. Artif. Intell. 163(2), 139–162 (2005)

32. Fukai, T., Tanaka, S.: A simple neural network exhibiting selective activation of
neuronal ensembles: from winner-take-all to winners-share-all. Neural Comput.
9(1), 77–97 (1997)

http://arxiv.org/abs/1306.0239
http://arxiv.org/abs/1212.5701


Classification of SIP Attack Variants
with a Hybrid Self-enforcing Network

Waldemar Hartwig1(&), Christina Klüver1, Adnan Aziz2,
and Dirk Hoffstadt2

1 Computer Based Analysis of Social Complexity,
University of Duisburg-Essen, 45117 Essen, Germany

Waldemar.Hartwig@mail.de,

Christina.Kluever@uni-due.de
2 Computer Networking Technology Group, University of Duisburg-Essen,

45141 Essen, Germany
{Adnan.Aziz,Dirk.Hoffstadt}@uni-due.de

Abstract. The Self-Enforcing Network (SEN), a self-organized learning neural
network, is used to analyze SIP attack traffic to obtain classifications for attack
variants that use one of four widely used User Agents. These classifications can
be used to categorize SIP messages regardless of User-Agent field. For this, we
combined SEN with clustering methods to increase the amount of traffic that can
be handled and analyzed; the attack traffic was observed at a honeynet system
over a month. The results were multiple categories for each User Agent with a
low rate of overlap between the User Agents.

Keywords: Self-Enforcing Network � SEN � VoIP � Session initiation protocol
SIP � Misuse � Fraud � Reference type � Clustering

1 Introduction

Voice over IP (VoIP) systems enable advanced communication (such as voice or video)
over the Internet and other data networks and therefore are replacing the traditional
phone infrastructures. Nowadays, VoIP is widely used in organizations, companies,
and private environments, as it has the advantage of the flexibility and low costs. Many
existing devices and applications use standardized VoIP protocols (e.g. SIP for sig-
naling [1] or Real-Time Transport Protocol (RTP) for media transmission [2]). SIP is a
text-based application layer protocol similar to File Transfer Protocol (FTP) used to
establish, maintain and terminate multimedia sessions between User Agents (UA).
The SIP communication uses a request-response protocol, i.e., the source sends a SIP
request message and receives a SIP response message. SIP is an inherently stateful
protocol and uses the HyperText Transfer Protocol (HTTP) Digest Authentication for
user authentication [3]. In its simplest form SIP uses the transport protocol User
Datagram Protocol (UDP), but others can also be used, e.g., Transmission Control
Protocol (TCP) or Stream Control Transmission Protocol (SCTP).

This high availability of SIP-based VoIP systems has lured attackers to misuse the
VoIP systems. The SIP servers, particularly if they are accessible from external
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networks, are subject to fraudulent registration attempts as a prerequisite for calls via
compromised SIP accounts. This is extremely attractive for attackers because they can
gain immediate financial benefit by making toll calls (international, cellular, premium
services) via third-party accounts. This attack is called Toll Fraud and can cause the
account owner substantial financial damage in a very short time.

Accordingly, several anti-fraud and anti-phishing techniques were applied, con-
sisting of rule-based approaches, supervised and unsupervised methods, as well as
hybrid techniques (for an overview [4]).

It has also become very prevalent to perform denial-of-service (DoS) attacks at
application level due to increased code complexity and modular nature of the Internet.
Elsabagh et al. [5] have proposed a practical system, Cogo, for early detection and
mitigation of software DoS attacks. Cogo recognizes the future exhaustion of resources
by employing the Probabilistic Finite Automata (PFA) on the network I/O events,
modeled in linear time fashion.

Manunza et al. [6] have presented a rule-based real-time fraud detection system for
VoIP networks, Kerberos, that is highly dependent on an Online Charging System,
which generates events associated with setup, evolution, and termination of calls in the
VoIP network. Kerberos uses these events to identify patterns associated with the
malicious use of the resources. Vennila et al. [7] have proposed a 2-tier model to
protect users from spam over Internet telephony (SPIT) calls. This 2-tier model is based
on stochastic models, Markov Chain (MC) and incremental support vector machine
(ISVM).

Aziz et al. [8, 9] have used a Honeynet System to capture the SIP attack traffic to
analyze the attacker behavior. This approach is useful in scenarios where it is not
possible to access the user’s data due to security policies of the country.

In this paper, the goal is to identify an unknown amount of attack patterns for four
User Agents. For this purpose, a hybridization of the self-organized learning neural
network, namely the Self-Enforcing Network, and a modified Single Linkage
(MSL) clustering algorithm is used to analyze attack traffic at honeynet systems.

The remainder of this paper is organized as follows: Sect. 2 gives a brief overview
of SIP, Toll Fraud attack and four dominant attack tools recorded at the honeynet
systems. An overview of the artificial neural network, Self-Enforcing Network (SEN),
is given in Sect. 3 followed by the presentation of the sequential clustering in Sect. 4
where the organization of the data with SEN is augmented with other clustering
algorithms. In Sect. 5 the analysis of the SIP attack data is covered. Finally, Sect. 6
concludes the paper.

2 SIP and Attack-Tools

SIP is a signaling protocol used to establish, modify and terminate multimedia sessions
in IP-based networks. It supports a number of messages for different purposes. For this
paper, the following SIP messages are relevant: The User Agent (UA) (i.e., SIP device)
uses REGISTER method to register its location to the SIP server. During this process,
the UA sends credentials (username and password) to the SIP server. After successful
registration, the UA can initiate calls using INVITE messages. The OPTIONS
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messages allow a UA to query a server’s capabilities and to discover information about
the supported SIP methods, extensions, codecs, etc. without establishing a session.

The Toll Fraud attack comprises of the following four stages

1. SIP Server & Device Scan. An attacker can use OPTIONS packets to “ping” any
single IP address or whole subnets in order to identify SIP devices, because of the
fact that the SIP protocol requires every SIP device to answer OPTIONS packets.
Even if a UA’s SIP stack implementation is not standard compliant, the attacker can
instead use REGISTER requests to identify SIP devices.

2. Extension Scan. To identify active extensions (user accounts) of known SIP servers,
the attacker tries to register at several extensions, typically without using a pass-
word. An extension identifier consists of digit sequences and/or strings. If the
extension exists, the server normally answers with a 401 UNAUTHORIZED,
because no password is given. If it does not exist, a 404 NOT FOUND is returned.
The result of this attack stage is a complete list of existing extensions (provider
accounts).

3. Registration Hijacking. To register for a given extension, the attacker tries to guess
the password sending – possibly many – REGISTER messages with different
passwords to a specific extension. If a valid password is found, the information is
stored by the attacker and used later on the credentials to register at this extension.

4. Toll Fraud. The term multi-stage “toll fraud” is used if a person generates costs
(toll) by misusing a hijacked extension using the VoIP functionality to make calls,
specifically international calls or calls to premium numbers. Another motivation to
use a hijacked account is to obfuscate the caller identity. In terms of SIP messages,
the attacker first sends a REGISTER message with the correct password. After the
“200 OK” message from the server, the attacker can initiate calls by using INVITE
messages.

The first three stages (1–3) of multi-stage Toll Fraud can be executed, either
completely or partially, by using paid/freely available tool suites. Some commonly
used tools are SIPVicious, SIPCli, VAXSIPUserAgent, and Random user agent
(RUA). SIPVicious contains several small programs: The first one is a SIP scanner
called “svmap”. It scans an IP address range for SIP devices, either sequentially or in
random order, typically with OPTIONS packets. SIPVicious also provides tools to find
active SIP accounts with REGISTER messages (“svwar”) and to crack passwords
(“svcrack”). If not modified, SIPVicious identifies itself as UA “friendly-scanner”.
SIPCli is a Windows-based command line tool, which usually sends only the INVITE
packets and is capable to perform all four stages of the multi-staged Toll Fraud attack.
VaxSIPUserAgent [9] is another tool used to perform the Toll Fraud attacks. It sends
REGISTER and INVITE packets. RUA tool [10] sends OPTIONS packets only;
therefore, it performs Server Scans only.

To analyze the behavior of different attackers and attack tools – used to perform the
Toll Fraud attacks – it is necessary to inspect the attack traffic. Due to data protection
laws in Germany, it is not possible to access the user data from VoIP service providers.
The Computer Network and Technology Group (TdR) of the University of Duisburg-
Essen have implemented a honeynet system [11] to capture the SIP traffic. The traffic
destined to this honeynet system is by default attack traffic, as it does not contain any
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legitimate user in it. The attack traffic is stored in MySQL database using a tool, SIP
Trace recorder (STR) [12]. The STR then performs some statistical analysis on the
captured attack traffic, e.g., number of requests per day, number of requests per attack
tool, clustering the requests with respect to different stages of multi-staged Toll Fraud
attack, etc. The clustering of SIP requests performed by STR is based on MySQL
queries. No machine learning techniques or clustering algorithms were used to group
the SIP requests into different stages of multi-staged Toll Fraud attacks.

3 The Self-enforcing Network

The Self-Enforcing Network (SEN) is a self-organized learning neural network,
developed by the Research Group “Computer-Based Analysis of Social Complexity”
(CoBASC). In this section, the functionalities that are relevant to the study are briefly
presented. More in-depth descriptions of the SEN are found in e.g. [13–15].

The data (objects and attributes) are represented in a “semantical matrix” where the
rows represent the objects o and the columns represent the attributes a. A value of the
matrix wao represents the degree of affiliation of an attribute to an object. In this case,
the values of the semantical matrix are the encoded fields of the SIP request messages
monitored by the honeynet system. The encoding is explained in Sect. 5 below.

The training of the network is done by transforming the min-max normalized
values of the semantical matrix (interval [–1.0 – 1.0] or [0.0 – 1.0] depending on the
attribute) into the weight matrix of the network with the following learning rule:

w tþ 1ð Þ ¼ w tð ÞþDw; and
Dw ¼ c � wao

ð1Þ

where c is a constant usually defined as 0 � c � 1 with the same purpose as the
learning rate in standard neural networks.

For the analysis of real data, the “cue validity factor” (cvf) is introduced, which is a
measure of how important an attribute is for the membership in each category [16]. The
cvf allows to exclude (cvf = 0.0) or to dampen (0.0 < cvf < 1.0) certain attributes to
steer the formation of clusters. Equation (1) then becomes

Dw ¼ c � wao � cvfa ð2Þ

For the activation function the Enforcing Activation Function (EAF) was used:

aj ¼
Xn
i¼1

wij � ai
1þ wij � ai

�� �� ð3Þ

aj is the activation value of the receiving neuron j, ai is the activation values of the
sending neurons i and wij is the respective weight value (= wao). In this study, the
topology of SEN can be seen as a two-layered network with a feed-forward topology
with the attributes as input neurons and the objects as output neurons.
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After the learning process is finished, new input vectors (new SIP request mes-
sages) with the same attribute names can be inserted and classified. These input vectors
are computed in two different ways: the computed similarities according to the highest
activated neuron (ranking), and the smallest difference (distance) between the input
vectors and the learned vectors from the semantical matrix.

SEN offers several methods to visualize the results allowing for a fast interpreta-
tion. For the analysis primary the “map visualization” was used. It maps the objects to a
2D plane according to the Euclidean distance between two objects. Similar objects are
moved closer to one another while dissimilar objects are moved further apart.

4 Sequential Clustering

Self-organized learning neural networks along with clustering methods excel in situa-
tions where unlabeled data have to be organized into a probably unknown number of
groups of objects [17]. The conditions are that objects in a group should be as similar to
one another as possible, and objects in different groups as dissimilar as possible. For an
overview [18–20] describe different frameworks and methods.

Note that the goal of this study is to identify an unknown amount of attack variants
from the data with a focus on attack variants related to the four known ATs (see
Sect. 2). Therefore, an unsupervised method is considered more suitable than a
supervised or semi-supervised one.

For that reason, the self-organized learning Self-Enforcing Network (SEN) was
chosen for the analysis of the attack traffic. In addition, the visualization components of
SEN allow a fast interpretation of the results.

To increase the amount that can be processed with SEN the data is split into
fragments, which are read sequentially into the SEN as objects. The SEN then orga-
nizes these fragments and clusters are calculated based on the highest activation values
and the smallest distance between the inserted objects as input vectors and the learned
objects. The centroids or geometric centers of the clusters are extracted with a clus-
tering algorithm and used as “reference types” [14] of their clusters and all centroids
from all fragments are read into a single SEN.

The clustering algorithm used is called MSL. It is a modification of a Single-
Linkage [21] algorithm (MSL) with two distance metrics and thresholds instead of one,
namely the previous mentioned calculations. Both thresholds have to be met for two
clusters to be merged into a single one. Meaning that

• the activation of at least one object o1 in the first cluster for an object o2 in the other
cluster has to be higher than the activation-threshold and

• the distance between these objects o1 and o2 has to be smaller than the distance-
threshold.

Instead of a fixed threshold MSL introduces a dynamic definition of the thresholds
through a single parameter r. The parameter r dictates that the activation between two
objects o1 and o2 must be at least the rth highest and the distance at max the rth lowest
compared all other activation- and distance-pairs with o1.
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Previous, other clustering algorithms that were tested with smaller sized data from
the honeynet system were a variation of Lloyd’s k-means algorithm [22], a Single
Linkage algorithm using only one distance metric and a combined algorithm using
evidence accumulation. The variation of k-means uses multiple k-means runs and
selects the k-means run with the least mean square error as the result of the algorithm
[23]. The combined algorithm using evidence accumulation uses multiple k-means runs
to generate multiple clusterings. The co-occurrences of a pair of patterns in a cluster are
mapped to a co-association matrix. An MST-based clustering algorithm (minimum
spanning tree [21]) is then applied to this matrix to calculate the final clustering
[23, 24].

While most algorithms were able to successfully detect all known attack variants
(see [8] for the variants) in the preliminary test data the MSL algorithm stood out with
its low time complexity and its ease of use. It performed significantly faster than
Multiple k-Means and Evidence Accumulation and the lack of parameters meant less
parameter exploration to discover successful parameter combinations.

5 SIP-Data Analysis and Results

The data used for the analysis contains SIP requests, for the month of January 2016,
recorded at the Honeynet system (cf. Sect. 2), consisting of around 4.2 million SIP
packets. For the analysis purposes, the following SIP header fields we used: SourceIP,
SourcePort, DestinationIP, DestinationPort, Method, CallID, UserAgent, ContactUser,
ContactHost, ToUser, ToHost, FromUser, FromHost, Via and Time.

Aside from numerical fields like SourcePort most other fields had to be encoded
into real values before they could be inserted into a SEN. e.g. the IP addresses were
split into three attributes: the first 8 and the last 24 bits as decimals and the IP address
class as an integer (1 to 5 where 1 represents A and 5 represents E). Other non-
numerical fields were encoded as the arithmetic mean of the ASCII decimal values of
all characters rounded to an integer value with values above 130 were changed to –130.
Additionally, 12 comparison attributes were added, which contain +1.0 if the fields of
the compared attributes are equal and –1.0 otherwise.

In this analysis, 17 attributes were considered, which have a cvf equal to 1. Fig-
ure 1 shows these attributes along with their lower and upper limits, which are needed
for the min-max normalization.

For the analysis and the sequential clustering, the Enforcing Activation Function
with c = 0.1 and one learning step was used. The dataset was split into fragments of
2000 objects each and the clustering algorithm parameter r was set to 1 (r = 1) with a
precision of two decimal places.

The 4.2 million SIP requests were compressed to 3400 elements through the
sequential clustering, which is organized into 15 groups by SEN (see Fig. 2). For
visibility only four attack tools (ATs) SIPVicious, SIPCli, VAXSIPUserAgent and
RUA (with UserAgents names “friendly-scanner” (FS), “SIPCli” (CLI),
“VaxSIPUserAgent” (VAX) and a random String consisting of 8 alphabetical characters
(RND)) are shown in red, blue, green and purple respectively.
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13 out of 15 groups contain elements of a single Attack Tool only, while group 3
contains FS and VAX-elements and group 7 contains FS-, CLI- and VAX-elements.
Messages from RND can be distinguished in 100% of all cases; CLI in 4 out of 5, FS in
5 out of 7 and VAX in 3 out of 5.

Considering that the groups 3 and 7 contain more elements than a single Attack
Tool (AT), 18 reference types were derived from the groups to identify all elements.

The correlation of all reference types for Friendly Scanner (FS) with the attack
variants is shown in Table 1.

The first seven FS reference types correlate to an attack variant presented by [8].
For example, reference type 1 correlates with variant SS-b or SS-f just from the shown
characteristics.

Fig. 1. Selected attributes with the cvf = 1 for all attributes

Fig. 2. Visualization of AT categories (15 identified groups) after sequential clustering (Color
figure online)
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The characteristics of the other 11 reference types (to the best knowledge of the
authors) are not presented in any other publication. Reference types 11 and 12, for
example, have invalid IP-addresses and empty ContactUser and FromUser fields, while
reference type 16 contains “1.1.1.1” for ToHost and FromHost and “127.0.0.1” for
ContactHost.

Moreover, the reference types were tested with random data samples, i.e. new input
vectors, from August 2016 and December 2016 where multiple new reference types
were discovered. These reference types are shown in Fig. 3 together with the reference
types from January 2016.

The 18 previously found reference types are confirmed by the new data, and
additional 7 attack variations for the four dominant attack tools are detected and defined
as reference types. The obtained 25 reference types are identified and organized in 17
groups out of which 12 contain only reference types of a single Attack Tool. Out of six
attack tool-pairs, VAX/RND can be distinguished for all reference types.

Table 1. Correlation of Reference Types (1–7) to Attack Variants from [8] with new additional
characteristics of the reference types

Ref.
type

Attack
variant

Additional characteristics

1 SS-b CU/TU/FU = 100; TH/FH = 1.1.1.1
2 SS-d CU/TU/FU = 100; TH/FH = 1.1.1.1
3 SS-f CU/TU/FU = 100; TH/FH = invalid;
4 RH-a CU/TU/FU = 123; CH = 1.1.1.1
5 SS-d CU/TU/FU = “” and others mixed; CH/TH/FH = invalid; Method,

50% REG
6 ES-a CH = 1.1.1.1
7 ES-b1 Method: 75% REG, 20% INV
8 – Method: 99.9% INV
9 – CU/FU = 100; TU = “”; TH = invalid
10 – CU/TU/FU = 123
11 – CU/FU = “”; CH/FH = invalid
12 – CU/FU = “”; CH/FH = invalid
13 – –

14 – TH/FH = 1.1.1.1
15 – –

16 – CU = 1 or multiple 1 s; TU/FU = 100; CH = 127.0.0.1;
TH/FH = 1.1.1.1

17 – Method: 40% INV
18 – CU/TU/FU = alphabetical Strings
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6 Conclusion and Further Work

The self-organized learning neural network Self-Enforcing Network (SEN) was used to
analyze received SIP request messages from a honeynet system at the University of
Duisburg-Essen. The goal was to identify categories for four dominant User Agents
and the attack tools behind them. For that purpose, the SEN was extended with
clustering capabilities to increase the amount of data that can be analyzed.

The SIP attack traffic for January 2016 was analyzed and 18 different categories
were identified for four User Agents including “friendly-scanner” (FS), “SIPCli” (CLI),
“VaxSIPUserAgent” (VAX) and a string of eight random alphabetical characters
(RND). The 7 out of 18 categories were correlated to attack variants discovered by [8]
while SEN discovered the previously unknown other 11. The 18 categories are orga-
nized into 15 groups. Most contain categories of a single Attack Tool meaning that
input messages classified into those categories could be mapped to a specific AT
without conflict.

A test with messages from two other months discovered seven new categories for
three out of four User Agents: three FS attack variations, three VAX variations, and an
additional RND variation.

As part of future work, the importance and consideration of certain attributes could
be adjusted to create more diverse categories for the User Agents. Another part of
future work is the analysis of other user agents that were not considered in this study.
The final part of future work includes the analysis of traffic from users in regular VoIP
Systems and the comparison to the identified categories for the purpose of distin-
guishing attacks from regular usage in a live system.

Fig. 3. 18 reference types from January 2016 with additional 7 reference types from test data.
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Abstract. Although many unsupervised feature selection (UFS) meth-
ods have been proposed, most of them still suffer from the following limi-
tations: (1) these methods are usually just applicable to single-view data,
thus cannot well exploit the ubiquitous complementarity among multi-
ple views; (2) most existing UFS methods model the correlation between
cluster structure and data distribution in linear ways, thus more gen-
eral correlations are difficult to explore. Therefore, we propose a novel
unsupervised feature selection method, termed as generalized Multi-View
Unsupervised Feature Selection (gMUFS), to simultaneously explore the
complementarity of multiple views, and complex correlation between
cluster structure and selected features as well. Specifically, a multi-view
consensus pseudo label matrix is learned and, the most valuable features
are selected by maximizing the dependence between the consensus clus-
ter structure and selected features in kernel spaces with Hilbert Schmidt
independence criterion (HSIC).

Keywords: Unsupervised · Multi-view · Feature selection

1 Introduction

For many real-world applications, such as image understanding [15], bioinformat-
ics [20] and text mining [19], data are usually represented as high dimensional
feature vectors. However, direct utilization of these high-dimensional data usu-
ally suffers from high computation cost, heavy storage burden and, performance
degradation. Feature selection can reduce time and space requirements, alleviate
the over-fitting problem due to the “curse of dimensionality” and address the
poor performance resulting from irrelevant and redundant features [8].

According to whether labels are available, feature selection approaches are
basically categorized into supervised and unsupervised ones. Supervised feature
selection methods usually jointly evaluate the importance of different features via
the correlation between features and class labels [8,25]. Unfortunately, labeled
data are usually scarce and manually labeling is rather expensive, while unla-
beled data are much more abundant. Therefore, unsupervised feature selection
(UFS) [3,14,17,24] is practically important and has attracted close attention.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11140, pp. 469–478, 2018.
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Early methods [10,24] usually evaluate the importance of each feature individu-
ally and select features in the one by one manner, which could not well explore
the correlation among features. Then, some methods [3,25] address this issue
in two steps. Recently, researchers have proposed methods [9,14,17,23,26] to
simultaneously exploit discriminative information and feature correlation in a
unified framework. In this manner, it avoids the separation of structure identi-
fication and feature selection, and thus better performance could be expected.
Generally, there are two key factors for the success of unsupervised feature selec-
tion, i.e., identification of underlying data structure and, exploration
of correlation between underlying data structure and selected features.
For the first one, due to the lack of label information, the underlying data struc-
ture is difficult to accurately identified. Therefore, we attempt to borrow other
information from the data to guide the process of feature selection. These multi-
view representations can capture rich information from multiple cues to benefit
the underlying structure identification. For the second one, most existing meth-
ods [14,17,26] hold the underlying assumption that there exists linear correla-
tion between the selected features and data structure. However, correlation in
practice is usually much more complex than linear correlation in most existing
approaches.

To address the above limitations, we propose a novel unsupervised feature
selection approach for multi-view data, termed as generalized Multi-View Unsu-
pervised Feature Selection (gMUFS). Specifically, there are two contributions
in gMUFS. First, our method identifies cluster structure of data with the help
of complementarity among multiple views. Second, to explore more general cor-
relation between the consensus data structure and the selected features, Hilbert
Schmidt independence criterion (HSIC) is introduced to capture feature-label
dependence in kernel spaces. To solve our problem, an efficient alternating opti-
mization algorithm is developed. Experimental results on benchmark datasets
validate the effectiveness of the proposed approach over other state-of-the-arts.

2 gMUFS: Our Feature Selection Model

2.1 Preliminaries

Throughout this paper, we use bolded lower-case letters to denote vectors in
column form, bolded upper-case letters to denote matrices and upper-case letters
to denote constants. We denote the data collection with N samples and V views
as D = {X(v) ∈ R

Dv×N}V
v=1, where X(v) is the feature matrix of the vth view.

By concatenating these views, the feature matrix corresponding to all views can
be denoted as X = [X(1); · · · ;X(V )] ∈ R

D×N , where D =
∑V

v=1 Dv.
Considering the effectiveness of spectral clustering technique [2,18], it is uti-

lized to learn pseudo cluster labels to guide the process of feature selection in
our approach. Specifically, for the affinity matrix used in spectral clustering,
a k-nearest-neighbor graph is introduced since local structure of the data gen-
erally reflects both important discriminative and cluster information, and its
effectiveness has been empirically proved by many feature selection methods
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[3,14]. Moreover, it usually works better than other ones constructed according
to global geometry structures. The affinity matrix S is defined as:

Sij =

{
exp(−‖xi−xj‖2

σ2 ),Nk(xi, xj) = 1
0, otherwise,

(1)

where Nk(xi,xj) indicates the k-nearest neighboring relationship. Specifically,
Nk(xi,xj) = 1 if xi (or xj) belongs to the set of k-nearest neighbors of xj (or
xi), otherwise, Nk(xi,xj) = 0. Accordingly, the objective function of spectral
clustering with local geometric structure is defined as follows:

min
U

N∑

i,j=1

Sij || ui√
Dii

− uj√
Djj

||2 = min
U

Tr(UT LU), s.t. U(v)T U(v) = I, (2)

where D is a diagonal matrix with Dii =
∑n

j=1 Sij , and L is the normalized
graph Laplacian matrix constructed with L = D−1/2(D − S)D−1/2.

2.2 Generalized Correlation

For unsupervised feature selection [6,14,17], to ensure the quality of the selected
features, many approaches try to maximize the correlation between the selected
features and the pseudo label matrix. Typically, the loss function is usually
defined as

∥
∥XT W − U

∥
∥2

F
or

∥
∥XT W − U

∥
∥
2,1

for robust issue, where W ∈ R
D×C

is the feature selection matrix. Clearly, the underlying assumption is that the
pseudo label matrix could be linearly reconstructed by the selected features,
which is limited for the cases of complex dependence in practice. Therefore, we
propose to measure the dependence in kernel space, which maps variables into
a reproducing kernel Hilbert space such that the correlations measured in that
space corresponds to high-order joint moments between the original distributions
[1,7,16].

Supposing that Z = {xi,yi}N
i=1 are jointly drawn from two domains X (xi ∈

X ) and Y (yi ∈ Y), with F and G being kernel spaces on X and Y respectively,
then, the dependence of the two random variables is measured as:

HSIC(Z,F ,G) = (N − 1)−2Tr(K1HK2H), (3)

where K1 and K2 are the Gram matrices corresponding to different variables.
For a constant N , 1N ∈ R

N is a column vector with all elements being 1 and
H = I − 1

N 1N1T
N ∈ R

N×N centers the matrix to have zero mean.
For our approach, we aim to select the features with high correlation with

pseudo labels. Therefore, we should maximize the dependence between selected
features and pseudo labels. By ignoring the constant scaling factor (N − 1)−2,
we should select features that could maximize the following objective:

HSIC(XT W,U) = Tr(KF HKLH), (4)

where KF and KL are the Gram matrices corresponding to the selected features
and pseudo labels, respectively.
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2.3 Generalized Multi-view UFS

For our multi-view feature selection model, the goal is to jointly select features
from different views, thus, we will explore the complementarity across these
views. To ensure the consistency of multi-view data, we introduce a consensus
pseudo label matrix and enforce each view-specific pseudo label matrix U(v)

towards consensus pseudo label matrix U(∗) that will be more reasonable and
robust, accordingly, well guides the feature selection. Specifically, we introduce
the disagreement measure [12] between the consensus pseudo cluster label matrix
and that of each view as follows:

DA(U(v),U(∗)) =
∥
∥
∥
∥

KU(v)

||KU(v) ||2F
− KU(∗)

||KU(∗) ||2F

∥
∥
∥
∥

2

F

, (5)

where KU(·) is the affinity matrix for U(·) and || · ||F denotes the Frobenius norm
of a matrix.

Under the condition U(v)T U(v) = I and with using inner product kernel, i.e.,
KU(v) = U(v)U(v)T , we have ||KU(v) ||2F = C, where C is the number of clusters.
By ignoring the constant additive and scaling terms, Eq. (5) turns out to be:

DA(U(v),U(∗)) = −Tr(U(v)U(v)T U(∗)U(∗)T ). (6)

Accordingly, the proposed generalized multi-view unsupervised feature selection
model is induced as:

min
U(1),··· ,U(V )

U(∗),W

V∑

v=1

Tr(U(v)T L(v)U(v)) + γ ‖W‖2,1

+ α
V∑

v=1

DA(U(v),U(∗)) + βIND(XT W,U(∗))

s.t. U(v)T U(v) = I, U(∗)T U(∗) = I, U(v) ≥ 0,U(∗) ≥ 0. (7)

Note that, under the nonnegative and orthogonal constraints, there is only one
element in each row of U which is greater than zero and all of the others are
zeros. The structure-sparsity regularization on W is realized by �2,1-norm. For
the consistence of signs for different terms, we define the independence mea-
sure as IND(·, ·) = −HSIC(·, ·). The nonnegative scalars α, β and γ are tradeoff
parameters. The nonnegative constrains are imposed on pseudo labels matrices
to agree with label definition and interpretability [14]. �2,1-norm imposed on the
feature selection matrix W ensures the sparseness in rows, making it particularly
suitable for feature selection. According to the objective function, our method
simultaneously promotes the quality of pseudo labels by exploiting the comple-
mentarity of different views and explores the complex correlation between the
selected features and the multi-view consensus cluster structure.
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3 Optimization

In this section, we propose an iterative updating algorithm to solve the optimiza-
tion problem of gMUFS. The objective function in Eq. (7) is difficult to resolve
with respect to {U(v)}V

v=1, U(∗) and W, therefore, the alternating optimization
is introduced. Firstly, the objective function is rewritten as:

min
U(1),··· ,U(V )

U(∗),W

V∑

v=1

Tr(U(v)T L(v)U(v)) + γ ‖W‖2,1 + α

V∑

v=1

DA(U(v),U(∗))

+ βIND(XT W,U(∗)) +
η

2
(
∥
∥
∥U(∗)T U(∗) − I

∥
∥
∥
2

F
+

V∑

v=1

∥
∥
∥U(v)T U(v) − I

∥
∥
∥
2

F
), (8)

where η > 0 is the parameter for orthogonality condition. In practice, η should
be large enough to ensure the orthogonality satisfied. For convenience, we define

L(U(1), · · · ,U(V ),U(∗),W) =

V∑

v=1

Tr(U(v)TL(v)U(v)) + α

V∑

v=1

DA(U(v),U(∗))

+ βIND(XTW,U(∗)) + γ ‖W‖2,1 +
η

2
(

∥
∥
∥
∥U

(∗)TU(∗) − I

∥
∥
∥
∥

2

F

+

V∑

v=1

∥
∥
∥
∥U

(v)TU(v) − I

∥
∥
∥
∥

2

F

).

(9)

• Update W by fixing U(1), · · · ,U(V ) and U(∗): Similarly to existing method
[4] and for optimization convenience, we employ inner product kernel for
HSIC. Accordingly, the subproblem should minimize the following function:

L(W) = Tr(WT (γG − βM)W), (10)

where G is a diagonal matrix with elements defined as Gii = 1
2||wi||2 and

M = XHU(∗)U(∗)T HXT . To avoid trivial solution, we constrain W with
WT W = I. Then the above problem is actually similar to the objective of
spectral clustering. Therefore, the solution for W is the first P eigenvec-
tors (corresponding to smallest P eigenvalues) of the matrix γG − βM. It
is noteworthy that, since the dependence is measured in kernel space, the
dimensionalities of U(∗) and XT W need not to be the same, i.e., P �= C.
Therefore, our method is more flexible than others [14,17].

• Update U(v) by fixing W and U(∗): We introduce the multiplicative updat-
ing rules [13]. Specifically, since U(v) � 0, we can solve the problem by intro-
ducing Lagrange multiplier matrix Φ = [φij ] with φij corresponding U

(v)
ij .

Then, the Lagrange function is as follows:

Tr (U(v)T L(v)U(v))+ αDA(U(v),U(∗))+
η

2

∥
∥
∥U(v)T U(v) − I

∥
∥
∥
2

F
+ Tr(ΦU(v)T ).

(11)
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Setting the derivative of Lagrange function with respect to U(v) to be zero,
we can get

2NU(v) − 2ηU(v) + Φ = 0, (12)

where N = L(v)−αU(∗)U(∗)T +ηU(v)U(v)T . According to the Karush-Kuhn-
Tucker (KKT) condition, i.e., φijU

(v)
ij = 0, we can get the updating rule as

follows:

U
(v)
ij ← U

(v)
ij

(ηU(v))ij

(NU(v))ij
. (13)

• Update U(∗) by fixing U(1), · · · ,U(V ) and W: Similarly, we obtain the
following update rule:

U
(∗)
ij ← U

(∗)
ij

(ηU(∗))ij

(QU(∗))ij
, (14)

where Q = ηU(∗)U(∗)T − α
∑V

v=1 U(v)U(v)T − βHXT WWT XH. Similarly
to the work [14], we normalize U(v) and U(∗) to ensure (U(v)T U(v))ii = 1 and
(U(∗)T U(∗))ii = 1 after the above steps in Eqs. (13) and (14). We initialize
each U(v) with standard spectral clustering corresponding to the vth view
and U(∗) is initialized by averaging these U(v)s.

4 Experiments

In this section, we conducted extensive experiments to evaluate the proposed
gMUFS. Following previous unsupervised feature selection approaches [3,23],
we also report performances of different methods in terms of clustering.

The experiments are conducted on 7 real-world datasets. For WIDE1, we
extract 5 types of features, i.e., color histogram (64), color autocorrelogram
(144), edge direction histogram (73), wavelet texture (128) and block-wise color
moments (225), where the numbers in parentheses indicate the dimensionality of
each view. For MSRCv1 [22] and Caltech101-7 [5], 5 types of features are as fol-
lows: HOG (100), GIST (521), LBP (256), SIFT (210/441), and CENT (1302).
For Flickr2 and Oxford3, 4 types of features are extracted, i.e., SIFT(200),
GIST(512), LBP(59) and PHOG(680). For action recognition datasets Still DB
[11] and Willow4, 3 types of features are used, i.e., Sift Bow (200), Color Sift
Bow (200) and Shape Context Bow (200).

4.1 Experiment Setup

We compare our method with several state-of-the-art unsupervised feature selec-
tion methods on clustering task. AllFeatures concatenates all types of features
1 http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm.
2 https://www.flickr.com/.
3 http://www.robots.ox.ac.uk/∼vgg/data/oxbuildings/.
4 http://www.di.ens.fr/willow/research/stillactions/.

http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
https://www.flickr.com/
http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
http://www.di.ens.fr/willow/research/stillactions/
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for clustering. NDFS [14] performs feature selection within a joint framework of
nonnegative spectral analysis and �2,1-norm regularized regression. UDFS [23]
exploits local discriminative information and feature correlation simultaneously.
SPEC [24] selects features with spectral regression. MCFS [3] utilizes spectral
regression with �1-norm to select features. AUMFS [6] and MSSFL [21] exploit
both intra-view and inter-view information to jointly select features. Specifi-
cally, beyond comparing with multi-view feature selection methods AUMFS and
MSSFL, to comprehensively compare different algorithms, we perform feature
selection for each view by using NDFS, UDFS, SPEC and MCFS with the per-
formance of best view reported. Furthermore, we conduct multi-view feature
selection by concatenating all types of features for these methods: AllFeatures,
NDFS, UDFS, SPEC, and MCFS. Following previous work, we set k = 5 for
all the datasets to specify the size of neighborhoods and construct the affinity
graph. We tune the parameters for all methods with the grid search strategy
from {10−6, 10−4, ..., 104, 106}. For gMUFS, NDFS, we set η = 108 to insure the
orthogonality satisfied [14]. The number of the selected features is set as the
value from {10, 20, ..., 100}, while from {10, 20, · · · , 50} when the dimensional-
ity of is smaller than 100, reporting the best results. Due to the randomness of
K-means clustering employed, we repeat each experiment 20 times with random
initialization and, the average results with standard deviations are reported.

4.2 Experiment Results and Analysis

As shown in Tables 1 and 2, we report the quantitative results in terms of Accu-
racy (ACC) and Normalized Mutual Information (NMI) for different methods.
SV and MV indicate single-view and multi-view methods, respectively. First, it
is observed that the results by directly concatenating all views are significantly
better than the performance of using each single view. This confirms the impor-
tance of integrating multiple views. Second, although using all views, the perfor-
mances of the traditional single-view methods are obviously worse than AUMFS,

Table 1. Clustering results (ACC% ± std) of different algorithms.

Method WIDE MSRCv1 Caltech101 Flickr Oxford Willow Still DB

SV NDFS 25.2±1.0 59.7±4.8 62.1±3.6 25.7±0.9 24.9±1.1 26.2±1.0 31.5±1.5

UDFS 24.4±1.0 53.5±4.5 60.6±3.1 25.4±1.0 24.3±1.1 26.4±0.7 31.0±1.2

SPEC 24.6±1.3 46.2±4.7 56.5±3.6 24.4±0.9 23.4±1.1 24.5±0.9 30.0±1.9

MCFS 24.3±1.2 51.5±5.0 56.1±3.1 25.3±0.9 24.1±0.9 25.2±1.0 30.4±1.3

MV All-Feat 26.0±1.1 42.0±1.3 69.3±4.0 27.5±1.1 23.2±0.8 23.4±0.8 30.4±1.6

NDFS 28.2±1.3 57.2±5.1 65.5±5.7 28.0±1.4 27.9±1.9 28.7±1.0 32.4±1.6

UDFS 25.6±1.4 62.6±3.0 58.2±5.0 26.8±1.0 22.5±1.1 29.1±2.0 30.3±1.6

SPEC 23.4±0.8 57.6±4.8 45.9±4.4 23.7±1.3 21.1±1.3 26.8±1.5 29.7±0.8

MCFS 24.2±1.3 67.9±5.0 58.2±4.2 23.2±0.8 24.4±0.6 25.9±1.3 31.0±1.5

MSSFL 28.4±1.7 56.8±5.8 72.0±5.0 29.3±1.5 28.0±1.2 27.4±1.0 31.7±1.3

AUMFS 28.5±1.3 53.7±0.3 58.0±3.5 27.4±0.9 26.8±1.4 28.8±1.1 31.4±2.3

Ours 29.7±1.4 78.9±3.8 75.6±3.5 30.0±1.3 29.1±0.8 28.4±1.0 33.0±1.7
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Table 2. Clustering results (NMI% ± std) of different algorithms.

Method WIDE MSRCv1 Caltech101 Flickr Oxford Willow Still DB

SV NDFS 14.6±0.8 51.3±3.6 54.7±2.8 14.9±0.6 12.7±1.0 7.6±0.6 10.7±0.8

UDFS 13.9±0.7 45.8±3.4 52.8±2.7 13.9±0.5 11.5±0.6 6.5±0.6 10.4±0.8

SPEC 12.9±0.7 38.7±4.0 46.9±2.6 12.7±0.6 10.5±0.7 6.0±0.5 9.6±1.1

MCFS 13.5±0.7 43.7±3.4 48.9±2.9 14.5±0.5 11.3±0.6 6.5±0.6 9.7±1.1

MV AllFeat 18.0±1.1 40.0±1.6 67.4±2.6 15.5±0.6 14.7±0.5 4.0±0.4 10.9±1.5

NDFS 16.7±1.5 50.1±5.5 62.5±4.9 16.5±0.8 15.2±0.6 9.2±0.5 13.1±0.9

UDFS 15.0±0.7 55.3±3.0 55.0±3.3 15.6±0.5 11.6±0.5 8.6±0.8 12.5±0.5

SPEC 11.4±0.7 49.8±3.6 34.6±4.0 12.1±0.7 7.9±0.8 8.0±0.6 11.5±0.7

MCFS 12.8±1.1 62.8±2.4 50.5±4.1 12.9±0.4 14.3±1.1 7.6±0.6 12.7±1.2

MSSFL 18.4±0.8 48.7±5.5 60.5±2.4 18.8±0.6 16.1±1.0 8.3± 0.5 13.8±1.0

AUMFS 16.0±1.1 47.8±1.3 52.9±2.8 16.2±0.5 15.6±1.1 9.9±0.6 12.0±1.0

Ours 19.8±1.0 69.1±3.7 67.7±1.8 19.3±0.5 16.2±1.0 8.7±0.4 14.4±1.0

MSSFL and ours. This is principally because these approaches could not explore
the complementarity among multiple views by simply feature concatenation.
Third, the proposed method, gMUFS, achieves the best performance on 6 out of
7 datasets, which empirically proves the effectiveness of jointly exploiting multi-
view representations and exploring the complex correlation between the selected
features and cluster structure. We provide the parameter sensitiveness analysis
in Fig. 1. By fixing the value of one parameter (with 1 in our experiments), we
tune the other two parameters. The results demonstrate that our method is rel-
atively robust to the three parameters, α, β and γ, since promising results could
be expected with wide ranges. It is noteworthy that, compared with single-view
unsupervised feature selection methods [14,23], although our multi-view method
introduces one more parameter α for handling multi-view correlation, it is very
robust and easy to tune in practice. We empirically study the property of con-
vergence of our optimization algorithm. According to Fig. 2, our algorithm could
converge within 10 iterations, which validates the effectiveness of the proposed
optimization algorithm.
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Fig. 1. Parameter sensitivity evaluation on Still DB.
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Fig. 2. Convergence curves on Oxford, Caltech and Still DB.

5 Conclusion

In this work, we have developed a novel multi-view unsupervised feature selection
approach, which jointly exploits complementarity of multiple views and explores
general correlation between the selected features and underlying cluster struc-
ture. Benefiting from the complementarity of different views, underlying cluster
structure can be well identified and, subsequently, Hilbert-Schmidt independence
criterion (HSIC) is employed to address more general dependencies between the
selected features and the pseudo cluster labels. Extensive experimental results
on real-world datasets demonstrate the effectiveness of our model. For simplicity
and efficiency, we adopted inner product kernel for HSIC and, in the future we
will take more kernels into account for better performance.
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Abstract. Networking Function Virtualization (NFV) technology has
become a new solution for running network applications. It proposes a
new paradigm for network function management and has brought much
innovation space for the network technology. However, the complexity
of the NFV Infrastructure (NFVI) impose hard-to-predict relationship
between Virtualized Network Function (VNF) performance metrics (e.g.,
latency, throughput), the underlying allocated resources (e.g., load of
vCPU), and the overall system workload, thus the evolving scenario
of NFV calls for adequate performance analysis methodologies, early
detection of performance anomalies plays a significant role in providing
high-quality network services. In this paper, we have proposed a novel
method for detecting the performance anomalies in NFV infrastructure
with machine learning methods. We present a case study on the open
source NFV-oriented project, namely Clearwater, which is an IP Multi-
media Subsystem (IMS) NFV application. Several classical classifiers are
applied and compared empirically on the anomaly dataset which is built
by ourselves. Considering the risk of over-fitting issue, the experimental
results show that neutral networks is the best anomaly detection model
with the accuracy over 94%.

Keywords: NFV · Performance anomaly detection · Machine learning

1 Introduction

The paradigm of Network Function Virtualization (NFV) has immediately been
an emerging paradigm which is a new vision of the network that takes advantage
of advances in dynamic cloud architecture, Software Defined Networking (SDN),
and modern software provisioning techniques. The topic about NFV bottlenecks
analysis and relevant hardware and software features for high and predictable
performance have been already highlighted in the Group Specification (GS) by
European Telecommunications Standards Institute (ETSI) industry Specifica-
tion (ISG) Network Functions [1].
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The purpose of this paper aims to detect performance anomalies by mod-
eling the various performance metrics data collected from the virtual machines
of the NFV platform. We conduct an experiment with an open source NFV-
oriented project, namely Clearwater, which has been designed to support mas-
sive horizontal scalability and adopts popular cloud computing design patterns
and technologies, to demonstrate how the proposed method can be applied to
the detection performance anomalies. The main contributions of this paper are
as follows:

1. Present an approach on how to build the performance anomaly dataset for
NFVI.

2. Put forward an approach for detecting performance anomalies in NFVI with
machine learning models.

The paper is organized as follows: The next section discusses the related
works; Methodology and implementation are presented in Sect. 3, then we con-
duct a case study on Clearwater in Sect. 4; Sect. 5 concludes and provides the
conclusion.

2 Related Works

Reliability studies for NFV technology including performance and security topics
are also hot research areas for both academia and industry. In order to guaran-
tee high and predictable performance of data plane workloads, a list of minimal
features which the Virtual Machine (VM) Descriptor and Compute Host Descrip-
tor should contain for the appropriate deployment of VM Images over an NFV
Infrastructure (NFVI) are presented [1]. NFV-Bench [2] is proposed by Domenico
et al. to analyze the faulty scenarios and to provide joint dependability and
performance evaluations for NFV systems. Bonafiglia et al. [3] provides a (pre-
liminary) benchmark of the widespread virtualization technologies when used
in NFV, which means when they are exploited to run the so-called virtual net-
work functions and to chain them in order to create complex services. Priyanka
et al. presents the design and implementation of a tool, namely NFVPerf [4], to
monitor performance and identify performance bottlenecks in an NFV system.
NFVPerf runs as part of a cloud management system like OpenStack and sniffs
traffic between NFV components in a manner that is transparent to the VNF.

Anomaly detection is an important data analysis task that detects abnormal
data from a given dataset, it is an important data mining research problem and
has been widely studied in many fields. It can usually be solved by statistics and
machine learning methods [5–8]. In recent years, anomaly detection literature in
NFV has also begun to emerge. Michail-Alexandros et al. [9] presented the use
of an open-source monitoring system especially tailored for NFV in conjunction
with statistical approaches commonly used for anomaly detection, towards the
timely detection of anomalies in deployed NFV services. Domenico et al. [10]
proposed an approach on an NFV-oriented Interactive Multimedia System to
detect problems affecting the quality of service, such as the overload, component
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crashes, avalanche restarts and physical resource contention. EbAT [11] is an
automated online detection framework for anomaly identification and tracking
in data center systems. Fu [12] proposed a framework for autonomic anomaly
detection on cloud systems and the proposed framework could select the most
relevant among the large number of performance metrics.

We have been actively participating in the OPNFV1 Yardstick project2.
Especially, we continuously and deeply involved in the HA Yardstick framework
architecture evolution, and the fault injection techniques used in the this paper
are based on our previous research works [13,14]. Recently we are participating in
the OPNFV Bottlenecks project3 which is a testing project aims to find system
bottlenecks by testing and verifying OPNFV infrastructure in a staging environ-
ment before committing it to a production environment. Most cloud operators
identify performance bottlenecks by monitoring hardware resource utilization, or
other application-specific metrics obtained from instrumenting the application
itself. In this paper, we are trying to detect performance anomalies by modeling
the various performance metrics data collecting from the virtual machines of the
NFV platform.

3 Methodology and Implementation

3.1 Classification Problem

The performance anomaly detection method studied in this paper is based on
the classification methods. The essence of the anomaly detection problem is to
train and get a detection model by using the performance metrics data collected
from the virtual machine in the NFV infrastructure layer. The virtual machine
state characterized by the performance metrics collected in real time is divided
into multiple classes based on the anomaly detection model.

Fig. 1. The training and testing processes of anomaly detection model

1 https://www.opnfv.org/.
2 https://wiki.opnfv.org/display/yardstick/Yardstick/.
3 https://wiki.opnfv.org/display/bottlenecks/Bottlenecks/.

https://www.opnfv.org/
https://wiki.opnfv.org/display/yardstick/Yardstick/
https://wiki.opnfv.org/display/bottlenecks/Bottlenecks/
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As shown in Fig. 1, given the training performance metric samples: T =
{(x1, y1) , (x2, y2) , ..., (xk, yk)} ∈ (Rn × Y )k where Xi = [x1i, x2i, ..., xni]

T ∈ Rn

is the input vector, the component of the vector represents the performance
metrics. yi is the output which is the accordingly anomaly label for xi and (xi, yi)
represents a sample of the training set and k is the sample size of the training
set. For the multi classification problem, we need not only to determine whether
there is an anomaly, but also to further determine which kind of anomaly it
belongs to. yi ∈ Y = {1, 2, ..., c} , i = 1, 2, ..., k, where c is the size of anomaly
classes. We agree on that yi = 1 means normal status, the other value yi represent
abnormal status. thus the solution is to explore a decision function in Rn: y =
f(x) : Rn → Y and this function could be used to infer the corresponding value
Ynew of any new instance Xnew. It performs detection with localization of an
anomalous behaviour by assigning one class label to each anomalous behaviour
depending on its localization.

Machine learning is a famous field to be extremely relevant for solving clas-
sification problems. with respect to the machine learning models that we aim
to build for detection classifiers, samples of labeled monitoring data are needed
to train them to discern different system behaviours. There are a large pool of
classification-based techniques available, we will try to introduce some of the
well known classifiers in this paper, such as support vector machines (SVM), K-
Nearest Neighbors (KNN), Random Forests, Decision Tree and Neural Networks
(NN).

The measures of classification efficiency could be built from a confusion
matrix that could provide results of counting correctly and incorrectly detected
instances for each class of events. The confusion matrix, also known as an error
metrics is a specific table layout that allows visualization of the performance of
a classifier in the field of machine learning. In a binary classification task, the
terms ‘positive’ and ‘negative’ refer to the classifier’s prediction, and the terms
‘true’ and ‘false’ refer to whether that prediction corresponds to the external
judgment (sometimes known as the ‘observation’). Given these definitions, the
confusion matrix could be formulated as Table 1.

Table 1. Confusion matrix

Actual class (observation)

Predicted class
(expectation)

TP (True Positive) correct
result

FP (False Positive)
Unexpected result

FN (False Negative) Missing
result

TN (True Negative) correct
absence of result

accuracy, precision and F − measure are the well known performance mea-
sures for machine learning models. Intuitively, accuracy = TP+TN

TP+FP+TN+FN is
easy to understand, that is, the proportion of correctly categorized samples
accounted for all samples. Generally speaking, the higher the accuracy, the bet-
ter the classifier. precision = TP

TP+FP is the ability of the classifier not to label
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as positive a sample that is negative, and recall = TP
TP+FN is the ability of the

classifier to find all the positive samples. The Fβ =
(
1 + β2

)
precision×recall

β2precision+recall

(Fβ and F1 measures) can be interpreted as a weighted harmonic mean of the
precision and recall. A Fβ measure reaches its best value at 1 and its worst score
at 0. With β = 1, Fβ and F1 are equivalent, and the recall and the precision are
equally important.

3.2 Implementation

Performance Anomaly Detection Framework. We implement an anomaly
detection framework which includes a system perturbation module, a cloud plat-
form monitoring module and a data processing and analysis module. The per-
turbation module generates workload and faultload to simulate performance
issues or bottlenecks. At the same time, the monitoring module can collect rel-
evant performance data, it performs the monitoring process according to the
Key Performance Indicator (KPI), the goal of monitoring is to gather data
samples from the target system via performance counters which is so-called
monitoring metrics, then the anomaly datasets could be built. As shown in
Table 2, the anomaly dataset is composed of three parts of data, the perfor-
mance metrics, the anomalous behavior labels and the miscellaneous features.
Schema = {Metrics ∪ AnomalyLabels ∪ MiscFeatures}, where Metrics are
composed of the specific performance metrics such as cpu usage, memory usage.
The AnomalyLabels imply the type of a performance anomaly, the value of ‘1’
represents the underlying anomaly happens, and ‘0’ represents no such anomaly
happens. The dataset also contain some miscellaneous features such as location
where the VNF located, and the timestamp feature of the record. Finally, the
data processing and analysis module is responsible for creating models that are
trained offline for performance anomaly detection based on the anomaly dataset.

Table 2. The schema of the anomaly dataset

Bottlenecks Simulation. In order to better engage in the research of NFV
performance anomaly detection, performance anomalies and bottlenecks could
be simulated by the perturbation module as implemented in Algorithm1, and
the performance related data in the NFVI layer could be collected by the data
monitoring module. Both workload and faultload could be generated by the
perturbation module.
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Algorithm 1. Bottlenecks injection controller
Input: vm list, bottleneck type list,

injection duration, user count, duration
1: timer = start timer()
2: while timer < duration do
3: sip simulate(user count, duration)
4: bottleneck type = random (bottleneck type list)
5: vm = random (vm list)
6: injection = new injection (bottleneck type)
7: inject(vm, injection duration)
8: sleep(pause)
9: end while

Performance Metric Model. Classification-based techniques highly reply on
expert’s domain knowledge of the characteristics of performance issues or bot-
tlenecks status. The work in this paper particularly focuses on the identification
of performance anomalies from monitoring data of VMs OSs of the NFVI such
as CPU consumption, disk I/O, and memory consumption. A classic Zabbix4

OS monitoring template5 is adopted as the performance metric model in this
paper.

4 Case Study

4.1 Experimental Environment Setup

The testbed is built on one powerful physical server DELL R730 which is
equipped with 2x Intel Xeon CPU E5-2630 v4 @ 2.10 GHz, 128 G of RAM and 5
TB Hard Disk. The vIMS under test is the Clearwater project which is an open-
source implementation of an IMS for cloud computing platforms. The Clearwa-
ter application is installed on the commercialized hypervisor-based virtualization
platform (VMware ESXi). 10 components of Clearwater are individually hosted
in a docker container on a virtual machine(VM), and the containers are managed
by Kubernetes. Particularly there is an attack host for injecting bottlenecks into
the Clearwater virtual hosts, a tool for the fault injection runs on the inject host,
and the Zabbix agents are installed on the other hosts, finally the performance
data of each virtual host could be collected by the agent when the faultload and
workload are injected.

An open source tool SIPp6 is used as the workload generator for IMS. Fault
injection techniques could be applied to bottlenecks simulation refers to the
Algorithm 1 presented in the previous section.

4 https://www.zabbix.com/.
5 https://github.com/chunchill/nfv-anomaly-detection-ml/blob/master/data/
Features-Description-NFVI.xlsx.

6 http://sipp.sourceforge.net/.

https://www.zabbix.com/
https://github.com/chunchill/nfv-anomaly-detection-ml/blob/master/data/Features-Description-NFVI.xlsx
https://github.com/chunchill/nfv-anomaly-detection-ml/blob/master/data/Features-Description-NFVI.xlsx
http://sipp.sourceforge.net/
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The monitoring agent could collect the performance data from each virtual
host for each round, the timestamp would be record in the log file once there is a
bottleneck injection, so that the performance data could be labeled with related
injection type according to the injection log. Finally, the performance dataset
could be built for data analysis in the next section.

4.2 Experimental Results

There were three kinds of bottlenecks in the data: CPU bottlenecks, memory
bottlenecks, I/O bottlenecks, in addition, if there is no bottleneck injection,
the data is labeled as ‘normal’, and we extracted a total of 3693 records from
the experiment, including 2462 with normal class, 373 with CPU bottlenecks
class, 266 with memory bottlenecks class and 592 with I/O bottlenecks class.
The schema of a record consists of two identification fields (host, timestamp),
45 monitoring metrics feature fields, and 4 labels (normal, CPU bottleneck,
memory bottleneck, and I/O bottleneck).

We used the following machine learning classifiers to perform compara-
tive experiments: Neural Networks, Combined Neural Networks with SVM,
K-Nearest Neighbors, Linear SVM, Radial Basis Function (RBF) SVM, Decision
Tree and Random Forests.

Table 3. Accuracy comparison results of machine learning classifiers

Models Training set Testing set

NN 0.94 0.90

NN+SVM 0.93 0.89

KNN 0.92 0.87

Linear SVM 0.80 0.83

RBF SVM 0.80 0.83

Decision Tree 0.77 0.80

Random Forrest 0.90 0.89

As shown in the comparison results in the Table 3, the effect of the neural
networks is the best for both in training set and testing set. Table 4 shows the
specific results of the neural networks. As the epoch history trend of neural
network learning shown in Fig. 2, we can see that the trend of accuracy and
loss on the training set and the validation set is almost the same, indicating
that there is no over-fitting situation in the training process. It is proved that
the effect of neural networks is ideal and effective to detect the performance
anomalies.

All of the experiment artifacts are available on this github repository7, includ-
ing the fault injection tools, datasets and the python codes.
7 https://github.com/chunchill/nfv-anomaly-detection-ml.

https://github.com/chunchill/nfv-anomaly-detection-ml
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Table 4. The results by neural network

Accuracy on training set: 0.94

Labels Precision Recall F1-Score

Normal 0.97 0.95 0.96

cpu 0.90 0.93 0.92

Memory 0.91 0.85 0.88

I/O 0.87 0.95 0.91

avg/total 0.94 0.94 0.94

Accuracy on testing set: 0.90

Labels Precision Recall F1-Score

Normal 0.96 0.92 0.94

cpu 0.81 0.90 0.86

Memory 0.86 0.78 0.82

I/O 0.75 0.88 0.81

avg/total 0.91 0.90 0.90

Fig. 2. The accuracy and loss trend of Neural Networks for both training set and
validation set

5 Conclusion

This paper have proposed a machine learning based performance anomaly detec-
tion approach for NFV-oriented cloud system infrastructure. Considering that it
is difficult for researchers to obtain comprehensive and accurate abnormal behav-
iors data in a real NFV production environment, system perturbation technol-
ogy to simulate faultload and workload is presented, and the monitoring module
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is integrated into the anomaly detection framework to monitor and evaluate
the platform, it is responsible for constructing anomaly dataset consisting of
abnormal labels and multi-dimensional monitoring metrics. Finally, the effective
machine learning models are fitted by training the statistical learning model on
the anomaly dataset. The experiment results show that machine learning clas-
sifiers could be effectively applied to solve the performance anomalies problem,
and the neural networks model is the best detection model with the precision
over 94%.

Acknowledgement. This work has been supported by the National Natural Science
Foundation of China (Grant No. 61672384), part of the work has also been supported by
Huawei Research Center under Grant No. YB2015120069. And we have to acknowledge
the OPNFV project, because some of the ideas come from the OPNFV community, we
have obtained lots of inspiration and discussion when we involved in the activities on
OPNFV projects Yardstick and Bottlenecks.

References

1. ETSI GS NFV-PER 001. https://www.etsi.org/deliver/etsi gs/NFV-PER/.
Accessed 1 July 2018

2. Cotroneo, D., De Simone, L., Natella, R.: NFV-bench: a dependability benchmark
for network function virtualization systems. IEEE Trans. Netw. Serv. Manag., 934–
948 (2017)

3. Bonafiglia, Roberto, et al.: Assessing the performance of virtualization technologies
for NFV: a preliminary benchmarking. In: EuropeanWorkshop on Software Defined
Networks (EWSDN), pp. 67–72. IEEE (2015)

4. Naik, P., Shaw, D.K., Vutukuru, M.: NFVPerf: Online performance monitoring and
bottleneck detection for NFV. In: International Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), pp. 154–160. IEEE
(2016)

5. Liu, D., et al.: Opprentice: towards practical and automatic anomaly detection
through machine learning. In: Proceedings of the Internet Measurement Confer-
ence, pp. 211–224. ACM (2015)

6. Li, K.-L., Huang, H.-K., Tian, S.-F., Wei, X.: Improving one-class SVM for anomaly
detection. In: IEEE International Conference on Machine Learning and Cybernet-
ics, vol. 5, pp. 3077–3081 (2003)

7. Shanbhag, S., Gu, Y., Wolf, T.: A taxonomy and comparative evaluation of algo-
rithms for parallel anomaly detection. In: ICCCN, pp. 1–8 (2010)

8. Yairi, T., Kawahara, Y., Fujimaki, R., Sato, Y., Machida, K.: Telemetry-mining: a
machine learning approach to anomaly detection and fault diagnosis for space sys-
tems. In: Second International Conference on Space Mission Challenges for Infor-
mation Technology(SMC-IT), p. 8. IEEE (2006)

9. Kourtis, M.A., Xilouris, G., Gardikis, G., Koutras, I.: Statistical-based anomaly
detection for NFV services. In: International Conference on Network Function Vir-
tualization and Software Defined Networks (NFV-SDN), pp. 161–166. IEEE (2016)

10. Cotroneo, D., Natella, R., Rosiello, S.: A fault correlation approach to detect per-
formance anomalies in virtual network function chains. In: IEEE 28th International
Symposium on Software Reliability Engineering (ISSRE), pp. 90–100 (2017)

https://www.etsi.org/deliver/etsi_gs/NFV-PER/


488 J. Qiu et al.

11. Wang, C., Talwar, V., Schwan, K., Ranganathan, P.: Online detection of utility
cloud anomalies using metric distributions. In: Network Operations and Manage-
ment Symposium (NOMS), pp. 96–103. IEEE (2010)

12. Fu, S.: Performance metric selection for autonomic anomaly detection on cloud
computing systems. In: Global Telecommunications Conference (GLOBECOM),
pp. 1–5. IEEE (2011)

13. Du, Q., et al.: High availability verification framework for OpenStack based on fault
injection. In: International Conference on Reliability, Maintainability and Safety
(ICRMS), pp. 1–7. IEEE (2016)

14. Du, Q., et al.: Test case design method targeting environmental fault tolerance for
high availability clusters. In: International Conference on Reliability, Maintainabil-
ity and Safety (ICRMS), pp. 1–7. IEEE (2016)



Emergence of Sensory Representations
Using Prediction in Partially Observable

Environments

Thibaut Kulak and Michael Garcia Ortiz(B)

SoftBank Robotics Europe - AI Lab, Paris, France
thibaut.kulak@gmail.com, mgarciaortiz@softbankrobotics.com

Abstract. In order to explore and act autonomously in an environment,
an agent can learn from the sensorimotor information that is captured
while acting. By extracting the regularities in this sensorimotor stream,
it can build a model of the world, which in turn can be used as a basis for
action and exploration. It requires the acquisition of compact representa-
tions from possibly high dimensional raw observations. In this paper, we
propose a model which integrates sensorimotor information over time,
and project it in a sensory representation. It is trained by preforming
sensorimotor prediction. We emphasize on a simple example the role of
motor and memory for learning sensory representations.

1 Introduction

Autonomous Learning for Robotics aims to endow agents with the capability to
learn from and act in their environment, so that they can adapt to previously
unseen situations. An agent can learn from this interaction by building com-
pact representations of what it encounters in its environment, using information
captured from a high dimensional raw sensory input and motor output.

Theories on sensorimotor prediction state that an agent learns the structure
of its world by learning how to predict the consequences of its actions [2,12].
The sensorimotor approach proposes to learn sensor representations and motor
representations by identifying the regularities in the sensorimotor stream. How-
ever, these regularities are hard to capture: a robotic agent acts and perceives
in an environment which is usually partially observable (limited field of view),
noisy and ambiguous. The sensory information is not sufficient to know the exact
state of the agent in its environment (similar sensory states can originate from
different situations in the environment). This is in particular true for navigation
tasks where an agent can observe several occurrences of very similar portions
of the scenes (wall, corners) at different locations in the environment (e.g. in a
maze). For these reasons, we need representations that can help disambiguate
the observations and the state of the agent.

In the case of an autonomous agent, without labeled data, unsupervised
learning allows to learn compression for different data streams [6,13,16]. These
representations, based on the statistics of the data, reduce the dimensionality
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11140, pp. 489–498, 2018.
https://doi.org/10.1007/978-3-030-01421-6_47
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of the sensory stream, but do not inform the agent on the modalities of its
potential actions in its environment, which is related to the problem of grounding
knowledge in the experience of an agent [5]. In order to build representations,
a classic approach is to learn forward internal models [3]: learning to predict
the sensory consequences of actions. For instance a forward model of physics
is learned for a real-world robotic platform in [1]. Recently, [4] proposed to
build world models through learning forward models, and use them to train
policies in different Reinforcement Learning environments. The authors of [9]
present a complete overview of the current methods for learning representations
in robotics.

In this paper, we propose to learn sensory representations using principles
from sensorimotor prediction (or, forward models) and to study the properties
of the learned representations. We show, on a navigation scenario, that using
motor information as well as a short-term memory leads to sensory represen-
tations that correspond to richer classes of sensory stimuli encountered in the
environment. Recent work also propose to learn sensory representation by sen-
sorimotor prediction [4,17], and show that the representations learned could be
successfully used for navigation or control tasks. In this paper we are interested
in studying the nature of the representations that are learned.

2 Sensorimotor Predictive Model

We train a forward model, named Recurrent Sensorimotor Encoder (Recurrent-
SM-encoder), shown in Fig. 1, and composed of three subnetworks: (i) A sen-
sory encoding subnetwork takes as input the sensory state st and outputs an
encoded sensory state zs

t . It is composed of hidden layers followed by a stacked
Long short-term memory (LSTM) network, which role is to provide a form of
memory about the previous sensor states. (ii) A motor encoding subnetwork,
which is a classical dense network composed of hidden layers, taking as input
the motor command mt and outputting the encoded motor command zm

t . (iii)
zs
t and zm

t are concatenated to form the encoded sensorimotor vector zsm
t , used

as an input for a dense network, which outputs a prediction of the next sensory
state ŝt+1.

We use several baselines (see Fig. 2) to evaluate the role of motor information
and memory: the Sensorimotor Encoder (SM-encoder), doesn’t have a memory,
the Recurrent Sensory Encoder (Recurrent-S-encoder) doesn’t have motor
input, and the Sensory Encoder (S-encoder) doesn’t have memory or motors.
We train the proposed networks using a loss to minimize the prediction error:

L2 =
T−1∑

t=1

(ŝt+1 − st+1)
2 (1)

where T is the size of the learning batch.
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Fig. 1. Recurrent Sensorimotor Encoder

Sensory Encoder Recurrent Sensory En-
coder

Sensorimotor Encoder

Fig. 2. Architectures of the baselines

3 Experimental Setup

Our simulated agent (inspired from the Thymio-II robot [14]) is equipped with
5 distance sensors, evenly separated between −0.6 and 0.6 rad, with their range
limited to 10 units of distance. The agent controls its translation forward (direc-
tion of the middle laser) and its rotation. One motor command (d, r) is the suc-
cession of a translation d and a rotation r. It is a planar agent moving without
friction, and there is no noise on its distance sensors. We created 3 environments
of size 50 units, shown on Fig. 3: Square is a square without walls or obstacles.
Room1 additionally contains one vertical wall and one horizontal wall. Room2
contains one horizontal and three vertical walls.

The agent moves by random translations forward and random rotations, while
avoiding collisions with the walls. At each timestep, if one distance sensor value is
smaller than 1 unit, the agent rotates by r ∼ U(π− π

10 , π+ π
10 ) radians (U denot-

ing the uniform distribution). If not, the agent moves forward by d ∼ U(0, 1)
units, and rotates by r ∼ U(−π

6 , π
6 ) radians. Figure 4 displays the trajectory of

the agent during 10 000 steps in the different proposed environments.
We generated a sequence of 1 000 000 timesteps for each environment (each

point has 5 distance sensors values and 2 motor commands), split as such: the
first 80% for training, the next 10% for validation, and the last 10% for testing.
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(a) Square (b) Room1 (b) Room2

Fig. 3. The different environments created.

(a) Square (b) Room1 (c) Room2

Fig. 4. Trajectories in the environments (10 000 points)

In Fig. 5 we reconstructed, for different situations, what the agent perceives based
on its sensors. Note that the agent doesn’t have access to the position and angles
of its distance sensors, it only receives as input a 5-dimensional real vector.

(a) Perceiving
nothing

(b) In front of
a line

(c) In front of
a corner

(d) With a
wall at its left

(e) In front of
a wall’s end

Fig. 5. Examples of different sensory stimuli perceived by the agent. The 5 red dots
represent the distance perceived by the agent, projected in top-view. (Color figure
online)

4 Results

4.1 Numerics

Our models are trained with the Adam optimizer [8] (learning rate of 0.001).
The training is stopped if the loss on the validation set doesn’t decrease by
5% for 10 consecutive epochs. We use a mini-batch size of 64, and ReLUs for
the activation functions. We choose arbitrarily the sensory representation space
to be 10-dimensional and the motor representation space to be 5-dimensional.
The number and size of layers in the different architectures are as follow: In
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SM-encoder, the sensory encoding and motor encoding subnetworks have 3
hidden layers of size 16, 32 and 64, while the prediction subnetwork has one
layer of size 128. S-encoder is identical to the SM-encoder, without the motor
encoding subnetwork. In Recurrent-SM-encoder, the sensory encoding and
motor encoding subnetworks have 1 hidden layer of size 16, while the prediction
subnetwork has one layer of size 128. The (stacked) LSTM has 3 layers with 32
units at each layer, and a truncation horizon of 20. Recurrent-S-encoder is
identical to Recurrent-SM-encoder, without the motor encoding.

4.2 Sensorimotor Prediction Results

We report in Table 1 the L2 prediction error of the models trained on the Square
environment, and tested on the three environments. First we verify that models
using motor information largely outperform those without, which makes sense
because motors are necessary to predict the next sensory state. We also see that
models using a memory perform better compared to their memoryless counter-
part, confirming that a memory is useful for accurate sensorimotor prediction.
Finally, we note that the Recurrent-SM-encoder model performs best. It is to
be expected, as it benefits from additional information. We verified that these
observations hold when trained on Room1 and Room2.

Table 1. Sensorimotor prediction L2 error of the models trained on Square tested on
the test dataset of the three environments.

Model Square Room1 Room2

S-encoder 0.0374 0.0430 0.0729

SM-encoder 0.0056 0.0145 0.0257

Recurrent-S-encoder 0.0359 0.0407 0.0697

Recurrent-SM-encoder 0.0024 0.0105 0.0181

4.3 Representation Spaces

We plot on Fig. 6 the representation spaces learned by our models, projected on
the first two principal components extracted with a Principal Component Anal-
ysis (PCA) [7]. We color-code those spaces by the minimum value of the 5 lasers,
as this gives information about the distance to the wall the agent perceives.

We observe that the models without motors group states where the agent
doesn’t see anything with states where the agent sees a wall from a very short
distance, because its behavior (avoiding collision, see Sect. 3) makes it experi-
ence sensory transitions from seeing a wall very close to seeing nothing. Without
access to motor commands, the model brings those states close to each other,
while in reality those states are fundamentally different. We see that the por-
tion of the representation space corresponding to the agent perceiving nothing
is larger with the Recurrent-SM-encoder than with the Recurrent-S-encoder.
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(a) Sensor (b) S-encoder (c) Recurrent-
S-encoder

(d)
SM-encoder

(e) Recurrent-
SM-encoder

Fig. 6. Representation spaces learned on the Square environment, colored by the min-
imum value of the lasers. (Color figure online)

We can interpret it as memory and the information about motor commands help-
ing to create different states for points where the agent doesn’t see anything.

4.4 Clusters Extraction

We cluster the sensory representation spaces learned for each model, and visu-
alize the activation of the different clusters in the environments, in order to
estimate if the sensory encoding learns spatial features. We sample random sen-
sorimotor transitions and use a kMeans algorithm [10] to extract 20 clusters
from each sensory representation space. We plot for each cluster the ground
truth position and orientation of 500 random data points associated with this
cluster.

We show on Fig. 7, as a baseline, the 20 clusters extracted from the S-encoder
representation space. We see that there are clusters corresponding to different
distances/angles to the wall. As there is no memory in this model all of the
configurations when the agent doesn’t perceive anything are in the same cluster.

We see on Fig. 8 that the Recurrent-SM-encoder representation space trained
on the Square environment contains clusters corresponding to different distances
to a wall, and also a cluster corresponding to corners. We observe that we have
different clusters corresponding to an absence of visual stimuli, but at different
distances from a wall (when the wall is behind the agent). LSTM provides the
agent with a memory of previous events, and it contains a form of spatial infor-
mation. However this memory is short-term as it is relative to the previous wall
that has been seen, and there is no global notion of position in the environment.

We show on Fig. 9 the clusters extracted from the Recurrent-SM-encoder
model trained on the Room1 environment. We observe that in addition to clus-
ters similar to those appearing in Square environment, there is now a cluster
corresponding to wall’s ends. We note, however, that when training on Room2,
the cluster corresponding to wall’s ends is not visible with 20 clusters extracted.
We hypothesize that the layout causes the agent to be stuck in the different
rooms, reducing the number of appearance of wall’s ends in the database.

4.5 Robustness to Testing Environment

In this experiment, we evaluate if the representations learned in one environment
transfer to other environments. We train the Recurrent-SM-encoder as well as
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Fig. 7. S-encoder representation space clusters

Fig. 8. Recurrent-SM-encoder representation space clusters

Fig. 9. Recurrent-SM-encoder representation space clusters, trained on Room1
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(a) Clusters in
Square

(b) Transferred
to Room1

(c) Transferred
to Room2

Fig. 10. Transferring some Square clusters

(a) Clusters in
Room1

(b) Transferred
to Square

(c) Transferred
to Room2

Fig. 11. Transferring some Room1 clusters
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our clustering algorithm on one environment, then apply the learned representa-
tions and clusters in other environments. We show the transfer of some clusters
of interest learned on Square on Fig. 10. We show on Fig. 11 the transfer of a few
clusters of interest learned on Room1 to other environments. We observe that the
representations learned in one environment can be used in other environments,
with different spatial layouts. This is to be expected as the LSTM only captures
and retains short-term information, which represents sensorimotor transitions,
but do not represent different spatial layouts of the environments.

5 Conclusion

In this paper we proposed to use an unsupervised learning method based on
sensorimotor prediction that allows an agent to acquire sensory representations
by integrating sensorimotor information using recurrent neural networks.

We observed that our model extracts classes of interaction with the environ-
ment that seem qualitatively meaningful, and which contain temporal informa-
tion through short-term memory of previous experiences. In particular we veri-
fied that the motor commands and memory are very beneficial to learn sensory
representations through prediction. We note that the clusters of the sensory rep-
resentation are similar to particular cells observed in mammals, such as distance,
orientation, and border cells [11]. We noticed that the representation learned on
an environment can be used in other environments with different spatial layouts.

We used a generic approach, inspired from recent proposals about the nature
and emergence of autonomy and intelligence through sensorimotor prediction
[2]. It uses only raw data, and requires (in our simple experiment) very few
engineering biases. In future works we want to investigate whether it scales to
more complex environments and sensory streams, and if it can be applied on a
robotic platforms in a real human environment.

One interesting possible extension would be to use the representations to
learn a map of the environment. We plan to investigate how to build a graph
where the nodes would correspond to particular activations of the representation,
and the edges would correspond to motor commands necessary to transition from
one representation to the other. We want to study the compression of this graph
to obtain compact spatial representations, as proposed in [15,17].

In general, the proposed approach deals with very low level processing of sen-
sorimotor streams in order to build meaningful representations. The usefulness
of these representations, and how they can integrate in a cognitive architecture,
would have to be demonstrated. We plan to use the learned representations in a
Reinforcement Learning task. On the one hand, the success rate at the task gives
a clear quantitative evaluation. On the other hand, it will allow us to evaluate
the benefits of learning representations in terms of generalization, abstraction,
and transfer of knowledge across different environments.
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Abstract. The analysis of a dynamic data is challenging. Indeed, the structure
of such data changes over time, potentially in a very fast speed. In addition, the
objects in such data-sets are often complex. In this paper, our practical moti-
vation is to perform users profiling, i.e. to follow users’ geographic location and
navigation logs to detect changes in their habits and interests. We propose a new
framework in which we first create, for each user, a signal of the evolution in the
distribution of their interest and another signal based on the distribution of
physical locations recorded during their navigation. Then, we detect automati-
cally the changes in interest or locations thanks a new jump-detection algorithm.
We compared the proposed approach with a set of existing signal-based algo-
rithms on a set of artificial data-sets and we showed that our approach is faster
and produce less errors for this kind of task. We then applied the proposed
framework on a real data-set and we detected different categories of behavior
among the users, from users with very stable interest and locations to users with
clear changes in their behaviors, either in interest, location or both.

Keywords: Time series � Change detection � Signal-based approaches
Users profiling

1 Introduction

With the current progress of technology, the amount of recorded data is perpetually
increasing and the need of fast and efficient analysis algorithms is more important than
ever. One of the major challenge in data mining is the detection of change in dynamic
data-sets. Indeed, as new data are constantly recorded, the structure of the data-set can
vary over time. This phenomenon is known as “concept drift” [9, 18]. One direct
application, which is our practical interest in this paper, is the detection of change in
users’ behavior and interest based on data recorded during their online navigation. This
task is known as “user profiling” and has a high economic importance for companies in
the field of online advertising. Profiling tasks aim at recognizing the “mindset” of users
through their navigation on various websites or their interaction with digital “touch
points” (varying ways that a brand interacts and displays information to prospective
customers and current customers). It intervenes in the international market for
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“programmatic advertising” tasks, by assigning a profile to users connecting to a site
that can offer advertising, so that the displayed advertising corresponds best to the
needs of the users. Indeed, being able to detect when a user changes his interest or
when he moves to another city or country is very important to adjust the advertising
strategy regarding this user. These profiles are computed from a very large database of
internet browsing which lists URL sequences or touch points visited by a large number
of people. Each URL of a “touch point” is characterized by contextual and semantic
information.

In this context, each user is described as a time series of URL categories and
physical locations. The URL categories are computed using a clustering approach
adapted to complex data [16, 17]. The locations are recorded using geolocation
information collected during the user’s navigation but are restricted to a series of postal
codes. The detection of changes in time series involves the extraction of “stable”
periods, separated by usually short period of variation. There are therefore two main
strategies: either the algorithm focuses on detecting the different period of stability in
the time series, or it focuses on detecting the period of variation [1, 3, 4, 6, 10, 11].
Detecting stability or homogeneity is related to the task of data stream clustering. The
detection of variation in the series can be related to signal analysis approaches. In both
case, the time series must be segmented into several time windows that will be com-
pared to find either similarities or variations [9, 18].

In this paper we consider a sliding time windows with a step of one day, in order to
obtain for each window a distribution of location or interest. Most clustering approa-
ches are not adapted to distributional data and cannot be applied without costly
adaptations. However, it is not difficult to compute the pairwise dissimilarities between
adjacent windows, using an adapted metrics, in order to produce a signal representing
the variations in each user behavior. The main challenge in this case is to discriminate
meaningful variation in the signal to random noise. The usual approach is to apply a
smoothing function to the signal in order to retain only the significant variations [2, 5,
7, 12]. The main advantages of such algorithms are the computation speed and the
absence of user-defined parameter, which are usually difficult to tweak.

We propose in this paper a new signal-based approach, described in Sect. 2,
adapted to the profiling task. This algorithm is based on a multi-scale smoothing of the
computed signal, allowing a better elimination of non-significant variations in the
signal. We then tested the algorithm on simulated data to validate its quality in com-
parison to traditional approaches; results are presented in Sect. 3. Finally, we applied
the proposed framework on a real industrial data-set, as shown in Sect. 4. A conclusion
is given in Sect. 5.

2 General Framework

The detection of change in behavior of users is a very interesting information which
can help marketing companies to send and sell the right product to users based on their
needs. In this work we used the users’ geographic location to detect changes in their
geographic habits, and the users’ navigation logs to detect variation in their interests.
We first created a signal for each user based on distributions representing his behavior.
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Similarities between distributions are computed by the Jenson-Shannon metric. Then,
by using a change detection algorithm, we detected the dates where there was a change
in the user’s behavior.

2.1 Signal Computation

In order to detect changes in the users’ behavior, we applied a change detection algo-
rithm described below. This algorithm detects unusual “jumps” in a signal character-
izing behavioral variations. To construct such signal, were a change in behavior is
characterized by a jump, we defined the distribution of labels or postal codes in the first
time-windows as the reference behavior. Then, the window is shifted one day at a time,
in order to produce a series of distribution. For example, if in a time window a user has
been detected in France 7 times in Strasbourg (Postal code 67000) and 3 times in Nancy
(postal code 54000), the distribution for this user and this time window will be {67000:
70%, 54000: 30%}. The signal is created from the dissimilarities between the distri-
butions in the sliding time window and the distribution of reference. The signal thus
obtained represents the evolution of the differences with respect to the reference window
and makes it possible to detect significant changes in distributions: a move or a change
of interest. The similarity between two probability distributions (reference window and
shifted windows) is computed by a metric called Jensen-Shannon divergence [8, 15].
It is based on the Kullback-Leibler divergence, with some notable (and useful) differ-
ences, including that it is symmetric and it is always a finite value. The Jensen-Shannon
divergence (JS) is a symmetrized and smoothed version of the Kullback-Leibler
divergence D(P k Q) between two discrete distributions. It is defined by

JS PjjQð Þ ¼ 1
2
D P jj Mð Þþ 1

2
D Q jj Mð Þ

Where M ¼ 1
2 PþQð Þ. For discrete probability distributions P and Q, the

Kullback-Leibler divergence from P to Q is defined [14] to be

DKL P jj Qð Þ ¼ �
X

P ið Þ logQ ið Þ
P ið Þ ¼

X

i

P ið Þ log P ið Þ
Q ið Þ:

Note that any zero probabilities in P or Q are ignored in the computation, meaning
that two totally different distributions will have a JS value of 1. The proposed approach
has been tested on the artificial data-set for validation, then applied on the real data-sets
to analyze the changes in users’ behaviors.

2.2 Proposed Multi-scale Change Detection Algorithm

Algorithm 1 describe the multi-scale change detection approach. The idea is: an iter-
ative smoothing process eliminates random fluctuations in the signal, then unusually
high variations are detected. The signals are piece-wise continuous functions having
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discontinuities at some locations xi, i.e., v(xi
+) 6 = v(xi

−). For that type of functions,
there exist many approaches to locate the singularities. These can either be signal based
(i.e., one detects large amplitude variations using an appropriate threshold) or multi-
scale coefficients based. Again, we consider that vk

j are the averages of some function
v discretized on the intervals Ij,k= 2−j[k, k + 1[. In multi-scale coefficients-based
approach, a strategy to detect the singularities at level j is based on a criterion that uses
the first or the second order differences of vj. In these approaches, the jump singularities
detection is carried out at each level independently.

Algorithm 1. Changes Detection in Behavior Signal
Input: Signal vector v of length N .
Output: List of detected changes.

1: Initialize j = [log2(N)]
2: Initialize global list of jumps Lg = ∅
3: while j > [log2(N)] − 4 do
4: Smoothing
5: for i ← 1, length(vj) do

6: vj−1
k =

v
j
2k−1+v

j
2k

2

7: Initialize local list of jumps Le = ∅
8: Compute cost function dv based on first order of finite differences:
9: for k ← 1, length(vj−1) do
10: dvj−1

k = |Δvj−1
k | + |Δvj−1

k+1|
11: Compute local maxima of cost function dv:
12: for k ← 1, length(vj−1

k ) do
13: if dvj−1

k > max(dvj−1
k−2, dvj−1

k−1, dvj−1
k+1, dvj−1

k+2) then
14: Lj ← Lj + {k}
15: j ← j − 1

16: Define Lg as the intersection of all Lj : Lg = ∩[log2(N)]

j=[log2(N)]−4Lj

However, we propose a strategy to locate the jump singularities at a given level j by
taking into account the detection at other levels. We detect intervals Ij,k potentially con-
taining a jump singularity as those containing the local maxima of dvk

j= |Δvk
j | + |Δvk

j
+1|

where Δ is the first order finite difference operator Δvk
j= vk

j
−1 − vk

j , and where vj is
obtained by successive averaging of vJ, J is considered at the finest level of discretization.
We then compute the numberNj of singularities at level j, and we define jmax as the largest
level j such that Nj−1 = Nj. We also define the level jmin as the smallest j such that
Nj= Njmax.

A singularity detected in Ij,k for jmin < j < J is called admissible if there exists a
singularity inside Ij+1,2k or Ij+1,2k+1. This definition implies that admissible singularities
make up chains when j varies. In that context, the singularities at level j must be
separated by more than 2 intervals at the finest level.
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3 Experimental Validation

In this section we will present the experimental protocol we used to validate the
proposed algorithm. To validate the quality of our algorithm in a controlled environ-
ment, we tested the proposed algorithm on artificial data-sets and compared the results
with the quality of the state-of-the-art algorithms. The computations are tested on a
Windows 10 (x64) machine, 16G RAM, with a dual-core CPU clocked at 2.50 Ghz (i5-
2450 M).

3.1 Artificial Data-Sets

To generate the artificial data-set we considered three categories of behavior: The
user’s behavior changes over time into a totally new behavior, the user’s behavior
changes over time into a partially different behavior, and the user do not change its
behavior. We generated 10000 signals for each of these categories of users. To con-
struct a signal, we first generated two sets of 1 to 5 random labels each, representing the
possible behaviors before and after the change. Only one set is created to simulate the
absence of change and to simulate partial change we forced the two set to share 1 or 2
labels. We simulated a period of two months. A hundred random time-stamps were
generated over this period. Each time-stamp were associated to a label from the first or
the second set, depending on a randomly chosen date of change.

Figure 1a is an example of simulated signal for a user who expressed a full change
of behavior. The horizontal axis is the time-stamp (days) and the vertical axis is the JS
dissimilarity for the reference window. As you see, the JS increases from the 22th to the
29th day. Then the signal keeps a value of 1 from the 30th day onward, as there is no
intersection between the reference distribution and the distributions from the 30th day.
In the case of a partial change, the user express new behaviors in addition to some of its
previous. For example, a user who relocate into a new house but keep the same work in
its previous location. Figure 1b shows such case. This time, the signal never reaches 1
as there are still some similarities before and after the changes. The change is
nonetheless correctly detected by the algorithm. The last case is when there is no
detection of change for a user. In this case there is no significant different between the

Fig. 1. Example of simulated signals of user’s behaviors. The arrows indicate the detected
changes (if any).
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reference window and the shifted windows and the signal stays steady over the time.
The example showed in Fig. 1c demonstrates that the similarity computed by the
Jensen-Shannon divergence is low. The signal created is stable all over the time with no
notable change. This case can describe users who keep a regular activity without any
notable variations.

3.2 Experimental Results

To demonstrate the effectiveness of the proposed approach, we evaluated its perfor-
mances in terms of computation time. In addition, to validate the quality of detected
changes, we computed the means of absolute differences between the detected and the
predicted date of change and we compared it to a set of state-of-the-art algorithms:
Jump penalty, PWC bilateral, Robust jump penalty, Soft mean-shift, Total variation,
Robust TVD and Medfiltit (see [13]). Table 1 presents the results of comparison
between the proposed algorithm and the 7 state-of-the-art algorithms. This table has 6
columns which describe 3 different categories: the first, third and fifth columns describe
respectively the time computed for detection of no change, detection of full change and
the partial change in user’s behavior. As you see, the proposed algorithm has the
minimum value in comparison to the other algorithms: it is (usually by far) the fastest
approach for this task. Moreover, the error of the proposed method is the lowest among
all. This is especially true for stable signals, when there is no change to detect. In that
case, the multi-scale approach performs very well at smoothing the whole signal and
removing all random variation. Overall the quality of the proposed approach is very
satisfying and it should be able to deal with real data in more complex applications.

4 Application

To follow the real changes in individual interest based on the data provided by our
project partner, Mindlytix, we used a data-set of the navigation log of 142794 users
giving for each user a list of time-stamps associated to the URL visited at this time,
over a period of 30 days. Based on the result of the URLs clustering presented in the
previous section (using the contextual similarity), each URL were substituted by a

Table 1. Experimental results

Algorithm No change
time (s) error

Full change
time (s) error

Partial change
time (s) error

Proposed 0.85 2.78 0.94 1.67 0.87 2.07
Jump penalty 29.4 14.33 25.26 4.11 31.93 4.47
PWC bilateral 83.87 14.31 12.83 3.77 18.71 4.19
Robust jump penalty 8.43 14.26 93.48 4.02 90.63 4.57
Soft mean-shift 8.57 16.57 21.99 3.6 21.5 4.56
Total variation 45.55 13.12 103.44 3.27 116.8 4.02
Robust TVD 7016.69 14.82 4405.04 3.8 4390.13 4.61
Medfilt.it 1.32 13.92 0.98 2.95 1.29 3.93
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cluster label. This step allows a user navigating between different URLs from the same
topics to be considered having stable interest. The time windows for this data-set is
fixed to 5 days, meaning that the distribution of URLs’ labels visited during a 5 days
period defines a user behavior. Finally, to follow the change in users’ physical location
habits, Mindlytix provided a dataset of geolocations (postal codes) associated to time-
stamps over a period of 74 days for 598 users. The objective for these data is to be able
to detect when a user relocates to a different location or spend some time outside its
usual area. Here, we chose a size of 10 days for the time windows to avoid detecting
very short trips and unusual displacements.

4.1 Geolocation

In this section we will describe the results obtained on the geolocation data-sets pro-
vided by Mindlytix. We analyzed the change behavior for 598 users during 74 days. In
the signal creation step we used a window with a size of 10 days. We observe some
variety in the signals, but there are still some characteristic patterns. Figures 2a and b
illustrates some examples of signals characteristic of a clear relocation. In Fig. 2a the
Jensen-Shannon dissimilarity increases sharply for two days, stays stable for three
days, then again rises suddenly. Two changes are detected, the first being a partial
change. This kind of signal can be interpreted as a move in two steps, with a period
where the user spend time in both locations before moving definitively. Figure 2b is
another example for relocation of a user and it is a good example of simple change in
the user’s location. However, this time we observe a small period where the user
spends some time in its previous location.

Fig. 2. Example of obtained signals during a user’s relocation or a temporary displacements
(trip). The arrows indicate the detected changes.
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Users from another category do not move at all, neither to relocate nor to go to trip
or vacations during the recorded period. The dissimilarity between the reference
window and the shifted windows stays low all the time. Another interesting case is
when the user leaves for a vacation or work for some time, before returning to the place
he/she used to live. Figures 2c and d shows two examples for this case. As you see in
Fig. 2c, around the 10th day the user starts to move. The dissimilarity between the
reference window and the shifted window rises sharply until the 15th day. Then, this
dissimilarity decreases rapidly to reach the same distribution as the reference window.
It means that this user spent 10 days (the size of the time windows) in another place
before coming back. Another example is presented in Fig. 2d, which shows a clear
example of a user leaving for a 3-week travel and return to his/her initial place. In both
examples, the two changes are correctly detected.

4.2 Individual Interest

To follow the change of users’ interest we used users’ navigation log information. We
have the URLs visited during 30 days for 142794 users. Each URL have been asso-
ciated to a cluster in the previous section, and the user’s navigation can be expressed
into a distribution of visited clusters varying over time.

Fig. 3. Examples of stable interest, change in interest and temporary change in interest of users,
based on their navigation logs.
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Figures 3a to c illustrate the behavior of users who do not change their interest
during one month. All three figures the signal is either stable or with only minor
variations (undetected by the algorithm). Figure 3d to f is an example of results for the
detection of change in individual interest, where the users change their interest over
time. As can be seen, in Figs. 3d the signal of this user remains stable for 14 days, then
starts to rise sharply as the user start to navigate in other categories of URLs. In
Figs. 3e and f, the change is more gradual before reaching a state of interest fully
different from the window of reference. These three figures are typical examples of the
different pattern of change in a user’s interest. A third category of observed behavior is
a group of users who change their interest for a limited period and then return to their
initial interest. Figures 3g to i illustrate this type of users. As you see, these signals go
up and stay stable over a period of time and then go down. It means that the dissim-
ilarity between the reference window and the shifted windows increase for a period of
time, but at the end of the recorded period the distribution of visited categories of URL
returns to a distribution similar to the distribution of reference. Figure 3i shows a
particular example of temporary change, were the user return to its initial interests in
several steps.

5 Conclusion

In this paper, we proposed a new multi-scale algorithm of change detection to analyze
the change in individual behavior of users based on their navigation and geolocation
data. We first created, for each user, a signal of the evolution in the distribution of
online user’s interest and another signal based on the distribution of physical locations
recorded during their navigation. Then, by using the signal-based jump detection
algorithm, changes in interest or locations were detected automatically. We detected
different scenarios: during the analyzed period, some users kept the same behavior,
some had a clear change in their behaviors and some showed a change in their behavior
which lasted only a short period of time. Experimental tests performed on simulated
signals showed that the proposed approach is faster and makes less errors for this task
than state of-the-art algorithms.
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Abstract. The alpha and gamma oscillations derived from EEG signal are
useful tools in recognizing a cognitive state and several cerebral disorders.
However, there are undesirable artifacts that exist among the electrophysio-
logical signals which lead to unreliable results in the extraction and localization
of these accurate oscillations. We introduced, three filtering techniques based on
Finite Impulse Response filters FIR, Stationary Wavelet transform SWT method
and custom FIR filter to extract the non-contaminated (pure) oscillations and
localize their responsible sources using the Independent Component Analy-
sis ICA technique. In our obtained results, we compared the effectiveness of
these filtering techniques in extracting and localizing of non-contaminated alpha
and gamma oscillations. We proposed here the accurate technique for the
extraction of pure alpha and oscillations. We also presented the accurate cortical
region responsible of the generation of these oscillations.

Keywords: EEG signal � Oscillation � FIR � SWT � Custom FIR
Source localization

1 Introduction

In order to study the human brain activity, we relied on analyzing electrophysiological
signals; among this recording technique the electroencephalogram EEG signal remains
one of the reliable ways to investigate the neurons activity response and their impact on
our daily tasks, conscious state and medical disorders. Based on the EEG frequency
variation, this physiological signal is generally classified into five waves: delta band
(0.5–4 Hz), theta waves (4–7.5 Hz), alpha (8–13 Hz), beta (14–26 Hz) and gamma
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(30–45 Hz) [1]. The alpha waves are generally located in the occipital area, considered
as the most important cortical waves, it reveals the states of relaxation, awareness and
absence of concentration. For the gamma waves they are much more identified as
active level of cognition state and mostly used for confirmation of serval neurological
diseases and malfunctions [2], especially in epilepsy. The extraction of these frequency
bands in a pure way was and remains a challenging task notably when the EEG
recorded frequencies covers a wide range (from 0.5 Hz up to 45 Hz and above). With a
variety of different filtering techniques, [3–6], the consensus filtering method remain in
negotiation versus several constraints: the signal to noise ratio, the overlapped level, the
width of spikes and oscillations…. An effective separation of cortical frequency band
would produce non-contaminated oscillatory activities (neurons generators) with a
much better analysis of the responsible sources and generators of these activities.

2 Filtering Techniques

2.1 Finite Impulsive Response (FIR): Kaiser Window

The Finite Impulse Response filter is a classical technique that conservers both the
causality and stability aspects. The FIR is preferred then Infinite Impulsive
Response IIR (difficult to implement mainly for the instability in higher orders) [7–9].

In fact, the FIR is always applied with windowing method. Hence, we used the
Kaiser window to control the passband ripples stability with a smother manner [10].
The Kaiser window (Kaiser function in Matlab), defines the window shape by the b
parameter. In our study, we settled the filter order to N = 100, the passband frequencies
Fc1, Fc2 respectively set to 8 and 12 Hz for the extraction of the alpha wave and for the
gamma wave were set to 30 and 46 Hz. (fir1 function in matlab), and the b window
parameter to 3.

2.2 A Custom Designed FIR Filter Derived from Parcks-MacClellan
Algorithm

The Parcks-MacClellan algorithm is as fundamental way to design Equiripple FIR
filters [11], based on the Chebyshev approximation [12].

The main advantage of this filter is its ability to minimize errors both in passband
and stopband frequencies [10].

We defined in our study, the filter order to N = 100, the stop and pass weights to
Wstop1 = 100, Wpass = 80 and Wstop2 = 120. The passband and stopband fre-
quencies were the same as the FIR filter settings for both alpha and gamma waves
extractions.

2.3 Stationary Wavelet Transform (SWT)

The stationary Wavelet Transform SWT is a wavelet transform filter based on the
Discrete Wavelet Transform (DWT) with the advantage, of surpassing binary deci-
mation step, of the wavelet transform [3, 13] that allows a retention of the real signal
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properties. The SWT also has a better performance than the Classical Wavelet
Transform (CWT) by overcoming the frequency bands overlapping. The SWT has been
also proven very useful in EEG signal analysis [3, 14]. In fact, this technique,
decomposes a signal s(t) at each scale j and step k, then project it on the mother wavelet
function / by the Eq. (1):

/j;k tð Þ ¼ 2�j/ 2�j t� kð Þ� �
;Cj;k ¼ s tð Þ;/j;k tð Þ

D E
ð1Þ

with Cj,k is the value of the approximated or detailed coefficients at level j decompo-
sition depending on the reconstruction.

In our case, we applied the SWT to extract the alpha using 7 levels of decompo-
sition while the gamma rhythms require only a decomposition of 6-levels (the
decomposition level increases when the selected frequency band decreases). We
applied, in this study, the wavelet family symlets 4 and the SWT Matlab function for
the decomposition with the iswt functions of Matlab for the reconstruction of pure
alpha and gamma oscillations.

3 Database

Our real EEG signal used in this work is a registration of one subject, the acquisition
and preprocessing phases were applied in the Clinical Neurophysiology Department of
‘La Timone hospital’ in Marseille as in Jmail and colleagues [6] and validated by an
expert neurologist. This particular EEG recording was chosen because it presented
clear alpha and gamma patterns with regular spiking and visible epileptic oscillations as
validated by the expert. The EEG data was recorded on a Deltamed System, sampled at
2500 Hz, with anti-aliasing low-pass analog filter set to 100 Hz. Our dataset is com-
posed of 74 epochs each with 6 s duration, 62 channels and 148 events.

4 Results

4.1 Extraction of Alpha and Gamma Rhythms for Real EEG Signal

In Fig. 1, we depicted the three-filtering methods response for the reconstruction of the
alpha rhythm against the EEG signal. It is noticeable that the FIR and the SWT
methods have a relatively similar result with a visually confirmed proof of match to the
ideal alpha wave, while the Custom FIR could not dispose the higher frequency
oscillations which leads to a contaminated signal more related to the real EEG signal.

In Fig. 2, we compared the robustness of our adopted filtering methods versus the
real EEG signal. Similar to the alpha case, it is perceptible that the FIR and SWT
methods are relatively similar results in the extraction of the gamma band, however the
Custom FIR still present a corrupted oscillation.

Extraction and Localization of Non-contaminated Alpha and Gamma Oscillations 513



4.2 Evaluation of the Three Extraction Methods

The GOF for the Extraction of Pure Alpha and Gamma Rhythm
The reconstructed simulated signals using three filtering techniques were compared to
the simulated signals. See Eq. (2):

GOF ¼ 1�
Pr

t¼1 s tð Þ � sf tð Þ� �2Pr
t¼1 s tð Þ2

 !
ð2Þ

With s(t) is the theoretical power and Sf(t) is the power of the filtered signal that
depends on the adopted filtering technique (FIR, SWT, Custom designed FIR).

Fig. 1. A comparison of (a) original EEG dataset, with the extracted alpha band by (b) FIR
(c) SWT (d) Custom FIR.

Fig. 2. A comparison of (a) original EEG dataset, with the extracted gamma band by (b) FIR
(c) SWT (d) Custom FIR.
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The GOF value for these different SNR measurements is gathered in the Fig. 3.

It is clear that the SWT provides the best result in the extraction of alpha wave for
different SNR values. Hence the SWT is the accurate filtering technique for the
recovery of pure alpha signal even in a noisy signal.

We depicted in Fig. 4 the GOF results for the recovery of gamma wave.

We have similar results as the alpha extraction values, furthermore the GOF values
has been widened between the filtering techniques in high SNR values.

The Topographies and DSP for the Extraction of Pure Alpha and Gamma
Rhythms.
The topographies and power spectral density (PSD) mapping for the alpha rhythm
extraction versus the real EEG signal was depicted in Figure [15] (Fig. 5).

The FIR filter improves the scalp map depolarization, compared to real EEG map,
in fact the recovered alpha has a clearer dipolar topography. The SWT shows a much
more dipolar and clearer results than the FIR and the original signal. For the Cus-
tom FIR has slightly depolarized the scalp map topography.

Fig. 3. Comparison of GOF values for the recovered alpha simulated signal by SWT, FIR and
custom FIR.

Fig. 4. Comparison of GOF values for the recovered gamma simulated signal by SWT, FIR and
custom FIR.
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There are two clear activities: a parietal and an occipital one, a typical location of
alpha rhythms, in fact these dipolar activities are much clear and pure by the SWT
filtering technique.

All the adopted filtering techniques: FIR, SWT and custom FIR, have been able to
bring out the alpha rhythm since they did valorize the spectral density energies.

For the gamma rhythm extraction, the topographies and PSD evaluation are
depicted in Fig. 6. There is no clear difference between the topographies of original and
extracted gamma by FIR and costumed FIR, however the SWT topography showed a
slight improvement in the depolarization map (a clear dipolar mapping that reflect a
physiological activity). The PSD results are increasingly improved (Custom FIR then
FIR and finally SWT) in terms of valorizing the gamma band.

The Source Localization of the Pure Alpha and Gamma Rhythm.
To define the accurate sources responsible of the generation of alpha and gamma band,
we resolved the forward and inverse problem, using the EEGLAB [15] and the fieldtrip
toolbox.

For the resolution of the source localization, we used in this work the BEM
technique as a solution for the Forward problem, and the ECD technique (simple in
implementation with good results in estimation of the responsible sources) as a solution
for the inverse problem. We also set the Residue Variance to RV = 15% (to reduce the
low sources effect on the high sources).

Furthermore, we computed the Independent Component Analysis (ICA) for our
original signal to keep only one generator per activity (one with 10 Hz for alpha and
one with 45 Hz for gamma). We set the number of component equal to the number of
channels (captors) to emphasis the number of independent components. We used the

Fig. 5. Comparison of the Topographies and PDS of (a) real EEG signal and the extracted alpha
signal by (b) FIR (c) SWT (d) Custom FIR.
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ICA function on Matlab implemented in the EEGLAB toolbox for each filtered dataset
(pure alpha/gamma by FIR, pure alpha/gamma by SWT, pure alpha/gamma by custom
FIR). Finally, we applied the source localization algorithms on the ICA component
depicting a pure alpha oscillator then a pure gamma oscillator.

The choice of the involved components to be localized was based on the
topographies results (studied in the previous section). In fact, we selected the com-
ponents 6 and 8, (dipolar map) for alpha band and the components 13 and 14 for
gamma activities.

Figure 7 illustrates the source localization of the involved alpha components 6,8 by
our proposed filtering technique (FIR, SWT, custom FIR) versus our real EEG signal.

Fig. 6. Comparison of the Topographies and DSP of the (a) real EEG signal and extracted
gamma by (b) FIR (c) SWT (d) Custom FIR.

Fig. 7. Source localization of component 6 and 8 for (a) real EEG signal and pure alpha signal
using (b) FIR (c) SWT (d) Custom FIR.
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In Fig. 8 we compared the source localization results as in the Fig. 7 for the gamma
rhythms.

The Residual Values RV after localization for all the components are gathered in
Table 1, the more the RV value is lower the more the results are accurate.

The RV value indicates that SWT is the efficient filtering method for the extraction
of non-contaminated alpha and gamma rhythms.

5 Discussion

In this study, we compared the performance of three filtering methods (FIR, custom
FIR and SWT) in the extraction of two frequency bands (the alpha and the gamma
wave) among a real EEG signal. In fact, these activities (alpha and gamma) are very
important in the analysis of cognitive task and also for the diagnosis of neurological
disease as epilepsy. Hence, we proposed to define the best filtering method to recover

Fig. 8. Source localization of component 13 and 14 for (a) real EEG signal and extracted
gamma by (b) FIR (c) SWT (d) Custom FIR.

Table 1. Components RV values for the real EEG signal, FIR, SWT and Custom FIR.

Component 6
RV%

Component 8
RV%

Component 13
RV%

Component 14
RV%

Real EEG
signal

2.45% 6.61% 7.40% >15%

FIR 7.31% 14.52% >15% 14.22%
SWT 2.45% 6.61% 1.98% 3.99%
Custom FIR 2.46% 12.26% >15% >15%
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in a resalable way a pure alpha and gamma activity in order to locate their responsible
sources. These productions are useful to help different neurological decisions for both
normal and epileptic cases.

We also evaluated the robustness of our adopted filtering methods against the noise
and we proved that the SWT technique is the best method for the extraction of both
alpha and gamma waves. Furthermore, the SWT has shown its efficiency in the
topographic mapping especially for the alpha band and for the source localization of the
gamma extracted signal. In order to help neurologist during the analysis and diagnosis
of electrophysiological signal, we propose in the further work to embed our processing
chain as a monitoring and neurofeedback system.
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Abstract. In this paper, we propose a Chaotic Complex-Valued Asso-
ciative Memory with Adaptive Scaling Factor which can realize dynamic
association of multi-valued pattern. In the proposed model, the scaling
factor of refractoriness is adjusted according to the maximum absolute
value of the internal state up to that time as similar as the conventional
Chaotic Associative Memory with Adaptive Scaling Factor. Computer
experiments are carried out and we confirmed that the proposed model
has the same dynamic association ability as the conventional model, and
the proposed model also has recall capability similar to that of the con-
ventional model, even for the number of neurons not used for automatic
adjustment of parameters.

Keywords: Chaotic complex-valued neuron · Associative memory
Adaptive Scaling Factor

1 Introduction

Recently, various researches on neural networks have been carried out as a
method which has flexible information processing ability found in brain. Among
them, a lot of associative memory models have been proposed.

On the other hand, chaos is drawing much attention as one of methods which
have flexible information processing ability. Chaos is a phenomenon that can not
be predicted over a long term occurring in a nonlinear system with deterministic
time evolution. It is observed in brain and nervous system of living organisms
and is thought to play an important role in memories and learning in brain
[1]. In a chaotic neuron model [1], chaos is introduced by considering spatio-
temporal summation, refractoriness of neuron, continuous output function seen
in real neurons. The chaotic associative memory is an auto-associative memory
composed of the chaotic neuron model and it has the same structure as the
Hopfield network [2]. It is known that it can recall the stored binary/bipolar
patterns dynamically [1,3]. Moreover, it is known that dynamic association abil-
ity improves by temporally changing scaling factor of refractoriness which is a
parameter of chaotic neuron model [4]. However, dynamic association ability
depends on parameters of chaotic neuron model such as damping factors and a
scaling factor of refractoriness. Since appropriate parameters vary depending on
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11140, pp. 523–531, 2018.
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the number of neurons, the number of training patterns and so on, there is a
problem that appropriate parameters have to be determined by trial and error.

As the model which can adjust parameters automatically in the Chaotic
Associative Memory, we have proposed the Chaotic Associative Memory with
Adaptive Scaling Factor [5]. In this model, automatic parameter adjustment
method are determined based on the relationship between the internal state
and the parameters in which the high dynamic association ability is obtained
in the Chaotic Associative Memory with Variable Scaling Factor. In this model,
the connection weights are normalized by dividing by the number of neurons so
that the range that internal value does not depend on the number of neurons.
However, this model can deal with only binary/bipolar patterns.

On the other hand, a complex-valued neural network has been proposed as
a model that can deal with multi-valued patterns. This model consists of the
complex-valued neuron model, and realizes association of multi-valued patterns
by expressing multi-value using complex-values. In this model, the unit circle on
the complex plane is equally divided by S, and the point at the equally divided
position is made to correspond to multiple values to represent a multivalued
pattern.

Furthermore, a chaotic complex-valued neuron model [6] has been proposed
in which a chaotic neuron model is extended to deal with complex values as an
internal state or output. This is a model combining a complex-valued neuron
model and a chaos neuron model. In the chaotic complex associative memory [6]
which is an auto associative memory model consisting of chaotic complex-valued
neuron models, dynamic association of multi-valued patterns can be realized.
Chaotic complex-valued associative memory has a structure in which neurons
are mutually coupled as similar as the Hopfield network, and consists of chaotic
complex-valued neuron model. In this model, as similar as the complex-valued
neural network, multi-valued patterns are represented by assigning points on the
unit circle in the complex plane to multi values, and the state of the network is
changed by chaos, dynamic association of multi-valued patterns.

In this paper, we propose a Chaotic Complex-Valued Associative Memory
with Adaptive Scaling Factor which can realize dynamic association of multi-
valued pattern. In the proposed model, the scaling factor of refractoriness is
adjusted according to the maximum absolute value of the internal state up to
that time as similar as the conventional Chaotic Associative Memory with Adap-
tive Scaling Factor.

2 Chaotic Complex-Valued Associative Memory
with Adaptive Scaling Factor

Here, we explain the proposed Chaotic Complex-Valued Associative Memory
with Adaptive Scaling Factor. This model is an auto-associative memory com-
posed of a chaotic complex-valued neuron model having a scaling factor of refrac-
toriness that varies with time and internal states of neurons. It can realize
dynamic association of multi-valued stored patterns by internal state change
by chaos.
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Fig. 1. Structure of proposed model.

2.1 Structure

The proposed model has the similar structure as the Hopfield network [2] as
shown in Fig. 1. Each neuron is a chaotic complex-valued neuron model with
a scaling factor of refractoriness that varies with time and are coupled to each
other.

2.2 Learning Process

In the learning process of the proposed model, the connection weights are deter-
mined using correlation learning as similar as the Hopfield network. When P
patterns are memorized into the network consisting of N neurons, the weight
matrix w is determined as follows:

w =
10

β(S)N + γ(S)

P∑

p=1

X(p)X(p)∗ − PIN (1)

where N is the number of neurons, x(p) is the p-th stored complex-valued pattern
vector, IN is a unit matrix (N × N), and ∗ represents conjugate transposition.
β(S) and γ(S) are is the normalization parameters when the number of states is
S (β(4) = 6.6375, β(6) = 6.6241, β(8) = 6.6211, γ(4) = −0.6618, γ(6) = 0.832,
γ(8) = 4.1951).

2.3 Recall Process

The recall process of the proposed model has following four steps.
Step 1 : Input of Pattern

A pattern is given to the network.
Step 2 : Calculation of Internal States

The internal states of the neuron i at the time t + 1, ui(t + 1) is given by

ui(t + 1) =
N∑

j=1

wij

t∑

d=0

kd
mxj(t − d) − α(t, I(t)max)

t∑

d=0

kd
rxi(t − d) (2)

(ui(t), xi(t), wij ∈ C, km, kr, α(t, I(t)max) ∈ R)

where N is the number of neurons, km is the damping factor of the mutual
coupling term, kr is the damping factor of the refractoriness term, wij is the
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connection weight between the neuron i and the neuron j, and xj(t) is the output
of the neuron j at the time t. α(t, I(t)max) is the scaling factor of refractoriness
at the time t when the maximum absolute value of the internal state up to the
time t is I(t)max. It is given by

α(t, I(t)max) = a(I(t)max) + b(a(I(t)max)) · sin
(
c · π

12
· t

)
(3)

where I(t)max is the maximum absolute value of the internal state up to the
time t, and it is given by

I(t)max = max{I(t), I(t − 1)max} (4)

where, I(t) is the average of the absolute values of internal states excluding the
refractoriness term at time t, and it is given by

I(t) =
1
N

∣∣∣∣∣∣

N∑

j=1

wij

t∑

d=0

kd
mxj(t − d)

∣∣∣∣∣∣
.

(5)

a(I(t)max), b(a(I(t)max)), c are parameters that determine how to change the
scaling factor of refractoriness. a(I(t)max) is the average value when the maxi-
mum absolute value of the internal state up to the time t is I(t)max, b(a(I(t)max))
is the amplitude when the maximum absolute value of the internal state up to
the time t is I(t)max, and c affects the cycle.

In the case of S = 4,

a(I(t)max) =
{

21.504I(t)max − 17.259 (I(t)max ≤ 1.401405)
13 (1.401405 < I(t)max) (6)

is used. In the case of S = 6,

a(I(t)max) =
{

47.919I(t)max − 50.094 (I(t)max ≤ 1.345291)
15 (1.345291 < I(t)max) (7)

is used. In the case of S = 8,

a(I(t)max) =
{

49.539I(t)max − 53.057 (I(t)max ≤ 1.404302)
17 (1.404302 < I(t)max) (8)

is used.
b(a(I(t)max)) is given by

b(a(I(t)max)) = a(I(t)max). (9)

These equations are determined based on the relationship between the inter-
nal state and the parameters a and b in the parameter in which the high dynamic
association ability is obtained in the Chaotic Complex-Valued Associative Mem-
ory with Variable Scaling Factor composed of 300 to 600 neurons.
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Step 3 : Calculation of Output
The output of the neuron i at the time t + 1, xi(t + 1) is given by

xi(t + 1) = f(ui(t + 1)) (10)

where f(·) is output function. Here, we use the following function:

f(u) =
ηu

η − 1.0 + |u| (11)

where, η is a positive constant.
Step 4 : Repeat

Steps 2 and 3 are repeated.

3 Computer Experiment Results

Here, we show the computer experiment results to demonstrate the effectiveness
of the proposed model under the condition shown in Table 1. The following
experiments are the average of 10 trials.

3.1 Comparison of Dynamic Association Ability with Proposed
Model and Conventional Model

Here, we compare the recall rate of the proposed model with the well-tuned con-
ventional Chaotic Complex-Valued Associative Memory with Variable Scaling
Factor. The coefficients a, b and the damping factors km and kr of the con-
ventional model use values obtained when the highest recall rate is obtained.
Figures 2, 3 and 4 shows the recall rate when 2 to 20 patterns are memorized in
each model.

From these results, it can be seen that the proposed model has the same
dynamic association ability as the well-tuned conventional model (adjusted
model).

Table 1. Experimental conditions

The Number of Neurons N 100–2000

The Number of Patterns P 1–20

S-valued Pattern S 4, 6, 8

Damping Factor km 0.86

Damping Factor kr 0.88 (S = 4, 6) 0.87 (S = 8)

Parameter in Output Function η 1.000001

Coefficient in Scaling Factor of Refractoriness c 2.0
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Fig. 2. Dynamic association ability of the proposed model and the conventional model
(N = 300–600, S = 4).

Fig. 3. Dynamic association ability of the proposed model and the conventional model
(N = 300–600, S = 6).
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Fig. 4. Dynamic association ability of the proposed model and the conventional model
(N = 300–600, S = 8).

3.2 Dynamic Association Ability of Proposed Model Composed of
More Neurons

Here, we investigated whether a high recall rate can be obtained also in the case
of the number of neurons not used for determining the parameter automatic
adjustment method in the proposed model. Figures 5, 6 and 7 show the recall

Fig. 5. Dynamic association ability of the proposed model composed of more neurons
(S = 4)
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Fig. 6. Dynamic association ability of the proposed model composed of more neurons
(S = 6)

Fig. 7. Dynamic association ability of the proposed model composed of more neurons
(S = 8)

rate when 2 to 20 patterns are memorized in each model. From these figures, it
can be seen that the proposed model also has recall capability similar to that of
the conventional model, even for the number of neurons not used for automatic
adjustment of parameters.

4 Conclusions

In this paper, we have proposed the Chaotic Complex-Valued Associative Mem-
ory with Adaptive Scaling Factor. In the proposed model, the scaling factor
of refractoriness is adjusted according to the maximum absolute value of the
internal state up to that time. Computer experiments are carried out and we
confirmed that the proposed model has the almost same dynamic association
ability as the well-tuned conventional model, and the proposed model also has
recall capability similar to that of the well-tuned conventional model, even for
the number of neurons not used for automatic adjustment of parameters.
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Abstract. In this paper we compute the impact of weather events to
airport performance, which is measured as deviation of actual and sched-
uled timestamps (delay). Weather phenomena are categorized by the Air
Traffic Management Airport Performance weather algorithm, which aims
to quantify weather conditions at European airports. A comprehensive
dataset of flights of 2013 for example airport Hamburg and accompanied
weather data result in both a quantification of the individual airport
performance and an aggregated weather-performance metric.

To model complex correlations between weather and flight schedule
data we use advance machine learning procedures as Long Short-Term
Memories are. Various structured models are applied to certain sim-
ulation scenarios considering differences in weather affected air traffic
dynamics.

Keywords: Neural networks · LSTM · RNN · Time series analysis
Sequence prediction

1 Introduction

1.1 Ease of Use

From an air transportation system view, a flight could be seen as a gate-to-
gate or an air-to-air process, where the gate-to-gate is more focused on the air-
craft trajectory flown, the air-to-air process concentrates on the airport ground
operations to enable efficient flight operations proving reliable departure times.
Typical standard deviations for airborne flights are 30 s at 20 min before arrival
[1], but could increase to 15 min when the aircraft is still on the ground [6]. To
evaluate these deviations in an economic context, [2] provide reference values for
the cost of delay to European airlines. The average time variability (measured
as standard deviation) during the flight phase (5.3 min) is higher than in the
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11140, pp. 532–541, 2018.
https://doi.org/10.1007/978-3-030-01421-6_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01421-6_51&domain=pdf


Computation of Weather Impact to Air Traffic Flow Management 533

taxi-out (3.8 min) and in the taxi-in (2.0 min) phases but it is still significantly
lower than the variability of both the departure (16.6 min) and arrival (18.6 min)
phases [3]. The changes experienced during the gate-to-gate phase are compar-
atively small, leading to a translation of departure variability into arrival one
[11]. Thus, the arrival punctuality is driven by the departure punctuality [3].
This is why current research in the field of flight operations primarily addresses
the economic and ecological efficiency [7,10].

As the Air Traffic Management (ATM) is a weather-sensible system, the
influence of different meteorological conditions on ATM performance - and so on
economical and ecological efficiency - needs to be discussed. This paper provides
a data-based approach for identification of linkages between delay and weather
phenomena by training advanced artificial models with task relevant input data
of both, flight schedules and aggregated weather datasets. The knowledge, which
is learned by the neural network driven model (system identification), is possibly
contrary to the one represented by the given time series emitting ATM system
(in our example Hamburg airport, HAM), but recreates a valid description of
delay-weather-dynamics on data level. The amount of relevant time series, the
data aggregation and the setup of the model have a huge effect on the learning
process and are discussed extensively in this paper.

1.2 Structure of the Document

The document provides a fundamental analysis of the impact of specific weather
phenomena on the performance of the airport. In this context, the performance
is measured as deviation of actual and schedule timestamps (delay). The weather
phenomena are categorized by the ATM Airport Performance (ATMAP) weather
algorithm, which aims to quantify weather conditions at European airports [4].
This aggregation results in both a quantification of the individual airport perfor-
mance and an applied performance metric, which can be used in comprehensive
neural network studies to evaluate the meteorological impact on local perfor-
mance deterioration.

In Sect. 2, the operational data set (flight plan) is introduced followed by
description of the weather data (METAR). These data are used as input for the
airport performance metric and the ATMAP algorithm. Then, an exemplary,
detailed analysis of Hamburg airport (HAM) is shown to emphasize our general
approach of the weather/performance evaluation with Long Short-Term Memory
(LSTM). Finally, a set of applications for a LSTM is provided to model the
performance behavior of a categorized airport as a function of weather (Sect. 3).
The document closes with a conclusion and outlook (Sect. 4).

2 Datasets and Evaluation Metrics

The following section outlines the basic data sources and their comprising infor-
mation, which are either relevant or non-relevant for an artificial approach.
Therefore we take a view at requirements for both data aggregation and ensuing
system identification.
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As shown in Fig. 1, the usage of several data sources in ATM may increase or
change the level-of-detail in the aggregated data. To describe the relevant per-
formance indicator delay, general ATM indicators from FlightStats, Eurocontrol
Demand Data Repository (DDR) or radar data. These sources can be merged
(e. g. to add information about flight pathes to raw scheduled times), which we
want to apply in further studies. This first approach includes basic indicators of
FlightStats (grey colored).

Fig. 1. Data overview to show ATM and weather indicators from different sources with
certain level-of-detail. Used indicators are grey colored.

2.1 Flight Plan

A flight performance assessment is typically based on a data set of aircraft
movements including scheduled and actual timestamps. This flight schedule
was derived and aggregated in a local database (see Table 1) using data
from online available sources of FlightStats. A single data entry contains the
actual/scheduled arrival and departure times, arrival/departure delay, origin and
destination airport, aircraft category (heavy, medium, light), and callsign. Time
stamp fields in the database can also be filled with qualified statements: no
delay reported (on-time = −30000), indicates qualitatively a deviation from the
schedule smaller than 15 min, no value reported (no-time = −31000), identi-
fies recorded flights without time stamps for actual or scheduled at arrival or
departure, and flight (cancellation = −32000), identifies canceled flights.

Table 1. Segment of data set of airport related flights (HAM 2013).

Date From To Type AC Flight Sched. Act. ARR DEP

10.6. STR HAM ARR 319 4U2046 670 683 13 −31000

10.6. HAM LHR DEP 319 BA965 675 672 −30000 −3

10.6. LHR HAM ARR 320 LH3391 680 678 −2 −31000

10.6. HAM BRU DEP 319 SN2624 680 686 −30000 6
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Concerning the upcoming analysis, recorded flights considering qualified
statements are not taken into account for the sequence prediction, but the on-
time statement could be integrated as a measure of punctuality. The used data
set contains 122987 flights in 2013 between HAM and European airports or air-
ports in the world. These flights are not linked to a specific aircraft tail number,
which does unfortunately not allow us to analyze the reactionary delays of the
European air traffic network.

2.2 Weather Data/ATMAP Algorithm

Weather data are usually recorded at each airport in form of METAR (Meteoro-
logical Aviation Routine Weather Report) also in combination with a Terminal
Area/Aerodrome Forecast (TAF). While TAF provides forecast values (6 h hori-
zon), METAR data are measured values. In addition to information about the
location, the day of the month and the UTC-time the METAR contains infor-
mation about wind, visibility, precipitation, clouding, temperature, and pressure
which are relevant for the air traffic, especially for the airport operations. In this
paper, METAR data of HAM were analyzed for the year 2013.

But instead of integrating single meteorological elements of METAR, we use
the ATMAP algorithm [4], which offers an approach to quantify and aggregate
the available weather data focusing on the impact to the air traffic. This algo-
rithm differentiates five weather classes (ceiling & visibility, wind, precipitations,
freezing conditions, dangerous phenomena) and also considers different degrees
of severity per weather class.

2.3 Dataset Merge

For all experiments one basic dataset is used: the original ATMAP dataset is
combined with the corresponding flights, which means the ATMAP time slot
serves as time index (35 each day). This dataset is characterized by a constant
�t of 30 min and comprising flight data, like average ARR or DEP delay for the
given ATMAP time slot (absolute delay per time slot number of flights).

The merged datasets of Sects. 2.1 and 2.2 contain the features = {Date,
time, score total, score visibility, score wind, score precipitation, score freeze,
score danger, Flow, Flow Scheduled, Delta, nARR, nDEP, nCANC, ARR Delay,
DEP Delay}.

Table 2 contains the used features of the upcoming experiments and their
descriptive statistics. The statistics summarize the central tendency, dispersion
and shape of the dataset’s distribution. 25%, 50% and 75% represent the 25th,
50th and 75th percentile.

The 122987 flights in 2013 are distributed over 12762 ATMAP time frames.
The mean weather condition (represented by the score total) is 1.08, which
indicates basically good weather at HAM, with a std of 2.49. The deviations of
delay are much higher, which represent a wide spectrum of possible weather-
delay interdependencies. It is important to consider the max-value of the delay
indicators, because their sizes outreach the ATMAP time frame size of 30 min.
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Table 2. Descriptive statistics of used features in experiments.

ATMAP score total Flow ARR Delay [min] DEP Delay [min]

n 12762 12762 12762 12762

mean 1.08 7.49 1.65 3.07

std 2.49 3.80 13.43 8.95

min 0.00 0.00 −75.00 −37.50

25% 0.00 5.00 −2.00 0.00

50% 0.00 7.00 0.00 1.00

75% 1.00 10.00 3.00 4.54

max 32.00 20.00 674.00 348.00

This results in a back-lock effect, as these scheduled flights are re-mapped to
other time frames and create entropy.

3 Application

In the following section we want to give an overview about the simulation prepa-
ration and the results. Other machine learning applications for sequence learning
showed up, that a data pre-analysis is useful to transfer statistical knowledge to
the LSTM modeling process [8,12], which we want to apply in further investi-
gations on this topic.

3.1 Scenario Definition

The mentioned dataset is used for two major scenarios A and B (see Table 3).
They differ in their way of defining training and testing data for the neural
network (no validation data were used). As usual, a supervised learning problem
is addressed by splitting into 2/3 training and 1/3 testing data [5]. Through the
isolation of daily ATM operations at HAM (interpretable as reset), given by the
ban on night flights, we use whole days as separated input sets and simulate the
ATM dynamics for certain, non-trained days (e.g. training on 7 winter days under
normal weather conditions to describe the behavior on 3 non-trained days).

Table 3. Scenario definitions for training and testing data splitting

Training data Testing data

A 254 daysnormal (130 S, 124 W)

168 days 86 days

B 111 daysirregular (53 S, 58 W)

73 days 38 days
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Related to the weather-delay correlations, the major split of the datasets is
done by differentiating in normal and irregular weather situations. As it showed
up in a descriptive analysis on ATMAP total score distributions (μ = 1.08
and σ = 2.49), irregular conditions encompassing days containing at least one
ATMAP total score ≥ 6, which leads in 254 normal conditioned days (130 in
summer, 124 in winter) and 111 irregular days (53 in summer, 58 in winter).
A segmentation into season and weekdays is not applied as we do not want to
characterize daily dynamics, but overall effects of weather to ATM performance,
which are observable on every day (certainly in various dynamics).

3.2 Experimental Setup

The input data for the LSTM model is provided by the sources described
in Sect. 2. We implemented the given LSTM structures in Python 3.6 using
the open-source deep learning library Keras 2.1.3 (frontend) with open-source
framework TensorFlow 1.5.0 (backend) and Scipy 1.0.0 (routines for numeri-
cal integration and optimization). Training and testing were performed on GPU
(NVIDIA Geforce 980 TI) using CUDA as parallel computing platform and
application programming interface.

Fig. 2. Model conception in KERAS.

Figure 2 shows up the basic structure of the implemented network in KERAS.
The general network structure includes 3 input layers (flow, weather, delay), 3
separate LSTM layer (like in [9] we used independent LSTM layer before merge
layer), one dense layer for output and one dropout layer with a dropout rate of
0.1 to prevent overfitting.

Table 4 shows up the basic setup of the simulation network covering various
properties of the LSTM (based on [9]). The optimizer derived by the KERAS
frontend defines the size of the learning rate, the number of hidden layers the
complexity of the network. The window size defines two arguments: the width
of the sliding window and the initial value of the prediction. Value 10 covers
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Table 4. Network parameter for structure and learning behavior

Parameter Description Value

optimizer Predefined set of learning parameter Adam (η = 10−2)

nhiddenlayer Number of LSTM hidden layers 40

batchsize Number of samples per gradient update 50

windowsize Width of the sliding window 10

nepochs Number of learned epochs per samples set 50

a prediction starting after 10 ATMAP time steps, which means 10 ∗ 30min =
5h, which implies a starting time of 11.00 am (when considering regular ATM
conditions) and so a prediction horizon of 12 h.

3.3 Simulation Results

The two following subsections offer 3D-plot representations of flow-weather-delay
dependencies for both ARR and DEP. Every section comprises the results of all
scenario related prediction data. It is important to keep in mind, that under

(a) Arrival delay, normal days (b) Departure delay, normal days

(c) Arrival delay real, normal days (d) Departure delay real, normal days

Fig. 3. Results scenario A.
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the given circumstances the network is forced to describe delay with only two
indicators (flow and weather), but there might be a wide set of reasonable sources
for deviations in scheduled times.

Scenario A. In A only days under regular weather conditions are used for
training and testing.

This model calculates the basic dynamics of the DEP delays by reaching a
peak cluster in the middle section of flow spans (7.5 to 12.5, Fig. 3). Neverthe-
less, the ARR delay could not be recreated in a sufficient way. As ARR delays,
especially under normal meteorological conditions, are mainly reasoned by reac-
tionary delays from other airport’s ATM, the model is not able to compute basic
ARR delay behavior because of missing data from airport networks. The model
is forced to identify a dynamic truth for ARR delays by just using the inputs
flow and weather. The overall average deviation of ARR is 29.3 min, of DEP
11.9 min. The KERAS accuracy level is 36.5% for ARR and 61.3% for DEP.

Scenario B. Similar to scenario A, B comprises a simulation of data of one
certain meteorological type - irregular weather conditions.

(a) Arrival delay, irregular days (b) Departure delay, irregular days

(c) Arrival delay real, irregular days (d) Departure delay real, irregular days

Fig. 4. Results scenario B.
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In contrast to A, this model is able to rebuild DEP and partly ARR in their
basic dynamical behavior (Fig. 4). The fact, that also ARR could be identified,
is describable by the fact, that ARR show a higher weather dependency than
in Scenario B. Nevertheless, this model is not able compute negative delays
and does not reach bottoms of the test data. Peaks (especially for ARR delay
at ATMAP total scores of 5–7) are reached with small deviations. The average
error of ARR is 24.4 min and of DEP 12.7 min. KERAS accuracy levels are 57.0%
for ARR and 81.8% for DEP.

Fig. 5. Results scenario B, diurnal variation lines (black - original, red - model). (Color
figure online)

The mentioned errors in the system identification process are represented in
Fig. 5 for one exemplary test day. The basic dynamics of the original datasat are
learned and used in a sufficient way to predict delay for DEP. At ATMAP = 20
one can see a dynamical behavior, which was predicted by the model based on
the given data, but propably indicated by different points of measurement.

4 Conclusion

This study is based on an analysis of a data set containing about 120.000 flights in
2013 between HAM and European airports or airports in the world. The delay
values are not limited to airport-related delays but may also consider delays
caused by increased distances in the en-route sector or reactionary delays, which
differentiates the computed data based reality from real ATM system behavior.
Additional the flight schedules comprise data prepared 6 months before actual
flights, so a lot of effects are reproduced by the delay values, which do not
represent the actual ATM performance. An extension of the flight schedules by
using more relevant schedules (e. g. EC DDR2 data) seems to be useful. Besides
this study is especially designed for HAM, as meteorological conditions and their
influence strongly differ from region to region.

The use of LSTM offers opportunities for an advanced data based approach
for recreation system dynamics like weather and delay correlations in certain
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cases. The learning behavior hardly depends on the given input data and their
inner structure as well as the understanding of arrival and departure dependen-
cies. As we used ATMAP related flights in this study, we will focus our research
on computing sequence prediction with flight related ATMAP scores. Further-
more, the increase of details of the datasets (e. g. calculating particular ATMAP
scores instead of ATMAP total score) might lead to more accurate results. Never-
theless, the network parametrization and learning algorithm need to be specified
for these extended use cases.

Another possible option would be, to turn the precisely prediction of delay
values to a classification problem for delay groups. Basing on both data and
logical clustering of delays (depending on the impact on the ATM system), a
mapping of the ATM and weather to delay groups would decrease the level of
detail, but possibly decrease the overall errors, especially of scenarios A and B.
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Abstract. The 3D deformation and simulation process frequently include much
iteration of geometric design changes. We propose in this paper a study on the
influence of wavelet number change in the wavelet neural network architecture
for 3D mesh deformation method. Our approach is focused on creating the series
of intermediate objects to have the target object, using trust region spherical
parameterization algorithm as a common domain of the source and target objects
that minimizing angle and area distortions which assurance bijective 3D
spherical parameterization, and we used a multi-library wavelet neural network
structure (MLWNN) as an approximation tools for feature alignment between
the source and the target models to guarantee a successful deformation process.
Experimental results show that the spherical parameterization algorithm pre-
serves angle and area distortion, a MLWNN structure relying on various mother
wavelets families (MLWNN) to align mesh features and minimize distortion
with fixed features, and the increasing of wavelets number makes it possible to
facilitate the features alignment which implies the reduction of the error between
the objects thus reducing the rate of deformation to have good deformation
scheme.

Keywords: 3D mesh deformation � Spherical parameterization
Trust region algorithm � Wavelet neural network

1 Introduction

One of the characteristics of a geometric mesh is the locations of key feature points.
Moreover, the disfigurement of the mesh is the result of the displacements of these
feature points that give a geometric mesh with control point locations. It is worth noting
that there is a pressing need to compute the regions affected by each of the control
points. The mesh needs a good definition of the feature points for the purpose of getting
realistic looking deformation and animation. This means that to define the control point
locations, there are two variables that should be considered, namely the animation
properties and real-life topology of the object under consideration [1]. We used the
Laplacian representation to define the mesh geometric details expressed by the
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difference between a vertex and its one-ring neighbour vertices designed for large
rotations, The differential coordinates of a mesh can be interpreted as the difference of
the original mesh and a smoothed version of this mesh; these coordinates describe the
detail of the surface, represent the geometric details. The deformation process computes
the set of transformations brought by the deformation of the source mesh, maps the
transformations through the correspondence between the source and the target mesh,
and solves an optimization problem to regularly use for the transformations to the target
mesh. Because of such specificities an initial stage, which consists of establishing a
correspondence between the source and target meshes, is essential. The correspondence
is achieved in an indirect manner with the help of spherical parameterization tech-
niques. Our mesh deformation method applied in the domain for ROI (region of
interest) based on Multi Library Wavelet Neural Network structure founded on several
mother wavelets families (MLWNN) to align mesh features and minimize the rate of
deformation with fixed features reducing the sum of the distances between all corre-
sponding vertices [2], The wavelet neural networks architecture which use wavelets as
basis function are found to have various interesting properties including fast training
and good generalization performance, various methods have been proposed for
structure selection and wavelet neural networks training. We describe in this paper the
Influence of the wavelets number change in the hidden layer to have a good 3D
deformation process.

2 Multi Library Wavelet Neural Network Architecture

The wavelet occurs in a family of functions define by each dilation di which controls
the scale parameter and a translation ti that controls the position of a single function,
called mother wavelet and recorded. A wavelet network with one output y, Ni inputs
x1; x2; . . .; xNi and N wavelets. WNN can reflect the time frequency properties of the
function, the overall response of a WNN is:

ŷ xð Þ ¼
XNp

i¼1
wiui þ

XNi

k¼0
akxk ð1Þ

The wavelets ui are dilated and translated versions of a single function u termed
the “mother wavelet”: <d :! <

ui xð Þ ¼ uðdi x� tið Þ ð2Þ

Np is the number of wavelet nodes in the hidden layer, wi is the synaptic weight of
WNN, x is the vector of input, the output can be a component refines, with respect to
variables coefficients ak.

This network can be considered as being composed of three layers: the first is
composed of Ni inputs, the second is a hidden layer with Np wavelets and finally the
output layer defined as a linear neuron collecting the weighted outputs of wavelets. The
input and the output layers are definitely connected to the hidden layer: Thae input
layer consists of simple vectors whose entries are equal to outputs: these are the values
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of input data. The hidden layer contains neurons wavelet type (or basis functions, also
called hidden units). Between the hidden layer and output layer there are the connection
weights. These are used to calculate the network output, which is a linear combination
of wavelets in the hidden layer, weighted by the connection weights.

MLWNN structure is similar to the classic network, but it has some differences; the
classic network uses dilation and translation versions of only one mother wavelet,
besides the new version constructs the network by the implementation of several
mother wavelets in the hidden layer. The new wavelet network structure with one
output f can be expressed by the following equation:

f ðxÞ ¼
XN1

i¼1

w1
iW

1
i xð Þþ

XN2

i¼1

w2
iW

2
i xð Þþ . . .þ

XNM

i¼1

wM
i W

M
i xð Þþ

XNi

k¼0

akxk

¼
XM
j¼1

XNMw

i¼1

wj
iW

j
i xð Þþ

XNi

k¼0

akxk

¼
XNMw

l i;jð Þ¼1

wlWl xð Þþ
XNi

k¼0

akxk

ð3Þ

Where NMw ¼ PM
l¼1

Nl; i ¼ 1; . . .;N½ �; j ¼ 1; . . .;M½ �; x0 ¼ 1

MLWNN architecture is illustrated in Fig. 1.
The neuron in the input layer is connected to all the wavelets in the hidden layer

that are not connected to each other. The output neuron is connected to all the wavelet
in the hidden layer, as well. Each component of input vector is constituted of NMW

wavelets lets of M mother wavelets whose outputs are combined via a linear combi-
nation [3, 4]. This structure is realized in different steps:

Fig. 1. Multi-mother wavelet neural network structure
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– Initialization of the network: this step consists of developing a wavelet library made
up of translated, dilated and rotated versions of a mother wavelet.

– Optimization of network parameters: obtained by combining a selection method
OLS (Orthogonal Least Squares) and an optimization algorithm Levenberg-
Marquardt. This algorithm determines the linear parameters of the network and
iteratively optimizes the number and the parameters of wavelets by minimizing the
rate deformation between the two objects.

– The initialization of weights, as well as translations and dilations of the wavelet
network (generation of the Multi-mother).

– An automatic selection and increment of the wavelet in the hidden layer using
improved version of OLS by employing the modified Gram-Shmidt orthogonal-
ization [14].

– The choice of the optimal wavelet numbers Nopt using the GCV (Generalized Cross-
Validation method).

– The update and construction of the wavelet network.

3 Our 3D Mesh Feature Alignment Based Multi Library
Wavelet Neural Network Architecture

Uses of the characteristic points in 3D mesh modeling describe the 3D geometric mesh.
We will take the position of the predefined feature points on the surface of the mesh to
define the shape of the object. Therefore the movements of these characteristic points
which are also called control points define the deformation process according to their
neutral positions in absolute or in normalized units. The objective of our algorithm is to
achieve a feature alignment process that reduces the distances between features points
without modifying the local vertex positions on the spherical maps. If there is k input
mesh and each mesh has n features defined, the transformation can be expressed as the
following optimization problem:

min
Pn

j¼1 dist Pi jð Þ � P1 jð Þf g i ¼ 1; 2; 3; . . .; k

dist P0
i jð Þ � P0

i lð Þ
� � ¼ dist Pi jð Þ � Pi lð Þf g; 8j; l ¼ 1; 2; 3; . . .; n

( )
ð4Þ

Where Pi represents the matrix containing coordinates for all feature points on
mesh i and P0

i represents the coordinates after transformation.

3.1 Trust Region Spherical Parameterizations

First, the optimized trust region spherical parameterizations are computed for both
models (this step can be carried out as preprocessing and the mapping can be stored
along with the mesh representation) [5]. Then, feature regions are detected on both
models using region of interest and matched between the two models.

Next, feature point pairs are extracted and an optimized spherical parameterization
is computed for the second model with respect to the feature point pairs. In order to
obtain good fitting results, we need the triangles in the parameterization domain to have
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good shapes as well. Hence, we should propose a mapping from the given mesh to a
unit sphere preserving the shapes of the triangles. Significantly reducing the compu-
tation distortion is required for the procedure of mesh parameterization in a sphere,
since all calculations are performed in the space of the sphere to reduce the distortion
angle and region: ratio of inverted triangle (IT) at the mapping of each triangle.
Spherical energy minimization problem can be resolved by an algorithm of opti-
mization. Actually, our approach is based on trust region algorithm (TRSP) that pre-
serves angle and area distortion. Our Spherical parameterization algorithm based trust
region algorithm is illustrated in Fig. 2.

3.2 3D Feature Alignment-Based MLWNN Algorithm

Our proposed approach computes deformed ROI, updates and optimizes it to align
features of mesh based on a Multi Library Wavelet Neural Network structure founded
on several mother wavelet families (MLWNN) and spherical parameterization con-
figuration to compute the corresponding feature region sets using Laplacian repre-
sentation to preserve the mesh detail (Fig. 3).

Fig. 2. Spherical parameterization based trust region algorithm

Fig. 3. Block diagram of deformation training

A Study on the Influence of Wavelet Number Change 549



Our idea is to prove that wavelet networks structure founded on several mother
wavelet families are capable of reconstructing and representing 3D deformed objects
used in computer graphics, a wavelet network approximation using to optimize the
alignment feature of mesh, minimize distortion with fixed features and to minimize the
sum of the distances between all corresponding vertices.

We can try to characterize the wavelet selection based on dilation, translation and
rotation parameters. We use a training algorithm based on the OLS method to specify
the wavelet selected number for each mother wavelet family, and Levenberg-
Marquardt method to optimize the network settings.

Several choices of the wavelets are available. Best known wavelets (and older) are
certainly those which are the Haar system in the orthogonal wavelet context. The Haar
system functions are not differentiable; it is not possible to apply the algorithms to
estimate parameters, such as wavelet networks. Therefore, in our work, to construct
networks, the wavelets that we use are: SLOG, POLYWOG and Beta wavelet families.
These functions are differentiable and have the universal approximation property.

Our proposed algorithm is presented in Fig. 4.

4 Implementation and Result

We will present the efficiency of our 3D spherical parameterization method and the 3D
deformation approach based on three-dimensional wavelet neural network architecture
when we increase the number of wavelet in the hidden layer. This approach uses the
information of each 3D point with coordinates (x, y, z) to construct a 3D object
modeling from the original object. From 3D points, we applied the training algorithm.
To evaluate the performance of the wavelet networks structure, in terms of a 3D object
modeling capacity, we used a wavelet network in which the library is made up of six
mother wavelets (MexicanHat, Slog1, Polywog 1, Beta1, Beta 2 and Beta 3). To
evaluate on the basis of the wavelet number in the hidden layer.

The following Fig. 5 shows the original objects that we used.

Fig. 4. Overview of the feature alignment-based MWNN algorithm
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4.1 Trust Region Spherical Parameterization Result

We tried to develop a map that minimizes either angle distortion, area distortion; or a
balancing between both of them. The angle distortion per triangle can be measured [6]
on the map of each triangle f: T ! t by:

ED Tð Þ ¼ cot a aj j2 þ cot b bj j2 þ cot c cj j2 ð5Þ

Where T and t represent respectively the triangle of mesh M and its image on the
parametric sphere S: a, b, c are the angles in T and a, b, c stand for the corresponding
opposite edge lengths in t. The area distortion can be measured as follows:

EA Tð Þ ¼ Area tð Þ
Area Tð Þ ð6Þ

To perform side-by-side comparisons, we implemented the harmonic spherical
mapping [7], curvilinear spherical parameterization [8], the progressive spherical
parameterization of [9] and we obtained mapping results from the Spherical Parame-
terization using progressive optimization [10].

We also parameterized various input models using our Trust region spherical
parameterization algorithm (TRSP) under different weights. In the above-mentioned
experiments, we use k = 0.1 and l = 1.0. Numerically, the spherical mapping results
of Bunny, Elephant and Horse, computed by [7–10] are compared with our approach in
Tables 1, 2, and 3.

Our approach introduces smaller angle and area distortions. Hence it better pre-
serves the facial features on the sphere, generates a bijective and lowly distorted
mapping, and converges efficiently thus creating a good 3D spherical geometry image.

Fig. 5. Original objects

Table 1. Comparative study based on angle and area distortions for Bunny object.

Bunny object [8] [7] [9] [10] Our TRSP

ED 63.6 50.8 78.1 61.4 27.7
EA 25.5 22.8 14.0 14.2 11.3
Time(s) 91 2397 600 58 68
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Simulation results show that it is possible to achieve a considerable correspondence
between the angle and area perspective distortion.

Our method overcome the limitation of parameterization for shapes containing
many extremities, for example for Bunny object we see that the angle distortion EDð Þ is
decreased from 78.1 in [9], 63.6 in [8], 61.4 in [10], 50.8 in [7], to 27.7 in our work,
and the area distortion (EA) is decreased from 25.5 in [8], 22.8 in [7], 14.2 in [10], 14.0
in [9], to 11.3 used our proposed TRSP.

4.2 3D Mesh Deformation Results

To evaluate the quality of the reconstructed object we use the MSE (Mean-Square
Error). Generally the performance of mesh deformation is based on the two following
criteria: the deformation rate and the quality of the reconstructed object. In our
approach, the performance of mesh deformation depends on other criteria: the type of
wavelets used in the hidden layer.

MSE ¼ 1
Ni

XNi

k¼1
MN xNk; yNk; zNkð Þ �M xk; yk; zkð Þð Þ2 ð7Þ

M is the mesh to be deformed; K is the number of observations. We used the
minimal distance of fixed vertices to compute the measured rate deformations.

The ratio r ~xð Þ is defined as the distance of the neighbour vertex x to the next handle
vertex xh divided by the minimal distance of a fixed vertex to a handle one.

r ~xð Þ ¼ ~x�~xhj j
min ~xf �~xh

�� ��� � ð8Þ

The simulation results are reserved to compare the proposed approaches with
MLWNN in term of MSE, and wavelet number in hidden layer in Table 4.

The selected wavelet number for every mother wavelet on bunny object present in
Table 5:

Table 2. Comparative study based on angle and area distortions for Elephant object.

Elephant object [8] [7] [9] [10] Our TRSP

ED 51.7 78.8 81.2 81.8 43.6
EA 93.6 141.7 41.5 47.7 39.5
Time(s) 75 150 88 70 52

Table 3. Comparative study based on angle and area distortions for Horse object.

Horse object [8] [7] [9] [10] Our TRSP

ED 78.2 65.3 80.1 60.2 56.4
EA 55.1 77.5 49.6 44.2 40.1
Time(s) 82 77 150 89 41
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From these simulation results we notice that the MSE is reduced with increasing the
number of wavelets in the hidden layer from 15 to 300 wavelets; however, the object
becomes increasingly well reconstructed. Besides, for 300 wavelets in the hidden layer
for the object bunny, the MSE is equal to 1. 022e−10 compared to 0.000139 using 15
wavelets. We see that increasing the wavelet number improves the modeling quality. In
order to get a better modeling, we will use MexicanHat, Slog1, Polywog 1, Beta1, Beta 2
and Beta 3 wavelets for 3D modeling objects in order to improve the wavelet network
performances when trained with a signal that contains a large number of samples, we
used a Multi Library Wavelet Neural Network structure as an approximation tools for
feature alignment between the source and the target models. The 3D deformed object
complexity is directly related to the selected wavelet number and to the training iteration
number to construct the network. The Variation of deformation rate in terms of wavelet
library using MLWNN architecture compared to other works presents in Table 6.

The simulation test achieved the robustness and speed considerations when
developing deformation methodologies. The ratio of deformation is low compared to
other works from the state of the art. We demonstrate that representing the geometric
information of a triangle mesh in differential form enables detail-preserving interactive
mesh modeling.

Table 4. MSE for 3D objects deformation using MLWNN

Object 15 wavelets 40 wavelets 100 wavelets 150 Wavelets 300 Wavelets

Bunny 0.000139 1.012e−4 1.071e−7 1.002e−8 1. 022e−10
Elephant 0.000578 3.569e−5 2.455e−7 1.251e−8 1.021e−10
Horse 0.000323 4.754e−4 3.214e−5 2.012e−6 1.020e−10
Face 0.000875 8.675e−4 1.744e−6 1.612e−7 1.002e−10

Table 5. Selected wavelet number for every mother wavelet on bunny object

N MexicanHat Slog1 Polywog 1 Beta1 Beta 2 Beta 3

15 2 2 3 5 1 2
40 8 3 20 4 2 3
100 26 20 2 50 1 1
150 55 40 50 2 1 2
300 35 100 20 50 55 40

Table 6. The variation of deformation rate

Object Deformation rate in other work Our deformation rate

Bunny 92 [11] 52
Horse 59.52 [12] 14.89
Elephant 75 [13] 45
Face 42 [13] 23
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Our deformation technique for Bunny and Horse objects is shown in Fig. 6.

5 Conclusion

The features alignment process is necessary in order to guarantee a successful defor-
mation process that minimizes the sum of the distances between all corresponding
vertices. We propose to use a Multi Library Wavelet Neural Network structure as an
approximation tools for feature alignment between the source and the target models.
We solve this problem in the spherical parametric domain with the help of Laplacian
mesh editing techniques using estimated rotations and trust region algorithm which
lead to a minimum mesh distortion. From the simulation results we clearly see that
increasing the wavelet number in the hidden layer increases the approximation
capacity. This network architecture ensures the use of several mother wavelets to solve
the problem of high dimensions using the best wavelet mother that well models the
signal [2]. Also to ameliorate these criteria (MSE) we can increase the iterations
number in the training stage, but in the same way, time cost also increase considerably,
we are trying to solve this problem in the future work.
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Abstract. Echo State Networks (ESNs) represent a successful method-
ology for efficient modeling of Recurrent Neural Networks. Untrained
recurrent dynamics in ESNs apparently need to comply a trade-off
between the two desirable features of implementing a long memory over
past inputs and the ability of modeling non-linear dynamics. In this
paper, we analyze such memory/non-linearity trade-off from the per-
spective of recurrent model design. In particular, we propose two variants
to the standard ESN model, aiming at combining linear and non-linear
dynamics both in the architectural setup of the recurrent system, and at
the level of recurrent units activation functions. The proposed models are
experimentally assessed on ad-hoc defined tasks as well as on standard
benchmarks in the area of Reservoir Computing. Results show that the
introduced ESN variants can grasp the proper trade-off between memory
and non-linearity requirements, at the same time allowing to improve the
performance of standard ESNs. Moreover, the analysis of the employed
degree of non-linearity in the reservoir system can provide useful insights
on the characterization of the learning task at hand.

Keywords: Echo state networks · Reservoir computing
Memory non-linearity trade-off

1 Introduction

Reservoir Computing (RC) [13,16] represents a paradigm for efficient modeling
and training of Recurrent Neural Networks (RNNs). Essentially, RC is based
on the separation between a randomized dynamical recurrent component, which
is left untrained after initialization, and a simple feed-forward readout part,
which is the only trained part of the RNN architecture. Within the umbrella of
RC methods, the Echo State Network (ESN) [10,12] is one of the most widely
known models, which in the last decade has attested itself as a state-of-the-art
approach for efficient learning in the temporal domain. ESNs showed excellent
performance on computational tasks in several application domains, ranging
from chaotic time-series modeling [5,12] to complex real-world problems, e.g. in
the areas of speech processing (e.g. [15]), human activity recognition (e.g. [1,14]),
robotics (e.g. [3]) and forecasting of economic time-series (e.g. [2]).
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Besides the application success, the ESN model presents a number of inter-
esting research questions [4,7], among which one of the most intriguing one is
related to the estimation of the quality of randomized reservoir dynamics. In
this context, the short-term memory capacity [11] has been identified as hav-
ing a prominent role. Fundamental literature results in this direction showed
that memorization skills of RC models are generally optimized in the case of
reservoir units with linear activation functions [11]. Using reservoir units with
non-linear activation functions has the effect of degrading the memorization abil-
ity of the ESN, as recently analyzed from the information theory viewpoint in
[9]. However, the ability to model non-linear recurrent dynamics is very impor-
tant in practical applications of ESNs. Essentially, linear reservoirs are better at
memorization tasks, while non-linear reservoirs are preferable for modeling com-
plex real-world tasks, which led to the well known memory versus non-linearity
trade-off dilemma [17]. While this trade-off has been subject of analytical and
theoretical studies [9,17], simple design strategies to conjugate both the desired
properties of memorization and ability to approach non-linear tasks still need to
be investigated.

In this paper we deal with the problem of combining memorization skills
and non-linearity of reservoir units in ESNs, proposing two simple ways to real-
ize a mixture of linear and non-linear reservoir dynamical behavior. Specifically,
such a mixed linear/non-linear dynamics is implemented both at an architectural
level, through a decomposition of the reservoir into decoupled systems with qual-
itatively different non-linear behaviors, and at the level of individual recurrent
reservoir units, by driving the system dynamics using a combination of linear
and non-linear activation functions. The proposed variants to the standard ESN
approach are comparatively assessed both on controlled scenarios, using artificial
datasets, and on standard RC benchmarks for chaotic time-series modeling.

The rest of this paper is organized as follows. In Sect. 2 we recall the basics
of the ESN model. We introduce the proposed ESN variants in Sect. 3, and we
experimentally analyze their effectiveness in suitably combining memorization
capabilities and non-linear behavior in Sect. 4. Finally, we draw conclusions in
Sect. 5.

2 Echo State Networks

An ESN [10,12] is a dynamical recurrent network composed of a hidden recur-
rent layer, called reservoir, and a feed-forward output layer, called readout. The
reservoir implements an input-driven discrete-time dynamical system, expanding
the input temporal signal into a typically high-dimensional state space by means
of a pool of randomized filters. Essentially, the reservoir component encodes the
recent history of the driving input signal into a temporal representation that
contextualizes each new input and gives a memory to the overall system. The
basic idea behind the ESN approach is that if the set of randomized dynamics
provided by the reservoir is rich enough and representative enough of the driving
input, then the temporal task is likely to be satisfactorily solved in the reservoir
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state space by using a simple linear readout tool. Accordingly, the reservoir is left
untrained after initialization (subject to stability constraints), and the readout
is the only trained component of the network.

The architecture of an ESN is illustrated in Fig. 1. At each time-step t, we
denote the external input as u(t) ∈ R

NU , the reservoir state as x(t) ∈ R
NR , and

the output of the network as y(t) ∈ R
NY . Input, state and output dimensions are

respectively indicated by NU , NR and NY . The reservoir operates by updating
the network’s state according to a state transition function, described by the
following equation:

x(t) = f(Win[u(t); b] + Ŵx(t − 1)), (1)

where Win ∈ R
NR×NU+1 is the input-to-reservoir weight matrix, [u(t); b] denotes

the (column) concatenation of the input u(t) with a constant input bias b, and
Ŵ ∈ R

NR×NR is the recurrent weight matrix of the system. The symbol f is
used here to denote the element-wise applied activation function of the reservoir
units f , where for linear reservoirs the identity function is used, i.e. f ≡ id, while
in the case of non-linear reservoirs the hyperbolic-tangent activation function
is commonly adopted, i.e. f ≡ tanh. Typically, a null state is used as initial
condition at t = 0, i.e. x(0) = 0 ∈ R

NR .

Fig. 1. Architecture of an ESN.

The reservoir is randomly initialized based on the constraints imposed by
the Echo State Property (ESP) [10], which essentially states that the orbits of
the reservoir system should be asymptotically stable under the influence of the
driving input, i.e. the temporal representations developed by the reservoir should
depend only on the driving input and the influence of initial conditions should
progressively vanish. Based on the ESP, the stability of reservoir dynamics is
commonly controlled by studying the spectral properties of the recurrent weight
matrix Ŵ. In particular, following the necessary condition for the ESP, the ele-
ments in Ŵ are randomly initialized from a uniform distribution e.g. over [−1, 1]
and then are re-scaled such that ρ(Ŵ) < 1, where ρ(·) denotes the spectral
radius operator1. The elements of the input-to-reservoir weight matrix Win are
1 The spectral radius of a matrix is the maximum among its eigenvalues in modulus.
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randomly initialized from a uniform distribution over [−scalein, scalein], where
scalein in an input scaling parameter.

The readout computes the output of the ESN through a linear combination
of the reservoir units activations, i.e. as y(t) = Woutx(t), Wout ∈ R

NY ×NR is
the readout weight matrix. The elements in Wout are adapted on a training set
to solve the resulting least squares problem, typically exploiting direct methods
such as pseudo-inversion [13].

3 Mixture ESN Variants

Here we introduce two ESN variants aiming at combining linearity and non-
linearity in reservoir dynamics. The first model that we propose implements the
linear/non-linear combination at the architectural level, decomposing the reser-
voir into two sub-systems, one made up of linear units and the other composed
of recurrent units with tanh non-linearity. In this case, reservoir dynamics are
split into a linear system, with state x(L) ∈ R

NL , and a non-linear one, with
state x(NL) ∈ R

NNL , evolving according to the following equations:

x(L)(t) = W(L)
in [u(t); b] + Ŵ(L)x(L)(t − 1),

x(NL)(t) = tanh(W(NL)
in [u(t); b] + Ŵ(NL)x(NL)(t − 1)),

(2)

with [W(L)
in ; W(NL)

in ] = Win and [Ŵ(L) 0; 0ŴNL] = Ŵ respectively repre-
senting the input-to-reservoir and the recurrent weight matrix of the whole sys-
tem (for a formulation similar to the one in Eq. 1). The ESN variant in Eq. 2
implements an architectural mixture of linear and non-linear reservoirs and it is
referred as ESN-MixArch in the rest of this paper. Given a total number of reser-
voir units NR, the degree of non-linearity in ESN-MixArch can be expressed in
terms of the amount of non-linear units in the system, hence through the value of
a parameter αArch = 1−(NL/NR). Differently from the mixture model analyzed
in [9], the two sub-reservoir systems in ESN-MixArch are not connected between
each other, enabling to study the resulting network’s dynamics as decoupled into
a purely linear component and a purely non-linear one. In this case, the resulting
memorization skills of the network increase with decreasing values of αArch, and
thus can be directly controlled.

A second variant to the standard ESN model is proposed with the com-
plementary aim to shift the focus of the linear/non-linear combination to the
dynamics of individual reservoir units. Accordingly, we introduce an ESN with
mixture of activation functions, referred as ESN-MixAct in what follows, and in
which the state dynamics are ruled by the following state transition function:

x(t) = (1 − αAct)(Win[u(t); b] + Ŵx(t − 1))

+αAct tanh(Win[u(t); b] + Ŵx(t − 1)), (3)

where the value of the αAct parameter determines the degree of non-linearity in
the reservoir dynamics.
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Note that both the non-linearity degree parameters αArch and αAct assume
values in the range [0, 1], where the case of standard tanh ESNs corresponds
to αArch, αAct = 1, while linear ESNs are achieved in correspondence of
αArch, αAct = 0.

4 Experiments

In this section we experimentally assess the ability of the proposed ESN vari-
ants to appropriately combine memory and non-linearity. Such ability is first
analyzed in controlled conditions on ad-hoc defined tasks, i.e. a Mixture task
(in Sect. 4.1) and a non-linear Memory Capacity task (in Sect. 4.2), for which
the trade-off between memorization and non-linear requirements can be directly
modulated. Then, the proposed models are comparatively assessed on well known
RC benchmarks related to chaotic time-series prediction (in Sect. 4.3).

4.1 Mixture Task

With the aim of explicitly and directly controlling the competing requirements
for memorization skills and non-linearity we introduce an ad-hoc designed task,
called Mixture task, defined as a combination of known target functions. Specif-
ically, given an univariate input signal u(t) sampled from a uniform distribution
in [0, 0.5], the target of the Mixture task is defined by:

ytg(t) = (1 − αTask) u(t − 10) + αTask ytg
N (t), (4)

where ytg
N (t) is the target function of the 10-th order NARMA task2 and αTask ∈

[0, 1] controls the degree of the task non-linearity. In particular, for αTask → 0 the
task tends to a pure memorization characterization, requiring to recall a 10-steps
delayed version of the input signal. For αTask → 1 the task tends to a non-linear
moving average of the 10th order. We generated 10400 time-steps, where the first
5400 samples were used for training, and the remaining 5000 samples for test.
We ran experiments with reservoirs with 100 recurrent units, ρ ∈ {0.1, 0.5, 0.9},
scalein ∈ [0.1, 1.3] with steps of 0.3 and input bias b ∈ {0, 0.5, 1}. For ESN-
MixArch we considered αArch ∈ {0, 0.1, 0.2, 0.3, . . . , 0.8, 0.85, 0.9, 0.95, 1}, while
for ESN-MixAct we explored values of αAct ∈ [0, 1], with steps of 0.1. The
values of hyper-parameters were selected (individually for ESN, ESN-MixArch
and ESN-MixAct) on a validation set comprising the last 1000 time-steps of the
training data, according to an hold-out cross-validation scheme. For each network
hyper-parameterization, we averaged the results over 50 repetitions. For all the
models, training was performed by using pseudo-inversion.

Table 1 shows the Mean Squared Error (MSE) on the test set achieved by
ESN, ESN-MixArch and ESN-MixAct for increasing non-linearity of the Mix-
ture task. Results show that both ESN-MixArch and ESN-MixAct are able to
outperform the standard ESN with tanh non-linearity in all the cases (slightly

2 ytg
N (t) = 0.3ytg

N (t − 1) + 0.5ytg
N (t − 1)(

∑10
i=1 ytg

N (t − i)) + 1.5u(t − 10)u(t − 1) + 0.1).
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better results are obtained by the ESN-MixArch model). The performance gain
is more evident for smaller values of αTask, up to 8 orders of magnitude for the
case αTask = 0. Overall, results on the Mixture task indicate that ESN-MixArch
and ESN-MixAct can appropriately model the trade-off between memory and
non-linearity required by the task, resulting in a performance that is optimized
with respect to the one that can be provided by a standard ESN. It is also
interesting to inspect the degree of non-linearity selected on both the proposed
ESN variants. Figure 2 shows the degree of models non-linearity, i.e. αArch for
ESN-MixArch and αAct for ESN-MixAct, plotted for increasing non-linear char-
acterization of the target (i.e. for increasing values of αTask). We can observe
that both models are able to catch the progressive trend of increasing task non-
linearity, where higher values of αTask correspond to higher values of αArch and
αAct. In particular, Fig. 2 indicates a nearly linear relation between αTask and
αAct, which can then be considered as a good estimate and a convenient indicator
of the degree of non-linear influence on the task dynamics.

Table 1. Test set MSE (and std) acheved by ESN, ESN-MixArch and ESN-MixAct
for increasing non-linearity of the Mixture task.

αTask ESN ESN-MixArch ESN-MixAct

0.0 2.52 10−6(±1.99 10−6) 9.81 10−14(±8.38 10−14) 7.62 10−14(±6.25 10−14)

0.3 4.94 10−5(±8.10 10−6) 4.71 10−5(±8.60 10−6) 4.46 10−5(±6.47 10−6)

0.7 2.95 10−4(±5.71 10−5) 2.76 10−4(±4.07 10−5) 2.58 10−4(±3.91 10−5)

1.0 1.52 10−3(±1.75 10−4) 1.52 10−3(±1.75 10−4) 1.11 10−3(±1.23 10−4)

Fig. 2. Selected degree of ESN-MixArch and ESN-MixAct non-linearity in correspon-
dence of increasing degree of non-linearity of the Mixture Task.
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4.2 Non-linear Memory Capacity

As a second task we take into consideration a variant of the well known Memory
Capacity (MC) task [11], in which the purely memorization problem is modified
to introduce the influence of non-linearities by composing a delayed input recon-
struction problem with a non-linear function [9]. Here we adopt a sine function
to this purpose and refer to the resulting task as to sinMC. Specifically, assuming
an univariate i.i.d. input signal u(t) sampled from a uniform distribution over
[−0.8, 0.8], the target output is given by the following formula:

ytg
k (t) = sin(ν u(t − k)), (5)

where the value of the parameter k determines the length of required memory,
while the value of ν modulates the frequency of the sine function and impacts on
the non-linearity of the task, with smaller (resp. higher) values of ν corresponding
to weaker (resp. stronger) non-linear characterization. As a general observation,
we can note that the role of non-linearity is more relevant for smaller values of the
delay k, with the extent of such influence being ruled by the value of ν. For higher
values of k, the role of non-linearity progressively vanishes and leaves room to the
memorization requirement. We generated a dataset with a total number of 6000
time-steps, the first 5000 of which were used for training, leaving the last 1000 for
test. For this task, we adopted the same experimental setting as for the Mixture
task in Sect. 4.1, exploring the same ranges of reservoir hyper-parameterizations,
with the exception of αArch ∈ {0, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 1}. The values of
the hyper-parameters were selected on a validation set comprising the last 1000
time-steps of the training data. For each hyper-parameterization, the results
were averaged over 10 repetitions.

Figure 3 shows the Normalized Mean Squared Error (NMSE) achieved on the
test set of the sinMC task by standard ESN, ESN-MixArch and ESN-MixAct
for increasing values of the delay k, and for two choices of the ν parameter, i.e.
logν = −1 (in Fig. 3(a)) and logν = 0 (in Fig. 3(b)). As it can be seen, while
the performance of standard ESNs progressively degrades for increasing delays
(i.e. as the memorization requirement sets in), both the ESN-MixArch and ESN-
MixAct models are able to catch a good trade-off between the competing needs of
memory and non-linearity of the task, outperforming the ESN for all the values
of k. Slightly better quantitative results are achieved also in this case by ESN-
MixAct. Figure 4 shows the values of the selected non-linearity of ESN-MixArch
and ESN-MixAct models for increasing values of the delay k in the two considered
cases (logν = −1 in Fig. 4(a), and logν = 0 in Fig. 4(b)). We can observe that in
the cases in which the target has a non-linear influence (i.e. for smaller values
of k) the progressiveness of such influence is better represented by the degree
of non-linearity in the ESN-MixAct model (i.e. the value of αAct), which for
both the choices of ν shows a linear degradation from non-linear to linear (i.e.
memorization) task dominance, confirming the results found in Sect. 4.1 on the
Mixture task. When the task shifts to a clear memorization problem (i.e. for
higher values of k) the increasing extent of the required memory is progressively
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Fig. 3. Test set NMSE (in log scale) achieved by ESN, ESN-MixArch and ESN-MixAct
on the sinMC for increasing values of the delay. (a): log ν = −1. (b): log ν = 0.

Fig. 4. Selected degree of non-linearity for ESN-MixArch (i.e. αArch) and for ESN-
MixAct (i.e. αMixAct) on the sinMC task, for increasing value of the delay. (a): log ν =
−1. (b): log ν = 0.

matched by the decreasing non-linearity degree of the ESN-MixArch model (i.e.
by the value of αArch).

4.3 Chaotic Time-Series Prediction

In this section we assess the performance of the proposed ESN variants on two
well known tasks involving chaotic time-series modeling, namely the Laser and
the Mackey-Glass tasks. In the former case, the considered time-series is obtained
by sampling the intensity of an infrared laser in chaotic regime, while in the
latter case it is obtained as an iterated map approximation of the dynamics of
a Mackey-Glass system in chaotic regime3. Both the tasks consist in a next-step
prediction on the corresponding time-series, with a total number of time-steps of
10093 and 10000 for the Laser and the Mackey-Glass tasks, respectively. In both
cases, the first 5000 time-steps were used for training and the remaining for test.
We adopted the same experimental setting and model selection scheme as in
previous tasks, exploring the same ranges for hyper-parameters as in Sect. 4.2,
with the exceptions of scalein ∈ [0.1, 1.2] with steps of 0.1. For each hyper-
parameterization, the results were averaged over 50 repetitions.

3 We used a value of τ = 17 as control parameter for the Mackey-Glass equation, as
common in the RC literature.
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Table 2. Test set MSE (and std) achieved by ESN, ESN-MixArch and ESN-MixAct
on the Laser and Mackey-Glass tasks.

Model Laser Mackey-Glass

ESN 1.12 10−3(±1.56 10−4) 1.93 10−9(±2.98 10−10)

ESN-MixArch 1.06 10−3(±1.88 10−4) 1.89 10−9(±1.84 10−10)

αArch 0.95 0.75

ESN-MixAct 9.75 10−4(±9.12 10−5) 1.85 10−9(±2.43 10−10)

αAct 0.80 0.50

Table 2 reports the MSE on the test set of the Laser and Mackey-Glass tasks
obtained by ESN, ESN-MixArch and ESN-MixAct. For the sake of results pre-
sentation, in the same table we also report the values of the models degrees of
non-linearities selected in the different cases. As results show on both the tasks,
ESN-MixArch and ESN-MixAct are able to improve the already good perfor-
mance of standard ESNs. Again, ESN-MixAct results in a slightly better predic-
tive performance. Moreover, in light of the previous analysis on the controlled
tasks in Sects. 4.1 and 4.2, the selected degrees of model non-linearity, especially
for the case of ESN-MixAct, can be used to get insights on the memory/non-
linearity trade-off that is intrinsic to the tasks. In our case, the chosen values
of αAct = 0.80 for the Laser task and of αAct = 0.50 for the Mackey-Glass one,
indicate a strong non-linear characterization for the former task and a more
pronounced memorization requirement for the latter.

5 Conclusions

In this paper we have investigated the memory/non-linearity trade-off in RC
from a model design perspective. Specifically, we have introduced two variants
to the standard ESN model, aiming at realizing a combination between a linear
and a non-linear behavior. For the ESN-MixArch model this is done at the archi-
tectural level, through an explicit decoupling of reservoir dynamics into a linear
and a non-linear sub-systems, while in the case of the ESN-MixAct model the
combination is achieved by using a mixture of linear and non-linear activation
functions. The proposed ESN variants have been experimentally analyzed on
artificial tasks for which the degree of target non-linearity can be directly con-
trolled, as well as on standard RC benchmarks for chaotic time-series modeling.
Results pointed out that both the proposed variants are able to catch the right
trade-off between the competing requirements of memorization and non-linearity
of the target functions, through appropriate values of non-linearity degree param-
eters, with the ESN-MixAct model providing an easier and more natural way to
control the trade-off. At the same time, the proposed ESN variants showed an
optimized performance with respect to standard ESNs with tanh reservoir units,
and in particular the ESN-MixAct model resulted in the best performance on
all the considered tasks.
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Overall, the analysis of the combination between linear and non-linear reser-
voir dynamics reported in this paper paves the way to further studies aiming at
an automatic setting of the degree of reservoir non-linearity in a task-dependent
fashion. As future research directions, we also foresee to analyze the dynamical
regime of reservoirs characterized by a mixture of linear/non-linear behaviors
under a dynamical system perspective, and to extend the advantages of such
mixtures to the recently introduced deep RC framework [6,8].
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Abstract. Wavelet transformation is a powerful method of signal processing
which uses decomposition of the studied signal over a special basis with unique
properties, the most important of which are its compactness and multiresolution:
wavelet functions are produced from the mother wavelet by transition and
dilation. Wavelet neural networks (WNN) are a family of approximation algo-
rithms that use wavelet functions to decompose the approximated function. If
only approximation and no inverse transformation is needed, the values of
transition and dilation coefficients may be determined during network training,
and the windows corresponding to various wavelet functions may overlap,
making the whole system much more efficient. Here we present a new type of a
WNN – Adaptive Window WNN (AWWNN), in which window positions and
wavelet levels are determined with a special iterative procedure. Two modifi-
cations of AWWNN are tested against linear model and multi-layer perceptron
on Mackey-Glass benchmark prediction problem.

Keywords: Wavelet neural networks � Wavelet analysis � Multiresolution
Group method of data handling

1 Introduction

The task of processing signals of measuring equipment is a very important task for
ensuring the results of scientific research. Machine learning techniques and especially
neural networks have been successfully used for a long time to solve inverse problems
(determination of the target value from indirect measurements, e.g. [1, 2]). However,
recent advances in the field of deep learning are often not applicable to solving the
above-described problems, for example, for spectral measurements of biological
samples. Typically the amount of data obtained during such studies is very small (often
hundreds of patterns), because of the high cost of measurement, complicated process of
preparing samples etc. In this case, the initial number of features of the original signal
can reach thousands (e.g., for spectral data), while using simple techniques for
decreasing the dimension (e.g., taking average over some window) may lead to loss of
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information, for example, if narrow peaks of proper frequencies of the object are
encountered in these spectra. Signal conversion techniques reducing the dimensionality
of data, such as PCA [3], describe only linear interactions in the data, and therefore
some of the information useful for solving the problem can be spread over several high
number PCs that will be excluded after selecting only some number of first
components.

An alternative is using the methods of selecting significant features [4]. However,
as practice shows, simple techniques such as cross-correlation are also ineffective in the
presence of complex internal interrelations in the data, and more complex methods
such as cross-entropy calculations or analysis of neural network weights are only valid
with a significant number of patterns. Thus, when observing high-dimensional signals
with the emerging nonlinearity and a small number of patterns, there is lack of a more
or less universal methodology.

Note that one of the techniques that demonstrate high efficiency in processing of
real signals and compression of such signals is the technique of wavelet transform [5].
There are many families of wavelet functions to decompose the signal, as well as many
strategies for carrying out multi-resolution analysis (MRA) [6]: discrete wavelet
transform (DWT), continuous wavelet transform (CWT), batch algorithms etc. The
problem is that even using the simplest technique (DWT), the main question is the
choice of essential wavelet-coefficients, because using all the coefficients of all levels
yields the same number of input variables as there was before DWT. Note that using
the technique of CWT generates the number of features similar to the number of
variables of the original signal, at every scale of the transform.

In this paper, we propose a model of a wavelet neural network (WNN) that per-
forms MRA. Note that this model seriously differs from the classical WNN, proposed
in 1992 [7] and developed in the following years, however not so actively as dense,
recurrent and convolution neural networks. The point is that a neuronal element of a
usual multi-layer perceptron (MLP) performs the transformation by the activation
function taken of the weighted sum of its inputs, whereas a neural element of the
classical WNN is a product of wavelet functions, the argument of which is an input
variable, and the wavelet transfer function has 2 parameters of delay and scaling. Next,
the result of the product of the elements is fed to the next layer and a response is formed
from the weighted sum. Obviously, this network is much more complicated than the
classical MLP, and therefore, WNN are not so widely spread as MLP.

Here we report an alternative architecture that uses as input features the results of
convolution of signal sections with wavelets of different scales and different families.
This peculiarity makes it possible to carry out a MRA relevant to the solved inverse
problem. Also, the concept of using wavelets of only one family is given up, since the
model does not involve reconstruction of the signal, which means that there is no need
to observe the orthogonality conditions of the wavelets participating in the decompo-
sition. In our new type of a WNN – Adaptive Window WNN (AWWNN), window
positions and wavelet levels are determined with a special iterative procedure.
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2 A New Type of Wavelet Neural Network: A Neural
Network of Multiresolution Wavelet Analysis

Our model performs simultaneous transformation of various parts of the signal by
functions of various scales. The training strategy of such model is partly similar to the
strategy of polynomial approximation by the multi-row Group Method of Data Han-
dling (GMDH) [8], which improves (complicates) at the next iteration (“row”) of the
algorithm the best polynomial models selected at the preceding iteration. In our
algorithm, the improvement of the model means the transition to the next detail level of
decomposition, i.e. the reduction of the scale parameter of wavelet functions and,
accordingly, of the areas of the signal within which the convolution operation is
performed. We call this model Adaptive Window Wavelet Neural Network –

AWWNN.
Detailed description of the AWWNN model with comments can be found in [9].

Here we give a brief description of the algorithm.
Our task is elaboration of an approximation that maps the observed physical

parameters (signal) to the given desired value, based on a superposition of the wavelet
representations of the fragments of the signal.

The developed model consists of the following structural elements:

(1) The input layer units performing wavelet transform.
(2) The weight coefficients connecting the input layer units with the neurons of the

hidden layer.
(3) Neurons – neuronal elements performing the conversion of the weighted sum of

the inputs according to the transfer functions defined for these neuronal elements.

The proposed model and the procedure of its training are much different from the
existing modern developments in this area by the following features:

(a) The problem of working with high-dimensional input data is solved by using
signal regions rather that separate signal values as input features of the model;

(b) The model structure is formed dynamically by construction of competing options.
This approach is easily parallelized.

The main stages of work with Adaptive Window Wavelet Neural Networks are the
following.

Stage 1: Determine the model structure and the method of its training. The fol-
lowing options need to be defined to set up the structure of the AWWNN model.

1. Wavelet functions to be used in the blocks of the input layer. To select the
optimal wavelet functions, the MRA-analysis procedure (multiresolution anal-
ysis) [10] is performed using various candidate functions. This procedure is
computationally cheaper using the Mallat algorithm [11]. The functions that
showed the lowest value of the error function are selected.

2. The detail levels (i.e. the values of the dilation (scale) parameter), for which the
training will be conducted. The corresponding levels are chosen similar to the
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classical multiscale DWT and correspond to a twofold increase in the width of
the wavelet window.

3. The degree of overlap between adjacent wavelet blocks d. This is an alternative
to the parameter of the wavelet transition (shift): the purpose of the proposed
definition of this parameter is to minimize the loss of information at the edges of
the wavelet function window in the process of convolution. The degree of
overlap can vary from 0 to 1, the recommended value of d is 0.5, which provides
the minimum number of input features guaranteeing no loss of information at the
edges of windows.

4. The number of wavelet blocks, which directly depends on the selected scale
parameter, the degree of their overlap and the number of wavelet function
families.

5. The number of neurons in the hidden layer, which should be chosen empirically.
An important recommendation here is to choose the number of neurons greater
than the number of desired outputs of the AWWNN.

Stage 2: Form the training sample and define model training parameters. The fol-
lowing training parameters should be defined to train the AWWNN.

1. The optimization algorithm that will be used to determine the weights between
neuronal elements. The possible candidates are Stochastic Gradient Descent
(SGD), Adam, and Rmsprop algorithms [12]. Their internal optimal parameters
are determined empirically.

2. The criterion for stopping the training of each local candidate model. We use
stopping the training after 100 training epochs without improving the value of
the objective function on the validation set.

3. The objective function to assess the quality of local models and of the aggregate
model for a given level of detail. It is recommended to use the mean squared
error for regression and prediction problems and binary cross entropy for clas-
sification problems.

Stage 3: Train the AWWNN model.

1. Determine the windows of the current detail level, corresponding to the preset
values of the parameters of their width si and of the position of their centers ti,
with the degree of overlap of adjacent windows d.

2. For each pattern from the training array, process it with wavelet transform,
convolving the signal with wavelet functions in Fourier space [13] over the
overlapping windows of the given detail level L, obtaining as many wavelet
coefficients a1

L…an
L as there were windows.

3. Using the parameters defined at Stage 2, construct a family of K models solving
the problem under study. The set of input features for each of the models of the
family is a unique subset (combination) of wavelet coefficients included in the
full set of wavelet coefficients {a1…an}. (In this implementation, all the wavelet
coefficients correspond to the same detail level L as specified in step 2.) The
recommended type of models is MLP type ANN.

4. Train each of the K models of the family of step 3 on the training set (sample),
obtaining the values of weight coefficients of the model. Select a pre-defined

570 A. Efitorov et al.



number K0 of best models according to the criterion calculated on the validation
set.

5. Test the set of K0 models selected at step 4 on the test sample by calculating the
criterion to assess the convergence of the algorithm.

6. Consider the windows of the current level of detail corresponding to the best
models using wavelet coefficients ai previously calculated inside these windows
to be the signal areas significant for solving the problem, and to be used for
further construction of the model.

7. Go to the next level of detail: for each window of the significant areas defined at
detail level L, calculate the corresponding wavelet transform with twice smaller
scale parameter (detail level L + 1), thus obtaining a detailed representation of
the set of significant areas.

Steps 3–7 are repeated until the convergence criterion determined by the value of
the objective function on the test set is reached.

The results of the algorithm are: the value of detail level Lfin (scale parameter s) and
a set of values of transition (shift) parameters {ti} corresponding to the significant areas
of the measured signal; a set of input wavelet blocks with the wavelet functions
specified in them; a hidden layer of neurons, and weight coefficients linking the neu-
ronal elements.

3 Results

The algorithm was tested at the examples of a well-known benchmark time series
(TS) prediction problem (Mackey-Glass TS) [14]. All numerical experiments were
performed in Python programming language on the basis of Keras machine learning
library [15] and Tensorflow library for efficient mathematical operations with large
arrays of data [16]. Parallel computations on multiple computers with multiple
cores/threads were maintained by GNU Parallel [17]. The results are compared with
logistic regression and classical MLP.

For all the algorithms, 50 consequent values of the TS were taken to predict 10 next
values of the same TS (i.e. delay embedding depth was 50 steps, and the prediction
horizon ranged from 1 to 10). The criterion for comparison was the coefficient of
multiple determination R2 on the test set of data. R2 grows with decreasing mean
squared error and approaches unit when the mean squared error approaches zero.

Table 1 presents the results of four methods.
For small prediction horizon values, all the methods demonstrate performance close

to absolute. For prediction horizon greater than 3, the worst results are demonstrated by
linear regression, due to the fact that the studied dependence is non-linear.

Significantly better results are obtained by an MLP when it is fed directly with 50
consequent values of the TS as described above, i.e. with simple delay embedding.
The MLP had two hidden layers with 200 neurons each, it was trained with Adam
optimization algorithm with learning rate = 0.001, b1 = 0.9, b2 = 0.999, e = none,
decay = 0, amsgrad = false [15], and using Dropout [18] with the parameter 0.5.
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Use of AWWNN brings further improvement. For the first type of AWWNN
(simply “AWWNN” in Table 1) the MLP at its output is fed only with wavelet con-
volved features which were extracted according to the algorithm described in the
preceding section of this paper. The following parameter values were used: wavelet
family – real-valued Morlet, scale parameter values si = 4, 8, 16, 32 points (corre-
sponding to the input variables), degree of overlapping d = 50%. The MLP at the
output had the same parameters as described above for MLP only model.

For the second type of AWWNN (“feature+ AWWNN” in Table 1) the MLP at its
output is fed both with extracted wavelet convolved features and with the 50 conse-
quent values of the TS. This architecture demonstrates additional significant
improvement in the results for all values of horizon; it is especially important that the
prediction degrades much slower with increasing horizon that for all the other models.

Such behavior of MLP, AWWNN, and feature+ AWWNN makes the authors
suppose that the performance of AWWNN can be improved if simultaneous use of
different scale wavelet coefficients is allowed like in usual DWT. When windows are
split in two at step 7 of the described algorithm, significant wavelet coefficients of the
preceding level L should be also preserved and included into the full set of wavelet
coefficients {a1…an}. Then the subsets of the full set extracted for each candidate model
at step 3 of the algorithm could include wavelet coefficients of various scales, best
combinations selected at step 4 by the criterion.

In this way, wavelet coefficients could better describe the situation when the
important changes of the signal in its different parts (differing by the shift parameters ti)
may have different scales. This is a very realistic situation e.g. in spectroscopy, where
some parts of a spectrum can be characterized with wide peaks and some with narrow.
Implementation and test of this improvement of the algorithm should be the subject of
the next study.

Table 1. Comparison of performance (multiple determination coefficient R2) for various
prediction methods on Mackey-Glass benchmark problem.

Prediction horizon Feature+ AWWNN AWWNN MLP Linear regression

1 0.996 0.996 0.997 1.000
2 0.997 0.997 0.998 0.999
3 0.997 0.997 0.997 0.998
4 0.997 0.995 0.993 0.992
5 0.996 0.989 0.984 0.968
6 0.995 0.978 0.968 0.872
7 0.993 0.958 0.944 0.776
8 0.991 0.930 0.913 0.724
9 0.987 0.893 0.874 0.707
10 0.980 0.850 0.831 0.689
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4 Conclusions

In this study, we demonstrate a new type of a wavelet neural network – a neural
network with multiresolution wavelet analysis called Adaptive Window Wavelet
Neural Network (AWWNN). In AWWNN, window positions and wavelet levels are
determined with a special iterative procedure.

Two modifications of this new type of WNN were tested against linear model and
multi-layer perceptron on Mackey-Glass benchmark problem. The new WNN archi-
tecture demonstrated its efficiency, outperforming a linear regression model and a
multi-layer perceptron with two hidden layers fed with delay embedded data.

Direction of future improvement of the algorithm has been formulated.
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Abstract. A crucial factor for successful learning is the finding of more
convenient representations for a problem, such that subsequent process-
ing can be delivered to linear or non-linear modeling methods. Similarity
functions are a flexible way to express knowledge about a problem and to
capture meaningful relations of data in input space. In this paper we use
similarity functions to find an alternative data representation which is
then reduced by selecting a subset of relevant prototypes, in a supervised
way. The idea is tested in a set of modelling problems, characterized by
a mixture of data types and different amounts of missing values. The
results demonstrate competitive or better performance than traditional
methods in terms of prediction error and sparsity of the representation.

Keywords: Similarity representations · Similarity measures
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1 Introduction

A non-written principle in learning systems states that similar inputs should
have similar outputs for a model to be successful. While this is no guarantee of
good performance –specially near class boundaries, where the principle could be
violated– it certainly is a sine qua non condition. If the principle is not true,
generalization becomes almost impossible. For a learning system to be successful,
the trick is then to capture (that is, to learn) meaningful similarity relations.

Similarity-based learning systems do not directly learn from the data but
first transform them into a similarity representation from which learning a tar-
get concept can be facilitated. Although a relatively little studied area within
machine learning, similarity functions have been used with great success since
the early days of pattern recognition. The relation to kernel-based methods [4] is
clear but there are obvious differences: in the latter the change of representation
is implicit rather than explicit, and the kernel functions (acting as similarity
measures) must comply with the positive semi-definiteness property.

Modern modelling problems are difficult for a number of reasons, including
dealing with mixtures of data types and varying amounts of missing information.
For example, in the well-known UCI repository [5], over half of the problems
c© Springer Nature Switzerland AG 2018
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contain explicitly declared nominal variables, let alone other data types (e.g.,
ordinal), usually unreported. Although there is often enough domain knowledge
to characterize the nature of the variables, in many cases this heterogeneous
information is encoded (and sometimes forced) as real-valued quantities, in order
to be processed by the learning model.

The aim of this paper is to demonstrate the learning abilities of simple layered
architectures, where the first layer computes a user-defined similarity function
between training data and prototypes. The basic idea is that a combination of
partial similarity functions, comparing variables independently, is more capa-
ble at capturing the specific properties of an heterogeneous dataset than other
methods, which require a priori data transformations. In order to develop the
idea, we propose to compute the similarities among the elements in the learning
dataset, and then use a reduction method to select a small subset thereof. These
selected observations are the centers of the first layer. In other words, the first
layer is a change of the representation space from the original feature space to a
similarity space [6], while the second layer takes the form of a learner.

The paper is organized as follows. Section 2 further motivates of the approach
and gives the technical details thereof. Section 3 presents an experimental study
that puts forward the presented ideas. Section 4 reviews previous work. The
paper ends with the conclusions and suggestions for future work.

2 Proposed Method

2.1 Preliminaries

We depart from a training data matrix Xn×d composed of n observations xi

described by d variables, plus a vector t containing the known targets of the
n observations. Given a similarity function, we first compute the similarities
between the observations and turn them into Euclidean distances, thus obtain-
ing a new metric representation for the data. Another algorithm then selects a
number d′ of prototypes, that best represent the learning data in the following
sense: i) the prototypes are a subset of the known training observations; and
ii) d′ should be much smaller than n. More formally, the steps followed by the
proposed method are as follows:

1. Computation of the distance matrix from the training data matrix Xn×d:
given a similarity measure and a transformation function, a Dn×n distance
matrix (symmetric with null diagonal) is created.

2. Selection of prototypes. From the matrix of distances Dn×n and the vector
t of targets we obtain a submatrix D′

n×d′ , where d′ � n.
3. Modeling. In this last step, any desired learner can be used, fed with D′ as

inputs and t as targets.

The chosen measure for the first step is Gower’s similarity score [9], conve-
niently turned into a metric distance. For the second, the idea is to exploit the
fact that D is symmetric: instead of using a costly search mechanism, we propose
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to use a supervised learning method, specifically one that can be made to select
either a subset of the rows or a subset of the columns, effectively performing
prototype selection, as explained below (Sect. 2.3).

2.2 The Similarity Measure

We next describe specific similarity measures for different types of variables,
defined in the common codomain Is = [0, 1]. We use sijk to mean sk(xik, xjk),
the similarity of observations xi,xj according to variable k.

A basic but very useful general similarity coefficient is Gower’s score, well-
known in the literature on multivariate data analysis [9]. For any two vector
objects xi,xj to be compared on the basis of feature k, the score sijk is defined
as follows. First, set δijk = 0 when the comparison of xi,xj is not meaningful
on the basis of feature k for some reason1, and δijk = 1 otherwise; if δijk = 0
for all k, then s(xi,xj) is undefined. The partial measures sk considered in this
work include the real, nominal, ordinal, binary asymmetric, binary symmetric
and circular types, computed as follows:

Real (or quantitative) variables are compared with the standard metric in
R: sijk = 1 − |xik − xjk|/Rk, where Rk is the range of feature k (the difference
between the maximum and minimum values).

Binary variables indicate the presence/absence of a trait, represented by the
symbols + and −. In case of asymmetry (only +/+ matches should contribute),
then sijk = 1 iff xik = xjk = + and δijk = 0 iff xik = xjk = −, leading to a
measure well-known in numerical taxonomy as the Jaccard Coefficient [10].

Categorical variables can take a finite number of discrete values, which are
commonly known as modalities. For these variables no order relation can be
assumed. Their similarity is sijk = 1 if xik = xjk and sijk = 0 if xik �= xjk. This
formula covers also the case of binary symmetric variables (which are identified
with categorical ones with two modalities).

Ordinal variables take on one of m possible levels, numbered for convenience
as {1, . . . , m},m ≥ 2. These variables are not defined in Gower’s original work,
but can be easily incorporated. Their similarity is computed as:

sijk = 1 − | zik − zjk |
max(zk) − min(zk)

, where zik :=
xik − 1
m − 1

.

Circular variables are also considered as given in {1, . . . , m}; these values
can be imagined as located equally-spaced in the perimeter of a unit circle2. In
this work we make use of the extension introduced in [13]:

sijk =

{
| 1 − 2

m | xik − xjk ||, m odd

| 1 − 2
m−1 | xik − xjk ||, m even

1 For example, by the presence of missing values, by the feature semantics, etc.
2 Such variables are increasingly common, especially when they refer to a time peri-

odicity, such as the month in a year.
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The overall coefficient of similarity between observations xi and xj is defined
as the average score over all meaningful partial comparisons:

s(xi,xj) =
∑d

k=1 sijkδijk∑d
k=1 δijk

∈ Is = [0, 1] (1)

As a side note, the “ignorance” of the absent values and normalization by
the number of the present ones has been found superior to other missing value
treatments in standard data analysis experiments [11].3

One can then form a symmetric n × n similarity matrix S with entries Sij =
s(xi,xj). To convert this similarity matrix into a distance matrix D, we use the
formula Dij =

√
1 − Sij . For this type of similarity matrices, it is known that

D is Euclidean if and only if S is positive semi-definite (PSD) [12]. A sufficient
condition for S to be PSD is the absence of missing values.4

2.3 The Selection of Prototypes

An immediate question is derived when carrying the proposed method forward:
how the prototypes should be selected. Our conjecture is that this task should be
performed in a supervised way, something that discards, among others, clustering
methods. It should also be relatively fast – in comparison to alternative methods–
and linked with the learning method to be applied afterwards. A natural choice is
to use precisely a learning method, but adapted to the prototype selection task.
We are interested in selecting a supervised learner able to perform variable (i.e.,
column) selection. Alternatively, since D is symmetric, one can pick a supervised
learner able to perform instance (i.e., row) selection and then transpose the
resulting submatrix.

We consider in this work three different learners for the prototype selection
task: the Lasso [2], a Random Forest (RF) [19] and a Support Vector Machine
(SVM) [4]. The use of the Lasso as prototype selector is straightforward, given
that the columns are the new features. The SVM is more tricky: once it is trained
using D as data, we remove the non-support vectors from D and transpose the
result. In both cases, one obtains D′

n×d′ , where d′ is the selected number of
prototypes. To use a RF as prototype selector, we train an initial model with D
as features, and iterate a backward-selection process guided by the OOB (Out-
of-Bag) error, in which the δ worst variables are removed until no further removal
is possible. The value of δ is set as the number of features below the 10%-quantile
of the distribution of importances, as calculated by the RF at every step.

3 It is not difficult to check that this is equivalent to the replacement of the missing
similarities by the average of the non-missing ones. Therefore, the conjecture is that
the missing values, if known, would not change the overall similarity significantly.

4 This property is not used in this work but it is interesting in other contexts, such as
optimization.
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3 Experiments

In this section we detail the experimental procedure and report the results of
experimental work in which the previous ideas are applied to a set of mod-
eling problems. As mentioned above, the method entails the selection of two
chained techniques, one for selecting the prototypes and another to learn from
the reduced distance matrix. We study the following prototype selector/learner
combinations: Lasso/glm, Lasso/RF, Lasso/SVM, RF/RF and SVM/SVM.

In addition to these five combinations, we also test the learners acting on the
input space (i.e., without the similarity layer), to see the effect. To this end, we
perform a pre-process in which variable types are properly identified; in partic-
ular, non-numerical information is binarized with a standard dummy code [16].
For the missing values, we use the Multivariate Imputation by Chained Equa-
tions (MICE) method [15], which generates multiple imputations for incomplete
multivariate data by Gibbs sampling. This method is attractive because, if the
data contains categorical variables, these are also used in the regressions on the
other variables. Finally, in order to test the need of a reduction, we consider a
method computing steps 1 and 3 but not 2 –see Sect. 2.1– where the learner is
glm (which should be directly compared to Lasso/glm) and call it dist-glm.

In all cases, the SVM uses the RBF kernel, where the smoothing parameter
in the kernel is estimated using the sigest method, averaging the 10% and 90%-
quantiles of the sample distribution of ‖xi − xj‖2 [14]; the cost parameter C
is set to 1. The RF uses 500 trees and the square-root rule for the number of
features explored at each tree node [19].

Several problems have been selected displaying some characteristics of mod-
ern modeling datasets: data heterogeneity and presence of missing values. The
problems are not large in size to keep running times low and be able to per-
form a significant number of resampling repetitions. In all cases, the available
documentation from the UCI repository [5] has been analyzed for an assessment
on the more appropriate data treatment. Missing information is also properly
identified. The main characteristics are displayed in Table 1.

Table 1. Basic characteristics of the studied problems. Task: BC (binary class) or
MC (multiclass) classification, R (regression). Variables: (Q)uantitative, (N)ominal,
(O)rdinal, binary (S)ymmetric, binary (A)symmetric and (C)ircular. Missing? is the
percentage of missing values.

Problem Task Size Variables Missing?

Horse Colic BC 368 21 [7Q,6N,8O] 28%

Hepatitis BC 155 19 [6O,13N] 6%

Credit Approval BC 690 15 [6O,9N] 5%

Heart Disease BC 270 13 [6Q,3S,3N,1O] −
Audiology MC 226 31 [7O,1N,23A] 2%

Contraceptive MC 1473 10 [3Q,4N,3O] −
Servo R 167 4 [2Q,2N] −
Automobile R 201 25 [14Q,11N] 3%
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Fig. 1. Generalization errors for the Servo problem.

All datasets are split into learning and test parts, using half of the data
for each task (learning the model and making independent predictions). In the
training part, 3×5-CV is used to select the hyperparameters (three times 5-fold
cross validation). This training/test partition and modelling process is iterated
50 times, generating a distribution of test results.

3.1 Discussion of the Results

Our performance criteria include computational cost (measured in CPU sec-
onds5), sparsity (measured as the percentage of training data points not used
by the model) and generalization ability –measured as test error rate for clas-
sification and fraction of variance unexplained (FVU) for regression. A grand
summary of the results for the classification problems described in Table 1 (the
first 6) is displayed in Table 2.

The two regression problems (Servo and Automobile) are presented sep-
arately. For space reasons, we show only a sample of the results –those of gen-
eralization error– in Figs. 1 and 2, respectively.

As could be reasonably expected, no single absolute winner exists. Methods
lasso/glm and RF are the best in terms of generalization errors; lasso/glm,
lasso/RF and lasso/SVM in terms of sparsity; and lasso, RF and SVM in terms
of training time, although the largest time is below half a minute. In view of
these numbers, if one wants a good compromise between the three quality mea-
sures, possibly lasso/glm would be the chosen method. It is also noteworthy
that this combination generates a completely linear model, which may be inter-
esting in terms of interpretability. The second observation is that the selection
of columns (i.e. distances to prototypes) is absolutely necessary (dist/glm is
the worst method except in training time). The third remark is that the change
of representation space favours sparsity, even for the lasso.
5 The experiments were run on a HP laptop with 2GB of RAM and an Intel(R)

Core(TM)2 Duo CPU T7500 at 2.20GHz.
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Table 2. Average generalization errors, sparsity and execution time for the 9 methods
studied applied to the classification problems described in Table 1. All the reported
figures are the average of the medians of the 50 test error distributions.

Method Error Sparsity Time (s)

dist/glm 0.261 0% 9.9

lasso/glm 0.209 88.7% 12.3

RF/RF 0.229 76.9% 28.0

lasso/RF 0.231 88.5% 24.9

SVM/SVM 0.230 53.2% 5.3

lasso/SVM 0.217 87.8% 21.2

lasso 0.220 32.8% 1.7

RF 0.205 0% 0.6

SVM 0.213 36.8% 1.6

Fig. 2. Generalization errors for the Automobile problem.

3.2 The Bank Marketing Problem

A further, challenging problem is studied: the two-class Bank Marketing

dataset (also from the UCI repository [5]), dealing with a marketing campaign
where potential customers –who might be interested in a term deposit– are called.
The task is to predict whether the called person will be interested in the offer of
the bank. This dataset is markedly larger than the rest (in excess of 45,000 obser-
vations and 18 variables), displays a great data heterogeneity –including several
circular variables– and a severe class imbalance (11.26% vs 88.74%). Specifically,
the variables types6 are [9Q,1S,1A,4N,1O,2C], and the percentage of missing
values is around 10%. It is important to remark –for comparison purposes–
that we decided to eliminate two predictive variables: duration, because it

6 See the caption of Table 1 for a description.



584 L. A. Belanche

Fig. 3. Generalization errors for the Bank Marketing problem.

Fig. 4. Sparsity for the Bank Marketing problem.

Fig. 5. Training times for the Bank Marketing problem.
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represents a posteriori information (the duration of the call); and default,
describing whether the called person has personal debts (only 3 observations
of the total have a non-zero value). For this problem we display the full results,
in Figs. 3, 4 and 5. This time the lasso/glm combination stands out even more
markedly as the method giving the best compromise; it also exhibits a low vari-
ance in comparison to other combinations, pointing to a good stability.

4 Related Work

Purely similarity-based techniques have been used with great success in fields
like Case Based Reasoning [1] or Information Retrieval [3] and interest has never
faded way; on the contrary, it has grown considerably since the appearance of
kernel-based methods [4]. A large portion of the literature is concerned with
learning either a Mahalanobis distance (x − x′)�M(x − x′) or a generalised
dot product x�Mx′, where M is a PSD matrix. In both cases, this requires
estimating O(d2) parameters, which is highly undesirable, specially in a small
sample size setting.

The selection of prototypes is also a field of study per se –particularly linked
to nearest neighbour classifiers [21]. Methods include clustering algorithms [18],
artificial immune systems [8], genetic algorithms [17] –even extreme methods like
random selection or no selection at all [7]. The results are most often inconclusive
[20], [6]. The majority of these methods –if not all– focus on unstable search
mechanisms, are unsupervised or work with dissimilarities showing no metric
properties, which greatly difficults drawing valid conclusions.

5 Conclusions and Future Work

Selecting prototypes for learning in a similarity/distance space remains largely
an open and interesting problem. We have presented and explored a different
approach to similarity-based learning via prototype selection. This step is carried
out in a fully supervised way, avoiding search methods, which are costly and
likely to be unstable. The idea has been shown to be viable, delivered acceptable
results in terms of computational cost, and very satisfactory in terms sparsity
and generalization ability. The lasso/glm combination stands out as the best
tradeoff between these three aspects of learning. An attractive advantage is found
in the capacity of handling mixed variable types and missing information.

Current lines of research include the extension to new data types (e.g. fuzzy
variables), the addition of weights to alter the contribution of each partial simi-
larity, and the efficient extension to larger and more challenging problems.
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Abstract. In this paper a polynomial radial basis function neural network is
trained to model and predict the temperature profile-energy proxy of a highly
complex data center located at the University of the Aegean, Greece. A number
of input variables are identified that directly quantify the rack’s air temperature.
The corresponding data set is generated through an experimental monitoring
system used over a two-week period. The network’s structure encompasses three
distinct levels. The first level involves a number of hidden nodes with Gaussian
activation functions, while the second level generates first order polynomial
functions of the input variables. Finally, the third level aggregates the outputs of
the above two levels and generates the network’s output. The network’s training
process is based on using the particle swarm optimization algorithm. For
comparative reasons, a typical radial basis function and a feed-forward network
were developed. The results indicate that the proposed network is very effective
in predicting the server rack’s air temperature, outperforming the other two
networks.

Keywords: Polynomial radial basis function neural network
Particle swarm optimization � Data center � Temperature

1 Introduction

The ever increasing high-performing data centers equipped with advanced information
technology frameworks to process network data, user profiles, information personal-
ization, internet data traffic and communications, has made the energy consumption a
central design parameter [1]. As a result, a number of studies have been conducted to
investigate the above problem. In [2] an adaptive evolutionary approach was proposed
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to minimize energy consumption in cloud computing data centers. Beloglazov et al. [3]
stated the need for software solutions in deciding when to move resources to minimize
the cooling requirements of the data center, while in [4] stochastic neural models were
developed to predict the data center network’s load, providing an optimized schedule of
task allocations. Derakhsan et al. [5] used machine learning to predict the resource
consumption of service requests, by dividing them into distinct consumption cate-
gories. Matsunaga and Fortes [6] compared various machine learning techniques, such
as k-nearest neighbor, linear regression, artificial neural networks, decision trees and
support vector machines for their suitability in predicting the resource consumption of
different applications. The continuous monitoring enabled vast improvements in
cooling efficiency. Xu and Fortes [7] used a genetic algorithm with fuzzy multi-
objective evaluation to optimize the virtual machine placement problem in terms of
resource wastage, power consumption and thermal dissipation.

Each data center is more or less unique and obeys certain peculiarities regarding
location, room layout, usage load etc., rendering the modeling process of the electricity
demand a highly nonlinear problem. An effective approach to capture the resulting
nonlinearities is to use polynomial neural networks (pNNs). PNNs are constructed by
modifying the network’s structure using polynomial functions [8, 9]. Typical training
mechanisms involve fuzzy clustering [10], and/or evolutionary computation [9]. In
[11], the well-known Chebyshev polynomials are employed to form the neuron acti-
vation functions. However, as the number of input variables increases the number of
neurons also increases and the resulting computational cost becomes too expensive for
high dimensional problems. Rigos et al. [12] developed a Chebyshev polynomial RBF
network to resolve the shoreline extraction problem.

In this paper, we propose to use a first order polynomial radial basis function
(RBF) neural network to predict the rack’s temperature profile of the data center,
located at the University of the Aegean, Mytilene, Greece. The center supports a
significant number of units and users. After analyzing the structure of the units and the
related services and facilities, a number of input-output variables were identified that
directly define the rack’s air temperature. Among others the input variables include the
internet traffic, and CPU and memory usage.

The material is organized as follows. Section 2 describes the experimental setup
and the data acquisition process. Section 3 presents the analytical structure of the
proposed neural network. The simulation study is presented in Sect. 4. Finally, the
paper concludes in Sect. 5.

2 Problem Description and Data Extraction

Energy consumption is a determinant of low-carbon modernization of economy in the
sense of internalizing economic externalities. Stemming from this elementary
assumption within the broader ICT industry, the targets of SMART ICT 2020 [13]
encapsulate the dynamics of transformation of both the vast and disparate domains of
wise-use of knowledge, technology, energy and natural resources as well as the
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informatization of non-ICT per se production processes (e.g. education and research,
agriculture, transports, logistics, etc.). Within the well-known asymmetric sigmoidal
“Cost–GHG emissions abatement” curves, energy consumption management in data
centers is among the prominent levers for significant mitigation policies regarding C-
emissions [14]. Contrary to the positive linear hypothesis of ICT-driven “optimization”
–in the sense of C-emissions’ minimization or abatement- of a long series of ICT
governed production processes, a rebound effect of coupled energy consumption/C-
emissions is haunting ICT and environmental strategists.

In this paper, we study the ICT data center of the University of the Aegean,
Mytilene, Lesvos Island, Greece. The University’ s campus comprises a number of
buildings and the data center is equipped with two clusters, split into three racks, which
are cooled using three AC units having a cooling capacity 21.4 KWh. The first cluster
is comprised of 6 IBM HS23 servers, housed in an IBM Blade Center and is designated
for High Performance Computing (HPC) applications. Each of the HPC cluster’s cores
has 24 cores running at 2.9 GHz, 64 GB of memory, 2 � 200 GB SSD disks,
2 � 1 Gbit network connections and 2 � 10 Gbit FCoE network connections. The
second cluster is comprised of 12 IBM HS23 servers in a second IBM Blade Center
and is designated for general purpose (GP) use. Each server has 32 cores at 2.5 GHz,
256 GB of RAM memory, 2 � 200 GB SSD disks, 2 � 1 Gbit network connections
and 2 � 10 Gbit FCoE network connections.

The experimental methodology consists of the collection and analysis of the server
room usage data and the outside environmental temperature for a period of 2 weeks,
starting from the middle of March 2018 (19/3/18-30/3/18). The data were obtained at a
three-minute interval using the IT service’s monitoring system. A server was set-up to
enable constant data gathering, using Python 3.6 and the Django framework. The input
variables were identified as follows. (a) The internet traffic (upload/download) in Bytes,
for the HPC and GP clusters, the backup server, the university’s connection to the
central authority (GRNET), and for the five buildings of the campus. In order to reduce
the number of variables in the neural networks, these data were aggregated, using
arithmetic progression, into two variables: Upload Uð Þ and Download Dð Þ. (b) The
current CPU usage Qð Þ, which is directly responsible for temperature rise. (c) The
current memory usage Mð Þ which is a metric of the current workload. (d) The CPU
temperature TCPUð Þ. (e) The memory bank’s temperature TMEMð Þ. Finally the system’s
output is the air temperature inside the server’ s rack Tairð Þ. By using the symbolization
x1 ¼ U; x2 ¼ D; x3 ¼ Q; x4 ¼ M; x5 ¼ TCPU , x6 ¼ TMEM , and y ¼ Tair, the experi-
mental setup generated N ¼ 4811 input-output data of the form xk; ykf gjNk¼1 with
xk ¼ x1; x2; . . .; x6½ � 2 R6 and y 2 R.

3 Structure and Training of the Polynomial RBF Network

The proposed network comprises three major operational levels (see Fig. 1) namely,
Level 1, Level 2, and Level 3. Given p input variables, Level 1 includes a hidden layer
of nodes with Gaussian activation functions [9],
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g‘ðxÞ ¼ exp � x� v‘k k
r‘

� �2
 !

ð1Þ

where v‘ is the center element of the Gaussian function, r‘ is the corresponding
standard deviation, ‘ ¼ 1; 2; . . .; c, with c being the number of hidden nodes, and x the
input vector. Level 2 creates the polynomial regression part of the network, which
aggregates the input variables in terms of a first order polynomial functions [9],

h‘ xð Þ ¼ a‘0 þ a‘1x1 þ . . .þ a‘pxp ¼ a‘0 þ
Xp
j¼1

a‘j xj ð2Þ

To this end, Level 3 generates the network’s output as follows,

ŷ ¼
Xc
‘¼1

gi xð Þ hi xð Þ ¼
Xc
‘¼1

exp � x� v‘k k
r‘

� �2
 !

a‘0 þ
Xp
j¼1

a‘j xj

 !
ð3Þ

Given a set of input-output data xk; ykf gjNk¼1 with xk 2 Rp and y 2 R, the training
process is based on minimizing the corresponding square error,
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Fig. 1. Graphical representation of the first order polynomial RBF neural network.
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J ¼
XN
k¼1

yk � ŷkj j2 ð4Þ

To accomplish this task, we propose to use two sequential steps. In the first step, the
particle swarm optimization (PSO) algorithm is applied to determine the parameters v‘
and r‘ ð1� ‘� cÞ. The second step implements a ridge regression procedure to esti-
mate the parameters a‘0; a‘1; . . .; a‘p with 1� ‘� c.

The particle swarm optimization (PSO) involves a swarm of Np vectors
pi 2 Rq 1� i�Npð Þ, called particles [14]. Each particle is assigned a velocity zi 2 Rq.
The positions with the best solution obtained so far by the particle pi and by all particles
are denoted as pbesti and pbest, respectively. Then, the velocity is,

zi tþ 1ð Þ ¼ x hi tð Þ þu1 U 0; 1ð Þ � pbesti tð Þ � pi tð Þ
� �þu2 U 0; 1ð Þ � pbest tð Þ � pi tð Þð Þ

ð5Þ

where � is the vector point-wise product, U 0; 1ð Þ is a vector with elements randomly
generated in [0, 1]; x, u1, and u2 are positive constant numbers called the inertia,
cognitive and social parameter, respectively. Finally, the position of each particle is
updated as,

piðtþ 1Þ ¼ piðtÞþ ziðtþ 1Þ ð6Þ

The elements of the particle are confined in the range pmin
j � pij � pmax

j [15], where

pmin
j and pmax

j are the boundaries of the domain of values in the jth dimension of the
particles’ search space. To implement the PSO, each particle codifies the parameters v‘
and r‘ ð1� ‘� cÞ. Therefore, the dimension of the particles’ search space is equal to
q ¼ c pþ 1ð Þ (i.e. pi 2 Rq 8 i). All particles are randomly initialized.

On the other hand, there are c pþ 1ð Þ polynomial parameters a10; a11; . . .; a1p;
a20; a21; . . .; a2p; . . .; ac0; ac1; . . .; acp are estimated using the well-known ridge
regression [16], where the regularization parameter is adjusted manually.

4 Simulation Study

Based on the analysis described in Sect. 2, the data set includes N ¼ 4811 input-output
data pairs of the form xk; ykf gjNk¼1 with xk 2 R6 and yk 2 R. The data set was randomly
divided into a training set consisting of the 60% of the original data, and a testing set
consisting of the remainder 40%.

Parameter setting for the PSO was as follows: u1 ¼ u2 ¼ 2, x was randomly
selected in 0:5; 1½ �, and the population size was Np ¼ 20.

For comparison, two more neural networks were designed and implemented. The
first one is a radial basis function neural network (RBFNN). The basis functions
parameters as well as connection weights were estimated in terms of the PSO
algorithm.
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The second one is a feedforward neural network (FFNN) with activation functions

f ðxÞ ¼ tanh
x
2

ð7Þ

The network’s parameters of the FFNN were determined using once again the PSO
algorithm. In both of the above networks, the parameter settings for PSO were the same
as in the proposed network. All networks were implemented using the Python software.
The performance index was the root mean square error:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
k¼1

yk � ŷkð Þ2
vuut ð8Þ

For the three networks, we considered various numbers of nodes. For each number
of nodes we run 10 different initializations. The results are shown in Table 1 for the
training data and in Table 2 for the testing data. The proposed network appears to have
the best performance compared with the other two networks. The best result for both
the training and testing data sets is obtained by the proposed network for c ¼ 9. The
results reported in the above tables are visualized in Fig. 2. There are some interesting
observations related to this figure. First, the superiority of the proposed method is clear,
in comparison with the other two tested networks. Second, the behaviours of the FFNN
and the RBFNN appear to be similar, but with the latter achieving a slightly better
performance in both the training and testing data. Third, in all networks, the general
tendency is a decrease of the RMSE as the number of nodes increases.

With regard to the effectiveness of the proposed network the following should be
noted. The RMSEs found, although smaller are still considered closed to the respective
errors obtained by the other two networks. Taking into account the high variability of
the data, it seems that the obtained RMSEs reflect the highly nonlinear nature of the
overall process during the period of observations.

Table 1. RMSE mean values and the corresponding standard deviations obtained by the three
networks for various numbers of nodes for the training data set

No of nodes
cð Þ

RBFNN FFNN Proposed Polynomial
RBF Network

2 0.99089 � 0.04554 1.02675 � 0.01785 0.92275 � 0.04692
3 0.97380 � 0.05496 0.98982 � 0.01541 0.86041 � 0.04520
4 0.96124 � 0.02184 0.97438 � 0.00767 0.83386 � 0.05102
5 0.95858 � 0.01604 0.96971 � 0.01642 0.85830 � 0.05313
6 0.95419 � 0.01122 0.97841 � 0.00977 0.79190 � 0.03304
7 0.92386 � 0.01793 0.98349 � 0.01175 0.76170 � 0.02352
8 0.93199 � 0.01369 0.96833 � 0.04979 0.77992 � 0.01539
9 0.93363 � 0.01342 0.96910 � 0.01324 0.75779 � 0.02254
10 0.92118 � 0.03202 0.95349 � 0.01157 0.77104 � 0.01297
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5 Conclusions

In the present contribution we have presented a systematic methodology that uses an
experimental setup and a novel polynomial neural network to predict the server rack’s
temperature of the data center located at the University of the Aegean, Greece. A set of
input variables were identified that affected that temperature, which together with
experimental observations taken on a three-minute interval basis over a period of two
weeks were used to generate the input-output training data. The network’s structure
involves three levels. Level 1 comprises a typical RBF hidden layer. Layer 2 generates
first order polynomials of the input variables, where the polynomial factors play the
role of the regression parameters in the network’s inference mechanism. Finally, in
Level 3 the outputs of the above two layers are aggregated to produce the estimated
output. The training procedure was carried out by applying in sequence the particle
swarm optimization and ridge regression. Simulation experiments were conducted and
the results were compared with those obtained by two other neural networks: a radial

Table 2. RMSE mean values and the corresponding standard deviations obtained by the three
networks for various numbers of nodes for the testing data set

No of nodes
cð Þ

RBFNN FFNN Proposed Polynomial
RBF Network

2 0.99810 � 0.03451 1.05889 � 0.01221 0.94464 � 0.04468
3 0.97032 � 0.03631 0.98055 � 0.01015 0.89804 � 0.03555
4 0.95734 � 0.01441 0.97730 � 0.00517 0.89473 � 0.02327
5 0.95441 � 0.01075 0.96925 � 0.01107 0.87134 � 0.01616
6 0.95831 � 0.01422 0.97966 � 0.00638 0.85364 � 0.03070
7 0.95369 � 0.01129 0.97203 � 0.00787 0.84447 � 0.04264
8 0.94564 � 0.01607 0.98847 � 0.03542 0.83688 � 0.01323
9 0.93799 � 0.04792 0.98172 � 0.00970 0.82566 � 0.01580
10 0.92718 � 0.00798 0.97530 � 0.01134 0.83648 � 0.01286
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Fig. 2. Mean values of the RMSE as a function of the number of nodes for: (a) the training, and
(b) the testing data.
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basis function neural network and a feedforward neural network. The comparison
showed that the proposed network performs better in all cases as far as the modeling
process of the above-mentioned server rack’s temperature is concerned.
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Abstract. For the quality control in the crowdsourcing tasks, requesters
usually assign a task to multiple workers to obtain redundant answers
and then aggregate them to obtain the more reliable answer. Because of
the existence of the non-experts in the crowds, one of the problems in the
label aggregation is how to differ experts with higher ability from non-
experts with lower ability and strengthen the influences of these experts.
Most of the existing label aggregation approaches tend to strengthen the
workers who provide majority answers and regard them with high ability.
In addition, we find that the similarity among worker labels is possible to
be effective for this issue because two experts are more probable to reach
consensus than two non-experts. We thus propose a novel probabilistic
model which can incorporate the similarity information of workers. The
experimental results on a number of real datasets show that our approach
can outperform the existing models including a probabilistic model with-
out incorporating the similarity. We also make an empirical study on the
influence of worker ability, label sparsity and redundancy to the perfor-
mance of label aggregation approaches, and provide a suggestion on the
strategy of collecting the labels in crowdsourcing.

Keywords: Crowdsourcing · Quality control · Worker similarity

1 Introduction

Crowdsourcing has been successfully applied to various areas of computer science
including computer vision, natural language processing, machine learning and
so on. Crowdsourcing platforms such as Amazon Mechanical Turk offer human
intelligence tasks to a large group of unspecified workers who can be non-experts.
One kind of important tasks is multiple choices. Workers are asked to select one
answer from multiple candidates on a given task, for example, a label of an
image, or an answer to a scientific question.
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Fig. 1. A Toy Example of Worker Label, Similarity, and Accuracy Distribution. In
(a) and (b), there are four experts in 25 workers for 25 items. The experts always
select correct choices. The non-experts always randomly select the choices. In (c), the
label similarity between two experts is prominently higher than that between two non-
experts, thus it is possible to be used for differ experts from non-experts.

Quality control is one of the essential problems in crowdsourcing. Workers
may fail to provide correct answers because of their lack of ability or mistakes.
One of the major approaches to cope with this quality problem is to introduce
redundancy, i.e., assigning the same task to different workers and aggregating
them to obtain a reliable answer. Besides the simple aggregation approaches like
majority voting, there have been proposed various more sophisticated proba-
bilistic models such as GLAD [13], DARE [1] and so on.

Because of the existence of the non-experts in the crowds, one of the problems
in the label aggregation is how to differ experts with higher ability from non-
experts with lower ability and strengthen the influences of these experts. Most
of the existing approaches are based on the assumption that workers with high
ability are likely to give correct answers, and correct answers are likely to be
given by workers with high ability. They tend to strengthen the workers who
provide majority answers and regard them with high ability.

In addition to this assumption in existing work, we find that the similarity
among worker labels may be effective on this problem because two experts are
more probable to reach consensus than two non-experts. Figure 1 illustrates a toy
example which can explain the benefits of worker similarity in the answer aggre-
gation. In Fig. 1(a), the items are four-choice questions with candidate labels
{1, 2, 3, 4}. There are 25 items in total. Among the 25 workers, there are four
experts who can always assign the correct label “1” to all of the items. The other
21 workers always provide random labels. Figure 1(b) shows the worker accuracy
distribution in this example. In this example, the accuracy of aggregation results
by the majority voting approach is 0.72.

We find that the similarity of two workers on their labels may be able to differ
experts from non-experts. Figure 1(c) shows the similarity of each pair of workers
in Fig. 1(a) by computing the square of Jaccard similarity of their labels. The
squared similarity of two experts is much higher than that of two non-experts or
that between an expert and a non-expert. If we integrate this squared similarities
between a given worker and all other workers to represent this worker, a weighted
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majority voting approach which assigns high weights to the labels provided the
workers with high integrated squared similarity can achieve 1.0 accuracy. In
other words, the worker similarity information can distinguish the experts from
the non-experts in this toy example. It is possible to be used for strengthening
the opinions of potential experts to generate the aggregated labels which may
have the higher probability to be correct.

In this paper, we propose an approach which implements the above idea by
building a probabilistic model. We use similarity information among answers of
different workers to model the worker abilities. We assume that the workers which
have high similarity with other workers may have high abilities and implement
this notion in the model. The contributions of this paper are as follows.

– We find that worker similarity is effective for differing experts from non-
experts. We propose an approach which incorporates the similarity with a
probabilistic model and has better aggregation results than existing work
including a probabilistic model without incorporating worker similarity.

– We propose a solution to tune the hyperparameter with a perplexity measure
in the unsupervised scenario and tune on a subset to decrease the time cost.

– We make an empirical study on the influence of worker ability, label sparsity
and redundancy to the performance of label aggregation approaches, and
provide a suggestion on the strategy of collecting the labels.

2 Related Work

In the approaches for aggregating multiple labels into a reliable label, majority
voting [10] is a widely used and effective one which assigns equal weights to all
workers. The more sophisticated approaches can be divided into two categories,
i.e., using the auxiliary information or not.

The approaches without using the auxiliary information only leverage the
distributions of answers by different workers on different questions. Some
approaches jointly estimate worker ability and true answer with sophisticated
probabilistic models, such as [2,3,13] and so on. Some other approaches are based
on the Bayesian graphical model [1], belief propagation on bipartite graphical
model [6], minimax Entropy [14] and so on. Our approach can be regarded as
an extension to the probabilistic models like GLAD by incorporating the worker
similarity. We verify that the worker similarity is effective for improve the per-
formance of such models. How to incorporating the worker similarity with other
types of models will be addressed in future work.

Most of these approaches basically strengthen the opinions of the majority
workers in some ways, and do not address the cases where only a few capable
workers (i.e. experts) are available; therefore, they do not work well in such cases
where majority voting fails in most questions. [5] focused on the cases of a few
experts without utilizing auxiliary information by a notion of the hyper question.
Our label aggregation approach can also be extended to an approach integrating
with the hyper question, like the hyper-question based GLAD proposed in [5].
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In addition, there are existing approaches using the auxiliary information
such as worker profile [4] and task description [7]. In contrast, our approach only
uses the worker answers and does not rely on any auxiliary information. It is
practical to assume that the auxiliary information is not available.

3 Our Approach

3.1 Definitions and Notations

We focus on the c-Choice task in crowdsourcing. We define a task assigned to a
worker as an item. We assume there is a set of workers A = {ai}i, a set of items
M = {bj}j , and a set of candidate labels C where |C| = c. For each item, we ask
each worker to select a label from C. Let lij denote the label given by worker ai

to item bj . We denote the set of all labels by L = {lij}, the set of labels given to
bj as L∗j = {lij |ai ∈ A} and the set of labels given by ai as Li∗ = {lij |bj ∈ M}.

Given the worker set A, the item set M, the label set L, our goal is to
estimate the correct label zj for each item bj .

3.2 Probability Model

We model the probability that a label lij is equal to the correct label zj for item
bj using the worker similarity. Our key assumption is that a worker has a higher
probability to give a correct label if the worker has a high ability and if the
worker tends to provide the same answer as other workers with a high ability.
We utilize the similarity between workers to implement this idea.

On one hand, in our assumption, the ability of different workers are diverse
and needs to be contained in our model. We assume that each worker has an
ability parameter τi ≥ 0. The ability of a random worker is equal to 0. The
ability of an expert is a high positive value. We regard a worker who shows
lower accuracy than a random worker on labels as a malicious worker. The true
ability of such worker is actually not lower than a random worker or as good as
an expert (τi ≥ 0).

On the other hand, to utilize the similarity information of two workers, we
assume that a worker with higher integrated similarity with all other workers is
more probable to be an expert and thus has the higher probability to provide
the correct labels. Our probability model is thus as follows.

p(lij = zj |τi) =
1

1 + (c − 1)e−γi
= ξij ,

γi = τiφi, φi = (λ +
∑

i′ �=i

s2ii′τi′), τi ≥ 0,

where sii′ is the similarity between worker ai and worker ai′ , and λ is a hyper
parameter. (c − 1) is used in this model to ensure that when τi = 0, the label lij
is selected randomly, i.e., p(lij = zj |τi = 0) = 1/c. The square on the similarity
measure is to strengthen the influence of workers with high similarity.
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We further assume uniform probability over incorrect answers, namely,

p(lij �= zj |τi) =
1 − p(lij = zj)

c − 1
=

1
eγi + (c − 1)

3.3 Inference

In the probability model, lij is observed variable, and our target is to estimate
the correct labels {zj} as well as worker ability {τi} which are unobserved vari-
ables. We use EM algorithm for the inference process. In the iterations, in the
expectation step, we estimate zj ; in the maximization step, we update τi.

Initialization: We set Gaussian prior with μ = 1 and σ = 1 as the prior of
worker ability τi. The prior probability p(zj) is set to equal to 1/c.

Expectation Step: We compute the posterior probabilities zj based on the
observed labels L and worker ability τ which values are from the initialization
or the last maximization step. We assume that τ is conditional independent with
zj . δij is a Kronecker delta function on lij and zj . The computation is as follows.

p(zj |L, τ ) ∝ p(zj)
∏

i

p(lij |zj , τi).

where p(lij |zj = k, τi) = ξ
δk
ij

ij

(
1 − ξij

c − 1

)(1−δk
ij)

, δk
ij =

{
1, lij = zj = k
0, lij �= zj = k

.

Maximization Step: We set the object function as the joint log-likelihood of
all worker labels L and all correct label Z. It is computed based on the posterior
probability pk

j = p(zj = k|L, τ ) which is the result of previous expectation step.

Q = E[log p(L,Z|α)] = E[log
∏

j

(p(zj)p(L∗j |zj , τ ))]

=
∑

j

∑

k

pk
j log p(zj = k) +

∑

ij

∑

k

pk
j log p(lij |zj = k, τi)

We solve a constrained optimization problem for inferring parameter τ ,

max
τ

Q, subject to τi ≥ 0.

Finally, we use pk
j to estimate the correct label {zj}, z∗

j = arg maxk pk
j .

3.4 Hyperparameter Selection

Since we set our work in the unsupervised scenario, we cannot use the ground
truth to tune the hyperparameters and improve the performance. It is a rational
setting because golden labels are always unknown in real crowdsourcing appli-
cations. Because we simplified the design of our approach, there is only one
hyperparameter which needs to be selected, i.e., the λ in the probability model.
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We propose a measurement named perplexity based on the estimated proba-
bility of candidate labels for an item, which is computed based on the entropy of
a discrete probability distribution and represents how well a probability model
predicts a sample. In details, we define the perplexity on a dataset as follows. It
is the sum of the perplexity on an item. We use the λ which can generate min-
imum perplexityM. Although the hyperparameter with minimum perplexityM
maybe not the best hyperparameter which can generate estimated labels with
the highest accuracy, it can generate good and rational results.

perplexityM =
∑

j

perplexityj =
∑

j

2− ∑
k pk

j log pk
j .

This tuning method computes t times for our approach on the entire dataset
where t is the number of groups of parameters. When the entire dataset is very
large and the number of candidate values of the hyperparameter is not small,
it increases the computation a lot. To decrease the time cost, instead of tuning
the hyperparameter on the entire dataset, our idea is only using a selection
of the data when tuning the hyperparameters. We thus propose a non-expert
filtering solution to select the workers who have the higher probability to have
higher ability than other workers in the datasets. In details, we first utilize the
integrated worker similarity and select a worker subset with top-r similarity, i.e.,
r = 10. After that, we tune the hyperparameter of our approach based on the
subset of labels which are only generated by this worker subset.

3.5 Similarity

In this work, the similarity of workers can be defined by various measures, e.g.,
cosine similarity or normalized mutual similarity, and so on. However, the prob-
lem is that many of them require that any two workers label same items. In
other words, they require that all workers label all items. When the dataset is
large scale, the requirement of labeling all items is not feasible.

In the implementation in this paper, we thus utilize a similarity measure
which does not require that any pair of workers label same items. It is the
Jaccard similarity. The Jaccard similarity between two workers ai and ai′ is
formulated as sii′ = (|Li∗ ∩ Li′∗|)/(|Li∗ ∪ Li′∗|).

4 Experiments

4.1 Experimental Settings

In our approach, for tuning the hyperparameter λ in the probability model, we
set the range of its values in {0.1, 0.2, 0.5, 1, 2}. In the subset of workers with
top-r similarity for hyperparameter tuning, r is set to 10.

We compare our approach with the existing label aggregation approaches
including Majority Voting (MV) [10], GLAD [13] which is based on a probabilis-
tic model by the EM algorithm, and DARE [1] which is based on a Bayesian
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Table 1. Statistics of Datasets. lmr (label matrix ratio) is the ratio of labels in the
worker-item matrix showing the sparsity of labels in the dataset; lpi (label per item)
is the number of workers for each item showing the redundancy of labels for an item.

Dataset #choices #items #workers #labels lmr lpi

wsd [10] 3 177 34 1770 0.294 10.00

popularity [9] 2 500 143 10000 0.140 20.00

temporal [10] 2 462 76 4620 0.132 10.00

rte [10] 2 800 164 8000 0.061 10.00

weather [11] 5 300 110 6000 0.182 20.00

smile [13] 2 159 17 1950 0.721 12.26

duck [12] 2 108 39 4212 1.000 39.0

face [8] 4 584 27 5242 0.332 8.98

graphical model. The reasons that we select these approaches is that they are
well-known and widely-used ones.

The evaluation metric is the accuracy of the aggregated labels. accuracy =
mc/m, where mc is the number of the correct aggregated labels and m is the
number of the items.

We utilize several datasets proposed in existing work on the topic of label
aggregation to verify our approach. We select the datasets with diverse factors
to show the performance of our approach in different cases. Table 1 lists the
statistical factors of these datasets including the number of choices (binary or
multiple), the number of items, the number of workers and the number of labels.

In addition, We also list the information of two factors, i.e., label-matrix-ratio
(lmr) and label-per-item (lpi). label-matrix-ratio (lmr) is the ratio of labels in
the worker-item matrix and represents the sparsity of labels considering the
number of items and workers in the dataset. It is equal to #labels/(#worker ∗
#items). label-per-item (lpi) is the number of workers for each item and shows
the redundancy of labels for an item. Most of these datasets contain a large
number of incomplete labels.

We also show the worker accuracy distribution in Fig. 2. We sort these
datasets based on the mean accuracy of the workers, from high accuracy to low
accuracy. It shows that the mean accuracy for the first four datasets (wsd, pop-
ularity, temporal and rte) is high (>80%) and that for the other four datasets
(weather, smile, duck, and face) is not high (<70%). We can investigate the
performance of our approach in both high and low accuracy cases.

4.2 Experimental Results

Table 2 lists the results on these datasets. First, the bold values represent the
cases that an approach performs best in all approaches for comparisons. It shows
that our approach can perform best in most of these datasets. In all these
approaches, each approach performs best on at least one of the datasets, our
approaches can perform best on more datasets than others.
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Fig. 2. Worker Accuracy Distribution in the Datasets. We sort them based on the mean
accuracy of the workers, from high accuracy to low accuracy. The first four datasets
have relatively higher accuracy and the latter four have relatively lower accuracy.

Table 2. Comparison between our approach and the baselines. Bold values represent
the cases that an approach performs best in all approaches. The underline values rep-
resent the cases that our proposed approach does not perform worse than GLAD.

Dataset MV GLAD DARE Our

wsd 0.9944 0.9944 0.9887 0.9944

popularity 0.9440 0.9460 0.9440 0.9460

temporal 0.9394 0.9351 0.9351 0.9394

rte 0.9187 0.9263 0.9250 0.9275

weather 0.8467 0.8533 0.8567 0.8533

smile 0.7233 0.7610 0.7170 0.7673

duck 0.7593 0.7222 0.7593 0.7685

face 0.6301 0.6284 0.6216 0.6284

Second, on one hand, in the cases that the experts are relatively more or the
accuracy of workers are relatively higher (wsd, popularity, temporal and rte), our
approach can at least perform as well as the best approach in the three baselines.
On the other hand, in some cases that the experts are relatively fewer or the
accuracy of workers are lower (duck and smile), our approach is also possible to
generate best label aggregation results in all these approaches for comparison.

Third, the underline values represent the cases that our approach perform
better than GLAD or as well as it in all datasets, even in the two datasets
(face and weather) that our approach does not perform best in all approaches.
Our approach performs better than GLAD in four of the eight datasets. It thus
illustrates that the worker similarity is effective for differing experts from non-
experts and improving the label aggregation results when incorporating it with
existing probabilistic models like GLAD.
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Fourth, our approach does not perform best on two datasets, i.e., weather
dataset and face dataset. For the weather dataset, because our approach per-
forms same with GLAD, the reason that our approach cannot perform best is the
limitation of such type of probability model on the weather dataset. Incorporat-
ing the worker similarity information into other types of models such as DARE
with Bayesian graphical models is in future work. For the face dataset, all the
advanced approaches (GLAD, DARE, Our approach) perform worse than the
simple majority voting approach. It shows that when the mean worker accuracy
is too low and data quality is too bad, majority voting approach may perform
better than the advanced approaches. Because these advanced approaches try to
strengthen the influences of the incorrect labels from low-ability workers, they
thus generate worse results than majority voting.

In summary, our approach is effective not only for general cases in which
majority of workers have good ability but also for the special cases that only a
few experts are available in the crowd workers. However, if the data quality is
very low and there are no distinct experts in the datasets, our approach cannot
perform well. Other quality control mechanism such as roughly worker selection
should be utilized to avoid the extremely low data quality.

4.3 Sparsity, Redundancy and Worker Accuracy

On one hand, in the results in Table 2, we arrange the datasets following the mean
accuracy of workers which is shown in Fig. 2 based on the order from high to low
mean worker accuracy. It shows that for all these approaches, the performance
generally decrease when the mean worker accuracy decreases. It shows that mean
worker accuracy harm the performance of the label aggregation.

On the other hand, a special case is the duck dataset. It has better results
on three of the four approaches than the smile dataset, though it has lower
mean worker accuracy than the smile dataset. In Table 1, it shows that duck
dataset has much lower label sparsity (much higher lmr, no incomplete labels)
and higher label redundancy on lpi than the smile dataset. It shows that lower
label sparsity and higher label redundancy can improve the performance of the
label aggregation approaches.

Furthermore, although the duck dataset has no unlabeled items and has very
high label redundancy (lpi=39), the accuracy of the label aggregation approaches
still cannot be higher than 0.80. This observation shows that the worker accuracy
is more important than sparsity and redundancy for generating better label
aggregation results. In other words, when using crowdsourcing for collecting
data, because lower sparsity and higher redundancy lead to higher budget cost,
it is better to select potential high ability workers who can provide high-quality
labels rather than assigning the tasks to more workers without taking care of
their ability. The research list in the existing work which are proposed to selecting
high-quality workers can be utilized for this issue.
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5 Conclusion

In this paper, we find that worker similarity is effective for the label aggregation
problem. We propose an approach which can incorporate the similarity with
a probabilistic model and can generate better aggregation results than exist-
ing work. We propose a solution to tune the hyperparameter with a perplexity
measure in the unsupervised scenario. We also provide an empirical discussion
that finding high ability workers is more important than collecting more labels
without taking care of worker ability when in the crowdsourcing applications.

For the future work, We will consider the solution to utilize the similarity
information to extend other type of models such as DARE.

Acknowledgments. This work was partially supported by JSPS KAKENHI Grant
Number 15H01704.
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Abstract. Training deep neural networks on big datasets remains a
computational challenge. It can take hundreds of hours to perform
and requires distributed computing systems to accelerate. Common dis-
tributed data-parallel approaches share a single model across multiple
workers, train on different batches, aggregate gradients, and redistribute
the new model. In this work, we propose NoSync, a particle swarm
optimization inspired alternative where each worker trains a separate
model, and applies pressure forcing models to converge. NoSync explores
a greater portion of the parameter space and provides resilience to over-
fitting. It consistently offers higher accuracy compared to single workers,
offers a linear speedup for smaller clusters, and is orthogonal to existing
data-parallel approaches.
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Distributed systems · Evolutionary algorithm
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1 Introduction

Deep neural networks have shown excellent results on a number of tasks such as
image recognition [8], machine translation [2], question answering [1], and game
playing [16]. In his 2014 keynote on “Large Scale Deep Learning” [4], Jeffrey Dean
makes the point that DNN researchers want the results of experiments quickly,
and that there is a “patience threshold” they are willing to pay. As state-of-the-
art networks require weeks to train with a single GPU on the ImageNet dataset,
many researchers are turning to distributed systems for training. This distributed
training ranges from running a model on a single machine outfitted with multiple
GPUs, to using clusters with thousands of cores, novel architectures, and special
interconnects [19].

Two common approaches for distributing neural networks across multiple
workers are model parallelism and data parallelism. In model parallelism, net-
work layers are split across multiple workers, and workers communicate neu-
ron activations and gradients. In data parallelism, networks are cloned between
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11140, pp. 607–619, 2018.
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workers, workers work on different batches and communicate parameter updates
after every batch. Data parallelism is better suited for convolutional neural net
parallelization, as this approach requires less network bandwidth [12].

Data parallel distributed DNN training approaches are either synchronous or
asynchronous. Synchronous approaches require that all the updates are aggre-
gated before the next training batch can begin. They suffer from low worker
utilization due to locking, and are typically only employed when high network
bandwidth and homogeneous hardware is available [9]. Asynchronous DNN train-
ing aims to fix some of these issues by relaxing the requirement that all workers
must finish their updates before the next batch can begin. This significantly
raises utilization and reduces bandwidth requirements, but introduces staleness
in the system. If left unchecked, the staleness of worker models can range in tens
or even hundreds of iterations [5]. This staleness negatively impacts accuracy,
prompting a number of researchers to attempt to counter this effect [7,13].

We propose an alternative to the conventional data-parallel approaches. Our
intuition stems from the fact that in both synchronous and asynchronous train-
ing, a model is cloned across multiple workers, wasting the majority of worker
memory. We ask whether using that memory to train individual workers may give
us faster convergence, and how would it impact accuracy. We propose NoSync,
a Particle Swarm Optimization (PSO) inspired deep neural network training
algorithm.

We summarize our contributions here:

– We propose a new type of distributed neural network training, which offers
both higher accuracy compared to synchronous and asynchronous data-
parallel approaches, as well as lower bandwidth requirements and good scal-
ability.

– We show that model averaging can work, as long as the models do not diverge
too far, and we provide an insight into the learning happening during NoSync
training.

– We verify the results by training common convolutional networks on simulated
systems, and show that our training has equivalent utilization and bandwidth
requirements as common synchronous approaches.

2 Related Work

Processing neural networks typically involves training, inference, or both (known
as online training). In case of inference, distributing a neural network is trivial, as
each example or batch can be processed independently. In the case of distributed
training, there are two methods of parallelizing neural networks present in liter-
ature: (1) model parallelization [5,12], where different network layers or neurons
are partitioned between machines and all machines work on the same data, and
(2) data parallelization [9,15], where the same network model is present on all
machines, but trains on different data.

Model parallelization splits a model between multiple workers, requiring the
workers to transmit neuron activations for each batch. This approach is efficient
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in the case of fully-connected layers, where models are large and activations are
small, but is very inefficient in the case of convolutional neural networks where
the convolution kernels are small, but activations are large [12].

While model parallelization exploits the fact that neural networks are highly
parallelizable, data parallelization attempts to parallelize the training algorithm,
in this case stochastic gradient descent (SGD). In data parallel distributed DNN
training, multiple workers share the same model, but work on different data.
Typically, we take a batch, split it amongst workers, aggregate the calculated
gradients, and update all the models [5,14,17]. Data parallel approaches can be
further broken down into synchronous and asynchronous. In synchronous data
parallel training, a locking mechanism prevents each of the workers from working
on stale models, requiring that all machines have identical models at all times.
This approach leads to lower utilization, requiring either fast interconnects to
achieve good performance [9], or a higher computation/communication ratio [19].

A simple way of increasing worker utilization is allowing the workers to work
on batches independently of each other. In asynchronous training, each worker
requests the newest model from a parameter server, calculates the gradients on
a batch, and sends them back. These gradients are likely not applied to the same
model the worker was given, but to a newer one updated by other workers, mean-
ing that the applied update is stale. Asynchronous approaches, while faster than
synchronous ones, suffer an accuracy penalty due to this staleness. Several works
have attempted to minimize this loss in accuracy [7,13]. In [7], authors inversely
weigh the updates by their staleness, meaning that staler updates will have less
of an impact on training. While restoring accuracy, this approach does not fully
utilize all the workers, as the slower workers might not contribute to training
at all due to their lower learning rates. In [13], the authors show that staleness
caused by asynchrony can be viewed as just an amount of implicit momentum.
By tuning the momentum parameter, they restore the original accuracy while
still valuing all updates equally.

Recently, several works have pushed the envelope on the minimum time
required to train a network on the ImageNet dataset, ranging from 29 h on 8
NVidia P100 GPUs [8], down to 1 h using 256 P100 GPUs [6], and even 15 min
using 1024 P100’s [18]. All of these approaches use synchronous training and
try to increase the computation to communication ratio, for example by using
batches as large as 32k samples. Similar to our work, but in parallel, the authors
in [20] propose training an individual model on every worker and applying elastic
averaging between workers as means to prevent divergence. This development
serves as further validation of the proposed approach.

3 NoSync Training

Particle Swarm Optimization: Particle Swarm Optimization [10] (PSO) is
a biology-inspired optimization algorithm imitating the movement of flocks of
birds or swarms of insects. It searches for a function extreme by having a popu-
lation of particles, each of which samples the function at a certain position. Each
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particle has a position and velocity, and repeatedly moves in the parameter space
searching for a better extreme. PSO is gradient-insensitive, easy to parallelize,
and is a good global search algorithm.

In PSO, each particle with index j at time t consists of a position xj
t and

velocity vj
t . A particle keeps track of the best position it has encountered during

the search pij
t and the swarm stores the position pg

t of the best solution any
particle has encountered during the search. PSO introduces two metaparameters:
the cognitive parameter c1 and the social parameter c2, along with the random
values r1, r2 ∈ [0, 1] determined at each iteration.

Each iteration, a particle j updates its position and velocity as:

xj
t+1 = xj

t + vj
t

vj
t+1 = vj

t + c1r1(p
ij
t − xj

t ) + c2r2(p
g
t − xj

t )
(1)

From Eq. 1, a particle maintains its speed across iterations, and accelerates
towards the best local and global solution. The goal of the cognitive and social
parameters is to control the amount of ‘pull’ applied towards the best individual
and swarm solution, respectively. Initially, the swarm should give more freedom
to the particles by having a small value of c2. Later in the search, PSO increases
c2, forcing the particles to converge and explore the area around the best
solution.

Particle Swarm Optimization and Gradient Descent: Classic gradient
descent is often prone to overfitting and does not generalize very well. Adding
momentum has been shown to help the search escape local minima and find
good solutions. For some parameters θ, iteration t, a learning rate α, objective
J(θ), and a batch of input-output pairs xi and yi drawn from a dataset, we can
write one update as:

θt+1 = θt − vt

vt+1 = μvt + α∇θJ(θ;xi, yi)
(2)

By observing Eqs. 1 and 2, we notice some similarities: (1) both equa-
tions maintain a position and speed, and (2) in PSO, each particle is pulled
towards the best solution it has encountered (c1r1(p

ij
t − xj

t )), while in gradient
descent, a model calculates and applies the gradient, arriving at a better solution
(α∇θJ(θ;xi, yi)). The third component c2r2(p

g
t − xj

t ) of a PSO velocity update
has no counterpart in gradient descent - it is used to pull the swarm towards the
best solution any particle in the swarm has encountered. Since gradient descent
only trains one solution, there is no global solution for it to be pulled towards.
From this observation, we introduce a new type of neural network training which
trains multiple solutions, and applies a force for them to converge.

Introducing NoSync: In NoSync, for a distributed system of w workers, we
train w models, one on each worker. Each worker is trained with classic stochastic
gradient descent with momentum. After every batch, we gather the n best per-
forming models, and calculate their mean model cm, i.e., their ‘center of mass’.
We then perform pulling - we move each of the w models towards this center of
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mass cm. The amount of pull depends on the distance between the model and
the center of mass, multiplied by the pull coefficient β. With the metaparameter
β set to 0, models will freely diverge. Interpolating two models will typically
produce a model whose accuracy is worse than either of the two. This is because
the error function on the linear path between them is highly nonconvex. There is
no reason to assume that two distant models can gain anything by being interpo-
lated. For that reason, we apply pulling from the very start, forcing the models
not to stray too far. If the models are close enough, we can safely assume that
the error function between them is convex.

Pulling Models: In order to prevent models from diverging, we introduce
‘pulling’ between workers. In a cluster of w workers, each worker i trains its
model W i on a separate batch, and afterwards sends it over the network to the
parameter server. The parameter server computes the average of the models,
and pulls all the workers’ models towards it by a parameter β as:

W i
t+1 = (1 − β)W i

t +
β

w

w∑

k=1

W k
t (3)

Parameter β is chosen so that the models do not diverge to far, but also do not
converge to a single point, rendering the parallelization useless. While there is
no reason to think that combining different trained models results in a network
with comparable accuracy, in Sect. 6 we show that combining or pulling mod-
els from the very start results in higher accuracies than that of single machine
implementations. There exists an obvious connection between the learning rate
α and the pull β: higher learning rates will permit models to diverge further, pos-
sibly breaking the above assumption about interpolating loss, and lower learning
rates will lead to the models converging and not usefully exploring the parameter
space.

In a one-dimensional system, let us assume that there are w particles at
time t have positions pt

i and gradients gt
i drawn from a normal distribution

gt
i = N (0, σ2

g). Each iteration, particle i updates its position as:

pt+1
i = (1 − β)(pt

i + αgt
i) +

β

w

w∑

k=1

pt
k (4)

Assuming that particles are initialized from a normal distribution N (0, σ2
w),

in case when the pull parameter β is β = 0, one can model the position of a
particle as a random walk:

pt
i = p0i +

t∑

t=1

αgt
i

= N (0, σ2
w) + α

t∑

t=1

N (0, σ2
g)

= N (0, σ2
w + tα2σ2

g)

= N (0, tα2σ2
g), σ2

w � tα2σ2
g

(5)
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It follows that two particles m and n at time t will have a distance of:

|pt
m − pt

n| = |N (0, tα2σ2
g) − N (0, tασ2

g)|
= |N (0, 2tα2σ2

g)| (6)

The absolute value of normal value is a half-normal distribution, with the
mean μ = σ

√
2√

π
. Hence, the average distance can be calculated as:

E(|pt
m − pt

n|) =

√
2
√

2tα2σ2
g√

π
=

2
√

tασg√
π

(7)

From Eq. 7 it follows that the average distance between two points grows
with the square of time. To prevent different models from diverging, we apply
the pull coefficient β ∈ [0, 1]. With β �= 0, the Eq. 7 becomes:

pt+1
i = (1 − β)(pt

i + αgt
i) +

β

w

w∑

k=1

pt
k

= (1 − β)(N (0, σ2
pt
i
) + αN (0, σ2

g)) +
β

w

w∑

k=0

N (0, σ2
pt
i
)

= N (0, (1 − β)2(σ2
pt
i
+ α2σ2

g)) + N (0,
β2

w2
wσ2

pt
i
)

= N (0, α2σ2
g(1 − β)2 + σ2

pt
i
((1 − β)2 +

β2

w
))

(8)

ψ = (1 − β)2, ω = (1 − β)2 +
β2

w
(9)

pt+1
i = N (0, ψα2σ2

g + ωσ2
pt
i
) (10)

In order to determine σ2
pt
i
, we monitor pt

i from time-step 0 onwards:

p0i = N (0, ψα2σ2
g)

p1i = N (0, ψα2σ2
g + ωψα2σ2

g)
...

pt
i = N (0, ψα2σ2

g

t∑

k=0

ωk) = N (0, ψα2σ2
g

1 − ωt

1 − ω
)

(11)

The distance of two particles pulled by coefficient β is:

E(|pt
i − pt

j |) = E(|N (0, ψα2σ2
g

1 − ωt

1 − ω
) − N (0, ψα2σ2

g

1 − ωt

1 − ω
)|)

=
2(1 − β)ασg

√
1−ωt

1−ω√
π

(12)
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Therefore, the distance between particles will grow with bigger gradient devi-
ation σg, greater learning rate α, and will decrease with increasing pull β. It is
also worth noting that this distance will approach infinity when β → 0 and
t → inf. Assuming that the number of workers w is large and t → inf, the
distance becomes:

E(|pt
i − pt

j |) =
2(1 − β)ασg√
π
√

2β − β2
(13)

Assuming β � 1, the distance changes into:

E(|pt
i − pt

j |) =
√

2ασg√
π
√

β
(14)

With the coefficient β �= 0, the mean distance from the center of mass will
stabilize, as the random gradients force the particles to diverge irrespective of the
mean distance from the center, while the pull grows linearly with the distance.
By increasing β, one can reduce the size of the swarm, and by decreasing β more
freedom of movement will be given to the particles. This formulation gives the
user the ability to directly control the relative size of the swarm compared with
weight updates. One can make sure that the each particle on average is not more
than n steps from every other particle.

Dropping Models: In classic PSO, each particle is pulled towards a single or
multiple best optima encountered. In the above section, NoSync applies pull to
the ‘center of mass’, for which all particles contribute. We explore the possibility
of calculating the center of mass from only the n best particles, which might
allow the swarm to follow the leaders and faster escape local minima. Given a
set N of the n best models, we rewrite Eq. 3 as:

W i
t+1 = (1 − β)W i

t +
β

n

∑

k∈N

W k
t (15)

An additional benefit of this approach is bandwidth reduction - only the particles
that are in the top n solutions transmit their model every iteration.

4 Exploring Learning in NoSync

Source of the Accuracy Increase: NoSync modifies the original synchronous
training approach in three ways: (1) It does not synchronize models. Each worker
trains a separate model, and periodically sends updates to the parameter server.
(2) Instead of synchronizing models, effectively taking their “center of mass”,
NoSync only pulls them closer. This means that at any point during training,
we have w different models, which allows exploring w points in the parameter
space, instead of just 1. (3) While synchronous data-parallel training integrates
updates from all batches, regardless of how poorly a training model performs,
we only integrate the n best performing models, n ∈ [1, w]. This aggregation
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approach does not mean that low-performing models stop contributing to sub-
sequent training rounds, but rather that their states are disregarded during the
current iteration.

These modifications raise the question: does the accuracy increase stem from
dropping bad gradients, or from training multiple models in parallel? In order
to find the source of the increase in accuracy, we compare several systems:

1. A baseline single worker system;
2. A synchronous model distributed over w workers;
3. 10 models on 10 machines, where after every batch we keep only the last

batch’s best performing model and redistribute it. This is equivalent to setting
n = 1 and β = 1;

4. 10 NoSync trained models, with the n parameter set to 10, i.e., we pull all
workers towards the “center of mass”;

5. 10 NoSync trained models, with the n parameter set to 3.

In Fig. 1, we present the training and test accuracy after 30 epochs of all 5
systems. The three best performing systems are NoSync with n = 10, n = 3, and
n = 1, in that order. Evidently, sharing more models between the workers is ideal
(no drop), but sharing only the best performing model still allows the system
to give a higher accuracy compared to the single-machine and distributed syn-
chronous systems. These results corroborate the fact that accuracy stems from
the number of parallel models rather than model dropping. This fact also high-
lights the trade-off opportunity between accuracy and network communication.
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Single machine training
Ideal synchronous
Drop all but best

No Drop
Drop 2/3

Fig. 1. Training and test accuracy of 5 systems: (green) training with a single worker,
(red) classic synchronous training with 10 workers, (blue) dropping all but one, (cyan)
pulling all 10 models, (orange) pulling top 3, and dropping 7 models. (Color figure
online)

We attribute the accuracy increase to three effects: (1) by training many
models, a greater amount of the loss function is explored and there is a higher
chance that a good solution will be found. (2) NoSync acts as a regularizer, i.e.,
though some models may get stuck in local optima or saddle points, other models
will get the opportunity to pull out the underperforming ones. (3) Similarly as
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in PSO, while individual particles may follow local gradients, the whole swarm
is less sensitive to nonlinearities of the loss function, and shows more stability.

Saddle Points, and Broad Minima: Another way of understanding NoSync
speedup is by observing saddle points during training. In [3], the authors argue
that while saddle points will not prevent gradient descent from finding a good
local minimum, getting trapped in a saddle point will significantly slow down
training. This is due to the fact that, similarly to minima, the gradients in
saddle points approach close to zero. Several approaches try to solve this, either
by cycling the learning rate as a triangular wave, or by periodically resetting
the gradient back to the staring value. NoSync combats this problem by having
multiple particles. With a low enough value of β, the particles will have enough
freedom and some of them will quickly fall off the saddle point. Particles which
fall off will have a larger gradient than that of those trapped in the saddle point,
and will pull the trapped ones out.

Next, we test out the quality of NoSync solutions compared to those acquired
by conventional training. In [11], authors argue that “broader” local minima are
better at generalizing than “narrow” minima. Given a minimum, we would prefer
one that is robust to random changes in the parameters, which equates to it being
broad. We compare the resilience of two networks to random parameter changes,
one network trained with classic stochastic gradient descent, and the other with
NoSync. In Fig. 2, we vary the amount of noise applied to the parameters and
measure the accuracy and loss on the test set. The NoSync models trained with
smaller learning rates (0.01) are more sensitive to perturbations compared with
models with larger learning rates. We attribute this effect to multiple particles
early on clustering on a single minimum, and fine-tuning it instead of exploring
the area. This effect is not present when the learning rate is higher (0.1), as
particles will more easily diverge and populate different solutions.

0 0.2 0.4 0.6 0.8 1
·10−2

20

40

60

80

Applied Gaussian noise variance

A
cc
ur
ac
y
[%

]

Classic training (α = 0.01)
Classic training (α = 0.1)
NoSync training (α = 0.01)
NoSync training (α = 0.1)

Fig. 2. Robustness to noise of networks trained with classic stochastic gradient descent,
and with NoSync. Classic networks are trained for 30 epochs, and NoSync network is
trained with 10 workers for 10 epochs. We vary the learning rate (0.1 and 0.01), and
set the pull as β = 0.1.
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5 System Design

As shown above, the NoSync method converges to higher accuracies compared to
conventional approaches. In this section we propose a distributed training archi-
tecture and explore techniques for reducing network bandwidth and increasing
worker utilization. A typical synchronous data-parallel system uses a number
of workers and either parameter servers [5] or reduction trees [9]. Following the
work in FireCaffe [9] we design a synchronous training system with log2w − 1
reduction tree levels. We pick a synchronous over an asynchronous architecture
in order to simplify training and not have to consider staleness of the system.

In NoSync, each worker computes the forward pass individually and cal-
culates the accuracy on its batch, requiring no network communication. Each
worker then sends its accuracy to a parameter server, which sorts the models
based on their accuracies. The parameter server requests the models of the n
best workers, takes their average, and broadcasts it to all workers on the net-
work. Each worker is tasked with calculating the weighted average of its model
and the broadcasted model, and uses this newly calculated model in the next
batch.

NoSync and Synchronous Training: The NoSync method has the same
performance as the classic synchronous training when we integrate all the models.
NoSync can further reduce traffic by: (1) decreasing the number of integrated
models by dropping the worst performing ones, and (2) introducing stride, i.e.,
pulling models only every n iterations. Furthermore, if one allows some small
staleness, each worker can have full utilization during training.

6 Evaluation

In the case of synchronous data-parallel training, we can prove that if random-
ness is removed, the system will behave exactly as a single machine implemen-
tation. This allows authors to independently monitor speedup and accuracy. In
NoSync, however, our speedup stems from a modified search algorithm, and not a
purely parallelized implementation of backpropagation. This means that we can-
not observe accuracy and speedup in a vacuum, but must measure both together
in order to determine the overall benefit of NoSync. For example, a slower NoSync
implementation may nonetheless overtake an optimized synchronous one, as it
may compute less epochs per second, but have faster convergence per epoch.

NoSync Accuracy: We first focus on whether our search algorithm benefits or
hurts overall accuracy. In Fig. 3, we compare a baseline single machine system,
an ideal w-worker synchronous implementation with a w times larger aggregated
batch size, and several different NoSync configurations with different numbers
of workers. For testing NoSync, we train a conventional 18-layer ResNet18 net-
work [8]. Due to GPU memory constraints, we did not train deeper networks,
as multiple instances of larger networks are unable to fit into the memory of a
single NVidia Titan Xp GPU.
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Fig. 3. Per epoch training and test accuracy of 6 systems: (red) NoSync, w = n = 3,
(orange) NoSync, w = n = 10, (green) NoSync, n = w = 30, (blue) NoSync, n = w =
50, (cyan) Baseline single worker training, (black) Synchronous 10 worker training.
(Color figure online)

NoSync offers a considerably higher accuracy compared to single machine or
synchronous data-parallel approaches. Additionally, we notice that NoSync with
10 workers converges as quickly as the synchronous approach, but additional
workers do not speed up convergence.

Metaparameter Exploration: We report that the choice of metaparame-
ters greatly affects accuracy. In Fig. 4 we compare 3 systems of 10, 30, and 50
machines, and run a grid search on the learning rate α and the pull coefficient β.

Experiments show that the systems with smaller numbers of workers are less
sensitive to the metaparameter settings. The amount of ‘pull’ is normalized for
the number of workers, so it is reasonable that a larger cluster will occupy a
larger portion of space. The larger the cluster is, the higher the chance that the
loss function between each worker and the center of mass will be nonlinear, and
pulling will negatively affect their performance. Therefore, we should increase
the pulling force with the number of particles.

Fig. 4. Test accuracy for 3 different configurations of 10, 30, and 50 machines, training
with learning rates α ∈ {0.003, 0.01, 0.03, 0.1} and pulls β ∈ {0.01, 0.03, 0.1, 0.3}. Each
accuracy reported is the best seen on 20 epochs of training. We use a batch size of 512,
momentum of 0.9.
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Overall Speedup: To measure the overall speedup, we measure the number
of epochs until convergence for different networks, and the time per epoch for
different implementations. In Fig. 5, we compare the time to reach 87% accuracy
for each of the systems. As we can see, adding more than 3 workers does not
significantly speed up convergence.

1 Worker 3 Workers 10 Workers 30 Workers 50 Workers

10

15

20

Fig. 5. Epochs until each system achieves 87% test set accuracy.

7 Conclusion

In this work, we presented an alternative distributed DNN training strategy that
outperforms synchronous distributed training in terms of both accuracy and per-
formance. We analyzed how this approach converges, and showed experimental
results for it. We further proposed a system implementation, and introduced sev-
eral modifications to it like adding stride and staleness. Future work will focus on
providing a strict theoretical backing to the NoSync learning and an architecture
exploration exploiting dropping and striding to reduce network contention.
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Abstract. One of the basic tasks solved using artificial neural networks
is the regression task. In its canonical form, one seeks for adjusting net-
work’s parameters so that its response on input training data fits the
desired outputs reasonably well. Training data {xi, yi}n

i=1, n ∈ N consists
of points from R

d+1 Euclidean space, i.e., xi ∈ R
d, yi ∈ R. The quality

of the fit is typically measured in terms of the mean integrated squared
error (MISE). Various regularization techniques are considered to pre-
vent from overfitting. Optimal setting of parameters can be specified
analytically in the linear model (linear computational units), however,
for the nonlinear units, the network’s parameters are set using different
variants of stochastic optimization [1].

The formulation and solution of the regression task is relatively
straightforward in the realm of probability theory. Training data are
considered being a random sample from the distribution of the random
vector (X , Y ) : (Ω, A) → (Rd+1, B(Rd+1)). It is well known that the opti-
mal MISE estimator of Y given X is the conditional expectation E[Y |X ].
That is, given X = x, the regression function writes E[Y |X = x].

An explicit form of E[Y |X = x] : R
d → R is computed using

the joint density f of the distribution of (X , Y ). Having access to
f(x, y) : Rd → [0, ∞), it is the classical result that the conditional dis-
tribution of Y given X has the density f(y|x) = f(x, y)/f(x) and

E[Y |X = x] =

∫
yf(y|x) dy =

∫
y

f(x, y)

f(x)
dy =

∫
yf(x, y) dy∫
f(x, y) dx

.

Thus the regression function can be at least theoretically computed
in the closed form (of course analytical integration can make problems).
The key to this computation is the joint density f(x, y). Theory of non-
parametric estimation [2] deals with the approximation of f(x, y) on
basis of a random sample {xi, yi}n

i=1 ∼ (X , Y ).
Namely, we work with the nonparametric approximation of

E[Y |X = x] known as the Nadaraya-Watson estimator fNW
n , [2,

Sec. 1.5]. Given the data {xi, yi}n
i=1, the kernel estimate f̂(x, y) =

1/(nhd+1)
∑n

i=1 K((x − xi)/hn) K((y − yi)/hn) of f is constructed for
a suitable function K : R

d+1 → R known as a kernel and a band-
width hn > 0, which depends on the number of data n ∈ N. Approx-
imating capabilities of the kernel are related to its order � ∈ N. The

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11140, pp. 621–623, 2018.
https://doi.org/10.1007/978-3-030-01421-6
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Nadaraya-Watson estimator fNW
n uses f̂ to approximate f and conse-

quently E[Y |X = x] as follows:

fNW
n (x) =

∫
yf̂(x, y) dy∫
f̂(x, y) dx

=

∑n
i=1 yi K((x − xi)/hn)∑n

i=1 K((x − xi)/hn)
.

We presents the idea of using fNW
n to initialize shallow RBF networks

for further training to meet some regularization criterions. The straight-
forward approach to regularization is to limit the number of computation
units. In RBF networks, selecting N � n units, their centers and widths
can be specified on basis is of clustering the training data. Instead of
setting the coefficients of a linear combination in the network using the
training data, we linearly regress with respect to {xk, fNW

n (xk)}N′
k=1,

N ′ ∈ Ns, where {xk}N′
k=1 regularly spans some region of interest, for

example, [mini{x1
i }, maxi{x1

i }] × · · · × [mini{xd
i }, maxi{xd

i }] with xi =
(x1

i , . . . , x
d
i ). The granularity of the span then determines the number of

points N ′. Other schemes for utilizing fNW
n in initializing and learning

RBF networks can be presented.
The main issue discussed is how to deal with convergence of f̂ to f

in dependence on properties of f . The following upper bound applies on
the MISE of the presented kernel density estimate [3, Theorem 3.5]:

E

[∫
Rd+1

(f̂(x, y) − f̂(x, y))2 dxdy

]
≤ C · n

− 2β
2β+d ,

where C is constant w.r.t. n and β ∈ N refers to the Sobolev character
of the density f that relates to its smoothness. To have the bound valid,
it is assumed that the order of kernel K meets β, i.e., that � = β.

Whilst the above upper bound increases with d, it decreases with

β and limβ→∞ n
− 2β

2β+d = n−1 for the dimension d fixed. So, increas-
ing smoothness can in some sense override the curse of dimensionality.
However, the substantial issue here is that the Sobolev character of f
is unknown when working with empirical data, and in consequence one
cannot use some kernel K with the corresponding order � = β to con-
struct fNW

n .
In the contribution, we discuss using the superkernels [2, p. 27] for con-

structing density kernel estimates and fNW
n for RBF networks initializa-

tion. The superkernels are kernels which enjoy simultaneously all orders
� ∈ N. If a superkernel is used to construct f̂ , then the maximal rate
of convergence applies in the upper bound without exact specification
of β, which overcomes the mentioned problem of the unknown Sobolev
character. We discuss the construction of multidimensional superkernels,
a relation to the Fourier transform and results from experiments showing
performance in concrete tasks.

Keywords: Regression task · Nonparametric estimation · Superkernel
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