
Towards an Empirical Evaluation
of Imperative and Declarative Process

Mining

Christoffer Olling Back1(B) , Søren Debois2 , and Tijs Slaats1

1 Department of Computer Science, University of Copenhagen,
Emil Holms Kanal 6, 2300 Copenhagen S, Denmark

{back,slaats}@di.ku.dk
2 Department of Computer Science, IT University of Copenhagen,

Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark
debois@itu.dk

Abstract. Process modelling notations fall in two broad categories:
declarative notations, which specify the rules governing a process; and
imperative notations, which specify the flows admitted by a process. We
outline an empirical approach to addressing the question of whether cer-
tain process logs are better suited for mining to imperative than declar-
ative notations. We plan to attack this question by applying a flagship
imperative and declarative miner to a standard collection of process logs,
then evaluate the quality of the output models w.r.t. the standard model
metrics of precision and generalisation. This approach requires perfect
fitness of the output model, which substantially narrows the field of avail-
able miners; possible candidates include Inductive Miner and MINER-
ful. With the metrics in hand, we propose to statistically evaluate the
hypotheses that (1) one miner consistently outperforms the other on
one of the metrics, and (2) there exist subsets of logs more suitable for
imperative respectively declarative mining.

Keywords: Process mining · Modelling paradigms
Statistical evaluation · Declarative models · Imperative models
Hybrid models · Evaluation metrics

1 Introduction

Workflow notations are commonly categorised as falling within either the impera-
tive or declarative paradigm [1]. Imperative notations use flow-based constructs
to explicitly model the paths through a process [2]. Declarative notations use

T. Slaats—This work is supported by the Hybrid Business Process Management
Technologies project (DFF-6111-00337) funded by the Danish Council for Indepen-
dent Research, and the EcoKnow project (7050-00034A) funded by the Innovation
Foundation.

c© Springer Nature Switzerland AG 2018
C. Woo et al. (Eds.): ER 2018 Workshops, LNCS 11158, pp. 191–198, 2018.
https://doi.org/10.1007/978-3-030-01391-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01391-2_24&domain=pdf
http://orcid.org/0000-0001-7998-7167
http://orcid.org/0000-0002-4385-1409
http://orcid.org/0000-0001-6244-6970


192 C. O. Back et al.

constraint-based constructs to model the rules of a process. A declarative model
allows all paths not forbidden by the constraints, and therefore the behaviour
of the model is implicit in the rules and needs to be deduced by the system
or users [3–5]. While the imperative paradigm is more mature, both paradigms
have seen industrial adoption [6–8].

A recent trend in both academia and industry is to extract models from
real-life data via process discovery [9], where an output model is automatically
constructed from an event log of observed process executions. Research into
this approach has focused primarily on the discovery of imperative models, but
substantial energy has been directed towards algorithms that discover declarative
models as well [10–12].

Thus, when constructing process models by process discovery, we have a
choice regarding which paradigm to use. Does one approach return better models
than the other? Would such a difference be universal or depend on the particular
input log?

This paper outlines an approach to empirically evaluating the effect of
miner paradigm (independent variable) on output model quality (dependent vari-
able) [13,14]. We propose to measure model quality using notation-agnostic met-
rics for precision and generalisation from [15], which apply equally to imperative
and declarative models. These metrics are analogous to the standard data min-
ing metrics of the same name and are intended to capture the degree to which a
model is underfitting or overfitting the data, respectively. Other quality metrics
exist, such as fitness, simplicity/understandability, and soundness; but we are
forced to keep these as controlled variables due to the fact that this formula-
tions of precision and generalisation restricts our choice of miners, which in turn
restricts our ability to include other metrics as dependent variables. Namely,
since precision and generalisation require output models either be perfectly fit-
ting or that data be aligned to the model to account for “noise”, and since we
have chosen to exclude the alignment procedure as a confounding variable in
the first iteration of this evaluation approach (see Sect. 2.2), we are restricted
to perfectly fitting output models.

We propose Inductive Miner [16] and MINERful [11] as representatives of the
imperative and declarative paradigms, respectively, as they fulfill our require-
ments and are widely considered to be at the cutting edge of their respective
fields. Evaluating the miners on publicly available, real-life logs, we test the
following hypotheses:

Hypothesis 1: One miner consistently outperforms the other on one of the
metrics:

(a) outperformance on precision (b) outperformance on generalisation

Hypothesis 2: There exist subsets of logs:

(a) more suited for imperative mining (b) more suited for declarative mining



Empirical Evaluation of Imperative and Declarative Process Mining 193

That is, there exists a subset of logs which when mined either declaratively or
imperatively represents a Pareto improvement over the other; and this deviation
from the zero mean lies outside of the bounds of what can be accounted for by
random chance.

A Pareto improvement simply denotes an improvement on at least one met-
ric without sacrificing performance on the remaining metric. The zero mean is
the mean of the probability distribution associated with the null hypothesis,
and represents no performance difference between models produced by different
miners from the same log.

Note that in the most extreme case, a subset may consist of a single log
which is best suited to one paradigm, with the remaining logs showing only an
insignificant difference in precision and generalisation, or requiring a tradeoff
between the metrics, thus not a Pareto improvement. We are, in fact, testing
multiple sub-hypotheses for hypothesis 2: one for each log. To compensate for
the increased likelihood of making a type I error (false positive), we perform the
appropriate adjustment to statistical significance testing: a Bonferroni correc-
tion. We leave as future work the task of identifying the characteristics of event
logs which distinguish them as best suited for a given paradigm, in the interest
of first rigorously establishing a clear framework for evaluation.

2 Methods

2.1 Log Selection

In the interest of reproducibility, we base log selection on the criteria of pub-
lic availability, drawing upon the IEEE Task Force on Process Mining Real-life
Event Log Collection1, with the addition of one additional real-life log originat-
ing from our own industrial contact, the Dreyer Foundation in Denmark [17].
The logs stem from diverse sectors, including healthcare related processes, fine
management, permit, loan and grant applications, as well as production, soft-
ware engineering, and robotic vehicle related processes. The logs vary in degree
of structure, number of activities, and trace length.

2.2 Process Discovery

We will mine the selected logs both imperatively and declaratively, selecting
miners according to the following criteria:

1. Miners must be configurable to always produce perfectly fitting models.
2. Miners must be configurable to produce models of a given simplicity, save one

which can serve as a benchmark.

The first criterion follows from both precision and generalisation requiring
perfect fitness of the output model. It would have been an option to allow non-
fitting output, and then use model-log alignment [15,18], but without domain
1 http://data.4tu.nl/repository/collection:event logs real.

http://data.4tu.nl/repository/collection:event_logs_real


194 C. O. Back et al.

knowledge or access to an expert, we cannot know which exact alignment is more
appropriate for the real-world log. This means that we would be evaluating
not just the mining algorithm, but the combination of mining algorithm and
alignment function. In particular, we would not know whether to attribute a
result in favour of one miner over the other to the miner itself, or to a fortunate
choice of alignment for that particular miner.

The second criterion follows partly from a tendency of declarative miners to
produce output models containing excessive numbers of constraints: for large
logs, on the order of hundreds of thousands. More importantly, we require model
simplicity to be held constant, so that the choice of mining algorithm remains
the only independent variable.

The two criteria left us only two miners: The Inductive Miner and MINERful.

Inductive Miner is an imperative miner developed by Leemans et al. [16] which
uses a divide-and-conquer approach to generate sound, block-structured process
models output as process trees or Petri nets. With only one parameter, noise
threshold, which for our purposes must be held at 1.0 to ensure perfect fitness,
the model generated by Inductive Miner provides a baseline model from which
to set a threshold on model simplicity.

MINERful is a declarative miner developed by Di Ciccio et al. [11]. It uses a two-
phase approach: in the first phase, a knowledge base of statistical information
on the log is built; in the second, this knowledge is queried in order to infer the
constraints of the process. The output is a Declare model, possibly including
negative constraints.

MINERful has configurable thresholds for support, interest factor, and con-
fidence. By iteratively adjusting these settings until a model is found which has
the highest possible number of constraints without exceeding the complexity of
the imperative model, we ensure that the imperative and declarative models are
of comparable simplicity. We note that while many measures of simplicity have
been proposed for imperative models, there exists no widely accepted method
for comparing the simplicity of imperative and declarative models. For this rea-
son, we begin by simply comparing the number of edge elements: edges between
transitions vs. constraints between activities.

2.3 Computing Metrics

Defining standard measures for precision and generalisation remains an open
research challenge for two main reasons. First, in process mining, data is gen-
erally not assumed to be labelled, i.e. event logs contain examples of what did
happen, not what should not happen. This means that the standard definitions
used in data mining and statistics cannot be applied to process discovery, since
they rely on defining true and false positives, and true and false negatives. Sec-
ond, the prevalence of unbounded loops in process models means that they often
describe an infinite set of allowed behaviour. Therefore, definitions of precision
and generalisation which take into account all of the of behaviour allowed by



Empirical Evaluation of Imperative and Declarative Process Mining 195

the model are not applicable in practice. Instead most metrics aim to reduce the
measured behaviour of the model to a finite set of traces.

Metric Selection. To compare imperative and declarative models, we require
metrics that can be applied to both equally. This means that they need to be
defined on either the level of languages or transition systems. Accordingly, we
have chosen to employ the metrics introduced in [15], in particular:

Precision [15, p. 10] measures the degree to which a model is “underfitting” or
“allowing too much behaviour” relative to the input log. This particular metric
is based on the notion of escaping edges, which represent a point at which the
model allows behaviour not seen in the log. The measured amount of additional
behaviour is kept finite by only considering the first divergent activity. I.e. an
escaping edge may lead to a loop representing an infinite set of traces that did
not occur in the log, but only the trace ending with the first divergent activity
will be counted.

Generalisation [15, p. 11], on the other hand, measures the degree to which
a model is “overfitting”: is there behaviour not allowed by the model and not
exhibited in the log, but that can be reasonably expected to occur in the future?
This particular metric approximates generalisation by estimating for each state
in the model the likelihood that a new, hitherto unseen, activity will occur.
This estimation is based on the number of activities that have been observed,
and how often the state was visited. Two alternatives are offered: event-based
generalisation takes into account the number of visits to a state, state-based
generalisation does not.

Implementation. The widely used process mining framework, ProM, contains
a plugin for computing the metrics of [15] on Petri nets, but does not offer
support for declarative models. Also, we seek the ability to run tests in batches
and easily pipeline several operations (mining, metrics computation, analysis) on
multiple logs. Therefore we developed our own evaluation framework2. The code,
methods and results are straightforward to inspect and reproduce by following
instructions provided on the associated wiki. The framework was tested against
the examples and results reported in [15].

Challenges arise when computing precision and generalisation: mainly regard-
ing time and space efficiency, but also handling nondeterminism arising from
silent transitions present in models produced by Inductive Miner. When iden-
tifying enabled activities in a given marking, a greedy algorithm will naively
follow silent transitions until encountering a non-silent transition, potentially
firing silent transitions unnecessarily and associating incorrect markings with
an event: subsequently excluding activities which should be enabled. Using the
shortest path to a non-silent transition prevents this.

2 Available at: https://bitbucket.org/coback/qmpm.

https://bitbucket.org/coback/qmpm


196 C. O. Back et al.

To minimize redundancy, a prefix tree is built from the event log, replaying
each trace on the given model as it is added to the trie. In each node (corre-
sponding to an event in the log), the state of the model is saved, unless the node
has been visited previously, in which case a counter associated with the node is
incremented, recording the number of occurrences of that prefix. Finally, a map
containing model states (markings) as keys, and sets of nodes (events) as values,
is maintained in order to facilitate the calculation of state-based generalisation.
Given an event, the enabled activities in the log simply correspond to that node’s
children, while the enabled activities in the model are obtained by querying the
model using the model state associated with that node. This approach minimizes
redundancies, keeping state-space enumeration to a minimum.

3 Conclusion

We outline an approach to systematically compare the performance of imperative
and declarative process mining algorithms based on notation-agnostic quality
metrics for precision and generalisation defined in [15]. We will investigate two
hypotheses: first, one miner performs better on precision and/or generalisation;
second, there exist logs on which either miner provides a statistically significant
Pareto improvement.

To the best of our knowledge, this will be the first study comparing imperative
and declarative process discovery techniques using this approach. Future evalua-
tions incorporating other aspects of the process mining life-cycle, e.g. alignment,
will be able to use this approach as a point of reference. Not least, we contribute
a comprehensive software framework and tackle a number of methodological and
implementation challenges, providing a foundation upon which further work can
build.

Finally, we believe that the proposed study will be extremely valuable to the
field of hybrid process mining [19–21], which aims to combine the strengths of
the two paradigms. Research into which characteristics identify a portion of a
log as more suitable to one paradigm have been hampered by the lack of an
objective procedure on which to compare models across paradigms [22]. Our
approach lays the groundwork for addressing this shortcoming.

References

1. Reijers, H.A., Slaats, T., Stahl, C.: Declarative modeling–an academic dream or
the future for BPM? In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS,
vol. 8094, pp. 307–322. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40176-3 26

2. Van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63139-9 48

3. van der Aalst, W.M.P., Pesic, M., Schonenberg, H., Westergaard, M., Maggi, F.M.:
Declare. Webpage (2010). http://www.win.tue.nl/declare/

https://doi.org/10.1007/978-3-642-40176-3_26
https://doi.org/10.1007/978-3-642-40176-3_26
https://doi.org/10.1007/3-540-63139-9_48
http://www.win.tue.nl/declare/


Empirical Evaluation of Imperative and Declarative Process Mining 197

4. Debois, S., Hildebrandt, T.T., Slaats, T.: Replication, refinement & reachability:
complexity in dynamic condition-response graphs. Acta Informatica 55, 489–520
(2017)

5. Hull, R., et al.: Business artifacts with guard-stage-milestone lifecycles. In: DEBS
2011, pp. 51–62 (2011)

6. Object Management Group: Business Process Modeling Notation Version 2.0.
Technical report, Object Management Group Final Adopted Specification (2011)

7. Marquard, M., Shahzad, M., Slaats, T.: Web-based modelling and collaborative
simulation of declarative processes. In: Motahari-Nezhad, H.R., Recker, J., Wei-
dlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 209–225. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23063-4 15

8. Object Management Group: Case Management Model and Notation, version 1.0.
Webpage, May 2014. http://www.omg.org/spec/CMMN/1.0/PDF

9. Van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidel-
berg (2016)

10. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of under-
standable declarative process models from event logs. In: Ralyté, J., Franch, X.,
Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31095-9 18

11. Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful
processes. ACM Trans. Manag. Inf. Syst. 5(4), 24 (2015)

12. Debois, S., Hildebrandt, T.T., Laursen, P.H., Ulrik, K.R.: Declarative process min-
ing for DCR graphs. In: Proceeding of the Symposium on Applied Computing, SAC
2017, pp. 759–764 (2017)

13. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness,
precision, generalization and simplicity in process discovery. In: Meersman, R.,
et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33606-5 19

14. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions in
process discovery: the importance of fitness, precision, generalization and simplic-
ity. Int. J. Coop. Inf. Syst. 23(1), 1440001 (2014)

15. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. Wiley Inter-
disc. Rew. Data Min. Knowl. Disc. 2(2), 182–192 (2012)

16. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

17. Debois, S., Slaats, T.: The analysis of a real life declarative process. In: CIDM
2015, pp. 1374–1382 (2015)

18. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Alignment based precision checking. In: La Rosa, M., Soffer, P. (eds.)
BPM 2012. LNBIP, vol. 132, pp. 137–149. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36285-9 15

19. Slaats, T., Schunselaar, D.M.M., Maggi, F.M., Reijers, H.A.: The semantics of
hybrid process models. In: Debruyne, C. (ed.) OTM 2016. LNCS, vol. 10033, pp.
531–551. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48472-3 32

20. Maggi, F.M., Slaats, T., Reijers, H.A.: The automated discovery of hybrid pro-
cesses. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp.
392–399. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9 27

https://doi.org/10.1007/978-3-319-23063-4_15
http://www.omg.org/spec/CMMN/1.0/PDF
https://doi.org/10.1007/978-3-642-31095-9_18
https://doi.org/10.1007/978-3-642-33606-5_19
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-642-36285-9_15
https://doi.org/10.1007/978-3-642-36285-9_15
https://doi.org/10.1007/978-3-319-48472-3_32
https://doi.org/10.1007/978-3-319-10172-9_27


198 C. O. Back et al.

21. Schunselaar, D.M.M., Slaats, T., Maggi, F.M., Reijers, H.A., van der Aalst,
W.M.P.: Mining hybrid business process models: a quest for better precision. In:
Abramowicz, W., Paschke, A. (eds.) BIS 2018. LNBIP, vol. 320, pp. 190–205.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93931-5 14

22. Back, C.O., Debois, S., Slaats, T.: Towards an entropy-based analysis of log vari-
ability. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 53–70.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74030-0 4

https://doi.org/10.1007/978-3-319-93931-5_14
https://doi.org/10.1007/978-3-319-74030-0_4

	Towards an Empirical Evaluation of Imperative and Declarative Process Mining
	1 Introduction
	2 Methods
	2.1 Log Selection
	2.2 Process Discovery
	2.3 Computing Metrics

	3 Conclusion
	References




