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Mats Vermeeren

Abstract Kepler’s first law states that the orbit of a point mass with negative energy
in a classical gravitational potential is an ellipsewith one of its foci at the gravitational
center. In numerical simulations of this system one often observes a slight precession
of the ellipse around the gravitational center. Using the Lagrangian structure of
modified equations and a perturbative version of Noether’s theorem, we provide
leading order estimates of this precession for the implicit MidPoint rule (MP) and
the Störmer-Verlet method (SV). Based on those estimates we construct some new
numerical integrators that perform significantly better thanMP and SV on the Kepler
problem.
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1 Introduction

TheKepler problemmodels a pointmassmoving in a classical gravitational potential.
Its Lagrangian is

L (x, ẋ) = 1

2
|ẋ |2 + 1

|x | ,

where |x | denotes the Euclidean norm on RN . The equations of motion are
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ẍ = − x

|x |3 . (1)

It is well known that the orbits of theKepler problemwith negative energy are ellipses
with one of their foci at the origin. Since every orbit lies in a plane, it is sufficient to
study this problem in R

2.
In this work we are interested in numerical integration of the Kepler problem.

Very good integrators for this problem are already available, see for example [3] and
the references therein. Our main objective here is to illustrate methods to analyze and
improve numerical integrators. For the sake of clarity we start from simple methods.
Accordingly, the improved methods we construct will not be competitive compared
with specialized methods available in the literature.

Central in our treatmentwill be the precession or perihelion advance of the numer-
ical orbits, i.e. the slow rotation of the ellipse that the solution traces. For the exact
solution there is no precession, but no common numerical method integrates the
Kepler problem without precession. Using the theory of modified equations, we will
provide leading order estimates of the precession for the Störmer-Verlet method and
the implicit midpoint rule. We will use those estimates to construct some new meth-
ods which are superior for the Kepler problem. This procedure is similar in spirit to
the concept of modifying integrators [1].

Throughout this paper we use the Lagrangian formulation of classical mechan-
ics. We will describe the modified equations using modified Lagrangians and use a
version of Noether’s theorem to analyze the perturbation. We start by mentioning a
few well-known properties of the Kepler problem that will be useful later on.

Proposition 1 The angular momentum L = x1 ẋ2 − ẋ1x2 and the total energy E =
1
2 |ẋ |2 − 1

|x | are constants of motion of the Kepler problem in R
2. Furthermore, the

angular momentum satisfies

L2 = |x ||ẋ |2 − 〈x, ẋ〉2 ,

where the brackets 〈·, ·〉 denote the standard scalar product on R
N .

Proposition 2 Let a and b denote the semimajor and semiminor axes of an orbit
respectively. Then

• the square of the angular momentum equals L2 = b2

a ,
• the energy equals E = −1

2a ,
• the period equals T = 2πa3/2,

• the eccentricity equals e =
√
1 − b2

a2 .

A thorough analytical study of the Kepler problem, including proofs of these
properties, can be found for example in [7, Chap. 3].
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2 Modified Lagrangians

To study the behavior of a numerical method it is often useful to consider the mod-
ified equation, a perturbation of the original differential equation whose solutions
interpolate the discrete solutions. Generally, modified equations are found as formal
power series in the step size of the method. Here we will truncate these power series
after the first nontrivial term. For an introduction to this subject, see [8, Chap. IX]
and the references therein.

It is well-known that the modified equation of a symplectic integrator applied to
a Hamiltonian system is again Hamiltonian. This means that the modified equation
of a variational integrator applied to a Lagrangian system is Lagrangian as well. We
will use a Lagrangian for the modified equation as the basis of our analysis. For its
construction we refer to [15].

The modified equation of a numerical integrator for the Kepler problem describes
a perturbed Kepler problem. Perturbed Kepler problems are very relevant in celestial
mechanics. In particular, one of the classical tests of general relativity is that its
perturbation in the Kepler potential accounts for the precession of the orbit of the
planet Mercury [16] (along with perturbations caused by the gravitational pull of the
other planets). A Hamiltonian treatment of perturbed Kepler problems can be found
for example in [7] or [3].

2.1 Störmer-Verlet Method

The Störmer-Verlet (SV) discretization with step size h of a second order differential
equation ẍ = f (x) is

xk+1 − 2xk + xk−1 = h2 f (xk).

If f (x) = − d
dx U (x), this is the discrete Euler-Lagrange equation for

L SV (xk, xk+1) = 1

2

∣∣∣∣
xk+1 − xk

h

∣∣∣∣
2

− 1

2
U (xk) − 1

2
U (xk+1).

As shown in [15], the modified Lagrangian of second order accuracy is

Lmod,2(x, ẋ) = 1

2
|ẋ |2 − U (x) + h2

24

( 〈
U ′(x), U ′(x)

〉 − 2
〈
ẋ, U ′′(x)ẋ

〉 )
.

By definition its Euler-Lagrange equation agrees with the modified equation with a
defect of order O(h4). In the particular case of the Kepler problem this becomes

Lmod,2(x, ẋ) = 1

2
|ẋ |2 + 1

|x | + h2

24

(
1

|x |4 − 2
|ẋ |2
|x |3 + 6

〈x, ẋ〉2
|x |5

)
. (2)
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Fig. 1 Störmer-Verlet method with 1000 steps of size h = 0.5. Left: numerical solution. Right:
exact solution of the modified equation of second order accuracy. In both images the dashed ellipse
is the exact solution. The initial values are chosen as described in Sect. 6.1

A comparison of the numerical solution and the solution of the modified equation of
second order accuracy is shown in Fig. 1.

2.2 Implicit Midpoint Rule

The second order formulation of the implicit midpoint rule (MP) applied to the
differential equation ẍ = f (x) is

xk+1 − 2xk + xk−1 = h2

2
f

(
xk + xk+1

2

)
+ h2

2
f

(
xk−1 + xk

2

)
.

If f (x) = − d
dx U (x), this is the discrete Euler-Lagrange equation for

L M P(xk, xk+1) = 1

2

∣∣∣∣
xk+1 − xk

h

∣∣∣∣
2

− U

(
xk + xk+1

2

)
.

The modified Lagrangian of second order accuracy is

Lmod,2(x, ẋ) = 1

2
|ẋ |2 + h2

24

( 〈
U ′(x), U ′(x)

〉 + 〈
ẋ, U ′′(x)ẋ

〉 )
.

For the Kepler problem we have

Lmod,2(x, ẋ) = 1

2
|ẋ |2 + 1

|x | + h2

24

(
1

|x |4 + |ẋ |2
|x |3 − 3

〈x, ẋ〉2
|x |5

)
.
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Fig. 2 Implicit midpoint rule with 1000 steps of size h = 0.5. Left: numerical solution. Right:
exact solution of the modified equation of second order accuracy. In both images the dashed ellipse
is the exact solution. The initial values are chosen as described in Sect. 6.1

A comparison of the numerical solution and the solution of the modified equation of
second order accuracy is shown in Fig. 2.

3 Noether’s Theorem with Perturbations

The key observation in our study of the perturbed Kepler problem is that Noether’s
theorem [12, 13] can be extended to describe how perturbations affect conserved
quantities.

Theorem 1 Consider a Lagrange function L : TR
2 → R and a horizontal vector

field ξ on TR
2, i.e. ξ = ξ1

∂
∂x1

+ ξ2
∂

∂x2
with coefficients ξi that are functions TR

2 →
R. Let

ξ (1) =
2∑

i=1

(
ξi

∂

∂xi
+ ξ̇i

∂

∂ ẋi

)

be the first prolongation of ξ , evaluated on solutions of the Euler-Lagrange equations,
i.e. with

ξ̇i =
〈
∂ξi

∂x
, ẋ

〉
+

〈
∂ξi

∂ ẋ
,

(
∂2L

∂ ẋ2

)−1 (
∂L

∂x
− ∂2L

∂x∂ ẋ
ẋ

)〉
.

If

ξ (1)L =
〈
∂G

∂x
, ẋ

〉
+ εF

for some functions F : TR
2 → R and G : R2 → R, and a (small) parameter ε ∈ R,

then on solutions of the Euler-Lagrange equations we have
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d

dt

(〈
∂L

∂ ẋ
, ξ

〉
− G

)
= εF,

where by abuse of notation ξ = (ξ1, ξ2). In particular, if εF = 0, we have a conserved
quantity A := ∂L

∂ ẋ1
ξ1 + ∂L

∂ ẋ2
ξ2 − G.

Proof We have

d

dt

(〈
∂L

∂ ẋ
, ξ

〉
− G

)
=

〈
d

dt

∂L

∂ ẋ
, ξ

〉
+

(
ξ (1)L −

〈
∂L

∂x
, ξ

〉)
−

〈
∂G

∂x
, ẋ

〉

= ξ (1)L −
〈
∂G

∂x
, ẋ

〉
−

〈
∂L

∂x
− d

dt

∂L

∂ ẋ
, ξ

〉
= εF.

�

3.1 The Laplace-Runge-Lenz Vector

Following [9] we consider the Kepler problem and the vector field ξ defined by

ξ1 = −1

2
x2 ẋ2 and ξ2 = x1 ẋ2 − 1

2
ẋ1x2. (3)

On solutions we have

ξ̇1 = −1

2
ẋ2
2 + 1

2

x2
2

|x |3 and ξ̇2 = 1

2
ẋ1 ẋ2 − 1

2

x1x2
|x |3 .

A straightforward calculation then shows that

ξ (1)L =
〈
∂L

∂x
, ξ

〉
+

〈
∂L

∂ ẋ
, ξ̇

〉
= ẋ1

|x | − 〈x, ẋ〉 x1
|x |3 = d

dt

(
x1
|x |

)
.

Hence we can apply the unperturbed Noether theorem (i.e. εF = 0) with G(x) = x1
|x |

and find that

A(x, ẋ) = −ẋ1x2 ẋ2 + x1 ẋ2
2 − x1

|x | = |ẋ |2x1 − 〈x, ẋ〉 ẋ1 − x1
|x |

is a conserved quantity.
The conserved quantity A is the first component of theLaplace-Runge-Lenz (LRL)

vector, which points from the gravitational center to the perihelion and has a mag-
nitude equal to the eccentricity e of the orbit. The second component of the LRL
vector is

B(x, ẋ) = |ẋ |2x2 − 〈x, ẋ〉 ẋ2 − x2
|x |



Numerical Precession in Variational Discretizations … 339

and can be obtained by setting ξ1 = x2 ẋ1 − 1
2 x1 ẋ2 and ξ2 = − 1

2 x1 ẋ1. We denote by
ω = arctan

(
B
A

)
the angle of the LRL vector with the first coordinate axis.

Remark 1 The existence of this conserved quantity is related to the fact that the
three-dimensional Kepler problem possesses an SO(4)-symmetry, rather than just
the obvious SO(3)-symmetry. In suitable coordinates a solution can be “rotated”
into other solutions with the same energy but different angular momentum [11, 14].

3.2 Precession in the Perturbed Kepler Problem

Now consider the perturbed Kepler problem, L = 1
2 |ẋ |2 + 1

|x | + εL (x, ẋ). Note
that this also induces a perturbation in the prolonged vector field, which now reads
ξ (1) + εξ (1), because the quantities ξ̇1 and ξ̇2 contain second derivatives which are
evaluated using the perturbed equations of motion. We call the change in angle of
the LRL vector over one period of the unperturbed system the precession rate.

Proposition 3 If the major axis of an orbit is O(ε)-close to the x2-axis, then the
precession rate is

�ω = −2εT

e

[〈
EL(L ), ξ

〉]
+ O(ε2), (4)

where T is the period of the unperturbed orbit, EL(L ) = ∂L
∂x − d

dt
∂L
∂ ẋ is the Euler-

Lagrange expression for L , ξ = (ξ1, ξ2) is defined by Eq.3, and [ · ] denotes the
average over one period.

Proof Set G = x1
|x | and F = ξ (1)L + ξ (1)L , then

(
ξ (1) + εξ (1)

) (
L + εL

)
=

〈
∂G

∂ ẋ
, ẋ

〉
+ εF + O(ε2),

where ξ (1) + εξ (1) is the first prolongation of ξ on solutions of the Euler Lagrange
equations of the perturbed LagrangianL + εL . Hence by Theorem1 it follows that

d

dt

(〈
∂(L + εL )

∂ ẋ
, ξ

〉
− G

)
= εF + O(ε2),

from which we conclude that

dA

dt
= ε

(
F − d

dt

〈
∂L

∂ ẋ
, ξ

〉)
+ O(ε2)

= ε

(
ξ (1)L + ξ (1)L − d

dt

〈
∂L

∂ ẋ
, ξ

〉)
+ O(ε2). (5)
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Now observe that

ξ (1)L − d

dt

〈
∂L

∂ ẋ
, ξ

〉
=

〈
∂L

∂x
, ξ

〉
+

〈
∂L

∂ ẋ
, ξ̇

〉
− d

dt

〈
∂L

∂ ẋ
, ξ

〉

=
〈
EL(L ), ξ

〉
+ O(ε),

where the error term comes from the fact that ξ̇ is evaluated on the unperturbed
system. We also have that

ξ (1)L =
〈
∂ξ1

∂ ẋ
,EL(L )

〉
ẋ1 +

〈
∂ξ2

∂ ẋ
,EL(L )

〉
ẋ2 =

〈
∂ξ1

∂ ẋ
ẋ1 + ∂ξ2

∂ ẋ
ẋ2,EL(L )

〉
.

For our choice of ξ , defined in Eq.3, we have ∂ξ1
∂ ẋ ẋ1 + ∂ξ2

∂ ẋ ẋ2 = (ξ1, ξ2) = ξ , hence
Eq.5 simplifies to

dA

dt
= 2ε

〈
EL(L ), ξ

〉
+ O(ε2).

The change in angle of the Laplace-Runge-Lenz vector is given by

ω̇ = d

dt

(
arctan

B

A

)
= 1

A2 + B2

(
A
dB

dt
− B

dA

dt

)
.

Choose a coordinate system such that A = O(ε) and B ≥ 0. Then B approximately
equals the eccentricity e and the derivative of the angle of the LRL vector is

ω̇ = − 1

B

dA

dt
+ O(ε2) = −2ε

e

〈
EL(L ), ξ

〉
+ O(ε2).

�

4 Numerical Precession

We now apply Proposition3 to the modified Lagrangians from Sect. 2. This gives us
a leading order estimate of the precession rates of the integrators.

4.1 Störmer-Verlet Scheme

The perturbation term of the truncated modified Lagrangian (Eq.2) is

εL = h2

24

(
1

|x |4 − 2
|ẋ |2
|x |3 + 6

〈x, ẋ〉2
|x |5

)
.



Numerical Precession in Variational Discretizations … 341

In the following we identify ε = h2

24 . We want to evaluate Eq.4. Using the leading
order equations of motion (Eq.1), which are valid up to an error of order O(h2), we
find

EL(L ) = 4
x

|x |6 − 6
|ẋ |2x

|x |5 + 30
〈x, ẋ〉2 x

|x |7 − 12
〈x, ẋ〉 ẋ

|x |5 + O(h2).

Using the fact that 〈x, ξ 〉 = 1
2 (x1 ẋ2 − ẋ1x2)x2 = 1

2Lx2 and 〈ẋ, ξ 〉 = Lẋ2, the leading
order equations of motion, and Proposition1 we obtain

[〈
EL(L ), ξ

〉]
=

[
2

x2
|x |6 − 3

|ẋ |2x2
|x |5 + 15

〈x, ẋ〉2 x2
|x |7 − 12

〈x, ẋ〉 ẋ2
|x |5

]
L + O(h2)

=
[
30

x2
|x |6 + 24E

x2
|x |5 − 15L2 x2

|x |7 + 4
d

dt

ẋ2
|x |3

]
L + O(h2). (6)

The average [·] is taken along the unperturbed orbit, which is periodic, so
[

d
dt

ẋ2
|x |3

]
=

0. For the other terms we have the following Lemma, which corresponds to the
computation of the Cn(e) of [3].

Lemma 1 On solutions of the unperturbed Kepler problem for which the major axis
is the x2-axis there holds

(a)

[
x2

|x |5
]

= a

b5
e,

(b)

[
x2

|x |6
]

= a2

b7

(
3

2
e + 3

8
e3

)
,

(c)

[
x2

|x |7
]

= a3

b9

(
2e + 3

2
e3

)
,

where a and b are the semimajor and semiminor axes of the orbit respectively, and
e is the eccentricity.

Proof Introduce polar coordinates x1 = −r sin θ , x2 = r cos θ , where θ = 0 corre-
sponds to the positive x2-axis. We have

[
x2

|x |k
]

=
[

cosθ

|x |k−1

]
= 1

T

T∫

0

cosθ

|x |k−1
dt.

Using Proposition2 and Kepler’s laws as in [5], we can rewrite this as

[
x2

|x |k
]

= b5−2k

πa4−k

π∫

0

(1 + e cos θ)k−3 cos θ dθ

= b5−2k

πa4−k

π∫

0

∑
j

(
k − 3

j

)
e j cos j+1 θ dθ.
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Whenever, j is even, we have
∫ π

0 cos j+1 θ dθ = 0. For j = 1 and j = 3 we find∫ π

0 cos2 θ dθ = π
2 and

∫ π

0 cos4 θ dθ = 3π
8 . Hence

[
x2

|x |k
]

= b5−2k

πa4−k

(
π

2

(
k − 3

1

)
e + 3π

8

(
k − 3

3

)
e3 + . . .

)
.

The claims now follow by evaluating this expression for k = 5, 6, 7. �

Combining Proposition3, Eq.6, and Lemma1 we find that the precession per
revolution is given by

− 4πa3/2 h2

24

(
30

a2

b7

(
3

2
+ 3

8
e2

)
+ 24

−1

2a

a

b5
− 15

b2

a

a3

b9

(
2 + 3

2
e2

))
b√
a
sgn(L)

+ O(h4)

= −4πab
h2

24

(
30

a2

b7

(
15

8
− 3

8

b2

a2

)
+ 24

−1

2a

a

b5
− 15

b2

a

a3

b9

(
7

2
− 3

2

b2

a2

))
sgn(L)

+ O(h4)

= −πh2

24

(
15

a3

b6
− 3

a

b4

)
sgn(L) + O(h4),

assuming the major axis of the orbit is O(h2)-close to the x2-axis. However, since
both this expression and the perturbed Kepler problem are rotationally symmetric,
we can conclude that statement holds regardless of the orientation of the major axis.

In summary we have the following:

Theorem 2 The numerical precession rate of the Störmer-Verlet method with step
size h is

− sgn(L)
π

24

(
15

a3

b6
− 3

a

b4

)
h2 + O(h4),

where a and b denote the semimajor and semiminor axes of the orbit of the exact
solution and sgn is the sign function. In particular, the precession and the motion
are in opposite directions.

For the example shown in Fig. 1, the precession rate predicted by Theorem2 is
0.067 radians per revolution and the observed numerical precession rate is 0.064
radians per revolution.

4.2 Implicit Midpoint Rule

In exactly the same way as for the Störmer-Verlet method, we obtain the following
result:
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Theorem 3 The numerical precession rate of the midpoint rule with step size h is

sgn(L)
π

12

(
15

a3

b6
− 3

a

b4

)
h2 + O(h4).

In particular, the precession is in the same direction as the motion.

Note that in the leading order this expression differs by exactly a factor −2 from
the expression for the Störmer-Verlet method. We will exploit this in the next section
to construct new integrators.

For the example shown in Fig. 2, the precession rate predicted by Theorem3 is
−0.13 radians per revolution and the observed numerical precession rate is −0.16
radians per revolution.

5 New Integrators

Based on Theorems2 and 3 we propose three new integrators. They all have a pre-
cession rate of order O(h4) instead of O(h2).

5.1 Linear Combination of the Lagrangians

Consider the discrete Lagrangian

L(x j , x j+1) = 2

3
L SV (x j , x j+1) + 1

3
L M P(x j , x j+1)

= 1

2

∣∣∣∣
x j+1 − x j

h

∣∣∣∣
2

− 1

3
U (x j ) − 1

3
U (x j+1) − 1

3
U

(
x j + x j+1

2

)
.

Its Euler-Lagrange equations define an implicit method,

x j+1 − 2x j + x j−1 = −2h2

3
U ′(x j ) − h2

6
U ′

(
x j−1 + x j

2

)
− h2

6
U ′

(
x j + x j+1

2

)
.

We refer to this integrator as the mixed Lagrangian (ML) method. By construction,
this is a variational integrator.

5.2 Lagrangian Composition

Consider the discrete Lagrangians
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L j (xk, xk+1) =
{

L M P(xk, xk+1) = 1
2

∣∣ xk+1−xk

h

∣∣2 − U
( xk+xk+1

2

)
if 3| j,

L SV (xk, xk+1) = 1
2

∣∣ xk+1−xk

h

∣∣2 − 1
2U (xk) − 1

2U (xk+1) otherwise.

We look for a discrete curve (x j ) j that extremizes the action

N∑
j=1

L j (x j−1, x j ) = L SV (x0, x1) + L SV (x1, x2) + L M P(x2, x3) + · · · .

This gives us three different Euler-Lagrange equationswhich are applied for different
values of j mod 3. Indeed D2L j (x j−1, x j ) + D1L j+1(x j , x j+1) simplifies to

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x j+1 − 2x j + x j−1 = −h2

2
U ′

(
x j−1 + x j

2

)
− h2

2
U ′(x j ) if j ≡ 0 mod 3,

x j+1 − 2x j + x j−1 = −h2U ′(x j ) if j ≡ 1 mod 3,

x j+1 − 2x j + x j−1 = −h2

2
U ′

(
x j + x j+1

2

)
− h2

2
U ′(x j ) if j ≡ 2 mod 3.

Hence to determine the evolution we alternate between the Störmer-Verlet method
(for j ≡ 1 mod 3) and two new difference equations. We refer to this integrator as
the Lagrangian composition (LC) method. Strictly speaking the LC method should
be considered as an integrator with step size 3h, but for fair comparison with the
other methods we will still refer to the internal step h as the step size.

This method of composing variational integrators is equivalent to composing the
corresponding symplectic maps [10, Sect. 2.5].

5.3 Composition of the Difference Equations

Alternatively we can compose the difference equations obtained by the implicit
midpoint rule and the Störmer-Verlet method respectively,

⎧
⎪⎨
⎪⎩

x j+1 − 2x j + x j−1 = −h2

2
U ′

(
x j−1 + x j

2

)
− h2

2
U ′

(
x j + x j+1

2

)
if j ≡ 2 mod 3,

x j+1 − 2x j + x j−1 = −h2U ′(x j ) otherwise.

We refer to this integrator as the difference equation composition (DEC) method.
Just like for the LC method, we will abuse terminology and call the internal step h
the step size.

It is not clear if this construction yields a variational method, but numerical exper-
iments show long-term near-conservation of energy and angular momentum. This
seems to be a general phenomenon: also for other potentials U and other varia-
tional integrators, the corresponding DECmethod shows the long-term behavior one
expects from a variational integrator.
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6 Numerical Results

In this section we compare the newmethods of Sect. 5 numerically with the Störmer-
Verlet scheme, the implicit midpoint rule, and two fourth order symplectic methods:
the well-known integrator of Forest and Ruth [6] and Chin’s “C” algorithm which is
especially well-suited for the Kepler problem [2, 4].

6.1 Choice of Initial Values

In all our examples we use the initial values

x(0) = (−3, 0) and ẋ(0) = (0, 0.45).

For the discretizations we need specify x0 = x(0) and x1 ≈ x(h). Our convention is
to choose x1 such that the discrete momentum p0 = −D1L(x0, x1) equals the initial
velocity ẋ(0).

For the composition of difference equations no discrete Lagrangian and hence no
discrete momentum is known. To determine the second initial point x1 in this case
we use the momentum p0 corresponding to the Störmer-Verlet method, because this
is the method we would have used to calculate x1 if x0 was not the first point.

The choice of the initial value x1 does not affect the precession behavior. However,
it can have a significant effect on the error over time. If the initial condition has a
slightly wrong energy, then the period of the numerical solution will have a slight
error as well. This will cause a linearly growing phase shift.

6.2 Precession

Figure3 shows the precession rates on a logarithmic scale for all five methods and
a few choices of step size. It shows that the precession rates of the new methods
behave like h4, compared to h2 for the methods from Sect. 2.

As for the three newmethods, the mixed Lagrangian method beats the Lagrangian
compositionmethod, but the surprisingwinner is the composition of difference equa-
tions.

All our newmethods have smaller precession rates than the fourth order symplectic
integrator of Forest and Ruth [6]. On the other hand, Chin’s fourth order symplectic
“C” algorithm [2, 4] outperforms our methods.
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Fig. 3 Precession rate in radians per revolution for the differentmethodswith step sizes h = 0.0625,
h = 0.125, h = 0.25 and h = 0.5

Fig. 4 Smoothed graph of the error in position over a time interval of length 3000 with step size
h = 0.45. The markers are only for the purpose of identifying the methods, they do not correspond
to individual time steps

6.3 Total Error

The precession rate is not as closely related to the total error as one might expect. In
many cases the numerical solution has a phase shift which contributes significantly
to the total error. For the composition methods LC and DEC this phase shift is highly
dependent on the step size and the initial conditions. Hence the total error growth
for these methods is also sensitive to the choice of step size and initial condition.
This can be seen by comparing Figs. 4 and 5. In these figures we show a long time
calculation with a large step size, leading to large errors. This means that the result
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Fig. 5 The evolution of the error with step size h = 0.5

is useless for practical purposes, but it allows us to visualize the rate of error growth
of the different methods relative to each other.

6.4 Speed

To give a rough comparison of the computational effort required for the different
methods, we list the relative running times of a long time calculation (20000 steps):

Störmer-Verlet (SV) 0.67s Mixed Lagrangian (ML) 23s
MidPoint rule (MP) 22s Difference Equation composition (DEC) 7.9s
Forest-Ruth (FR) 2.0s Lagrangian Composition (LC) 8.2s

Chin C (C) 2.2s

We made a limited effort towards optimizing our implementation, so the given run-
ning times should only be taken as a rough indication. As expected the explicit
methods SV, FR, and C are the fastest. Between those, SV is about three times faster
than the other two. For the composition methods DEC and LC only one out of every
three steps is implicit, hence they are roughly three times faster than MP and ML.

7 Conclusion

Using a modified equation approach, we have studied the precession rates of the
implicit midpoint rule and the Störmer-Verlet method applied to the Kepler problem.
We used the Lagrangian point of view, which lends itself to the use of a perturbed
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version of Noether’s Theorem. The leading order estimates of the precession rate
motivated the construction of three new integrators. They are significantly better than
themethods we started from, but they are clearly outperformed by known specialized
methods.

Our main goal was to elucidate methodology, rather than to obtain competitive
methods. The techniques we used to analyze the integrators can be applied to any
variational integrator and generalized to any order. However, it is not clear in general
if we can use a similar procedure to write the resulting expressions in terms of the
semi-axes of the orbits. Hence further research is needed in order to convert these
ideas into a scheme to improve more advanced methods.
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