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Abstract The notion of the exponential of a matrix is usually introduced in elemen-
tary textbooks on ordinary differential equations when solving a constant coefficients
linear system, also providing some of its properties and in particular one that does not
hold unless the involved matrices commute. Several problems arise indeed from this
fundamental issue, and it is our purpose to review some of them in this work, namely:
(i) is it possible to write the product of two exponential matrices as the exponential of
a matrix? (ii) is it possible to “disentangle” the exponential of a sum of twomatrices?
(iii) how to write the solution of a time-dependent linear differential system as the
exponential of a matrix? To address these problems the Baker–Campbell–Hausdorff
series, the Zassenhaus formula and the Magnus expansion are formulated and effi-
ciently computed, paying attention to their convergence. Finally, several applications
are also considered.
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eT =
∞∑

k=0

1

k!T k,

appears in a natural way when solving linear systems of differential equations of the
form

dy

dt
= Ay, y(0) = y0. (1)

Assuming that the linear transformation T on Cn is represented by the n × n matrix
A, then the unique solution of (1) is given by [54]

y(t) = et A y0 =
∞∑

k=0

t k

k! Ak y0.

The n × n matrix et A can be computed in several ways, not all of them feasible from
a numerical point of view [48].

Closely associated with Eq. (1) is the matrix differential equation

dY

dt
= A Y, Y (0) = I, (2)

in the sense that y(t) = Y (t)y0 ∈ C
n is the solution of (1) if and only if Y (t) is the

solution of (2) [22].
The exponential of a matrix satisfies some remarkable properties:

• e0A = I ;
• e(t+s)A = et A es A;
• (et A)−1 = e−t A;
• if A and P are n × n matrices and B = P AP−1, then eB = P eA P−1;
• if A and B commute, i.e., AB = B A, then eA+B = eA eB = eB eA.

It is less well known, however, that the converse of the last property is not true
in general: there are simple examples of matrices A, B such that AB �= B A, but
eA+B = eA eB = eB eA [68, 69].

It turns out that the commutator

[A, B] = AB − B A

plays indeed a fundamental role when analyzing the exponential or a product of
exponentials of matrices, as we will see in the sequel. More specifically, the issues
we will address in this work can be summarized as follows.

• Problem1. Since eA eB �= eA+B in general, one could askwhether some additional
term C exists such that eA eB = eA+B+C and, if the answer is in the affirmative,
howC can be obtained from A and B. This, of course, leads to themuch celebrated
Baker–Campbell–Hausdorff formula.
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• Problem 2. The dual of the previous problem is the following. Is it possible to
get matrices C1, C2, . . . such that eA+B = eA eB eC1 eC2 . . .? Such an expression is
called the Zassenhaus formula.

• Problem 3. Suppose that the coefficient matrix A in the linear differential equation
(2) depends explicitly on time, Y ′ = A(t)Y . As is well known [22], the solution
in that case is

Y (t) = exp

⎛

⎝
t∫

0

A(s)ds

⎞

⎠ only if

⎡

⎣
t∫

0

A(s)ds, A(t)

⎤

⎦ = 0.

The question is: can we still write Y (t) as the exponential of a certain matrixΩ(t),
where

Ω(t) =
t∫

0

A(s)ds + ΔΩ(t)

and the additional term ΔΩ(t) stands for the necessary correction in the general
case? As it turns out, the Magnus expansion (sometimes also called the continuous
analogue of theBaker–Campbell–Hausdorff formula [43]) provides an algorithmic
procedure to solve this problem.

Although these problems have been established in terms of matrices, they can
be generalized to linear operators defined on a certain Hilbert space (this in fact
corresponds to the original formulation of the Magnus expansion [43]) and elements
in a Lie group G and its corresponding Lie algebra g (the tangent space at the
identity of G ). One should recall the fundamental role the exponential mapping
exp : g −→ G plays in this setting: given β(t) ∈ G the one-parameter group solution
of the differential equation

dβ(t)

dt
= Xβ(t), β(0) = e,

where e is the identity of G and X is a smooth left-invariant vector field, the expo-
nential transformation is defined as exp(X) = β(1) [33, 58]. This exponential map
coincides with the usual exponential matrix function if G is a matrix Lie group.
Given the ubiquitous nature of Lie groups and Lie algebras in many fields of sci-
ence (classical and quantum mechanics, statistical mechanics, quantum computing,
control theory, etc.), very often we will consider the general case where no particu-
lar algebraic structure is assumed beyond what is common to all Lie algebras, i.e.,
we will work in a free Lie algebra, especially when addressing Problems 1 and 2
above. For the sake of completeness, we have included an Appendix with some basic
properties of free Lie algebras.

Before starting with our study, let us mention another well known result concern-
ing exponentials of matrices and operators, namely the Lie product formula and the
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Trotter product formula [56, 65]. The former is formulated in terms of matrices A
and B and states that

eA+B = lim
m→∞

(
e

A
m e

B
m

)m
, (3)

whereas the latter establishes that (3) and its proof can indeed be extended to the
case where A and B are unbounded self-adjoint operators and A + B is also self-
adjoint on the common domain of A and B. This important theorem has found many
applications, in particular in the numerical treatment of partial differential equations.

2 The Baker–Campbell–Hausdorff Formula

2.1 General Considerations

Problem 1 can be established in general as follows. Let X and Y be two non com-
muting indeterminates. Then, clearly

eX eY =
∞∑

p,q=0

1

p! q! X p Y q . (4)

When this series is substituted in the formal series defining the logarithm of the
operator Z ,

log Z =
∞∑

k=1

(−1)k−1

k
(Z − I )k,

one gets, after some work,

Z = log(eX eY ) =
∞∑

k=1

(−1)k−1

k

∑ X p1Y q1 . . . X pk Y qk

p1! q1! . . . pk ! qk ! , (5)

where the inner summation extends over all non-negative integers p1, q1, …, pk , qk

for which pi + qi > 0 (i = 1, 2, . . . , k). The first terms in the previous expression
read explicitly

Z = (X + Y + XY + 1

2
X2 + 1

2
Y 2 + · · · ) − 1

2
(XY + Y X + X2 + Y 2 + · · · ) + · · ·

= X + Y + 1

2
(XY − Y X) + · · · = X + Y + 1

2
[X, Y ] + · · ·

Campbell [17], Baker [6] and Hausdorff [34], among others, addressed the question
whether Z in (5) can be represented as a series of nested commutators of X and Y ,
concluding that this is indeed the case, although they were not able either to provide



Computational Aspects of Some Exponential Identities 189

a rigorous proof of this feature or to give an explicit formula (or a method of con-
struction). As Bourbaki states, “each considered that the proofs of his predecessors
were not convincing” [15, p. 425]. It was only in 1947 that Dynkin [24, 25] finally
obtained an explicit formula by considering from the outset a normed Lie algebra.
Specifically, he obtained

Z =
∞∑

k=1

∑

pi ,qi

(−1)k−1

k

[X p1Y q1 . . . X pk Y qk ]
(
∑k

i=1(pi + qi )) p1! q1! . . . pk ! qk !
, (6)

where the inner summation is taken over all non-negative integers p1, q1, . . ., pk , qk

such that p1 + q1 > 0, . . . , pk + qk > 0 and [X p1Y q1 . . . X pk Y qk ] denotes the right
nested commutator based on the word X p1Y q1 . . . X pk Y qk , i.e.,

[XY 2X2Y ] ≡ [XY Y X XY ] ≡ [X, [Y, [Y, [X, [X, Y ]]]]].

Expression (6) is known, for obvious reasons, as the Baker–Campbell–Hausdorff
series in the Dynkin form and the reader is referred to [14] for a detailed account of
the genesis, development and history of this important result.

Gathering together in (6) those terms for which p1 + q1 + · · · + pk + qk = m
one arrives at the following expressions up to m = 5:

m = 1; Z1 = X + Y

m = 2 : Z2 = 1

2
[X, Y ]

m = 3 : Z3 = 1

12
[X, [X, Y ]] − 1

12
[Y, [X, Y ]]

m = 4 : Z4 = − 1

24
[Y, [X, [X, Y ]]]

m = 5 : Z5 = − 1

720
[X, [X, [X, [X, Y ]]]] − 1

120
[X, [Y, [X, [X, Y ]]]]

− 1

360
[X, [Y, [Y, [X, Y ]]]] + 1

360
[Y, [X, [X, [X, Y ]]]]

+ 1

120
[Y, [Y, [X, [X, Y ]]]] + 1

720
[Y, [Y, [Y, [X, Y ]]]].

In general, one has

Z = log(eX eY ) = X + Y +
∞∑

m=2

Zm, (7)

where Zm(X, Y ) is a homogeneous Lie polynomial in X and Y of degree m, i.e.,
a linear combination of commutators of the form [V1, [V2, . . . , [Vm−1, Vm] . . .]]
with Vi ∈ {X, Y } for 1 ≤ i ≤ m, the coefficients being rational constants. This
is the content of the Baker–Campbell–Hausdorff (BCH) theorem, whereas the
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expression eX eY = eZ is called the Baker–Campbell–Hausdorff formula, although
other different labels (e.g., Campbell–Baker–Hausdorff, Baker–Hausdorff,
Campbell–Hausdorff) are also used in the literature [14].

Although (6) solves in principle the mathematical problem addressed in this
section, it is barely useful from a practical point of view, due to its complexity
and the existing redundancies. Notice in particular, that different choices of pi , qi ,
k in (6) may lead to several terms in the same commutator. Thus, for instance,
[X3Y 1] = [X1Y 0X2Y 1] = [X, [X, [X, Y ]]]. An additional source of redundancies
arises from the fact that not all the commutators are independent, due to the Jacobi
identity [66]:

[X1, [X2, X3]] + [X2, [X3, X1]] + [X3, [X1, X2]] = 0, (8)

for any three variables X1, X2, X3. From this perspective, itwould be certainly prefer-
able to have an explicit expression for Z formulated directly in terms of a basis of the
free Lie algebraL (X, Y ) generated by X and Y , or at least a systematic and efficient
procedure to generate the coefficients in such an expression. In this way, different
combinatorial properties of the series, such as the distribution of the coefficients,
etc., could be analyzed in detail.

In addition to the Dynkin form (6) there are other presentations of the BCH
series. In particular, the associative presentation (as a linear combination of words in
X and Y ) is also widely used:

Z = X + Y +
∞∑

m=2

∑

w,|w|=m

gw w. (9)

Here gw are rational coefficients and the inner sum is taken over all words w with
length |w| = m (the length of w is just the number of letters it contains). The values
of gw can be computed with a procedure based on a family of recursively computable
polynomials due to Goldberg [31].

Although the presentation (9) is commutator-free, a direct application of the
Dynkin–Specht–Wever theorem [37] allows one to write it as

Z = X + Y +
∞∑

m=2

1

m

∑

w,|w|=m

gw [w], (10)

i.e., the individual terms are the same as in (9) except that the word w = a1a2 . . . am

is replaced with the right nested commutator [w] ≡ [a1, [a2, . . . [am−1, am] . . .]] and
the coefficient gw is divided by the word length m [62].

The series Z can also be obtained by stating and solving iteratively differential
equations. In particular, for sufficiently small t ∈ R, if we write exp(t X) exp(tY ) =
exp(Z(t)), then Z(t) is an analytic function around t = 0 which verifies [66]
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d Z

dt
= X + Y + 1

2
[X − Y, Z ] +

∞∑

p=1

B2p

(2p)!ad
2p
Z (X + Y ), Z(0) = 0. (11)

in terms of the adjoint operator (90) and the Bernoulli numbers Bk [1]. By writing
Z(t) = ∑∞

n=1 tm Zm(X, Y ), with Z1 = X + Y , one arrives at the following recursion
for Zm :

m Zm = 1

2
[X − Y, Zm−1] +

[(m−1)/2]∑

p=1

B2p

(2p)!
(
ad2p

Z (X + Y )
)

m
, m ≥ 1, (12)

where
(
ad2p

Z (X + Y )
)

m
≡

∑

k1+···+k2p=m−1
k1≥1,...,k2p≥1

[Zk1, [· · · [Zk2p , X + Y ] · · · ]].

Equivalently, if we denote by L (X, Y )m (m ≥ 1) the homogeneous subspace of
L (X, Y ) of degree m (the subspace of all nested commutators involving precisely m

operators X , Y ), then
(
ad2p

Z (X + Y )
)

m
is nothing but the projection of ad2p

Z (X + Y )

onto L (X, Y )m .
Other differential equations can be considered instead. For instance, in [8] the

function Z(t) in exp(Z(t)) = exp(t X) exp(Y ) is shown to verify

d Z

dt
= adZ

eadZ − I
(X) ≡

∞∑

k=0

Bk

k! ad
k
Z X, Z(0) = Y. (13)

Then, it is possible to get the recurrence

Z1(t) = Xt + Y, Zm(t) =
m−1∑

j=1

B j

j !
t∫

0

(ad j
Z X)mds (14)

or alternatively

Zm(t) =
m−1∑

j=1

B j

j !
∑

k1+···+k j =m−1
k1≥1,...,k j ≥1

t∫

0

adZk1 (s)
adZk2 (s)

· · · adZk j (s)
X ds m ≥ 2,

whence the BCH series is recovered by taking t = 1. Any of these procedures allow
one to construct the BCH series up to arbitrary degree in terms of commutators,
but, as in the case of the Dynkin presentation, not all of them are independent due
to the Jacobi identity (and other identities involving nested commutators of higher
degree which are originated by it [53]). Although it is always possible to express the
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resulting formulas in terms of a basis ofL (X, Y )with the help of a symbolic algebra
package, this rewriting process is very expensive both in terms of computational
time and memory resources. As a matter of fact, the complexity of the problem
grows exponentially with m: the number of terms involved in the series grows as
the dimension cm of the homogeneous subspace L (X, Y )m and this number cm =
O(2m/m) according to Witt’s formula (96).

2.2 An Efficient Algorithm for Generating the Series

In reference [20], an optimized algorithm is presented for expressing the BCH series
as

Z = log(exp(X) exp(Y )) =
∑

i≥1

zi Ei , (15)

where zi ∈ Q (i ≥ 1) and {Ei : i = 1, 2, 3, . . .} is a Hall–Viennot basis ofL (X, Y )

(see the Appendix). The elements Ei are of the form

E1 = X, E2 = Y, and Ei = [Ei ′ , Ei ′′ ] i ≥ 3, (16)

for positive integers i ′, i ′′ < i (i = 3, 4, . . .). Each Ei in (16) is a homogeneous Lie
polynomial of degree |i |, where

|1| = |2| = 1, and |i | = |i ′| + |i ′′| for i ≥ 3. (17)

As reviewed in the Appendix, the classical Hall basis and the Lyndon basis are
particular examples of Hall–Viennot bases [57, 67].

The algorithm for generating the BCH series is based on the treatment done
by Murua [50] relating a certain Lie algebra structure g on rooted trees with the
description of a free Lie algebra in terms of a Hall–Viennot basis. Essentially, the
idea is to construct algorithmically a sequence of labeled rooted trees in a one-to-one
correspondence with a Hall–Viennot basis in such a way that each element in the
basis of L (X, Y ) can be characterized in terms of a tree in this sequence.

The procedure can be implemented in a computer algebra system (in particular, in
Mathematica) and gives the BCH series up to a prescribed degree directly in terms of
a Hall-Viennot basis ofL (X, Y ). This allowed the authors of [20] to provide for the
first time the explicit expression of the term of degree 20, Z20, in the series (7). Since
a fully detailed treatment of the algorithm can be found in [20], we only summarize
here its main features.

The starting point is the set T of rooted trees with black and white vertices

T =
{

, , , , , , , , , , . . . , , , , , . . .

}
,
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whose elements are referred to as bicoloured rooted trees. Here and in what follows
all trees grow up.

Next one considers the vector space g of real maps defined on T , α : T → R.
This set can be endowed with a Lie algebra structure by defining the Lie bracket
[α, β] ∈ g of two arbitrary maps α, β ∈ g as follows. For each u ∈ T the action of
the new map [α, β] is given by

[α, β] (u) =
|u|−1∑

j=1

(
α(u( j))β(u( j)) − α(u( j))β(u( j))

)
, (18)

where |u| denotes the number vertices of u, and each of the pairs of trees (u( j), u( j)) ∈
T × T , j = 1, . . . , |u| − 1, is obtained from u by removing one of the |u| − 1 edges
of the rooted tree u, the root of u( j) being the original root of u. Thus, in particular,

[α, β]( ) = α( )β( ) − α( )β( ), [α, β]( ) = 0,

[α, β]( ) = 2
(
α( )β( ) − α( )β( )

)
,

[α, β]( ) = α( )β( ) + α( )β( ) − α( )β( ) − α( )β( ).
(19)

Consider now the maps X, Y ∈ g defined as

X (u) =
{
1 if u =
0 if u ∈ T \{ } , Y (u) =

{
1 if u =
0 if u ∈ T \{ } (20)

and the subalgebra of g generated by them, which we denote byL (X, Y ). It has been
shown thatL (X, Y ) is a free Lie algebra over the set {X, Y } [50].Moreover, for each
particularHall–Viennot basis {Ei : i = 1, 2, 3, . . .} of this free Lie algebraL (X, Y )

one can associate a bicoloured rooted tree ui to each element Ei . For instance, in
Table1 we collect the bicoloured rooted trees ui associated with the elements Ei of
the Hall basis (94), whereas in Table 2 we depict the corresponding to the Lyndon
basis (95). Then, for any map α ∈ L (X, Y ) it is true that

α =
∑

i≥1

α(ui )

σ (ui )
Ei , (21)

were σ(ui ) is a certain positive integer associated to the rooted tree ui (the number
of symmetries of ui , also called the symmetry number of ui ). Again, the value of
σ(ui ) up to i = 5 is collected in Tables1 and 2.

Denoting by αm the projection on the map α ∈ L (X, Y ) onto the homogeneous
subspace L (X, Y )m , then [50]
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Table 1 First elements Ei of the Hall basis (94), their corresponding Hall words wi and bicoloured
rooted trees ui , the values of |i |, i ′, i ′′, σ(ui ), and the coefficients zi = Z(ui )/σ (ui ) in the BCH
series (15)

i |i | i ′ i ′′ wi Ei ui σ(ui ) zi = Z(ui )
σ (ui )

1 1 1 0 x X 1 1

2 1 2 0 y Y 1 1

3 2 2 1 yx [Y, X ] 1 − 1
2

4 3 3 1 yxx [[Y, X ], X ] 2 1
12

5 3 3 2 yxy [[Y, X ], Y ] 1 − 1
12

6 4 4 1 yxxx [[[Y, X ], X ], X ] 6 0

7 4 4 2 yxxy [[[Y, X ], X ], Y ] 2 1
24

8 4 5 2 yxyy [[[Y, X ], Y ], Y ] 2 0

9 5 6 1 yxxxx [[[[Y, X ], X ], X ], X ] 24 − 1
720

10 5 6 2 yxxxy [[[[Y, X ], X ], X ], Y ] 6 − 1
180

11 5 7 2 yxxyy [[[[Y, X ], X ], Y ], Y ] 4 1
180

12 5 8 2 yxyyy [[[[Y, X ], Y ], Y ], Y ] 6 1
720

13 5 4 3 yxxyx [[[Y, X ], X ], [Y, X ]] 2 − 1
120

14 5 5 3 yxyyx [[[Y, X ], Y ], [Y, X ]] 1 − 1
360

αm(u) =
{

α(u) if |u| = m
0 otherwise

(22)

for each u ∈ T . A basis of L (X, Y )m is given by {Ei : |i | = m}.
Consider now the Lie algebra of Lie series, i.e., series of the form

α = α1 + α2 + α3 + · · · , where αm ∈ L (X, Y )m .

A map α ∈ g is then a Lie series if and only if (21) holds. In particular, the BCH
series given by (12) (or (14)) is a Lie series if X and Y are defined as in (20), and so
it can be characterized by an expression of the form (21). Specifically, starting with
(12) one has Z( ) = Z( ) = 1, and for m = 2, 3, 4, . . .

m Z(u) = 1

2
[X − Y, Z ](u) +

[(m−1)/2]∑

p=1

B2p

(2p)!
(
ad2p

Z (X + Y )
)

(u) (23)

for each u ∈ T with m = |u|. Evaluating the corresponding brackets [α, β](u)

according with the prescription (18), one can compute the value of Z(u) for trees
with arbitrarily high number of vertices. For the Hall basis considered in Table1 we
have
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Table 2 First elements Ei of theLyndonbasis, their correspondingLyndonwordswi andbicoloured
rooted trees ui , the values |i |, i ′′, i ′, σ(ui ), and the coefficients zi = Z(ui )/σ (ui ) in the BCH series
(15)

i |i | i ′ i ′′ wi Ei ui σ(ui ) zi = Z(ui )
σ (ui )

1 1 1 0 x X 1 1

2 1 2 0 y Y 1 1

3 2 1 2 xy [X, Y ] 1 1
2

4 3 3 2 xyy [[X, Y ], Y ] 2 1
12

5 3 1 3 xxy [X, [X, Y ]] 1 1
12

6 4 4 2 xyyy [[[X, Y ], Y ], Y ] 6 0

7 4 1 4 xxyy [X, [[X, Y ], Y ]] 2 1
24

8 4 1 5 xxxy [X, [X, [X, Y ]]] 1 0

9 5 6 2 xyyyy [[[[X, Y ], Y ], Y ], Y ] 24 1
720

10 5 5 3 xxyxy [[X, [X, Y ]], [X, Y ]] 2 1
360

11 5 3 4 xyxyy [[X, Y ], [[X, Y ], Y ]] 2 1
120

12 5 1 6 xxyyy [X, [[[X, Y ], Y ], Y ]] 6 1
180

13 5 1 7 xxxyy [X, [X, [[X, Y ], Y ]]] 2 1
180

14 5 1 8 xxxxy [X, [X, [X, [X, Y ]]]] 1 − 1
720

Z =
∑

i≥1

zi Ei =
∑

i≥1

Z(ui )

σ (ui )
Ei

= Z( )X + Z( )Y + Z( )[Y, X ] + Z( )

2
[[Y, X ], X ] + Z( )[[Y, X ], Y ] + · · · ,

where the first coefficients Z(ui ) are given by [20]

Z( ) = Z( ) = 1, Z( ) = −1

2
, Z( ) = 1

6
, Z( ) = − 1

12
.

If one instead works with the Lyndon basis (95) of Table2, then it results in

Z =
∑

i≥1

zi Ei =
∑

i≥1

Z(ui )

σ (ui )
Ei

= Z( )X + Z( )Y + Z( )[X, Y ] + Z( )

2
[[X, Y ], Y ] + Z( )[X, [X, Y ]] + · · · ,

with

Z( ) = 1

2
, Z( ) = 1

6
, Z( ) = 1

12
.
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This process can be carried out for arbitrarily large values ofm in a fully automatic
way once the bicoloured rooted trees corresponding to eachHall–Viennot basis in the
free Lie algebra have been generated up to the prescribed degree. In this respect, the
computational efficiency depends on the particular basis one chooses for L (X, Y )

and the representation used for the BCH series. For instance, in the Hall basis of
Table1 one needs to generate 724018 bicoloured rooted trees up to m = 20, whereas
in the Lyndon basis of Table2 this number raises up to 1952325. In consequence,
more memory and computation time is required in the later case. Nevertheless, in
the Lyndon basis the number of non-vanishing coefficients zi is greatly reduced in
comparison with the Hall basis: 76760 versus 109697 (out of 111013 elements Ei )
up to degree m = 20. In [20] an explanation can be found for this phenomenon. On
the other hand, working with the Lie series defined by (14) is slightly more efficient
in practice.

2.3 The BCH Series of a Given Degree with Respect to Y

The series (6) can in principle be reordered with respect to the increasing number of
times the operator Y appears in the expression. We can then write Z as

Z =
∞∑

n=0

ZY
n ,

where ZY
n is the part of Z which is homogeneous of degree n with respect to Y , i.e.,

ZY
n =

∞∑

k=1

(−1)k−1

k

∑

pi ,qi

[X p1Y q1 . . . X pk Y qk ]
(
∑k

i=1(pi + qi )) p1! q1! . . . pk ! qk !
,

where now q1 + · · · + qk = n in the inner sum. In particular, ZY
0 = X , whereas the

expression of ZY
1 can be found in e.g. [14, 57]. A recursion for the homogeneous

component ZY
n can be obtained as follows.

Let us introduce a parameter ε > 0 and consider the series

Z(ε) = ZY
0 + εZY

1 + ε2ZY
2 + · · · (24)

in exp(Z(ε)) = exp(X) exp(εY ). Then Z(ε) verifies the initial value problem [8]

d Z(ε)

dε
=

∞∑

j=0

(−1) j B j

j ! ad
j
Z (Y ), Z(0) = X. (25)

Notice the close similarity of this equation with (13). It is clear that
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d Z(ε)

dε
=

n∑

j=0

( j + 1)ε j ZY
j+1 + O(εn+1)

and
adZ = adZY

0
+ εadZY

1
+ ε2adZY

2
+ · · · + εnadZY

n
+ O(εn+1).

In consequence,

ad2Z = adZY
0
adZY

0
+ ε(adZY

0
adZY

1
+ adZY

1
adZY

0
) + · · ·

=
n∑

�=0

ε�
∑

k1+k2=�

k1≥0,k2≥0

adZY
k1
adZY

k2
+ O(εn+1)

and in general

ad j
Z =

n∑

�=0

ε�
∑

k1+···+k j =�

k1≥0,...,k j ≥0

adZY
k1
adZY

k2
· · · adZY

k j
+ O(εn+1).

In this way

∞∑

j=0

(−1) j B j

j ! ad
j
Z (Y ) =

Y +
∞∑

j=1

(−1) j B j

j !

⎛

⎜⎜⎝ad j
ZY
0

Y +
n∑

�=1

ε�
∑

k1+···+k j =�

k1≥0,...,k j ≥0

adZY
k1
adZY

k2
· · · adZY

k j
Y + O(εn+1)

⎞

⎟⎟⎠ =

Y +
∞∑

j=1

(−1) j B j

j ! ad
j
ZY
0

Y +
∞∑

j=1

(−1) j B j

j !
n∑

�=1

ε�
∑

k1+···+k j =�

k1≥0,...,k j ≥0

adZY
k1
adZY

k2
· · · adZY

k j
Y + O(εn+1)

Substituting these expressions in (25) and identifying the coefficients of ε� on both
sides we arrive at ZY

0 = X ,

ZY
1 =

∞∑

k=0

(−1)k

k! Bk ad
k
X (Y ) ≡ adX

I − e−adX
(Y ) (26)

and, for n ≥ 1,

(n + 1)ZY
n+1 =

∞∑

j=1

(−1) j B j

j !
∑

k1+···+k j =n
k1≥0,...,k j ≥0

adZY
k1
adZY

k2
· · · adZY

k j
Y. (27)
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This recursion can be written in a more compact form by introducing the operators
S( j)

n , j = 0, 1, 2, . . ., as

S( j)
1 = ad j

ZY
0
Y

S(0)
n = 0, S( j)

n =
n−1∑

�=0

adZY
�

S( j−1)
n−� , n ≥ 2.

(28)

Then we have

ZY
n = 1

n

∞∑

j=1

(−1) j B j

j ! S( j)
n . (29)

By working out this recurrence it is possible in principle to obtain closed expressions
for each homogeneous term ZY

n , although their structure is increasingly complex for
n ≥ 2. In particular, one has

S( j)
2 = adX S( j−1)

2 + adZY
1

S( j−1)
1 =

j−1∑

p=0

adp
X adZY

1
ad j−p−1

X Y, (30)

and the operator adZY
1
in (30) can be evaluated as follows.

First, the Jacobi identity (8) for any three operators A, B, C can be restated in
term of the adjoint operator as

ad[A,B]C = [adA, adB]C

or ad[A,B] = [adA, adB]. In general, it can be shown by induction that

ad[A,[A,...[A,B]]] ≡ adadn
A B = [adA, [adA, . . . [adA, adB]]].

On the other hand, a simple calculation leads to

adn
A B =

n∑

p=0

(−1)p

(
n

p

)
An−p B Ap,

so that

adadn
A B = [adA, [adA, . . . [adA, adB]]] =

n∑

p=0

(−1)p

(
n

p

)
adn−p

A adB adp
A.

Therefore, from (26),

adZY
1

=
∞∑

k=0

(−1)k Bk

k! adadk
X Y =

∞∑

k=0

(−1)k Bk

k!
k∑

j=0

(−1) j

(
k

j

)
adk− j

X adY ad
j
X
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and this expression, once inserted into S( j)
2 , Eq. (30), gives us ZY

2 explicitly. This
procedure was first applied with identical goal in [41].

Of course, these results have a dual version, i.e, it is possible to get analogous
expressions for the homogeneous terms Z X

n of degree n with respect to X [14, 57].

2.4 The Symmetric BCH Formula

In some applications it is required to compute the operator W defined by

exp(
1

2
X) exp(Y ) exp(

1

2
X) = exp(W ). (31)

This is the so-called symmetric BCH formula. Two applications of the usual BCH
formula lead to the expression of W in a given basis of L (X, Y ). More efficient
procedures exist, however, that allow one to construct explicitly the series

∑
n≥1 Wn

defining W in terms of independent commutators involving X and Y up to an arbi-
trarily high degree. These are based on deriving a recurrence for the successive terms
in the Lie series W through a differential equation and expressing it as

W =
∑

i≥1

wi Ei (32)

as in the previous case.
Introducing a parameter t in (31),

W (t) = log(et X/2 eY et X/2), (33)

it can be shown that W (t) satisfies the initial value problem

dW

dt
= X +

∞∑

n=2

Bn

n! ad
n
W X, W (0) = Y. (34)

Inserting here the series W (t) = ∑∞
k=0 Wk(t) we arrive at

W1(t) = Xt + Y

W2(t) = 0 (35)

W�(t) =
�−1∑

j=2

B j

j !
τ∫

0

(ad j
W X)� ds, � ≥ 3.

The Lie series W is recovered by taking t = 1. In general, W2m = 0 for m ≥ 1,
whereas terms W2m+1 up to W19 in bothHall and Lyndon bases have been constructed
in [20]. Specifically, for the first terms in the Lyndon basis one has
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W1 = X + Y

W3 = 1

12
[[X, Y ], Y ] − 1

24
[X, [X, Y ]]

W5 = − 1

720
[[[[X, Y ], Y ], Y ], Y ] + 1

360
[[X, [X, Y ]], [X, Y ]] + 1

120
[[X, Y ], [[X, Y ], Y ]]

+ 1

180
[X, [[[X, Y ], Y ], Y ]] − 7

1440
[X, [X, [[X, Y ], Y ]]] + 7

5760
[X, [X, [X, [X, Y ]]]]

W7 = 1

30240
[[[[[[X, Y ], Y ], Y ], Y ], Y ], Y ] − 1

5040
[[[X, [X, Y ]], [X, Y ]], [X, Y ]]

− 1

1512
[[X, [[[X, Y ], Y ], Y ]], [X, Y ]] + 1

10080
[[X, [[X, Y ], Y ]], [[X, Y ], Y ]]

+ 1

10080
[[X, [X, [X, Y ]]], [X, [X, Y ]]] − 1

5040
[[[X, Y ], Y ], [[[X, Y ], Y ], Y ]]

+ 1

2016
[[X, [X, Y ]], [X, [[X, Y ], Y ]]] − 1

2016
[[X, Y ], [[[[X, Y ], Y ], Y ], Y ]]

+ 1

1260
[[X, Y ], [[X, Y ], [[X, Y ], Y ]]] − 1

5040
[X, [[[[[X, Y ], Y ], Y ], Y ], Y ]]

+ 1

1260
[X, [[X, [[X, Y ], Y ]], [X, Y ]]] + 13

15120
[X, [[X, Y ], [[[X, Y ], Y ], Y ]]]

+ 53

120960
[X, [X, [[[[X, Y ], Y ], Y ], Y ]]] − 1

4032
[X, [X, [[X, [X, Y ]], [X, Y ]]]]

− 1

2240
[X, [X, [[X, Y ], [[X, Y ], Y ]]]] − 13

30240
[X, [X, [X, [[[X, Y ], Y ], Y ]]]]

+ 31

161280
[X, [X, [X, [X, [[X, Y ], Y ]]]]] − 31

967680
[X, [X, [X, [X, [X, [X, Y ]]]]]].

2.5 About the Convergence

The previous results are globally valid in the free Lie algebra L (X, Y ), whereas
if X and Y are elements in a normed Lie algebra then the resulting series are not
guaranteed to converge except in a neighborhood of zero. We next review some
results on the convergence domain of the different presentations and refer the reader
to [8, 14, 20] and references therein for a more detailed treatment.

Assume X, Y ∈ g, where g is a complete normed Lie algebra with a norm such
that ‖XY‖ ≤ ‖X‖ ‖Y‖ for all X , Y , so that

‖[X, Y ]‖ ≤ 2‖X‖ ‖Y‖. (36)

Then, it is shown in [63] that the series (9) is absolutely convergent if ‖X‖ < 1 and
‖Y‖ < 1, whereas the domain of absolute convergence of the Dynkin presentation
(6) contains the open set (X, Y ) such that ‖X‖ + ‖Y‖ < 1

2 log 2 [15, 24, 25].
Much enlarged domains of convergence can be ensured by analyzing the differ-

ential equations (11) and (13). Thus, in [52] it is shown that the series (7) with the
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terms computed by the recursion (12) converges absolutely if ‖X‖ < 0.54343435,
‖Y‖ < 0.54343435, whereas in [8], an analysis of the recurrence (14) leads to the
convergence domain D1 ∪ D2 of g × g, where

D1 =

⎧
⎪⎨

⎪⎩
(X, Y ) : ‖X‖ <

1

2

2π∫

2‖Y‖

1

g(x)
dx

⎫
⎪⎬

⎪⎭

D2 =

⎧
⎪⎨

⎪⎩
(X, Y ) : ‖Y‖ <

1

2

2π∫

2‖X‖

1

g(x)
dx

⎫
⎪⎬

⎪⎭
(37)

and g(x) = 2 + x
2 (1 − cot x

2 ). It is stated in [46] that an analogous resultwas obtained
by Mérigot.

Finally, if Z = log(eXeY ) is expressed as in (24) with ε = 1, i.e., as the sum of
homogeneous components of degree n in Y , then, by analyzing (26) and (27), it
is possible to show that the corresponding series converges absolutely for ‖X‖ <

0.6178, ‖Y‖ < 0.6178 [23].

3 The Zassenhaus Formula

3.1 General Considerations

In reference [43], Magnus cites an unpublished reference by Zassenhaus, reporting
that there exists a formula which may be called the dual of the BCH formula. The
result can be stated as follows, and constitutes in fact the Problem 2 posed in the
Introduction.

Theorem 1 (Zassenhaus formula) The exponential eX+Y , when X, Y ∈ L (X, Y ),
can be uniquely decomposed as

eX+Y = eX eY
∞∏

n=2

eCn(X,Y ) = eX eY eC2(X,Y ) eC3(X,Y ) · · · eCn(X,Y ) · · · , (38)

where Cn(X, Y ) ∈ L (X, Y ) is a homogeneous Lie polynomial in X and Y of degree
n.

That such a result does exist can be seen as a consequence of the BCH formula. In
fact, one finds that e−XeX+Y = eY+D , where D involves Lie polynomials of degree
>1. Then e−Y eY+D = eC2+D̃ , where D̃ involves Lie polynomials of degree >2, etc.
The general result is then achieved by induction.

It is possible to obtain the first terms of the formula (38) just by comparing with
the BCH formula. Specifically,
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C2(X, Y ) = −1

2
[X, Y ], C3(X, Y ) = 1

3
[Y, [X, Y ]] + 1

6
[X, [X, Y ]],

but this process is increasingly difficult for higher values of n.
The Zassenhaus formula has found application in several fields, ranging from

q-analysis in quantum groups [55] to the numerical analysis of the Schrödinger
equation in the semiclassical regime [5], the treatment of hypoelliptic differential
equations [35] and splitting methods [29, 30]. For this reason, several systematic
computations of the terms Cn for n > 3 have been tried, starting with the work of
Wilcox [71], where a recursive procedure is presented that has been subsequently
used to get explicit expressions up to C6 in terms of nested commutators [55]. See
[21] and references therein for some historical background.

As with the BCH formula, the Zassenhaus terms Cn can be expressed either as
a linear combination of elements of the homogeneous subspace L (X, Y )n or as a
linear combination of words in X and Y ,

Cn =
∑

w,|w|=n

gw w, (39)

where gw is a rational coefficient and the sum is taken over all words w with length
|w| = n in the symbols X and Y . In the later case expressions of Cn up to n = 15
have been obtained in [70]. As we know, by applying the Dynkin–Specht–Wever
theorem [37], Cn can also be written in terms of Lie elements of degree n, but the
resulting expression is far from optimal.

For this reason, in [21] a recursive algorithm is designed that allows one to express
the Zassenhaus terms Cn directly as a linear combination of independent elements
of the homogeneous subspace L (X, Y )n . In other words, the procedure gives Cn

up to a prescribed degree directly in terms of the minimum number of independent
commutators involving n operators X and Y . In this way, no rewriting process in
a Hall–Viennot basis of L (X, Y ) is necessary, thus saving considerable computing
time and memory resources. The algorithm can be easily implemented in a symbolic
algebra system without any special requirement, beyond the linearity property of the
commutator.

The following observation is worth remarking. Sometimes one finds the “left-
oriented” Zassenhaus formula

eX+Y = · · · eĈ4(X,Y ) eĈ3(X,Y ) eĈ2(X,Y ) eY eX (40)

instead of (38). Since the respective exponents Ĉi and Ci are related through

Ĉi (X, Y ) = (−1)i+1Ci (X, Y ), i ≥ 2,

any algorithm to generate the terms Ci allows one to get also the corresponding Ĉi .
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3.2 An Efficient Algorithm to Generate the Terms Cn

As usual, a parameter λ > 0 is introduced in (38) multiplying each operator X and
Y ,

eλ(X+Y ) = eλX eλY eλ2C2 eλ3C3 eλ4C4 · · · (41)

so that the original Zassenhaus formula is recovered when λ = 1. One considers then
the products

R1(λ) = e−λY e−λX eλ(X+Y ),

Rn(λ) = e−λnCn · · · e−λ2C2 e−λY e−λX eλ(X+Y ) = e−λnCn Rn−1(λ), n ≥ 2.
(42)

It is clear from (41) that

Rn(λ) = eλn+1Cn+1 eλn+2Cn+2 · · · . (43)

Finally, we introduce

Fn(λ) ≡
(

d

dλ
Rn(λ)

)
Rn(λ)−1, n ≥ 1. (44)

When n = 1, and taking into account the expression of R1(λ) given in (42), we get

F1(λ) = −Y − e−λ Y Xeλ Y + e−λ Y e−λ X (X + Y )eλ Xeλ Y

= −Y − e−λadY X + e−λadY e−λadX (X + Y )

= e−λadY (e−λadX − I )Y,

that is,

F1(λ) =
∞∑

i=0

∞∑

j=1

(−λ)i+ j

i ! j ! adi
Y ad

j
X Y (45)

or equivalently

F1(λ) =
∞∑

k=1

f1,k λk, with f1,k =
k∑

j=1

(−1)k

j !(k − j)!ad
k− j
Y ad j

X Y. (46)

Here we have used the well known formula

eA Be−A = eadA B =
∑

n≥0

1

n!ad
n
A B.
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A similar expression can be obtained for Fn(λ), n ≥ 2, by considering the expression
of Rn(λ) given in (42) and the relation (43). On the one hand, from (42) we get

Fn(λ) = −n Cn λn−1 + e−λnCn

(
d

dλ
Rn−1(λ)

)
Rn−1(λ)−1 eλnCn

= −n Cn λn−1 + e−λnCn Fn−1(λ) eλnCn = −n Cn λn−1 + e−λnadCn Fn−1(λ)

= e−λnadCn (Fn−1(λ) − n Cn λn−1).

(47)

Working out this recursion it is possible to write (n ≥ 2)

Fn(λ) =
∞∑

k=n

fn,k λk, with fn,k =
[k/n]−1∑

j=0

(−1) j

j ! ad j
Cn

fn−1,k−nj , k ≥ n,

(48)
where [k/n] denotes the integer part of k/n.

On the other hand, differentiating (43) with respect to λ and taking into account
(44) we get

Fn(λ) = (n + 1) Cn+1 λn +
∞∑

j=n+2

j λ j−1 eλn+1adCn+1 · · · eλ j−1adC j−1 C j

= (n + 1)Cn+1λ
n + (n + 2)Cn+2λ

n+1 + · · ·
+ (2n + 2)C2n+2λ

2n+1 + λ2n+2[Cn+1, Cn+2] + · · ·

=
2n+2∑

j=n+1

j C j λ j−1 + λ2n+2Hn(λ), n ≥ 1,

(49)

where Hn(λ) involves commutators of C j , j ≥ n + 1.
Notice that the terms C2, C3, . . . of the Zassenhaus formula can be then directly

obtained by comparing (49)with the series expansions (46) and (48) for Fn(λ), n ≥ 1.
Specifically, for the first terms we have

F1(λ) = f1,1λ + f1,2λ
2 + f1,3λ

3 + · · · = 2C2λ + 3C3λ
2 + 4C4λ

3 + H4(λ)λ4

F2(λ) = f2,2λ
2 + f2,3λ

3 + f2,4λ
4 + · · · = 3C3λ

2 + 4C4λ
3 + 5C4λ

4 + · · ·
F3(λ) = f3,3λ

3 + f3,4λ
4 + · · · = 4C4λ

3 + 5C5λ
4 + · · · ,

whence
2C2 = f1,1,

3C3 = f2,2 = f1,2,

4C4 = f3,3 = f2,3 = f1,3,

5C5 = f4,4 = f3,4 = f2,4,
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and so, proceeding by induction, we finally arrive at the following recursive algo-
rithm:

Define f1,k by eq. (46)
C2 = (1/2) f1,1,
Define fn,k n ≥ 2, k ≥ n by eq. (48)
Cn = (1/n) f[(n−1)/2],n−1 n ≥ 3.

(50)

Oneof the remarkable features of this procedure is that the generated exponentsCn are
expressed only in terms of linearly independent elements in the subspaceL (X, Y )n .
This can be shown by repeatedly applying the Lazard elimination principle [21].
As a result, the implementation in a symbolic algebra package is particularly easy,
since one does not need to use the Jacobi identity and/or the antisymmetry property
of the commutator. Moreover, the computation times and especially the memory
requirements are much smaller than other previous procedures (see [21] for more
details). For the sake of illustration, we next collect a Mathematica code of the
preceding algorithm.

Cmt[a_, a_]:= 0;
Cmt[a___, 0, b___]:= 0;
Cmt[a___, c_ + d_, b___]:= Cmt[a, c, b] + Cmt[a, d, b];
Cmt[a___, n_ c_Cmt, b___]:= n Cmt[a, c, b];
Cmt[a___, n_ X, b___]:= n Cmt[a, X, b];
Cmt[a___, n_ Y, b___]:= n Cmt[a, Y, b];
Cmt /: Format[Cmt[a_, b_]]:=

SequenceForm["[", a, ",", b, "]"];

ad[a_, 0, b_]:= b;
ad[a_, j_Integer, b_]:= Cmt[a, ad[a, j-1, b]];
ff[1, k_]:= ff[1, k] =

Sum[((-1)ˆk/(j! (k-j)!)) ad[Y, k-j, ad[X, j, Y]],
{j, 1, k}];

cc[2] = (1/2) ff[1, 1];
ff[p_, k_]:= ff[p, k] =

Sum[((-1)ˆj/j!) ad[cc[p], j, ff[p-1, k - p j]],
{j, 0, IntegerPart[k/p] - 1}];

cc[p_Integer]:= cc[p] =
Expand[(1/p) ff[IntegerPart[(p-1)/2], p-1]];

The first six lines of the code define the commutator. It has attached just the
linearity property (there is no need to attach to it the antisymmetry property and
the Jacobi identity). The seventh line gives the correct format for output. Next, the
symbol ad represents the adjoint operator and its powers ad j

ab, whereas ff[1,k],
ff[p,k] correspond to expressions (46) and (48), respectively. Finally cc[p]
provides the explicit expression of C p. In particular, we get as output



206 F. Casas

C4 = − 1

24
[X, [X, [X, Y ]]] − 1

8
[Y, [X, [X, Y ]]] − 1

8
[Y, [Y, [X, Y ]]]

C5 = 1

120
[X, [X, [X, [X, Y ]]]] + 1

30
[Y, [X, [X, [X, Y ]]]] + 1

20
[Y, [Y, [X, [X, Y ]]]]

+ 1

30
[Y, [Y, [Y, [X, Y ]]]] + 1

20
[[X, Y ], [X, [X, Y ]]] + 1

10
[[X, Y ], [Y, [X, Y ]]].

We stress again that, by construction, all the commutators appearing in Cn are inde-
pendent.

3.3 About the Convergence

Whereas the Zassenhaus formula is well defined in the free Lie algebraL (X, Y ), if
X and Y are elements of a complete normed Lie algebra, it has only a finite radius of
convergence. This issue has also been considered in the literature, typically obtaining
sufficient conditions for convergence of the form ‖X‖ + ‖Y‖ < r for a given r > 0.
In other words, if X , Y are such that ‖X‖ + ‖Y‖ < r , then

lim
n→∞ eX eY eC2 · · · eCn = eX+Y . (51)

Thus, the value r = log 2 − 1
2 ≈ 0.1931 was given in [61] and r = 0.59670569 . . .

in [7].
It turns out that the recursion of the previous section also allows one to improve

the domain of convergence, as shown in [21]. By bounding appropriately the terms
Fn(λ) and also the Cn , i.e, by showing that

‖Fn(λ)‖ ≤ fn(λ), ‖Cn‖ ≤ δn

and analyzing (numerically) the convergenceof the series
∑∞

n=2 δn , it is possible to get
a new convergence domain including, in particular, the region ‖X‖ + ‖Y‖ < 1.054,
and extending to the points (‖X‖, 0) and (0, ‖Y‖)with arbitrarily large value of ‖X‖
or ‖Y‖.

3.4 A Generalization

In certain physical problems one has to deal with the exponential of the infinite series

S(λ) =
∞∑

n=1

λn An = λA1 + λ2 A2 + · · · , (52)
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where Ai are generic non commuting indeterminates andλ > 0.Theproblemconsists
then in factorizing this exponential as

eS(λ) = eλC1 eλ2C2 · · · eλnCn · · · , (53)

i.e., in obtaining a Zassenhaus-like formula adapted to this setting. It turns out that the
algorithm developed in Sect. 3.2 can also be applied here with only minor changes.

As usual, we start by differentiating both sides of Eq. (53) and multiplying the
result by e−S(λ). From the left hand side we have

(
d

dλ
eS(λ)

)
e−S(λ) =

∞∑

k=0

1

(k + 1)!ad
k
S(λ)S

′(λ), (54)

where S′(λ) = ∑∞
i=1 i λi−1Ai . From the right hand side,

d

dλ

(
eλC1eλ2C2 · · · eλnCn · · ·

)
e−S(λ) = C1 +

∞∑

j=2

jλ j−1eadλC1 · · · eadλ j−1C j−1 C j . (55)

Next we express (54) as a power series in λ so that comparison with (55) gives us
recursively the expression of each term Cn . Specifically, if we denote Sk = adk

S S′,
then

Sk =
∞∑

j=k+1

λ j Sk, j , with Sk, j =
j−k∑

�=1

adA�
Sk−1, j−�, k ≥ 2,

whereas

S1, j =
[ j/2]∑

k=1

( j − 2k + 1)adAk A j+k−1.

In this way,

∞∑

k=0

1

(k + 1)!ad
k
S S′ = A1 + 2λA2 +

∞∑

j=2

λ j

(
( j + 1)A j+1 +

j−1∑

�=1

1

(� + 1)! S�, j

)
.

(56)

Now, comparing (55) with (56) it is clear that C1 = A1. Introduce now the functions

h1 = 2A2

hn = (n + 1)An+1 +
n−1∑

�=1

1

(� + 1)! S�,n, n ≥ 2,
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so that ∞∑

k=0

1

(k + 1)!ad
k
S(λ)S

′(λ) − A1 =
∞∑

n=1

λnhn

and

F1 ≡ e−adλC1

∞∑

n=1

λnhn.

Then

F1 =
∞∑

�=1

f1,�λ
� where f1,� ≡

�∑

j=1

(−1)�− j

(� − j)! ad
�− j
A1

h j ,

whence, finally

C2 = 1

2
f1,1.

Carrying out this process for higher values of n, we define recursively the functions

Fn(λ) =
∞∑

k=1

fn,kλ
k, fn,k =

[k/n]−1∑

j=0

(−1) j

j ! ad j
Cn

fn−1,k−nj ,

so that, analogously,

Cn = 1

n
f[ n−1

2 ],n−1, n ≥ 3.

Again, the implementation of this algorithm in a symbolic algebra package is straight-
forward, but now more computation time and memory resources are required if one
aims to get high order terms. This can be clearly seen when considering the number
of terms involved. Whereas in the usual Zassenhaus expansion C16 has 3711 terms,
now there are 22322. The first terms of the expansion read explicitly

C2 = A2

C3 = A3 − 1

2
[A1, A2]

C4 = A4 − 1

2
[A1, A3] + 1

6
[A1, [A1, A2]]

C5 = A5 − 1

2
[A1, A4] + 1

6
[A1, [A1, A3]] − 1

24
[A1, [A1, [A1, A2]]] − 1

2
[A2, A3]

+ 1

3
[A2, [A1, A2]].

A detailed study of this expansion is carried out in [51].
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4 The Magnus Expansion

4.1 The Procedure

As stated in the Introduction, Problem 3 concerns the feasibility of expressing the
fundamental matrix of the linear differential matrix equation

dY

dt
= A(t)Y, Y (0) = I (57)

as an exponential representation. In other words, the problem consists in defining, in
terms of A, an operator Ω(t) such that Y (t) = exp(Ω(t)).

Equation (57) can be solved of course by applying the Neumann (Dyson) iterative
procedure, thus expressing the solution as an infinite series whose first terms are

Y (t) = I +
t∫

0

A(s)ds +
t∫

0

A(s1)

s1∫

0

A(s2)ds2ds1 + · · · .

In general,

Y (t) = I +
∞∑

n=1

Pn(t), where Pn(t) =
t∫

0

ds1 · · ·
sn−1∫

0

dsn A1A2 · · · An (58)

and Ai ≡ A(si ). The series in (58) has the obvious drawback that, when truncated, the
resulting approximation may loose some properties the exact solution has. Suppose,
for instance, that A(t) is skew-Hermitian, as is the case in quantum mechanical
problems. Then the exact solution is unitary, whereas any truncation of the series
(58) is no longer so. As a result, the computation of e.g. transition probabilities may
be problematic.

Motivated by this issue, Magnus proposed in his seminal paper [43] to write the
solution as the exponential

Y (t) = exp(Ω(t)), (59)

where Ω is itself an infinite series,

Ω(t) =
∞∑

m=1

Ωm(t). (60)

In this way, “the partial sums of this series become Hermitian after multiplication by
i if i A is a Hermitian operator” [43].

Starting from (57) and taking into account the derivative of the exponential, one
obtains the differential equation satisfied by Ω , namely
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dΩ

dt
=

∞∑

n=0

Bn

n! ad
n
Ω A, Ω(0) = 0. (61)

Notice that, in contrast with (57), this equation is nonlinear. In any event, by defining

Ω [0] = 0, Ω [1](t) =
t∫

0

A(s1)ds1,

and applying Picard fixed point iteration, one gets

Ω [n](t) =
t∫

0

(
A − 1

2
[Ω [n−1], A] + 1

12
[Ω [n−1], [Ω [n−1], A]] + · · ·

)
ds1

so that limn→∞ Ω [n](t) = Ω(t) in a (presumably small) neighborhood of t = 0.
Inserting the series (60) into (61) it is possible to get the first few terms in closed

form. Specifically,

Ω1(t) =
t∫

0

A(t1) dt1,

Ω2(t) = 1

2

t∫

0

dt1

t1∫

0

dt2 [A(t1), A(t2)]

Ω3(t) = 1

6

t∫

0

dt1

t1∫

0

dt2

t2∫

0

dt3 ([A(t1), [A(t2), A(t3)]] + [A(t3), [A(t2), A(t1)]]).

(62)

Other, more systematic approaches are required to obtain the terms in the series (60)
for any m. Thus, for instance, by using graph theory it is possible to get explicit
formulae for Ωm(t) at all orders, whereas the recursive procedure proposed in [39]
is well suited for computations up to high order. It is given by

S(1)
m = [Ωm−1, A], S( j)

m =
m− j∑

n=1

[Ωn, S( j−1)
m−n ], 2 ≤ j ≤ m − 1

Ω1 =
t∫

0

A(t1)dt1, Ωm =
m−1∑

j=1

B j

j !
t∫

0

S( j)
m (t1)dt1, m ≥ 2. (63)

Working out this recurrence one arrives at the alternative expression
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Ωm(t) =
m−1∑

j=1

B j

j !
∑

k1+···+k j =m−1
k1≥1,...,k j ≥1

t∫

0

adΩk1 (s)
adΩk2 (s)

· · · adΩk j (s)
A(s) ds m ≥ 2.

(64)
Notice that each term Ωm(t) in the Magnus series (60) is a multiple integral of
combinations of m − 1 nested commutators containing m operators A(t). In conse-
quence, as pointed out before, if A is skew-Hermitian, any approximation obtained
by truncating the Magnus series is unitary (as long as the exponential is correctly
evaluated). More generally, if A(t) belongs to some Lie algebra g, then it is clear that
Ω(t) (and in fact any truncation of the Magnus series) also stays in g and therefore
exp(Ω) ∈ G , where G denotes the Lie group whose corresponding Lie algebra is g.

The Magnus expansion shares another appealing property with the exact flow of
(57), namely its time symmetry. Consider with greater generality the problem

dY

dt
= A(t)Y, Y (t0) = Y0. (65)

The flow ϕt : Y (t0) → Y (t) corresponding to (65) is time-symmetric, ϕ−t ◦ ϕt = Id,
since integrating (65) from t0 to any t f ≥ t0 and back to t0 leads to the original
initial value Y (t0) = Y0. On the other hand, the Magnus expansion can be written as
Y (t + h) = exp(Ω(t, h))Y (t), so that time-symmetry implies that

Ω(t + h,−h) = −Ω(t, h). (66)

If A(t) is an analytic function and its Taylor series around t + h/2 is considered,
then Ω(t, h) does not contain even powers of h. More specifically, if

A

(
t + h

2
+ τ

)
= a0 + a1τ + a2τ

2 + · · · with ai = 1

i !
di A(s)

dsi

∣∣∣
s=t+h/2

, (67)

then the terms Ωm in (63) computed at t + h read

Ω1 = ha0 + h3 1

12
a2 + h5 1

80
a4 + O(h7)

Ω2 = h3−1

12
[a0, a1] + h5

(−1

80
[a0, a3] + 1

240
[a1, a2]

)
+ O(h7)

Ω3 = h5
( 1

360
[a0, a0, a2] − 1

240
[a1, a0, a1]

)
+ O(h7)

Ω4 = h5 1

720
[a0, a0, a0, a1] + O(h7),

(68)

whereas Ω5 = O(h7), Ω6 = O(h7) and Ω7 = O(h9). Here we write for clarity
[ai1 , ai2 , . . . , ail−1 , ail ] ≡ [ai1 , [ai2 , [. . . , [ail−1 , ail ] . . .]]]. Notice that, as anticipated,
only odd powers of h appear in Ωk and, in particular, Ω2i+1 = O(h2i+3) for i > 1.
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This feature has shown to be very useful when designing numerical integrators based
on the Magnus expansion [11, 12, 36].

Although one might think of (59) and (60) only as a formal representation of the
solution Y (t) of (57), it has been shown that by imposing certain conditions on the
operator A(t), the exponent Ω(t) is a continuous differentiable function of A(t) and
t verifying (61). Moreover it can be determined by a convergent series (60) whose
terms are computed by applying the recursion (64). Specifically, the following result
is proved in [18].

Theorem 2 Let the equation Y ′ = A(t)Y be defined in a Hilbert space H with
Y (0) = I . Let A(t) be a bounded operator on H . Then, the Magnus series Ω(t) =∑∞

m=1 Ωm(t), with Ωm given by the recursion (63), converges in the interval t ∈
[0, T ) such that

T∫

0

‖A(s)‖ ds < π

and the sum Ω(t) satisfies expΩ(t) = Y (t). The statement also holds when H is
infinite-dimensional if Y is a normal operator (in particular, if Y is unitary).

This theorem, in fact, provides the optimal convergence domain, in the sense that π
is the largest constant for which the result holds without any further restrictions on
the operator A(t). Nevertheless, it is quite easy to construct examples for which the
bound estimate rc = π is still conservative: theMagnus series converges indeed for a
larger time interval than that given by the theorem [18, 47]. Consequently, condition∫ T
0 ‖A(s)‖ds < π is not necessary for the convergence of the expansion.
A more precise characterization of the convergence can be obtained in the case of

n × n complex matrices A(t). Specifically, in [18] the connection between the con-
vergence of theMagnus series and the existence of multiple eigenvalues of the funda-
mental solution Y (t) is analyzed. Let us introduce a new parameter ε ∈ C and denote
by Yt (ε) the fundamental matrix of Y ′ = εA(t)Y . Then, if the analytic matrix func-
tion Yt (ε) has an eigenvalue ρ0(ε0) of multiplicity � > 1 for a certain ε0 such that: (a)
there is a curve in the ε-plane joining ε = 0 with ε = ε0, and (b) the number of equal
terms in log ρ1(ε0), log ρ2(ε0), . . . , log ρ�(ε0) such that ρk(ε0) = ρ0, k = 1, . . . , �
is less than the maximum dimension of the elementary Jordan block corresponding
to ρ0, then the radius of convergence of the series Ωt (ε) ≡ ∑

k≥1 εkΩt,k verifying
expΩt (ε) = Yt (ε) is precisely r = |ε0|. Notice that this obstacle to convergence is
due just to the logarithmic function. If A(t) itself has singularities in the complex
plane, then they also restrict the convergence of the procedure.

Since the 1960s, the Magnus expansion has been extensively applied in mathe-
matical physics, quantum physics and chemistry, control theory, nuclear, atomic and
molecular physics, optics, etc., essentially as a tool to construct explicit analytical
approximations for the corresponding solution. More recently, it has also been used
as the starting point to design new and very efficient numerical integrators for the
initial value problem defined by (65). The idea consists in dividing the time interval
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[t0, t f ] into N subintervals steps and construct an approximation in each subinter-
val [tn−1, tn], n = 1, . . . , N , by truncating appropriately the exponent Ω(tn, h), with
h = tn − tn−1. This is done by analyzing the time-dependency in each termΩm of the
Magnus series (60) and approximating the successive integrals appearing in Ωm by
a single quadrature up to the desired order. The resulting schemes, by construction,
provide numerical approximations lying in the same Lie group G where the differ-
ential equation is defined: in the case of quantum mechanics, if (65) corresponds
to the time-dependent Schrödinger equation, then the numerical solution is unitary
and thus provides transition probabilities in the correct range of values for all times.
Integration methods of this class are particular examples of geometric integrators:
numerical schemes that preserve geometric properties of the continuous system, thus
granting them with an improved qualitative behavior in comparison with general-
purpose algorithms [9, 11, 32, 36].

The Magnus expansion can also be generalized to get useful approximations to
the nonlinear time-dependent differential equation

dY

dt
= A(t, Y )Y, Y (t0) = Y0 (69)

defined in a Lie group G [19]. As in the linear case, the solution is represented by

Y (t) = exp(Ω(t, Y0)Y0, (70)

where Ω satisfies the differential equation

dΩ

dt
=

∞∑

k=0

Bk

k! ad
k
Ω(s) A(s, eΩ(s)Y0)ds, Ω(0) = 0. (71)

We can solve this equation by iteration (Ω [0] = 0), thus giving

Ω [m](t) =
t∫

0

∞∑

k=0

Bk

k! ad
k
Ω [m−1](s) A(s, eΩ [m−1](s)Y0)ds, m ≥ 1.

It is then clear that

Ω [1](t) =
t∫

0

A(s, Y0)ds = Ω(t, Y0) + O(t2), (72)

whereas the truncation

Ω [m](t) =
m−2∑

k=0

Bk

k!
t∫

0

adk
Ω [m−1](s) A(s, eΩ [m−1](s)Y0)ds, m ≥ 2, (73)
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once inserted in (70), provides an explicit approximation Y [m](t) for the solution of
(69) that is correct up to termsO(tm+1) [19]. In addition,Ω [m](t) reproduces exactly
the sum of the first m terms in the Ω series of the usual Magnus expansion for the
linear equation Y ′ = A(t)Y [9].

4.2 The Magnus Expansion and pre-Lie Algebras

A careful analysis of the recursion (63) and (64) for the Magnus expansion shows
that the object

A � A(s) :=
⎡

⎣
t∫

0

A(u)du, A(s)

⎤

⎦ , (74)

involving integration and the commutator operations, allows one to getmore compact
expressions for the successive terms in the series of Ω [26]. Specifically, we may
write

S(1)
2 = [Ω1, A] = A � A, so that Ω ′

2 = −1

2
(A � A).

Analogously,

S(1)
3 = −1

2
(A � A) � A,

⎡

⎣
t∫

0

S(1)
3 , A

⎤

⎦ = −1

2
((A � A) � A) � A,

[Ω1, S(1)
3 ] = −1

2
A � ((A � A) � A)

and thus

Ω ′
3 = −1

2
S(1)
3 + 1

12
[Ω1, S(1)

2 ]

Ω ′
4 = 1

3

⎡

⎣
t∫

0

S(1)
3 , A

⎤

⎦+ 1

6
[Ω1, S(1)

3 ]

Alternatively, we have

Ω2 = −1

2

t∫

0

A � A(s)ds

Ω3 = 1

12

t∫

0

(A � (A � A))(s)ds + 1

4

t∫

0

((A � A) � A)(s)ds
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Ω4 = −1

6

t∫

0

((A � A) � A) � A(s)ds + 1

12

t∫

0

A � ((A � A) � A)(s)ds.

The bilinear operation (74) is a particular example of a pre-Lie product based on the
dendriform products

(A � B)(s) ≡
⎛

⎝
s∫

0

A(u)du

⎞

⎠ B(s), (A ≺ B)(s) ≡ A(s)

⎛

⎝
s∫

0

B(u)du

⎞

⎠ ,

(75)

where A and B are two given matrices. More generally, a left pre-Lie algebra (A , �)

is a vector space A equipped with an operation � subject to the following relation
[44]:

(a � b) � c − a � (b � c) = (b � a) � c − b � (a � c),

whereas a dendriform algebra is a vector space endowed with two bilinear operations
� and ≺ satisfying the following three axioms:

(a ≺ b) ≺ c = a ≺ (b ≺ c + b � c),

(a � b) ≺ c = a � (b ≺ c),

a � (b � c) = (a ≺ b + a � b) � c.

Clearly, a dendriform algebra is at the same time a pre-Lie algebra, since

a � b ≡ a � b − b ≺ a

is a left pre-Lie product. Of course, a right pre-Lie algebra can be defined analogously
[28]. Defining the operator La as Lab = a � b, we can formally express Eq. (61) for
Ω as [28]

dΩ

dt
= LΩ

eLΩ − I
(A) =

∑

n≥0

Bn

n! Ln
Ω(A).

This allows one to generalize the Magnus expansion to pre-Lie and dendriform
algebras, and analyze their purely algebraic and combinatorial features in a more
abstract setting, with applications in other areas, such as Jackson’s q-integral and
linear q-difference equations [27].

4.3 The Magnus Expansion and the BCH Series

The Magnus expansion can also be used to get explicitly the terms of the series Z in

Z = log(eX1 eX2)
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when X1 and X2 are two non commuting indeterminate variables, i.e., we can use it
to construct term by term the Baker–Campbell–Hausdorff series. This can be done
simply by considering the initial value problem (57) with the piecewise constant
matrix-valued function

A(t) =
{

X2 0 ≤ t ≤ 1
X1 1 < t ≤ 2.

(76)

The exact solution at t = 2 is Y (2) = eX1 eX2 . Now we can use the recursion (63) to
compute the exponent Ω(t) at t = 2 so that Y (2) = eΩ(2). In this way we generate
the BCH series in the form (7). Although this procedure does not constitute a better
alternative in practice with respect to the algorithm presented in Sect. 2.2, it does
allow one to get a sharper bound on the convergence domain of the series: by applying
Theorem2 to this case we obtain the following result [20].

Theorem 3 The Baker–Campbell–Hausdorff series in the form (7) converges abso-
lutely when ‖X1‖ + ‖X2‖ < π .

This result can be generalized, of course, to any number of non commuting operators
X1, X2, . . . , Xq . Specifically, the series

Z = log(eX1 eX2 · · · eXq ),

converges absolutely if ‖X1‖ + ‖X2‖ + · · · + ‖Xq‖ < π . This connection allows
one to relate in a natural way the underlying pre-Lie structure of the Magnus expan-
sion with the BCH series and the set of rooted trees used in its derivation.

5 Some Applications

The previous exponential identities have found applications in many different fields
ranging from pure and applied mathematics to physics and physical chemistry. It
is our purpose in this section to review three of them, perhaps not sufficiently well
known: the role of the BCH formula for obtaining splitting and composition meth-
ods for differential equations, a particular form of the so-called Kashiwara–Vergne
conjecture (now a theorem) and the existence of non-trivial identities involving com-
mutators in a free Lie algebra. For a comprehensive list of applications we refer the
reader to e.g. [11, 14, 32] and references therein.

5.1 Splitting Methods

The BCH formula is widely used in the design and analysis of numerical integra-
tion methods for differential equations, specifically to obtain the order conditions in
splitting and composition methods [32, 45]. Let us consider an initial value problem
of the form
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dx

dt
= f (x), x(0) = x0 ∈ R

d (77)

whose vector field can be decomposed as a sum of two contributions, f (x) =
f [1](x) + f [2](x), in such a way that each sub-problem

dx

dt
= f [1](x),

dx

dt
= f [2](x), x(0) = x0 ∈ R

d

can be integrated exactly, with solutions x(h) = ϕ
[1]
h (x0), x(h) = ϕ

[2]
h (x0) at t = h.

Then, by composing these solutions as

χh = ϕ
[2]
h ◦ ϕ

[1]
h (78)

we get a first-order approximation to the exact solution. By introducing suitable (real)
parameters αi it is possible to construct higher-order approximations by means of
the composition method

ψh = χαs h ◦ χαs−1h ◦ · · · ◦ χα1h . (79)

Alternatively, we may consider more maps in (78) with additional parameters. In this
case, one has a splitting method of the form

ψh = ϕ
[2]
bs+1h ◦ ϕ

[1]
as h ◦ ϕ

[2]
bs h ◦ · · · ◦ ϕ

[2]
b2h ◦ ϕ

[1]
a1h ◦ ϕ

[2]
b1h . (80)

In both cases, the coefficients αi , ai , bi have to satisfy a set of conditions guaranteeing
that the resulting schemes are of a prescribed order r in h, i.e.,

ψh(x0) = ϕh(x0) + O(hr+1),

where ϕh(x0) denotes the exact solution of (77) for a time step h. These order con-
ditions are formulated as polynomial equations in the coefficients whose degree and
complexity increase with the order of the method. Constructing particular integrators
requires first obtaining and then solving these order conditions, and is here where
the BCH formula has shown to be an extremely helpful tool [10, 32, 45].

In the following we illustrate how the BCH formula is used to get the order
conditions for splitting methods of the form (80). The important point here is that
we can introduce differential operators and series of differential operators associated
with the vector fields f , f [1], f [2] and the numerical integrator ψh . Specifically, we
can associate with the vector field f in (77) the first-order differential operator (or
Lie derivative)

L f =
d∑

i=1

fi
∂

∂xi
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and the Lie transformation exp(t L f ) in such a way that the exact solution of (77)
can be formally written as

ϕh(x0) =
∑

k≥0

hk

k! (Lk
f Id)(x0) ≡ exp(hL f )[Id](x0), (81)

where Id(x) = x denotes the identity map [32].
Analogously, the Lie derivatives corresponding to f [1] and f [2] read, respectively,

A ≡ L f [1] =
d∑

i=1

f [1]
i (x)

∂

∂xi
, B ≡ L f [2] =

d∑

i=1

f [2]
i (x)

∂

∂xi
,

so that (
ϕ

[2]
bs+1h ◦ ϕ

[1]
as h ◦ ϕ

[2]
bs h ◦ · · · ◦ ϕ

[2]
b2h ◦ ϕ

[1]
a1h ◦ ϕ

[2]
b1h

)
(x0) =

exp(b1h B) exp(a1h A) · · · exp(ash A) exp(bs+1h B)[Id](x0).
(82)

Notice the opposite order of the operators with respect to the maps in (82). Now, by
formally applying the BCH formula in sequence to the series of differential operators

�(h) = exp(b1h B) exp(a1h A) exp(b2h B) · · · exp(bsh B) exp(ash A) exp(bs+1h B)

we end up with

�(h) = exp(F(h)), where F =
∑

n≥1

hn Fn,

so that the integrator (80) is of order r if

F1 = L f = L f [1] + L f [2] = A + B, and Fk = 0 for 2 ≤ k ≤ r.

In more detail [9],

F(h) = h(va A + vb B) + h2vab[A, B] + h3(vaab[A, [A, B]] + vbab[B, [A, B]])
+h4(vaaab[A, [A, [A, B]]] + vbaab[B, [A, [A, B]]] + vbbab[B, [B, [A, B]]])
+O(h5), (83)

where va, vb, vab, vaab, vbab, vaaab, . . . are polynomials in the parameters ai , bi of the
scheme. In particular [10],

va =
s∑

i=1

ai , vb =
s+1∑

i=1

bi , vab = 1

2
vavb −

∑

1≤i≤ j≤s

bi a j , (84)
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2vaab = 1

6
v2avb −

∑

1≤i< j≤k≤s

ai b j ak, 2vbab = −1

6
vav2b +

∑

1≤i≤ j<k≤s+1

bi a j bk,

and the order conditions for the splitting method are obtained by requiring

va = vb = 1, vab = vaab = vbab = · · · = 0

up to the order considered. These are necessary and sufficient conditions to achieve
the desired order as long as F(h) is expressed in terms of a basis in the free Lie
algebra L (A, B) generated by {A, B} (see [10] for more details).

Splitting methods have a long history both in the numerical analysis of ordinary
and partial differential equations (sometimes with different names) and in applica-
tions arising in many different fields: celestial mechanics, chemical physics, molec-
ular dynamics, quantum statistical mechanics, etc, especially in the context of geo-
metric numerical integration [9, 32, 45].

5.2 The Kashiwara–Vergne Conjecture

In the course of their research on the transport of the convolution product by the expo-
nential application for invariant distributions, Kashiwara and Vergne [38] announced
in 1978 the following combinatorial conjecture related with a particular way of
expressing the Baker–Campbell–Hausdorff formula.

Conjecture 1 (Kashiwara–Vergne)Let us denote by Z(X, Y ) = log(eXeY ) the BCH
series. For any Lie algebra g of finite dimension, there exist series F(X, Y ) and
G(X, Y ) on g × g without constant term taking values in g such that they satisfy

X + Y − Z(Y, X) = (1 − e−adX )F(X, Y ) + (eadY − 1)G(X, Y ) (85)

and the trace identity

tr (adX ◦ ∂X F + adY ◦ ∂Y G) = 1

2
tr

(
adX

eadX − 1
+ adY

eadY − 1
− adZ(X,Y )

eadZ(X,Y ) − 1
− 1

)
.

(86)
Here ∂X F, ∂Y G ∈ End(g) are defined by

∂X F(X, Y ) : U �−→ d

dt
F(X + tU, Y )|t=0, ∂Y G(X, Y ) : U �−→ d

dt
G(X, Y + tU )|t=0

and tr denotes the trace of an endomorphism of g.
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Several remarks are in orderwith respect to this statement. First, Eq. (85) is essentially
equivalent to grouping together in the BCH formula all terms that are of the form
[X, . . .], resp. [Y, . . .]. Of course, F and G are not uniquely determined by this
property [16]. The major difficulty of this conjecture lies then in the trace Eq. (86)
[4]. Second, the conjecture establishes the existence of a pair of functions (F, G)

satisfying (85) and (86). It turns out, however, that the pair

(G(−Y,−X), F(−Y,−X)) (87)

also constitutes a solution. In consequence, it is possible to look only for symmetric
solutions, i.e., functions verifying G(X, Y ) = F(−Y,−X).

Kashiwara andVergne proposed a symmetric pair of universal Lie series and show
that, for solvable Lie algebras, they verify the trace Eq. (86). These functions can be
expressed as follows [60].

Let ψ be the function defined by

ψ(z) = ez − 1 − z

(ez − 1)(1 − e−z)
,

and denote Z(t) = Z(t X, tY ), 0 ≤ t ≤ 1. Then the functions

F1(X, Y ) =
⎛

⎝
1∫

0

1 − e−tadX

1 − e−adX
◦ ψ(adZ(t))dt

⎞

⎠ (X + Y ) (88)

and G1(X, Y ) = F1(−Y,−X) verify Eq. (85) by construction. This is also true for
the functions

F0(X, Y ) = 1

2

(
F1(X, Y ) + eadX F1(−X,−Y )

)+ 1

4
(Z(X, Y ) − X)

G0(X, Y ) = F0(−Y,−X) (89)

which, in addition, satisfyEq. (86)when g is solvable [38] and alsowhen g = sl(2,R)

[59].
In 2005 Alekseev and Meinrenken [3] proved the Kashiwara–Vergne combina-

torial conjecture with complete generality by using a deformation of the Baker–
Campbell–Hausdorff series proposed by Torossian [64]. Due, in particular, to prop-
erty (87), there are many solutions to the Kashiwara–Vergne problem. Nevertheless,
it has been shown by means of a computer code that the functions (89) do not satisfy
the Kashiwara–Vergne conjecture in the case of a general Lie algebra [2]. In conse-
quence, this solution is not universal, since it is not valid for all finite dimensional
Lie algebras.
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It is clear that the algorithm proposed in Sect. 2.2 can be applied here to construct
explicitly the Lie series (F0, G0) in terms of X , Y up to high degree. The resulting
expressions may then provide additional information on their structure and validity.

We have constructed a code based on the algorithm developed in Sect. 2.2 for the
BCH series which allows us to generate the series (F0, G0) up to an arbitrary order
in an efficient way. In particular, we reproduce the same results obtained in [2] up to
order 8, verifying in this way that the expressions (89) do not satisfy the Kashiwara–
Vergne conjecture at this order for general Lie algebras. As an illustration, G0 up to
order 6 reads in the Lyndon basis

G0(X, Y ) = − X

4
− 1

24
[X, Y ] + 1

48
[[X, Y ], Y ] − 1

48
[X, [X, Y ]]

+ 1

180
[[[X, Y ], Y ], Y ] − 1

480
[X, [[X, Y ], Y ]] − 1

360
[X, [X, [X, Y ]]]

− 1

2880
[[[[X, Y ], Y ], Y ], Y ] + 1

1440
[[X, [X, Y ]], [X, Y ]] + 1

480
[[X, Y ], [[X, Y ], Y ]]

+ 1

360
[X, [[[X, Y ], Y ], Y ]] − 1

360
[X, [X, [[X, Y ], Y ]]] + 1

2880
[X, [X, [X, [X, Y ]]]]

− 1

5040
[[[[[X, Y ], Y ], Y ], Y ], Y ] + 1

1260
[[X, [[X, Y ], Y ]], [X, Y ]]

+ 1

840
[[X, Y ], [[[X, Y ], Y ], Y ]] + 23

40320
[X, [[[[X, Y ], Y ], Y ], Y ]]

− 1

6720
[X, [[X, [X, Y ]], [X, Y ]]] − 1

6720
[[X, [X, Y ]], [[X, Y ], Y ]]

− 1

6048
[X, [X, [[[X, Y ], Y ], Y ]]] − 13

40320
[X, [X, [X, [[X, Y ], Y ]]]]

+ 1

10080
[X, [X, [X, [X, [X, Y ]]]]].

These series are absolutely convergent in a neighborhood of the origin when a
norm is introduced in g, as shown by Rouvière [60]. As a matter of fact, the domain
of convergence can be enlarged by using the results obtained for the BCH series. For
completeness, we reproduce here Rouvière’s argument.

Since the function ψ is meromorphic in C with poles at ±2kiπ , k = 1, 2, . . ., it
can be expanded in a power series in the disk |z| < 2π . With a norm on g satisfying
Eq. (36), it is clear that with the corresponding norm on End(g) one has ‖adX‖ ≤
2‖X‖. Then the integrand of the function F1 in (88) can be expanded into a power
series of t and the endomorphisms adX , adZ(t) if ‖adX‖ < 2π and ‖adZ(t)‖ < 2π .
These constraints are clearly satisfied when (X, Y ) ∈ D1 ∪ D2 as given by (37), and
thus F1(X, Y ) (and obviously F0(X, Y )) is absolutely convergent in D1 ∪ D2.
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5.3 High Order Identities Involving Commutators

As we mentioned in Sect. 2.2, the BCH series expressed in different bases of the free
Lie algebraL (X, Y ) has a different number of non-vanishing coefficients. In [20] is
shown that in theLyndonbasis this number is sensibly reducedwith respect to theHall
basis (up to degree 20 by about a 30%). An interesting question could be to identify
the particular basis where the number of non-vanishing terms is minimum, i.e., to get
the most compact expression of the form (15). Partial results in this setting are given
in [40, 53], where shortened versions of the BCH series are obtained up to degree 8
and 10, respectively. This is done by considering a right-normed basis in L (X, Y ),
i.e., one that consists of elements of the form [ai1 , [ai2 , [. . . , [ait−1 , ait ] . . .]]], where
ai p are the generators X ,Y . Such a basis exists and can be constructed algorithmically,
as shown in e.g. [13], although the process is by no means straightforward.

In [53], in particular, by comparingdifferent procedures to obtain theBCHformula
and some existing symmetries, several remarkable identities satisfied by right-nested
commutators at high degree were unveiled which, in turn, allowed its author to
identify independent commutators and eventually simplify the series up to order
eight.Recognizing these generalized identities could thus be an essential ingredient to
get more compact expressions for the BCH series and other exponential expansions.

It turns out that the Magnus expansion can also be used for this purpose, as we
next show. If in (67) a1 = 0, ai = 0 for i > 2 and denote a0 = X , a2 = Y , i.e., we
compute the Magnus expansion at t + h with

A(t + h/2 + τ) = X + Y τ 2,

then clearly Ω2k vanishes due to time-symmetry. Thus, when the recursion (63) is
applied, all terms with even powers of h must be identically zero. These terms are
linear combinations of right-nested commutators of the form [ai1 , [ai2 , [. . . , [ail−1 ,

ail ] . . .]]] and give rise to non-trivial identities involving X and Y .
Proceeding in this way we obtain the following three identities arising in Ω6:

(6.1) : 3[Y X XY XY ] + [X XY Y XY ] − 3[XY XY XY ] − [Y Y X X XY ] = 0;
(6.2) : [Y Y XY XY ] + [XY Y Y XY ] − 2[Y XY Y XY ] = 0;
(6.3) : [X X XY XY ] + [Y X X X XY ] − 2[XY X X XY ] = 0,

whereas from Ω8 we obtain four more identities:



Computational Aspects of Some Exponential Identities 223

(8.1) : [X X XY X X XY ] − 3[X XY X X X XY ] + 3[XY X X X X XY ]
− [Y X X X X X XY ] = 0;

(8.2) : [X X X XY Y XY ] − 2[X X XY XY XY ] − 2[X XY Y X X XY ]
+ 8[XY XY X X XY ] − 3[XY Y X X X XY ] − 2[Y X XY X X XY ]
− [Y XY X X X XY ] + [Y Y X X X X XY ] = 0;

(8.3) : − 29838[X X XY Y Y XY ] + 61125[X XY XY Y XY ]
− 4347[XY X XY Y XY ] − 56778[XY XY XY XY ]
− 1449[XY Y Y X X XY ] − 17477[Y X X XY Y XY ]
+ 56778[Y X XY XY XY ] + 23273[Y XY Y X X XY ]
− 61125[Y Y XY X X XY ] + 29838[Y Y Y X X X XY ] = 0

(8.4) : 3[X XY Y Y Y XY ] − 3[XY XY Y Y XY ] − 6[XY Y XY Y XY ]
− 9[Y X XY Y Y XY ] + 24[Y XY XY Y XY ] − 4[Y Y X XY Y XY ]
− 6[Y Y XY XY XY ] + [Y Y Y Y X X XY ] = 0.

Here [X X XY X X XY ] denotes the right-nested commutator [X, [X, [X, [Y, [X,

[X, [X, Y ]]]]]]], etc. Identities involving three operators can be obtained in a similar
way if instead we consider

A(t + h/2 + τ) = X1 + X2τ
2 + X3τ

4

and repeat the procedure.
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Appendix

5.4 Lie Algebras

A Lie algebra is a vector space g together with a map [·, ·] from g × g into g called
Lie bracket, with the following properties:

1. [·, ·] is bilinear.
2. [X, Y ] = −[Y, X ] for all X, Y ∈ g.
3. [X, [Y, Z ]] + [Y, [Z , X ]] + [Z , [X, Y ]] = 0 for all X, Y, Z ∈ g.

Condition 2 is called skew symmetry and Condition 3 is the Jacobi identity. One
should remark that g can be any vector space and that the Lie bracket operation [·, ·]
can be any bilinear, skew-symmetric map that satisfies the Jacobi identity. Thus, in
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particular, the space of all n × n (real or complex) matrices is a Lie algebra with the
Lie bracket defined as the commutator [A, B] = AB − B A.

Associated with any X ∈ g we can define a linear map adX : g −→ g which acts
according to

adX Y = [X, Y ], ad j
X Y = [X, ad j−1

X Y ], ad0X Y = Y, j ∈ N (90)

for all Y ∈ g. The “ad” operator allows one to express nested Lie brackets in an easy
way. Thus, for instance, [X, [X, [X, Y ]]] can be written as ad3X Y . Moreover, as a
consequence of the Jacobi identity, one has the following properties:

1. ad[X,Y ] = adXadY − adY adX = [adX , adY ]
2. adZ [X, Y ] = [X, adZ Y ] + [adZ X, Y ].
For matrix Lie algebras one has the important relation (see e.g. [36])

eX Y e−X = eadX Y =
∞∑

k=0

1

k!ad
k
X Y,

so that
eX eY e−X = eZ , with Z = eadX Y.

The derivative of the matrix exponential map also plays an important role in our
treatment. Given a matrix Ω(t), then [36]

d

dt
exp(Ω(t)) = d expΩ(t)(Ω

′(t)) exp(Ω(t)),

d

dt
exp(Ω(t)) = exp(Ω(t)) d exp−Ω(t)(Ω

′(t)),

where d expΩ(C) is defined by the (everywhere convergent) power series

d expΩ(C) =
∞∑

k=0

1

(k + 1)!ad
k
Ω(C) ≡ eadΩ − I

adΩ

(C).

If the eigenvalues of the linear operator adΩ are different from 2mπ i with m ∈
{±1,±2, . . .} then the operator d expΩ is invertible [11, 36] and

d exp−1
Ω (C) = adΩ

eadΩ − I
(C) =

∞∑

k=0

Bk

k! ad
k
Ω(C),

where Bk are the Bernoulli numbers.



Computational Aspects of Some Exponential Identities 225

5.5 Free Lie Algebras and Hall–Viennot Bases

Very often it is necessary to carry out computations in aLie algebrawhennoparticular
algebraic structure is assumed beyond what is common to all Lie algebras. It is in
this context, in particular, where the notion of free Lie algebra plays a fundamental
role. Given an arbitrary index set I (either finite or countably infinite), we can say
that a Lie algebra g is free over the set I if [49]

1. for every i ∈ I there corresponds an element Xi ∈ g;
2. for any Lie algebra h and any function i �→ Yi ∈ h, there exists a unique Lie

algebra homomorphism π : g → h satisfying π(Xi ) = Yi for all i ∈ I .

If T = {Xi : i ∈ I } ⊂ g, then the algebra g can be viewed as the set of all Lie
brackets of Xi . In this sense, we can say that g is the free Lie algebra generated by
T and we denote g = L (X1, X2, . . .). Elements of L (X1, X2, . . .) are called Lie
polynomials.

It is important to remark that g is a universal object, and that computations in g
can be applied in any particular Lie algebra h via the homomorphism π [49], just by
replacing each abstract element Xi with the corresponding Yi .

In practical calculations, it is useful to represent a free Lie algebra by means
of a basis (in the vector space sense). There are several systematic procedures to
construct such a basis. Here, for simplicity, we will consider the free Lie algebra
generated by just two elements T = {X, Y }, and the so-called Hall–Viennot bases.
A set {Ei : i = 1, 2, 3, . . .} ⊂ L (X, Y ) whose elements are of the form

E1 = X, E2 = Y, and Ei = [Ei ′ , Ei ′′ ] i ≥ 3, (91)

with some positive integers i ′, i ′′ < i (i = 3, 4, . . .) is a Hall–Viennot basis if there
exists a total order relation � in the set of indices {1, 2, 3, . . .} such that i � i ′′ for
all i ≥ 3, and the map

d : {3, 4, . . .} −→ {( j, k) ∈ Z × Z : j � k � j ′′}, (92)

d(i) = (i ′, i ′′) (93)

(with the convention 1′′ = 2′′ = 0) is bijective.
In [57, 67], Hall–Viennot bases are indexed by a subset of words (a Hall set of

words) on the alphabet {x, y}. Such Hall set of words {wi : i ≥ 1} can be obtained
by defining recursively wi as the concatenation wi ′wi ′′ of the words wi ′ and wi ′′ , with
w1 = x andw2 = y. In particular, if themap (92) is constructed in such a way that the
total order relation � is the natural order relation in Z, i.e., >, then the first elements
of the Hall set of words wi associated to the indices i = 1, 2, . . . , 14 are x , y, yx ,
yxx , yxy, yxxx , yxxy, yxyy, yxxxx , yxxxy, yxxyy, yxyyy, yxxyx , yxyyx . In
consequence, the corresponding elements of the basis inL (X, Y ) are
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X, Y, [Y, X ], [[Y, X ], X ], [[Y, X ], Y ], [[[Y, X ], X ], X ], [[[Y, X ], X ], Y ], [[[Y, X ], Y ], Y ],
[[[[Y, X ], X ], X ], X ], [[[[Y, X ], X ], X ], Y ], [[[[Y, X ], X ], Y ], Y ], [[[[Y, X ], Y ], Y ], Y ],
[[[Y, X ], X ], [Y, X ]], [[[Y, X ], Y ], [Y, X ]].

(94)

Notice that if the total order is chosen as < instead, it results in the classical Hall
basis as presented in [15].

On the other hand, the Lyndon basis can be constructed as a Hall–Viennot basis
by considering the order relation� as follows: i � j if, in lexicographical order (i.e.,
the order used when ordering words in the dictionary), the Hall word wi associated
to i comes before than the Hall word w j associated to j . The Hall set of words
{wi : i ≥ 1} corresponding to the Lyndon basis is the set of Lyndon words, which
can be defined as the set of wordsw on the alphabet {x, y} satisfying that, for arbitrary
decompositions of w as the concatenation w = uv of two non-empty words u and v,
the word w is smaller than v in lexicographical order [42, 67]. The Lyndon words for
i = 1, 2, . . . , 14 are x , y, xy, xyy, xxy, xyyy, xxyy, xxxy, xyyyy, xxyxy, xyxyy,
xxyyy, xxxyy, xxxxy and the corresponding (Lyndon) basis inL (X, Y ) is formed
by

X, Y, [X, Y ], [[X, Y ], Y ], [X, [X, Y ]], [[[X, Y ], Y ], Y ], [X, [[X, Y ], Y ]], [X, [X, [X, Y ]]],
[[[[X, Y ], Y ], Y ], Y ], [[X, [X, Y ]], [X, Y ]], [[X, Y ], [[X, Y ], Y ]], [X, [[[X, Y ], Y ], Y ]],
[X, [X, [[X, Y ], Y ]]], [X, [X, [X, [X, Y ]]]].

(95)

It is possible to compute the dimension cn of the linear subspace in the freeLie algebra
generated by all the independent Lie brackets of order n, denoted byLn(X, Y ). This
number is provided by the so-called Witt’s formula [15, 45]:

cn = 1

n

∑

d|n
μ(d)2n/d , (96)

where the sum is over all (positive) divisors d of the degree n andμ(d) is the Möbius
function, defined by the ruleμ(1) = 1,μ(d) = (−1)k if d is the product of k distinct
prime factors and μ(d) = 0 otherwise [45]. For n ≤ 12 one has explicitly

n 1 2 3 4 5 6 7 8 9 10 11 12
cn 1 1 2 3 6 9 18 30 56 99 186 335
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