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Abstract We describe computational algorithms for constructing the explicit power
series expansions for normal forms of submanifolds under transformation groups.
The procedure used to derive the coefficients relies on the recurrence formulae for
differential invariants provided by the method of equivariant moving frames.
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1 Introduction

The equivariant method of moving frames, introduced in [1], provides a powerful
computational tool for investigating the equivalence and symmetry properties of sub-
manifolds under general Lie group actions (and,more generally, infinite-dimensional
Lie pseudo-groups, [2, 3]), and determining the required differential invariants. The
main new tool is the recurrence relations, which completely prescribe the structure
of the non-commutative differential algebra they generate through the process of
invariant differentiation. Remarkably, these relations and the consequent differential
algebraic structure can be completely and straightforwardly constructed, requiring
only basic linear algebra, and can thus be readily implemented in any modern com-
puter algebra system, including Mathematica, Maple, and Sage.

A simple example is provided by the Euclidean geometry of space curvesC ⊂ R
3,

under the action of the group of rigid motions — translations and rotations. The
fundamental differential invariants are the curvature and torsion of the space curve,
and the invariant differential operator is differentiation with respect to arc length. As
a consequence, every Euclidean differential invariant can be expressed as a function
of curvature, torsion, and their successive arc-length derivatives.
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The normalization procedure underlying the construction of a moving frame is
equivalent to the specification of a “normal form” for submanifolds under the group
action. Roughly, to construct a normal form, one uses the group transformations to
simplify, as much as possible, the Taylor expansion of the submanifold at a given
point. The result will be called a normal form for the submanifold at the point,
also known as the Monge or Monge–Taylor form, [4, 5]. As we note below, this
simplification is exactly the same as the choice of cross-section to the prolonged
group orbits, which is the first step in the equivariant moving frame construction.
Once a normal form has been specified, the non-constant coefficients in the resulting
Taylor series expansion form a complete system of differential invariants, known, in
the equivariant approach, as the fundamental normalized differential invariants.

The purpose of the present note is to explain, in simplified form, the moving
frame algorithms and recurrence formulae, and how they can be used to construct
the normal form expansion of a submanifold in terms of the fundamental differen-
tial invariants and their invariant derivatives. While direct calculations can be very
tedious, if not impossible due to the limitations of current computer algebra software
and hardware, the recurrence formulae provide a simple, straightforward route to the
desired formulae. In this paper, we describe this calculus, first in the simplest context
of plane curves, and then for general submanifolds under Lie group actions. The
results are illustrated by a few basic examples of geometric and imaging importance.

2 Plane Curves

For simplicity, we first describe the normal form construction in the its most basic
manifestation: plane curves under “ordinary” group actions. The general version can
be found below in Sect. 3.

Throughout this section, C ⊂ M = R
2 will denote a regular, smooth1 (C∞) plane

curve. We use z = (x, u) as local coordinates on M , and t ∈ I ⊂ R as a curve
parameter, so that C is the image of the function z(t) = (x(t), u(t)) for t in the
interval I . Regularity requires that the curve’s tangent vector is nowhere vanishing2:
dz/dt = (xt , ut ) �= 0. We will identify parametrizations that have identical image
curves, meaning that we allow reparametrization, including those that reverse ori-
entation. In particular, the curve is a graph if it is parametrized by the horizontal
coordinate x , so that z(x) = (x, u(x)) for x ∈ I ⊂ R. Locally, in a neighborhood of
z0 = (x0, u0) ∈ C , a curve can be parametrized uniquely as a graph if and only if it
intersects the vertical fiber

{
x = x0

}
transversally, meaning that its tangent vector

at z0 is not vertical, i.e., xt �= 0 there.

1One can apply the construction to curves of class Cn provided n is sufficiently large that all
derivatives indicated are continuous.
2Subscripts on dependent variables indicate derivatives.
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Given a graph defined by the function u(x), we will identify its Taylor polynomial
of order n at a point z0 = (x0, u0) = (x0, u(x0)) ∈ C , namely,3

u(x0) + ux (x0) (x − x0) + 1

2
uxx (x0) (x − x0)

2 + · · · + 1

n ! un(x0) (x − x0)
n,

with the nth order jet of the curve at the point z0. Note that the n jet is uniquely
prescribed by the derivatives of order ≤ n at the point in question. Thus, the space
of nth order transverse4 curve jets, denoted Jn , can be identified with R

n+2, with
coordinates

z(n) = (x, u, ux , uxx , . . . , un). (1)

The n-jet of the graph C = {(x, u(x))} at the point z0 = (x0, u(x0)) ∈ C is thereby
identified with the (n + 2)–tuple

jnC |z0 = (
x0, u(x0), ux (x0), uxx (x0), . . . , un(x0)

) ∈ Jn. (2)

One can straightforwardly derive, via implicit differentiation, expressions for the
curve jet components (2) in terms of a general parametrization z(t) = (x(t), u(t)),
writing the nth order jet coordinate un as an explicit rational function of the deriva-
tives, of order ≤ n, of x(t), u(t). For example,

ux = Dx u = ut

xt
, uxx = Dx ux = 1

xt
Dt

(
ut

xt

)
= xt utt − ut xtt

x3
t

· · · , (3)

with the higher order expressions obtained by iteratively applying the implicit total
derivative operator

Dx = 1

xt
Dt . (4)

By a differential function, we mean a (locally defined) real-valued function on the
jet space, F : Jn → R, and so, in coordinates, taking form

F(z(n)) = F(x, u, ux , uxx , . . . , un).

To us, the most important differential functions are the differential invariants, e.g.,
curvature, torsion, and the like. Note that one can use the parametric differentia-
tion formulae (3) to re-express any differential function in terms of a general curve
parametrization.

Let G be an r -dimensional Lie group acting on M = R
2. There is an induced

action of G on curves, with g ∈ G mapping the curve C parametrized by z(t) to
the image curve C̃ = g · C parametrized by z̃(t) = g · z(t). Two curves C, C̃ ⊂ M
are said to be equivalent if there exists a group element g ∈ G such that C̃ = g · C .

3In this section, un represents the nth order derivative of u with respect to x .
4See [6] for the extended jet bundle construction, that includes non-transverse curves.
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Again, we allow reparametrization in our identification of curves. In practice, we
are primarily interested in local equivalence, in the neighborhood of corresponding
points on the two curves.

The action of G on curves induces an action on their jets. In other words, given a
jet z(n)

0 ∈ Jn|z0 , let C be any transverse curve whose jet at z0 ∈ C coincides with z(n)
0

at the point z0 ∈ C . Then g · z(n)
0 is equal to the n-jet of the image curve C̃ = g · C

at the image point z̃0 = g · z0. If the image curve is not transverse, the action is not
defined in the ordinary jet space (although it is defined on the extended jet bundle,
cf. [6]), meaning that the prolonged group action on Jn is, in general, only a local
action even if the action on M is global. The explicit formulae for the prolonged
action of a transformation group are obtained by implicit differentiation, [1, 6].

A differential invariant of order n is a differential function I (z(n)) that is unaf-
fected by the prolonged group action, i.e., I (g · z(n)) = I (z(n)) for all g ∈ G and all
z(n) ∈ Jn , where defined. Clearly, equivalent curves have identical differential invari-
ants, although, of course, their explicit formulae in terms of the curves’ individual
parametrizations may vary. The Cartan solution to the equivalence problem, [7], is
based on the functional identities, or syzygies, among the differential invariantswhich
are used to parametrize the associated signature. (In the case of curves in Euclidean
space, the signature curve was introduced earlier by Bruce and Giblin, [4], under the
name “Monge-Taylor map”.) See, for example, [8–13] for various applications of
the differential invariant signature to object recognition in digital images.

In its simplest incarnation, a cross-section to the prolonged group action is a fixed
jet z(n)

0 ∈ Jn with the property that for any (nearby) curve C and point z ∈ C there is
a unique group element g ∈ G such that

g · (
jnC |z

) = jn(g · C)|z0 = z(n)
0 , (5)

meaning that the group element maps the curve jet at z to the fixed cross-section jet.
In particular g · z = z0. A straightforward chain rule argument demonstrates that the
group element satisfying (5) depends only of the n-jet z(n) = jnC |z of the curve at
the point z. In view of uniqueness, we write g = ρ(z(n)), whereby (5) is equivalent
to the equation

ρ(z(n)) · z(n) = z(n)
0 . (6)

In the language of [1], the map5 ρ : Jn → G defines a (right) moving frame of order
n, and, as can be easily proved, satisfies the right equivariance rule

ρ(g · z(n)) = ρ(z(n)) · g−1, (7)

where the dot on the left hand side indicates the prolonged group action on Jn , while
the dot on the right hand side represents groupmultiplication. Occasionally, formulae
are more simply written in terms of the corresponding left equivariant moving frame,
which is merely the group inverse of the right moving frame:

5Typically ρ is only defined on an open subset of the jet space.
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ρ̃(z(n)) = ρ(z(n))−1, satisfying the left equivariance rule ρ̃(g · z(n)) = g · ρ̃(z(n)),

(8)
and mapping the normal form jet to the curve jet: ρ̃(z(n)) · z(n)

0 = z(n).
Given a choice of cross-section, a curve C0 is said to be in normal form if z0 ∈ C0

and its n-jet at z0 coincides with the fixed cross-section jet: jnC0|z0 = z(n)
0 . Thus,

given
z(n)
0 = (x0, u0 = c0, c1, . . . , cn),

any normal form curve, parametrized as the graph of the function u0(x), has Taylor
expansion

u0(x) = c0 + c1 (x − x0) + 1

2
c2 (x − x0)

2 + · · · + 1

n ! cn (x − x0)
n

+ 1

(n + 1) ! un+1(x0) (x − x0)
n+1 + 1

(n + 2) ! un+2(x0) (x − x0)
n+2 + · · · ,

(9)

at x = x0, whose first n + 1 coefficients are fixed by the choice of cross-section jet,
whereas the values of those of order ≥ n + 1 depend upon the particularities of the
curve C0.

Remark: Existence of a cross-section of the above type is equivalent to the transi-
tivity and freeness6 of the prolonged group action on an open subset of Jn . If the Lie
group G has dimension r , then this requires n = r − 2. A planar group action that
admits a cross-section in the above sense is known as ordinary, [7]. The only non-
ordinary group actions on R2 are intransitive actions and those whose prolongations
exhibit pseudo-stabilization, meaning that they act intransitively but not freely on
some jet space. All “standard” transitive group actions arising in geometry and image
processing are ordinary. Moreover, non-ordinary actions can be readily handled by
the general moving frame construction described in the following section.

Applying the moving frame group element g = ρ(z(n)) to the curve C produces
the normal form curve C0 = g · C = ρ(z(n)) · C associated with the point z ∈ C ,
that satisfies the normal form constraint jnC0 = z(n)

0 . Clearly, two curves are locally
equivalent if and only if they have identical normal forms at the matching points.
Consequently, each Taylor coefficient of the normal form curve at the point z0, when
expressed as a function of the original curve jet, defines a differential invariant. In
other words, for any k,

z(k)
0 = jkC0|z0 = jk

(
ρ(z(n)) · C

)|z0 = ρ(z(n)) · (
jkC |z

) = ρ(z(n)) · z(k) = I (k)(z(k)),

(10)

defines a vector-valued differential invariant: I (k)(g · z(k)) = I (k)(z(k)) for all g ∈ G
where defined,whose individual components provide k + 2 scalar-valued differential
invariants7:

6The action of G is free at z(n) ∈ Jn if the only group element that fixes z(n) is the identity, i.e.,
g · z(n) = z(n) if and only if g = e.
7When k ≤ n, then I (k) = (

x0, c0, c1, . . . , ck
)
is constant.
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I (k)(z(k)) = (
H(z(k)), I0(z

(k)), I1(z
(k)), . . . , Ik(z

(k))
)

= (
x0, c0, c1, . . . , cn, In+1(z

(n+1)), . . . , Ik(z
(k))

)
.

(11)

As a result, the normal form Taylor expansion (9) is

u0(x) = c0 + c1 (x − x0) + 1

2
c2 (x − x0)

2 + · · · + 1

n ! cn (x − x0)
n+

+ 1

(n + 1) ! In+1(z
(n+1)) (x − x0)

n+1 + · · · + 1

k ! Ik (z(k)) (x − x0)
k + · · · ,

(12)

We will call I j (z( j)) the j th order normalized differential invariant; note that its
value is independent of the choice of k ≥ j in (11); indeed, it would be convenient
to set k = ∞ and work with Taylor series (infinite jets) throughout. Of course, the
first n + 2 of these, H, I0, . . . , In , are constant, since they equal the corresponding
Taylor coefficient (11) of the cross-section jet: I j (z(n)) = c j .

According to [1], the non-phantom or fundamental normalized differential invari-
ants of order > n, namely In+1(z(n+1)), In+2(z(n+2)), . . . , form a complete system
of differential invariants for the action of G on curves, meaning that, locally, any
other differential invariant can be written, uniquely, as a function thereof. Indeed,
the Replacement Rule states that if J (z(k)) = J (x, u, ux , . . . , uk) is any differential
invariant of order8 k > n, then, replacing each of its arguments by the corresponding
normalized invariant,

J (z(k)) = J
(

x0, c0, . . . , cn, In+1(z
(n+1)), . . . , Ik(z

(k))
)

(13)

gives an explicit formula for J in terms of the fundamental normalized invariants.
In symbolic computation terminology, [14], (13) is a rewrite rule expressing any
differential invariant in terms of the fundamental generators.

Further, the moving frame map induces a process of invariantization, denoted
by ι, that associates a differential invariant with any differential function. Namely, if
F(z(k)) is any functionof the curve jets, then its invariantization J (z(k)) = ι

[
F(z(k))

]

is the unique differential invariant that agrees with the value of F on the normal form
prescribed by the cross-section: J (z(k)

0 ) = F(z(k)
0 ). Note that invariantization respects

all algebraic operations—but not differentiation, which is the point of the recurrence
formulae derived below. It is not hard to see that the invariantization process is readily
implemented by substituting each jet coordinate appearing in the argument of F by
the corresponding normalized differential invariant:

ι
[

F(z(k))
] = F

(
x0, c0, . . . , cn, In+1(z

(n+1)), . . . , Ik(z
(k))

)
. (14)

Furthermore, invariantization does not affect differential invariants: ι
[

J (z(k))
] =

J (z(k)) and hence, comparison with (14) immediately establishes the Replacement
Rule (13).

8Since G acts transitively on Jn , any differential invariant of order ≤ n is necessarily constant, and
still satisfies the Replacement Rule.
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Example 1 Plane curves under orientation-preserving rigid motions: In this exam-
ple,G = SE(2) is the specialEuclideangroup, consistingof translations and rotations
of R2:

x 	→ x cosφ − u sin φ + a, u 	→ x sin φ + u cosφ + b,
a, b ∈ R,

−π < φ ≤ π.

(15)

To place a plane curve in Euclidean normal form at a point z ∈ C , we first use the
translations to move the base point to the origin, x0 = u0 = 0, and then rotate the
translated curve so that its tangent is horizontal, whereby ux,0 = 0. The resulting
Euclidean normal form for a plane curve has Taylor expansion

u0(x) = 1
2 I2 x2 + 1

6 I3 x3 + 1
24 I4 x4 + · · · + 1

k ! Ik xk + · · · (16)

at the origin. Its Taylor coefficients

Ik = ι(uk), k ≥ 2, (17)

when expressed in terms of the original curve parametrization, are the fundamental
normalized differential invariants.

The preceding choice of normal form corresponds to the cross-section

x = u = ux = 0, (18)

whence the three associated phantom invariants are

ι(x) = H = 0, ι(u) = I0 = 0, ι(ux ) = I1 = 0. (19)

The resulting left moving frame9 ρ̃ : J1 → SE(2) can be identified with the classical
moving frame, [15], namely, its translation component is the point z ∈ C , while the
columns of the rotation matrix, R = [ t,n ], are the orthonormal frame vectors based
at z, that is, the unit tangent t and normal n. Furthermore, by direct computation or,
alternatively, by applying themoving frameconstruction, the lowest order normalized
differential invariant

I2 = ι(uxx ) = κ = uxx

(1 + u2
x )

3/2
(20)

turns out to be the Euclidean curvature of the curve. We defer the identification
of the higher order normalized invariants I3, I4, . . . , until we have constructed the
associated recurrence formulae.

9Typically, while the right moving frame (7) plays amore fundamental role and is easier to compute,
in classical geometries, the corresponding left moving frame (8) includes the usual frame vectors
on the submanifold, cf. [1].
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Remark: In the preceding example, there remains an unresolved discrete ambi-
guity since we can rotate by π radians without affecting the cross-section (18). The
effect is to map u0(x) to −u0(− x), and hence change the sign of the even order nor-
malized invariants, I2 j 	→ − I2 j , so that, in particular, the curvature invariant changes
sign: κ 	→ −κ . This can be avoided by either working with its absolute value or, if
one restricts attention to closed curves, by fixing the orientation. Here, to avoid
technicalities, we will ignore this final ambiguity (as is done in most treatments),
referring to [16] for the full details, including the additional effects of reflections on
the moving frame and differential invariants.

An alternative method of generating differential invariants is through invariant
differentiation. Given a transformation group acting on plane curves, we use ds to
denote the G-invariant arc-length element, or, equivalently, the invariant10 one-form
of lowest order. We remark that the invariant one-forms can also be systematically
constructed through a reasonably straightforward extension of the invariantization
process associated with the moving frame, and refer the reader to [1, 17] for details.

LetD = d/ds be the dual invariant differential operator, i.e., the arc length deriva-
tive. Invariance of the arc-length form ds implies thatD maps a differential invariant
of order k to a differential invariant of order k + 1. In particular, starting with the
(non-constant) normalized differential invariant κ = In+1 of lowest order, namely
n + 1, which we identify11 as the G-invariant curvature function, its successive arc-
length derivatives κs = Dκ, κss = D2κ, . . . , are differential invariants of respective
orders n + 2, n + 3, . . . . It is known that they also generate the algebra of differen-
tial invariants; one way of proving this assertion is by inspection of the recurrence
formulae. The Replacement Rule (13) tells us that these are all functions of the
normalized differential invariants; vice versa, it can be shown that the normalized
differential invariants are themselves certain functions of the curvature invariant and
its successive arc length derivatives. The resulting formulae

Ik = Fk(κ, κs, . . . , κk−n−1), k ≥ n + 1, (21)

enable one to express the coefficients of the normal form Taylor expansion (12) of a
curve in terms of the curvature invariant and its arc-length derivatives. Our goal is to
develop themachinery that enables one to straightforwardly compute these formulas,
and hence the explicit Taylor expansion for the normal form of a curve under a group
action.

While, in principle, knowing the explicit coordinate formulae for the curvature
invariants enables one, e.g. via the Replacement Rule (13), to express them in terms

10Strictly speaking, ds is only “contact-invariant”, meaning that it is not an invariant form on jet
space but, rather, is invariant when restricted to curve jets, or, equivalently, is invariant modulo
contact forms, [7].
11Identification of κ with a classical geometric quantity (Euclidean curvature, equi-affine curvature,
projective curvature, etc.) requires an appropriate choice of normal form. Other choices may result
in some function, e.g., a constant multiple, of the classical curvature invariant. Incidentally, the
function in question can be straightforwardly found by applying the Replacement Rule (13) to the
classical formula.



Normal Forms for Submanifolds Under Group Actions 9

of the normalized invariants, and hence, by inversion, determine the desired for-
mulae (21), in practice, for complicated group actions and higher order invariants,
this can be a very cumbersome and complicated procedure that can overwhelm the
abilities of even sophisticated computer algebra systems such as Mathematica,
Maple, Sage, etc. The power of the equivariant moving frame method is that it
enables one to systematically and straightforwardly derive these formulae without a
priori knowledge of the explicit formulae for any of the differential invariants, or the
invariant arc length derivative, or even the moving frame itself. All that is required is
the formulae for the prolonged infinitesimal generators of the group action, coupled
with some simple (symbolic) linear algebra!

To explain the computational algorithm, let

vσ = ξσ (x, u)
∂

∂x
+ ϕσ (x, u)

∂

∂u
, σ = 1, . . . , r, (22)

be a basis for the Lie algebra of infinitesimal generators of the action of G, which
are vector fields on M , [6]. Let

pr vσ = ξσ (x, u)
∂

∂x
+

∑

k≥0

ϕk
σ (x, u(k))

∂

∂uk
, σ = 1, . . . , r, (23)

be the corresponding infinitesimal generators of the prolonged action of G on the jet
spaces, whose coefficients are explicitly determined by the well-known prolongation
formula, [6]:

ϕk
σ (z(k)) = Dk

x

[
ϕσ (x, u) − ξσ (x, u) ux

] + ξσ (x, u) uk+1. (24)

Here

Dx = ∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ uxxx

∂

∂uxx
+ · · · (25)

is the total derivative operator, which effectively differentiates differential functions
by treating u as a function of x .

The recurrence formulae for the differentiated invariants, [1], are

Ik+1 = D Ik −
r∑

σ =1

Kσ ι
[
ϕk

σ (x, u(k))
]
, k = 0, 1, 2, . . . , (26)

where ι is the invariantization map (14) and K1, . . . , Kr are certain as yet unspecified
differential invariants known as the Maurer–Cartan invariants.12 In particular, if one

12This is because they are, in fact, the coefficients of the pull-backs of the Maurer–Cartan forms
via the moving frame map ρ : Jn → G, [1]. However, while this is essential to proving the validity
of (26), from a purely practical standpoint there is no need to know this theoretical fact, or even
understand what a “Maurer–Cartan form” is, since, as we will soon see, we can readily determine
their explicit formulae directly from the recurrence formulae themselves.
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takes 0 ≤ k ≤ n = r − 2 in (26), then Ik = ck is a constant phantom invariant, and
hence the first term on the right hand side of the recurrence formula is zero. Thus,
the result is a system of r − 1 linear equations for the r Maurer–Cartan invariants
in terms of the normalized differential invariants of order ≤ r − 1 = n + 1. These
are supplemented by the recurrence formula for the remaining phantom invariant
H = ι(x) = x0, which takes the form

1 = DH −
r∑

σ =1

Kσ ι
[
ξσ (x, u)

] = −
r∑

σ =1

Kσ ι
[
ξσ (x, u)

]
. (27)

It can be shown that the resulting system of r linear equations can be uniquely solved
for the Maurer–Cartan invariants K1, . . . , Kr , which can thus all be expressed as
certain rational functions of the curvature invariant κ = In+1. With these expressions
in hand, the resulting higher order recurrence formulae (26), for k > n, will then
iteratively provide the required formulae (21) for each Ik+1 in terms of the arc length
derivatives of κ . Let us see how this works in the context of a couple of examples.

Example 2 Return to the action of the Euclidean group on plane curves introduced
in Example 1. We use

D = Ds = 1
√
1 + u2

x

Dx (28)

to denote the invariant arc length total derivative operator.

The infinitesimal generators of the action (15) are

v1 = ∂x , v2 = ∂u, v3 = −u ∂x + x ∂u . (29)

Applying the prolongation (24), the infinitesimal generators of the prolonged action
of SE(2) on plane curves are

pr v1 = ∂x , pr v2 = ∂u,

pr v3 = −u ∂x + x ∂u + (1 + u2
x )∂ux + 3ux uxx ∂uxx + (4ux uxxx + 3u2

xx )∂uxxx +
+ (5ux uxxxx + 10uxx uxxx )∂uxxxx +
+ (6ux uxxxxx + 15uxx uxxxx + 10u2

xxx )∂uxxxxx + · · · .

(30)
Thus, the recurrence formulae (26), (27) for the three phantom invariants (19) are

1 = DH − K1 ι(1) − K2 ι(0) − K3 ι(−u) = −K1,

0 = I1 = D I0 − K1 ι(0) − K2 ι(1) − K3 ι(x) = −K2,

κ = I2 = D I1 − K1 ι(0) − K2 ι(0) − K3 ι(1 + u2
x ) = −K3,

and hence the Maurer–Cartan invariants are
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K1 = −1, K2 = 0, K3 = −κ. (31)

Using (17), (19), these values are then iteratively substituted into the higher order
recurrence formulae (26) to produce

I3 = D I2 − K3 ι(3ux uxx ) = κs,

I4 = D I3 − K3 ι(4ux uxxx + 3u2
xx ) = κss + 3κ3,

I5 = D I4 − K3 ι(5ux uxxxx + 10uxx uxxx ) = κsss + 19κ2κs,

I6 = D I5 − K3 ι(6ux uxxxxx + 15uxx uxxxx + 10u2
xxx )

= κssss + 34κ2κss + 48κ κ2
s + 45κ5,

(32)
and so on. We conclude that the explicit Taylor expansion of a curve placed in
Euclidean normal form (16) is

u0(x) = 1
2 κ x2 + 1

6 κs x3 + 1
24 (κss + 3κ3) x4 + 1

5! (κssss + 19κ2κs) x5+
+ 1

6! (κssss + 34κ2κss + 48κ κ2
s + 45κ5) x6 + · · · .

(33)

Higher order terms can be systematically constructed by continuing the above pro-
cedure. However, I do not know a general formula for the differential polynomials
in κ that appear as coefficients.

Example 3 A more substantial example is provided by the geometry of equi-affine
planar curves, [15], also of importance for image processing, [8]. The equi-affine
group SA(2) acts on M = R

2 via area-preserving affine transformations

g · (x, u) = (αx + βu + a, γ x + δu + b), αδ − βγ = 1. (34)

The normalization equations

x = u = ux = 0, uxx = 1, uxxx = 0, (35)

define a cross-section to the prolonged action, which leads to the classical equi-
affine moving frame. This normalization can be applied except at inflection points,
i.e., provided the nondegeneracy condition uxx �= 0 holds. (Similar nondegeneracy
conditions appear in most examples, the preceding case of Euclidean plane curves
being a notable exception. At isolated inflection points one can, in principle, use
the general moving frame procedure, to be presented in Sect. 3, to construct a higher
order moving frame.) The cross-section (35) corresponds to the following equi-affine
normal form for a non-degenerate plane curve:

u0(x) = 1
2 x2 + 1

4! I4 x4 + 1
5! I5 x5 + 1

6! I6 x6 + · · · . (36)

The fundamental differential invariant is the equi-affine curvature
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κ = I4 = ι(uxxxx ) = uxx uxxxx − 5
3 u2

xxx

u8/3
xx

, (37)

while
D = ι(Dx ) = u−1/3

xx Dx (38)

is the invariant differentiation operator with respect to equi-affine arc-length. Both
formulas (37), (38) can be straightforwardly found by a complete implementation of
the moving frame construction, but are not required to perform the ensuing compu-
tations.

Our goal is to write the higher order differential invariants

Ik = ι(uk), k ≥ 4, (39)

and hence the equi-affine normal form (36), in terms of the equi-affine curvature and
its arc-length derivatives. Applying (23), (24), the prolonged infinitesimal generators
for the equi-affine group action (34) are

v1 = ∂x ,

v2 = ∂u ,

v3 = − x ∂x + u ∂u + 2ux ∂ux + 3uxx ∂uxx + 4uxxx ∂uxxx + 5uxxxx ∂uxxxx + · · · ,

v4 = u ∂x − u2x ∂ux − 3ux uxx ∂uxx − (4ux uxxx + 3u2xx ) ∂uxxx −
− (5ux uxxxx + 10uxx uxxx ) ∂uxxxx + · · · ,

v5 = x ∂u + ∂ux .

(40)

Thus, the recurrence formulae (26), (27) for the phantom invariants coming from
invariantizing the cross-section coordinates (37) are

1 = DH − K1 = −K1, 0 = I1 = D I0 − K2 = −K2, 1 = I2 = D I1 − K5 = −K5,

0 = I3 = D I2 − 3K3 = −3K3, κ = I4 = D I3 + 3K4 = 3K4,

and hence the Maurer–Cartan invariants are

K1 = −1, K2 = 0, K3 = 0, K4 = 1
3 I4 = 1

3 κ, K5 = −1. (41)

These values are then substituted into the higher order recurrence formulae (26) to
iteratively produce the desired formulae:

I5 = D I4 = κs,

I6 = D I5 + 5 I 24 = κss + 5κ2,

I7 = D I6 + 7 I4 I5 = κsss + 17κ κs,

I8 = D I7 + 28
3 I4 I6 + 35

3 I 34 = κssss + 79
3 κ κss + 17κ2

s + 175
3 κ3,

(42)
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and so on. We conclude that the equi-affine normal form for a plane curve at a
non-inflection point is given by

u0(x) = 1
2 x2 + 1

4! κ x4 + 1
5! κs x5 + 1

6! (κss + 5κ2) x6 + 1
7! (κsss + 17κ κs) x7+

+ 1
8!
(
κssss + 79

3 κ κss + 17κ2
s + 175

3 κ3
)

x8 + · · · .

(43)
Again, while they are easily found by iterating the preceding algorithm, I do not
know a general explicit formula for the differential polynomials appearing in the
normal form expansion (43).

3 Normal Forms for Submanifolds

We now turn to the equivariant moving frame construction, [1], that applies to
completely general Lie group actions and, when suitably adapted, [2], also to
infinite-dimensional Lie pseudo-group actions. Let M be an m-dimensional man-
ifold which, since we are working locally, we identify as (an open subset of) Rm .
Given 1 ≤ p < m, there is an induced action of G on p-dimensional submanifolds
S ⊂ M , and we are interested in determining when two such submanifolds are equiv-
alent, meaning that there exists g ∈ G mapping one (locally) to the other: S̃ = g · S.
As before, we are interested in the submanifold purely as a subset of M , and thus
allow arbitrary reparametrizations thereof. (Although one can readily adapt the pro-
cedure to avoid or restrict allowable reparametrizations.) The solution to the equiva-
lence problem is based on the differential invariant signature, and the moving frame
method allows one to explicitly determine the fundamental differential invariants
used to construct the required signature, [1, 8].

We employ coordinates (x, u) = (x1, . . . , x p, u1, . . . , uq) on Rm , with p + q =
m, treating the x’s as independent variables and the u’s as dependent variables,
whereby any p-dimensional submanifold S that is transverse to the vertical fibers{

x = x0
}
can be locally identified with the graph, S = {(x, u(x))}, of a smooth

vector-valued function x 	→ u(x) with components uα(x1, . . . , x p), α = 1, . . . , q.
We identify the nth order Taylor expansion of u(x) at a point x0 in its domain as
the n jet of the submanifold at the base point z0 = (x0, u0) = (x0, u(x0)) ∈ S. The
resulting nth order jet space Jn , for p-dimensional submanifolds, is coordinatized
by the independent variables x1, . . . , x p, the dependent variables u1, . . . , uq , and
their derivatives up to order n, which we denote by uα

J , with α = 1, . . . , q, and J =
( j1, . . . , jk) a symmetric multi-index, with 1 ≤ jk ≤ p, of order 1 ≤ k = #J ≤ n,
whose entries indicate partial derivatives of uα with respect to the x’s. Thus, a point
in Jn is specified by the coordinates

z(n) = (. . . xi . . . uα . . . uα
J . . .), where i = 1, . . . , p, α = 1, . . . , q, #J ≤ n.

(44)
See [1, 6, 7] for details.
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The action of G on submanifolds induces an action on their jets, leading to the
prolonged group action on jet space. Explicit formulas are obtained by implicit dif-
ferentiation. In general, a cross-section is a submanifold of the jet space, K ⊂ Jn

that has complementary dimension and is transverse to the prolonged group orbits.
Moreover, we assume that, for each jet z(n) ∈ Jn sufficiently close to K, there is
a unique group element g = ρ(z(n)) that maps z(n) to the cross-section, which, as
before, specifies the moving frame map13 ρ : Jn → G, satisfying the right equivari-
ance condition (7). Transversality means that no (non-zero) prolonged infinitesimal
generator is tangent to the cross-section, which can be straightforwardly verified
using their explicit formulas, cf. (50) below, and involves computing the rank of a
certain matrix. Existence of a cross-section, and hence a moving frame, requires that
the prolonged action be (locally) free and regular on an open subset of Jn , and it
can be proved that, assuming the action on M is locally effective on subsets, local
freeness holds at a sufficiently high order n, [18]. Usually—although not always, [19,
20]—one chooses a coordinate cross-section obtained by setting (or normalizing)
r = dim G of the jet coordinates equal to suitable constants. Almost always, one
chooses a minimal order cross-section, meaning that the normalized jet coordinates
have as low an order as possible. For example, the cross-section for an ordinary pla-
nar group action used in Sect. 2 is minimal. From here on we implicitly assume that
we have chosen a coordinate cross-section of minimal order, although the general
moving frame constructions can be readily adapted to more exotic choices.

If the group acts transitively on M , a minimal order coordinate cross-section is
contained in the jet space over a single pointK ⊂ Jn|z0 .One can interpret such a coor-
dinate cross-section as normalizing particular Taylor coefficients of the submanifolds
passing through the base point z0 —which is almost always taken to be at the origin.
Once the moving frame map is specified, the normal form for a submanifold S ⊂ M
at a point z ∈ S is obtained by applying the moving frame map corresponding to the
submanifold’s n-jet at the point in question, z(n) = jn S|z , so that S0 = ρ(z(n)) · S is a
submanifold passing through z0 ∈ S0 and whose jet belongs to the cross-section, i.e.,
whose Taylor coefficients corresponding to the normalized cross-section jet coordi-
nates have been normalized to the specified values. The remaining jet coordinates
(Taylor coefficients), when expressed in terms of the originating submanifold jets
z(k), provide a complete system of differential invariants, known as the normalized
differential invariants.

With the moving frame in hand, we define the invariantization of a differential
function F(z(n)) to be the unique differential invariant J (z(n)) = ι

[
F(z(n))

]
that

agrees with F on the cross-section: F | K = J | K . In particular, invariantization
of the jet coordinate functions leads to the normalized differential invariants:

Hi = ι(xi ), I α
J = ι(uα

J ). (45)

The r jet coordinates that are used to define the cross-section produce the con-
stant, phantom differential invariants, and the remaining, non-phantom fundamental

13As before, the notation allows ρ to be only defined on an open subset of Jn .
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normalized invariants provide a complete system of functionally independent differ-
ential invariants. The invariantization map has the explicit formula

ι
[

F(. . . xi . . . uα
J . . .)

] = F(. . . Hi . . . I α
J . . .), (46)

inwhich one replaces all jet coordinates by the corresponding normalized differential
invariants.Moreover, invariantization clearly preserves differential invariants, ι(J ) =
J , and hence any differential invariant can be expressed in terms of the normalized
differential invariants via the Replacement Rule:

J (. . . xi . . . uα
J . . .) = J (. . . Hi . . . I α

J . . .). (47)

Furthermore, for p-dimensional submanifolds there are p invariant differential
operators D1, . . . ,Dp that map differential invariants to differential invariants, and
obtained by invariantizing14 the corresponding total derivative operators

Di = ∂

∂xi
+

q∑

α=1

∑

J

uα
J,i

∂

∂uα
J

, i = 1, . . . , p, (48)

where uα
J,i = Di (uα

J ) = uα
j1... jk i . The Basis Theorem, [1, 3], states that there exist a

finite number of generating differential invariants J1, . . . , Jl with the property that
any other differential invariant can bewritten as a (not necessarily uniquely specified)
function of the generating invariants and their successive invariant derivatives,

Jk,I = Di1 . . .Din Jk, k = 1, . . . , l, 1 ≤ iν ≤ p, n ≥ 0.

In particular, one can express all the normalized differential invariants in terms of
them, and the explicit formulae can be found by iteratively applying the recurrence
formulae, to be described next. It is known that, given a moving frame ρ : Jn →
G of order n, the non-constant normalized differential invariants of order ≤ n + 1
form a generating set, although it typically contains redundancies and one can, by
inspection of the recurrence relations and the commutation formulae (see Example 5
below) among the invariant differential operators, produce a smaller generating set.
Determining the minimal number l = lmin of generating differential invariants is a
very challenging problem, with surprises even in seemingly well-studied situations,
[21, 22]. The case of curves is, however, known, where the answer (for ordinary
group actions) is precisely l = m − 1; see [23] for intriguing Lie theoretic tools for
determining their orders.

14More correctly, one invariantizes the basic horizontal one-forms,� i = ι(dxi ), producing a invari-
ant horizontal coframe, and the invariant differential operators are the dual total differentiation
operators.
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To write out the recurrence formulae, let

vσ =
p∑

i=1

ξ i
σ (x, u)

∂

∂xi
+

q∑

α=1

ϕα
σ (x, u)

∂

∂uα
, σ = 1, . . . , r, (49)

be a basis for the infinitesimal generators of the action of G on M . The corresponding
prolonged infinitesimal generators for the action on the jet spaces are given by the
well-known prolongation formula

pr vσ =
p∑

i=1

ξ i
σ (x, u)

∂

∂xi
+

q∑

α=1

∑

#J≥0

ϕα
J,σ (x, u(n))

∂

∂uα
J

, (50)

whose coefficients are readily calculated:

ϕα
J = DJ

[

ϕα −
p∑

i=1

ξ i uα
i

]

+
p∑

i=1

ξ i uα
J,i , (51)

where DJ = D j1 · . . . · D jk , with J = ( j1, . . . , jk), 1 ≤ jν ≤ p, denotes the corre-
sponding higher order total derivative.

The general recurrence formula for differential invariants15 can be then formulated
as follows. Let F(z(n)) be any differential function. Then

ι(Di F) = Di ι(F) −
r∑

σ =1

K σ
i ι

[
pr vσ (F)

]
, i = 1, . . . , p, (52)

where16 K σ
i are certain differential invariants known as the Maurer–Cartan invari-

ants. (Our earlier equations (26), (27) are both special cases of (52), in which F = uk

and x , respectively.) In particular, if we take F to be one of the cross-section coor-
dinates, then its invariantization is a constant phantom invariant, and hence the first
term on the hand side of (52) is zero. Thus, fixing 1 ≤ i ≤ p, and then succes-
sively substituting the r cross-section coordinates into (52) produces a system of
r = dim G linear equations which, according to [1], can be uniquely solved for the
Maurer–Cartan invariants K 1

i , . . . , K r
i as rational functions of the normalized differ-

ential invariants. Substituting these expressions, for all i = 1, . . . , p, into (52), where
now F is taken to be successive non-normalized jet coordinates, produces the full
system of recurrence relations that completely specifies the structure of the ratio-
nal, non-commutative differential invariant algebra and, in particular, leads to the
desired formulae for the Taylor coefficients as invariant derivatives of the generating
differential invariants.

15This is a special case of the more general recurrence formula for differential forms, [1, 24].
16Now we have made the group index σ on the Maurer–Cartan invariants a superscript.
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Let us illustrate the procedure with two further examples.

Example 4 Consider the r = 6 – dimensional Euclidean group SE(3) acting by rigid
motions on space curves C ⊂ M = R

3. Here the submanifolds have dimension
p = 1, and we use coordinates z = (x, u, v) on M . As usual, we concentrate on
curves given by the graphs of functions: u = u(x), v = v(x), although all our results
can be readily adapted to general parametrized curves z(t) = ( x(t), u(t), v(t) )T .
Indeed, the recurrence formulae and consequent relations among differential invari-
ants make no reference as to how the curve is parametrized. On the other hand, when
writing out explicit formulas for the differential invariants, we use

zt =
⎛

⎝
xt

ut

vt

⎞

⎠ =
⎛

⎝
1
ux

vx

⎞

⎠ , ztt =
⎛

⎝
xtt

utt

vtt

⎞

⎠ =
⎛

⎝
0

uxx

vxx

⎞

⎠ , zttt =
⎛

⎝
xttt

uttt

vttt

⎞

⎠ =
⎛

⎝
0

uxxx

vxxx

⎞

⎠ ,

(53)
and so on, to denote the derivative vectors along the curve, where the second expres-
sion can be used in the special case of a graph, parametrized by t = x .

A basis for the infinitesimal generators is provided by the vector fields

v1 = ∂x , v2 = ∂u, v3 = ∂v,

v4 = v ∂u − u ∂v, v5 = −u ∂x + x ∂u, v6 = −v ∂x + x ∂v.
(54)

Applying the prolongation formula (50), (24) leads to the corresponding prolonged
infinitesimal generators on the curve jet spaces, which are parametrized by

x, u, v, ux , vx , uxx , vxx , uxxx , . . . .

To order 3, we find

pr v1 = ∂x , pr v2 = ∂u , pr v3 = ∂v,

pr v4 = v ∂u − u ∂v + vx ∂ux − ux ∂vx + vxx ∂uxx − uxx ∂vxx + vxxx ∂uxxx − uxxx ∂vxxx + · · · ,

pr v5 = −u ∂x + x ∂u + (1 + u2x )∂ux + ux vx ∂vx + 3ux uxx ∂uxx + (uxx vx + 2ux vxx )∂vxx

+ (4ux uxxx + 3u2xx )∂uxxx + (uxxx vx + 3uxx vxx + 3ux vxxx )∂vxxx + · · · ,

pr v6 = −v ∂x + x ∂v + ux vx ∂ux + (1 + v2x )∂vx + (2uxx vx + ux vxx )∂uxx + 3vx vxx ∂vxx

+ (3uxxx vx + 3uxx vxx + ux vxxx )∂uxxx + (4vx vxxx + 3v2xx )∂vxxx + · · · .

(55)

The classical moving frame, [15], relies on the normalization equations

x = 0, u = 0, v = 0, ux = 0, vx = 0, vxx = 0, (56)

which serve to define a coordinate cross-section provided uxx �= 0. (Indeed, the
classical moving frame is not defined at inflection points of the space curve.) This
corresponds to translating and rotating the curve into the Euclidean normal form so
that it goes through the origin, has tangent in the direction of the x-axis, and second
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order contact with the x, u plane. For this particular cross-section, the translational
component of the left moving frame is the point on the curve, z = (x, u, v) ∈ C ,
while the columns of the rotational component R = [ t,n,b ] ∈ SO(3) are the usual
orthonormal tangent, normal, and binormal frame vectors based at z. However, keep
in mind that these explicit identifications are not required to generate the recurrence
formulae for the differential invariants.

We let
H = ι(x), Ik = ι(uk), Jk = ι(vk), (57)

be the normalized differential invariants resulting from invariantization, so that, in
view of (56), the phantom invariants are

H = ι(x) = 0, I0 = ι(u) = 0, J0 = ι(v) = 0,
I1 = ι(ux ) = 0, J1 = ι(vx ) = 0, J2 = ι(vxx ) = 0.

(58)

One can further identify

I2 = ι(uxx ) = κ, J3 = ι(vxxx ) = κ τ (59)

with, respectively, the classical curvature invariant,17 and the product of curvature
and torsion. These two invariants generate the differential invariant algebra through
invariant differentiation with respect to arc length, and the recurrence formulae allow
one to express the normalized invariants Ik, Jk in terms of curvature, torsion, and
their successive arc-length derivatives: κ, τ, κs, τs, . . . .

We note the classical formulas

ds = ‖ zt ‖ dt =
√
1 + u2

x + v2x dx,

κ = ‖ zt × ztt ‖
‖ zt ‖3 =

√
(ux vxx − uxx vx )2 + u2

xx + v2xx

(1 + u2
x + v2x )

3/2
,

τ = zt × ztt · zttt

‖ zt × ztt ‖2 = uxx vxxx − uxxx vxx

(ux vxx − uxx vx )2 + u2
xx + v2xx

,

(60)

which can be obtained by fully implementing the moving frame construction, [25].
The first expression is valid for arbitrary parametrized curves, and the second is for
graphs. However, we emphasize that these explicit formulas are not required for
us to determine the recurrence formulas, and hence the Taylor coefficients of the
Euclidean normal form of a space curve.

17As in the planar version, there is an ambiguous sign resulting from a 180◦ rotation, and one
usually sets κ = | I2 | to ensure full invariance. To avoid minor technicalities, we shall ignore this
extra complication here, and refer the reader to [16] for further details.
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In this example, the recurrence formulae (52) have the form

ι(Dx F) = D ι(F) −
6∑

σ =1

Kσ ι(pr vσ (F)), (61)

for any differential function F(x, u, v, ux , vx , uxx , . . .), where K1, . . . , K6 are the
Maurer–Cartan invariants. Taking F in (61) to be, in turn, each of the cross-section
jet coordinates x, u, v, ux , vx , vxx that define the phantom invariants (58) leads, via
(55), to the linear system

1 = DH − K1 = − K1, 0 = I1 = D I0 − K2 = − K2,

I2 = D I1 − K5 = − K5, 0 = J1 = D J0 − K3 = − K3,

0 = J2 = D J1 − K6 = − K6, J3 = D J2 − I2K4 = − I2K4,

which can be immediately solved for the Maurer–Cartan invariants:

K1 = −1, K2 = 0, K3 = 0, K4 = − J3/I2 = −τ, K5 = − I2 = −κ, K6 = 0.

Substituting these expressions into (61) and letting F range over the other jet coor-
dinates produces the non-phantom recurrence formulae

I3 = D I2,
I4 = D I3 + 3 I 32 − J 2

3 /I2, J4 = D J3 + I3 J3/I2,
I5 = D I4 + 10 I 22 I3 − J3 J4/I2, J5 = D J4 + 6 I 22 J3 − J3 I4/I2,

(62)

and so on. Starting with (59), and successively substituting into (62), we find

I2 = κ,

I3 = κs, J3 = κ τ,

I4 = κss + 3κ3 − κ τ 2, J4 = κ τs + 2κs τ,

I5 = κssss − 3κ τ τs − 3κs τ 2 + 19κ2κs, J5 = κ τss + 3κs τs + 3κss τ

− κ τ 3 + 9κ3τ.

(63)
This implies that the Euclidean normal form of a space curve has Taylor expansion

u0(x) = 1
2 κ x2+ 1

6 κs x3 + 1
24 (κss + 3κ3 − κ τ 2) x4+

+ 1
120 (κssss − 3κ τ τs − 3κs τ 2 + 19κ2κs) x5 + · · · ,

v0(x) = 1
6 κ τ x3+ 1

24 (2τκs + κτs) x4+
+ 1

120 (κ τss + 3κs τs + 3κss τ − κ τ 3 + 9κ3τ) x5 + · · · .

(64)

Observe that if τ ≡ 0, so that the curve is planar, then the first equation in (64)
reduces to the planar normal form (33).
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Example 5 Finally, we treat the action of the Euclidean group SE(3) on two-
dimensional surfaces S ⊂ M = R

3. Now p = 2, and we use coordinates z =
(x, y, u) on M . As usual, we focus our attention to surfaces given by the graphs of
functions: u = u(x, y). All our results can be readily adapted to general parametrized
surfaces, and, as always, the final recurrence formulae make no reference to the
underlying parametrization. We refer to [21, 24] for additional details. The surface
jet space has coordinates

(x, y, u, ux , uy, uxx , uxy, uyy, uxxx , uxxy, uxyy, uyyy, . . .),

and, in general, we use u jk to denote the jet coordinate corresponding to the partial
derivative ∂ j+ku/∂x j∂yk .

The classical moving frame construction, [15], relies on the coordinate cross-
section

x = y = u = ux = uy = uxy = 0. (65)

The corresponding phantom invariants are

ι(x) = 0, ι(y) = 0, I00 = ι(u) = 0,
I10 = ι(ux ) = 0, I01 = ι(uy) = 0, I11 = ι(uxy) = 0,

(66)

where, in general, we denote the normalized differential invariants by

I jk = ι(u jk), j, k ≥ 0.

The fundamental differential invariants of lowest order are the principal curvatures

κ1 = I20 = ι(uxx ), κ2 = I02 = ι(uyy), (67)

and it can be shown — through inspection of the recurrence formulae — that they
generate the algebra of differential invariants via invariant differentiation. Surpris-
ingly, as explained below, they do not form a minimal generating set.

The selected cross-section (65) corresponds to translating and rotating the surface
so that it acquires the Euclidean normal form by passing through the origin, having
horizontal tangent plane, and so that the directions of principal curvature line up
with the coordinate axes. This requires that the point z ∈ S be non-umbilic, meaning
that the two principal curvatures are unequal, κ1 �= κ2, which is the standard non-
degeneracy condition required for the existence of a well-defined Euclidean moving
frame, [15]. (At a non-degenerate umbilic, one could, in principle, employ a higher
order moving frame.) The mean and Gaussian curvature invariants

H = 1
2 (κ1 + κ2), K = κ1κ2, (68)
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are often used as convenient alternatives to the principal curvature invariants, since
they eliminate some of the residual discrete ambiguities in the moving frame. The
resulting left moving frame consists of the point on the curve defining the translation
component a = z ∈ R

3, while the columns of the rotation matrix R = [ t1, t2,n ] ∈
SO(3) contain the unit tangent vectors t1, t2 forming the Darboux frame on the
surface, [15], along with the unit normal n.

Higher order differential invariants are obtained by differentiation with respect to
the diagonalizing dual Darboux coframe � 1 = ι(dx),� 2 = ι(dy). We let D1,D2

denote the dual invariant differential operators, which differentiate in the principal
curvature directions, and defined so that the differential of any differential function
F can be written in invariant form

d F = (D1F)� 1 + (D2F)� 2. (69)

The invariant differential operators do not commute, but, rather satisfy the commu-
tation relation

[
D1,D2

] = D1 D2 − D2 D1 = Y2 D1 − Y1 D2, (70)

where
Y1 = κ2,1

κ1 − κ2
, Y2 = κ1,2

κ2 − κ1
, (71)

are known as the commutator invariants, whose expressions can also be established
using the fullmoving frame calculus, [24]. Note that the denominator in (71) vanishes
at umbilic points on the surface, where the principal curvatures coincide κ1 = κ2,
and the moving frame is not valid.

Setting F to be, successively, x, y, u jk in the general formulae (52) produces the
recurrence relations

1 = −
6∑

σ =1

K σ
1 ι(ξσ ), 0 = −

6∑

σ =1

K σ
1 ι(ησ ), I j+1,k = D1 I jk −

6∑

σ =1

K σ
1 ι(ϕ jk

σ ),

0 = −
6∑

σ =1

K σ
2 ι(ξσ ), 1 = −

6∑

σ =1

K σ
2 ι(ησ ), I j,k+1 = D2 I jk −

6∑

σ =1

K σ
2 ι(ϕ jk

σ ),

(72)
for j, k ≥ 0, where K σ

1 , K σ
2 are the Maurer–Cartan invariants, while ξσ , ησ , ϕ

jk
σ are,

respectively, the coefficients of ∂x , ∂y, ∂u jk in the prolonged infinitesimal generators,
which are calculated via (51):

pr v1 =∂x , pr v2 = ∂y , pr v3 = ∂u ,

pr v4 = − y ∂x + x ∂y − uy∂ux + ux ∂uy

− 2uxy∂uxx + (uxx − uyy)∂uxy − 2uxy∂uyy + · · · ,

pr v5 = − u ∂x + x ∂u + (1 + u2x )∂ux + ux uy∂uy (73)

+ 3ux uxx ∂uxx + (uy uxx + 2ux uxy)∂uxy + (2uy uxy + ux uyy)∂uyy + · · · ,
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pr v6 = − u ∂y + y ∂u + ux uy∂ux + (1 + u2y)∂uy

+ (uy uxx + 2ux uxy)∂uxx + (2uy uxy + ux uyy)∂uxy + 3uy uyy∂uyy + · · · .

Substituting (73) into the recurrence formulae (72) corresponding to the phantom
invariants (58), and solving the resulting linear systems produces the formulae for
the Maurer–Cartan invariants

K 1
1 = −1, K 2

1 = 0, K 3
1 = 0, K 4

1 = −Y1, K 5
1 = −κ1, K 6

1 = 0,

K 1
2 = 0, K 2

2 = −1, K 3
2 = 0, K 4

2 = −Y2, K 5
2 = 0, K 6

2 = −κ2.

(74)
Substituting these expressions back into (72), we successively obtain the desired for-
mulae for the higher order normalized differential invariants in terms of the principal
curvatures, of which the third order ones are

I30 =D1κ1 = κ1,1, I21 =D2κ1 = κ1,2, I12 = D1κ2 = κ2,1, I03 = D2κ2 = κ2,2,

(75)
while, taking these into account, the fourth order recurrence relations yield

I40 = κ1,11 − 3κ2
1,2

κ1 − κ2
+ 3κ3

1 ,

I31 = κ1,12 − 3κ1,2κ2,1
κ1 − κ2

= κ1,21 + κ1,1κ1,2 − 2κ1,2κ2,1
κ1 − κ2

,

I22 = κ1,22 + κ1,1κ2,1 − 2κ2
2,1

κ1 − κ2
+ κ1κ

2
2 = κ2,11 − κ1,2κ2,2 − 2κ2

1,2
κ1 − κ2

+ κ2
1κ2, (76)

I13 = κ2,21 + 3κ1,2κ2,1
κ1 − κ2

= κ2,12 − κ2,1κ2,2 − 2κ1,2κ2,1
κ1 − κ2

,

I04 = κ2,22 + 3κ2
2,1

κ1 − κ2
+ 3κ3

2 .

There are two distinct formulae for I31, I22, I13 because they appear in both the first
and second set of recurrence formulae in (72). The two expressions for I31 and I13
agree owing to the non-commutativity, (70), of D1,D2, while the two expressions
for I22 imply the celebrated Codazzi syzygy

κ1,22 − κ2,11 + κ1,1 κ2,1 + κ1,2 κ2,2 − 2κ2
2,1 − 2κ2

1,2

κ1 − κ2
− κ1 κ2 (κ1 − κ2) = 0, (77)

which can be written compactly as

K = κ1κ2 = − (D1 + Y1)Y1 − (D2 + Y2)Y2. (78)

The latter is the key identity employed by Guggenheimer, [15], for a short proof
of Gauss’ Theorema Egregium. We conclude that the Euclidean normal form of a
surface z = u(x, y) at a non-umbilic point is
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u(x, y) = 1
2 κ1 x2 + 1

2 κ2 y2 + 1
6 κ1,1 x3 + 1

2 κ1,2 x2y + 1
2 κ2,1 x y2 + 1

6 κ2,2 y3

+ 1
24 I40 x4 + 1

6 I31 x3y + 1
4 I22 x2y2 + 1

6 I13 x y3 + 1
24 I04 y4 + · · · ,

(79)

where the fourth order coefficients appear in (76). Higher order terms can easily and
automatically be determined using the recurrence formulae.

It is a classical result that the algebra of Euclidean differential invariants of a
non-umbilic surface S ⊂ R

3 is generated, through invariant differentiation, by the
principal curvatures or, equivalently, the Gauss and mean curvatures; see [15] and,
for a direct proof based on the moving frame recurrence relations, [24]. Surprisingly,
as noted in [21], for suitably nondegenerate surfaces, the mean curvature by itself
suffices to generate all the differential invariants. In particular, the Gauss curvature K
can bewritten as an explicit universal rational combination of the invariant derivatives
of the mean curvature H of order ≤ 4. Here we go slightly further by completely
characterizing the nondegeneracy condition found in [21].

Definition 6 Asurface S ⊂ R
3 ismean curvature degenerate if, for any non-umbilic

point z0 ∈ S, there exist scalar functions f1(t), f2(t), such that

D1H = f1(H), D2H = f2(H), (80)

at all points z ∈ S in a suitable neighborhood of z0.

Clearly any constant mean curvature surface—including any minimal surface—
is mean curvature degenerate, with f1(t) ≡ f2(t) ≡ 0. Surfaces with non-constant
mean curvature that admit a one-parameter group of Euclidean symmetries, i.e., non-
cylindrical or non-spherical surfaces of rotation, non-planar surfaces of translation,
or helicoid surfaces, obtained by, respectively, rotating, translating, or screwing a
plane curve, are also mean curvature degenerate since, by the signature character-
ization of symmetry groups, [1], they have exactly one non-constant functionally
independent differential invariant, namely their mean curvature H and hence any
other differential invariant, including the invariant derivatives of H—as well as the
Gauss curvature K—must be functionally dependent upon H . There also exist sur-
faces without continuous symmetries that are, nevertheless, mean curvature degen-
erate since it is entirely possible that (80) holds, but the Gauss curvature remains
functionally independent of H . However, I do not know whether there is a good
intrinsic geometric characterization of such surfaces.

Theorem 7 If a surface is mean curvature nondegenerate then the algebra of dif-
ferential invariants is generated entirely by the mean curvature and its successive
invariant derivatives.

Proof Following the arguments in [21], in view of the Codazzi formula (78), it
suffices to write the commutator invariants Y1, Y2 in terms of the mean curvature. To
this end, we note that the commutator identity (70) can be applied to any differential
invariant. In particular,
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D1D2H − D2D1H = Y2 D1H − Y1 D2H, (81)

and, furthermore, for j = 1 or 2,

D1D2D j H − D2D1D j H = Y2 D1D j H − Y1 D2D j H. (82)

Provided the nondegeneracy condition

(D1H)(D2D j H) �= (D2H)(D1D j H), for j = 1 or 2, (83)

holds, we can solve (81), (82) to write the commutator invariants Y1, Y2 as explicit
rational functions of invariant derivatives of H . Plugging these expressions into the
right hand side of theCodazzi identity (78) produces an explicit formula for theGauss
curvature as a rational function of the invariant derivatives, of order≤ 4, of the mean
curvature, which is valid for all surfaces satisfying the nondegeneracy condition (83).

Thus it remains to show that (83) is equivalent to mean curvature nondegeneracy
of the surface. First, if (80) holds, then

DiD j H = Di f j (H) = f ′
j (H)Di H = f ′

j (H) fi (H), i, j = 1, 2.

This immediately implies

(D1H)(D2D j H) = (D2H)(D1D j H), j = 1, 2, (84)

proving mean curvature degeneracy. Vice versa, in view of (69), the degeneracy
condition (84) implies that, for each j = 1, 2, the differentials d H, d(D j H) are
linearly dependent everywhere on S, which, by a general theorem characterizing
functional dependency, [6, Theorem2.16], implies that, locally,D j H can be written
as a function of H , thus establishing the degeneracy condition (80). Q.E.D.
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