# Lie-Butcher Series, Geometry, Algebra and Computation



Hans Z. Munthe-Kaas and Kristoffer K. Føllesdal

Abstract Lie-Butcher (LB) series are formal power series expressed in terms of trees and forests. On the geometric side LB-series generalizes classical B-series from Euclidean spaces to Lie groups and homogeneous manifolds. On the algebraic side, B-series are based on pre-Lie algebras and the Butcher-Connes-Kreimer Hopf algebra. The LB-series are instead based on post-Lie algebras and their enveloping algebras. Over the last decade the algebraic theory of LB-series has matured. The purpose of this paper is twofold. First, we aim at presenting the algebraic structures underlying LB series in a concise and self contained manner. Secondly, we review a number of algebraic operations on LB-series found in the literature, and reformulate these as recursive formulae. This is part of an ongoing effort to create an extensive software library for computations in LB-series and B-series in the programming language Haskell.

**Keywords** B-series · Lie–Butcher series · Post-Lie algebra · Pre-Lie algebra

MSC 16T05 · 17B99 · 17D99 · 65D30

#### 1 Introduction

Classical B-series are formal power series expressed in terms of rooted trees (connected graphs without any cycle and a designated node called the root). The theory has its origins back to the work of Arthur Cayley [5] in the 1850s, where he realized

H. Z. Munthe-Kaas (⋈) · K. K. Føllesdal

Department of Mathematics, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway

e-mail: hans.munthe-kaas@uib.no

K. K. Føllesdal

e-mail: kristoffer.follesdal@uib.no

that trees could be used to encode information about differential operators. Being forgotten for a century, the theory was revived through the efforts of understanding numerical integration algorithms by John Butcher in the 1960s and '70s [2, 3]. Ernst Hairer and Gerhard Wanner [14] coined the term *B-series* for an infinite formal series of the form

$$B_f(\alpha, y, t) := y + \sum_{\tau \in T} \frac{t^{|\tau|}}{\sigma(\tau)} \langle \alpha, \tau \rangle \mathscr{F}_f(\tau)(y),$$

During the 1980s and 1990s B-series evolved into an indispensable tool in analysis of numerical integration for differential equations evolving on  $\mathbb{R}^n$ . In the mid-1990s interest rose in the construction of numerical integration on Lie groups and manifolds [15, 17], and from this a need to interpret B-series type expansions in a differential geometric context, giving birth to *Lie-Butcher series* (LB-series), which combines B-series with Lie series on manifolds. It is necessary to make some modifications to the definition of the series to be interpreted geometrically on manifolds:

- We cannot add a point and a tangent vector as in  $y + \mathscr{F}_f(\tau)$ . Furthermore, it turns out to be very useful to regard the series as a Taylor-type series for the mapping  $f \mapsto B_f$ , rather than a series development of a curve  $t \mapsto B_f(a, y, t)$ . The target space of  $f \mapsto B_f$  is differential operators, and we can remove explicit reference to the base point y from the series.
- The mapping  $f \mapsto B_f$  inputs a vector field and outputs a series which may represent either a vector field or a solution operator (flow map). Flow maps are expressed as a series in higher order differential operators. We will see that trees encode first order differential operators. Higher order differential operators are encoded by products of trees, called *forests*. We want to also consider series in linear combinations of forests.
- We will in the sequel see that the elementary differential map τ → F<sub>f</sub>(τ) is a
   universal arrow in a particular type of algebras. The existence of such a uniquely
   defined map expresses the fact that the vector space spanned by trees (with certain

algebraic operations) is a universal object in this category of algebras. Thus the trees encode faithfully the given algebraic structure. We will see that the algebra comes naturally from the geometric properties of a given *connection* (covariant derivation) on the manifold. For Lie groups the algebra of the natural connection is encoded by *ordered* rooted trees, where the ordering of the branches is important. The ordering is related to a non-vanishing torsion of the connection.

- The symmetry factor  $\sigma(\tau)$  in the classical B-series is related to the fact that several different ordered trees correspond to the same unordered tree. This factor is absent in the Lie–Butcher series.
- The time parameter t is not essential for the algebraic properties of the series. Since  $\mathscr{F}_{tf}(\tau) = t^{|\tau|} \mathscr{F}_f(\tau)$ , we can recover the time factor through the substitution  $f \mapsto tf$ .

We arrive at the definition of an abstract Lie-Butcher series simply as

$$\sum_{\omega \in \text{OF}} \langle \alpha, \omega \rangle \omega, \tag{1}$$

where

$$\mathrm{OF} = \{\mathbb{I}, \bullet, \bullet, I, I, I, V, I, \dots, V, V, \dots\}$$

denotes the set of all ordered forests of ordered trees,  $\mathbb{I}$  is the empty forest, and  $\alpha \colon \mathrm{OF} \to \mathbb{R}$  are the coefficients of the series. This abstract series can be mapped down to a concrete algebra (e.g. an algebra of differential operators on a manifold) by a universal mapping  $\omega \mapsto \mathscr{F}_f(\omega)$ .

We can identify the function  $\alpha \colon \mathrm{OF} \to \mathbb{R}$  with its series (1) and say that a Lie–Butcher series  $\alpha$  is an element of the completion of the free vector space spanned by the forests of ordered rooted trees. However, to make sense of this statement, we have to attach algebraic and geometric meaning to the vector space of ordered forests. This is precisely explained in the sequel, where we see that the fundamental algebraic structures of this space arise because it is the universal enveloping algebra of a free post-Lie algebra. Hence we arrive at the precise definition:

An abstract Lie–Butcher series is an element of the completion of the enveloping algebra of the free post-Lie algebra.

We will in this paper present the basic geometric and algebraic structures behind LB-series in a self contained manner. Furthermore, an important goal for this work is to prepare a software package for computations on these structures. For this purpose we have chosen to present all the algebraic operations by recursive formulae, ideally suited for implementation in a functional programming language. We are in the process of implementing this package in the Haskell programming language. The implementation is still at a quite early stage, so a detailed presentation of the implementation will be reported later.

### 2 Geometry of Lie-Butcher Series

B-series and LB-series can both be viewed as series expansions in a connection on a fibre bundle, where B-series are derived from the canonical (flat and torsion free) connection on  $\mathbb{R}^n$  and LB-series from a flat connection with constant torsion on a fibre bundle. Rather than pursuing this idea in an abstract general form, we will provide insight through the discussion of concrete and important examples.

### 2.1 Parallel Transport

Let M be a manifold,  $\mathscr{F}(M)$  the set of smooth  $\mathbb{R}$ -valued scalar functions and  $\mathfrak{X}(M)$  the set of real vector fields on M. For  $t \in \mathbb{R}$  and  $f \in \mathfrak{X}(M)$  let  $\Psi_{t,f} \colon M \to M$  denote the solution operator such that the differential equation  $\gamma'(t) = f(\gamma(t))$ ,  $\gamma(0) = p \in M$  has solution  $\gamma(t) = \Psi_{t,f}(p)$ . For  $\phi \in \mathscr{F}(M)$  we define *pullback along the flow*  $\Psi_{t,f}^* \colon \mathscr{F}(M) \to \mathscr{F}(M)$  as

$$\Psi_{t,f}^*\phi=\phi\circ\Psi_{t,f}.$$

The directional derivative  $f(\phi) \in \mathcal{F}(M)$  is defined as

$$f(\phi) = \left. \frac{d}{dt} \right|_{t=0} \Psi_{t,f}^* \phi.$$

Through this, we identify  $\mathfrak{X}(M)$  with the first order derivations of  $\mathscr{F}(M)$ , and we obtain higher order derivations by iterating, i.e. f\*f is the second order derivation  $f*f(\phi) := f(f(\phi))$ . With  $\mathbb{I}\phi = \phi$  being the 0-order identity operator, the set of all higher order differential operators on  $\mathscr{F}(M)$  is called the *universal enveloping algebra*  $U(\mathfrak{X}(M))$ . This is an algebra with an associative product \*. The pullback satisfies

$$\frac{d}{dt}\Psi_{t,f}^*\phi = \Psi_{t,f}^*f(\phi).$$

By iteration we find that  $\frac{d^n}{dt^n}\Big|_{t=0} \Psi^*_{t,f} \phi = f(f(\cdots f(\phi))) = f^{*n}(\phi)$  and hence the Taylor expansion of the pullback is

$$\Psi_{t,f}^* \phi = \phi + t f(\phi) + \frac{t^2}{2!} f * f(\phi) + \dots = \exp^*(tf)(\phi),$$
 (2)

where we define the exponential as

$$\exp^*(tf) := \sum_{j=0}^{\infty} \frac{t^j}{j!} f^{*j}.$$

This exponential is an element of  $U(\mathfrak{X}(M))$ , or more correctly, since it is an infinite series, in the completion of this algebra. We can recover the flow  $\Psi_{t,f}$  from  $\exp^*(tf)$  by letting  $\phi$  be the coordinate maps. However, some caution must be exercised, since pullbacks compose contravariantly  $(\Psi_{t,f} \circ \Psi_{s,g})^* = \Psi_{s,g}^* \circ \Psi_{t,f}^*$ , we have that  $\exp^*(sg) * \exp^*(tf)$  corresponds to the diffeomorphism  $\Psi_{t,f} \circ \Psi_{s,g}$ .

Numerical integrators are constructed by sampling a vector field in points near a base point. To understand this process, we need to transport vector fields. Pullback of vector fields is, however, less canonical than of scalar functions. The differential geometric concept of parallel transport of vectors is defined in terms of a *connection*. An affine connection is a  $\mathbb{Z}$ -bilinear mapping  $\triangleright : \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$  such that

$$(\phi f) \triangleright g = \phi(f \triangleright g)$$
$$f \triangleright (\phi g) = f(\phi)g + \phi(f \triangleright g)$$

for all  $f,g\in\mathfrak{X}(M)$  and  $\phi\in\mathscr{F}(M)$ . Note that the standard notation for a connection in differential geometry is is  $\nabla_f g\equiv f\rhd g$ . Our notation is chosen to emphasise the operation as a binary product on the set of vector fields. The triangle notation looks nicer when we iterate, such as in (3) below. Furthermore, the triangle notation is also standard in much of the algebraic literature on pre-Lie algebras, as well as in several recent works on post-Lie algebras.

There is an intimate relationship between connections and the concept of parallel transport. For a curve  $\gamma(t) \in M$ , let  $\Gamma(\gamma)_s^t$  denote parallel transport along  $\gamma(t)$ , meaning that

- $\Gamma(\gamma)_s^t : TM_{\gamma(s)} \to TM_{\gamma(t)}$  is a linear isomorphism of the tangent spaces.
- $\Gamma(\gamma)^s_s = \text{Id}$ , the identity map.
- $\bullet \ \Gamma(\gamma)^u_t \circ \Gamma(\gamma)^t_s = \Gamma(\gamma)^u_s.$
- $\Gamma$  depends smoothly on s, t and  $\gamma$ .

From  $\Gamma$ , let us consider the action of *parallel transport pullback* of vector fields, for  $t \in \mathbb{R}$  and  $f \in \mathfrak{X}(M)$  we denote  $\Psi_{t,f}^* \colon \mathfrak{X}(M) \to \mathfrak{X}(M)$  the operation

$$\Psi_{t,f}^*g(p) := \Gamma(\gamma)_t^0 g(\gamma(t)), \quad \text{for the curve } \gamma(t) = \Psi_{t,f}(p).$$

Any connection can be obtained from a parallel transport as the rate of change of the parallel transport pullback. For a given  $\Gamma$  we can define a corresponding connection as

$$f \rhd g := \left. \frac{d}{dt} \right|_{t=0} \Psi_{t,f}^* g.$$

Conversely, we can recover  $\Gamma$  from  $\triangleright$  by solving a differential equation. We seek a power series expansion of the parallel transport pullback. Just like the case of scalars, it holds also for pullback of vector fields that

$$\frac{\partial}{\partial t} \Psi_{t,f}^* g = \Psi_{t,f}^* f \rhd g,$$

hence we obtain the following Taylor series of the pullback

$$\Psi_{t,f}^* g = g + tf \rhd g + \frac{t^2}{2} f \rhd (f \rhd g) + \frac{t^3}{3!} f \rhd (f \rhd (f \rhd g)) + \cdots$$
 (3)

Recall that in the case of pullback of a scalar function, we used  $f(g(\phi)) = (f * g)(\phi)$  to express the pull-back in terms of  $\exp^*(tf)$ . Whether or not we can do similarly for vector fields depends on geometric properties of the connection. We would like to extend  $\rhd$  from  $\mathfrak{X}(M)$  to  $U(\mathfrak{X}(M))$  such that  $f \rhd (g \rhd h) = (f * g) \rhd h$  and hence (3) becomes  $\Psi_{t,f}^* g = \exp^*(tf) \rhd g$ . However, this requires that  $f \rhd (g \rhd h) - g \rhd (f \rhd h) = [\![f,g]\!] \rhd h$ , where  $[\![f,g]\!] := f * g - g * f$  is the Jacobi bracket of vector fields. The *curvature tensor* of the connection  $R: \mathfrak{X}(M) \land \mathfrak{X}(M) \to \operatorname{End}(\mathfrak{X}(M))$  is defined as

$$R(f,g)h := f \rhd (g \rhd h) - g \rhd (f \rhd h) - \llbracket f,g \rrbracket \rhd h.$$

Thus, we only expect to find a suitable extension of  $\triangleright$  to  $U(\mathfrak{X}(M))$  if  $\triangleright$  is *flat*, i.e. when R = 0.

In addition to the curvature, the other important tensor related to a connection is the torsion. Given  $\triangleright$ , we define an  $\mathscr{F}(M)$ -bilinear mapping  $\cdot \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \to U(\mathfrak{X}(M))$  as

$$f \cdot g := f * g - f \rhd g. \tag{4}$$

The skew-symmetrisation of this product called the *torsion* 

$$T(f,g) := g \cdot f - f \cdot g \in \mathfrak{X}(M),$$

and if  $f \cdot g = g \cdot f$  we say that  $\triangleright$  is torsion free.

The standard connection on  $\mathbb{R}^n$  is flat and torsion free. In this case the algebra  $\{\mathfrak{X}(M), \rhd\}$  forms a *pre-Lie* algebra (defined below). This gives rise to classical B-series. More generally, transport by left or right multiplication on a Lie group yields a flat connection where the product  $\cdot$  is associative, but not commutative. The resulting algebra is called *post-Lie* and the series are called *Lie–Butcher series*. A third important example is the Levi–Civita connection on a symmetric space, where  $\cdot$  is a Jordan product, T=0 and R is constant, non-zero. This third case is the subject of forthcoming papers, but will not be discussed here.

## 2.2 The Flat Cartan Connection on a Lie Group

Let G be a Lie group with Lie algebra  $\mathfrak{g}$ . For  $V \in \mathfrak{g}$  and  $p \in G$  we let  $Vp := TR_pV \in T_pG$ . There is a 1–1 correspondence between functions  $f \in C^\infty(G,\mathfrak{g})$  and vector fields  $\xi_f \in \mathfrak{X}(G)$  given as  $\xi_f(p) = f(p)p$ . Left multiplication with  $q \in G$  gives rise to a parallel transport

$$\Gamma_q: T_pG \to T_{qp}G: Vp \mapsto Vqp.$$

This transport is independent of the path between p and qp and hence gives rise to a flat connection. We express the corresponding parallel transport pullback on the space  $C^{\infty}(G, \mathfrak{g})$  as

$$(\Gamma_q^* f)(p) = f(qp)$$

which yields the flat connection

$$(f \rhd g)(q) = \frac{d}{dt}\Big|_{t=0} g(\exp(tf(q))q).$$

The torsion is given as [21]

$$T(f,g)(p) = -[f(p),g(p)]_{\mathfrak{a}}.$$

The two operations  $f \triangleright g$  and [f, g] := -T(f, g) turn  $C^{\infty}(G, \mathfrak{g})$  into a *post-Lie algebra*, see Definition 3 below. This is the foundation of Lie–Butcher series.

We can alternatively express the connection and torsion on  $\mathfrak{X}(G)$  via a basis  $\{E_j\}$  for  $\mathfrak{g}$ . Let  $\partial_j \in \mathfrak{X}(G)$  be the right invariant vector field  $\partial_j(p) = E_j p$ . For  $F, G \in \mathfrak{X}(G)$ , where  $F = f^i \partial_i$ ,  $G = g^j \partial_j^{-1}$  and  $f^i$ ,  $g^j \in \mathscr{F}(G)$ , we have

$$F \rhd G = f^{i} \partial_{i} (g^{j}) \partial_{j}$$

$$F \cdot G = f^{i} g^{j} \partial_{i} \partial_{j}$$

$$T(F, G) = f^{i} g^{j} (\partial_{i} \partial_{j} - \partial_{j} \partial_{i}).$$

We return to  $\triangleright$  defined on  $C^{\infty}(G,\mathfrak{g})$ . Let  $U(\mathfrak{g})$  be the span of the basis  $\{E_{j_1}E_{j_2}\cdots E_{j_k}\}$ , where  $E_{j_1}E_{j_2}\cdots E_{j_k}\in U(\mathfrak{g})$  corresponds to the right invariant k-th order differential operator  $\partial_{j_k}\cdots\partial_{j_2}\partial_{j_1}\in U(\mathfrak{X}(G))$ . On  $U(\mathfrak{g})$  we have two different associative products, the composition of differential operators f\*g and the 'concatenation product'  $f\cdot g=f*g-f\triangleright g$  which is computed as the concatenation of the basis,  $f^iE_i\cdot g^jE_j=f^ig^jE_iE_j$ . The general relationship between these two products and  $\triangleright$  extended to  $U(\mathfrak{g})$  is given in (28)–(31) below. In particular we have

$$f \rhd (g \rhd h) = (f * g) \rhd h,$$

which yields the exponential form of the parallel transport

$$\Psi_{t,f}^* g = \exp^*(tf) \rhd g,$$

where  $\exp^*(tf)$  is giving us the exact flow of f.

<sup>&</sup>lt;sup>1</sup>Einstein summation convention.

We can also form the exponential with respect to the other product,

$$\exp'(tf) = I + tf + \frac{t^2}{2}f \cdot f + \frac{t^3}{3!}f \cdot f \cdot f + \cdots$$

What is the geometric meaning of this? We say that a vector field g is parallel along f if the parallel transport pullback of g along the flow of f is constant, and we say that g is absolutely parallel if it is constant under any parallel transport. Infinitesimally we have that g is parallel along f if f > g = 0 and g is absolutely parallel if f > g = 0 for all f. In  $C^{\infty}(G, \mathfrak{g})$  the absolutely parallel functions are constants g(p) = V, which correspond to right invariant vector fields  $\xi_g \in \mathfrak{X}(G)$  given as  $\xi_g(p) = Vp$ . The flow of parallel vector fields are the geodesics of the connection. If g is absolutely parallel, we have  $g * g = g \cdot g + g > g = g \cdot g$ , and more generally  $g^{n*} = g^{n}$ , hence  $\exp^*(g) = \exp^*(g)$ . If f(p) = g(p) at a point  $p \in G$ , then they define the same tangent at the point. Hence  $f^{n}(p) = g^{n}(p)$  for all n, and we conclude that  $\exp^*(f)(p) = \exp^*(g)(p) = \exp^*(g)(p)$ . Thus, the concatenation exponential  $\exp^*(f)$  of a general vector field f produces the flow which in a given point follows the geodesic tangent to f at the given point.

On a Lie group, we have for two arbitrary vector fields represented by general functions  $f, g \in C^{\infty}(G, \mathfrak{g})$  that

$$(\exp(tf) \triangleright g)(p) = g(\exp(tf(p))p). \tag{5}$$

## 2.3 Numerical Integration

Lie-Butcher series and its cousins are general mathematical tools with applications in numerics, stochastics and renormalisation. The problem of numerical integration on manifolds is a particular application which has been an important source of inspiration. We discuss a simple illustrative example.

Example 1 (Lie-trapezoidal method) Consider the classical trapezoidal method. For a differential equation y'(t) = f(y(t)),  $y(0) = y_0$  on  $\mathbb{R}^n$  a step from t = 0 to t = h is given as

$$K = \frac{h}{2} (f(y_0) + f(y_1))$$
  
y<sub>1</sub> = y<sub>0</sub> + K.

Consider a curve  $y(t) \in G$  evolving on a Lie group such that y'(t) = f(y(t))y(t), where  $f \in C^{\infty}(G, \mathfrak{g})$  and  $y(0) = y_0$ . In the Lie-trapezoidal integrator a step from  $y_0$  to  $y_1 \approx y(h)$  is given as

$$K = \frac{h}{2} (f(y_0) + f(y_1))$$
  
$$y_1 = \exp_{\mathfrak{g}}(K) y_0,$$

where  $\exp_{\mathfrak{g}}: \mathfrak{g} \to G$  is the classical Lie group exponential. We can write the method as a mapping  $\Phi_{\text{trap}}: \mathfrak{X}(M) \to \text{Diff}(G)$  from vector fields to diffeomorphisms on G, given in terms of parallel transport on  $\mathfrak{X}(M)$  as

$$K = \frac{1}{2} \left( f + \exp^{\cdot}(K) \triangleright f \right) \tag{6}$$

$$\Phi_{\text{trap}}(f) := \exp^{\cdot}(K). \tag{7}$$

To simplify, we have removed the timestep h, but this can be recovered by the substitution  $f \mapsto hf$ . Note that we present this as a process in  $U(\mathfrak{X}(M))$ , without a reference to a given base point  $y_0$ . The method computes a diffeomorphism  $\Phi_{\text{trap}}(f)$ , which can be evaluated on a given base point  $y_0$ . This absence of an explicit base point facilitates an interpretation of the method as a process in the enveloping algebra of a free post-Lie algebra, an abstract model of  $U(\mathfrak{X}(M))$  to be discussed in the sequel.

A basic problem of numerical integration is to understand in what sense a numerical method  $\Phi(tf)$  approximates the exact flow  $\exp^*(tf)$ . The *order* of the approximation is computed by comparing the LB-series expansion of  $\Phi(tf)$  and  $\exp^*(tf)$ , and comparing to which order in t the two series agree.

The *backward error* of the method is defined as a modified vector field  $\widetilde{f}_h$  such that the exact flow of  $\widetilde{f}_h$  interpolates the numerical solution at integer times.<sup>2</sup> The combinatorial definition of the backward error is

$$\exp^*(\widetilde{f_h}) = \Phi(hf).$$

The backward error is an important tool which yields important structural information of the numerical flow operator  $f \mapsto \Phi(hf)$ . The backward error analysis is fundamental in the study of geometric properties of numerical integration algorithms [8, 13].

Yet another problem is the numerical technique of *processing* a vector field, i.e. we seek a modified vector field  $\widetilde{f}_h$  such that  $\Phi(\widetilde{f}_h) = \exp^*(f)$ . An important tool in the analysis of this technique is the characterization of a *substitution law*. What happens to the series expansion of  $\Phi(hf)$  if f is replaced by a modified vector field  $\widetilde{f}_h$  expressed in terms of a series expansion involving f?

The purpose of this essay is not to pursue a detailed discussion of numerical analysis of integration schemes. Instead we want to introduce the algebraic structures needed to formalize the structure of the series expansions. In particular we will present recursive formulas for the basic algebraic operations suitable for computer implementations.

<sup>&</sup>lt;sup>2</sup>Technical issues about divergence of the backward error vector field is discussed in [1].

We finally remark that numerical integrators are typically defined as *families of mappings*, given in terms of unspecified coefficients. For example the Runge–Kutta family of integrators can be defined in terms of real coefficients  $\{a_{i,j}\}_{i,j=1}^s$  and  $\{b_j\}_{j=1}^s$  as

$$K_i = \exp^{\cdot}(\sum_{j=1}^s a_{i,j} K_j) \triangleright f, \quad \text{for } i = 1, \dots, s$$

$$\Phi_{\mathbf{RK}}(f) = \exp^{\cdot}(\sum_{j=1}^s b_j K_j).$$

In a computer package for computing with LB-series we want the possibility of computing series expansions of such parametrized families without specifying the coefficients. This is accomplished by defining the algebraic structures not over the concrete field of real numbers  $\mathbb{R}$ , but instead allowing this to be replaced by an abstract commutativ ring with unit, such as e.g. the ring of all real polynomials in the indeterminates  $\{a_{i,j}\}_{i=1}^{s}$  and  $\{b_{j}\}_{i=1}^{s}$ .

## 3 Algebraic Structures of Lie-Butcher Theory

We give a concise summary of the basic algebraic structures behind Lie-Butcher series.

## 3.1 Algebras

All vector spaces we consider are over a field<sup>3</sup> k of characteristic 0, e.g.  $k \in \mathbb{R}, \mathbb{C}$ .

**Definition 1** (*Algebra*) An algebra  $\{\mathscr{A}, *\}$  is a vector space  $\mathscr{A}$  with a k-bilinear operation  $*: \mathscr{A} \times \mathscr{A} \to \mathscr{A}$ .  $\mathscr{A}$  is called *unital* if it has a unit  $\mathbb{I}$  such that  $x * \mathbb{I} = \mathbb{I} * x$  for all  $x \in \mathscr{A}$ . The (minus-)*associator* of the product is defined as

$$a_*(x, y, z) := x * (y * z) - (x * y) * z.$$

If the associator is 0, the algebra is called *associative*.

<sup>&</sup>lt;sup>3</sup>In the computer implementations we are relaxing this to allow k more generally to be a commutative ring, such as e.g. polynomials in a set of indeterminates. In this latter case the k-vector space should instead be called a free k-module. We will not pursue this detail in this exposition.

**Definition 2** (*Lie algebra*) A *Lie-algebra* is an algebra  $\{g, [\cdot, \cdot]\}$  such that

$$[x, y] = -[y, x]$$
$$[[x, y], z] + [[y, z], x] + [[z, x], y] = 0.$$

The bracket  $[\cdot, \cdot]$  is called the *commutator* or *Lie bracket*. An associative algebra  $\{\mathscr{A}, *\}$  give rise to a Lie algebra Lie( $\mathscr{A}$ ), where [x, y] = x \* y - y \* x.

A connection on a fibre bundle which is flat and with constant torsion satisfies the algebraic conditions of a *post-Lie algebra* [21]. This algebraic structure first appeared in a purely operadic setting in [27].

**Definition 3** (*Post-Lie algebra*) A *post-Lie algebra*  $\{\mathscr{P}, [\cdot, \cdot], \triangleright\}$  is a Lie algebra  $\{\mathscr{P}, [\cdot, \cdot]\}$  together with a bilinear operation  $\triangleright : \mathscr{P} \times \mathscr{P} \to \mathscr{P}$  such that

$$x \triangleright [y, z] = [x \triangleright y, z] + [x, y \triangleright z] \tag{8}$$

$$[x, y] \triangleright z = a_{\triangleright}(x, y, z) - a_{\triangleright}(y, x, z).$$
 (9)

A post-Lie algebra defines a relationship between *two* Lie algebras [21].

**Lemma 1** For a post-Lie algebra  $\mathcal{P}$  the bi-linear operation

$$[x, y] = x \triangleright y - y \triangleright x + [x, y]$$

$$\tag{10}$$

defines another Lie bracket.

Thus, we have two Lie algebras  $\mathfrak{g} = \{\mathscr{P}, [\cdot, \cdot]\}$  and  $\overline{\mathfrak{g}} = \{\mathscr{P}, [\![\cdot, \cdot]\!]\}$  related by  $\triangleright$ .

**Definition 4** (*Pre-Lie algebra*) A *pre-Lie algebra*  $\{\mathcal{L}, \triangleright\}$  is a post-Lie algebra where  $[\cdot, \cdot] \equiv 0$ , in other words an algebra such that

$$a_{\triangleright}(x, y, z) = a_{\triangleright}(y, x, z).$$

Pre- and post-Lie algebras appear naturally in differential geometry where post-Lie algebras are intimately linked with the differential geometry of Lie groups and pre-Lie algebras with Abelian Lie groups (Euclidean spaces).

## 3.2 Morphisms and Free Objects

All algebras of a given type form a *category*, which can be thought of as a directed graph where each node (object) represents an algebra of the given type and the arrows (edges) represent morphisms. Any composition of morphisms is again a

morphism. Morphisms are mappings preserving the given algebraic structure. E.g. an algebra morphism  $\phi \colon \mathscr{A} \to \mathscr{A}'$  is a k-linear map satisfying  $\phi(x * y) = \phi(x) * \phi(y)$ . A post-Lie morphism is, similarly, a linear mapping  $\phi \colon \mathscr{P} \to \mathscr{P}'$  satisfying both  $\phi([x,y]) = [\phi(x),\phi(y)]$  and  $\phi(x \rhd y) = \phi(x) \rhd \phi(y)$ .

In a given category a *free object over a set C* can informally be thought of as a generic algebraic structure. The only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Furthermore the free object is not larger than strictly necessary to be generic. Each of the elements of *C* correspond to generators of the free object. In software a free object can be thought of as a symbolic computing engine; formulas, identities and algebraic simplifications derived within the free object can be applied to any other object in the category. Thus, a detailed understanding of the free objects is crucial for the computer implementation of a given algebraic structure.

**Definition 5** (*Free object over a set C*) In a given category we define the free object over a set C as an object Free(C) together with a map inj:  $C \hookrightarrow Free(C)$ , called the canonical injection, such that for any object B in the category and any mapping  $\phi: C \to B$  there exists a unique morphism!:  $Free(C) \to B$  such that the diagram commutes

$$C \xrightarrow{\text{inj}} \text{Free}(C)$$

$$\downarrow!$$

$$B$$

$$(11)$$

We will often consider  $C \subset \text{Free}(C)$  without mentioning the map inj.

*Note 1* In category theory a free functor is intimately related to a *monad*, a concept which is central in the programming language Haskell. In Haskell the function "inj" is called "return" and the application of ! on  $x \in \text{Free}(C)$  is written  $x > = \phi$ .

A free object can be implemented in different ways, but different implementations are always algebraically isomorphic.

Example 2 Free k-vector space  $\mathbf{k}^{(C)}$ : Consider  $C = \{1, 2, 3, \ldots\}$  and let  $\operatorname{inj}(j) = \mathbf{e_j}$  represent a basis for  $\mathbf{k}^{(C)}$ . Then  $\mathbf{k}^{(C)}$  consists of all *finite*  $\mathbb{R}$ -linear combinations of the basis vectors. Equivalently, we can consider  $\mathbf{k}^{(C)}$  as the set of all functions  $C \to \mathbf{k}$  with finite support. The unique morphism property states that a linear map is uniquely specified from its values on a set of basis vectors in its domain.

*Example 3* Free (associative and unital) algebra  $k\langle C \rangle$ : Think of C as an alphabet (collection of letters)  $C = \{a, b, c, \ldots\}$ . Let  $C^*$  denote all *words* over the alphabet, including the empty word  $\mathbb{I}$ ,

<sup>&</sup>lt;sup>4</sup>This definition is not strictly categorical, since the mappings inj and  $\phi$  are not morphisms inside a category, but mappings from a set to an object of another category. A proper categorical definition of a free object, found in any book on category theory, is based on a *forgetful functor* mapping the given category into the category of sets. The *free functor* is the left adjoint of the forgetful functor.

$$C^* = \{ \mathbb{I}, a, b, c, \dots, aa, ab, ac, \dots ba, bb, bc, \dots \}.$$

Then  $k\langle C\rangle = \{k^{(C^*)}, \cdot\}$ , is the vector space containing finite linear combinations of empty and non-empty words, equipped with a product  $\cdot$  which on words is concatenation. Example  $aba \cdot cus = abacus$ ,  $\mathbb{I} \cdot abba = abba \cdot \mathbb{I} = abba$ . This extends by linearity to  $k^{(C^*)}$  and yields an associative unital algebra. This is also called the non-commutative polynomial ring over C.

Example 4 Free Lie algebra Lie(C): Again, think of  $C = \{a, b, c, d, ...\}$  as an alphabet. Lie(C)  $\subset k\langle C \rangle$  is the linear sub space generated by C under the Lie bracket  $[w_1, w_2] = w_1 \cdot w_2 - w_2 \cdot w_1$  induced from the product in  $k\langle C \rangle$ , thus  $c \in C \Rightarrow c \in \text{Lie}(C)$  and  $x, y \in \text{Lie}(C) \Rightarrow x \cdot y - y \cdot x \in \text{Lie}(C)$ . A basis for Lie(C) is given by the set of *Lyndon words* [26]. E.g. for  $C = \{a, b\}$  the first Lyndon words a, b, ab, aab, abb (up to length 3) represent the commutators

$${a, b, [a, b], [a, [a, b]], [[a, b], b], \ldots}.$$

Computations in a free Lie algebra are important in many applications [20]. Relations such as [[a,b],c]+[[b,c],a]=[[a,c],b] can be computed in Lie(C) and applied (evaluated) on concrete data in any Lie algebra  $\mathfrak g$  via the Lie algebra morphism  $\mathscr F_\phi\colon \mathrm{Lie}(C)\to \mathfrak g$ , whenever an association of the letters with data in the concrete Lie algebra is provided through a map  $\phi\colon C\to \mathfrak g$ .

Example 5 Free pre-Lie algebra C: Consider  $C = \{\bullet, \circ, \dots\}$  as a set of coloured nodes. In many applications  $C = \{\bullet\}$ , just a single color, and in that case we omit mentioning C. A coloured rooted tree is a finite connected directed graph where each node (from C) has exactly one outgoing edge, except the 'root' node which has no edge out. We illustrate a tree with the root on the bottom and the direction of the edges being down towards the root. Let C denote the set of all coloured rooted trees, e.g.

The trees are just graphs without considering an ordering of the branches, so V = V and V = V. Let  $\mathcal{T}_C = \mathbf{k}^{(T_C)}$ . The free pre-Lie algebra over C is [6, 9] preLie(C) = { $\mathcal{T}_C$ ,  $\triangleright$ }, where  $\triangleright$ :  $\mathcal{T}_C \times \mathcal{T}_C$  denotes the *grafting product*. For  $\tau_1, \tau_2 \in T_C$ , the product  $\tau_1 \triangleright \tau_2$  is the sum of all possible attachments of the root of  $\tau_1$  to one of the nodes of  $\tau_2$  as shown in this example:

$$1 > V = V + 2V$$

The grafting extends by linearity to all of  $\mathscr{T}_C$ .

Example 6 Free magma Magma(C)  $\cong$  OT $_C$ : The algebraic definition of a magma is a set  $C = \{\bullet, \circ, \ldots\}$  with a binary operation  $\times$  without any algebraic relations imposed. The free magma over C consists of all possible ways to parenthesize binary operations on C, such as  $(\bullet \times (\bullet \times \bullet)) \times (\circ \times \bullet)$ . There are many isomorphic ways to represent the free magma. For our purpose it is convenient to represent the free magma as ordered (planar<sup>5</sup>) trees with coloured nodes. We let C denote a set of coloured nodes and let  $OT_C$  be the set of all ordered rooted trees with nodes chosen from C. On the trees we interpret  $\times$  as the Butcher product [3]:  $\tau_1 \times \tau_2 = \tau$  is a tree where the root of the tree  $\tau_2$  is attached to the right part of the root of the tree  $\tau_1$ , e.g.:

$$\begin{array}{c} \begin{picture}(20,0)(0,0) \put(0,0){\line(0,0){10}} \put(0,0){\line(0,0){$$

If  $C = \{\bullet\}$  has only one element, we write  $OT := OT_{\{\bullet\}}$ . The first few elements of OT are:

$$\mathrm{OT} = \left\{ \bullet, I, \overline{I}, V, \overline{I}, \overline{Y}, \overline{V}, \overline{V}, \overline{V}, \dots \right\}.$$

Example 7 The free post-Lie algebra, postLie (C), is given as

$$postLie(C) = \{Lie(Magma(C)), \triangleright\}, \tag{12}$$

where the product  $\triangleright$  is defined on  $k^{(Magma(C))}$  as a derivation of the magmatic product

$$\tau \rhd c = c \times \tau \quad \text{for } c \in C, \tag{13}$$

$$\tau \rhd (\tau_1 \times \tau_2) = (\tau \rhd \tau_1) \times \tau_2 + \tau_1 \times (\tau \rhd \tau_2), \tag{14}$$

and it is extended by linearity and Eqs. (8)–(9) to all of Lie(Magma(C)).

Under the identification Magma(C)  $\cong$  OT $_C$ , the product  $\triangleright$ :  $k^{(OT_C)} \times k^{(OT_C)} \rightarrow k^{(OT_C)}$  is given by *left* grafting. For  $\tau_1, \tau_2 \in$  OT $_C$ , the product  $\tau_1 \triangleright \tau_2$  is the sum of all possible attachments of the root of  $\tau_1$  to the left side of each node of  $\tau_2$  as shown in this example:

$$\mathbf{1} \triangleright \mathbf{V} = \mathbf{V} + \mathbf{V} + \mathbf{V}.$$

A Lyndon basis for postLie(C) is given in [19].

<sup>&</sup>lt;sup>5</sup>Trees with different orderings of the branches are considered different, as embedded in the plane.

### 3.3 Enveloping Algebras

Lie algebras, pre- and post-Lie algebras are associated with algebras of first order differential operators (vector fields). Differential operators of higher order are obtained by compositions of these. Algebraically this is described through enveloping algebras.

#### 3.3.1 Lie Enveloping Algebras

Recall that  $\text{Lie}(\cdot)$  is a *functor* sending an associative algebra  $\mathscr A$  to a Lie algebra  $\text{Lie}(\mathscr A)$ , where  $[x,y]=x\cdot y-y\cdot x$ , and it sends associative algebra homomorphisms to Lie algebra homomorphisms. The universal enveloping algebra of a Lie algebra is defined via a functor U from Lie algebras to associative algebras being the left adjoint of Lie. This means the following:

**Definition 6** (*Lie universal enveloping algebra*  $U(\mathfrak{g})$ ) The universal enveloping algebra of a Lie algebra  $\mathfrak{g}$  is a unital associative algebra  $\{U(\mathfrak{g}),\cdot,\mathbb{I}\}$  together with a Lie algebra morphism inj:  $\mathfrak{g} \to \mathrm{Lie}(U(\mathfrak{g}))$  such that for any associative algebra  $\mathscr{A}$  and any Lie algebra morphism  $\phi: \mathfrak{g} \to \mathrm{Lie}(\mathscr{A})$  there exists a unique associative algebra morphism!:  $U(\mathfrak{g}) \to \mathscr{A}$  such that  $\phi = \mathrm{Lie}(!) \circ \mathrm{inj}$ .

$$\mathfrak{g} \xrightarrow{\text{inj}} \text{Lie}(U(\mathfrak{g})) \qquad U(\mathfrak{g}) \\
\downarrow \text{Lie}(!) \qquad \qquad \downarrow ! \\
\text{Lie}(\mathscr{A}) \qquad \mathscr{A} \qquad (15)$$

The *Poincaré–Birkhoff–Witt Theorem* states that for any Lie algebra  $\mathfrak g$  with a basis  $\{e_j\}$ , with some total ordering  $e_j < e_k$ , one gets a basis for  $U(\mathfrak g)$  by taking the set of all *canonical monomials* defined as the non-decreasing products of the basis elements  $\{e_j\}$ 

PBWbasis
$$(U(\mathfrak{g})) = \{e_{j_1} \cdot e_{j_2} \cdots e_{j_r} : e_{j_1} \le e_{j_2} \le \cdots \le e_{j_r}, r \in \mathbb{N}\},\$$

where we have identified  $\mathfrak{g} \subset U(\mathfrak{g})$  using inj. From this it follows that  $U(\mathfrak{g})$  is a *filtered* algebra, splitting in a direct sum

$$U(\mathfrak{g}) = \bigoplus_{j=0}^{\infty} U_j(\mathfrak{g}),$$

where  $U_j(\mathfrak{g})$  is the span of the canonical monomials of length j,  $U_0 = \operatorname{span}(\mathbb{I})$  and  $U_1(\mathfrak{g}) \cong \mathfrak{g}$ . Furthermore,  $U(\mathfrak{g})$  is *connected*, meaning that  $U_0 \cong k$ , and it is generated by  $U_1$ , meaning that  $U(\mathfrak{g})$  has no proper subalgebra containing  $U_1$ .

#### 3.3.2 Hopf Algebras

Recall that a bi-algebra is a unital associative algebra  $\{B,\cdot,\mathbb{I}\}$  together with a coassociative co-algebra structure<sup>6</sup>  $\{H,\Delta,\varepsilon\}$ , where  $\Delta\colon B\to B\otimes B$  is the coproduct and  $\varepsilon\colon B\to k$  is the co-unit. The product and coproduct must satisfy the compatibility condition

$$\Delta(x \cdot y) = \Delta(x) \cdot \Delta(y), \tag{16}$$

where the product on the right is componentwise in the tensor product.

**Definition 7** (*Hopf algebra*) A *Hopf algebra*  $\{H, \cdot, \mathbb{I}, \Delta, \varepsilon, S\}$  is a bi-algebra with an *antipode*  $S: H \to H$  such that the diagram below commutes.

$$H \otimes H \xrightarrow{s \otimes \mathrm{id}} H \otimes H$$

$$H \xrightarrow{\delta} \text{k} \xrightarrow{\mathbb{I}} H$$

$$H \otimes H \xrightarrow{\mathrm{id} \otimes S} H \otimes H$$

$$(17)$$

*Example 8* The concatenation de-shuffle Hopf algebra  $U(\mathfrak{g})$ : The enveloping algebra  $U(\mathfrak{g})$  has the structure of a Hopf algebra, where the coproduct  $\Delta_{\sqcup \sqcup}: U(\mathfrak{g}) \to U(\mathfrak{g}) \otimes U(\mathfrak{g})$  is defined as

$$\Delta_{\perp \perp}(\mathbb{I}) = \mathbb{I} \otimes \mathbb{I} \tag{18}$$

$$\Delta_{\sqcup \sqcup}(x) = \mathbb{I} \otimes x + x \otimes \mathbb{I}, \quad \text{for all } x \in \mathfrak{g}$$
 (19)

$$\Delta_{\coprod}(x \cdot y) = \Delta_{\coprod}(x) \cdot \Delta_{\coprod}(y), \text{ for all } x, y \in U(\mathfrak{g}).$$
 (20)

We call this the de-shuffle coproduct, since it is the dual of the shuffle product. The co-unit is defined as

$$\varepsilon(\mathbb{I}) = 1 \tag{21}$$

$$\varepsilon(x) = 0, \quad x \in U_i(\mathfrak{g}), \quad i > 0, \tag{22}$$

and the antipode  $S: U(\mathfrak{g}) \to U(\mathfrak{g})$  as

$$S(x_1 \cdot x_2 \cdots x_i) = (-1)^j x_i \cdots x_2 \cdot x_1 \quad \text{for all } x_1, \dots, x_i \in \mathfrak{g}.$$
 (23)

This turns  $U(\mathfrak{g})$  into a filtered, connected, co-commutative Hopf algebra. Connected means that  $U_0 \cong k$  and co-commutative that  $\Delta_{\sqcup \sqcup}$  satisfies the diagrams of a com-

<sup>&</sup>lt;sup>6</sup>An associative algebra can be defined by commutative diagrams. The co-algebra structure is obtained by reversing all arrows.

mutative product, with the arrows reversed. The dual of a commutative product is co-commutative.

The primitive elements of a Hopf algebra H, defined as

$$Prim(H) = \{x \in H : \Delta(x) = x \otimes \mathbb{I} + \mathbb{I} \otimes x\}$$

form a Lie algebra with  $[x, y] = x \cdot y - y \cdot x$ . The *Cartier–Milnor–Moore theorem* (CMM) states that if H is a connected, filtered, co-commutative Hopf algebra, then  $U(\operatorname{Prim}(H))$  is isomorphic to H as a Hopf algebra. A consequence of CMM is that the enveloping algebra of a free Lie algebra over a set C is given as

$$U(\operatorname{Lie}(C)) = k\langle C \rangle, \tag{24}$$

the non-commutative polynomials in C. Thus, a basis for U(Lie(C)) is given by non-commutative monomials (the empty and non-empty words in  $C^*$ ).

#### 3.3.3 Post-Lie Enveloping Algebras

Enveloping algebras of pre- and post-Lie algebras are discussed by several authors [12, 21–23]. In our opinion the algebraic structure of the enveloping algebras are easiest to motivate by discussing the post-Lie case, and obtaining the pre-Lie enveloping algebra as a special case. For Lie algebras the enveloping algebras are associative algebras. The corresponding algebraic structure of a post-Lie enveloping algebra is called a D-algebra (D for derivation) [21, 22]:

**Definition 8** (*D-algebra*) Let *A* be a unital associative algebra with a bilinear operation  $\triangleright$ :  $A \otimes A \to A$ . Write Der(A) for the set of all  $u \in A$  such that  $v \mapsto u \triangleright v$  is a derivation:  $Der(A) = \{u \in A : u \triangleright (vw) = (u \triangleright v)w + v(u \triangleright w) \text{ for all } v, w \in A\}$ . We call *A* a *D-algebra* if for any  $u \in Der(A)$  and any  $v, w \in A$  we have

$$\mathbb{I} \triangleright v = v \tag{25}$$

$$v \triangleright u \in \mathrm{Der}(A) \tag{26}$$

$$(uv) \triangleright w = a_{\triangleright}(u, v, w) \equiv u \triangleright (v \triangleright w) - (u \triangleright v) \triangleright w. \tag{27}$$

In [21] it is shown:

**Proposition 1** For any D-algebra A the set of derivations forms a post-Lie algebra

$$postLie(A) := \{Der(A), [\cdot, \cdot], \triangleright\},\$$

where [x, y] = xy - yx.

Thus, postLie( $\cdot$ ) is a functor from the category of D-algebras to the category of post-Lie algebras. There is a functor  $U(\cdot)$  from post-Lie algebras to D-algebras, which is the left adjoint of postLie( $\cdot$ ). We can define post-Lie enveloping algebras similarly to Definition 6. A direct construction of the post-Lie enveloping algebra is obtained by extending  $\triangleright$  to the Lie enveloping algebra of the post-Lie algebra [21]:

**Definition 9** (Post-Lie enveloping algebra  $U(\mathcal{P})$ ) Let  $\{\mathcal{P}, [\cdot, \cdot], \triangleright\}$  be post-Lie, let  $\{U_L, \cdot\} = U(\{\mathcal{P}, [\cdot, \cdot]\})$  be the Lie enveloping algebra and identify  $\mathcal{P} \subset U_L$ . The post-Lie enveloping algebra  $U(\mathcal{P}) = \{U_L, \cdot, \triangleright\}$  is defined by extending  $\triangleright$  from  $\mathcal{P}$  to  $U_L$  according to

$$\mathbb{I} \triangleright v = v \tag{28}$$

$$v \rhd \mathbb{I} = 0 \tag{29}$$

$$u \triangleright (vw) = (u \triangleright v)w + v(u \triangleright w) \tag{30}$$

$$(uv) \triangleright w = a_{\triangleright}(u, v, w) := u \triangleright (v \triangleright w) - (u \triangleright v) \triangleright w \tag{31}$$

for all  $u \in \mathscr{P}$  and  $v, w \in U_L$ . This construction yields  $U(\cdot)$ : postLie  $\to$  D-algebra as a left adjoint functor of postLie( $\cdot$ ).

A more detailed understanding of  $U(\mathcal{P})$  is obtained by considering its Hopf algebra structures. A Lie enveloping algebra is naturally also a Hopf algebra with the de-shuffle coproduct  $\Delta_{\sqcup \sqcup}$ . With this coproduct  $U(\mathcal{P})$  becomes a graded, connected, co-commutative Hopf algebra where  $Der(U(\mathcal{P})) = Prim(U(\mathcal{P})) = \mathcal{P}$ . Furthermore, the coproduct is compatible with  $\triangleright$  in the following sense [12]:

$$\begin{split} A \rhd \mathbb{I} &= \varepsilon(A) \\ \varepsilon(A \rhd B) &= \varepsilon(A)\varepsilon(B) \\ \Delta_{\sqcup \sqcup}(A \rhd B) &= \sum_{\Delta_{\sqcup \sqcup}(A), \Delta_{\sqcup \sqcup}(B)} (A_{(1)} \rhd B_{(1)}) \otimes (A_{(2)} \rhd B_{(2)}) \end{split}$$

for all  $A, B \in U(\mathcal{P})$ . Here and in the sequel we employ Sweedler's notation for coproducts,

$$\Delta(A) =: \sum_{\Delta(A)} A_{(1)} \otimes A_{(2)}.$$

<sup>7</sup>Sometimes we need a repeated use of a coproduct. Let  $\Delta \omega = \sum \omega_{(1)} \otimes \omega_{(2)}$ . We continue by using  $\Delta$  to split either  $\omega_{(1)}$  or  $\omega_{(2)}$ . Since the coproduct is co-associative this yields the same result  $\Delta^2 \omega = \sum \omega_{(1)} \otimes \omega_{(2)} \otimes \omega_{(3)}$ , and n applications are denoted

$$\Delta^{n}(A) =: \sum_{\Delta^{n}(A)} A_{(1)} \otimes A_{(2)} \otimes \cdots \otimes A_{(n+1)}.$$

Just as a post-Lie algebra always has two Lie algebras  $\mathfrak{g}$  and  $\overline{\mathfrak{g}}$ , the post-Lie enveloping algebra  $U(\mathscr{P})$  has two associative products  $x, y \mapsto xy$  from the enveloping algebra  $U(\mathfrak{g})$  and  $x, y \mapsto xy$  from  $U(\overline{\mathfrak{g}})$ . Both of these products define Hopf

<sup>&</sup>lt;sup>7</sup>Splitting with regard to the coproduct  $\Delta$ .

algebras with the same unit  $\mathbb{I}$ , co-unit  $\varepsilon$  and de-shuffle coproduct  $\Delta_{\sqcup \sqcup}$ , but with different antipodes.

**Proposition 2** [12] On  $U(\mathcal{P})$  the product

$$A * B := \sum_{\Delta_{\coprod}(A)} A_{(1)}(A_{(2)} \rhd B) \tag{32}$$

is associative. Furthermore  $\{U(\mathscr{P}), *, \Delta_{\sqcup \sqcup}\} \cong U(\overline{\mathfrak{g}})$  are isomorphic as Hopf algebras.

The following result is crucial for handling the non-commutativity and non-associativity of  $\triangleright$ :

**Proposition 3** [12, 22] For all  $A, B, C \in U(\mathcal{P})$  we have

$$A \rhd (B \rhd C) = (A * B) \rhd C. \tag{33}$$

#### The free enveloping post-Lie algebra.

Finally we introduce the enveloping algebra of the free post-Lie algebra U(postLie(C)). Due to CMM, we know that it is constructed from the Hopf algebra

$$U(\text{postLie}(C)) = U(Lie(OT_C)) = k\langle OT_C \rangle,$$

i.e. finite linear combinations of *words of ordered trees*, henceforth called (*ordered*) *forests* OF<sub>C</sub>. If C contains only one element, we call the forests OF:

$$\mathrm{OF} = \{\mathbb{I}, \bullet, \bullet, \downarrow, \downarrow, \downarrow, \bigvee, \downarrow, \ldots\}$$

The Hopf algebra has concatenation of forests as product and coproduct  $\Delta_{\sqcup \sqcup}$  being de-shuffle of forests. Upon this we define  $\rhd$  as left grafting on ordered trees, extended to forests by (28)–(31), where  $\mathbb{I}$  is the empty forest, u is an ordered tree and v, w are ordered forests. The left grafting of a forest on another is combinatorially the sum of all possible left attachments of the roots of trees in the left forest to the nodes of the right forest, maintaining order when attaching to the same node, as in this example

$$\vec{A} \triangleright \vec{V} = \vec{A} + \vec{A} +$$

#### Four Hopf algebras on ordered forests.

On  $k\langle OF_C\rangle$  we have two associative products \* and the concatenation product, denoted  $\cdot$ . Both these form Hopf algebras with the de-shuffle coproduct  $\Delta_{\sqcup \sqcup}$  and antipodes S. and  $S_*$ , where

$$S_{\cdot}(\tau_1 \cdot \tau_2 \cdots \tau_k) = (-1)^k \tau_k \cdots \tau_2 \cdot \tau_1, \text{ for } \tau_1 \cdot \tau_2 \cdots \tau_k \in OT_C$$

and  $S_*$  given in (71). With their duals, we have the following four Hopf algebras:

$$\begin{aligned} \mathcal{H}_{\cdot} &= \{ \mathbf{k} \langle \mathrm{OF}_{C} \rangle, \Delta_{\sqcup \sqcup}, \cdot, S_{\cdot} \} \\ \mathcal{H}_{*} &= \{ \mathbf{k} \langle \mathrm{OF}_{C} \rangle, \Delta_{\sqcup \sqcup}, *, S_{*} \} \\ \mathcal{H}_{\cdot}' &= \{ \mathbf{k} \langle \mathrm{OF}_{C} \rangle, \Delta_{\cdot}, \sqcup \sqcup, S_{\cdot} \} \\ \mathcal{H}_{*}' &= \{ \mathbf{k} \langle \mathrm{OF}_{C} \rangle, \Delta_{*}, \sqcup \sqcup, S_{*} \}_{\cdot} \end{aligned}$$

The four share the same unit  $\mathbb{I}$ :  $k \to \mathcal{H}$ :  $1 \mapsto \mathbb{I}$  and the same co-unit  $\varepsilon \colon \mathcal{H} \to k$ , where  $\varepsilon(\mathbb{I}) = 1$  and  $\varepsilon(\omega) = 0$  for all  $\omega \in OF_C \setminus \{\mathbb{I}\}$ . All four Hopf algebras are connected and graded with  $|\omega|$  counting the number of nodes in a forest.  $\mathcal{H}$  and  $\mathcal{H}'$  are also connected and graded with the word length as a grading, although this grading is of less importance for our applications.

#### 3.3.4 Lie-Butcher Series

The vector space  $k\langle OT_C \rangle$  consists of *finite* linear combinations of forests. In order to be able to symbolically represent flow maps and backward error analysis, we do, however, need to extend the space to infinite sums. For a (non-commutative) polynomial ring  $k\langle C \rangle$ , we denote  $k\langle \langle C \rangle \rangle$  the set of infinite (formal) power series. Let  $\langle \cdot, \cdot \rangle : k\langle C \rangle \times k\langle C \rangle \to k$  denote the inner product where the monomials (words in  $C^*$ ) form an orthonormal basis. This extends to a dual pairing

$$\langle \cdot, \cdot \rangle \colon \mathbf{k} \langle \langle C \rangle \rangle \times \mathbf{k} \langle C \rangle \to \mathbf{k},$$
 (34)

which identifies  $k\langle\langle C \rangle\rangle = k\langle C \rangle^*$  as the linar dual space. Any  $\alpha \in k\langle\langle C \rangle\rangle$  is uniquely determined by its evaluation on the finite polynomials, and we may write  $\alpha$  as a formal infinite sum

$$\alpha = \sum_{w \in C^*} \langle \alpha, w \rangle w.$$

Any k-linear map  $f: k\langle\langle C \rangle\rangle \to k\langle\langle C \rangle\rangle$  can be computed from its dual  $f^*: k\langle C \rangle \to k\langle C \rangle$  as  $\langle f(\alpha), w \rangle = \langle \alpha, f^*(w) \rangle$  for all  $w \in C^*$ .

**Definition 10** (*Lie–Butcher series* LB(C)) The Lie–Butcher series over a set C is defined as the completion

$$LB(C) := U(postLie(C))^*$$
.

This is the vector space  $k\langle\langle OT_C\rangle\rangle$  (infinite linear combinations of ordered forests). All the operations we consider on this space are defined by their duals acting upon  $k\langle OT_C\rangle$ , see Sect. 4.1.

The space LB(C) has two important subsets, the *primitive elements* and the *group like elements*.

**Definition 11** (*Primitive elements*  $\mathfrak{g}_{LB}$ ) The primitive elements of LB(C), denoted  $\mathfrak{g}_{LB}$  are given as

$$\mathfrak{g}_{LB} = \{ \alpha \in LB(C) \colon \Delta_{\perp \perp}(\alpha) = \alpha \otimes \mathbb{I} + \mathbb{I} \otimes \alpha \}, \tag{35}$$

where  $\Delta_{\sqcup \sqcup}$  is the graded completion of the de-shuffle coproduct. This forms a post-Lie algebra which is the graded completion of the free post-Lie algebra postLie(C).

**Definition 12** (*The Lie–Butcher group G*<sub>LB</sub>) The group like elements of LB(C), denoted G<sub>LB</sub> are given as

$$G_{\rm LB} = \{ \alpha \in {\rm LB}(C) : \Delta_{\sqcup \sqcup}(\alpha) = \alpha \otimes \alpha \}, \tag{36}$$

where  $\Delta_{\perp \perp}$  is the graded completion of the de-shuffle coproduct.

The Lie-Butcher group is a group both with respect to the concatenation product and the product \* in (32). There are also two exponential maps with respect to the two associative products sending primitive elements to group-like elements

$$\exp, \exp^* : \mathfrak{g}_{LB} \to G_{LB}.$$

Both these are 1–1 mappings with inverses given by the corresponding logarithms

$$\log, \log^* : G_{LB} \to \mathfrak{g}_{LB}.$$

## 4 Computing with Lie-Butcher Series

In this section, we will list important operations on Lie–Butcher series. A focus will be given on recursive formulations which are suited for computer implementations.

## 4.1 Operations on Infinite Series Computed by Dualisation

Lie–Butcher series are infinite series, and in principle the only computation we consider on an infinite series is the evaluation of the dual pairing (34). All operations on infinite Lie–Butcher series,  $\alpha \in LB(C)$ , are computed by dualisation, throwing the operation over to the finite right hand part of the dual pairing. By recursions, the dual computation on the right hand side is moving towards terms with a lower grade, and finally terminates. Some modern programming languages, such as Haskell, allow for *lazy evaluation*, meaning that terms are not computed before they are needed to produce a result. This way it is possible to implement proper infinite series.

Example 9 The computation of the de-shuffle coproduct of infinite series can be computed as

$$\langle \Delta_{\perp \perp}(\alpha), \omega_1 \otimes \omega_2 \rangle = \langle \alpha, \omega_1 \sqcup \omega_2 \rangle, \tag{37}$$

where the pairing on the left is defined componentwise in the tensor product,

$$\langle \alpha_1 \otimes \alpha_2, \omega_1 \otimes \omega_2 \rangle = \langle \alpha_1, \omega_1 \rangle \cdot \langle \alpha_2, \omega_2 \rangle$$

and shuffle product  $\omega \sqcup \widetilde{\omega}$  of two words in an alphabet is the sum over all permutations of  $\omega \widetilde{\omega}$  which are not changing the internal order of the letters coming from each part, e.g.

$$ab \sqcup cd = abcd + acbd + cabd + acdb + cadb + cdab$$
.

A recursive formula for the shuffle product is given below.

Any linear operation whose dual sends polynomials in  $k\langle OT_C \rangle$  to polynomials (or tensor products of these) is well defined on infinite LB-series by such dualisation.

#### Linear algebraic operations.

+: 
$$LB(C) \times LB(C) \rightarrow LB(C)$$
 (addition)  
·:  $k \times LB(C) \rightarrow LB(C)$  (scalar multiplication).

These are computed as  $\langle \alpha + \beta, w \rangle = \langle \alpha, w \rangle + \langle \beta, w \rangle$  and  $\langle c \cdot \alpha, w \rangle = c \cdot \langle \alpha, w \rangle$ . Note that  $\mathfrak{g}_{LB} \subset LB(C)$  is a linear subspace closed under these operations,  $G_{LB} \subset LB(C)$  is *not* a linear subspace.

## 4.2 Operations on Forests Computed by Recursions in a Magma

Similar to the case of trees, Sect. 3.2, many recursion formulas for forests are suitably formulated in terms of magmatic products on forests. Let  $B^-$ :  $OT_C o OF_C$  denote the removal of the root, sending a tree to the forest containing the branches of the root, and for every  $c \in C$  define  $B_c^+$ :  $OF_C \to OT_C$  as the addition of a root of colour c to a forest, producing a tree, example

$$B^{-}(\overset{1}{\lor}) = \overset{1}{\lor}, \quad B_{\circ}^{+}(\overset{1}{\lor}) = \overset{1}{\lor}.$$

**Definition 13** (*Magmatic products on*  $OF_C$ ) For every  $c \in C$ , define a product  $\times_c : OF_C \times OF_C \to OF_C$  as

$$\omega_1 \times_c \omega_2 := \omega_1 B_c^+(\omega_2). \tag{38}$$

In the special case where  $C = \{\bullet\}$  contains just one element, then  $B^+ \colon \mathrm{OF} \to \mathrm{OT}$  is 1–1, sending the above product on forests to the Butcher product on trees;  $B^+(\omega_1 \times_{\bullet} \omega_2) = B^+(\omega_1) \times B^+(\omega_2)$ . Thus, in this case  $\{\mathrm{OF}, \times_{\bullet}\} \cong \{\mathrm{OT}, \times\} \cong \mathrm{Magma}(\{\bullet\})$ .

For a general C we have that any  $\omega \in OF_C \setminus \mathbb{I}$  has a unique decomposition

$$\omega = \omega_L \times_c \omega_R, \quad c \in C, \quad \omega_L, \omega_R \in OF_C.$$
 (39)

The set of forests  $OF_C$  is freely generated from  $\mathbb{I}$  by these products, e.g.

$$\forall \vec{b} = (\mathbb{I} \times_{\mathbb{Q}} ((\mathbb{I} \times_{\bullet} \mathbb{I}) \times_{\bullet} \mathbb{I})) \times_{\mathbb{Q}} (\mathbb{I} \times_{\bullet} \mathbb{I}).$$

Thus, there is a 1–1 correspondence between  $OF_C$  and binary trees where the internal nodes are coloured with C. We may take the binary tree representation as the *definition* of  $OF_C$  and express any computation in terms of this.

**Definition 14** (*Magmatic definition of*  $OF_C$ ) Given a set C, the ordered forests  $OF_C$  are defined recursively as

$$\mathbb{I} \in \mathrm{OF}_C \tag{40}$$

$$\omega = \omega_L \times_C \omega_R \in OF_C$$
 for evey  $\omega_L, \omega_R \in OF_C$  and  $c \in C$ . (41)

 $OF_C$  has the following operations:

is Empty:  $OF_C \to bool$ , defined by is Empty( $\mathbb{I}$ ) = 'true', otherwise 'false'.

Left:  $OF_C \rightarrow OF_C$ , defined by  $Left(\omega_L \times_c \omega_R) = \omega_L$ .

Right:  $OF_C \to OF_C$ , defined by  $Right(\omega_L \times_c \omega_R) = \omega_R$ .

Root: OF<sub>C</sub>  $\rightarrow$  C, defined by Root( $\omega_L \times_c \omega_R$ ) = c.

Left( $\mathbb{I}$ ), Right( $\mathbb{I}$ ) and Root( $\mathbb{I}$ ) are undefined.

Any operation on forests can be expressed in terms of these. We can define ordered trees as the subset  $OT_C \subset OF_C$ 

$$OT_C := \{ \tau \in OF_C : Left(\tau) = \mathbb{I} \},$$

and in particular the nodes  $C \subset OF_C$  are identified as  $C \cong \{\mathbb{I} \times_c \mathbb{I}\}$ . From this we define  $B^- \colon OT_C \to OF_C$  and  $B_c^+ \colon OF_C \to OT_C$  as

$$B^{-}(\tau) = \text{Right}(\tau) \tag{42}$$

$$B_c^+(\omega) = \mathbb{I} \times_c \omega. \tag{43}$$

The Butcher product of two trees  $\tau, \tau' \in OT_C$ , where  $c = Root(\tau), c' = Root(\tau')$  is

$$\tau \times \tau' := B_c^+(B^-(\tau) \times_{c'} B^-(\tau')).$$

#### 4.3 Combinatorial Functions on Ordered Forests

The *order* of  $\omega \in OF_C$ , denoted  $|\omega| \in \mathbb{N}$ , counts the number of nodes in the forest. It is computed by the recursion

$$|\mathbb{I}| = 0 \tag{44}$$

$$|\omega_L \times_{\bullet} \omega_R| = |\omega_L| + |\omega_R| + 1. \tag{45}$$

This counts the number of nodes in  $\omega$ .

The *ordered forest factorial*, denoted  $\omega_i \in \mathbb{N}$  is defined by the recursion

$$\mathbb{I}_{i} = 1 \tag{46}$$

$$\omega_{i} = (\omega_{I} \times_{\bullet} \omega_{R})_{i} = |\omega| \cdot \omega_{I}_{i} \cdot \omega_{R}_{i}. \tag{47}$$

We will see that the ordered factorial is important for characterising the flow map (exact solution) of a differential equation. This is a generalisation of the more well-known *tree factorial function for un-ordered trees*, which is denoted  $\tau$ ! and defined by the recursion

$$\bullet! = 1$$

$$\tau! = |\tau| \cdot \tau_1! \cdot \tau_2! \cdots \tau_n!$$

for  $\tau = B^+(\tau_1 \tau_2 \cdots \tau_p)$ .

The relationship between the classical (unordered) and the ordered tree factorial functions is

$$\sigma(\tau) \sum_{\tau' \sim \tau} \frac{1}{\tau';} = \frac{1}{\tau!},$$

where the sum runs over all ordered trees that are equivalent under permutation of the branches and  $\sigma(\tau)$  is the symmetry factor of the tree. This identity can be derived from the relationship between classical B-series and LB-series discussed in Sect. 4.1 of [22], by comparing the exact flow maps  $\exp^*(\bullet)$  in the two cases. We omit details.

Example 10

$$1/V_i + 1/V_i = \frac{1}{12} + \frac{1}{24} = \frac{1}{8} = 1/V!$$

and

$$2\left(1/\mathbf{V}_{i}^{\mathbf{I}}+1/\mathbf{V}_{i}^{\mathbf{I}}+1/\mathbf{V}_{i}^{\mathbf{I}}\right)=2\left(\frac{1}{40}+\frac{1}{60}+\frac{1}{120}\right)=\frac{1}{10}=1/\mathbf{V}_{i}^{\mathbf{I}}.$$

| ω            | ω;  | ω            | ω;  | ω           | ω   |
|--------------|-----|--------------|-----|-------------|-----|
|              |     |              |     |             |     |
| I            | 1   | . I          |     | I           |     |
| •            | 1   | V            |     | J           | 20  |
| •            |     | <b>.</b>     | 60  | • •         |     |
| <b>.</b>     | 2   | •            |     | •• 🗸        | 20  |
| ••           | 2   | <b>4</b> •   |     | •           |     |
| •            |     | ¥            |     | <b>†</b> †  |     |
|              |     | •            | 120 | <b>.</b>    | 30  |
|              | 6   | <b>\</b> /   |     | <b>\</b> /1 |     |
| V            |     | Ĭ            | 120 | • •         | 30  |
| *            | 6   |              | 120 | .II         | 15  |
| .1           | 2   | I            |     | •••         | 1.5 |
| ••           | 3   | • •          |     | IJ          | 30  |
| Ī.           | 6   | V            | 40  | •           |     |
|              |     | • •          |     | ••••        | 30  |
| •••          | 6   | • >          |     | •           |     |
| I            |     | ¥            | 40  | +           |     |
|              |     | † †          |     | •           |     |
| <b>.</b>     | 24  | • • •        |     | ••          | 120 |
| • •          |     | •            | 40  | <b>\</b>    |     |
| ¥            |     | I            |     | Ī.          | 120 |
| •            | 24  |              | 40  | • • •       | 120 |
| †            |     | •            |     | . I         |     |
| •\*          |     | •            |     | V.          | 60  |
| •            | 12  | <b>,</b>     |     | •           |     |
| I.           |     | ¥            | 120 | 4,          |     |
| V            | 24  | • •          |     | ٧.          | 120 |
| • •          |     | *,           |     | <b>*</b> •• |     |
| $\checkmark$ | 24  | •            | 120 | ¥ .         | 120 |
| •            |     | . 1 .        |     | Ī           |     |
| +            |     |              | 60  | 1           | 40  |
| ••           | 8   | •            | -   | •           | 40  |
| • •          |     | 4            |     | .V.         | 40  |
| • •          | 8   | $\checkmark$ | 120 | ••          |     |
| II           | 8   | <b>~ ?</b> ? | •   | •••         | 40  |
|              | o . | ~            | 120 | •           |     |
| •••          | 8   | •            |     | ••••        | 40  |
| •            |     | †            |     | •           |     |
| <b>+</b>     |     | .1           | 30  | •           |     |
| ••           | 24  | • •          | 30  | •••         | 120 |
| • •          |     | V            |     | V.,         | 120 |
| ¥ •          | 24  | • •          | 30  | •           | 120 |
| •            |     | •            |     | J.,         | 60  |
| •••          | 12  | • •          |     | •           |     |
| <b>İ.</b> .  | 24  | • ¥          | 15  | ••••        | 120 |
| •••          | 24  | •            |     | •••••       | 120 |
| ••••         | 24  | <b>†</b> ,   |     |             |     |
| Ī            |     | • ¥          | 30  |             |     |
| I            |     | .\!/         | 20  |             |     |
| Ţ            |     | • *          | 30  |             |     |
| Ţ            | 120 | Ţ            |     |             |     |
| • •          |     | II           | 20  |             |     |
| ¥            |     | •• •         |     |             |     |
| •            |     | 1V           | 20  |             |     |

For the tall tree  $\tau = \mathbb{I} \times_{\bullet} (\mathbb{I} \times_{\bullet} (\mathbb{I} \times_{\bullet} (\mathbb{I} \times_{\bullet} (\mathbb{I} \times_{\bullet} \mathbb{I}))))$  we have  $\tau_{\mathfrak{i}} = \tau! = |\tau|!$ . Table 1 on p. 25 contains the ordered forest factorial for all ordered forests up to and including order 5.

#### 4.4 Concatenation and De-concatenation

Concatenation and de-concatenation

$$: k\langle OT_C \rangle \otimes k\langle OT_C \rangle \to k\langle OT_C \rangle$$

$$\Delta : k\langle OT_C \rangle \to k\langle OT_C \rangle \otimes k\langle OT_C \rangle$$

form a pair of dual operations, just like  $\sqcup \sqcup$  and  $\Delta_{\sqcup \sqcup}$  in (37). On monomials  $\omega \in OF_C$  these are given by

$$\omega \cdot \omega' = \omega \omega'$$

$$\Delta_{\cdot}(\omega) = \sum_{\substack{\omega_1, \omega_2 \in OF_C \\ \omega_1, \omega_2 = \omega}} \omega_1 \otimes \omega_2,$$

thus for  $\omega = \tau_1 \tau_2 \cdots \tau_k, \tau_1, \dots, \tau_k \in OT_C$  we have

$$\Delta_{\cdot}(\omega) = \omega \otimes \mathbb{I} + \mathbb{I} \otimes \omega + \sum_{j=1}^{k} \tau_1 \cdots \tau_j \otimes \tau_{j+1} \cdots \tau_k.$$

Recursive formulas, where  $\widetilde{\omega} \in OF_C$ ,  $\omega = \omega_L \times_c \omega_R$  are

$$\widetilde{\omega} \cdot \mathbb{I} = \widetilde{\omega} \tag{48}$$

$$\widetilde{\omega} \cdot \omega = (\widetilde{\omega} \cdot \omega_L) \times_c \omega_R \tag{49}$$

and

$$\Delta_{\cdot}(\mathbb{I}) = \mathbb{I} \otimes \mathbb{I} \tag{50}$$

$$\Delta_{\cdot}(\omega) = \Delta_{\cdot}(\omega_L) \cdot (\mathbb{I} \otimes (\mathbb{I} \times_c \omega_R)) + \omega \otimes \mathbb{I}. \tag{51}$$

See Table  $2^8$  on p. 27 for deconcatenation of all ordered forests up to and including order 4.

<sup>&</sup>lt;sup>8</sup>Note that the number under the terms are the coefficients to the terms.

**Table 2** Deconcatenation and deshuffle for ordered forest up to and including order 4. Note that the numbers under the terms are the coefficients to the terms

| ω         | Δ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\it \Delta_{oxdot}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I         | $\mathbb{I}\otimes\mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbb{I}\otimes\mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| •         | $\mathbb{I} \otimes \underset{\bullet}{+} \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbb{I} \otimes_{\bullet} + \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| I         | $\mathbb{I} \otimes \mathbb{I} + \mathbb{I} \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathbb{I} \otimes \P + \P \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ••        | $\mathbb{I} \otimes \hspace{0.1cm} + \hspace{0.1cm} \otimes \hspace{0.1cm} + \hspace{0.1cm} \otimes \hspace{0.1cm} + \hspace{0.1cm} \otimes \hspace{0.1cm} \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ·<br>V    | I $\otimes$   +   $\otimes$ I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I ⊗   +   ⊗ I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| V         | $\mathbb{I} \otimes \bigvee + \bigvee \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mathbb{I} \otimes \bigvee + \bigvee \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | I ⊗ ] + ⊗] + ]⊗ I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\mathbb{I} \otimes \hspace{0.1cm} 0$ |
| .I<br>I.  | $\mathbb{I} \otimes \boxed{\hspace{0.1cm} + \hspace{0.1cm} \boxed{\hspace{0.1cm}} \otimes \hspace{0.1cm} + \hspace{0.1cm} \boxed{\hspace{0.1cm}} \otimes \hspace{0.1cm} \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathbb{I} \otimes \boxed{ \ + \ \otimes \ + \ \otimes \ + \ \otimes \ + \ } \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •••       | $\mathbb{I} \otimes \hspace{0.1cm} + \hspace{0.1cm} \otimes \hspace{0.1cm} + \hspace{0.1cm} \otimes \hspace{0.1cm} + \hspace{0.1cm} \otimes \hspace{0.1cm} + \hspace{0.1cm} \otimes \hspace{0.1cm} \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | □ ⊗ + ⊗ + ⊗ + ⊗ □<br>3 • • • 3 • • • • □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| •         | <b>! !</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>‡ ‡</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1         | $\mathbb{I} \otimes \boxed{+} \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I ⊗ I +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | $\mathbb{I} \otimes \bigvee + \bigvee \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mathbb{I} \otimes \bigvee + \bigvee \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | $\mathbb{I} \otimes \bigvee + \bigvee \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mathbb{I} \otimes \bigvee^{\bullet} + \bigvee^{\bullet} \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| V         | $\mathbb{I} \otimes \bigvee^{\bullet} + \bigvee^{\bullet} \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbb{I} \otimes \bigvee + \bigvee \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\forall$ | $\mathbb{I}\otimes {\color{red} \bullet} + {\color{red} \bullet} \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\mathbb{I} \otimes {\color{red} \bullet} + {\color{red} \bullet} \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1         | I ⊗ I + ⊗ I + I ⊗ I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathbb{I} \otimes \hspace{-0.1cm} -0.1c$                                                                                                                                           |
|           | $\mathbb{I} \otimes \bigvee + \otimes \bigvee + \bigvee \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\mathbb{I} \otimes \bigvee + \otimes \bigvee + \bigvee \otimes + \bigvee \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | $\mathbb{I} \otimes \boxed{\mid} + \boxed{\otimes} \boxed{\mid} + \boxed{\mid} \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\mathbb{I}\otimes \boxed{\rule{0mm}{3mm}}+\boxed{\rule{0mm}{3mm}}\otimes \boxed{\rule{0mm}{3mm}}+\boxed{\rule{0mm}{3mm}}\otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | $\mathbb{I} \otimes \hspace{.1cm} .1c$ | $\mathbb{I} \otimes                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | I ⊗ +   ⊗ +   ⊗ I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\mathbb{I} \otimes \mathbb{I} + \otimes \mathbb{I} + \mathbb{I} \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| V.        | $\mathbb{I}\otimes\bigvee +\bigvee \otimes +\bigvee \otimes \mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ••••      | - · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I⊗ + ⊗ + ⊗ + ⊗ + ⊗ I<br>•••• 6 • • • • • • • ○ I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Fig. 1 See Table 2 on p. 27 for more examples on deshuffle

The concatenation antipode S, defined in (23), is computed by the recursion

$$S_{\cdot}(\mathbb{I}) = \mathbb{I} \tag{52}$$

$$S_{\cdot}(\omega_L \times_c \omega_R) = -B_c^+(\omega_R) \cdot S_{\cdot}(\omega_L). \tag{53}$$

S. reverse the order of the trees in the forest and negate if there is a odd number of trees in the the forest. See Table 2 on p. 27.

## 4.5 Shuffle and De-shuffle

The duality of  $\Delta_{\sqcup \sqcup}$  and  $\sqcup \sqcup$  is given in (37). A recursive formula for  $\omega \sqcup \sqcup \widetilde{\omega}$  where  $\omega, \widetilde{\omega} \in \operatorname{OF}_C$  is obtained from the decomposition  $\omega = \omega_L \times_c \omega_R$ ,  $\widetilde{\omega} = \widetilde{\omega}_L \times_{\widetilde{c}} \widetilde{\omega}_R$  as

$$\mathbb{I} \coprod \omega = \omega \coprod \mathbb{I} = \omega \tag{54}$$

$$\omega \sqcup \widetilde{\omega} = (\omega_L \sqcup \widetilde{\omega}) \times_{\mathcal{C}} \omega_R + (\omega \sqcup \widetilde{\omega}_L) \times_{\widetilde{\mathcal{C}}} \widetilde{\omega}_R, \tag{55}$$

while (18)–(20) yields the recursion

$$\Delta_{\perp \perp}(\mathbb{I}) = \mathbb{I} \otimes \mathbb{I} \tag{56}$$

$$\Delta_{\perp \perp}(\omega) = \Delta_{\perp \perp}(\omega_L) \cdot ((\mathbb{I} \times_c \omega_R) \otimes \mathbb{I} + \mathbb{I} \otimes (\mathbb{I} \times_c \omega_R))). \tag{57}$$

The shuffle product  $\sqcup \sqcup$  of two forests is the summation over all permutations of the trees in the forests while preserving the ordering of the trees in each of the initial forests (Fig. 1).

## 4.6 Grafting, Pruning, GL Product and GL Coproduct

These are four closely related operations. Grafting is defined in (13)–(14) for trees and (28)–(31) for forests (here u is a tree). Grafting can also be expressed directly through the magmatic definition of  $OF_C$ . First we need to decompose  $\omega \in OF_C \setminus \mathbb{I}$  as a concatenation of a tree on the left with a forest on the right,  $\omega = \tau' \cdot \omega'$ . We define

Fig. 2 See Table 3 on p. 30 and Table 4 on p. 31 for more examples

$$\Delta_{\rhd} \overset{\circ}{\Diamond} \checkmark = \mathbb{I} \otimes \overset{\circ}{\Diamond} \checkmark + \otimes \overset{\circ}{\Diamond} + \overset{\circ$$

Fig. 3 See also Table 4 on p. 31

the decomposition  $\tau' = \text{LeftTree}(\omega)$ ,  $\omega' = \text{RightForest}(\omega)$  through the following recursions, where  $\tau \in \text{OT}_C$  and  $\omega = \omega_L \times_c \omega_R$ :

$$LeftTree(\tau) = \tau \tag{58}$$

$$LeftTree(\omega) = LeftTree(\omega_L)$$
 (59)

$$RightForest(\tau) = \mathbb{I}$$
 (60)

$$RightForest(\omega) = RightForest(\omega_L) \times_c \omega_R. \tag{61}$$

The general recursion for grafting of forests becomes

$$\mathbb{I} \rhd \omega = \omega \tag{62}$$

$$\tau \rhd \mathbb{I} = 0 \tag{63}$$

$$\tau \rhd (\omega_L \times_c \omega_R) = (\tau \rhd \omega_L) \times_c \omega_R + \omega_L \times_c (\tau \cdot \omega_R + \tau \rhd \omega_R) \tag{64}$$

$$(\tau \cdot \omega) \triangleright \widetilde{\omega} = \tau \triangleright (\omega \triangleright \widetilde{\omega}) - (\tau \triangleright \omega) \triangleright \widetilde{\omega}, \tag{65}$$

for all  $\tau \in OT_C$ ,  $\omega$ ,  $\widetilde{\omega}$ ,  $\omega_L$ ,  $\omega_R \in OF_C$ ,  $c \in C$ . See Table 3 on p. 30 for examples.

The associative product \* defined in (32) is, in the context of polynomials of ordered trees  $k\langle OT_C\rangle$ , called the (ordered) Grossman–Larsson product [22], GL product for short. On  $k\langle OT_C\rangle$  (and even on LB(C)), we can compute \* from grafting as

$$\omega_1 * \omega_2 = B^-(\omega_1 \rhd B^+(\omega_2)).$$

The colour of the added root is irrelevant, since this root is later removed by  $B^-$ . See Table 3 on p. 30 for examples (Figs. 2 and 3).

The dual of \*, the GL coproduct  $\Delta_*$ :  $k\langle OF_C\rangle \to k\langle OF_C\rangle \otimes k\langle OF_C\rangle$  has several different characterisations, in terms of left admissible cuts of trees and by recursion [22]. For  $\omega = \omega_L \times_c \omega_R$  the recursion is

$$\Delta_*(\mathbb{I}) = \mathbb{I} \otimes \mathbb{I} \tag{66}$$

$$\Delta_*(\omega) = \omega \otimes \mathbb{I} + \Delta_*(\omega_L) \sqcup \!\!\! \perp \times_{\scriptscriptstyle C} \Delta_*(\omega_R), \tag{67}$$

**Table 3** Grafting and Grossman-Larsson product for all combinations of non-empty trees with total order up to and including order 4. Note that the numbers under the terms are the coefficients to the terms

| $\omega_1 \otimes \omega_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\omega_1 \rhd \omega_2$                | $\omega_1 * \omega_2$                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|
| **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ī                                       | Î +                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + 🗸                                     | + • •                                   |
| $ begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | +                                       |
| · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .I·I.<br>V                              | + + +                                   |
| •• <sup>⊗</sup> •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | + + + + + + + + + + + + + + + + + + + + |
| . ⊗ Î                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>!</b>                                | + + + + +                               |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V+V+                                    | V-V-VV                                  |
| ]⊗]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +                                       | ]<br> - \                               |
| ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - · · · · · · · · · · · · · · · · · · · | 1+. V + 11+1                            |
| ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + 1 + 1                                 | Y · V · J · V · J                       |
| $ $ $\otimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y                                       |                                         |
| <b>V</b> ⊗.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Y                                       | Y.v.                                    |
| . ⊗ <b>1</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | 11-1                                    |
| $ begin{array}{c}  beg$ | √.                                      | V-1-II-1                                |
| $ begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +                                       | 1 + 1 - + 1                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ţ                                       | Ţ. <u>]</u> . II. I.                    |
| · * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | + + +                                   | + + + + + + + + + + + + + + + + + + + + |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + 11 + 1                                | + 1 + 1 + 1 + 1 + 1 + 1                 |
| •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>\</b>                                | + 3 + 3 +                               |

**Table 4** Pruning and dual Grossman-Larsson coproduct for all forests up to and including order 4. Note that the numbers under the terms are the coefficients to the terms

| ω        | $\Delta_{ hd}(\omega)$                                                                                                    | $arDelta_*(\pmb{\omega})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I        | I × I                                                                                                                     | I N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| •        | I ⊗                                                                                                                       | I . • • • I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1        | <sub>I</sub> ⊗                                                                                                            | I $\otimes$ + $\bullet$ + $\bullet$ $\bullet$ T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ••       | <b>I</b> ⊗ ●                                                                                                              | I •• • • • I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                           | 1 0 + 0 + 0 + 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| V        |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| j        | I                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.       | I                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ••       | π <b>*•• *••</b> ⊗                                                                                                        | I ••• • •• • • • • • I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| •••      | I ••••  ↑                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | I ⊗   +   ⊗   +   ⊗   +   ⊗                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Y        |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| V.       |                                                                                                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ţ.       | $\mathbb{I} \otimes \bigvee + \mathbb{I} \otimes \bigvee + \mathbb{I} \otimes \mathbb{I} + \mathbb{I} \otimes \mathbb{I}$ | $\begin{bmatrix} \\ \\ \end{bmatrix} \\ \begin{bmatrix} \\ $ |
| <b>\</b> | I 8 + 8 + 8 + 8 + 8                                                                                                       | $\begin{smallmatrix}1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>→</b> |                                                                                                                           | $\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| V        | I ⊗                                                                                                                       | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| II       |                                                                                                                           | $\begin{bmatrix} 2 & & & & \\ & & & & \\ & & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & & \\ & & & \\ & & & \end{bmatrix} + \begin{bmatrix} 2 & & & & \\ & & & \\ & & & \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | 2                                                                                                                         | 2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>.</u> | _                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ٧.       | I ⊗ V + ⊗ I + ⊗                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.       | I ⊗ ••• + ⊗                                                                                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>!</b> | I 0 + 0                                                                                                                   | 2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ••••     | <b>I</b> ⊗ ●●●●                                                                                                           | ⊗ + ⊗ + ⊗ + ⊗ + ⊗ I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

where  $\sqcup \sqcup \times_c : k\langle \operatorname{OT}_C \rangle \otimes k\langle \operatorname{OT}_C \rangle \otimes k\langle \operatorname{OT}_C \rangle \to k\langle \operatorname{OT}_C \rangle \otimes k\langle \operatorname{OT}_C \rangle$  denotes

$$(\alpha \otimes \widetilde{\alpha}) \coprod \times_{c} (\omega \otimes \widetilde{\omega}) := (\alpha \coprod \omega) \otimes (\widetilde{\alpha} \times_{c} \widetilde{\omega}).$$

The grafting operation  $\triangleright$ :  $k\langle OT_C \rangle \times k\langle OT_C \rangle \to k\langle OT_C \rangle$  has a right sided dual we call *pruning*,  $\Delta_{\triangleright}$ :  $k\langle OT_C \rangle \to k\langle OT_C \rangle \times k\langle OT_C \rangle$ , dual in the usual sense

$$\langle \alpha \rhd \beta, \omega \rangle = \langle \alpha \otimes \beta, \Delta_{\rhd}(\omega) \rangle.$$

The pruning is characterised by admissible cuts in [16], or it can be computed by the following recursion involving both itself and the GL coproduct,

$$\Delta_{\triangleright}(\mathbb{I}) = \mathbb{I} \otimes \mathbb{I} \tag{68}$$

$$\Delta_{\triangleright}(\omega_L \times_c \omega_R) = \Delta_{\triangleright}(\omega_L) \sqcup \!\!\! \perp \times_c \Delta_*(\omega_R). \tag{69}$$

#### The Lie-Butcher group and the antipode $S_*$ .

The product in the Lie-Butcher group  $G_{LB}$  is the GL product  $\alpha, \beta \mapsto \alpha * \beta$ . The inverse is given by the *antipode* (with respect to \*-product), an endomorphism  $S_* \in \operatorname{End}(\mathbb{k}\langle \operatorname{OT}_C \rangle)$  such that

$$\langle \alpha^{*-1}, \omega \rangle = \langle \alpha, S_*(\omega) \rangle.$$
 (70)

A recursive formula for  $S_*$  is found in [22]. In our magmatic representation of forests we have

$$S_*(\omega_L \times_c \omega_R) = - \coprod ((S_* \otimes I)(\Delta_*(\omega_L) \coprod \times_c \Delta_*(\omega_R))). \tag{71}$$

Table 5 on p. 33 contain the the result of applying  $S_*$  to all ordered forests up to and including order 4.

## 4.7 Substitution, Co-substitution, Scaling and Derivation

A LB-series is an infinite series of forests built from nodes. The substitution law [4, 7, 16, 25] expresses the operation of replacing each node with an entire LB series. Since a node represents a primitive element, it is necessary to require that the LB-series in the substitution must be an element of  $\mathfrak{g}_{LB}$ . The universal property of the free enveloping algebra  $U(\operatorname{postLie}(C))$  implies that for any mapping  $a: C \to \mathscr{P}$  from C into a post-Lie algebra  $\mathscr{P}$ , there exists a unique D-algebra morphism  $!: U(\operatorname{postLie}(C)) \to U(\mathscr{P})$  such that the diagram commutes

**Table 5** Concatenation and Grossman-Larsson antipode map for all forests up to and including order 4. Note that the numbers under the terms are the coefficients to the terms

| ω                                         | S.(\omega) | $S_*(\omega)$                                                        |
|-------------------------------------------|------------|----------------------------------------------------------------------|
| I                                         | I          | I                                                                    |
| •                                         | •          | •                                                                    |
| I                                         | - [        | - ¶ + 2 2 ***                                                        |
| ••                                        | - 1<br>- 1 | ••                                                                   |
|                                           |            |                                                                      |
| $\bigvee$                                 | - 🗸        | - + + + +                                                            |
|                                           | I.         | <b>1.</b>                                                            |
| <b>!.</b>                                 | Ţ          | J                                                                    |
| •••                                       | •••        | •••                                                                  |
| •                                         |            | • •                                                                  |
|                                           | - 🖠        | - + + + + + + + + - + + + + + + + +                                  |
| :<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>: | -          | Y + 1 + V + 1 + V - 3 + 3 + 12                                       |
| Ţ                                         | - 🗸        | 3 3 3 12<br>-V+1+V+1+V-12-13-14+12                                   |
| Ţ.                                        | <u>.</u>   | 2 3 4 12<br>- V + V + II + V - 4 - I - I - I - I - I - I - I - I - I |
| <b>\</b>                                  | •          | - + + + + + + + + + + + + + + + + + + +                              |
| <b>→</b>                                  |            |                                                                      |
| V                                         | ٧.         | V - J - I + 600                                                      |
| II.                                       | <b>!</b>   | 1 - 1 - 2 - 1 - 12                                                   |
|                                           |            | 2 2 2 12                                                             |
|                                           | <u> </u>   |                                                                      |
| Į.                                        |            | <u></u>                                                              |
| V.<br>                                    | V          | • • • • • • • • • • • • • • • • • • • •                              |
| •••                                       | - 1.       | -                                                                    |
| ••••                                      | •••        | - · · · · · · · · · · · · · · · · · · ·                              |

$$C \xrightarrow{\text{inj}} U(\text{postLie}(C))$$

$$\downarrow^{a} \qquad \downarrow!$$

$$\mathscr{P} \xrightarrow{\text{inj}} U(\mathscr{P})$$
(72)

In particular this holds if  $\mathscr{P} = \text{postLie}(C)$ , and it also holds if U(postLie(C)) is replaced with its graded completion LB(C). From this we obtain the algebraic definition of substitution:

**Definition 15** (*Substitution*) Given a mapping  $a: C \to \mathfrak{g}_{LB}$  there exists a unique D-algebra automorphism  $a\star: LB(C) \to LB(C)$  such that the diagram commutes

$$C \xrightarrow{\text{inj}} LB(C)$$

$$\downarrow a \qquad \qquad \downarrow a_{\star}$$

$$\mathfrak{q}_{LB} \xrightarrow{\text{inj}} LB(C).$$

$$(73)$$

This morphism is called *substitution*.

The automorphism property implies that it enjoys many identities such as

$$a \star \mathbb{I} = \mathbb{I} \tag{74}$$

$$a \star (\omega \omega') = (a \star \omega)(a \star \omega') \tag{75}$$

$$a \star (\omega \rhd \omega') = (a \star \omega) \rhd (a \star \omega') \tag{76}$$

$$a \star (\omega * \omega') = (a \star \omega) * (a \star \omega') \tag{77}$$

$$(a \star \otimes a \star)(\Delta_{++}(\omega)) = \Delta_{++}(a \star \omega). \tag{78}$$

For more details, see [16].

As explained earlier, computations with LB-series are done by considering the series together with a pairing on the space of finite series and computations are performed by deriving how the given operation is expressed as an operation on finite series, via the dual. Thus, to compute substitution of infinite series, we need to characterise the dual map, called co-substitution.

**Definition 16** (*Co-substitution*) Given a substitution  $a\star$ : LB(C)  $\to$  LB(C), the *co-substitution*  $a_{\star}^{T}$  is a k-linear map  $a_{\star}^{T}$ : k $\langle OT_{C} \rangle \to$  k $\langle OT_{C} \rangle$  such that

$$\langle a \star \beta, x \rangle = \langle \beta, a_{\star}^{T}(x) \rangle$$

for all  $\beta \in LB(C)$  and  $x \in k\langle OT_C \rangle$ .

A recursive formula for the co-substitution is derived in [16] in the case where  $C = \{\bullet\}$ . A general formula for arbitrary finite C is given here, the proof of this formula is similar to the proof in [16] but we omit it. The general formula for  $a_{\star}^{T}(\omega)$  is based on decomposing  $\omega$  with the de-concatenation coproduct  $\Delta$ , and thereafter

decomposing the second component with the pruning coproduct  $\Delta_{\triangleright}$ . To clarify the notation, the decomposition is as follows

$$(I \otimes \Delta_{\rhd}) \circ \Delta_{\cdot}(\omega) = \sum_{\Delta_{\cdot}(\omega)} \sum_{\Delta_{\rhd}(\omega_{(2)})} \omega_{(1)} \otimes \omega_{(2)(1)} \otimes \omega_{(2)(2)}.$$

With this decomposition, a recursion for  $a_{\star}^T$  is given as  $a_{\star}^T(\mathbb{I}) = \mathbb{I}$  and for  $\omega \in OF_C \setminus \mathbb{I}$ 

$$a_{\star}^{T}(\omega) = \sum_{c \in C} \sum_{\Delta(\omega)} \sum_{\Delta_{\triangleright}(\omega_{(2)})} \left( a_{\star}^{T}(\omega_{(1)}) \times_{c} a_{\star}^{T}(\omega_{(2)(1)}) \right) \langle a(c), \omega_{(2)(2)} \rangle. \tag{79}$$

The recursion is written more compactly as

$$a_{\star}^{T} = \sum_{c \in C} \mu_{\cdot} \circ (\mu_{\times_{c}} \otimes I) \circ (a_{\star}^{T} \otimes a_{\star}^{T} \otimes a(c)) \circ (I \otimes \Delta_{\triangleright}) \circ \Delta_{\cdot},$$

where  $\mu_{\cdot}(\omega \otimes \omega') := \omega \cdot \omega'$ ,  $\mu_{\times_c}(\omega \otimes \omega') := \omega \times_c \omega'$  and  $a(c) : k\langle OT_C \rangle \to k$  denotes  $\omega \mapsto \langle a(c), \omega \rangle$ .

See Table 6 on p. 36 where cosubstitution is calculated for all forests up to and including order 4, assuming *a* is a infinitesimal character.

Since  $a\star$  is compatible with  $\Delta_{\sqcup \sqcup}$  in the sense of (78), it follows that  $a_{\star}^{T}$  is a shuffle homomorphism (a character) satisfying

$$a_{\star}^{T}(\omega \sqcup \omega') = a_{\star}^{T}(\omega) \sqcup a_{\star}^{T}(\omega').$$

**Definition 17** (*Scaling*) For  $t \in k$  define the map  $t(c) = tc : C \to \mathfrak{g}_{LB}$ . The corresponding substitution  $\alpha \mapsto t \star \alpha$  is called *scaling by t*. For a fixed alpha  $t \mapsto t \star \alpha$  defines a curve in LB(C)

Note that  $t \star \omega = t^{|\omega|} \omega$  and hence  $\langle t \star \alpha, \omega \rangle = t^{|\omega|} \langle \alpha, \omega \rangle$  for all  $\omega \in OF_C$ .

**Definition 18** (*Derivation*) The derivative of a LB-series  $\alpha$ , denoted  $D\alpha$  is defined as

$$\langle D\alpha, \omega \rangle = |\omega| \langle \alpha, \omega \rangle.$$

Note that if  $k = \mathbb{R}$  we have  $D\alpha = \frac{d}{dt}\Big|_{t=1} (t \star \alpha)$ .

## 4.8 Exponentials and Logarithms

We have three types of exponential type mappings  $\exp$ ,  $\exp$ ,  $\exp$ ,  $\exp$ . These are all 1–1 mappings with an inverse being a kind of logarithm. In the interpretation of vector fields on Lie groups,  $\exp$  defines the geodesics of the connection and  $\exp$ \* computes the exact flow of a vector field. The third of these,  $\exp$ , computes

**Table 6** Cosubstitution for an infinitesimal character  $\alpha$  for all forest up to and including order 4

| ω                 | $\alpha_{\star}^{T}(\omega)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| •                 | α (•)•<br>• . •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| I                 | $\alpha \stackrel{\bullet}{(\bullet)} \bullet + \alpha \stackrel{\bullet}{(\bullet)} \stackrel{2}{\bullet}$ $\alpha \stackrel{\bullet}{(\bullet)} \stackrel{\bullet}{\bullet} \bullet$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ••                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <u> </u>          | $\alpha(\bullet) \bullet + 2 \alpha(\bullet) \alpha(\bullet) + \alpha(\bullet)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | $\alpha(\bigvee)_{\bullet+\alpha(\bullet)\alpha}, \bullet, \bullet, \bullet$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | $\alpha(\bullet,\bullet) \bullet + \alpha(\bullet)\alpha(\bullet,\bullet) \bullet \bullet + \alpha(\bullet)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.                | $\alpha(\bullet\bullet)\bullet+\alpha(\bullet)\alpha(\bullet)\bullet\bullet+\alpha(\bullet)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| •••               | α( <b>•</b> ) 3 • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | $\alpha(\bullet) \bullet + 2 \alpha(\bullet) \alpha(\bullet) \bullet + \alpha(\bullet)$ $\stackrel{2}{\bullet} + 3 \alpha(\bullet) \stackrel{2}{\bullet} + \alpha(\bullet)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| •••<br>•••<br>••• | $\alpha(\begin{array}{c} \bullet \\ \bullet \\ )\bullet + \alpha(\bullet)\alpha(\bullet)\bullet + \alpha(\bullet)\alpha(\begin{array}{c} \bullet \\ \bullet $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| V                 | $(\bigvee_{\boldsymbol{\alpha}\in\boldsymbol{A}})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}((\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}((\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}((\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{\boldsymbol{\Phi}+\boldsymbol{\alpha}(\boldsymbol{\Phi})}^{2}(\mathbf{\Phi})_{$ |
| <b>↓</b>          | $\alpha(\bigvee) \bullet + \alpha(\bullet) \alpha(\bullet) \bullet + \alpha(\bullet) \alpha(\bigvee) \bullet + \alpha(\bullet) 2 \bullet + \alpha(\bullet) 2 \bullet + \alpha(\bullet) (\bigvee + \bullet) + \alpha(\bullet) 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\checkmark$      | $\alpha( \checkmark \checkmark) \bullet + \alpha( \bullet) \alpha( \checkmark) \bullet + \alpha( \bullet)^2 \alpha( \bullet)^4 \checkmark + \alpha( \bullet)^4 \checkmark \checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\vdots$          | $\alpha (\bullet \bullet) \bullet + \alpha (\bullet) \alpha (\bullet \bullet) \bullet + \alpha (\bullet) \alpha (\bullet) \bullet \bullet + 2 \alpha (\bullet) \overset{2}{\circ} \alpha (\bullet) \bullet \bullet + \alpha (\bullet) \overset{4}{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| .\                | $\alpha(\bullet \bigvee) \bullet + \alpha(\bullet) \alpha(\bullet) \bullet + \alpha(\bullet) \alpha(\bigvee) \bullet \bullet + \alpha(\bullet)^2 \alpha(\bullet) \bullet \bullet + \alpha(\bullet)^4 \bigvee$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| II                | $\alpha$ (a) $\alpha$ (b) $\alpha$ (c) $\alpha$ (d) $\alpha$ (d) $\alpha$ (e) $\alpha$ (e) $\alpha$ (e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | $\alpha$ (ee) $\mathbf{e} + \alpha$ ( $\mathbf{e}$ ) $\alpha$ ( $\mathbf{e}$ ) $\mathbf{e} + \alpha$ ( $\mathbf{e}$ ) $\mathbf{e} + \alpha$ ( $\mathbf{e}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <u>.</u>          | $\alpha(\bullet\bullet) \bullet + \alpha(\bullet)\alpha(\bullet) \bullet + \alpha(\bullet)\alpha(\bullet) \bullet + 2\alpha(\bullet)^{2}\alpha(\bullet) \bullet + \alpha(\bullet)^{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| V.                | $\alpha(\bigvee_{\bullet)\bullet+\alpha(\bullet)\alpha(\bullet)\bullet+\alpha(\bullet)\alpha(\bigvee_{\bullet)\bullet+\alpha(\bullet)}^2\alpha(\bullet)\bullet+\alpha(\bullet)}^2 \stackrel{4}{\sim} \bigvee_{\bullet}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | $\alpha (\bullet \bullet) \bullet + \alpha (\bullet)^2 \alpha (\bullet) \bullet \bullet + \alpha (\bullet)^4 \bullet \bullet$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>!</b>          | $\alpha$ ((•••)•+ $\alpha$ (•) $\alpha$ (•)••+ $\alpha$ (•) $\alpha$ (•)•••+ $\alpha$ (•) $\alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ••••              | 4<br>α(•) •••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

a curve in a Lie group from its development in the Lie algebra i.e. solves an equation of Lie type  $y'(t) = y(t)\gamma(t)$  where  $\gamma(t) = y^{-1}(t)y'(t)$  is the development of y(t) (left logarithmic derivative). We will have a closer look at these three maps and their inverses.

**Definition 19** (*Concatenation exponential*) The *concatenation exponential*  $\exp : \mathfrak{g}_{LB} \to G_{LB}$  is defined as

$$\exp^{\cdot}(\alpha) = \mathbb{I} + \alpha + \frac{1}{2}\alpha\alpha + \frac{1}{6}\alpha\alpha\alpha + \dots = \sum_{j=0}^{\infty} \frac{1}{j!}\alpha^{\cdot j}.$$
 (80)

In the algebra U(postLie(C)), with the grading given by PBW,  $U_0 = \mathbb{k} \mathbb{I}$ ,  $U_1 = \text{postLie}(C)$  and  $U_\ell$  is generated from  $U_1$  by  $\ell$ -fold shuffle products. Since  $\langle \exp^{\cdot}(\alpha), x \sqcup u \rangle = \langle \exp^{\cdot}(\alpha), x \rangle \langle \exp^{\cdot}(\alpha), y \rangle$  we have the following result.

**Lemma 2** For  $\alpha \in \mathfrak{g}_{LB}$ , the concatenation exponential  $\exp(\alpha)$  is the unique element of  $G_{LB}$  such that  $\langle \exp(\alpha), x \rangle = \langle \alpha, x \rangle$  for all  $x \in \operatorname{postLie}(C)$ .

The GL-exponential is similarly defined from the GL product \*:

**Definition 20** (*GL-exponential*) The *GL-exponential*  $\exp^* : \mathfrak{g}_{LB} \to G_{LB}$  is defined as

$$\exp^*(\alpha) = \mathbb{I} + \alpha + \frac{1}{2}\alpha * \alpha + \frac{1}{6}\alpha * \alpha * \alpha + \dots = \sum_{i=0}^{\infty} \frac{1}{j!}\alpha^{*j}.$$
 (81)

Recursive formulas for the coefficients of  $\exp^*(\bullet)$  are found in [18, 24]. Here we derive a remarkably simple recursion formula based on the magmatic decomposition of OF, to our knowledge not found elsewhere:

**Lemma 3** For  $\omega = \omega_L \times_{\bullet} \omega_R$  we have

$$\langle \exp^*(\bullet), \mathbb{I} \rangle = 1 \tag{82}$$

$$\langle \exp^*(\bullet), \omega \rangle = \frac{1}{|\omega|} \cdot \langle \exp^*(\bullet), \omega_L \rangle \cdot \langle \exp^*(\bullet), \omega_R \rangle, \tag{83}$$

or equivalently

$$\langle \exp^*(\bullet), \omega \rangle = \frac{1}{\omega_i},$$
 (84)

where  $\omega_i$  denotes the ordered forest exponential.

*Proof* The derivation  $D \exp^*(\bullet)$  satisfies  $\langle D \exp^*(\bullet), \omega \rangle = |\omega| \langle \exp^*(\bullet), \omega \rangle$ . On the other hand, since the *t*-scaling of the exponential is  $t \star \exp^*(\bullet) = \exp^*(t \bullet)$  we find

$$D \exp^*(\bullet) = \left. \frac{d}{dt} \right|_{t=1} \exp^*(t \bullet) = \exp^*(t \bullet) * \bullet \right|_{t=1} = \exp^*(\bullet) * \bullet = \exp^*(\bullet) (\exp^*(\bullet) \triangleright \bullet),$$

where we in the rightmost equality use (32) and  $\Delta_{\sqcup \sqcup}(\exp^*(\bullet)) = \exp^*(\bullet) \otimes \exp^*(\bullet)$ , since  $\exp^*(\bullet) \in G_{LB}$ . Since  $\omega_L \times_{\bullet} \omega_R = \omega_L(\omega_R \triangleright_{\bullet})$  we find

$$\langle \exp^{*}(\bullet), \omega \rangle = \frac{1}{|\omega|} \cdot \langle D \exp^{*}(\bullet), \omega \rangle = \frac{1}{|\omega|} \cdot \langle \exp^{*}(\bullet)(\exp^{*}(\bullet) \rhd \bullet), \omega_{L}(\omega_{R} \rhd \bullet) \rangle$$
$$= \frac{1}{|\omega|} \cdot \langle \exp^{*}(\bullet), \omega_{L} \rangle \cdot \langle \exp^{*}(\bullet), \omega_{R} \rangle.$$

The exponential is thus given as

$$\exp^*(\bullet) = \sum_{\omega \in OE} \frac{\omega}{\omega_i},\tag{85}$$

which justifies the naming of; as a factorial function.

The computation of  $\exp^*(\alpha)$  for an arbitrary  $\alpha \in \mathfrak{g}_{LB}$  can be done by the substitution: If  $a(\bullet) = \alpha$  then

$$\begin{split} \langle \exp^* \alpha, \omega \rangle &= \langle \exp^* a(\bullet), \omega \rangle = \langle \exp^* (a \star \bullet), \omega \rangle \\ &= \langle a \star \exp^* (\bullet), \omega \rangle = \langle \exp^* (\bullet), a_{\star}^t (\omega) \rangle = \frac{1}{a_{\star}^t (\omega)_{\rm i}}, \end{split}$$

where the forest exponential; is extended to polynomials by linearity.

#### Backward error.

Whereas  $\exp^*$ :  $\mathfrak{g}_{LB} \to G_{LB}$  computes the exact flow operator, the inverse  $\log^*$ :  $G_{LB} \to \mathfrak{g}_{LB}$  inputs a flow map, and computes the vector field generating this flow. In numerical analysis this is called the backward error analysis operator and is an important tool for analysing numerical integrators. The GL-logarithm  $\log^*$  is defined for  $\alpha \in G_{LB}$  as

$$\log^* \alpha = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (\alpha - \delta)^{*n},$$

where  $\delta \in G_{LB}$  is the identity in the Lie–Butcher group, given as  $\langle \delta, \mathbb{I} \rangle = 1$  and  $\langle \delta, \omega \rangle = 0$  for  $\omega \in OF_C \setminus \{\mathbb{I}\}$ . The GL-logarithm can be computed via its dual operation, the *eulerian idempotent*  $e \in End(k\langle OF_C \rangle)$  such that

$$\langle \log^*(\alpha), \omega \rangle = \langle \alpha, e(\omega) \rangle.$$

To compute e, we introduce the augmented GL-coproduct defined as

$$\overline{\Delta}_*(\omega) := \Delta_*(\omega) - \omega \otimes \mathbb{I} - \mathbb{I} \otimes \omega.$$

The recursion for  $\Delta_*(\omega)$  (66)–(67) yields the following recursion for  $\overline{\Delta}_*(\omega)$ :

$$\overline{\Delta}_*(\mathbb{I}) = -\mathbb{I} \otimes \mathbb{I} \tag{86}$$

$$\overline{\Delta}_*(\omega_L \times_c \omega_R) = (\overline{\Delta}_*(\omega_L) + \omega_L \otimes \mathbb{I}) \sqcup \!\!\! \perp \times_c (\overline{\Delta}_*(\omega_R) + \omega_R \otimes \mathbb{I}). \tag{87}$$

The eulerian idempotent is computed as

$$e(\omega) = \sum_{n>1} \frac{(-1)^{n-1}}{n} \coprod_{n} \overline{\Delta}_{*}^{n-1}(\omega),$$

where  $\bigsqcup_n$  is the shuffle of n arguments and  $\overline{\Delta}_*^n$  is the n-fold repeated application of the augmented GL coproduct. See Table 7 on p. 40 for calculations of the eulerian idempotent for all forests up to and including order 4.

Since  $\alpha$  is a character, we obtain the following formula for the backward error

$$\langle \log^*(\alpha), \omega \rangle = \sum_{n \ge 1} \frac{(-1)^{n-1}}{n} \sum_{\overline{\Delta}_*^{n-1}(\omega)} \langle \alpha, \omega_{(1)} \rangle \cdot \langle \alpha, \omega_{(2)} \rangle \cdots \langle \alpha, \omega_{(n)} \rangle.$$
 (88)

#### The development.

For a curve y(t) on a Lie group G, the *development* is a curve  $\gamma(t) \in \mathfrak{g}$  such that  $y'(t) = \gamma(t)y(t)$ , thus  $\gamma(t) = y'(t)y(t)^{-1}$  is given by the logarithmic derivative. There is a corresponding combinatorial operation on  $G_{LB}$ , given by a linear map  $L: k\langle OT_C \rangle \to k\langle OT_C \rangle$  called the *Dynkin operator*, such that

$$\langle \alpha^{-1} \cdot D\alpha, \omega \rangle = \langle \alpha, L(\omega) \rangle$$
 for every  $\alpha \in G_{LB}$ . (89)

**Lemma 4** The Dynkin operator L is computed as a convolution of endomorphisms, L, S,  $D \in \text{End}(\mathcal{H}')$ ,

$$L = S * D := \coprod (S \otimes D) \Delta$$
.

where  $\mathcal{H}'$  is the Hopf algebra on  $k\langle OT_C \rangle$  with shuffle  $\sqcup \sqcup$  as product, de-concatenation  $\Delta$  coproduct and antipode S, and with grading  $|\omega|$  counting nodes in the forest. Explicitly we have

$$L(\omega) = \sum_{\Delta.(\omega)} S_{\cdot}(\omega_{(1)}) \sqcup \omega_{(2)} |\omega_{(2)}|. \tag{90}$$

<sup>&</sup>lt;sup>9</sup>Since the action of differentiation operators composes contravariantly, the order of right and left is swapped in the mapping from LB-series to differential equations on manifolds.

**Table 7** Dynkin map L and Eulerian idempotent e for all forest up to and including order 4. Note that the numbers under the terms are the coefficients to the terms

| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{\omega}{\omega}$ | $\frac{L(\omega)}{L(\omega)}$         | $e(\omega)$                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------|-------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I                       | 0                                     | 0                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                       | •                                     | •                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                       | <u> </u>                              | 1                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ••                      | 0                                     | 0                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i                       | 3                                     | ]<br>- 1 - 1 +                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ٧                       | • • • • • • • • • • • • • • • • • • • |                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .i                      |                                       | 1 - 1                                     |
| \frac{1}{4} | I.                      | + 1                                   | - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1   |
| \frac{1}{4} | •••                     | 0                                     | 0                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i                       | 4                                     | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Y                       | Y<br>4                                |                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ÿ                       | *                                     |                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V                       | 4                                     | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\forall$               | 4                                     |                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 3                                     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .V                      | V V.                                  | • 1 - 1 - 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | II                      | 0                                     | 0                                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | + 1                                   |                                           |
| VV·V, .V·V,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>:</u>                | - + 3                                 | + + + + + + + + + + + + + + + + + + +     |
| 2 4 $\frac{1}{3}$ $\frac{5}{3}$ $\frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | - V + V <sub>3</sub>                  |                                           |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.                      | 2 4                                   | - + +                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | - 1 + 1 2                             | • • • • • • • • • • • • • • • • • • •     |
| 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ••••                    | 0                                     | 0                                         |

Proof

$$\begin{split} \langle \alpha^{-1} \cdot D\alpha, \omega \rangle &= \langle \alpha^{-1} \otimes D\alpha, \Delta.\omega \rangle = \sum_{\Delta.(\omega)} \langle \alpha, S.(\omega_{(1)}) \rangle \langle \alpha, D(\omega_{(2)}) \rangle \\ &= \langle \alpha, S.(\omega_{(1)}) \sqcup \! \sqcup D\omega_{(2)} \rangle = \langle \alpha, (S.*D)(\omega) \rangle. \end{split}$$

Table 7 on p. 40 contain the Dynkin map applied to all ordered forests up to and including order 4.

The inverse of the Dynkin map, denoted evol:  $\mathfrak{g}_{LB} \to G_{LB}$ , yields a formal LB-series solution to equations of Lie type,  $y'(t) = \gamma(t)y(t)$ , for  $y(t) \in G$ , where  $\gamma(t) \in \mathfrak{g}$  is given by a LB-series. In [10] it is proven that

$$evol(\alpha) = \mathbb{I} + \sum_{\substack{n \ge 1 \\ n_j > 0}} \sum_{\substack{n_1 + \dots + n_k = n \\ n_j > 0}} \frac{\alpha_{n_1} * \alpha_{n_2} * \dots * \alpha_{n_k}}{n_1(n_1 + n_2) \cdots (n_1 + n_2 + \dots + n_k)},$$

where  $\alpha = \sum_{k \ge 1} \alpha_k$  and  $|\alpha_k| = k$  and \* is the convolution in  $\mathcal{H}'$ . For  $\omega \in OF_C \setminus \{\mathbb{I}\}$  this yields

$$\langle \operatorname{evol}(\alpha), \omega \rangle = \sum_{n \geq 1} \sum_{\Delta_n^{n-1}(\omega)} \frac{\langle \alpha, \omega_{(1)} \rangle \cdot \langle \alpha, \omega_{(2)} \rangle \cdots \langle \alpha, \omega_{(n)} \rangle}{|\omega_{(1)}| \cdot \left( |\omega_{(1)}| + |\omega_{(2)}| \right) \cdots \left( |\omega_{(1)}| + |\omega_{(2)}| + \cdots + |\omega_{(n)}| \right)},$$

and from this we find the recursion formulae

$$\langle \operatorname{evol}(\alpha), \mathbb{I} \rangle = 1$$
 (91)

$$\langle \operatorname{evol}(\alpha), \omega \rangle = \frac{1}{|\omega|} \sum_{\Lambda(\omega)} \langle \operatorname{evol}(\alpha), \omega_{(1)} \rangle \cdot \langle \alpha, \omega_{(2)} \rangle \quad \text{for } \omega \in \operatorname{OF}_{\mathcal{C}} \setminus \{\mathbb{I}\}.$$
 (92)

## 5 Concluding Remarks

In this paper we have summarized the algebraic structures behind Lie–Butcher series. For the purpose of computer implementations, we have derived recursive formulae for all the basic operations on Lie–Butcher series that have appeared in the literature over the last decade. The simplicity of the recursive formulae are surprising to us. The GL-coproduct, the GL-exponential, the backward error and the inverse Dynkin map are in our opinion significantly simpler in their recursive formulations than the direct.

## 5.1 Programming in Haskell

We are in the process of making a software library for computations with post-Lie algebras and Lie-Butcher series. As we have seen in this paper, many of the structures and operations have nice recursive definitions. Functional programming languages are well suited for this type of implementation. Haskell is one of the most popular functional programming languages, it is named after the logician Haskell B. Curry. The development of Haskell started in 1987 after a meeting at the conference on *Functional Programming Languages and Computer Architecture* (FPCA 87), where the need for common language for research in functional programming languages was recognized. Haskell has since grown into a mature programming language, not only used in functional programming research but also in the industry.

Not only do Haskell encourage recursive definitions of functions, it also has algebraic data types which give us the opportunity to define recursive data types.

Functional programming language will usually result in shorter and more precise code compared to imperative languages. Mathematical ideas are often straightforward to translate into a functional language.

A feature of Haskell that come in handy when working with infinite structures is lazy evaluation, meaning that an expression will not be computed before it is needed. This is an excellent feature for working with Lie-Butcher series, since these are infinite series. The infinite series can only be evaluated on finite data, and when such a computation is requested the system performs the necessary intermediate computations.

Mathematical ideas such as functors and monads are very important concept in Haskell, for example IO in Haskell is implemented as a monad. Another example is the vector space constructor in Haskell is a monad, which makes it very easy to linear extend a function on basis element to a linear function between vector spaces. Two other examples of monads are the free functor and the universal enveloping functor. The elementary differential map of B-series and Lie–Butcher series fits also nicely into this picture.

Finally, we remark that the proof assistant Coq can output Haskell code, so for critical parts of the software one can prove correctness of the implementation in Coq and then output this as verified Haskell code.

#### References

- Benettin, G., Giorgilli, A.: On the hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms. J. Stat. Phys. 74(5–6), 1117– 1143 (1994)
- Butcher, J.C.: Coefficients for the study of Runge-Kutta integration processes. J. Aust. Math. Soc. 3(02), 185–201 (1963)
- Butcher, J.C.: An algebraic theory of integration methods. Math. Comput. 26(117), 79–106 (1972)

- Calaque, D., Ebrahimi-Fard, K., Manchon, D.: Two interacting Hopf algebras of trees: a Hopfalgebraic approach to composition and substitution of B-series. Adv. Appl. Math. 47(2), 282– 308 (2011)
- 5. Cayley, A.: On the theory of the analytical forms called trees. Philos. Mag. 13(19), 4–9 (1857)
- Chapoton, F., Livernet, M.: Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not. 2001(8), 395–408 (2001)
- Chartier, P., Hairer, E., Vilmart, G.: Numerical integrators based on modified differential equations. Math. Comput. 76(260), 1941 (2007)
- 8. Chartier, P., Hairer, E., Vilmart, G.: Algebraic structures of B-series. Found. Comput. Math. **10**(4), 407–427 (2010)
- 9. Dzhumadil'daev, A., Löfwall, C.: Trees, free right-symmetric algebras, free Novikov algebras and identities. Homol. Homotopy Appl. **4**(2), 165–190 (2002)
- 10. Ebrahimi-Fard, K., Gracia-Bondía, J.M., Patras, F.: A Lie theoretic approach to renormalization. Commun. Math. Phys. **276**(2), 519–549 (2007)
- 11. Ebrahimi-Fard, K., Lundervold, A., Mencattini, I., Munthe-Kaas, H.Z.: Post-Lie algebras and isospectral flows. Symmetry Integr. Geom. Methods Appl. (SIGMA) 11(93) (2015)
- 12. Ebrahimi-Fard, K., Lundervold, A., Munthe-Kaas, H.: On the Lie enveloping algebra of a post-Lie algebra. J. Lie Theory **25**(4), 1139–1165 (2015)
- 13. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Vol. 31. Springer series in computational mathematics (2006)
- 14. Hairer, E., Wanner, G.: On the Butcher group and general multi-value methods. Computing 13(1), 1–15 (1974)
- 15. Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-group methods. Acta Numer. **2000**(9), 215–365 (2000)
- Lundervold, A., Munthe-Kaas, H.: Backward error analysis and the substitution law for Lie group integrators. Found. Comput. Math. 13(2), 161–186 (2013)
- Munthe-Kaas, H.: Lie-Butcher theory for Runge-Kutta methods. BIT Numer. Math. 35(4), 572–587 (1995)
- 18. Munthe-Kaas, H.: Runge-Kutta methods on Lie groups. BIT Numer. Math. 38(1), 92–111 (1998)
- Munthe-Kaas, H., Krogstad, S.: On enumeration problems in Lie-Butcher theory. Future Gen. Comput. Syst. 19(7), 1197–1205 (2003)
- Munthe-Kaas, H., Owren, B.: Computations in a free Lie algebra. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 357(1754), 957–981 (1999)
- 21. Munthe-Kaas, H.Z., Lundervold, A.: On post-Lie algebras, Lie-butcher series and moving frames. Found. Comput. Math. 13(4), 583–613 (2013)
- Munthe-Kaas, H.Z., Wright, W.M.: On the Hopf algebraic structure of Lie group integrators. Found. Comput. Math. 8(2), 227–257 (2008)
- 23. Oudom, J.-M., Guin, D.: On the Lie enveloping algebra of a pre-Lie algebra. J. K-Theory K-Theory Appl. Algebra Geom. Topol. 2(01), 147–167 (2008)
- Owren, B., Marthinsen, A.: Runge-Kutta methods adapted to manifolds and based on rigid frames. BIT Numer. Math. 39(1), 116–142 (1999)
- Philippe C., Hairer, E., Vilmart, G.: A substitution law for B-series vector fields. Technical Report 5498, INRIA (2005)
- 26. Reutenauer, C.: Free Lie Algebras. Oxford University Press (1993)
- Vallette, B.: Homology of generalized partition posets. J. Pure Appl. Algebra 208(2), 699–725 (2007)