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Abstract. Query/view synchronization upon the evolution of a
database schema is a critical problem that has drawn the attention of
many researchers in the database community. It entails rewriting queries
and views to make them continue work on the new schema version.
Although several techniques have been proposed for this problem, many
issues need yet to be tackled for evolutions concerning the deletion of
schema constructs, hence yielding loss of information. In this paper, we
propose a new methodology to rewrite queries and views whose defini-
tions are based on information that have been lost during the schema
evolution process. The methodology exploits (relaxed) functional depen-
dencies to automatically rewrite queries and views trying to preserve
their semantics.
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1 Introduction

Query/view synchronization (QVS in the following) upon schema evolutions is
an extremely critical problem, since it has been estimated that each schema
evolution step might affect up to 70% of the queries and views operating on
the old schema [12]. The QVS problem has been tackled in several studies, and
many approaches and tools have been proposed to support DBAs during the
schema evolution process (see [9] for a survey). However, the shortage of proper
automated tools has not made the proposed solutions sufficiently practical [1,
11,15], since they often require programmer’s work to manually rewrite portions
of affected queries and views. Moreover, there are many cases in which it is not
possible to correctly synchronize the affected queries and views, especially when
the evolution entails loss of information. In fact, all the query/view definitions
based on the lost information cannot be rewritten in a simple way, so limiting
the possibility to have an automatic synchronization process.

In general, approaches aiming to solve the QVS problem in presence of infor-
mation loss either prescribe to remove queries and views that cannot be syn-
chronized, or to block the evolution operations preventing the synchronization
c© Springer Nature Switzerland AG 2018
C. Woo et al. (Eds.): ER 2018 Workshops, LNCS 11158, pp. 91–105, 2018.
https://doi.org/10.1007/978-3-030-01391-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01391-2_17&domain=pdf


92 L. Caruccio et al.

of some queries or views. Some other approaches prescribe to ask the DBA about
the best choice to be made.

In this paper, we propose a methodology aiming to automatically rewrite
queries and views relying on the schema constructs that have been deleted dur-
ing the schema evolution. The methodology exploits semantic correlations of
data expressed in terms of relaxed functional dependencies (rfds) [7], for which
automatic tools are now available to extract them from data [6,8]. In particular,
the methodology tries to rewrite affected queries and views by seeking possi-
ble rfds between the deleted information and the remaining ones, in a way to
preserve or approximate the original semantics of queries and views.

The paper is organized as follows. In Sect. 2 we recall several basic concepts
on the theory of Schema Evolution and on the theory of Functional Dependen-
cies. Then, we characterize the whole query/view synchronization problem, and
specifically the necessity to manage the loss of information in Sect. 3. In Sect. 4
we present our solution to automatically synchronize queries and views when a
loss of information occurs. In Sect. 5 we validate the proposed methodology by
presenting the results of several experiments conducted on two public datasets.
Related works have been provided in Sect. 6. Finally, conclusions and future
research directions are discussed in Sect. 7.

2 Background

In this section we will recall basic notions on the database theory underlying the
proposed solution.

2.1 Schema Evolution

Schema evolutions might occur when a system is first released, due to bugs or
incomplete functionalities, or to reflect changes in the real world, which might
also entail the evolution of the underlying database. Problems related to the
schema evolutions have been studied not only for databases, but also for Data
Warehouses [14,24] and for Ontologies [23]. In this paper, we focus on the evo-
lution of database schemas.

Definition 1 (Schema evolution). Let S be a database schema, and Inst(S)
be the set of possible instances of S; an evolution of S is the result of one or more
changes to the data structures, constraints, or any other artifact of S, entailing
modifications to the system catalog.

Changes might consist of simple schema modifications, such as addition, dele-
tion, or renaming of an attribute, of a constraint, or of a relation, and/or com-
posed schema modifications, such as join, partition, and decomposition [20]. In
what follows, we denote with S→S′ the evolution of the schema S into S′, where
S and S′ are called schema versions.
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Example 1. Let us consider the following database schema:

S : Doctor(idDoctor,Name,Specialization,Role,Experience,Salary, Level, Tax) (1)

where the underlined attribute represents the primary key. The schema repre-
sents a table of doctors, containing name, specialization, role, experience, annual
salary, contractual level, and annual tax. An evolution S → S′ of this schema
might concern the removal of the attribute Level, yielding the following new
schema version:

S′ : Doctor(idDoctor,Name,Specialization,Role,Experience,Salary, Tax) (2)

There are two basic strategies to specify a schema evolution S → S′; one
strategy describes the operation commands of the procedure to transform S
into S′, and another first specifies S′, and then finds schema correspondences
between S and S′, which can be represented by means of mappings1 [1–3,18,20,
22]. Moreover, there are hybrid strategies mixing the characteristics of the two
previous ones. As a consequence, we can have the following three types of schema
evolution approaches: operation-based, mapping-based, and hybrid, respectively.

In general, operation-based approaches exploit the advantage of knowing a
priori how the schema can evolve and the effects of each evolution. On the other
hand, mapping-based approaches allow us to handle every type of modification
[22], but without a complete view of the effects that a single modification will
have on the schema.

The impact of schema modifications on the database instances can be char-
acterized through the concept of information capacity [17]. The latter specifies
whether the set Inst(S′) is equivalent to, extends, or reduces Inst(S) [1]. For
instance, when an attribute is dropped from a database schema, the correspond-
ing information is lost, hence Inst(S′) reduces Inst(S). In this case, we will
denote by NotInst(S, S′) the set of all instances of S that do not have a corre-
sponding instance in Inst(S′).

Schema construct deletions are among the most critical capacity reducing
variations, since they entail loss of information that might irremediably invali-
date some database components, like queries and application programs.

2.2 Relaxed Functional Dependencies

Let us recall some basic concepts of relational databases.
A relational database schema R is defined as a collection of relation schemas

(R1,. . ., Rn), where each Ri is defined over a fixed set of attributes attr(Ri).
Each attribute Ak has associated a domain dom(Ak), which can be finite or
infinite. A relation instance (or simply a relation) ri of Ri is a set of tuples such
that for each attribute Ak ∈ attr(Ri), t[Ak] ∈ dom(Ak), ∀ t ∈ ri, where t[Ak]

1 A mapping m between two schemas S and S′ is a set of assertions of the form
qS � qS′ , where qS and qS′ are queries over S and S′, respectively, with the same
set of distinct variables, and � ∈{⊆, ⊇, ≡}.
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denotes the projection of t onto Ak. A database instance r of R is a collection
of relations (r1,. . .,rn), where ri is a relation instance of Ri, for i ∈ [1, n].

In the context of relational databases, data dependencies have been used
to define data integrity constraints, aiming to improve the quality of database
schemas and to reduce manipulation anomalies. There are several types of data
dependencies, including functional, multivalued, and join dependencies. Among
these, functional dependencies (fds) are the most commonly known, mainly due
to their use in database normalization processes. Since rfds extend fds, let us
recall the definition of fd.

Definition 2 (Functional dependency). A functional dependency (fd) ϕ,
denoted by X → Y , between two sets of attributes X,Y ⊆ attr(R), specifies a
constraint on the possible tuples that can form a relation instance r of R: X → Y
iff for every pair of tuples (t1, t2) in r, if t1[X] = t2[X], then t1[Y ] = t2[Y ]. The
two sets X and Y are also called Left-Hand-Side (LHS) and Right-Hand-Side
(RHS), resp., of ϕ.

Rfds extend fds by relaxing some constraints of their definition. In particu-
lar, they might relax on the attribute comparison method, and on the fact that
the dependency must be satisfied by the entire database.

Relaxing on the attribute comparison method means to adopt an approxi-
mate tuple comparison operator, say ≈, instead of the “equality” operator. In
order to define the type of attribute comparison used within an rfd, we use the
concept of similarity constraint [10].

Definition 3 (Similarity constraint). Given an attribute A on a given
domain D, let φ[A] : D × D → R

+ be a function which evaluates the similar-
ity between value pairs of A.

As an example, φ can be defined in terms of a similarity metric ≈, like for
instance the edit or Jaro distances [13], such that, given two values a1, a2 ∈ A,
a1≈a2 is true if a1 and a2 are “close” enough w.r.t. a predefined threshold α.
We denote the similarity constraint associated to an attribute A as A≤α, which
indicates that a pair of values (a1, a2) can be considered similar on A if and only
if the φ[A](a1, a2) ≤ α.

Definition 4 (Set of similarity constraints). Given a set of attributes
X ⊆ attr(R) with X = {A1, . . . , Ak}, a set of similarity constraints, denoted
as XΦ, collects the similarity constraints XΦ = {A1≤α1 , . . . , Ak≤αk

} associated
to attributes of X.

A dependency holding for “almost” all tuples or for a“subset” of them is said
to relax on the extent [7]. In case of “almost” all tuples, a coverage measure
should be specified to quantify the degree of satisfiability of the rfd. Whereas
in case of“subset” (constrained domains in the following), conditions on the
attribute domains should be specified to define the subset of tuples satisfying
the rfd.
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Definition 5 (Coverage measure). Given a database instance r of R, and
an fd ϕ : X → Y , a coverage measure Ψ on ϕ quantifies the satisfiability degree
of ϕ on r, Ψ : dom(X) × dom(Y ) → R

+ measuring the amount of tuple pairs in
r satisfying ϕ.

As an example, the confidence measure introduced in [16] evaluates the max-
imum number of tuples r1 ⊆ r for which ϕ holds in r1.

Several coverage measures can be used to define the satisfiability degree of
an rfd, but usually they return a value normalized on the total number of tuple
pairs

(
n
2

)
for n cardinality of R, so producing a value v ∈ [0, 1]. In the context

of the canonical fds, this measure evaluates to 1.

Definition 6 (Constrained domain). Given a relation schema R with
attributes {A1, . . . , Ak} with attributes {A1, . . . , Ak} of a given domain D =
D1 × D2 × · · · × Dk = dom(R), let ci ∀i = 1, dots, k be a condition on Di the
constrained domain Dc is defined as follows

Dc =
{
t ∈ dom(R)|

k∧

i=1

ci(t[Ai])}.

Constrained domains enable the definition of “subsets” of tuples on which depen-
dencies apply [5].

Then, a general definition of rfd can be given:

Definition 7 (Relaxed functional dependency). Let us consider a rela-
tional schema R. An rfd � on R is denoted by

[
XΦ1

Ψ≥ε−−−→ YΦ2

]

Dc

(3)

where

– Dc is the constrained domain that filters the tuples on which � applies;
– X,Y ⊆ attr(R), with X ∩ Y = ∅;
– Φ1 and Φ2 are sets of similarity constraints on attributes X and Y , respec-

tively;
– Ψ is a coverage measure defined on Dc;
– ε is a threshold.

Given r ⊆ Dc, a relation instance r on R satisfies the rfd �, denoted by
r |= �, if and only if: ∀ (t1, t2) ∈ r, if Φ1 is true for each constraint A≤α ∈ Φ1,
then almost always Φ2 is true for each constraint B≤β ∈ Φ2. Here, almost always
means that Ψ(πX(r), πY (r)) ≥ ε.

In other words, if t1[X] and t2[X] agree with the constraints specified by Φ1,
then t1[Y ] and t2[Y ] agree with the constraints specified by Φ2 with a degree of
certainty (measured by Ψ) greater than ε.

In the following we use rfds having only one attribute on the RHS; this
condition can always be reached by means of the usual transformations of fds.
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Example 2. As an example, for the database schema of Doctor shown in (1), it
is likely to have the same Specialization for doctors having the same Name and
PlaceOfBirth. An fd {Name,PlaceOfBirth} → Specialization might hold. However,
the names, places and specializations might be stored by using different abbre-
viations. Thus, the following rfd might hold:

{Name≈,PlaceOfBirth≈} −→ Specialization≈

where ≈ is the string similarity function. On the other hand, the few cases of
homonyms for the doctors born in the same place have to be considered. For this
reason, the previous rfd should also admit exceptions. This can be modeled by
introducing a different coverage measure into the rfd, making it approximate:

{Name≈,PlaceOfBirth≈} ψ(Name,P laceOfBirth,Specialization)≥0.98−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Specialization≈

3 Problem Description

Let us define the query/view synchronization problem.

Definition 8 (Query/View Synchronization). Let Q be the set of queries
and views defined on a database schema S; upon a schema evolution S→S′, the
QVS problem consists of finding a transformation τ of Q producing a set Q′ of
queries and views on S′, such that Q′ on S′ preserves the semantics of Q on
S. If such a transformation exists, we say that there exists a synchronization
Q→Q′, or even that Q′ represents a legal rewrite of Q.

Example 3. Let us consider the view on the database schema S of Example 1:

CREATE VIEW getDoctorByLevel AS

SELECT Name,Specialization
FROM Doctor
WHERE Level = “D”

(4)

It extracts the tuples getDoctorByLevel(Name, Specialization) for all the stored
doctors with a contractual level equal to “D”. Clearly, even such a simple view
needs be rewritten upon the schema evolution defined in (2).

The preferred automated tools will be those that give the user the illusion of
defining queries and views on an older version of the schema even though it has
evolved [18].

Example 4. Let us consider the schema S of Example 1. If it evolves into the
following schema:

DoctorData(idDoctor,Name,Specialization,Role,Experience)
DoctorEconomy(idDoctor,Salary, Level, Tax)

(5)
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then it is possible to automatically synchronize all queries and views involving
attributes of both DoctorData and DoctorEconomy, by introducing a join between
the new two relations.

Unfortunately, it is not always possible to find a synchronization for all
queries and views, especially when the modification concerns the deletion of
schema constructs instantiated within some queries or views. In the following,
we analyze the schema constructs that can affect the results of a query or of a
view.

Definition 9. Given a relation R and a selection condition c Inst(R, c) is the
set of instances in R satisfying c [28].

Definition 10. Given a schema S, and a query/view Q with selection condition
CQ

sQ = {s ∈ Inst(S,CQ)} (6)

is the result instance of the query/view Q.

Definition 11. Let Q be a query/view, and S → S′ an evolution of S, we say
that Q can be automatically rewritten upon the deletion of a schema construct if
and only if the following properties hold:

– There exists an instance si ∈ Inst(S′), which corresponds to (is the same
of) the result instance of Q when applied on S (result data preserving), i.e.
si = sQ.

– For each selection condition c of Q, there exists a constraint c′ such that
sQ ∈ Inst(S, c) ∩ Inst(S′, c′) (result construction preserving).

It is worth to noticing that the lack of preservation in result construction does
not necessarily produce the lack of preservation in result data. In fact, when
sQ /∈ NotInst(S, S′), there can exist a condition cj such that sQ /∈ Inst(S, cj) ∩
Inst(S′, c′

j) for each c′
j definable on S′. In other words, this case occurs when the

information on the attributes whose values must be outputted by executing Q
have not been lost, but there is a condition useful to produce the result instance
of Q that cannot be redefined in S′.

4 Methodology

In the literature, there are few methodologies addressing the synchronization of
queries and views upon schema evolutions yielding information loss [9]. They
propose solutions ranging from the possibility of not including all the informa-
tion required by Q in the result instance [1], to the possibility of defining a
priori some parameters and/or policies on Q that block evolutions yielding loss
of information declared as essential for Q [19]. In some other cases, the DBA
intervention is required to manage the loss of information [25], or to replace lost
data with approximated ones within the result instance [26].



98 L. Caruccio et al.

The proposed methodology exploits rfds [7], aiming to produce result
instances equivalent to or approximating those produced on the old schema ver-
sion. In particular, we focus on schema evolutions yielding attribute deletions,
since they can invalidate conditions of queries and views. However, the proposed
methodology can be easily extended to the removal of relations, since they can
be rewritten in terms of removal of several attributes.

More formally, given a schema evolution S → S′, where NotInst(S, S′) �= ∅.
Let c1, . . . , ck in Q, and let c̄1, . . . , c̄h be the conditions which involve attribute
deleted by the evolution S → S′. For each c ∈ {c̄1, . . . , c̄h} we construct the
modified condition c′ such that s′

Q ∈ Inst(S′, c′) and s′
Q = sQ, where sQ ∈

Inst(S, c).
In order to construct c′, we verify the existence of some rfds ψ of the form:

XΦ1 → AEQ (7)

where A represents the attribute instantiated in c, and eq is the equality con-
straint.

In this way, according to the type of each query/view condition c corrupting
Q, it is possible to transform c into c′ through the following general formula:

c′ =
k∨

i=1

(X1 = x1i ∧ X2 = x2i ∧ · · · ∧ Xn = xni) (8)

∀Xj ∈ X, with j = 1, . . . , n, and ∀ti such that ti[A]θy, where y is a constant
or an attribute, and θ represents one of the possible operators that can be used
in c.

In this way, each query/view Q including the condition c can be rewritten
into Q′ by replacing c with c′.

Example 5. Let us consider the database instance in Table 1, and the view Q in
(3).

After the evolution S → S′ defined in (2), if the following rfd ϕ
{Role≈, Experience≈} → LevelEQ holds, then we can automatically transform Q
in Q′ in the following way:

CREATE VIEW getDoctorByLevel AS

SELECT Name,Specialization
FROM Doctor
WHERE (Role = “Specialized” AND Experience = 2 years)

OR (Role = “SpecializedDr.” AND Experience = 3 years)

(9)

producing the same result instance of the original view.

The transformation rule defined in (8) can be specialized based on the con-
dition used in the query/view (see Table 2).

In general, the proposed solution can be applied whenever an rfd is included
within the previously defined general form. Moreover, the whole methodology
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Table 1. A portion of a doctor database instance.

idDoctor Name Specialization Role Experience Salary Level Tax
1 George Johnson Neurology Junior Dr. 2 years $118,000 E $27,140

2 Joe House Cardiology Head Physician 10 years $314,000 B $94,200

3 Derek Williams Pediatrician Specialized Dr. 2 years $156,000 D $39,000

4 Henry Jones Neurology Specialized 3 years $158,000 D $39,500

5 Victor Sanchez Radiology Senior Surgeon 5 years $225,000 C $63,000

...

Table 2. The transformation rule (8) specialized for each type of query condition.

Condition Type Formula

attribute = constant
(A = ′a′)

∨
i (X1 = x1i ∧ X2 = x2i ∧ · · · ∧ Xn = xni)

∀ti s.t. ti[A] = ′a′, and ∀Xj ∈ X with j = 1, . . . , n

attribute = attribute
(A = B)

∨
i (X1 = x1i ∧ X2 = x2i ∧ · · · ∧ Xn = xni)

∀ti s.t. ti[A] = ti[B], and ∀Xj ∈ X with j = 1, . . . , n

attribute θ constant
(A θ ′a′)

∨
i (X1 = x1i ∧ X2 = x2i ∧ · · · ∧ Xn = xni)

∀ti s.t. ti[A] θ ′a′, and ∀Xj ∈ X with j = 1, . . . , n

attribute θ attribute
(A θ B)

∨
i (X1 = x1i ∧ X2 = x2i ∧ · · · ∧ Xn = xni)

∀ti s.t. ti[A] θ ti[B], and ∀Xj ∈ X with j = 1, . . . , n

attribute in Query
(A in Q)

∨
i (X1 = x1i ∧ X2 = x2i ∧ · · · ∧ Xn = xni)

∀ti s.t. ti[A] = (v1∨, . . . , ∨vk) ∀vz ∈ {v1, . . . , vk}
result value of Q, and ∀Xj ∈ X with j = 1, . . . , n

attribute not in Query
(A not in Q)

∨
i (X1 = x1i ∧ X2 = x2i ∧ · · · ∧ Xn = xni)

∀ti s.t. ti[A] <> (v1∧, . . . , ∧vk) ∀vz ∈ {v1, . . . , vk}
result value of Q, and ∀Xj ∈ X with j = 1, . . . , n

attribute θ any Query
(A θ any Q)

∨
i (X1 = x1i ∧ X2 = x2i ∧ · · · ∧ Xn = xni)

∀ti s.t. ti[A] θ (v1∨, . . . , ∨vk) ∀vz ∈ {v1, . . . , vk}
result value of Q, and ∀Xj ∈ X with j = 1, . . . , n

attribute θ all Query
(A θ all Q)

∨
i (X1 = x1i ∧ X2 = x2i ∧ · · · ∧ Xn = xni)

∀ti s.t. ti[A] θ (v1∧, . . . , ∧vk) ∀vz ∈ {v1, . . . , vk}
result value of Q, and ∀Xj ∈ X with j = 1, . . . , n

attribute between ′a1
′

and ′a2
′

(A between ′a′
1 and ′a′

2)

∨
i (X1 = x1i ∧ X2 = x2i ∧ · · · ∧ Xn = xni)

∀ti s.t. ti[A] ≥ ′a′
1 ∧ ti[A] ≤ ′a′

2,
and ∀Xj ∈ X with j = 1, . . . , n

can be effectively used in practice, due to the fact that many rfds can be
automatically extracted from data [6,21].

Finally, it is fair to note that it is possible to find more than one correct
rewritings of queries/views corrupted by an evolution. This is also another issue
related to the general QVS problem. To this end, in order to choose the best
candidate synchronization, we will select the query/view rewrite maximizing the
length of c′ in term of ∨ sentences (i.e. c′ such that the value of k is minimum).
In this way, more general rewritings of queries/views will be used.
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4.1 Query/View Synchronization with Approximate Results

In case there is no rfd suitable to accomplish the synchronization process, it
would be desirable to rewrite queries/views in a way to produce results approxi-
mating those of the original query/view version. This can be done due to approx-
imate nature of rfds.

More formally, in order to transform c into c′, so that s′
Q ∈ Inst(S′, c′) and

s′
Q ≈ sQ, we verify the existence of some rfd ϕ of the form:

XΦ1 → AΦ2 (10)

where A represents an attribute instantiated in c that has been deleted during
the schema evolution, with Φ2 a similarity constraint.

Example 6. Let us consider again the database instance in Table 1, and the
view Qin (3). After the evolution S → S′ defined in (2), if the rfd ϕ
Experience≈→ Level≈ holds, then we can automatically transform Q in Q′ in
the following way:

CREATE VIEW getDoctorByLevel AS

SELECT Name,Specialization
FROM Doctor
WHERE Experience = 2 years OR Experience = 3 years

(11)

producing a result that is not equal, but similar to the one of the original view,
as shown in Table 3. It is worth to notice that a level of acceptance for the result
approximations can be managed by domain experts, by restricting similarity
constraint thresholds of valid rfds.

Table 3. An approximate version of the view getDoctorByLevel.

idDoctor Name Specialization

1 George Johnson Neurology

3 Derek Williams Pediatrician

4 Henry Jones Neurology

5 Evaluation

We made a prototype implementation of the proposed methodology in Java.
When synchronizing queries affected by an evolution, the prototype considers
all the rfds that have one of the removed attributes on the RHS and none of
the removed attributes on the LHS. The choice of the rfd to be used for the
synchronization follows this rule:
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Choice the rfd with an LHS producing the minimum result set of a query
constructed as SELECT LHS Attributes FROM r WHERE affected Condition

where affected Condition represents the condition instantiating one of the
attributes removed during the evolution process, which corresponds to the RHS
of the rfd used for the synchronization.

We evaluated the proposed methodology on two different datasets, the
Bridges and the Echocardiogram datasets, drawn from the UC Irvine Machine
Learning repository [4]. Statistics on the characteristics of the considered
datasets are reported in Table 4.

In order to evaluate the proposed methodology, we defined several queries on
each dataset, and randomly removed three attributes from each of them. In par-
ticular, there were two queries affected by the attribute removal for the Bridges
and five for the Echocardiogram dataset. We observed the number of attributes
on the LHS belonging to the rfd selected for the synchronization, and the growth
of the query conditions. In general, the execution time to accomplish the com-
plete synchronization was very small, varying in the range [0.2, 0.5] seconds.
Finally, we performed another experimental session, by forcing the selection of
rfds considering approximate matches on the RHS. In this case, we also analyzed
the number of false positives introduced during the synchronization process.

Table 4. Statistics on the datasets considered in the evaluation.

Datasets # Columns # Rows # FD Size [KB]

Bridges 13 108 142 6

Echocardiogram 13 132 538 6

Evaluation results are shown in Fig. 1. We can notice that the growth of query
conditions (number of conditions into the synchronized query) does not depend
on the LHS cardinality (|LHS|, number of attributes) of the selected rfd, as
shown in Fig. 1(a). However, since the conditions are automatically processed,
their size does not affect the human effort in the synchronization process. More-
over, in the case of rewritings with approximate results (Fig. 1(b)), we notice that
by using rfds with similarity constraints on the RHS yields a reduced growth
of the query condition, and the LHS cardinalities does not increase. However,
as expected, in some cases several false positives are generated. Finally, it is
worth to notice that a synchronization process accomplished through an rfd
with a higher LHS cardinality increases the risk of possible future synchroniza-
tions, since it is highest the probability that one of them could be involved in
future schema evolutions. This represents the main limitation of the proposed
approach.
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(a) Exact Rewritings (b) Rewritings with Approximate results

Fig. 1. Evaluation results of the proposed methodology.

6 Related Work

QVS approaches and tools defined in the literature are based on one of the
three schema evolution strategies defined in Sect. 2.1: operation-based, mapping-
based, and hybrid. Moreover, the QVS problem raises several issues, ranging
from the automation level of the synchronization process to the management of
information loss [9]. QVS approaches should provide solutions for all the issues
related to the general problem. However, in some cases, solutions useful for some
issues might be not appropriate for other cases.

In general, the QVS process permits the synchronization of all the
queries/views affected by the evolution of a given schema. In the previous sec-
tions we discussed the fact that corrupted queries/views cannot be always syn-
chronized. To this end, the concept of policies guiding the synchronization pro-
cess can be used [25]. In particular, three types of policies have been defined
in the literature: (i) propagate, (ii) block, and (iii) prompt, which prescribe how
to handle the portions of the view definitions affected by the schema modifi-
cation: propagate prescribes to apply changes and synchronize Q, block forbids
changes, and prompt prescribes to ask the DBA for the action to be undertaken
[11]. Although the latter might appear the most suitable policy, it should not
be abused in order to keep the automation level of the QVS process sufficiently
high.

Another solution to the QVS problem relies on the concept of View Evolution
Parameters (VEPs) [29], which enables the possibility to define how to handle
the single components of a view during the synchronization process, by specifying
a priori whether the component (e.g. an attribute) is replaceable, or whether it
is mandatory. In addition, the View Extent2 Parameter (VE) [29] associated
to a view Q specifies a condition on the extent of a view Q′ in order for Q′

to be considered an acceptable synchronization of Q. In other words, the V E
parameter φ ∈ {≡,⊆,⊇,≈}, specifies a priori whether the extent of Q′ must
be equivalent (≡), be included (⊆), include (⊇), or approximate (≈) the extent
of Q, in order for Q′ to be considered a legal rewrite of Q. In other words, the

2 The view extent is the usually adopted term indicating the result-set of a view
statement, i.e. the materialized view.
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V E parameter establishes a relationship that must hold between the projections
of Q′ and Q on their common attributes.

Fault tolerance is the idea underlying the approach [27], in which attempts
are made to recover data from the source schema, even with some errors. This
has been done by means of default mappings, a formalism based on default logic,
which is suitable to express rules allowing exceptions. This solution permits to
define approximate versions of queries/views invalidated from the evolution.

Finally, a cooperative approach to querying has been used in the context of
logic-based data integration of heterogeneous databases [18]. In particular, this
solution exploits heuristics to produce approximate answers, which are submitted
to the user or to the DBA for approval. Such a process exploits a dialogue for
information seeking, in which participants (user and system) aim at finding an
adequate mapping between the query and the modified schema.

All of approaches previously mentioned aim to provide a general solution to
the QVS problem. However, they do not propose a specific solution w.r.t. the fact
that queries/views might be corrupted even when their result instances can be
recovered upon the evolution, and the latter only affects the query/view selection
conditions. The proposed methodology aims to isolate this kind of situations, by
providing possible rewritings of queries/views based on semantic correlations
among data, expressed in terms of rfds. For this reason, the proposed solution
not only can be embedded within more generic solutions, but should also permit
to increase the automation level of the QVS process.

7 Conclusion and Future Work

We have proposed a new methodology to automatically rewrite queries/views
corrupted as a consequence of schema evolutions causing loss of information on
which they were defined. The transformation procedure exploits the semantic
correlations among data provided by rfds, in oder to derive a general trans-
formation formula for the QVS problem. It can be included in every approach
or tool aiming to solve the general QVS problem. Moreover, since rfds can be
automatically extracted [6,21], the proposed methodology allows to improve the
automation level of the synchronization process.

In the future, we would like to investigate the effects of instance evolutions
of previous query/view synchronization processes. In particular, the addition
or deletion of some data might change the set of rfds holding on the dataset,
possibly altering parts of previous synchronization processes. Thus, we would
like to investigate how to make the query/view synchronization methodology
incremental w.r.t. instance updates. To this end, it might be useful to investigate
the possibility of exploiting rfds that relax on the extent [7], that is, rfds
holding only on a subset of the database.



104 L. Caruccio et al.

References

1. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings.
In: Proceedings of the ACM SIGMOD International Conference on Management
of Data (COMAD), pp. 1–12. ACM (2007)

2. Bernstein, P.A., Rahm, E.: Data warehouse scenarios for model management. In:
Laender, A.H.F., Liddle, S.W., Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920, pp.
1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45393-8 1

3. Bertino, E.: A view mechanism for object-oriented databases. In: Pirotte, A., Delo-
bel, C., Gottlob, G. (eds.) EDBT 1992. LNCS, vol. 580, pp. 136–151. Springer,
Heidelberg (1992). https://doi.org/10.1007/BFb0032428

4. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases. http://
archive.ics.uci.edu/ml/index.php. Accessed 3 Mar 2018

5. Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional func-
tional dependencies for data cleaning. In: 2007 IEEE 23rd International Conference
on Data Engineering, pp. 746–755. IEEE (2007)

6. Caruccio, L., Deufemia, V., Polese, G.: On the discovery of relaxed functional
dependencies. In: Proceedings of the 20th International Database Engineering &
Applications Symposium (IDEAS), pp. 53–61 (2016)

7. Caruccio, L., Deufemia, V., Polese, G.: Relaxed functional dependencies - a survey
of approaches. IEEE Trans. Knowl. Data Eng. 28(1), 147–165 (2016)

8. Caruccio, L., Deufemia, V., Polese, G.: Evolutionary mining of relaxed dependen-
cies from big data collections. In: Proceedings of the 7th International Conference
on Web Intelligence, Mining and Semantics, WIMS 2017, p. 5 (2017)

9. Caruccio, L., Polese, G., Tortora, G.: Synchronization of queries and views upon
schema evolutions: a survey. ACM Trans. Database Syst. (TODS) 41(2), 9 (2016)

10. Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string metrics for match-
ing names and records. In: KDD Workshop on Data Cleaning and Object Consol-
idation, vol. 3, pp. 73–78 (2003)

11. Curino, C.A., Moon, H.J., Zaniolo, C.: Graceful database schema evolution: the
prism workbench. Proc. VLDB Endow. 1(1), 761–772 (2008)

12. Curino, C.A., Tanca, L., Moon, H.J., Zaniolo, C.: Schema evolution in wikipedia:
toward a web information system benchmark. In: Proceedings of the 10th Interna-
tional Conference on Enterprise Information Systems (ICEIS), pp. 323–332. Cite-
seer (2008)

13. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: a
survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)

14. Golfarelli, M., Lechtenbörger, J., Rizzi, S., Vossen, G.: Schema versioning in
data warehouses: enabling cross-version querying via schema augmentation. Data
Knowl. Eng. 59(2), 435–459 (2006)

15. Hick, J.M., Hainaut, J.L.: Database application evolution: a transformational app-
roach. Data Knowl. Eng. 59(3), 534–558 (2006)
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