
On the Symmetries of a Liénard Type
Nonlinear Oscillator Equation

R. Mohanasubha, V. K. Chandrasekar, M. Senthilvelan
and M. Lakshmanan

Abstract In the contemporary nonlinear dynamics literature, the nonlinear
oscillator equation ẍ + kx ẋ + k2

9 x
3 + λ̃x = 0 is being analyzed in various contexts

both classically and quantummechanically.Classically this nonlinear oscillator equa-
tion has been shown to admit three different types of dynamics depending upon the
sign andmagnitude of the parameter λ̃, namely (i) λ̃ = 0, (ii) λ̃ > 0 and (iii) λ̃ < 0.By
considering its importance, in this paper, we present the symmetries of its Lagrangian
and underlying equation of motion for all the three cases. In particular, we present
Lie point symmetries, λ-symmetries, Noether symmetries and telescopic symmetries
of this equation. The utility of the symmetries for all the three cases is demonstrated
explicitly.

Keywords Nonlinear oscillators · Lie point symmetries · λ-symmetries · Noether
symmetries · Telescopic vector fields

1 Introduction

During the past ten years or so considerable interest has been shown on investigating
various properties associated with the Liénard type nonlinear oscillator equation,
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Δ(t, x, ẋ, ẍ) = ẍ + kx ẋ + k2

9
x3 + λ̃x = 0, (1)

where overdot denotes differentiation with respect to t , k and λ̃ are arbitrary parame-
ters [4, 8, 12, 15, 22, 24, 27]. Equation (1) arises in the study of equilibrium config-
urations of a spherical gas cloud acting under the mutual attraction of its molecules
and subject to the laws of thermodynamics [3]. Even though a more general equation
of this form with time dependent coefficients has been studied long ago consider-
able interest has been shown on this particular equation when two of the present
authors along with Bindu and Pandey have identified it as one of the linearizable
equations when a Lie symmetry analysis was carried out on the Liénard type equa-
tion ẍ + f (x)ẋ + g(x) = 0, where f (x) and g(x) are arbitrary functions of x [24].
Originally three of the present authors have proved the integrability of system (1) and
demonstrated that this equation admits a conservative non-standard Lagrangian and
Hamiltonian description [4]. They have also shown that the frequency of oscillations
of this system for λ̃ > 0 does not depend on the amplitude of oscillations thereby
showing that the amplitude dependence of frequency is not necessarily a fundamental
property of nonlinear dynamical phenomena [4].

The system (1) admits three different dynamics depending upon the sign of the
linear term in it. For example, for the choice λ̃ ≤ 0, the system (1) admits front like
solution and λ̃ > 0 displays explicit sinusoidal periodic solution [4].

This model has further been investigated by several authors under different per-
spectives [1, 5–7, 9, 15, 16, 22]. For example, it has been demonstrated that the
model (1) admits (i) integrating factors [1, 5, 7, 16], (ii) Lagrangian multipliers [22],
(iii)λ− symmetries [16], (iv)Darbouxpolynomials [15], and (v) alternateLagrangian
[9]. Equation (1) can be transformed (i) to a free particle equation through invertible
point transformation, (ii) to a harmonic oscillator equation through Sundman trans-
formation and (iii) to a linear third order ODE, w′′′ + λ̃w = 0, through a generalized
transformation [5–7, 15, 16].

In one of our earlier works, we have constructed a nonstandard Lagrangian, [4]

L1 = 27λ̃3

2k2

(
1

kẋ + k2
3 x

2 + 3λ̃

)
+ 3λ̃

2k
ẋ − 9λ̃2

2k2
, λ̃ �= 0 (2)

for this equation. Formany of our investigations we stick to the Lagrangian (2) and its
associated Hamiltonian (see Eq. (3) below) since when k → 0 both the Lagrangian
and Hamiltonian reduce to the linear harmonic oscillator Lagrangian and Hamilto-
nian, respectively, as the equation ofmotion does. In a recent work, two of the present
authors with Chithiika Ruby have also demonstrated the quantum solvability of its
Hamiltonian [8]

H = 9λ̃2

2k2

(
2 − 2

(
1 − 2kp

3λ̃

) 1
2 + k2x2

9λ̃
− 2kp

3λ̃
− 2k3x2 p

27λ̃2

)
, (3)
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where

p = ∂L

∂ ẋ
= −27λ̃3

2k

(
1

(kẋ + k2
3 x

2 + 3λ̃)2

)
+ 3λ̃

2k
. (4)

By observing that the Hamiltonian (3) can also be equivalently considered in the
form

H(x, p) = x2

2m(p)
+U (p), − ∞ < p ≤ 3λ̃

2k
, (5)

where

m(p) = 1

λ̃
(
1 − 2k

3λ̃
p
) and U (p) = 9λ̃2

2k2

⎛
⎝

√
1 − 2k

3λ̃
p − 1

⎞
⎠ (6)

and recognizing that this form coincides with the position dependent mass Hamil-
tonian with the difference that the variables x and p are interchanged, the authors
went on to quantize the position dependent mass Schroedinger equation in momen-
tum space by augmenting with van Roos ordering. The explicit eigenvalues and
eigenvectors have been brought out in an elegant manner.

In this paper we present symmetries of various kinds for Eq. (1) and the non-
standard Lagrangian (2). The reason for consolidating this result is that as far as
symmetries are concerned some of the earlier studies are incomplete. For example,
eventhough Lie point symmetries are known for this equation for all the three para-
metric regimes the order reduction procedure has not been done so far for this system.
In this paper, we intend to complete it. As far as λ-symmetries are concerned even-
though a detailed investigation has been made on the λ̃ = 0 case, the analysis has
not been carried out for the λ̃ �= 0 cases. In this paper we carry out the λ-symmetry
analysis for the λ̃ �= 0 cases and present two independent λ-symmetries and their
associated independent integrals. Similarly eventhough Noether symmetries for the
nonstandard Lagrangian (2) with λ̃ = 0 has been reported it has not been analysed for
the λ̃ �= 0 cases.We present the Noether symmetries for the remaining two important
cases, namely (i) λ̃ > 0 and (ii) λ̃ < 0 as well. The telescopic vector fields, which
are more generalized vector fields that play important role when the Lie point sym-
metries and λ-symmetries are absent for a given second order nonlinear ordinary
differential equation, are also unknown for this equation. We construct the telescopic
vector fields also for Eq. (1).

The plan of the paper is as follows. In Sect. 2, we recall Lie point symmetries
of the nonlinear oscillator equation (1) and carry out order reduction procedure for
this equation. In Sect. 3, we carry-out the λ-symmetry analysis for the nonlinear
oscillator Eq. (1). To begin with, we recall the results that are reported for the case
λ̃ = 0. We then extend the analysis for the cases λ̃ �= 0 and give a complete picture.
In Sect. 4, we recall Noether’s theorem and apply this theorem to the model (1) and
derive Noether’s symmetries for all the three cases, namely (i) λ̃ > 0, (ii) λ̃ < 0 and
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(iii) λ̃ = 0. In Sect. 5, we present the telescopic vector fields for all the three cases.
We present our conclusions in Sect. 6.

2 Lie Point Symmetries of Eq. (1)

Let the evolution equation (1) be invariant under the one parameter Lie group of
infinitesimal transformations [2, 13, 23]

t̃ = t + εξ(t, x) + O(ε2), x̃ = x + εη(t, x) + O(ε2), ε � 1, (7)

where ξ and η represent the symmetries of Eq. (1) and they are functions of the
variables t and x . The associated infinitesimal generator can be written as

X = ξ(t, x)
∂

∂t
+ η(t, x)

∂

∂x
. (8)

Equation (1) is invariant under the action of (8) iff

X (2)(Δ)|Δ=0 = 0, (9)

where

X (2) = ξ
∂

∂t
+ η

∂

∂x
+ η(1) ∂

∂ ẋ
+ η(2) ∂

∂ ẍ
(10)

and η(1) and η(2) are first and second prolongations respectively, whose explicit
expressions can be found in Refs. [2, 13]. For the sake of completeness, we present
symmetries and order reduction procedure for each one of the cases separately.

2.1 Case 1: λ̃ = 0

First let us consider the choice λ̃ = 0. The invariance condition (9) reads (ẍ =
φ(t, x, ẋ))

ξ
∂φ

∂t
+ η

∂φ

∂x
+ η(1) ∂φ

∂ ẋ
− η(2) = 0. (11)

Solving the invariance condition (11), one obtains the following symmetry genera-
tors, namely [24]
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X1 = ∂

∂t
, X2 = t

(
1 − k

6
xt

)
∂

∂t
− k

3
x2t

(
1 − k

6
xt

)
∂

∂x
, X3 = x

∂

∂t
− k

3
x3

∂

∂x
,

X4 = xt
∂

∂t
+ x2

(
1 − k

3
xt

)
∂

∂x
, X5 = − k

6
xt2

∂

∂t
+ x

(
1 − k

3
xt + k2

18
x2t2

)
∂

∂x
,

X6 = t2
(
1 − k

6
xt

)
∂

∂t
+ xt

(
1 − k

2
xt + k2

18
x2t2

)
∂

∂x
,

X7 = k

2
t2

(
1 − k

9
xt

)
∂

∂t
+

(
1 − k2

6
t2x2 + k3

54
t3x3

)
∂

∂x
,

X8 = − k

6
t3

(
1 − k

6
xt

)
∂

∂t
+ t

(
1 − k

2
xt + k2

9
x2t2 − k3

108
x3t3

)
∂

∂x
. (12)

The nonlinear ODE (1) admits maximal symmetry generators and hence it is
linearizable [24]. The symmetry generators constitute sl(3, R) symmetry algebra.
Besides several applications, the symmetry generators can also be used to reduce the
order of the nonlinear ODE (1). In the following, we demonstrate this procedure by
considering the vector field X3 as an example.

Substituting the expression ξ = x and η = −k
3 x3 in the characteristic equation

dt
ξ

= dx
η

= dẋ
η(1) and integrating the resultant equation one finds the invariants u and

v as u = t − 3
kx , and v = 3x

k + x3

ẋ . The second-order invariant can be derived from
the relation w = dv

du . Evaluating and simplifying the resultant equation, we arrive

at dv
du = (kx3+3x ẋ)2

9ẋ2 = k2

9 v
2. Integrating this first order differential equation we find

v = − 9
9I1+k2u , where I1 is an integration constant. Substituting the expressions u and

v in this solution and rewriting the resultant equation for ẋ , we end up with

ẋ − kx(9I1x + k2t x − 3k)

3(9I1 + k2t)
= 0. (13)

Integrating Eq. (13) we obtain the general solution of the MEE equation in the fol-
lowing form,

x(t) = 6(9I1 + k2t)

kt (18I1 + k2t) + 6I2
, (14)

where I2 is the second integration constant. In a similar manner, one can carry out
the order reduction procedure for the rest of the vector fields. Since the procedure is
repetitive, one can move on to investigate the other two cases.
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2.2 Case 2: λ̃ > 0

In this case the corresponding symmetry generators are [24]

X1 = ∂

∂t
, X2 = − k

3λ̃
cos

√
λ̃t

∂

∂t
+

(
cos

√
λ̃t − k

3
√

λ̃
x sin

√
λ̃t

)
∂

∂x
,

X3 =
(
sin 2

√
λ̃t + k

3
√

λ̃
x cos 2

√
λ̃t

)
∂

∂t

+x

(√
λ̃ cos 2

√
λ̃t − 2k

3
x sin 2

√
λ̃t − k2

9
√

λ̃
x2 cos 2

√
λ̃t

)
∂

∂x
,

X4 =
(
cos 2

√
λ̃t − k

3
√

λ̃
x sin 2

√
λ̃t

)
∂

∂t

−x

(√
λ̃ sin 2

√
λ̃t + 2k

3
x cos 2

√
λ̃t − k2

9
√

λ̃
x2 sin 2

√
λ̃t

)
∂

∂x
,

X5 = x sin
√

λ̃t
∂

∂t
+ x2

(√
λ̃ cos

√
λ̃t − k

3
x sin

√
λ̃t

)
∂

∂x
,

X6 = x cos
√

λ̃t
∂

∂t
− x2

(√
λ̃ sin

√
λ̃t + k

3
x cos

√
λ̃t

)
∂

∂x
,

X7 = x
∂

∂t
−

(
3λ̃x

k
+ k

3
x3

)
∂

∂x
,

X8 = − k

3λ̃
sin

√
λ̃t

∂

∂t
+

(
sin

√
λ̃t + k

3
√

λ̃
x cos

√
λ̃t

)
∂

∂x
. (15)

The vector fields (15) can again be shown to form an sl(3, R) algebra.
In the following, we demonstrate the usefulness of the symmetry vector fields by

considering the vector field X7. The associated characteristic equation reads

dt

x
= dx

−( kx
3

3 + 3λ̃x
k )

= dẋ

− ẋ(k2x2+kẋ+3λ̃)

k

. (16)

Now integrating the aboveEq. (16)wefind the invariants u and v to be of the following
forms:

u =
tan−1

(
kx

3
√

λ̃

)
+

√
λ̃t√

λ̃
, v = x(k2x2 + 3kẋ + 9λ̃)

ẋ
. (17)
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The second-order invariant reads dv
du = 9λ̃ + v2

9 . Integrating the later we find v =
9
√

λ̃ tan(9I1
√

λ̃ +
√

λ̃u), where I1 is an integration constant. Substituting the expres-
sions u and v in this solution and rewriting the resultant equation for ẋ , we end up
with

ẋ + k2x3 + 9λ̃x

3

(
kx − 3

√
λ̃ tan

(√
λ̃(9I1 + t) + tan−1

(
kx

3
√

λ̃

))) = 0. (18)

Integrating Eq. (18) we obtain the general solution of (1) with positive values of λ̃ in
the following form,

x(t) = 3
√

λ̃ sin(
√

λ̃(9I1 + t))

I2
√

λ̃ − k cos(
√

λ̃(9I1 + t))
, (19)

where I2 is the second integration constant. One may extend the order reduction
procedure for the remaining vector fields too in a similar fashion. Now we move on
to the third case.

2.3 Case 3: λ̃ < 0

In this case, we find the equation is invariant under the following forms of symmetry
generators: [24]

X1 = ∂

∂t
, X2 = e2

√
λ̃t

[(
1 − k

3
√

λ̃
x

)
∂

∂t
+

[(
k

9
√

λ̃
x3 − 2k

3
x2 +

√
λ̃x

)
∂

∂x

]
,

X3 = e−2
√

λ̃t

[(
1 + k

3
√

λ̃
x

)
∂

∂t
−

(
k

9
√

λ̃
x3 + 2k

3
x2 +

√
λ̃x

)
∂

∂x

]
,

X4 = x
∂

∂t
−

(
k

3
x3 − 3λ̃

k
x

)
∂

∂x
, X5 = e

√
λ̃t

[
x

∂

∂t
−

(
k

3
x3 −

√
λ̃x2

)
∂

∂x

]
,

X6 = e−
√

λ̃t
[
x

∂

∂t
−

(
k

3
x3 +

√
λ̃x2

)
∂

∂x

]
, X7 = e

√
λ̃t

[
∂

∂t
−

(√
λ̃x − 3λ̃

k

)
∂

∂x

]
,

X8 = e−
√

λ̃t

[
∂

∂t
+

(√
λ̃x + 3λ̃

k

)
∂

∂x

]
. (20)

To obtain the general solution for this case, we consider the vector field X6.
Solving the characteristic equation associated with this vector field
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dt

xe−
√

λ̃t
= dx

−e−
√

λ̃t
(
kx3
3 +

√
λ̃x2

)
= dẋ

1

3
e−

√
λ̃t (kx2(

√
λ̃x − 3ẋ) − 3(−λ̃x2 +

√
λ̃x ẋ + ẋ2))

(21)

we obtain the invariants u and v of the form

u = − log(kx + 3
√

λ̃) +
√

λ̃t + log(x)√
λ̃

, (22)

v = 3(−k
√

λ̃x2 + 2kx ẋ − 3λ̃x + 3
√

λ̃ẋ)

2(kx4 + 3
√

λ̃x3 + 3x2 ẋ)
. (23)

The second-order invariant can be found from the relation w = dv
du . In this case, we

find
dv

du
= − (kx + 3

√
λ̃)2(kx2 − 3

√
λ̃x + 3ẋ)

3x2(kx2 + 3(
√

λ̃x + ẋ))
= −

(
k2

3
+ 2

√
λ̃v

)
. (24)

Integrating Eq. (24), we find v = e−2
√

λ̃u I1 − k2

6
√

λ̃
, where I1 is an integration con-

stant. Substituting the expressions u and v in this solution and rewriting the resultant
equation for ẋ , we end up with

ẋ + x(e2
√

λ̃t (kx − 3
√

λ̃) − 6I1(k
√

λ̃x + 3λ̃))

3(e2
√

λ̃t − 6I1
√

λ̃)
= 0. (25)

Integrating Eq. (25), we obtain the general solution of Eq. (1) with negative λ̃ in the
following form

x(t) = 3(
√

λ̃e2
√

λ̃t − 6I1λ̃)

3I2
√

λ̃e
√

λ̃t + 6I1
√

λ̃k + ke2
√

λ̃t
, (26)

where I2 is the second integration constant. One may verify that the remaining vector
fields can also be used to derive the above general solution of the given Eq. (1).

3 λ-Symmetries

Recently efforts have been made to generalize the classical Lie algorithm and obtain
integrals and general solution of nonlinear ODEs, in particular equations which lack
Lie point symmetries. One such generalization is the λ-symmetry approach [17].
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The method of finding λ-symmetries for a second-order ODE has been discussed in
depth by Muriel and Romero [18] and the advantage of finding such symmetries has
also been demonstrated by them. They also have developed an algorithm to deter-
mine integrating factors and integrals from λ-symmetries for second-order ODEs
[19]. The relation among λ-symmetries, Lie point symmetries and local-nonlocal
transformations for Liénard I and II-type equations was studied in Ref. [25]. The
vector fields associated with λ-symmetries are being denoted as v instead of X just
to differentiate λ-symmetries from Lie point symmetry vector fields.

A vector field v is a λ-symmetry of the second-order equation if there exists a
function such that

v[λ,(2)](Δ(t, x, ẋ, ẍ)) = 0 when Δ(t, x, ẋ, ẍ) = 0, (27)

where v[λ,(2)] is given by

v[λ,(2)] = ξ(t, x)
∂

∂t
+ η[λ,(0)](t, x)

∂

∂x
+ η[λ,(1)](t, x, ẋ)

∂

∂ ẋ
+ η[λ,(2)](t, x, ẋ, ẍ)

∂

∂ ẍ
,

(28)

with

η[λ,(0)] = η(t, x), (29)

η[λ,(1)] = (Dt + λ)η[λ,(0)](t, x) − (Dt + λ)(ξ)ẋ, (30)

η[λ,(2)] = (Dt + λ)η[λ,(1)](t, x, ẋ) − (Dt + λ)(ξ)ẍ . (31)

In the above prolongation formula if we put λ = 0, we end up with standard Lie
prolongation expressions. Solving the invariance condition (27) we can determine
the functions ξ , η and λ for the given equation. We note here that three unknowns ξ ,
η and λ have to be determined from the invariance condition (27). The procedure is
as follows.

Let us suppose that the second-order Eq. (1) has Lie point symmetries. In this case,
theλ-function can be determined in amore simplewaywithout solving the invariance
condition (27) as follows. If X is a Lie point symmetry of (1) and Q = η − ẋξ is
its characteristics, then v = ∂

∂x is a λ-symmetry of (1) for λ = D[Q]
Q [25]. The λ-

symmetry satisfies the invariance condition [19]

φx + λφẋ = D[λ] + λ2. (32)

Once the λ-symmetry is determined, we can obtain the first integrals in two differ-
ent ways. In the first way, we can calculate the integral directly from the λ-symmetry
using the four step algorithm given below. In the second way, we can find the inte-
grating factor μ from λ-symmetry directly. With the help of integrating factors and
λ-symmetries we can obtain the first integrals by integrating the system of Eq. (34)
given below. In the following, we enumerate both the procedures.
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(A) Method of finding the first integral directly from λ-symmetry [19]

The method of finding the integral directly from λ-symmetry is as follows:

1. Find a first integralw(t, x, ẋ) of v[λ,(1)], that is a particular solution of the equation
wx + λwẋ = 0, where the subscript denotes partial derivative with respect to that
variable and v[λ,(1)] is the first-order λ-prolongation of the vector field v.

2. Evaluate D[w] and express it in terms of (t,w) as D[w] = F(t,w).
3. Find a first integral G of ∂t + F(t,w)∂w.
4. Evaluate I (t, x, ẋ) = G(t,w(t, x, ẋ)).

(B) Method of finding integrating factors from λ [19]

If X is a Lie point symmetry of (1) and Q = η − ẋξ is its characteristics, then
v = ∂x is a λ-symmetry of (1) for λ = D[Q]/Q and any solution of the first-order
linear system

D[μ] +
(

φẋ − D[Q]
Q

)
μ = 0, μx +

(
D[Q]
Q

μ

)
ẋ

= 0, (33)

is an integrating factor of (1). Here D represents the total derivative operator and it
is given by ∂

∂t + ẋ ∂
∂x + φ ∂

∂ ẋ .
Solving the system of equations (33) one can get μ. Once the integrating factor μ

is known then a first integral I such that Iẋ = μ can be found by solving the system
of equations

It = μ(λẋ − φ), Ix = −λμ, Iẋ = μ. (34)

From the first integrals, we can write the general solution of the given equation.
In the following we apply the above method to Eq. (1)

3.1 Case 1: λ̃ = 0

Bhuvaneshwari et al. had studied the λ-symmetries for Eq. (1) with λ̃ = 0 [1]. They
have found the λ-symmetries from the Lie point symmetries by using the relation λ =
D[Q]
Q , where Q = η − ẋξ . For this purpose they considered the Lie point symmetries

X2 and X4 from Eq. (12). The expressions for Q turns out to be

Q1 = 1

18
(k2t2x3 − 6ktx2 + 3kt2x ẋ − 18t ẋ), Q2 = x2

(
1 − k

3
xt

)
− t x ẋ . (35)
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The two λ-functions are of the form

λ1 =
(
1 − 2

3ktx − k
6 t

2 ẋ + k2

18 t
2x2

)
t
(
1 − k

6 t x
) , λ2 = ẋ

x
− kx

3
. (36)

The associated λ-symmetry is v = ∂
∂x .

3.1.1 First Integrals from λ1 and λ2

By following the above discussed procedure, we have found

w(t, x, ẋ) =
(
1 − 1

3ktx + k
6 t

2 ẋ + k2

18 t
2x2

)
kt2

(
1 − k

6 t x
) . (37)

In the second step, we obtain determining equation for w as

D[w] = ktw2 − 3w

t
(38)

using λ1. In the third step, we obtain the function G(t,w) as

G(t,w) = 1

t3w
− k

t
. (39)

In the final step, we found the integral I1 as

I1 = k

6
t +

(
1 − k

6 t x
)

(
t ẋ − x + k

3 t x
2
) . (40)

In the same way, we have found the function w for λ2 as

w(x, ẋ) = ẋ

x
+ k

3
x . (41)

In the second step, we get the determining equation as

D[w] + w2 = 0. (42)

We get the function G in the third step as

G = t − 1

w
. (43)
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As the final step we get the integral as

I2 = t − x

ẋ + k
3 x

2
. (44)

From the integrals I1 and I2, we can write the general solution as

x(t) = t + I2
k
6 t

2 + k
3 t I2 − I1 I2

. (45)

3.1.2 Integrating Factors from λ1 and λ2

We can also find the integrating factors from λ1 and λ2 using the relation (33).
Substituting the function λ1 in Eq. (33) we get

μ1x +
⎛
⎝

(
1 − 2

3ktx − k
6 t

2 ẋ + k2

18 t
2x2

)
t
(
1 − k

6 t x
) μ1

⎞
⎠

ẋ

= 0. (46)

The characteristic equation associated with Eq. (46) is given by

dx

1
= dẋ(

1− 2
3 ktx− k

6 t
2 ẋ+ k2

18 t
2x2

)
t(1− k

6 t x)

= dμ1

− kt2

6(t− 1
6 kt

2x)
μ1

. (47)

Integrating (47) we find the integrals to be of the form

C1 =
(
1 − 1

3ktx + k
6 t

2 ẋ + k2

18 t
2x2

)
kt2

(
1 − k

6 t x
) , C2 =

(
t − 1

6
kt2x

)
μ1. (48)

From the above, we obtain the general solution as

μ1 = −
C1

[
t

((
1− 1

3 ktx+ k
6 t

2 ẋ+ k2

18 t
2x2

)
kt2(1− k

6 t x)

)]
(
t − 1

6kt
2x

) . (49)

Choosing the function C1 appropriately we get

μ1 = − k2t
(
1 − k

6 t x
)

6
(
1 − 1

3ktx + k
6 t

2 ẋ + k2
18 t

2x2
)2 . (50)
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We find that the expression (50) also satisfies the first equation in (33) as well and
thus forms a compatible solution to the system of equation (33).

To determine the integrating factor associated with λ2 directly we first solve the
second equation in (33), that is

μ2x +
(
ẋ

x
− k

3
x

)
μ2ẋ + 1

x
μ2 = 0. (51)

The characteristic equation associated with the above equation can be written as

dx

1
= dẋ

ẋ
x − k

3 x
= dμ2

μ2

x

. (52)

Integrating (52) we find the integral as

μ2 = − x(
ẋ + k

3 x
2
)2 . (53)

We find that the above expression also satisfies the first equation in (33).

3.2 Case 2: λ̃ �= 0

In the earlier case where λ̃ = 0, we fixed the λ-symmetries from the set of Lie point
symmetries itself. For the two cases λ̃ > 0 and λ̃ < 0 we derive the λ-symmetries
by solving the associated invariance condition which has not been considered so far
for this equation. To determine the λ-symmetry for Eq. (1), we solve the following
determining equation

D[λ] + λ2 + λkx + kẋ + k2

3
x2 + λ̃ = 0. (54)

To obtain a particular solution of Eq. (54), we assume an ansatz

λ = a1 ẋ + a2, (55)

where a1 and a2 are functions of x .
Substituting (55) in (54) and solving the resultant equation, we find

λ1 = ẋ

x
− kx

3
. (56)

Nowwe use the above said procedure and obtain the first integral. The calculations
are given below.
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In the first step, we setup the determining equation for w(t, x, ẋ), that is

wx +
(
ẋ

x
− kx

3

)
wẋ = 0. (57)

A particular solution of (57) is

w(t, x, ẋ) = kx

3
+ ẋ

x
. (58)

In the second step, we express D[w] in terms of (t,w) as D[w] = F(t,w). In this
case, we find

D[w] = −(w2 + λ̃). (59)

In the third step, we fix the function G(t,w) as

G(t,w) =

√
λ̃t + tan−1

(
w√

λ̃

)
√

λ̃
. (60)

Now replacing w with the expression (58) we obtain the first integral in the form

I (t, x, ẋ) =
tan−1

(
kx2+3ẋ

3
√

λ̃x

)
+

√
λ̃t√

λ̃
. (61)

By recalling the formula arctan(x) = 1
2 i[ln(1 − i x) − ln(1 + i x)] and simplifying

the resultant equation we obtain the first integral as

I1 = e−2
√

−λ̃t

(
ẋ + k

3 x
2 + x

√
−λ̃

)
(
ẋ + k

3 x
2 − x

√
−λ̃

) . (62)

To prove the integrability of Eq. (1), we are in need of one more λ-symmetry. To
obtain it, we assume a more general ansatz for λ which is of the form

λ2 = a1(t, x)ẋ + a2(t, x)

a3(t, x)ẋ + a4(t, x)
. (63)

where a1, a2, a3 and a4 are arbitrary functions of t and x and to be determined.
Substituting the above ansatz in the λ-determining Eq. (54) and solving the resultant
equation, we obtain
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λ2 =
kẋ
3 −

(
kx
3 +

√
−λ̃

)2

kx
3 +

√
−λ̃

. (64)

We note here that while solving the Eq. (54) with the ansatz (63) we also obtain
(56) as another particular solution. We do not mention it here as we have already
dealt with it. Following the above said procedure now we find the integral associated
with λ̃2. To begin it, we set up the determining equation for w(t, x, ẋ) as

wx +
kẋ
3 −

(
kx
3 +

√
−λ̃

)2

kx
3 +

√
−λ̃

wẋ = 0. (65)

A particular solution of the above equation is

w(t, x, ẋ) = kx2 + 3
√

−λ̃x + 3ẋ

3(kx + 3
√

−λ̃)
. (66)

The total derivative of w(t, x, ẋ) reads

D[w] =
√

−λ̃w − kw2. (67)

In the third step, we determine the function G(t,w) as

G(t,w) = −
i log

⎛
⎝ ei

√
λ̃t

(
kw−i

√
λ̃

)
w

⎞
⎠

√
λ̃

. (68)

Now replacing the variable w by (66) we obtain the integral associated with λ̃2 in
the form

I (t, x, ẋ) = −
i log

⎛
⎝ ei

√
λ̃t (k(3ẋ+kx2)+9λ̃)

kx2+3

(√
−λ̃x+ẋ

)
⎞
⎠

√
λ̃

. (69)

After rearranging the integral in more elegant form, we obtain

I2 = −6

k
e
√

−λ̃t

(
λ̃ + k

3 ẋ + k2

9 x
2

ẋ + k
3 x

2 + x
√

−λ̃

)
. (70)
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From the integrals I1 and I2, we can write the solution of Eq. (1) for λ̃ > 0 and λ̃ < 0.
First let us consider the case λ̃ > 0.

3.2.1 Case 2: λ̃ > 0

For λ̃ > 0, integrals (62) and (70) are complex. To get the real integrals, we consider
the following combinations of the integrals

Ĩ1 = 4

k I 21 I
2
2

= (3ẋ + kx2)2 + 9λ̃x2

(3kẋ + k2x2 + 9λ̃)2
, (71)

Ĩ2 = − 2eiδ

k|I1 I2| = ei(
√

λ̃t+δ)

(
3ẋ + kx2 − 3i

√
λ̃x

3kẋ + k2x2 + 9λ̃

)
, (72)

where δ is phase constant. Now the integrals Ĩ1 and | Ĩ2| can be considered as two
real integrals of Eq. (1) for λ̃ > 0. The solution for Eq. (1) from the two integrals (62)
and (70) can be written as

x(t) = A sin(
√

λ̃t + δ)

1 − k

3
√

λ̃
A cos(

√
λ̃t + δ)

, 0 ≤ A <
3
√

λ̃

k
, (73)

where A = 3
√

λ̃ Ĩ1 and δ is an arbitrary constant.

3.2.2 Case 3: λ̃ < 0

For λ̃ < 0, integrals (62) and (70) are real fromwhich we can straightforwardly write
the general solution as

x(t) = 3
√

|λ̃|( Ĩ1e2
√

|λ̃|t − 1)

k Ĩ1 Ĩ2e
√

|λ̃|t + k(1 + Ĩ1e2
√

|λ̃|t )
, (74)

where I1 and I2 are constants.

3.2.3 Integrating Factors from λ1 and λ2

To find the integrating factors from λ1 and λ2, we consider the second equation in
(33) and obtain
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μ1x +
(
ẋ

x
− k

3
x

)
μ1ẋ + 1

x
μ1 = 0, (75)

μ2x +
⎛
⎜⎝

kẋ
3 −

(
kx
3 +

√
−λ̃

)2

kx
3 +

√
−λ̃

⎞
⎟⎠ μ1ẋ + k

3
(
kx
3 +

√
−λ̃

)μ2 = 0. (76)

The characteristic equations associated with the above equations can be written as

dx

1
= dẋ

ẋ
x − k

3 x
= dμ1

μ1

x

, (77)

dx

1
= dẋ

kẋ
3 −

(
kx
3 +

√
−λ̃

)2

kx
3 +

√
−λ̃

= dμ2

3μ2

(
kx
3 +

√
−λ̃

)
k

. (78)

Solving the above characteristic equations and choosing the constants appropriately,
we obtain the solutions of the above equations as

μ1 = − 18
√

−λ̃xe−2
√

−λ̃t

(kx2 − 3
√

−λ̃x + 3ẋ)2
, (79)

μ2 = − 18e
√

−λ̃t (k
√

−λ̃x − 3λ̃)

k(kx2 + 3(
√

−λ̃x + ẋ))2
. (80)

The above integrating factors also satisfy the first equation of Eq. (33).

4 Noether’s Theorem and Variational Symmetries

If the given second-order equation has a variational structure then one can also
determine the symmetries which leave the action integral invariant. Such symmetries
are called variational symmetries. Variational symmetries are important since they
provide conservation laws via Noether’s theorem [21]. In the following, we recall
the method of finding variational symmetries [2, 23].

Noether’s theorem states that whenever the action integral S = ∫
L(t, x, ẋ)dt ,

where L is the Lagrangian, is invariant under the one parameter continuous group of
transformations (7) then the solution of Euler’s equation admit the conserved quantity
[11, 14],

I = (ξ ẋ − η)
∂L

∂ ẋ
− ξL + f, (81)

where f is an arbitrary function of t and x . The functions ξ, η and f can be deter-
mined from the equation
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G{L} = −ξ̇L + f, (82)

where overdot denotes differentiation with respect to time and

G{L} = ξ
∂L

∂t
+ η

∂L

∂x
+ (η̇ − ẋ ξ̇ )

∂L

∂ ẋ
. (83)

Equation (83) can be derived by differentiating the Eq. (81) and simplifying the
expressions in the resultant equation. Solving Eq. (83) one can obtain explicit expres-
sions for Noether’s symmetries ξ, η and the arbitrary function f . Now substituting
these expressions into (81) one can get explicitly the associated integrals of motion.

ToderiveNoether’s symmetries associatedwith theLagrangian (2) let us substitute
the expression (2) into (81). Doing so we get

η

(
−9λ̃3x

(kẋ + k2
3 x2 + 3λ̃)2

)
+ (ηt + ẋηx − ẋ(ξt + ẋξx ))

(
−27λ̃3

2k(kẋ + k2
3 x2 + 3λ̃)2

+ 3λ̃

2k

)

= −(ξt + ẋξx )

(
27λ̃3

2k2

(
1

kẋ + k2
3 x2 + 3λ̃

)
+ 3λ̃

2k
ẋ − 9λ̃2

2k2

)
+ ft + ẋ fx . (84)

Now equating the coefficient of various powers of ẋ to zero and solving the resultant
equations we obtain three different forms of infinitesimal symmetries for ξ and η

depending upon the sign and magnitude of λ̃. In the following, we discuss each one
of the cases separately.

4.1 Case 1: λ̃ > 0

Solving the determining equations with λ̃ > 0, the associated vector fields turn out
to be

X1 = 1

λ̃
5
2

[(√
λ̃ sin

√
λ̃t + k

3
cos

√
λ̃t x

)
∂

∂t

−
(
3λ̃

k
+ kx2

3

) (√
λ̃ sin

√
λ̃t + k

3
cos

√
λ̃t x

)
∂

∂x

]
,

X2 = 1

λ̃
5
2

[(
k

3
sin

√
λ̃t x −

√
λ̃ cos

√
λ̃t

)
∂

∂t

−
(
3λ̃

k
+ kx2

3

) (
k

3
sin

√
λ̃t x −

√
λ̃ cos

√
λ̃t

)
∂

∂x

]
,

X3 = 1

λ̃
5
2

[(
3
√

λ̃ sin 2
√

λ̃t + k cos 2
√

λ̃t x
) ∂

∂t
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−
((

k2x2

3
− 3λ̃

)
cos 2

√
λ̃t x + 2k

√
λ̃ sin 2

√
λ̃t x2

)
∂

∂x

]
,

X4 = 1

λ̃
5
2

[
cos

√
λ̃t

(
k sin

√
λ̃t x − 3

√
λ̃ cos

√
λ̃t

) ∂

∂t

−
(
k

3
sin

√
λ̃t x −

√
λ̃ cos

√
λ̃t

)(
3
√

λ̃ sin
√

λ̃t x + k cos
√

λ̃t x2
) ∂

∂x

]
,

X5 = ∂

∂t
. (85)

Substituting each vector field into (81) we obtain the following integrals of motion

I1 = (3ẋ + kx2) cos
√

λ̃t + 3
√

λ̃x sin
√

λ̃t

α
, I2 = (3ẋ + kx2) sin

√
λ̃t − 3

√
λ̃x cos

√
λ̃t

α
,

I3 =
(
(3ẋ + kx2)2 − 9λ̃x2

)
sin 2

√
λ̃t − 6x(3ẋ + kx2)

√
λ̃ cos 2

√
λ̃t

(α)2
,

I4 = k2((3ẋ + kx2)2 − 9k2λ̃x2) cos 2
√

λ̃t + 6k2x(3ẋ + kx2)
√

λ̃ sin 2
√

λ̃t − 9λ̃(k2x2 + 6kẋ + 9λ̃)

(α)2
,

I5 =
(

(3ẋ + kx2)2 + 9λ̃x2

(α)2

)
, (86)

where α = 3kẋ + k2x2 + 9λ̃.
One can select two independent integrals of motions, I1 and I2 from the above.

The remaining integrals of motions can be written in terms of the integrals of motion
I1 and I2. For example, in the present case we get

I3 = 2I1 I2, I4 = −1 + 2k2 I 21 , I5 = (I 21 + I 22 ). (87)

Using I1 and I2 we can construct the general solution in the form

x(t) = 3
√

λ̃

(
I1 sin

√
λ̃t − I2 cos

√
λ̃t

1 − k(I1 cos
√

λ̃t + I2 sin
√

λ̃t)

)
. (88)

The above solution is obviously equivalent to (73). SinceEq. (1) admits fiveNoether’s
symmetries for the case λ̃ > 0 and so the Lagrangian (2) can be considered as a
physically important Lagrangian from Quantum Mechanics point of view.
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4.2 Case 2: λ̃ < 0

Solving the determining equations with λ̃ < 0, its associated symmetry vector fields
turn out to be

X1 = 1

λ̃
5
2

[
e
√

λ̃t

((√
λ̃ − kx

3

)
∂

∂t
+

(√
λ̃

k
− x

3

)(
3λ̃ − k2x2

3

)
∂

∂x

)]
, X2 = ∂

∂t

X3 = 1

λ̃
5
2

[
e−

√
λ̃t

((√
λ̃ + kx

3

)
∂

∂t
+

(√
λ̃

k
+ x

3

) (
3λ̃ − k2x2

3

)
∂

∂x

)]
,

X4 = 1

λ̃
5
2

[
e2

√
λ̃t

((√
λ̃ − kx

3

)
∂

∂t
+ x

(
λ̃ + k2x2

9
− 2

3
kx

√
λ̃

)
∂

∂x

)]
,

X5 = 1

λ̃
5
2

[
e−2

√
λ̃t

((√
λ̃ + kx

3

)
∂

∂t
− x

(
λ̃ + k2x2

9
+ 2

3
kx

√
λ̃

)
∂

∂x

)]
. (89)

Substituting eachvector field into (81)weobtain the following integrals ofmotion,

I1 = kea2t
(
3ẋ − 3a2x + kx2

α

)
, I2 = ke−a2t

(
3ẋ + 3a2x + kx2

α

)
,

I3 = k2e2a2t
[

(−6ka2x3 + k2x4 − 18a2x ẋ + 9ẋ2 + x2(−9λ̃ + 6kẋ))

(α)2

]
,

I4 = k2e−2a2t

[
(6ka2x3 + k2x4 + 18a2x ẋ + 9ẋ2 + x2(−9λ̃ + 6kẋ))

(α)2

]
,

I5 = 9λ̃2

2

(
(3ẋ + kx2)2 + 9λ̃x2

(α)2

)
. (90)

As in the previous case the integrals ofmotions, I1 and I2 are functionally independent
from the rest. In other words the remaining integrals of motions can be written in
terms of the integrals of motion I1 and I2:

I3 = I 21 , I4 = I 22 , I5 = 9λ̃2

2k2
I1 I2. (91)

Using I1 and I2 we can construct the general solution in the form

x(t) = 3a2(I1e2a2t − I2)

k(I2 + I1e2a2t − 2ea2t )
. (92)

The above solution is of front like nature and in this case also we have five Noether’s
symmetries. The underlying Lagrangian (2) is again a physically important one.
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4.3 Case 3: λ̃ = 0

One may note that in the limit λ̃ = 0, Eq. (1) becomes the modified Emden equa-
tion/second order Ricatti equation which is another Liénard type system which pos-
sesses several interesting properties. Interestingly, this system also admits a time
independent Lagrangian and Hamiltonian. In the following, we present the Noether’s
symmetries and their associated constants of motions.

The Lagrangian associated with the MEE equation is,

L = 1

kẋ + k2
3 x

2
. (93)

Solving the determining Eq. (83) with λ̃ = 0, we get

X1 = x
∂

∂t
− kx2

3

∂

∂x
, X2 = xt

∂

∂t
+

(
x2 − ktx3

3

)
∂

∂x
, X3 = ∂

∂t
,

X4 =
(
t − kt2x

2

)
∂

∂t
+

(
2x − ktx2 + k2t2x3

6

)
∂

∂x
,

X5 =
(
k2t3x

18
− kt2

6

)
∂

∂t
+

(
1 − 2ktx

3
+ k2t2x2

6
− k3t3x3

54

)
∂

∂x
. (94)

Substituting each vector field into (81) we obtain the following integrals of motion,

I1 = t − 3x

kx2 + 3ẋ
, I2 = (−3x + ktx2 + 3t ẋ)2

(kx2 + 3ẋ)2
,

I3 = −9k2t2x3 + k3t3x4 − 27x(2 + kt2 ẋ) + 6ktx2(6 + kt2 ẋ) + 9t ẋ(6 + kt2 ẋ)

(kx2 + 3ẋ)2
,

I4 = (18 − 6ktx + k2t2x2 + 3kt2 ẋ)

(kx2 + 3ẋ)
, I5 = 6ẋ + kx2

(kx2 + 3ẋ)2
. (95)

One can easily check that out of the five integrals of motions two are independent
and the remaining three can be expressed in terms of the first two, namely

I2 = I 21 , I3 = I1 I4, I5 = 1

9
(I4 − k I 21 ). (96)

We can construct a general solution of the form

x(t) = 6(t − I1)

kt2 − 2I1kt + I4
, (97)

using I1 and I4. This case also admits five Noether’s symmetries and so the
Lagrangian (93) is physically important for λ̃ = 0 in Eq. (1).
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5 Telescopic Vector Fields

Telescopic vector fields are more general vector fields than the ones discussed so
far. The Lie point symmetries, contact symmetries and λ-symmetries are all sub-
cases of telescopic vector fields. A telescopic vector field can be considered as a
λ-prolongation where the two first infinitesimals can depend on the first derivative of
the dependent variable [10, 20, 26]. In the following, we briefly discuss the method
of finding telescopic vector fields for a second-order ODE. We then present the
telescopic vector fields for Eq. (1).

Let us consider the second-order Eq. (1). The vector field

Ω(2) = ξ
∂

∂t
+ η

∂

∂x
+ ζ (1) ∂

∂ ẋ
+ ζ (2) ∂

∂ ẍ
(98)

is telescopic if and only if [26]

ξ = ξ(t, x, ẋ), η = η(t, x, ẋ), ζ (1) = ζ (1)(t, x, ẋ) (99)

with ζ (2) given by

ζ (2) = D[ζ (1)] − φD[ξ ] + ζ (1) + ẋ D[ξ ] − D[η]
η − ẋξ

(ζ (1) − φξ), (100)

where φ is the given equation (ẍ = φ(t, x, x ẋ)).
To prove that the telescopic vector fields are more general vector fields, let us

introduce two functions g1 and g2 in the following forms, namely

g1(t, x, ẋ) = ζ (1) + ẋξt − ηt + ẋ(ẋξx − ηx )

η − ẋξ
, g2(t, x, ẋ) = ẋξẋ − ηẋ

η − ẋξ
. (101)

We can rewrite the prolongations ζ (1) and ζ (2) using the above functions g1 and g2
as follows:

ζ (1) = D[η] − ẋ D[ξ ] + (g1 + g2φ)(η − ẋξ), (102)

ζ (2) = D[ζ (1)] − φxD[ξ ] + (g1 + g2φ)(ζ (1) − φξ). (103)

The relationship between telescopic vector fields and previously considered vector
fields can be given by the following expressions [10, 26],

ζ (1) = η(1) + (g1 + g2φ)(η − ẋξ), (104)

ζ (2) = η(2) + (g1 + g2φ)(ζ (1) − φξ). (105)

In the above vector fields if we choose g1 = g2 = 0 and ξ 2
ẋ + η2

ẋ = 0 we get the
Lie point symmetries. The choice g1 = g2 = 0 and ξ 2

ẋ + η2
ẋ �= 0 gives the contact
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symmetries. To get λ-symmetries, we should choose g1 �= 0 and ξ 2
ẋ + η2

ẋ = 0. As a
consequence it can be considered as the more general vector field.

Hence the unknowns to be solved inEq. (32) can also be (ξ, η, η[λ,1])by expressing
λ in terms of (ξ, η, η[λ,1]). In other words, if the given equation admits the telescopic
vector field, then it satisfies the following invariance condition

ξ
∂φ

∂t
+ η

∂φ

∂x
+ ζ (1) ∂φ

∂ ẋ
− ζ (2) = 0. (106)

In the above expression, ξ, η and ζ (1) are three unknown functions which we need
in order to write the telescopic vector fields of Eq. (1). Since the above expression
has three unknowns, it is very difficult to find them systematically. For this purpose,
we assume ξ = 0 and the remaining two unknown functions can be obtained in the
following way. In this case, Eq. (106) turns out to be

η
∂φ

∂x
+ ζ (1) ∂φ

∂ ẋ
− ζ (2) = 0. (107)

By assuming suitable ansatz for η and ζ (1) we can find the telescopic vector fields
associated with Eq. (1).

5.1 Case 1: λ̃ = 0

For simplicity, first let us consider the case λ̃ = 0. Assuming the ansatz

η = a01 + b01 ẋ + c01 ẋ2

(d01 + e01 ẋ)m
, ζ (1) = a11 + b11 ẋ + c11 ẋ2

(d11 + e11 ẋ)n
, (108)

forη and ζ (1) and substituting them intoEq. (107) and solving the resultant expression
we find the following telescopic vector fields for the case λ̃ = 0:

Ω1 = 9x

(kx2 + 3ẋ)2
∂

∂x
+ 9ẋ − 3kx2

(kx2 + 3ẋ)2
∂

∂ ẋ
− 18kx ẋ

(kx2 + 3ẋ)2
∂

∂ ẍ
,

Ω2 = −18x(ktx2 + 3t ẋ − 3x)

(kx2 + 3ẋ)3
∂

∂x
+ 6(kx2 − 3ẋ)(ktx2 + 3t ẋ − 3x)

(kx2 + 3ẋ)3
∂

∂ ẋ

+36kx ẋ(ktx2 + 3t ẋ − 3x)

(kx2 + 3ẋ)3
∂

∂ ẍ
,

Ω3 = −81t ẋ(ktx − 2) − 27x(ktx(ktx − 6) + 12)

(kx2 + 3ẋ)3
∂

∂x

+9(−9kt2 ẋ2 + kx2(ktx(ktx − 8) + 18) − 18ẋ)

(kx2 + 3ẋ)3
∂

∂ ẋ
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+18k(k2t x3(3t ẋ + x) − 3kx(−3t2 ẋ2 + 4t x ẋ + x2) − 9ẋ(t ẋ − 3x))

(kx2 + 3ẋ)3
∂

∂ ẍ
,

Ω4 = − 18(ktx − 3)

(kx2 + 3ẋ)2
∂

∂x
+ 6k(x(ktx − 6) − 3t ẋ)

(kx2 + 3ẋ)2
∂

∂ ẋ
+ 18k(kx(2t ẋ + x) − 3ẋ)

(kx2 + 3ẋ)2
∂

∂ ẍ
,

Ω5 = 18ẋ

(kx2 + 3ẋ)3
∂

∂x
− 2kx(kx2 + 9ẋ)

(kx2 + 3ẋ)3
∂

∂ ẋ
+ 2k(k2x4 + 6kx2 ẋ − 9ẋ2)

(kx2 + 3ẋ)3
∂

∂ ẍ
. (109)

The above telescopic vector fields also satisfy the invariance condition (106) with
the choice λ̃ = 0. To find the solution from the above admitted telescopic vector
fields, one has to follow the standard order-reduction procedure. Let us consider the
telescopic vector field Ω1. The corresponding Lagrange system can be written as

dt

0
= dx

9x
(kx2+3ẋ)2

= dẋ
9ẋ−3kx2

(kx2+3ẋ)2

. (110)

Solving the above set of equations, we get the characteristics as

u = t and v = kx2 + 3ẋ

3x
. (111)

From the above expression, we get dv
du as

dv

du
= −v2. (112)

Solution of the above equation is given by

v = 1

u − I1
. (113)

Substituting (111) into (113) and rewriting it, we get a first-order ODE

ẋ + x(I1kx − ktx + 3)

3(I1 − t)
= 0. (114)

Integrating the above equation, we get the general solution of (1) for the choice λ̃ = 0
as

x(t) = 6(I1 − t)

−6I2 + 2I1kt − kt2
, (115)

where I1 and I2 are the integration constants.
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5.2 Case 2: λ̃ > 0

As we did in the previous case, here we obtain the following vector fields for the
case λ̃ > 0:

Ω1 = 9(
√

λ̃kx sin(
√

λ̃t) − 3λ̃ cos(
√

λ̃t))

(α)2
∂

∂x

+ 3
√

λ̃ sin(
√

λ̃t)(9λ̃ − k2x2 + 3kẋ) + 18λ̃kx cos(
√

λ̃t)

(α)2
∂

∂ ẋ

+ 9(λ̃ cos(
√

λ̃t)(3λ̃ − k2x2 + 3kẋ) − 2
√

λ̃kx(2λ̃ + kẋ) sin(
√

λ̃t))

(α)2
∂

∂ ẍ
,

Ω2 = − 9(
√

λ̃kx cos(
√

λ̃t) + 3λ̃ sin(
√

λ̃t))

(α)2
∂

∂x

− 3
√

λ̃ cos(
√

λ̃t)(9λ̃ − k2x2 + 3kẋ) − 18λ̃kx sin(
√

λ̃t)

(α)2
∂

∂ ẋ

+ 9λ̃ sin(
√

λ̃t)(3λ̃ − k2x2 + 3kẋ) + 18
√

λ̃kx(2λ̃ + kẋ) cos(
√

λ̃t)

(α)2
∂

∂ ẍ
,

Ω3 = 18
√

λ̃(αx cos(2
√

λ̃t) − 3
√

λ̃(2kx2 + 3ẋ) sin(2
√

λ̃t))

(α)3
∂

∂x

− 54λ̃x sin(2
√

λ̃t)d1 − 6
√

λ̃ cos(2
√

λ̃t)a1
(α)3

∂

∂ ẋ

+ 18(
√

λ̃x cos(2
√

λ̃t)b1 + λ̃ sin(2
√

λ̃t)c1)

(α)3
∂

∂ ẍ
,

Ω4 = 36
√

λ̃k2(kx sin(
√

λ̃t) − 3
√

λ̃ cos(
√

λ̃t))((kx2 + 3ẋ) cos(
√

λ̃t) + 3
√

λ̃x sin(
√

λ̃t))

(α)3
∂

∂x

+ 54λ̃k2x cos(2
√

λ̃t)d1 + 18λ̃k2x(9λ̃ + k2x2 + 9kẋ) + 6
√

λ̃k2 sin(2
√

λ̃t)a1
(α)3

∂

∂ ẋ

− 18
√

λ̃k2(x sin(2
√

λ̃t)b1 −
√

λ̃ cos(2
√

λ̃t)c1 +
√

λ̃e1)

(α)3
∂

∂ ẍ
,

Ω5 = − 162λ̃ẋ

(α)3
∂

∂x
+ 18λ̃x(9λ̃ + k2x2 + 9kẋ)

(α)3
∂

∂ ẋ
− 18λ̃e1

(α)3
∂

∂ ẍ
, (116)

where a1 = (−k3x4 + 9k(3λ̃x2 + ẋ2) + 27λ̃ẋ), b1 = (−9λ̃2 + 2k3x2 ẋ + k2(7λ̃x2

+ 6ẋ2) + 3λ̃kẋ), c1 = (−k3x4 + 6k2x2 ẋ + 15λ̃kx2 + 9kẋ2 + 9λ̃ẋ),d1 = k(kx2 +
ẋ) − 3λ̃ and e1 = (k3x4 + 6k2x2 ẋ + 9λ̃kx2 − 9kẋ2 − 9λ̃ẋ). The above telescopic
vector fields also satisfy the invariance condition (106). To find the solution from
the above admitted telescopic vector fields, one has to follow the standard order-
reduction procedure. Let us consider the telescopic vector field Ω5. The correspond-
ing Lagrange system can be written as

dt

0
= dx

− 162λẋ
(k2x2+3kẋ+9λ)3

= dẋ
18λx(k2x2+9kẋ+9λ)

(k2x2+3kẋ+9λ)3

. (117)
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Solving the above set of equations, we get the characteristics as

u = t and v = log

(
81

√
3(k2x2 + 3kẋ + 9λ)9√
(k2x2 + 6kẋ + 9λ)9

)
. (118)

From the above expression, we get dv
dt = 0. So the function v itself acts as a first

integral. Then the integral I1 takes the form

I1 = 81
√
3(k2x2 + 3kẋ + 9λ)9√
(k2x2 + 6kẋ + 9λ)9

. (119)

Rewriting the above expression for ẋ and integrating it we obtain the general solution
as in Eq. (88).

5.3 Case 3: λ̃ < 0

For the case λ̃ < 0, we get the telescopic vector fields by following the procedure
discussed in the case λ̃ = 0. The telescopic vector fields are given by

Ω1 = − 9kea2t (3λ̃ + a2kx)

(α)2
∂

∂x

+ 3kea2t (9(−λ̃)3/2 + a2k
2x2 + 6λ̃kx − 3a2kẋ)

(α)2
∂

∂ ẋ

+ 9λ̃kea2t (9λ̃2 − k3x2(a2x + 2ẋ) + k2x(9a2 ẋ − 7λ̃x) + 3λ̃k(5a2x + 3ẋ))

(3λ̃ + a2kx)(α)2

∂

∂ ẍ
,

Ω2 = 9kea2(−t)(a2kx − 3λ̃)

(α)2
∂

∂x

+ 3kea2(−t)(9a2λ̃ + a2(−k2)x2 + 6λ̃kx + 3a2kẋ)

(α)2
∂

∂ ẋ

+ 9λ̃kea2(−t)(9λ̃2 + k3x2(a2x − 2ẋ) − k2x(7λ̃x + 9a2 ẋ) + 3λ̃k(3ẋ − 5a2x))

(3λ̃ − a2kx)(α)2

∂

∂ ẍ
,

Ω3 = − 18k2e2a2t (a2k2x3 + 6λ̃kx2 + 3a2kx ẋ + 9(−λ̃)3/2x + 9λ̃ẋ)

(α)3
∂

∂x

+ 6k2e2a2t (a2k3x4 + 9λ̃k2x3 − 9k(3a2λ̃x2 − λ̃x ẋ + a2 ẋ
2) − 27λ̃(λ̃x + a2 ẋ))

(α)3
∂

∂ ẋ

+ 18k2e2a2t (k3x3(2a2 ẋ − λ̃x) + k2xb2 + 3λ̃kc2 + 9λ̃2(ẋ − a2x))

(α)3
∂

∂ ẍ
,

Ω4 = 18k2e−2a2t (a2k
2x3 + 3kx(a2 ẋ − 2λ̃x) − 9λ̃(a2x + ẋ))

(α)3
∂

∂x

+ 6k2e−2a2t (−a2k
3x4 + 9λ̃k2x3 + 9k(3a2λ̃x2 + λ̃x ẋ + a2 ẋ

2) + 27λ̃(a2 ẋ − λ̃x))

(α)3
∂

∂ ẋ
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+ 18k2e−2a2t (−k3x3(λ̃x + 2a2 ẋ) + k2xd2 + 3λ̃ke2 + 9λ̃2(a2x + ẋ))

(α)3
∂

∂ ẍ
,

Ω5 = − 729λ̃3 ẋ

(α)3
∂

∂x
+ 81λ̃3x(9λ̃ + k2x2 + 9kẋ)

(α)3
∂

∂ ẋ
− 81λ̃3e1

(α)3
∂

∂ ẍ
, (120)

where a2 =
√

−λ̃, b2 = (7a2λ̃x2 + 6λ̃x ẋ + 6a2 ẋ2), c2 = (5λ̃x2 + a2x ẋ + 3ẋ2),
sd2 = (7(−λ̃)3/2x2 + 6λ̃x ẋ − 6a2 ẋ2), e2 = (5λ̃x2 − a2x ẋ + 3ẋ2). Here also one
can check that the above telescopic vector fields satisfy the invariance condition
(106). To find the solution from the above admitted telescopic vector fields, one
has to follow the standard order-reduction procedure. Let us consider the telescopic
vector field Ω1. The corresponding Lagrange system can be written as

dt

0
= dx

− 9ke
√−λt (k

√−λx+3λ)

(k2x2+3kẋ+9λ)2

= dẋ
3ke

√−λt (k2
√−λx2+6kλx−3k

√−λẋ+9(−λ)3/2)

(k2x2+3kẋ+9λ)2

. (121)

Solving the above set of equations, we get the characteristics as

u = t and v = k
√−λx2 + 3λx + 3

√−λẋ

9
√−λλ − 3kλx

. (122)

From the above expression, we get dv
du as

dv

du
= −3

√−λ

(
kv2

3
+ v

3

)
. (123)

Solution of the above equation is given by

v = eI1

e
√−λu − eI1k

. (124)

Substituting (122) into (124) and rewriting it we get a first-order ODE,

ẋ + eI1
√−λ(k2x2 + 9λ) − xe

√−λt (k
√−λx + 3λ)

3
√−λ(e

√−λt − eI1k)
= 0. (125)

Integrating the above equation, we get the general solution of (1) for the choice λ̃ < 0
as

x(t) = 3
√−λ(−eI1k + 2c1e2

√−λt )

k(2c1e2
√−λt + eI1k − 2e

√−λt )
, (126)

where I1 and I2 are the integration constants. Obviously the solution (126) can be
rewritten in the form (92).
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6 Conclusion

In this paper, we have reviewed four different kinds of symmetries for the Liénard
type nonlinear oscillator Eq. (1). It has already been shown that this equation exhibits
three different kinds of dynamics depending upon the sign of the parameter λ̃. Based
on this earlier result we have divided our analysis into three categories while study-
ing the symmetries of this equation. To begin with, we have considered Lie point
symmetries of this equation. We have derived the general solution for all the three
regimes by considering a vector field in each one of the cases. We then considered
λ-symmetries approach to this equation. As we noted earlier, we carried out this
calculations for the λ̃ = 0 case and demonstrated the applicability of λ-symmetries
approach in establishing the integrability of this equation. We have then studied the
Noether’s symmetries of (1) for the parametric choices λ̃ > 0, λ̃ < 0 and λ̃ = 0.
The underlying Lagrangian is of non-standard type. However in all the three cases,
we found maximal number (five) of Noether’s symmetries for the Lagrangian (2).
Recently it has been proposed that the physical Lagrangian for a second order differ-
ential equation should be the one which admits highest possible number of Noether’s
symmetries. Our results indicate that even though the Lagrangian is of nonstandard
type it can be considered as a physical Lagrangian since it admits maximal number
of symmetries. Finally, we have constructed telescopic vector fields for Eq. (1) in the
parametric regimes λ̃ > 0, λ̃ < 0 and λ̃ = 0. The method of finding general solution
from telescopic vector fields is also explained. Thus we have shown the utility of
symmetry analysis in solving the nonlinear ODEs of Liénard type.
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