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Abstract Geometric numerical integration (GNI) is a relatively recent discipline,
concerned with the computation of differential equations while retaining their geo-
metric and structural features exactly. In this paper we review the rationale for GNI
and review a broad range of its themes: from symplectic integration to Lie-group
methods, conservation of volume and preservation of energy and first integrals.
We expand further on four recent activities in GNI: highly oscillatory Hamilto-
nian systems, W. Kahan’s ‘unconventional’ method, applications of GNI to celestial
mechanics and the solution of dispersive equations of quantum mechanics by sym-
metric Zassenhaus splittings. This brief survey concludes with three themes in which
GNI joined forces with other disciplines to shed light on the mathematical universe:
abstract algebraic approaches to numerical methods for differential equations, highly
oscillatory quadrature and preservation of structure in linear algebra computations.
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1 The Purpose of GNI

Geometric numerical integration (GNI) emerged as a major thread in numerical
mathematics some 25 years ago. Although it has had antecedents, in particular the
concerted effort of the late Feng Kang and his group in Beijing to design structure-
preserving methods, the importance of GNI has been recognised and its scope delin-
eated only in the 1990s.

But we are racing ahead of ourselves. At the beginning, like always in mathemat-
ics, there is the definition and the rationale of GNI. The rationale is that all-too-often
mathematicians concernedwith differential equations split into three groups that have
little in common. Firstly, there are the applied mathematicians, the model builders,
who formulate differential equations to describe physical reality. Secondly, there are
those pure mathematicians investigating differential equations and unravelling their
qualitative features. Finally, the numerical analysts who flesh out the numbers and the
graphics on the bones of mathematical formulation. Such groups tended to operate
in mostly separate spheres and, in particular, this has been true with regards to com-
putation. Discretisation methods were designed (with huge creativity and insight) to
produce rapidly and robustly numerical solutions that can be relied to carry overall
small error. Yet, such methods have often carried no guarantee whatsoever to respect
qualitative features of the underlying system, the very same features that had been
obtained with such effort by pure and applied mathematicians.

Qualitative features come basically in two flavours, the dynamical and the geo-
metric. Dynamical features—sensitivity with respect to initial conditions and other
parameters, as well as the asymptotic behaviour—have been recognised as impor-
tant by numerical analysts for a long time, not least because they tend to impinge
directly on accuracy. Thus, sensitivity with respect to initial conditions and pertur-
bations comes under ‘conditioning’ and the recovery of correct asymptotics under
‘stability’, both subject to many decades of successful enquiry. Geometric attributes
are invariants, constants of the flow. They are often formulated in the language of
differential geometry (hence the name!) and mostly come in three varieties: conser-
vation laws, e.g. Hamiltonian energy or angular momentum, which geometrically
mean that the solution, rather than evolving in some large space R

d , is restricted
to a lower-dimensional manifold M, Lie point symmetries, e.g. scaling invariance,
which restrict the solution to the tangent bundle of some manifold, and quantities
like symplecticity and volume, conservation laws for the derivative of the flow. The
design and implementation of numerical methods that respect geometric invariants
is the business of GNI.

Since its emergence, GNI has become the new paradigm in numerical solution of
ODEs, while making significant inroads into numerical PDEs. As often, yesterday’s
revolutionaries became the new establishment. This is an excellent moment to pause
and take stock. Have all the major challenges been achieved, all peaks scaled, leaving
just a tidying-up operation? Is there still any point to GNI as a separate activity or
should it be considered as a victim of its own success and its practitioners depart to
fields anew—including new areas of activity that have been fostered or enabled by
GNI?
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These are difficult questions and we claim no special authority to answer them in
an emphatic fashion. Yet, these are questions which, we believe, must be addressed.
This short article is an attempt to foster a discussion. We commence with a brief
survey of the main themes of GNI circa 2015. This is followed by a review of recent
and ongoing developments, as well as of some new research directions that have
emerged from GNI but have acquired a life of their own.

2 The Story So Far

2.1 Symplectic Integration

The early story of GNI is mostly the story of symplectic methods. A Hamiltonian
system

ṗ = −∂ H( p, q)

∂q
, q̇ = ∂ H( p, q)

∂ p
, (2.1)

where H : R2d → R is aHamiltonian energy, plays a fundamental role in mechanics
and is known to possess a long list of structural invariants, e.g. the conservation of
the Hamiltonian energy. Yet, arguably its most important feature is the conserva-
tion of the symplectic form

∑d
k=1 d pk ∧ dqk because symplecticity is equivalent to

Hamiltonicity—in other words, every solution of a Hamiltonian system is a sym-
plectic flow and every symplectic flow is locally Hamiltonian with respect to an
appropriate Hamiltonian energy [33].

The solution of Hamiltonian problems using symplectic methods has a long his-
tory, beautifully reviewed in [32], but modern efforts can be traced to the work of
Feng and his collaborators at the Chinese Academy of Sciences, who have used
generating-function methods to solve Hamiltonian systems [21]. And then, virtually
simultaneously, [46, 77, 83] proved that certain Runge–Kutta methods, including the
well-knownGauss–Legendre methods, preserve symplecticity and they presented an
easy criterion for the symplecticity of Runge–Kutta methods. GNI came of age!

Symplectic methods readily found numerous uses, from particle accelerator
physics [23] and celestial mechanics [47] to molecular dynamics [49] and beyond.

Subsequent research into symplectic Runge–Kutta methods had branched out
into a number of directions, each with its own important ramifications outside the
Hamiltonian world:

• Backward error analysis. The idea of backward error analysis (BEA) can be traced
to Wilkinson’s research into linear algebra algorithms in the 1950ties. Instead of
asking “what is the numerical error for our problem”, Wilkinson asked “which
nearby problem is solved exactly by our method?”. The difference between the
original and the nearby problem can tell us a great deal about the nature of the
error in a numerical algorithm.
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A generalisation of BEA to the field of differential equations is fraught with diffi-
culties. Perhaps the first successful attempt to analyse Hamiltonian ODEs in this
setting was by [70] and it was followed by many, too numerous to list: an excellent
exposition (like for many things GNI) is the monograph of [33]. A major technical
tool is the B-series, an expansion of composite functions in terms of forests of
rooted trees, originally pioneered by [7]. (We mention in passing that the Hopf
algebra structure of this Butcher group has been recently exploited by mathemati-
cal physicists to understand the renormalisation group [15]—as the authors write,
“We regard Butcher’s work on the classification of numerical integration meth-
ods as an impressive example that concrete problem-oriented work can lead to
far-reaching conceptual results”.) It is possible to prove that, subject to very gen-
erous conditions, the solution of a Hamiltonian problem by a symplectic method,
implemented with constant step size, is exponentially near to the exact solution of
a nearby Hamiltonian problem for an exponentially long time. This leads to con-
siderably greater numerical precision, as well as to the conservation on average
(in a strict ergodic sense) of Hamiltonian energy.
B-series fall short in a highly oscillatory and multiscale setting, encountered fre-
quently in practical Hamiltonian systems. The alternative in the BEA context is
an expansion into modulated Fourier series [29], as well as expansions into word
series [68], to which we return in Sect. 4.1.

• Composition and splitting.
Many Hamiltonians of interest can be partitioned into a sum of kinetic and poten-
tial energy, H( p, q) = p�M p + V (q). It is often useful to take advantage of this
in the design of symplectic methods.While conventional symplectic Runge–Kutta
methods are implicit, hence expensive, partitioned Runge–Kutta methods, advanc-
ing separately in p and q, can be explicit and are in general much cheaper. While
perhaps the most important method, the Störmer–Verlet scheme, has been known
for many years, modern theory has led to an entire menagerie of composite and
partitioned methods [79].
Splitting methods1 have been used in the numerical solution of PDEs since 1950s.
Thus, given the equation ut = L1(u) + L2(u), where the Lks are (perhaps nonlin-
ear) operators, the idea is to approximate the solution in the form

u(t + h) ≈ eα1hL1eβ1hL2eα2hL1 · · · eαs hL1eβsL2u(t), (2.2)

where v(t0 + h) =: ehL1v(t0) and w(t0 + h) =: ehL2w(t0) are, formally, the solu-
tions of v̇ = L1(v) and ẇ = L2(w) respectively, with suitable boundary condi-
tions. The underlying assumption is that the solutions of the latter two equations
are either available explicitly or are easy to approximate, while the original equa-
tion is more difficult.
A pride of place belongs to palindromic compositions of the form

eα1hL1eβ1hL2eα2hL1 · · · eαq hL1eβq hL2eαq hL1 · · · eα2hL1eβ1hL2eα1hL1 , (2.3)

1Occasionally known in the PDE literature as alternate direction methods.
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invariant with respect to a reversal of the terms. They constitute a time-symmetric
map, and this has a number of auspicious consequences. Firstly, they are always
of an even order. Secondly—and this is crucial in the GNI context—they respect
both structural invariants whose integrators are closed under composition, i.e.
form a group (for example integrators preserving volume, symmetries, or first
integrals), as well as invariants whose integrators are closed under symmetric
composition, i.e. form a symmetric space (for example integrators that are self-
adjoint, or preserve reversing symmetries). A basic example of (2.3) is the second-
order Strang composition

e
1
2 hL1ehL2e

1
2 hL1 = eh(L1+L2) + O

(
h3) .

Its order—and, for that matter, the order of any time-symmetric method—can be
boosted by the Yoshida device [88]. (Cf. also [85].) Let � be a time-symmetric
approximation to etL of order 2P , say. Then

�((1 + α)h)�(−(1 + 2α)h)�((1 + α)h), where α = 21/(2P+1) − 1

2 − 21/(2P+1)

is also time symmetric and of order 2P + 2. Successive applications of theYoshida
device allow to increase arbitrarily the order of the Strang composition, while
retaining its structure-preserving features. This is but a single example of the huge
world of splitting and composition methods, reviewed in [4, 57].

• Exponential integrators.
Many ‘difficult’ ODEs can bewritten in the form ẏ = A y + b( y)where thematrix
A is ‘larger’ (in some sense) than b( y)—for example, A may be the Jacobian
of an ODE (which may vary from step to step). Thus, it is to be expected that
the ‘nastiness’ of the ODE under scrutiny—be it stiffness, Hamiltonicity or high
oscillation—is somehow ‘hardwired’ into the matrix A. The exact solution of the
ODE can be written in terms of the variation-of-constants formula,

y(t + h) = eh A y(t) +
∫ h

0
e(h−ξ)Ab( y(t + ξ)) dξ, (2.4)

except that, of course, the right-hand side includes the unknown function y. Given
the availability of very effectivemethods to compute thematrix exponential,we can
exploit this to construct exponential integrators, explicit methods that often exhibit
favourable stability and structure-preservation features. The simplest example, the
exponential Euler method, freezes y within the integral in (2.4) at its known value
at t , the outcome being the first-order method

yn+1 = eh A yn + A−1(eh A − I )b( yn).

The order can be boosted by observing that (in a loose sense which can be made
much more precise) the integral above is discretised by the Euler method, which
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is a one-stage explicit Runge–Kutta scheme, discretising it instead by multistage
schemes of this kind leads to higher-order methods [35].

Many Hamiltonian systems of interest can be formulated as second-order systems
of the form ÿ + �2 y = g( y). Such systems feature prominently in the case of
highly oscillatory mechanical systems, where � is positive definite and has some
large eigenvalues. The variation of constants formula (2.4) now reads

[
y(t + h)

ẏ(t + h)

]

=
[

cos(h�) �−1 sin(h�)

−� sin(h�) cos(h�)

] [
y(t)
ẏ(t)

]

+
∫ t+h

t

[
cos((h − ξ)�) �−1 sin((h − ξ)�)

−� sin((h − ξ)�) cos((h − ξ)�)

][
0

g( y(t + ξ))

]

dξ

and we can use either standard exponential integrators or exponential integra-
tors designed directly for second-order systems and using Runge–Kutta–Nyström
methods on the nonlinear part [87].
An important family of exponential integrators for second-order systems are
Gautschi-type methods

yn+1 − 2 yn + yn−1 = h2�(h�)(gn − �2 yn), (2.5)

which are of second order. Here�(x) = 2(1 − cos x)/x while, in Gautschi’s orig-
inal method, gn = g( yn) [35]. Unfortunately, this choice results in resonances
and a better one is gn = g(�(h�) yn), where the filter � eliminates resonances:
�(0) = I and �(kπ) = 0 for k ∈ N. We refer to [35] for further discussion of
such methods in the context of symplectic integration.

• Variational integrators. Lagrangian formulation recasts a large number of differen-
tial equations as extrema of nonlinear functionals. Thus, for example, instead of the
Hamiltonian problem M q̈ + ∇V (q) = 0, where the matrix M is positive definite,
wemay consider the equivalent variational formulation of extremising the positive-
definite nonlinear functional L(q, q̇) = 1

2 q̇
�M q̇ − V (q). With greater generality,

Hamiltonian and Lagrangian formulations are connected via the familiar Euler–
Lagrange equations and, given the functional L , the corresponding second-order
system is

∂L(q, q̇)

∂q
− d

dt

[
∂L(q, q̇)

∂ q̇

]

= 0.

The rationale of variational integrators parallels that of theRitz method in the theory
of finite elements. We first reformulate the Hamiltonian problem as a Lagrangian
one, project it to a finite-dimensional space, solve it there and transform back.
The original symplectic structure is replaced by a finite-dimensional symplectic
structure, hence the approach is by design symplectic [64]. Marsden andWest [54]
review the implementation of variational integrators.
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2.2 Lie-Group Methods

LetG be aLie group andM a differentiablemanifold.We say that
 : G × M → M
is a group action if

a. 
(ι, y) = y for all y ∈ M (where ι is the identity of G) and
b. 
(p,
(q, y)) = 
(p · q, y) for all p, q ∈ G and y ∈ M.

If, in addition, for every x, y ∈ M there exists p ∈ G such that y = 
(p, x), the
action is said to be transitive and M is a homogeneous space, acted upon by G.

Every Lie group acts upon itself, while the orthogonal group O(n) acts on the
(n − 1)-sphere by multiplication, 
(p, y) = py. The orthogonal group also acts on
the isospectral manifold of all symmetric matrices similar to a specific symmetric
matrix by similarity, 
(p, y) = pyp�. Given 1 ≤ m ≤ n, the Grassmann manifold
G(n, m) of all m-dimensional subspaces of Rn is a homogeneous space acted upon
by SO(m) × SO(n − m), where SO(m) is the special orthogonal group—more pre-
cisely, G(n, m) = SO(n)/(SO(m) × SO(n − m)).

Faced with a differential equation evolving in a homogeneous space, we can
identify its flow with a group action: Given an initial condition y0 ∈ M, instead of
asking “what is the value of y at time t > 0” we might pose the equivalent question
“what is the group action that takes the solution from y0 to y(t)?”. This is often a
considerably more helpful formulation because a group action can be further related
to an algebra action.Letg be the Lie algebra corresponding to thematrix groupG, i.e.
the tangent space at ι ∈ G, and denote byX(M) the set of all Lipschitz vector fields
overM. Let λ : g → X(M) and a : R+ × M → g be both Lipschitz. In particular,
we might consider

λ(a, y) = d

ds

(ρ(s, y), y)

s=0
,

where 
 is a group action and ρ : R+ → G, ρ(s, y(s)) = ι + a(s, y(s))s + O
(
s2

)

for small |s|. The equation ẏ = λ(a(t, y), y), y(0) = y0 ∈ M represents algebra
action and its solution evolves inM. Moreover,

y(t) = 
(v(t), y0) where v̇ = a(t,
(v, y0))v, v(0) = ι ∈ G (2.6)

is a Lie-group equation. Instead of solving the original ODE onM, it is possible to
solve (2.6) and use the group action 
 to advance the solution to the next step: this
is the organising principle of most Lie-group methods [42]. It works because a Lie-
group equation can be solved in the underlying Lie algebra, which is a linear space.
Consider an ODE2 ẏ = f (y), y(0) ∈ M, such that f : M → X—the solution y(t)
evolves on the manifold. While conventional numerical methods are highly unlikely
to stay inM, this is not the case for Lie-groupmethods.We can travel safely between
M and G using a group action. The traffic between G and g is slightly more compli-
cated and we need to define a trivialisation, i.e. an invertible map taking smoothly a

2Or, for that matter, a PDE, except that formalities are somewhat more complicated.
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neighbourhood of 0 ∈ g to a neighbourhood of ι ∈ G and taking zero to identity. The
most ubiquitous example of trivialisation is the exponential map, which represents
the solution of (2.6) as v(t) = eω(t), where ω is the solution of the dexpinv equation

ω̇ =
∞∑

m=0

Bm

m! ad
m
a(t,eω)ω, ω(0) = 0 ∈ g (2.7)

[42]. Here the Bms are Bernoulli numbers, while adm
b is the adjoint operator in g,

ad0bc = c, adm
b c = [b, adm−1

b c], m ∈ N, b, c ∈ g.

Because g is closed under linear operations and commutation, solving (2.7) while
respecting Lie-algebraic structure is straightforward. Mapping back, first to G and
finally toM, we keep the numerical solution of ẏ = f (t) on the manifold.

Particularly effective is the use of explicit Runge–Kutta methods for (2.7), the so-
called Runge–Kutta–Munthe-Kaas (RKMK) methods [65]. To help us distinguish
between conventional Runge–Kutta methods and RKMK, consider the three-stage,
third-order method with the Butcher tableau3

0
1
2

1
2

1 −1 2
1
6

2
3

1
6

. (2.8)

Applied to the ODE ẏ = f (t, y), y(tn) = yn ∈ M, evolving on the manifold M ⊂
R

d , it becomes

k1 = f (tn, yn),

k2 = f (tn+ 1
2
, yn + 1

2hk1),

k3 = f (tn+1, yn − hk1 + 2hk2),

� = h( 16k1 + 2
3k2 + 1

6k3),

yn+1 = yn + �.

Since we operate inRd , there is absolutely no reason for yn+1 to live inM. However,
once we implement (2.8) at an algebra level (truncating first the dexpinv equation
(2.7)),

3For traditional concepts such as Butcher tableaux, Runge-Kutta methods and B-series, the reader
is referred to [34].
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k1 = a(tn, ι),

k2 = a(tn+ 1
2
, ehk1/2),

k3 = a(tn+1, e
−hk1+2hk2),

� = h( 16k1 + 2
3k2 + 1

6k3),

ωn+1 = � + 1
6h[�, k1]

yn+1 = 
(eωn+1 , yn),

the solution is guaranteed to stay inM.
An important special case of a Lie-group equation is the linear ODE v̇ = a(t)v,

where a : R+ → g. Although RKMK works perfectly well in a linear case, special
methods do even better. Perhaps the most important is the Magnus expansion [53],
v(t) = eω(t)v(0), where

ω(t) =
∫ t

0
a(ξ) dξ − 1

2

∫ t

0

∫ ξ1

0
[a(ξ2), a(ξ1)] dξ2 dξ1

+ 1

4

∫ t

0

∫ ξ1

0

∫ ξ2

0
[[a(ξ3), a(ξ2)], a(ξ1)] dξ3 dξ2 dξ1 (2.9)

+ 1

12

∫ t

0

∫ ξ1

0

∫ ξ2

0
[a(ξ3), [a(ξ2), a(ξ1)]] dξ3 dξ2 dξ1 + · · · .

Werefer to [6, 40, 42] for explicitmeans to derive expansion terms, efficient computa-
tion of multivariate integrals that arise in this context andmany other implementation
details. Magnus expansions are important in a number of settings when preservation
of structure is not an issue, not least in the solution of linear stochastic ODEs [51].

There are alternative means to expand the solution of (2.7) in a linear case, not
least the Fer expansion [22, 38], that has found recently an important application in
the computation of Sturm–Liouville spectra [76].

Another approach toLie-group equations uses canonical coordinates of the second
kind [72].

2.3 Conservation of Volume

An ODE ẋ = f (x) is divergence-free if ∇ · f (x) = 0. The flows of divergence-
free ODEs are volume-preserving (VP). Volume is important to preserve, as it leads
to KAM-tori, incompressibility, and, most importantly, is a crucial ingredient for
ergodicity. Unlike symplecticity, however, phase space volume can generically not
be preserved by Runge–Kutta methods, or even by their generalisations, B-series
methods. This was proved independently in [13] and in [43]. Since B-series methods
cannot preserve volume, we need to look to other methods.
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There are essentially two known numerical integration methods that preserve
phase space volume. The first volume-preserving method is based on splitting [20].
As an example, consider a 3D volume preserving vector field:

ẋ = u(x, y, z)

ẏ = v(x, y, z) (2.10)

ż = w(x, y, z)

with
ux + vy + wz = 0.

We split this 3D VP vector field into two 2D VP vector fields as follows

ẋ = u(x, y, z), ẋ = 0,

ẏ = −
∫

ux (x, y, z) dy, ẏ = v(x, y, z) +
∫

ux (x, y, z) dy,

ż = 0; ż = w(x, y, z).

(2.11)

The vector field on the left is divergence-free by construction, and since both vector
fields add up to (2.1), it follows that the vector field on the right is also volume-
preserving.

Having split the original vector field into 2D VP vector fields, we need to find
VP integrators for each of these 2D VP vector fields. But that is easy, because in 2D
volume-preserving and symplectic vector fields are the same—this, of course, holds
also for symplectic Runge–Kutta methods.

The above splitting method is easily generalised to n dimensions, where one splits
into n − 1 2D VP vector fields, and integrates each using a symplectic Runge–Kutta
method.

An alternative VP integration method was discovered independently by Shang
and by Quispel [74, 80]. We again illustrate this method in 3D.

We will look for an integrator of the form

x1 = g1(x ′
1, x2, x3)

x ′
2 = g2(x ′

1, x2, x3) (2.12)

x ′
3 = g1(x ′

1, x ′
2, x3)

where (here and below) xi = xi (nh), and x ′
i = xi ((n + 1)h). The reason the form

(2.12) is convenient, is because any such map is VP iff

∂x1
∂x ′

1

= ∂x ′
2

∂x2

∂x ′
3

∂x3
. (2.13)

To see how to construct a VP integrator of the form (2.12), consider as an example
the ODE
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ẋ1 = x2 + x2
1 + x3

3

ẋ2 = x3 + x1x2 + x4
1 (2.14)

ẋ3 = x1 − 3x1x3 + x5
2

It is easy to check that it is divergence-free.

Now consistency requires that any integrator for (2.14) should satisfy

x ′
1 = x1 + h(x2 + x2

1 + x3
3) + O

(
h2)

x ′
2 = x2 + h(x3 + x1x2 + x4

1) + O
(
h2

)
(2.15)

x ′
3 = x3 + h(x1 − 3x1x3 + x5

2) + O
(
h2)

and therefore

x1 = x ′
1 − h(x2 + x ′2

1 + x3
3) + O

(
h2

)
(2.16)

x ′
2 = x2 + h(x3 + x ′

1x2 + x ′4
1 ) + O

(
h2

)
(2.17)

x ′
3 = x3 + h(x ′

1 − 3x ′
1x3 + x ′5

2 ) + O
(
h2

)
(2.18)

Since we are free to choose any consistent g2 and g3 in (2.12), provided g1 satisfies
(2.13), we choose the terms designated byO

(
h2

)
in (2.15) and (2.16) to be identically

zero. Equation (2.13) then yields

∂x1
∂x ′

1

= (1 + hx ′
1)(1 − 3hx ′

1). (2.19)

This can easily be integrated to give

x1 = x ′
1 − hx ′2

1 − h2x ′3
1 + k(x2, x3; h). (2.20)

where the function k denotes an integration constant thatwe can choose appropriately.
The simplest VP integrator satisfying both (2.14) and (2.20) is therefore:

x1 = x ′
1 − h(x2 + x ′2

1 + x3
3) − h2x ′3

1

x ′
2 = x2 + h(x3 + x ′

1x2 + x ′4
1 ) (2.21)

x ′
3 = x3 + h(x ′

1 − 3x ′
1x3 + x ′5

2 )

A nice aspect of the integrator (2.21) (and (2.12)) is that it is essentially only implicit
in one variable. Once x ′

1 is computed from the first (implicit) equation, the other two
equations are essentially explicit.

Of course the method just described also generalises to any divergence-free ODE
in any dimension.
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2.4 Preserving Energy and Other First Integrals

As mentioned, Hamiltonian systems exhibit two important geometric properties
simultaneously, they conserve both the symplectic form and the energy. A famous
no-go theorem by Ge andMarsden [25] has shown that it is generically impossible to
construct a geometric integrator that preserves both properties at once. One therefore
must choose which one of these two to preserve in any given application. Particularly
in low dimensions and if the energy surface is compact, there are often advantages
in preserving the energy.

An energy-preserving B-series method was discovered in [75] cf. also [59].
For any ODE ẋ = f (x), this so-called average vector field method is given by

x′ − x
h

=
∫ 1

0
f (ξ x′ + (1 − ξ)x) dξ. (2.22)

If the vector field f is Hamiltonian, i.e. if there exists a Hamiltonian function H(x)

and a constant skew-symmetric matrix S such that f (x) = S∇H(x), then it follows
from (2.22) that energy is preserved, i.e. H(x′) = H(x).

While the B-series method (2.22) can generically preserve all types of Hamilto-
nians H , it can be shown that no Runge–Kutta method is energy-preserving for all
H . (In other words, this can only be done using B-series methods that are not RK
methods.) For a given polynomial H however, Runge–Kutta methods preserving that
H do exist [37]. This can be seen as follows.

Note that the integral in (2.22) is one-dimensional. This means that e.g. for cubic
vector fields (and hence for quartic Hamiltonians) an equivalent method is obtained
by replacing the integral in (2.22) using Simpson’s rule:

∫ 1

0
g(ξ) dξ ≈ 1

6

[
g(0) + 4g( 12 ) + g(1)

]
. (2.23)

yielding the Runge–Kutta method

x′ − x
h

= 1

6

[

f (x) + 4 f
(
x + x′

2

)

+ f (x′)
]

, (2.24)

preserving all quartic Hamiltonians.
We note that (2.22) has second order accuracy. Higher order generalisations have

been given in [27].We note that the average vector fieldmethod has also been applied
to a slew of semi-discretised PDEs in [9].

While energy is one of the most important constants of the motion in applications,
many other types of first integrals do occur. We note here that all B-series methods
preserve all linear first integrals, and that all symplectic B-series methods preserve
all quadratic first integrals. So, for example, the implicit midpoint rule
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x′ − x
h

= f
(
x + x′

2

)

(which is symplectic) preserves all linear and quadratic first integrals. There are
however many cases not covered by any of the above.

How does one preserve a cubic first integral that is not energy? And what about
Hamiltonian systems whose symplectic structure is not constant? It turns out that
generically, any ODE ẋ = f (x) that preserves an integral I (x), can be written in
the form

ẋ = S(x)∇ I (x), (2.25)

where S(x) is a skew-symmetric matrix.4

An integral-preserving discretisation of (2.25) is given by

x′ − x
h

= S̄(x, x′)∇̄ I (x, x′), (2.26)

where S̄(x, x′) is any consistent approximation to S(x) (e.g. S̄(x, x′) = S(x)), and
the discrete gradient ∇̄ I is defined by

(x′ − x) · ∇̄ I (x, x′) = I (x′) − I (x) (2.27)

and
lim
x′→x

∇̄ I (x, x′) = ∇ I (x). (2.28)

There are many different discrete gradients that satisfy (2.27) and (2.28). A partic-
ularly simple one is given by the Itoh–Abe discrete gradient, which for example in
3D reads

∇̄ I (x, x′) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

I (x ′
1, x2, x3) − I (x1, x2, x3)

x ′
1 − x1

I (x ′
1, x ′

2, x3) − I (x ′
1, x2, x3)

x ′
2 − x2

I (x ′
1, x ′

2, x ′
3) − I (x ′

1, x ′
2, x3)

x ′
3 − x3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.29)

Other examples of discrete gradients, as well as constructions of the skew-symmetric
matrix S(x) for a given vector field f and integral I may be found in [59].

We note that the discrete gradient method can also be used for systems with any
number of integrals. For example an ODE ẋ = f (x) possessing two integrals I (x)

and J (x) can be written

ẋi = Si jk(x)
∂ I (x)

∂x j

∂ J (x)

∂xk
, (2.30)

4Note that in general S(x) need not satisfy the so-called Jacobi identity.



14 A. Iserles and G. R. W. Quispel

where the summation convention is assumed over repeated indices and S(x) is a
completely antisymmetric tensor. A discretisation of (2.30) which preserves both I
and J is given by

x ′
i − xi

h
= S̄i jk(x, x′)∇̄ I (x, x′)

j
∇̄ J (x, x′)

k
(2.31)

with S̄ any completely skew approximation of S and ∇̄ I and ∇̄ J discrete gradi-
ents as defined above. Discrete gradient methods have recently found an intriguing
application in variational image regularisation [26].

3 Four Recent Stories of GNI

The purpose of this section is not to present a totality of recent research into GNI, a
subject that would have called for a substantially longer paper. Instead, we wish to
highlight a small number of developments with which the authors are familiar and
which provide a flavour of the very wide range of issues on the current GNI agenda.

3.1 Highly Oscillatory Hamiltonian Systems

High oscillation occurs in many Hamiltonian systems. Sometimes, e.g. in the inte-
gration of equations of celestial mechanics, the source of the problem is that we wish
to compute the solution across a very large number of periods and the oscillation is an
artefact of the time scale in which the solution has physical relevance. In other cases
oscillation is implicit in the multiscale structure of the underlying problem. A case in
point are the (modified) Fermi–Pasta–Ulam (FPU) equations, describing a mechan-
ical system consisting of alternating stiff harmonic and soft nonlinear springs. The
soft springs impart fast oscillation, while the hard springs generate slow transfer of
energy across the system: good numerical integration must capture both!

A good point to start (which includes modified FPU as a special case) is the
second-order ODE

q̈ + �2q = g(q), t ≥ 0, q(0) = u0, q̇(0) = v0, (3.1)

where g(q) = −∇U (q) and

� =
[

O O
O ωI

]

, ω  1, q =
[
q0
q1

]

, q0 ∈ R
n0 , q1 ∈ R

n1 .

An important aspect of systems of the form (3.1) is that the exact solution, in addition
to preserving the total Hamiltonian energy
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H( p, q) = 1

2
(‖ p1‖2 + ω2‖q1‖2) + 1

2
‖ p0‖2 + U (q0, q1), (3.2)

where q̇ = p, also preserves the oscillatory energy

I ( p, q) = 1

2
‖ p1‖2 + ω2

2
‖q1‖2 (3.3)

for intervals of length O
(
ωN

)
for any N ≥ 1. This has been proved using the mod-

ulated Fourier expansions

q(t) =
∞∑

m=−∞
eimωt zm(t).

The solution of (3.1) exhibits oscillations at frequencyO (ω) and this inhibits the
efficiency of many symplectic methods, requiring step size of O

(
ω−1

)
, a situation

akin to stiffness in more conventional ODEs. However, by their very structure, expo-
nential integrators (and in particular Gautschi-type methods (2.5)) are particularly
effective in integrating the linear part, which gives rise to high oscillation. The prob-
lem with Gautschi-type methods, though, might be the occurrence of resonances and
we need to be careful to avoid them, both in the choice of the right filter (cf. the
discussion in Sect. 2.1) and step size h.

Of course, one would like geometric numerical integrators applied to (3.1) to
exhibit favourable preservation properties with respect to both total energy (3.2) and
oscillatory energy (3.3). Applying modulated Fourier expansions to trigonometric
and modified trigonometric integrators, this is indeed the case provided that the step
size obeys the non-resonance condition with respect to the frequency ω,

| sin( 12mhω)| ≥ ch1/2, m = 1, . . . , N , N ≥ 2,

cf. Hairer and Lubich [30].
All this has been generalised to systemswithmultiple frequencies,with theHamil-

tonian function

H( p, q) =

oscillatory
︷ ︸︸ ︷

1

2

s∑

j=1

(‖ p j‖2 + ω2
j‖q j‖2

) +
slow

︷ ︸︸ ︷
1

2
‖ p0‖2 + U (q),

where

p =

⎡

⎢
⎢
⎢
⎣

p0
p1
...

ps

⎤

⎥
⎥
⎥
⎦

, q =

⎡

⎢
⎢
⎢
⎣

q0
q1
...

qs

⎤

⎥
⎥
⎥
⎦

, 0 < min
j=1,...,s

ω j , 1 � max
j=1,...,s

ω j



16 A. Iserles and G. R. W. Quispel

for both the exact solution [24] and for discretisations obtained using trigonometric
and modified trigonometric integrators [14].

Further achievements and open problem in the challenging area of marrying sym-
plectic integration and high oscillation are beautifully described in [28] and [31].

3.2 Kahan’s ‘Unconventional’ Method

Anovel discretisationmethod for quadratic ODEswas introduced and studied in [44,
45] and analysed first from the GNI standpoint in [78]. This new method discretised
the vector field

ẋi =
∑

j,k

ai jk x j xk +
∑

j

bi j x j + ci (3.4)

as follows,

x ′
i − xi

h
=

∑

j,k

ai jk

(
x j x ′

k + x ′
j xk

2

)

+
∑

j

bi j

(
x j + x ′

j

2

)

+ ci . (3.5)

Kahan called the method (3.5) ‘unconventional’, because it treats the quadratic terms
different from the linear terms. He also noted some nice features of (3.5), e.g. that it
often seemed to be able to integrate through singularities.

Properties of Kahan’s method:

1. Kahan’s method is (the reduction of) a Runge–Kutta method.
Celledoni et al. [12] showed that (3.5) is the reduction to quadratic vector fields
of the Runge–Kutta method

x′ − x
h

= 2 f
(
x + x′

2

)

− 1

2
f (x) − 1

2
f (x′) (3.6)

The RK method (3.6) (which is defined for all vector fields f ), once applied to
quadratic vector fields, coincides with Kahan’s method (which is only defined
in the quadratic case).
This explains inter alia why Kahan’s method preserves all linear first integrals.

2. Kahan’s method preserves a modified energy and measure.
For any Hamiltonian vector field of the form

ẋ = f (x) = S∇H(x), (3.7)

with cubic Hamiltonian H(x) and constant symplectic (or Poisson) structure
S, Kahan’s method preserves a modified energy as well as a modified measure
exactly [12].
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The modified volume is
dx1 ∧ · · · ∧ dxn

det
(
I − 1

2h f ′(x)
) , (3.8)

while the modified energy is

H̃(x) := H(x) + 1

3
h∇H(x)�

(

I − 1

2
h f ′(x)

)−1

f (x). (3.9)

3. Kahan’s method preserves the integrability of many integrable systems of
quadratic ODEs.
Beginning with the work of Hirota and Kimura, subsequently extended by Suris
and collaborators [73], and by Quispel and collaborators [10, 12, 86], it was
shown that Kahan’s method preserves the complete integrability of a surpris-
ingly large number of quadratic ODEs. In most cases this means that, in n
dimensions, Kahan’s method preserves a (modified) volume form, as well as
n − 1 (modified) first integrals.

Here we list some 2D vector fields whose integrability is preserved by Kahan’s
method:

• Quadratic Hamiltonian systems in 2D:
The 9-parameter family

[
ẋ
ẏ

]

=
[

bx2 + 2cxy + dy2 + f x + gy + i
−ax2 − 2bxy − cy2 − ex − f y − h

]

; (3.10)

• Suslov systems in 2D:
The 9-parameter family

[
ẋ
ẏ

]

= l(x, y)

[
0 1

−1 0

]

∇H(x, y), (3.11)

where l(x, y) = ax + by + c; H(x, y) = dx2 + exy + f y2 + gx + hy + i ;

• Reduced Nahm equations in 2D:
Octahedral symmetry: [

ẋ
ẏ

]

=
[
2x2 − 12y2

−6x2 − 4y2

]

; (3.12)

Icosahedral symmetry: [
ẋ
ẏ

]

=
[

2x2 − y2

−10xy + y2

]

. (3.13)
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The modified energy and measure for the Kahan discretisations of these 2D systems,
as well as of many other (higher-dimensional) integrable quadratic vector fields are
given in [10, 12, 73].

Generalisations to higher degree polynomial equations using polarisation are pre-
sented in [11].

3.3 Applications to Celestial Mechanics

GNI methods particularly come into their own when the integration time is large
compared to typical periods of the system. Thus long-term integrations of e.g. solar-
type systems and of particle accelerators typically need symplectic methods. In this
subsection we focus on the former.5

In those studies where dissipation can be neglected, a common approach to solar
system type dynamics is to split the N -body Hamiltonian H in the form

H = H1 + εH2, (3.14)

where H1, representing the Keplerian motion of the N − 1 planets, is integrable, H2

represents the interaction between the planets and ε > 0 is a small parameter. In this
manner, special methods for near-integrable Hamiltonian dynamics can and have
been used, cf. e.g. [56].

One of the first symplectic integrations of the solar systemwas done in [84] where
it was confirmed that the solar system has a positive Lyapunov exponent, and hence
exhibits chaotic behaviour cf [47].

More recently these methods have been improved and extended [5, 17, 48]. Sev-
eral symplectic integrators of high order were tested in [19], in order to determine
the best splitting scheme for long-term studies of the solar system.

These variousmethods have resulted in the fact that numerical algorithms for solar
system dynamics are now so accurate that they can be used to define the geologic
time scales in terms of the initial conditions and parameters of solar system models
(or vice versa). For related work cf [82].

3.4 Symmetric Zassenhaus Splitting and the Equations
of Quantum Mechanics

Equations of quantum mechanics in the semiclassical regime represent a double
challenge of structure conservation and high oscillation. A good starting point is the
linear Schrödinger equation

5A very readable early review of integrators for solar system dynamics is [63], cf also [62].
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∂u

∂t
= iε

∂2u

∂x2
− iε−1V (x)u (3.15)

(for simplicity we restrict our discourse to a single space dimension), given in [−1, 1]
with periodic boundary conditions. Here V is the potential energy of a quantum sys-
tem, |u(x, t)|2 is a position density of a particle and 0 < ε � 1 represents the differ-
ence in mass between an electron and nuclei. It is imperative to preserve the unitarity
of the solution operator (otherwise |u( · , t)|2 is no longer a probability function),
but also deal with oscillation at a frequency of O

(
ε−1

)
. A conventional approach

advances the solution using a palindromic splitting (2.3), but this is suboptimal for
a number of reasons. Firstly, the number of splittings increases exponentially with
order. Secondly, error constants are exceedingly large. Thirdly, quantifying the qual-
ity of approximation in terms of the step-size h is misleading, because there are three
small quantities at play: the step size h, N−1 where N is the number of degrees of
freedom in space discretisation (typically either a spectral method or spectral collo-
cation) and, finally, ε > 0 which, originating in physics rather than being a numerical
artefact, is the most important. We henceforth let N = O

(
ε−1

)
(to resolve the high-

frequency oscillations) and h = O (εσ ) for some σ > 0—obviously, the smaller σ ,
the larger the time step.

Bader et al. [1] have recently proposed an alternative approach to the splitting of
(3.15), of the form

eih(ε∂2
x −ε−1V ) ≈ eR0eR1 · · · eRseTs+1eRs · · · eR1eR0 (3.16)

such that Rk = O (εαk ), Ts+1 = O (εαs+1), where α0 ≤ α1 < α2 < α3 < · · ·—the
symmetric Zassenhaus splitting. Here ∂x = ∂/∂x .

The splitting (3.16) is derived at the level of differential operators (i.e., prior to
space discretisation), applying the symmetric Baker–Campbell–Hausdorff formula
to elements in the free Lie algebra spanned by ∂2

x and V . For σ = 1, for example,
this yields

R0 = − 1
2τε−1V = O (1) ,

R1 = 1
2τε∂2

x = O (1) ,

R2 = 1
24τ

3ε−1(∂x V )2 + 1
12τ

3ε{(∂2
x V )∂2

x + ∂2
x [(∂2

x V ) · ]} = O
(
ε2

)
,

R3 = − 1
120τ

5ε−1(∂2
x V )(∂x V )2 − 1

24τ
3ε(∂4

x V ) + 1
240τ

5ε
(
7{(∂2

x V )2∂2
x

+ ∂2
x [(∂2

x V )2 · ] + {(∂3
x V )(∂x V )∂2

x + ∂2
x [(∂3

x V )(∂x V ) · ]})

+ 1
120τ

5ε−3{(∂4
x V )∂4

x + ∂4
x [(∂4

x V ) · ]} = O
(
ε4

)
,

where τ = ih. Note that all the commutators, ubiquitous in the BCH formula, have
disappeared: in general, the commutators in this free Lie algebra can be replaced by
linear combinations of derivatives, with the remarkable property of height reduction:
each commutator ‘kills’ one derivative, e.g.
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[V, ∂2x ] = −(∂2x V ) − 2(∂x V )∂x , [[V, ∂2x ], ∂2x ] = (∂4x V ) + 4(∂3x V )∂x + 4(∂2x V )∂2x .

Once we discretise with spectral collocation, R0 becomes a diagonal matrix and
its exponential is trivial, while eR1v can be computed in two FFTs for any vector v

becauseR1 is a Toeplitz circulantmatrix. NeitherR2 norR3 possess useful structure,
except that they are small! Therefore we can approximate eRk v using the Krylov–
Arnoldi process in just 3 and 2 iterations for k = 2 and k = 3, respectively, to attain
an error of O

(
ε6

)
[1].

All this has been generalised to time-dependent potentials and is applicable to a
wider range of quantum mechanics equations in the semiclassical regime [2].

4 Beyond GNI

Ideas in one area ofmathematical endeavour often inspirework in another area.This is
true not just because newmathematical research equips us with a range of innovative
tools but because it provides insight that casts new light not just on the subject in
question but elsewhere in the mathematical universe. GNI has thus contributed not
just toward its own goal, better understanding of structure-preserving discretisation
methods for differential equations, but in other, often unexpected, directions.

4.1 GNI Meets Abstract Algebra

The traditional treatment of discretisation methods for differential equations was
wholly analytic, using tools of functional analysis and approximation theory. (Lately,
also tools from algebraic topology.) GNI has added an emphasis on geometry and
this leads in a natural manner into concepts and tools from abstract algebra. As
often in such mathematical dialogues, while GNI borrowed much of its conceptual
background from abstract algebra, it has also contributed to the latter, not just with
new applications but also new ideas.

• B-series and beyond. Consider numerical integration methods that associate to
each vector field f a map ψh( f ). A method ψh is called g-covariant6 if the
following diagram commutes,

6Also called equivariant.
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x̃ = ψh( f )(x) � ỹ = ψh( f̃ )( y)

� �

ẋ = f (x) � ẏ = f̃ ( y)

x = g( y)

x = g( y)

It follows that if g is a symmetry of the vector field f andψ is g-covariant, thenψ

preserves the symmetry g. It seems that this concept of covariance for integration
methods was first introduced in [55, 60].
It is not hard to check that all B-series methods are covariant with respect to the
group of affine transformations. A natural question to ask then, was “are B-series
methods the only numerical integration methods that preserve the affine group?”.
This question was open for many years, until it was answered in the negative by
[66], who introduced a more general class of integration methods dubbed “aro-
matic Butcher series”, and showed that (under mild assumptions) this is the most
general class of methods preserving affine covariance. Expansions of methods in
this new class contain both rooted trees (as in B-series), as well as products of
rooted trees and so-called k-loops [43].
Whereas it may be said that to date the importance of aromatic B-series has been
at the formal rather than at the constructive level, these methods may hold the
promise of the construction of affine-covariant volume-preserving integrators, cf
also [58].

• Word expansions. Classical B-series can be significantly generalised by expanding
in word series [69]. This introduced an overarching framework for Taylor expan-
sions, Fourier expansions, modulated Fourier expansions and splitting methods.
We consider an ODE of the form

ẋ =
∑

a∈A
λa(t) f a(x), x(0) = x0, (4.1)

where A is a given alphabet. The solution of (4.1) can be formally expanded in
the form

x(t) =
∞∑

n=0

∑

w∈Wn

αw(t) fw(x0),

where Wn is the set of all words with n letters from A. The coefficients αw and
functions f w can be obtained recursively from the λas and f as in a manner similar



22 A. Iserles and G. R. W. Quispel

to B-series. Needless to say, exactly like with B-series, word series can be inter-
preted using an algebra over rooted trees.
The concept of word series is fairly new in numerical mathematics but it exhibits
an early promise to provide a powerful algebraic tool for the analysis of dynamical
systems and their discretisation.

• Extension of Magnus expansions.LetW be aRota–Baxter algebra, a commutative
unital algebra equipped with a linear map R such that

R(x)R(y) = R(R(x)y + x R(y) + θxy), x, y ∈ W,

where θ is a parameter. The inverse ∂ of R obeys

∂(xy) = ∂(x)y + x∂(y) + θ∂(x)∂(y)

and is hence a generalisation of a derivation operator: a neat example, with clear
numerical implications, is the backward difference ∂(x) = [x(t) − x(t − θ)]/θ .
[18] generalised Magnus expansions to this and similar settings, e.g. dendriform
algebras. Their work uses the approach in [40], representing individual ‘Magnus
terms’ as rooted trees, but generalises it a great deal.

• The algebra of the Zassenhaus splitting. The success of the Zassenhaus splitting
(3.16) rests upon two features. Firstly, the replacement of commutators by simpler,
more tractable expressions and, secondly, height reduction of derivatives under
commutation. Singh [81] has derived an algebraic structure J which, encoding
these two features, allows for a far-reaching generalisation of the Zassenhaus
framework. The elements of J are operators of the form 〈 f 〉k = f ◦ ∂k

x + ∂k
x ◦ f ,

where k ∈ Z+ and f resides in a suitable function space. J can be endowed with a
Lie-algebraic structure and, while bearing similarities with the Weyl algebra and
the Heisenberg group, is a new and intriguing algebraic concept.

4.2 Highly Oscillatory Quadrature

Magnus expansions (2.9) are particularly effective when the matrix A(t) oscillates
rapidly. This might seem paradoxical—we are all conditioned to expect high oscil-
lation to be ‘difficult’—but actually makes a great deal of sense. Standard numer-
ical methods are based on Taylor expansions, hence on differentiation, and their
error typically scales as a high derivative of the solution. Once a function oscillates
rapidly, differentiation roughly corresponds to multiplying amplitude by frequency,
high derivatives become large and so does the error. However, theMagnus expansion
does not differentiate, it integrates! This has an opposite effect: the more we inte-
grate, the smaller the amplitude and the series (2.9) converges more rapidly. Indeed,
often it pays to render a linear system highly oscillatory by a change of variables,
in a manner described in [39], and then solve it considerably faster and cheaper.
Yet, once we contemplate the discretisation of (2.9) for a highly oscillatory matrix
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function A(t), we soon come up another problem, usually considered difficult, if not
insurmountable: computing multivariate integrals of highly oscillatory functions.

In a long list ofmethods for highly oscillatory quadrature (HOQ) circa 2002, rang-
ing from the useless to the dubious, one method stood out: [50] proposed to calculate
univariate integrals by converting the problem to an ODE and using collocation. This
was the only effective method around, yet incompletely understood.

The demands of GNI gave the initial spur to the emergence in the last ten years to
a broad swath of newmethods for HOQ: Filon-type methods, which replace the non-
oscillatory portion of the integrand by an interpolating polynomial [41], improved
Levin-type methods [71] and the method of numerical stationary phase of [36]. The
common characteristic of all these methods is that they are based on asymptotic
expansions. This means that high oscillation is no longer the enemy—indeed, the
faster the oscillation, the smaller the error!

Highly oscillatory integrals occur in numerous applications, from electromagnetic
and acoustic scattering to fluid dynamics, quantummechanics and beyond. Their role
in GNI is minor. However, their modern numerical theory was originally motivated
by a problem in GNI [16]. This is typical to how scholarship progresses and it is only
natural that HOQ has severed its GNI moorings and has become an independent area
on its own.

4.3 Structured Linear Algebra

GNI computations often lead to specialised problems in numerical linear algebra.
However, structure preservation has wider impact in linear algebraic computations.
Often amatrix in an algebraic problembelongs to an algebraic structure, e.g. a specific
Lie algebra or a symmetric space, and it is important to retain this in computation—
the sobriquet “Geometric Numerical Algebra” might be appropriate! Moreover, as in
GNI so in GNA, respecting structure often leads to better, more accurate and cheaper
numerical methods. Finally, structured algebraic computation is often critical to GNI
computations.

• Matrix factorization is the lifeblood of numerical algebra, the basis of the most
effective algorithms for the solution of linear systems, computation of eigenvalues
and solution of least-squares problems. A major question in GNA is “Suppose
that A ∈ A, where A is a set of matrices of given structure. Given a factorization
A = BC according to some set of rules, what can we say about the structure
of B or C?”. [52] addressed three such ‘factorization rules’: the matrix square
root, B = C , the matrix sign, where the elements of B are ±1, and the polar
decomposition, with unitary B and positive semidefinite C . They focussed on sets
A generated by a sesquilinear form 〈 · , · 〉. Such sets conveniently fit into three
classes:
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(a) Automorphisms G, such that 〈Gx, G y〉 = 〈x, y〉, generate a Lie group;
(b) Self-adjointmatrices S, such that 〈Sx, y〉 = 〈x, S y〉, generate a Jordan algebra;

and
(c) Skew-adjoint matrices H such that 〈H x, y〉 = −〈x, H y〉, generate a Lie

algebra.

It is natural to expect that conservation of structure under factorization would
depend on the nature of the underlying inner product. The surprising outcome of
[52] is that, for current purposes, it is sufficient to split sesquilinear forms into just
two classes, unitary and orthosymmetric, each exhibiting similar behaviour.

• Many algebraic eigenvalue problems are structured, the simplest example being
that the eigenvalues of a symmetric matrix are real and of a skew-symmetric are
pure imaginary: all standard methods for the computation of eigenvalues respect
this. However, many other problems might have more elaborate structure, and this
is the case in particular for nonlinear eigenvalue problems. An important example,
with significant applications in mechanics, is

(λ2M + λG + K )x = 0, (4.2)

where both M and K are symmetric, while G is skew symmetric. The eigenvalues
λ of (4.2) exhibit Hamiltonian pattern: if λ is in the spectrum then so are −λ, λ̄

and −λ̄.7 As often in numerical algebra, (4.2) is particularly relevant when the
underlying matrices are large and sparse.
Numerical experiments demonstrate that standard methods for the computation
of a quadratic eigenvalue problem may fail to retain the Hamiltonian structure of
the spectrum but this can be obtained by bespoke algorithms, using a symplectic
version of the familiar Lanczos algorithm, cf. [3].
This is just one example of the growing field of structured eigenvalue and inverse
eigenvalue problems.

• The exponential from an algebra to a group: Recall Lie-group methods from
Sect. 2.2: a critical step, e.g. in the RKMK methods, is the exponential map from
a Lie algebra to a Lie group. Numerical analysis knows numerous effective ways
to approximate the matrix exponential [61], yet most of them fail to map a matrix
from a Lie algebra to a Lie group! There is little point to expand intellectual and
computational effort to preserve structure, only to abandon the latter in the ultimate
step, and this explains the interest in the computation of the matrix exponential
which is assured to map A in a Lie algebra to an element in the corresponding Lie
group.
While early methods have used structure constants and, for maximal sparsity, Lie-
algebraic bases given by space-root decomposition [8], the latest generation of
algorithms is based upon generalised polar decomposition [67].

7To connect this to the GNI narrative, such a pattern is displayed by matrices in the symplectic Lie
algebra sp(2n).
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