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Preface

This book consists of the selected, peer-reviewed, and revised papers from the III.
International Conference on Symmetries, Differential Equations and
Applications (SDEA-III, www.sdea3.org), which was held from August 14 to 17,
2017, in İstanbul Technical University, İstanbul, Turkey.

The first SDEA-I was held in Johannesburg, South Africa, in 2012, dedicated to
the Bicentenary of Evariste Galois. The second SDEA-II was held in İslamabad,
Pakistan, in 2014, dedicated to James Clerk Maxwell’s Theory of Electromagnetism.

SDEA-III was the third conference in the series and dedicated to the Centenary
of Noether’s Theorem proven by the prominent German mathematician Emmy
Noether. The main aim of the conference was to concentrate on many of the recent
important advances in the applications of Lie groups, including a wide area of
topics in interdisciplinary studies ranging from mathematical physics to financial
mathematics. The topics discussed in SDEA-III included Lie theory and symmetry
methods in differential equations, Lie algebras and Lie pseudogroups, super-
symmetry and super-integrability, representation theory of Lie algebras, classifi-
cation problems, conservation laws, and geometrical methods.

We are convinced that SDEA-III was a very successful conference that provided
a productive forum for academic researchers, both junior and senior, and students to
discuss and share the latest developments in the theory and applications of Lie
symmetry groups. The conference included 18 parallel sessions with 76 presenta-
tions, and 66 speakers, which included the 13 invited speakers listed below, from
16 different countries, as well as 17 poster representations during the 4 days it ran.

The invited speakers of SDEA-III were Prof. Mohammad Akbar (University of
Texas at Dallas, USA), Prof. Alexei Cheviakov (University of Saskatchewan,
Canada), Prof. Metin Gürses (Bilkent University, Turkey), Prof. Victor G. Kac
(MIT, USA), Prof. Varga Kalantarov (Koç University, Turkey), Prof. Masood
Khalique (North-West University, South Africa), Prof. Sergey Meleshko (Suranaree
University of Technology, Thailand), Prof. Maria Concepcion Muriel (University of
Cádiz, Spain), Prof. Maria Clara Nucci (University of Perugia, Italy), Prof. Peter J.
Olver (University of Minnesota, USA), Prof. Kamal Soltanov (Hacettepe University,

v
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Turkey), Prof. Greg Reid (University of Western Ontario, Canada), and Prof.
Alexandre Vinogradov (Levi-Civita Institute, Italy).

The conference sponsors were İstanbul Metropolitan Municipality, Sarıyer
Municipality, İstanbul Technical University, International Mathematical Union,
Turkish Airlines, and The Scientific and Technological Research Council of
Turkey. SDEA-III was organized in cooperation with SIAM, the Society for
Industrial and Applied Mathematics.

As the editors, we personally wish to express our gratitude to the authors of the
papers in this book, and to all participants for their contributions in this conference.
We hope you will enjoy reading it and find its contributions of interest.

Cambridge, USA Victor G. Kac
Minneapolis, USA Peter J. Olver
İstanbul, Turkey Teoman Özer
Montréal, Canada Pavel Winternitz
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Normal Forms for Submanifolds Under
Group Actions

Peter J. Olver

Abstract We describe computational algorithms for constructing the explicit power
series expansions for normal forms of submanifolds under transformation groups.
The procedure used to derive the coefficients relies on the recurrence formulae for
differential invariants provided by the method of equivariant moving frames.

Keywords Lie group · Submanifold · Normal form · Moving frame · Differential
invariant · Curvature · Recurrence formula · Invariantization

1 Introduction

The equivariant method of moving frames, introduced in [1], provides a powerful
computational tool for investigating the equivalence and symmetry properties of sub-
manifolds under general Lie group actions (and,more generally, infinite-dimensional
Lie pseudo-groups, [2, 3]), and determining the required differential invariants. The
main new tool is the recurrence relations, which completely prescribe the structure
of the non-commutative differential algebra they generate through the process of
invariant differentiation. Remarkably, these relations and the consequent differential
algebraic structure can be completely and straightforwardly constructed, requiring
only basic linear algebra, and can thus be readily implemented in any modern com-
puter algebra system, including Mathematica, Maple, and Sage.

A simple example is provided by the Euclidean geometry of space curvesC ⊂ R
3,

under the action of the group of rigid motions — translations and rotations. The
fundamental differential invariants are the curvature and torsion of the space curve,
and the invariant differential operator is differentiation with respect to arc length. As
a consequence, every Euclidean differential invariant can be expressed as a function
of curvature, torsion, and their successive arc-length derivatives.

P. J. Olver (B)
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
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2 P. J. Olver

The normalization procedure underlying the construction of a moving frame is
equivalent to the specification of a “normal form” for submanifolds under the group
action. Roughly, to construct a normal form, one uses the group transformations to
simplify, as much as possible, the Taylor expansion of the submanifold at a given
point. The result will be called a normal form for the submanifold at the point,
also known as the Monge or Monge–Taylor form, [4, 5]. As we note below, this
simplification is exactly the same as the choice of cross-section to the prolonged
group orbits, which is the first step in the equivariant moving frame construction.
Once a normal form has been specified, the non-constant coefficients in the resulting
Taylor series expansion form a complete system of differential invariants, known, in
the equivariant approach, as the fundamental normalized differential invariants.

The purpose of the present note is to explain, in simplified form, the moving
frame algorithms and recurrence formulae, and how they can be used to construct
the normal form expansion of a submanifold in terms of the fundamental differen-
tial invariants and their invariant derivatives. While direct calculations can be very
tedious, if not impossible due to the limitations of current computer algebra software
and hardware, the recurrence formulae provide a simple, straightforward route to the
desired formulae. In this paper, we describe this calculus, first in the simplest context
of plane curves, and then for general submanifolds under Lie group actions. The
results are illustrated by a few basic examples of geometric and imaging importance.

2 Plane Curves

For simplicity, we first describe the normal form construction in the its most basic
manifestation: plane curves under “ordinary” group actions. The general version can
be found below in Sect. 3.

Throughout this section, C ⊂ M = R
2 will denote a regular, smooth1 (C∞) plane

curve. We use z = (x, u) as local coordinates on M , and t ∈ I ⊂ R as a curve
parameter, so that C is the image of the function z(t) = (x(t), u(t)) for t in the
interval I . Regularity requires that the curve’s tangent vector is nowhere vanishing2:
dz/dt = (xt , ut ) �= 0. We will identify parametrizations that have identical image
curves, meaning that we allow reparametrization, including those that reverse ori-
entation. In particular, the curve is a graph if it is parametrized by the horizontal
coordinate x , so that z(x) = (x, u(x)) for x ∈ I ⊂ R. Locally, in a neighborhood of
z0 = (x0, u0) ∈ C , a curve can be parametrized uniquely as a graph if and only if it
intersects the vertical fiber

{
x = x0

}
transversally, meaning that its tangent vector

at z0 is not vertical, i.e., xt �= 0 there.

1One can apply the construction to curves of class Cn provided n is sufficiently large that all
derivatives indicated are continuous.
2Subscripts on dependent variables indicate derivatives.
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Given a graph defined by the function u(x), we will identify its Taylor polynomial
of order n at a point z0 = (x0, u0) = (x0, u(x0)) ∈ C , namely,3

u(x0) + ux (x0) (x − x0) + 1

2
uxx (x0) (x − x0)

2 + · · · + 1

n ! un(x0) (x − x0)
n,

with the nth order jet of the curve at the point z0. Note that the n jet is uniquely
prescribed by the derivatives of order ≤ n at the point in question. Thus, the space
of nth order transverse4 curve jets, denoted Jn , can be identified with R

n+2, with
coordinates

z(n) = (x, u, ux , uxx , . . . , un). (1)

The n-jet of the graph C = {(x, u(x))} at the point z0 = (x0, u(x0)) ∈ C is thereby
identified with the (n + 2)–tuple

jnC |z0 = (
x0, u(x0), ux (x0), uxx (x0), . . . , un(x0)

) ∈ Jn. (2)

One can straightforwardly derive, via implicit differentiation, expressions for the
curve jet components (2) in terms of a general parametrization z(t) = (x(t), u(t)),
writing the nth order jet coordinate un as an explicit rational function of the deriva-
tives, of order ≤ n, of x(t), u(t). For example,

ux = Dx u = ut

xt
, uxx = Dx ux = 1

xt
Dt

(
ut

xt

)
= xt utt − ut xtt

x3
t

· · · , (3)

with the higher order expressions obtained by iteratively applying the implicit total
derivative operator

Dx = 1

xt
Dt . (4)

By a differential function, we mean a (locally defined) real-valued function on the
jet space, F : Jn → R, and so, in coordinates, taking form

F(z(n)) = F(x, u, ux , uxx , . . . , un).

To us, the most important differential functions are the differential invariants, e.g.,
curvature, torsion, and the like. Note that one can use the parametric differentia-
tion formulae (3) to re-express any differential function in terms of a general curve
parametrization.

Let G be an r -dimensional Lie group acting on M = R
2. There is an induced

action of G on curves, with g ∈ G mapping the curve C parametrized by z(t) to
the image curve C̃ = g · C parametrized by z̃(t) = g · z(t). Two curves C, C̃ ⊂ M
are said to be equivalent if there exists a group element g ∈ G such that C̃ = g · C .

3In this section, un represents the nth order derivative of u with respect to x .
4See [6] for the extended jet bundle construction, that includes non-transverse curves.
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Again, we allow reparametrization in our identification of curves. In practice, we
are primarily interested in local equivalence, in the neighborhood of corresponding
points on the two curves.

The action of G on curves induces an action on their jets. In other words, given a
jet z(n)

0 ∈ Jn|z0 , let C be any transverse curve whose jet at z0 ∈ C coincides with z(n)
0

at the point z0 ∈ C . Then g · z(n)
0 is equal to the n-jet of the image curve C̃ = g · C

at the image point z̃0 = g · z0. If the image curve is not transverse, the action is not
defined in the ordinary jet space (although it is defined on the extended jet bundle,
cf. [6]), meaning that the prolonged group action on Jn is, in general, only a local
action even if the action on M is global. The explicit formulae for the prolonged
action of a transformation group are obtained by implicit differentiation, [1, 6].

A differential invariant of order n is a differential function I (z(n)) that is unaf-
fected by the prolonged group action, i.e., I (g · z(n)) = I (z(n)) for all g ∈ G and all
z(n) ∈ Jn , where defined. Clearly, equivalent curves have identical differential invari-
ants, although, of course, their explicit formulae in terms of the curves’ individual
parametrizations may vary. The Cartan solution to the equivalence problem, [7], is
based on the functional identities, or syzygies, among the differential invariantswhich
are used to parametrize the associated signature. (In the case of curves in Euclidean
space, the signature curve was introduced earlier by Bruce and Giblin, [4], under the
name “Monge-Taylor map”.) See, for example, [8–13] for various applications of
the differential invariant signature to object recognition in digital images.

In its simplest incarnation, a cross-section to the prolonged group action is a fixed
jet z(n)

0 ∈ Jn with the property that for any (nearby) curve C and point z ∈ C there is
a unique group element g ∈ G such that

g · (
jnC |z

) = jn(g · C)|z0 = z(n)
0 , (5)

meaning that the group element maps the curve jet at z to the fixed cross-section jet.
In particular g · z = z0. A straightforward chain rule argument demonstrates that the
group element satisfying (5) depends only of the n-jet z(n) = jnC |z of the curve at
the point z. In view of uniqueness, we write g = ρ(z(n)), whereby (5) is equivalent
to the equation

ρ(z(n)) · z(n) = z(n)
0 . (6)

In the language of [1], the map5 ρ : Jn → G defines a (right) moving frame of order
n, and, as can be easily proved, satisfies the right equivariance rule

ρ(g · z(n)) = ρ(z(n)) · g−1, (7)

where the dot on the left hand side indicates the prolonged group action on Jn , while
the dot on the right hand side represents groupmultiplication. Occasionally, formulae
are more simply written in terms of the corresponding left equivariant moving frame,
which is merely the group inverse of the right moving frame:

5Typically ρ is only defined on an open subset of the jet space.
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ρ̃(z(n)) = ρ(z(n))−1, satisfying the left equivariance rule ρ̃(g · z(n)) = g · ρ̃(z(n)),

(8)
and mapping the normal form jet to the curve jet: ρ̃(z(n)) · z(n)

0 = z(n).
Given a choice of cross-section, a curve C0 is said to be in normal form if z0 ∈ C0

and its n-jet at z0 coincides with the fixed cross-section jet: jnC0|z0 = z(n)
0 . Thus,

given
z(n)
0 = (x0, u0 = c0, c1, . . . , cn),

any normal form curve, parametrized as the graph of the function u0(x), has Taylor
expansion

u0(x) = c0 + c1 (x − x0) + 1

2
c2 (x − x0)

2 + · · · + 1

n ! cn (x − x0)
n

+ 1

(n + 1) ! un+1(x0) (x − x0)
n+1 + 1

(n + 2) ! un+2(x0) (x − x0)
n+2 + · · · ,

(9)

at x = x0, whose first n + 1 coefficients are fixed by the choice of cross-section jet,
whereas the values of those of order ≥ n + 1 depend upon the particularities of the
curve C0.

Remark: Existence of a cross-section of the above type is equivalent to the transi-
tivity and freeness6 of the prolonged group action on an open subset of Jn . If the Lie
group G has dimension r , then this requires n = r − 2. A planar group action that
admits a cross-section in the above sense is known as ordinary, [7]. The only non-
ordinary group actions on R2 are intransitive actions and those whose prolongations
exhibit pseudo-stabilization, meaning that they act intransitively but not freely on
some jet space. All “standard” transitive group actions arising in geometry and image
processing are ordinary. Moreover, non-ordinary actions can be readily handled by
the general moving frame construction described in the following section.

Applying the moving frame group element g = ρ(z(n)) to the curve C produces
the normal form curve C0 = g · C = ρ(z(n)) · C associated with the point z ∈ C ,
that satisfies the normal form constraint jnC0 = z(n)

0 . Clearly, two curves are locally
equivalent if and only if they have identical normal forms at the matching points.
Consequently, each Taylor coefficient of the normal form curve at the point z0, when
expressed as a function of the original curve jet, defines a differential invariant. In
other words, for any k,

z(k)
0 = jkC0|z0 = jk

(
ρ(z(n)) · C

)|z0 = ρ(z(n)) · (
jkC |z

) = ρ(z(n)) · z(k) = I (k)(z(k)),

(10)

defines a vector-valued differential invariant: I (k)(g · z(k)) = I (k)(z(k)) for all g ∈ G
where defined,whose individual components provide k + 2 scalar-valued differential
invariants7:

6The action of G is free at z(n) ∈ Jn if the only group element that fixes z(n) is the identity, i.e.,
g · z(n) = z(n) if and only if g = e.
7When k ≤ n, then I (k) = (

x0, c0, c1, . . . , ck
)
is constant.
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I (k)(z(k)) = (
H(z(k)), I0(z

(k)), I1(z
(k)), . . . , Ik(z

(k))
)

= (
x0, c0, c1, . . . , cn, In+1(z

(n+1)), . . . , Ik(z
(k))

)
.

(11)

As a result, the normal form Taylor expansion (9) is

u0(x) = c0 + c1 (x − x0) + 1

2
c2 (x − x0)

2 + · · · + 1

n ! cn (x − x0)
n+

+ 1

(n + 1) ! In+1(z
(n+1)) (x − x0)

n+1 + · · · + 1

k ! Ik (z(k)) (x − x0)
k + · · · ,

(12)

We will call I j (z( j)) the j th order normalized differential invariant; note that its
value is independent of the choice of k ≥ j in (11); indeed, it would be convenient
to set k = ∞ and work with Taylor series (infinite jets) throughout. Of course, the
first n + 2 of these, H, I0, . . . , In , are constant, since they equal the corresponding
Taylor coefficient (11) of the cross-section jet: I j (z(n)) = c j .

According to [1], the non-phantom or fundamental normalized differential invari-
ants of order > n, namely In+1(z(n+1)), In+2(z(n+2)), . . . , form a complete system
of differential invariants for the action of G on curves, meaning that, locally, any
other differential invariant can be written, uniquely, as a function thereof. Indeed,
the Replacement Rule states that if J (z(k)) = J (x, u, ux , . . . , uk) is any differential
invariant of order8 k > n, then, replacing each of its arguments by the corresponding
normalized invariant,

J (z(k)) = J
(

x0, c0, . . . , cn, In+1(z
(n+1)), . . . , Ik(z

(k))
)

(13)

gives an explicit formula for J in terms of the fundamental normalized invariants.
In symbolic computation terminology, [14], (13) is a rewrite rule expressing any
differential invariant in terms of the fundamental generators.

Further, the moving frame map induces a process of invariantization, denoted
by ι, that associates a differential invariant with any differential function. Namely, if
F(z(k)) is any functionof the curve jets, then its invariantization J (z(k)) = ι

[
F(z(k))

]

is the unique differential invariant that agrees with the value of F on the normal form
prescribed by the cross-section: J (z(k)

0 ) = F(z(k)
0 ). Note that invariantization respects

all algebraic operations—but not differentiation, which is the point of the recurrence
formulae derived below. It is not hard to see that the invariantization process is readily
implemented by substituting each jet coordinate appearing in the argument of F by
the corresponding normalized differential invariant:

ι
[

F(z(k))
] = F

(
x0, c0, . . . , cn, In+1(z

(n+1)), . . . , Ik(z
(k))

)
. (14)

Furthermore, invariantization does not affect differential invariants: ι
[

J (z(k))
] =

J (z(k)) and hence, comparison with (14) immediately establishes the Replacement
Rule (13).

8Since G acts transitively on Jn , any differential invariant of order ≤ n is necessarily constant, and
still satisfies the Replacement Rule.
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Example 1 Plane curves under orientation-preserving rigid motions: In this exam-
ple,G = SE(2) is the specialEuclideangroup, consistingof translations and rotations
of R2:

x 	→ x cosφ − u sin φ + a, u 	→ x sin φ + u cosφ + b,
a, b ∈ R,

−π < φ ≤ π.

(15)

To place a plane curve in Euclidean normal form at a point z ∈ C , we first use the
translations to move the base point to the origin, x0 = u0 = 0, and then rotate the
translated curve so that its tangent is horizontal, whereby ux,0 = 0. The resulting
Euclidean normal form for a plane curve has Taylor expansion

u0(x) = 1
2 I2 x2 + 1

6 I3 x3 + 1
24 I4 x4 + · · · + 1

k ! Ik xk + · · · (16)

at the origin. Its Taylor coefficients

Ik = ι(uk), k ≥ 2, (17)

when expressed in terms of the original curve parametrization, are the fundamental
normalized differential invariants.

The preceding choice of normal form corresponds to the cross-section

x = u = ux = 0, (18)

whence the three associated phantom invariants are

ι(x) = H = 0, ι(u) = I0 = 0, ι(ux ) = I1 = 0. (19)

The resulting left moving frame9 ρ̃ : J1 → SE(2) can be identified with the classical
moving frame, [15], namely, its translation component is the point z ∈ C , while the
columns of the rotation matrix, R = [ t,n ], are the orthonormal frame vectors based
at z, that is, the unit tangent t and normal n. Furthermore, by direct computation or,
alternatively, by applying themoving frameconstruction, the lowest order normalized
differential invariant

I2 = ι(uxx ) = κ = uxx

(1 + u2
x )

3/2
(20)

turns out to be the Euclidean curvature of the curve. We defer the identification
of the higher order normalized invariants I3, I4, . . . , until we have constructed the
associated recurrence formulae.

9Typically, while the right moving frame (7) plays amore fundamental role and is easier to compute,
in classical geometries, the corresponding left moving frame (8) includes the usual frame vectors
on the submanifold, cf. [1].
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Remark: In the preceding example, there remains an unresolved discrete ambi-
guity since we can rotate by π radians without affecting the cross-section (18). The
effect is to map u0(x) to −u0(− x), and hence change the sign of the even order nor-
malized invariants, I2 j 	→ − I2 j , so that, in particular, the curvature invariant changes
sign: κ 	→ −κ . This can be avoided by either working with its absolute value or, if
one restricts attention to closed curves, by fixing the orientation. Here, to avoid
technicalities, we will ignore this final ambiguity (as is done in most treatments),
referring to [16] for the full details, including the additional effects of reflections on
the moving frame and differential invariants.

An alternative method of generating differential invariants is through invariant
differentiation. Given a transformation group acting on plane curves, we use ds to
denote the G-invariant arc-length element, or, equivalently, the invariant10 one-form
of lowest order. We remark that the invariant one-forms can also be systematically
constructed through a reasonably straightforward extension of the invariantization
process associated with the moving frame, and refer the reader to [1, 17] for details.

LetD = d/ds be the dual invariant differential operator, i.e., the arc length deriva-
tive. Invariance of the arc-length form ds implies thatD maps a differential invariant
of order k to a differential invariant of order k + 1. In particular, starting with the
(non-constant) normalized differential invariant κ = In+1 of lowest order, namely
n + 1, which we identify11 as the G-invariant curvature function, its successive arc-
length derivatives κs = Dκ, κss = D2κ, . . . , are differential invariants of respective
orders n + 2, n + 3, . . . . It is known that they also generate the algebra of differen-
tial invariants; one way of proving this assertion is by inspection of the recurrence
formulae. The Replacement Rule (13) tells us that these are all functions of the
normalized differential invariants; vice versa, it can be shown that the normalized
differential invariants are themselves certain functions of the curvature invariant and
its successive arc length derivatives. The resulting formulae

Ik = Fk(κ, κs, . . . , κk−n−1), k ≥ n + 1, (21)

enable one to express the coefficients of the normal form Taylor expansion (12) of a
curve in terms of the curvature invariant and its arc-length derivatives. Our goal is to
develop themachinery that enables one to straightforwardly compute these formulas,
and hence the explicit Taylor expansion for the normal form of a curve under a group
action.

While, in principle, knowing the explicit coordinate formulae for the curvature
invariants enables one, e.g. via the Replacement Rule (13), to express them in terms

10Strictly speaking, ds is only “contact-invariant”, meaning that it is not an invariant form on jet
space but, rather, is invariant when restricted to curve jets, or, equivalently, is invariant modulo
contact forms, [7].
11Identification of κ with a classical geometric quantity (Euclidean curvature, equi-affine curvature,
projective curvature, etc.) requires an appropriate choice of normal form. Other choices may result
in some function, e.g., a constant multiple, of the classical curvature invariant. Incidentally, the
function in question can be straightforwardly found by applying the Replacement Rule (13) to the
classical formula.
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of the normalized invariants, and hence, by inversion, determine the desired for-
mulae (21), in practice, for complicated group actions and higher order invariants,
this can be a very cumbersome and complicated procedure that can overwhelm the
abilities of even sophisticated computer algebra systems such as Mathematica,
Maple, Sage, etc. The power of the equivariant moving frame method is that it
enables one to systematically and straightforwardly derive these formulae without a
priori knowledge of the explicit formulae for any of the differential invariants, or the
invariant arc length derivative, or even the moving frame itself. All that is required is
the formulae for the prolonged infinitesimal generators of the group action, coupled
with some simple (symbolic) linear algebra!

To explain the computational algorithm, let

vσ = ξσ (x, u)
∂

∂x
+ ϕσ (x, u)

∂

∂u
, σ = 1, . . . , r, (22)

be a basis for the Lie algebra of infinitesimal generators of the action of G, which
are vector fields on M , [6]. Let

pr vσ = ξσ (x, u)
∂

∂x
+

∑

k≥0

ϕk
σ (x, u(k))

∂

∂uk
, σ = 1, . . . , r, (23)

be the corresponding infinitesimal generators of the prolonged action of G on the jet
spaces, whose coefficients are explicitly determined by the well-known prolongation
formula, [6]:

ϕk
σ (z(k)) = Dk

x

[
ϕσ (x, u) − ξσ (x, u) ux

] + ξσ (x, u) uk+1. (24)

Here

Dx = ∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ uxxx

∂

∂uxx
+ · · · (25)

is the total derivative operator, which effectively differentiates differential functions
by treating u as a function of x .

The recurrence formulae for the differentiated invariants, [1], are

Ik+1 = D Ik −
r∑

σ =1

Kσ ι
[
ϕk

σ (x, u(k))
]
, k = 0, 1, 2, . . . , (26)

where ι is the invariantization map (14) and K1, . . . , Kr are certain as yet unspecified
differential invariants known as the Maurer–Cartan invariants.12 In particular, if one

12This is because they are, in fact, the coefficients of the pull-backs of the Maurer–Cartan forms
via the moving frame map ρ : Jn → G, [1]. However, while this is essential to proving the validity
of (26), from a purely practical standpoint there is no need to know this theoretical fact, or even
understand what a “Maurer–Cartan form” is, since, as we will soon see, we can readily determine
their explicit formulae directly from the recurrence formulae themselves.
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takes 0 ≤ k ≤ n = r − 2 in (26), then Ik = ck is a constant phantom invariant, and
hence the first term on the right hand side of the recurrence formula is zero. Thus,
the result is a system of r − 1 linear equations for the r Maurer–Cartan invariants
in terms of the normalized differential invariants of order ≤ r − 1 = n + 1. These
are supplemented by the recurrence formula for the remaining phantom invariant
H = ι(x) = x0, which takes the form

1 = DH −
r∑

σ =1

Kσ ι
[
ξσ (x, u)

] = −
r∑

σ =1

Kσ ι
[
ξσ (x, u)

]
. (27)

It can be shown that the resulting system of r linear equations can be uniquely solved
for the Maurer–Cartan invariants K1, . . . , Kr , which can thus all be expressed as
certain rational functions of the curvature invariant κ = In+1. With these expressions
in hand, the resulting higher order recurrence formulae (26), for k > n, will then
iteratively provide the required formulae (21) for each Ik+1 in terms of the arc length
derivatives of κ . Let us see how this works in the context of a couple of examples.

Example 2 Return to the action of the Euclidean group on plane curves introduced
in Example 1. We use

D = Ds = 1
√
1 + u2

x

Dx (28)

to denote the invariant arc length total derivative operator.

The infinitesimal generators of the action (15) are

v1 = ∂x , v2 = ∂u, v3 = −u ∂x + x ∂u . (29)

Applying the prolongation (24), the infinitesimal generators of the prolonged action
of SE(2) on plane curves are

pr v1 = ∂x , pr v2 = ∂u,

pr v3 = −u ∂x + x ∂u + (1 + u2
x )∂ux + 3ux uxx ∂uxx + (4ux uxxx + 3u2

xx )∂uxxx +
+ (5ux uxxxx + 10uxx uxxx )∂uxxxx +
+ (6ux uxxxxx + 15uxx uxxxx + 10u2

xxx )∂uxxxxx + · · · .

(30)
Thus, the recurrence formulae (26), (27) for the three phantom invariants (19) are

1 = DH − K1 ι(1) − K2 ι(0) − K3 ι(−u) = −K1,

0 = I1 = D I0 − K1 ι(0) − K2 ι(1) − K3 ι(x) = −K2,

κ = I2 = D I1 − K1 ι(0) − K2 ι(0) − K3 ι(1 + u2
x ) = −K3,

and hence the Maurer–Cartan invariants are
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K1 = −1, K2 = 0, K3 = −κ. (31)

Using (17), (19), these values are then iteratively substituted into the higher order
recurrence formulae (26) to produce

I3 = D I2 − K3 ι(3ux uxx ) = κs,

I4 = D I3 − K3 ι(4ux uxxx + 3u2
xx ) = κss + 3κ3,

I5 = D I4 − K3 ι(5ux uxxxx + 10uxx uxxx ) = κsss + 19κ2κs,

I6 = D I5 − K3 ι(6ux uxxxxx + 15uxx uxxxx + 10u2
xxx )

= κssss + 34κ2κss + 48κ κ2
s + 45κ5,

(32)
and so on. We conclude that the explicit Taylor expansion of a curve placed in
Euclidean normal form (16) is

u0(x) = 1
2 κ x2 + 1

6 κs x3 + 1
24 (κss + 3κ3) x4 + 1

5! (κssss + 19κ2κs) x5+
+ 1

6! (κssss + 34κ2κss + 48κ κ2
s + 45κ5) x6 + · · · .

(33)

Higher order terms can be systematically constructed by continuing the above pro-
cedure. However, I do not know a general formula for the differential polynomials
in κ that appear as coefficients.

Example 3 A more substantial example is provided by the geometry of equi-affine
planar curves, [15], also of importance for image processing, [8]. The equi-affine
group SA(2) acts on M = R

2 via area-preserving affine transformations

g · (x, u) = (αx + βu + a, γ x + δu + b), αδ − βγ = 1. (34)

The normalization equations

x = u = ux = 0, uxx = 1, uxxx = 0, (35)

define a cross-section to the prolonged action, which leads to the classical equi-
affine moving frame. This normalization can be applied except at inflection points,
i.e., provided the nondegeneracy condition uxx �= 0 holds. (Similar nondegeneracy
conditions appear in most examples, the preceding case of Euclidean plane curves
being a notable exception. At isolated inflection points one can, in principle, use
the general moving frame procedure, to be presented in Sect. 3, to construct a higher
order moving frame.) The cross-section (35) corresponds to the following equi-affine
normal form for a non-degenerate plane curve:

u0(x) = 1
2 x2 + 1

4! I4 x4 + 1
5! I5 x5 + 1

6! I6 x6 + · · · . (36)

The fundamental differential invariant is the equi-affine curvature
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κ = I4 = ι(uxxxx ) = uxx uxxxx − 5
3 u2

xxx

u8/3
xx

, (37)

while
D = ι(Dx ) = u−1/3

xx Dx (38)

is the invariant differentiation operator with respect to equi-affine arc-length. Both
formulas (37), (38) can be straightforwardly found by a complete implementation of
the moving frame construction, but are not required to perform the ensuing compu-
tations.

Our goal is to write the higher order differential invariants

Ik = ι(uk), k ≥ 4, (39)

and hence the equi-affine normal form (36), in terms of the equi-affine curvature and
its arc-length derivatives. Applying (23), (24), the prolonged infinitesimal generators
for the equi-affine group action (34) are

v1 = ∂x ,

v2 = ∂u ,

v3 = − x ∂x + u ∂u + 2ux ∂ux + 3uxx ∂uxx + 4uxxx ∂uxxx + 5uxxxx ∂uxxxx + · · · ,

v4 = u ∂x − u2x ∂ux − 3ux uxx ∂uxx − (4ux uxxx + 3u2xx ) ∂uxxx −
− (5ux uxxxx + 10uxx uxxx ) ∂uxxxx + · · · ,

v5 = x ∂u + ∂ux .

(40)

Thus, the recurrence formulae (26), (27) for the phantom invariants coming from
invariantizing the cross-section coordinates (37) are

1 = DH − K1 = −K1, 0 = I1 = D I0 − K2 = −K2, 1 = I2 = D I1 − K5 = −K5,

0 = I3 = D I2 − 3K3 = −3K3, κ = I4 = D I3 + 3K4 = 3K4,

and hence the Maurer–Cartan invariants are

K1 = −1, K2 = 0, K3 = 0, K4 = 1
3 I4 = 1

3 κ, K5 = −1. (41)

These values are then substituted into the higher order recurrence formulae (26) to
iteratively produce the desired formulae:

I5 = D I4 = κs,

I6 = D I5 + 5 I 24 = κss + 5κ2,

I7 = D I6 + 7 I4 I5 = κsss + 17κ κs,

I8 = D I7 + 28
3 I4 I6 + 35

3 I 34 = κssss + 79
3 κ κss + 17κ2

s + 175
3 κ3,

(42)
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and so on. We conclude that the equi-affine normal form for a plane curve at a
non-inflection point is given by

u0(x) = 1
2 x2 + 1

4! κ x4 + 1
5! κs x5 + 1

6! (κss + 5κ2) x6 + 1
7! (κsss + 17κ κs) x7+

+ 1
8!
(
κssss + 79

3 κ κss + 17κ2
s + 175

3 κ3
)

x8 + · · · .

(43)
Again, while they are easily found by iterating the preceding algorithm, I do not
know a general explicit formula for the differential polynomials appearing in the
normal form expansion (43).

3 Normal Forms for Submanifolds

We now turn to the equivariant moving frame construction, [1], that applies to
completely general Lie group actions and, when suitably adapted, [2], also to
infinite-dimensional Lie pseudo-group actions. Let M be an m-dimensional man-
ifold which, since we are working locally, we identify as (an open subset of) Rm .
Given 1 ≤ p < m, there is an induced action of G on p-dimensional submanifolds
S ⊂ M , and we are interested in determining when two such submanifolds are equiv-
alent, meaning that there exists g ∈ G mapping one (locally) to the other: S̃ = g · S.
As before, we are interested in the submanifold purely as a subset of M , and thus
allow arbitrary reparametrizations thereof. (Although one can readily adapt the pro-
cedure to avoid or restrict allowable reparametrizations.) The solution to the equiva-
lence problem is based on the differential invariant signature, and the moving frame
method allows one to explicitly determine the fundamental differential invariants
used to construct the required signature, [1, 8].

We employ coordinates (x, u) = (x1, . . . , x p, u1, . . . , uq) on Rm , with p + q =
m, treating the x’s as independent variables and the u’s as dependent variables,
whereby any p-dimensional submanifold S that is transverse to the vertical fibers{

x = x0
}
can be locally identified with the graph, S = {(x, u(x))}, of a smooth

vector-valued function x 	→ u(x) with components uα(x1, . . . , x p), α = 1, . . . , q.
We identify the nth order Taylor expansion of u(x) at a point x0 in its domain as
the n jet of the submanifold at the base point z0 = (x0, u0) = (x0, u(x0)) ∈ S. The
resulting nth order jet space Jn , for p-dimensional submanifolds, is coordinatized
by the independent variables x1, . . . , x p, the dependent variables u1, . . . , uq , and
their derivatives up to order n, which we denote by uα

J , with α = 1, . . . , q, and J =
( j1, . . . , jk) a symmetric multi-index, with 1 ≤ jk ≤ p, of order 1 ≤ k = #J ≤ n,
whose entries indicate partial derivatives of uα with respect to the x’s. Thus, a point
in Jn is specified by the coordinates

z(n) = (. . . xi . . . uα . . . uα
J . . .), where i = 1, . . . , p, α = 1, . . . , q, #J ≤ n.

(44)
See [1, 6, 7] for details.
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The action of G on submanifolds induces an action on their jets, leading to the
prolonged group action on jet space. Explicit formulas are obtained by implicit dif-
ferentiation. In general, a cross-section is a submanifold of the jet space, K ⊂ Jn

that has complementary dimension and is transverse to the prolonged group orbits.
Moreover, we assume that, for each jet z(n) ∈ Jn sufficiently close to K, there is
a unique group element g = ρ(z(n)) that maps z(n) to the cross-section, which, as
before, specifies the moving frame map13 ρ : Jn → G, satisfying the right equivari-
ance condition (7). Transversality means that no (non-zero) prolonged infinitesimal
generator is tangent to the cross-section, which can be straightforwardly verified
using their explicit formulas, cf. (50) below, and involves computing the rank of a
certain matrix. Existence of a cross-section, and hence a moving frame, requires that
the prolonged action be (locally) free and regular on an open subset of Jn , and it
can be proved that, assuming the action on M is locally effective on subsets, local
freeness holds at a sufficiently high order n, [18]. Usually—although not always, [19,
20]—one chooses a coordinate cross-section obtained by setting (or normalizing)
r = dim G of the jet coordinates equal to suitable constants. Almost always, one
chooses a minimal order cross-section, meaning that the normalized jet coordinates
have as low an order as possible. For example, the cross-section for an ordinary pla-
nar group action used in Sect. 2 is minimal. From here on we implicitly assume that
we have chosen a coordinate cross-section of minimal order, although the general
moving frame constructions can be readily adapted to more exotic choices.

If the group acts transitively on M , a minimal order coordinate cross-section is
contained in the jet space over a single pointK ⊂ Jn|z0 .One can interpret such a coor-
dinate cross-section as normalizing particular Taylor coefficients of the submanifolds
passing through the base point z0 —which is almost always taken to be at the origin.
Once the moving frame map is specified, the normal form for a submanifold S ⊂ M
at a point z ∈ S is obtained by applying the moving frame map corresponding to the
submanifold’s n-jet at the point in question, z(n) = jn S|z , so that S0 = ρ(z(n)) · S is a
submanifold passing through z0 ∈ S0 and whose jet belongs to the cross-section, i.e.,
whose Taylor coefficients corresponding to the normalized cross-section jet coordi-
nates have been normalized to the specified values. The remaining jet coordinates
(Taylor coefficients), when expressed in terms of the originating submanifold jets
z(k), provide a complete system of differential invariants, known as the normalized
differential invariants.

With the moving frame in hand, we define the invariantization of a differential
function F(z(n)) to be the unique differential invariant J (z(n)) = ι

[
F(z(n))

]
that

agrees with F on the cross-section: F | K = J | K . In particular, invariantization
of the jet coordinate functions leads to the normalized differential invariants:

Hi = ι(xi ), I α
J = ι(uα

J ). (45)

The r jet coordinates that are used to define the cross-section produce the con-
stant, phantom differential invariants, and the remaining, non-phantom fundamental

13As before, the notation allows ρ to be only defined on an open subset of Jn .
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normalized invariants provide a complete system of functionally independent differ-
ential invariants. The invariantization map has the explicit formula

ι
[

F(. . . xi . . . uα
J . . .)

] = F(. . . Hi . . . I α
J . . .), (46)

inwhich one replaces all jet coordinates by the corresponding normalized differential
invariants.Moreover, invariantization clearly preserves differential invariants, ι(J ) =
J , and hence any differential invariant can be expressed in terms of the normalized
differential invariants via the Replacement Rule:

J (. . . xi . . . uα
J . . .) = J (. . . Hi . . . I α

J . . .). (47)

Furthermore, for p-dimensional submanifolds there are p invariant differential
operators D1, . . . ,Dp that map differential invariants to differential invariants, and
obtained by invariantizing14 the corresponding total derivative operators

Di = ∂

∂xi
+

q∑

α=1

∑

J

uα
J,i

∂

∂uα
J

, i = 1, . . . , p, (48)

where uα
J,i = Di (uα

J ) = uα
j1... jk i . The Basis Theorem, [1, 3], states that there exist a

finite number of generating differential invariants J1, . . . , Jl with the property that
any other differential invariant can bewritten as a (not necessarily uniquely specified)
function of the generating invariants and their successive invariant derivatives,

Jk,I = Di1 . . .Din Jk, k = 1, . . . , l, 1 ≤ iν ≤ p, n ≥ 0.

In particular, one can express all the normalized differential invariants in terms of
them, and the explicit formulae can be found by iteratively applying the recurrence
formulae, to be described next. It is known that, given a moving frame ρ : Jn →
G of order n, the non-constant normalized differential invariants of order ≤ n + 1
form a generating set, although it typically contains redundancies and one can, by
inspection of the recurrence relations and the commutation formulae (see Example 5
below) among the invariant differential operators, produce a smaller generating set.
Determining the minimal number l = lmin of generating differential invariants is a
very challenging problem, with surprises even in seemingly well-studied situations,
[21, 22]. The case of curves is, however, known, where the answer (for ordinary
group actions) is precisely l = m − 1; see [23] for intriguing Lie theoretic tools for
determining their orders.

14More correctly, one invariantizes the basic horizontal one-forms,� i = ι(dxi ), producing a invari-
ant horizontal coframe, and the invariant differential operators are the dual total differentiation
operators.
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To write out the recurrence formulae, let

vσ =
p∑

i=1

ξ i
σ (x, u)

∂

∂xi
+

q∑

α=1

ϕα
σ (x, u)

∂

∂uα
, σ = 1, . . . , r, (49)

be a basis for the infinitesimal generators of the action of G on M . The corresponding
prolonged infinitesimal generators for the action on the jet spaces are given by the
well-known prolongation formula

pr vσ =
p∑

i=1

ξ i
σ (x, u)

∂

∂xi
+

q∑

α=1

∑

#J≥0

ϕα
J,σ (x, u(n))

∂

∂uα
J

, (50)

whose coefficients are readily calculated:

ϕα
J = DJ

[

ϕα −
p∑

i=1

ξ i uα
i

]

+
p∑

i=1

ξ i uα
J,i , (51)

where DJ = D j1 · . . . · D jk , with J = ( j1, . . . , jk), 1 ≤ jν ≤ p, denotes the corre-
sponding higher order total derivative.

The general recurrence formula for differential invariants15 can be then formulated
as follows. Let F(z(n)) be any differential function. Then

ι(Di F) = Di ι(F) −
r∑

σ =1

K σ
i ι

[
pr vσ (F)

]
, i = 1, . . . , p, (52)

where16 K σ
i are certain differential invariants known as the Maurer–Cartan invari-

ants. (Our earlier equations (26), (27) are both special cases of (52), in which F = uk

and x , respectively.) In particular, if we take F to be one of the cross-section coor-
dinates, then its invariantization is a constant phantom invariant, and hence the first
term on the hand side of (52) is zero. Thus, fixing 1 ≤ i ≤ p, and then succes-
sively substituting the r cross-section coordinates into (52) produces a system of
r = dim G linear equations which, according to [1], can be uniquely solved for the
Maurer–Cartan invariants K 1

i , . . . , K r
i as rational functions of the normalized differ-

ential invariants. Substituting these expressions, for all i = 1, . . . , p, into (52), where
now F is taken to be successive non-normalized jet coordinates, produces the full
system of recurrence relations that completely specifies the structure of the ratio-
nal, non-commutative differential invariant algebra and, in particular, leads to the
desired formulae for the Taylor coefficients as invariant derivatives of the generating
differential invariants.

15This is a special case of the more general recurrence formula for differential forms, [1, 24].
16Now we have made the group index σ on the Maurer–Cartan invariants a superscript.
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Let us illustrate the procedure with two further examples.

Example 4 Consider the r = 6 – dimensional Euclidean group SE(3) acting by rigid
motions on space curves C ⊂ M = R

3. Here the submanifolds have dimension
p = 1, and we use coordinates z = (x, u, v) on M . As usual, we concentrate on
curves given by the graphs of functions: u = u(x), v = v(x), although all our results
can be readily adapted to general parametrized curves z(t) = ( x(t), u(t), v(t) )T .
Indeed, the recurrence formulae and consequent relations among differential invari-
ants make no reference as to how the curve is parametrized. On the other hand, when
writing out explicit formulas for the differential invariants, we use

zt =
⎛

⎝
xt

ut

vt

⎞

⎠ =
⎛

⎝
1
ux

vx

⎞

⎠ , ztt =
⎛

⎝
xtt

utt

vtt

⎞

⎠ =
⎛

⎝
0

uxx

vxx

⎞

⎠ , zttt =
⎛

⎝
xttt

uttt

vttt

⎞

⎠ =
⎛

⎝
0

uxxx

vxxx

⎞

⎠ ,

(53)
and so on, to denote the derivative vectors along the curve, where the second expres-
sion can be used in the special case of a graph, parametrized by t = x .

A basis for the infinitesimal generators is provided by the vector fields

v1 = ∂x , v2 = ∂u, v3 = ∂v,

v4 = v ∂u − u ∂v, v5 = −u ∂x + x ∂u, v6 = −v ∂x + x ∂v.
(54)

Applying the prolongation formula (50), (24) leads to the corresponding prolonged
infinitesimal generators on the curve jet spaces, which are parametrized by

x, u, v, ux , vx , uxx , vxx , uxxx , . . . .

To order 3, we find

pr v1 = ∂x , pr v2 = ∂u , pr v3 = ∂v,

pr v4 = v ∂u − u ∂v + vx ∂ux − ux ∂vx + vxx ∂uxx − uxx ∂vxx + vxxx ∂uxxx − uxxx ∂vxxx + · · · ,

pr v5 = −u ∂x + x ∂u + (1 + u2x )∂ux + ux vx ∂vx + 3ux uxx ∂uxx + (uxx vx + 2ux vxx )∂vxx

+ (4ux uxxx + 3u2xx )∂uxxx + (uxxx vx + 3uxx vxx + 3ux vxxx )∂vxxx + · · · ,

pr v6 = −v ∂x + x ∂v + ux vx ∂ux + (1 + v2x )∂vx + (2uxx vx + ux vxx )∂uxx + 3vx vxx ∂vxx

+ (3uxxx vx + 3uxx vxx + ux vxxx )∂uxxx + (4vx vxxx + 3v2xx )∂vxxx + · · · .

(55)

The classical moving frame, [15], relies on the normalization equations

x = 0, u = 0, v = 0, ux = 0, vx = 0, vxx = 0, (56)

which serve to define a coordinate cross-section provided uxx �= 0. (Indeed, the
classical moving frame is not defined at inflection points of the space curve.) This
corresponds to translating and rotating the curve into the Euclidean normal form so
that it goes through the origin, has tangent in the direction of the x-axis, and second
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order contact with the x, u plane. For this particular cross-section, the translational
component of the left moving frame is the point on the curve, z = (x, u, v) ∈ C ,
while the columns of the rotational component R = [ t,n,b ] ∈ SO(3) are the usual
orthonormal tangent, normal, and binormal frame vectors based at z. However, keep
in mind that these explicit identifications are not required to generate the recurrence
formulae for the differential invariants.

We let
H = ι(x), Ik = ι(uk), Jk = ι(vk), (57)

be the normalized differential invariants resulting from invariantization, so that, in
view of (56), the phantom invariants are

H = ι(x) = 0, I0 = ι(u) = 0, J0 = ι(v) = 0,
I1 = ι(ux ) = 0, J1 = ι(vx ) = 0, J2 = ι(vxx ) = 0.

(58)

One can further identify

I2 = ι(uxx ) = κ, J3 = ι(vxxx ) = κ τ (59)

with, respectively, the classical curvature invariant,17 and the product of curvature
and torsion. These two invariants generate the differential invariant algebra through
invariant differentiation with respect to arc length, and the recurrence formulae allow
one to express the normalized invariants Ik, Jk in terms of curvature, torsion, and
their successive arc-length derivatives: κ, τ, κs, τs, . . . .

We note the classical formulas

ds = ‖ zt ‖ dt =
√
1 + u2

x + v2x dx,

κ = ‖ zt × ztt ‖
‖ zt ‖3 =

√
(ux vxx − uxx vx )2 + u2

xx + v2xx

(1 + u2
x + v2x )

3/2
,

τ = zt × ztt · zttt

‖ zt × ztt ‖2 = uxx vxxx − uxxx vxx

(ux vxx − uxx vx )2 + u2
xx + v2xx

,

(60)

which can be obtained by fully implementing the moving frame construction, [25].
The first expression is valid for arbitrary parametrized curves, and the second is for
graphs. However, we emphasize that these explicit formulas are not required for
us to determine the recurrence formulas, and hence the Taylor coefficients of the
Euclidean normal form of a space curve.

17As in the planar version, there is an ambiguous sign resulting from a 180◦ rotation, and one
usually sets κ = | I2 | to ensure full invariance. To avoid minor technicalities, we shall ignore this
extra complication here, and refer the reader to [16] for further details.
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In this example, the recurrence formulae (52) have the form

ι(Dx F) = D ι(F) −
6∑

σ =1

Kσ ι(pr vσ (F)), (61)

for any differential function F(x, u, v, ux , vx , uxx , . . .), where K1, . . . , K6 are the
Maurer–Cartan invariants. Taking F in (61) to be, in turn, each of the cross-section
jet coordinates x, u, v, ux , vx , vxx that define the phantom invariants (58) leads, via
(55), to the linear system

1 = DH − K1 = − K1, 0 = I1 = D I0 − K2 = − K2,

I2 = D I1 − K5 = − K5, 0 = J1 = D J0 − K3 = − K3,

0 = J2 = D J1 − K6 = − K6, J3 = D J2 − I2K4 = − I2K4,

which can be immediately solved for the Maurer–Cartan invariants:

K1 = −1, K2 = 0, K3 = 0, K4 = − J3/I2 = −τ, K5 = − I2 = −κ, K6 = 0.

Substituting these expressions into (61) and letting F range over the other jet coor-
dinates produces the non-phantom recurrence formulae

I3 = D I2,
I4 = D I3 + 3 I 32 − J 2

3 /I2, J4 = D J3 + I3 J3/I2,
I5 = D I4 + 10 I 22 I3 − J3 J4/I2, J5 = D J4 + 6 I 22 J3 − J3 I4/I2,

(62)

and so on. Starting with (59), and successively substituting into (62), we find

I2 = κ,

I3 = κs, J3 = κ τ,

I4 = κss + 3κ3 − κ τ 2, J4 = κ τs + 2κs τ,

I5 = κssss − 3κ τ τs − 3κs τ 2 + 19κ2κs, J5 = κ τss + 3κs τs + 3κss τ

− κ τ 3 + 9κ3τ.

(63)
This implies that the Euclidean normal form of a space curve has Taylor expansion

u0(x) = 1
2 κ x2+ 1

6 κs x3 + 1
24 (κss + 3κ3 − κ τ 2) x4+

+ 1
120 (κssss − 3κ τ τs − 3κs τ 2 + 19κ2κs) x5 + · · · ,

v0(x) = 1
6 κ τ x3+ 1

24 (2τκs + κτs) x4+
+ 1

120 (κ τss + 3κs τs + 3κss τ − κ τ 3 + 9κ3τ) x5 + · · · .

(64)

Observe that if τ ≡ 0, so that the curve is planar, then the first equation in (64)
reduces to the planar normal form (33).



20 P. J. Olver

Example 5 Finally, we treat the action of the Euclidean group SE(3) on two-
dimensional surfaces S ⊂ M = R

3. Now p = 2, and we use coordinates z =
(x, y, u) on M . As usual, we focus our attention to surfaces given by the graphs of
functions: u = u(x, y). All our results can be readily adapted to general parametrized
surfaces, and, as always, the final recurrence formulae make no reference to the
underlying parametrization. We refer to [21, 24] for additional details. The surface
jet space has coordinates

(x, y, u, ux , uy, uxx , uxy, uyy, uxxx , uxxy, uxyy, uyyy, . . .),

and, in general, we use u jk to denote the jet coordinate corresponding to the partial
derivative ∂ j+ku/∂x j∂yk .

The classical moving frame construction, [15], relies on the coordinate cross-
section

x = y = u = ux = uy = uxy = 0. (65)

The corresponding phantom invariants are

ι(x) = 0, ι(y) = 0, I00 = ι(u) = 0,
I10 = ι(ux ) = 0, I01 = ι(uy) = 0, I11 = ι(uxy) = 0,

(66)

where, in general, we denote the normalized differential invariants by

I jk = ι(u jk), j, k ≥ 0.

The fundamental differential invariants of lowest order are the principal curvatures

κ1 = I20 = ι(uxx ), κ2 = I02 = ι(uyy), (67)

and it can be shown — through inspection of the recurrence formulae — that they
generate the algebra of differential invariants via invariant differentiation. Surpris-
ingly, as explained below, they do not form a minimal generating set.

The selected cross-section (65) corresponds to translating and rotating the surface
so that it acquires the Euclidean normal form by passing through the origin, having
horizontal tangent plane, and so that the directions of principal curvature line up
with the coordinate axes. This requires that the point z ∈ S be non-umbilic, meaning
that the two principal curvatures are unequal, κ1 �= κ2, which is the standard non-
degeneracy condition required for the existence of a well-defined Euclidean moving
frame, [15]. (At a non-degenerate umbilic, one could, in principle, employ a higher
order moving frame.) The mean and Gaussian curvature invariants

H = 1
2 (κ1 + κ2), K = κ1κ2, (68)
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are often used as convenient alternatives to the principal curvature invariants, since
they eliminate some of the residual discrete ambiguities in the moving frame. The
resulting left moving frame consists of the point on the curve defining the translation
component a = z ∈ R

3, while the columns of the rotation matrix R = [ t1, t2,n ] ∈
SO(3) contain the unit tangent vectors t1, t2 forming the Darboux frame on the
surface, [15], along with the unit normal n.

Higher order differential invariants are obtained by differentiation with respect to
the diagonalizing dual Darboux coframe � 1 = ι(dx),� 2 = ι(dy). We let D1,D2

denote the dual invariant differential operators, which differentiate in the principal
curvature directions, and defined so that the differential of any differential function
F can be written in invariant form

d F = (D1F)� 1 + (D2F)� 2. (69)

The invariant differential operators do not commute, but, rather satisfy the commu-
tation relation

[
D1,D2

] = D1 D2 − D2 D1 = Y2 D1 − Y1 D2, (70)

where
Y1 = κ2,1

κ1 − κ2
, Y2 = κ1,2

κ2 − κ1
, (71)

are known as the commutator invariants, whose expressions can also be established
using the fullmoving frame calculus, [24]. Note that the denominator in (71) vanishes
at umbilic points on the surface, where the principal curvatures coincide κ1 = κ2,
and the moving frame is not valid.

Setting F to be, successively, x, y, u jk in the general formulae (52) produces the
recurrence relations

1 = −
6∑

σ =1

K σ
1 ι(ξσ ), 0 = −

6∑

σ =1

K σ
1 ι(ησ ), I j+1,k = D1 I jk −

6∑

σ =1

K σ
1 ι(ϕ jk

σ ),

0 = −
6∑

σ =1

K σ
2 ι(ξσ ), 1 = −

6∑

σ =1

K σ
2 ι(ησ ), I j,k+1 = D2 I jk −

6∑

σ =1

K σ
2 ι(ϕ jk

σ ),

(72)
for j, k ≥ 0, where K σ

1 , K σ
2 are the Maurer–Cartan invariants, while ξσ , ησ , ϕ

jk
σ are,

respectively, the coefficients of ∂x , ∂y, ∂u jk in the prolonged infinitesimal generators,
which are calculated via (51):

pr v1 =∂x , pr v2 = ∂y , pr v3 = ∂u ,

pr v4 = − y ∂x + x ∂y − uy∂ux + ux ∂uy

− 2uxy∂uxx + (uxx − uyy)∂uxy − 2uxy∂uyy + · · · ,

pr v5 = − u ∂x + x ∂u + (1 + u2x )∂ux + ux uy∂uy (73)

+ 3ux uxx ∂uxx + (uy uxx + 2ux uxy)∂uxy + (2uy uxy + ux uyy)∂uyy + · · · ,
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pr v6 = − u ∂y + y ∂u + ux uy∂ux + (1 + u2y)∂uy

+ (uy uxx + 2ux uxy)∂uxx + (2uy uxy + ux uyy)∂uxy + 3uy uyy∂uyy + · · · .

Substituting (73) into the recurrence formulae (72) corresponding to the phantom
invariants (58), and solving the resulting linear systems produces the formulae for
the Maurer–Cartan invariants

K 1
1 = −1, K 2

1 = 0, K 3
1 = 0, K 4

1 = −Y1, K 5
1 = −κ1, K 6

1 = 0,

K 1
2 = 0, K 2

2 = −1, K 3
2 = 0, K 4

2 = −Y2, K 5
2 = 0, K 6

2 = −κ2.

(74)
Substituting these expressions back into (72), we successively obtain the desired for-
mulae for the higher order normalized differential invariants in terms of the principal
curvatures, of which the third order ones are

I30 =D1κ1 = κ1,1, I21 =D2κ1 = κ1,2, I12 = D1κ2 = κ2,1, I03 = D2κ2 = κ2,2,

(75)
while, taking these into account, the fourth order recurrence relations yield

I40 = κ1,11 − 3κ2
1,2

κ1 − κ2
+ 3κ3

1 ,

I31 = κ1,12 − 3κ1,2κ2,1
κ1 − κ2

= κ1,21 + κ1,1κ1,2 − 2κ1,2κ2,1
κ1 − κ2

,

I22 = κ1,22 + κ1,1κ2,1 − 2κ2
2,1

κ1 − κ2
+ κ1κ

2
2 = κ2,11 − κ1,2κ2,2 − 2κ2

1,2
κ1 − κ2

+ κ2
1κ2, (76)

I13 = κ2,21 + 3κ1,2κ2,1
κ1 − κ2

= κ2,12 − κ2,1κ2,2 − 2κ1,2κ2,1
κ1 − κ2

,

I04 = κ2,22 + 3κ2
2,1

κ1 − κ2
+ 3κ3

2 .

There are two distinct formulae for I31, I22, I13 because they appear in both the first
and second set of recurrence formulae in (72). The two expressions for I31 and I13
agree owing to the non-commutativity, (70), of D1,D2, while the two expressions
for I22 imply the celebrated Codazzi syzygy

κ1,22 − κ2,11 + κ1,1 κ2,1 + κ1,2 κ2,2 − 2κ2
2,1 − 2κ2

1,2

κ1 − κ2
− κ1 κ2 (κ1 − κ2) = 0, (77)

which can be written compactly as

K = κ1κ2 = − (D1 + Y1)Y1 − (D2 + Y2)Y2. (78)

The latter is the key identity employed by Guggenheimer, [15], for a short proof
of Gauss’ Theorema Egregium. We conclude that the Euclidean normal form of a
surface z = u(x, y) at a non-umbilic point is
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u(x, y) = 1
2 κ1 x2 + 1

2 κ2 y2 + 1
6 κ1,1 x3 + 1

2 κ1,2 x2y + 1
2 κ2,1 x y2 + 1

6 κ2,2 y3

+ 1
24 I40 x4 + 1

6 I31 x3y + 1
4 I22 x2y2 + 1

6 I13 x y3 + 1
24 I04 y4 + · · · ,

(79)

where the fourth order coefficients appear in (76). Higher order terms can easily and
automatically be determined using the recurrence formulae.

It is a classical result that the algebra of Euclidean differential invariants of a
non-umbilic surface S ⊂ R

3 is generated, through invariant differentiation, by the
principal curvatures or, equivalently, the Gauss and mean curvatures; see [15] and,
for a direct proof based on the moving frame recurrence relations, [24]. Surprisingly,
as noted in [21], for suitably nondegenerate surfaces, the mean curvature by itself
suffices to generate all the differential invariants. In particular, the Gauss curvature K
can bewritten as an explicit universal rational combination of the invariant derivatives
of the mean curvature H of order ≤ 4. Here we go slightly further by completely
characterizing the nondegeneracy condition found in [21].

Definition 6 Asurface S ⊂ R
3 ismean curvature degenerate if, for any non-umbilic

point z0 ∈ S, there exist scalar functions f1(t), f2(t), such that

D1H = f1(H), D2H = f2(H), (80)

at all points z ∈ S in a suitable neighborhood of z0.

Clearly any constant mean curvature surface—including any minimal surface—
is mean curvature degenerate, with f1(t) ≡ f2(t) ≡ 0. Surfaces with non-constant
mean curvature that admit a one-parameter group of Euclidean symmetries, i.e., non-
cylindrical or non-spherical surfaces of rotation, non-planar surfaces of translation,
or helicoid surfaces, obtained by, respectively, rotating, translating, or screwing a
plane curve, are also mean curvature degenerate since, by the signature character-
ization of symmetry groups, [1], they have exactly one non-constant functionally
independent differential invariant, namely their mean curvature H and hence any
other differential invariant, including the invariant derivatives of H—as well as the
Gauss curvature K—must be functionally dependent upon H . There also exist sur-
faces without continuous symmetries that are, nevertheless, mean curvature degen-
erate since it is entirely possible that (80) holds, but the Gauss curvature remains
functionally independent of H . However, I do not know whether there is a good
intrinsic geometric characterization of such surfaces.

Theorem 7 If a surface is mean curvature nondegenerate then the algebra of dif-
ferential invariants is generated entirely by the mean curvature and its successive
invariant derivatives.

Proof Following the arguments in [21], in view of the Codazzi formula (78), it
suffices to write the commutator invariants Y1, Y2 in terms of the mean curvature. To
this end, we note that the commutator identity (70) can be applied to any differential
invariant. In particular,
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D1D2H − D2D1H = Y2 D1H − Y1 D2H, (81)

and, furthermore, for j = 1 or 2,

D1D2D j H − D2D1D j H = Y2 D1D j H − Y1 D2D j H. (82)

Provided the nondegeneracy condition

(D1H)(D2D j H) �= (D2H)(D1D j H), for j = 1 or 2, (83)

holds, we can solve (81), (82) to write the commutator invariants Y1, Y2 as explicit
rational functions of invariant derivatives of H . Plugging these expressions into the
right hand side of theCodazzi identity (78) produces an explicit formula for theGauss
curvature as a rational function of the invariant derivatives, of order≤ 4, of the mean
curvature, which is valid for all surfaces satisfying the nondegeneracy condition (83).

Thus it remains to show that (83) is equivalent to mean curvature nondegeneracy
of the surface. First, if (80) holds, then

DiD j H = Di f j (H) = f ′
j (H)Di H = f ′

j (H) fi (H), i, j = 1, 2.

This immediately implies

(D1H)(D2D j H) = (D2H)(D1D j H), j = 1, 2, (84)

proving mean curvature degeneracy. Vice versa, in view of (69), the degeneracy
condition (84) implies that, for each j = 1, 2, the differentials d H, d(D j H) are
linearly dependent everywhere on S, which, by a general theorem characterizing
functional dependency, [6, Theorem2.16], implies that, locally,D j H can be written
as a function of H , thus establishing the degeneracy condition (80). Q.E.D.
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Integrable Nonlocal Reductions

Metin Gürses and Aslı Pekcan

Abstract We present some nonlocal integrable systems by using the
Ablowitz–Musslimani nonlocal reductions. We first present all possible nonlo-
cal reductions of nonlinear Schrödinger (NLS) and modified Korteweg–de Vries
(mKdV) systems. We give soliton solutions of these nonlocal equations by using the
Hirotamethod.Weextend the nonlocalNLSequation to nonlocal Fordy–Kulish equa-
tions by utilizing the nonlocal reduction to the Fordy–Kulish system on symmetric
spaces. We also consider the super AKNS system and then show that Ablowitz–
Musslimani nonlocal reduction can be extended to super integrable equations. We
obtain newnonlocal equations namely nonlocal superNLSandnonlocal supermKdV
equations.

Keywords Ablowitz–Musslimani type reductions · Nonlocal NLS and mKdV
equations · Hirota bilinear method · Soliton solutions · Nonlocal Fordy–Kulish
system · Nonlocal super integrable NLS and mKdV equations

1 Introduction

After the publications of the Ablowitz–Musslimani works [1–3] on nonlocal non-
linear Schrödinger (NLS) equation there is a huge interest in obtaining nonlocal
reductions of systems of integrable equations [5–8, 11–14, 21, 23–25, 28–34]. In
all these works the soliton solutions and their properties were investigated by using
inverse scattering techniques, by Darboux transformations, and by the Hirota direct
method.
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Recentlyweextended the nonlocalNLSequations to nonlocal Fordy–Kulish equa-
tions by utilizing the nonlocal reduction to the Fordy–Kulish system on symmetric
spaces [15]. In a previous work [19] we studied the coupled NLS system obtained
fromAKNS scheme. By using the Hirota bilinear method we first found soliton solu-
tions of the coupled NLS system of equations then using the Ablowitz–Musslimani
type reduction formulas we obtained the soliton solutions of the standard and time T-,
space S-, and space-time ST- reversal symmetric nonlocal NLS equations. Similarly,
in a recent work [20] we studied the nonlocal modified Korteweg–de Vries (mKdV)
equations which are also obtained from AKNS scheme by Ablowitz–Musslimani
type nonlocal reductions. For this purpose we start using the soliton solutions of the
coupled mKdV system found by Hirota and Iwao [22]. Then by using these solutions
and Ablowitz–Musslimani type reduction formulas we obtained solutions of stan-
dard and nonlocal mKdV and complex mKdV (cmKdV) equations including one-,
two-, and three-solitonwaves, complexitons, breather-type, and kink-typewaves.We
used two different types of approaches in finding the soliton solutions. We gave one-
soliton solutions of both types and presented only first type of two- and three-soliton
solutions (see [20]).

When the Lax pair, in (1 + 1)-dimensions, is given in a Lie algebra the resulting
evolution equations are given as a coupled system

qi
t = Fi (qk, rk, qk

x , r
k
x , q

k
xx , r

k
xx , . . .), (1)

r it = Gi (qk, rk, qk
x , r

k
x , q

k
xx , r

k
xx , . . .), (2)

for all i = 1, 2, . . . , N where Fi and Gi are functions of the dynamical variables
qi (t, x), r i (t, x), and their partial derivatives with respect to x . Since we start with a
Lax pair then the system (1)–(2) is an integrable system of nonlinear partial differ-
ential equations.

In the space of dynamical variables (qi , r i ) there exist subspaces

r i (t, x) = kqi (t, x), (3)

or
r i (t, x) = kq̄i (t, x), (4)

where k is a constant and a bar over a letter denotes complex conjugation, such that
the systems of equations (1)–(2) reduce to one system for qi’s

qi
t = F̃ i (qk, qk

x , q
k
xx , . . .) (5)

provided that the second system (2) consistently reduces to the above system (5) of
equations. Here F̃ = F |r=kq̄ . Recently a new reduction is introduced by Ablowitz
and Musslimani [1–3]

r i (t, x) = kqi (μ1t, μ2x), (6)
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or
r i (t, x) = kq̄i (μ1t, μ2x), (7)

for i = 1, 2, . . . , N . Here k is a constant and μ2
1 = μ2

2 = 1. When (μ1, μ2) =
{(−1, 1), (1,−1), (−1,−1)} the above constraints reduce the system (1) to nonlocal
differential equations provided that the second system (2) consistently reduces to the
first one. If the reduction is done in a consistent way the reduced system of equations
is also integrable. This means that the reduced system admits a recursion operator
and bi-hamiltonian structure and the reduced system has N -soliton solutions. The
inverse scattering method (ISM) can also be applied. Ablowitz and Musslimani have
first found the nonlocal NLS equation from the coupled AKNS equations and solved
it by ISM [2].

In our studies of nonlocal NLS and nonlocal mKdV equations we introduced
a general method to obtain soliton solutions of nonlocal integrable equation. This
method consists of three main steps:

(i) Find a consistent reduction formula which reduces the integrable system of
equations to integrable nonlocal equations.

(ii) Find soliton solutions of the system of equations by use of the Hirota direct
method or by inverse scattering transform technique, or by use of Darboux
Transformation.

(iii) Use the reduction formulas on the soliton solutions of the system of equations
to obtain the soliton solutions of the reduced nonlocal equations. By this way
one obtains many different relations among the soliton parameters of the system
of equations.

In the following sections we mainly follow the above method in obtaining the
soliton solutions of the nonlocal NLS and nonlocal mKdV equations.

2 AKNS System

Whenwebeginwith theLaxpair in sl(2, R) algebra and assume themas a polynomial
of the spectral parameter of degree less or equal to three then we obtain the following
system of evolution equations [4]:

qt = a2

(
−1

2
qxx + q2 r

)
+ ia3

(
−1

4
qxxx + 3

2
qrqx

)
, (8)

rt = a2

(
1

2
rxx − q r2

)
+ ia3

(
−1

4
rxxx + 3

2
qrrx

)
. (9)

Here a2 and a3 are arbitrary constants.
Letting a2 = 1/a and a3 = 0 we get the coupled NLS system,
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aqt = −1

2
qxx + q2 r, (10)

art = 1

2
rxx − q r2, (11)

where a is any constant. The corresponding recursion operator is

R =
(
q D−1

x r − 1
2 Dx q D−1

x q
−r D−1

x r −r D−1
x q + 1

2 Dx

)
. (12)

One-soliton solution of the system (10)–(11) can be obtained by the Hirota method
as

q(t, x) = eθ1

1 + Aeθ1+θ2
, r(t, x) = eθ2

1 + Aeθ1+θ2
, (13)

where θi = ki x + ωi t + δi , i = 1, 2 with ω1 = k21/2a, ω2 = −k22/2a, and A =
−1/(k1 + k2)2. Here k1, k2, δ1, and δ2 are arbitrary complex numbers.

3 Standard and Nonlocal NLS Equations

Standard reduction of NLS equation is r(t, x) = kq̄(t, x) where k is a real constant.
The second equation (11) is consistent if ā = −a. Then the NLS system reduces to

aqt = −1

2
qxx + k q2 q̄. (14)

Recursion operator of the NLS equation is

R =
(
kq D−1

x q̄ − 1
2 Dx q D−1

x q
−k2q̄ D−1

x q̄ −q̄ D−1
x q + 1

2 Dx

)
. (15)

There are two types of approaches to find solutions of the standard and nonlocal
NLS equations. In Type 1, one-soliton solution is obtained by letting k2 = k̄1 and
eδ2 = keδ̄1 in (13) as

q(t, x) = eθ1

1 + A k eθ1+θ̄1
. (16)

In Type 2 we obtain a different solution under the constraints,

(1) ā = −a, 2) k1 = −k̄1, 3) k2 = −k̄2, (4) Akeδ1+δ̄1 = 1, (5) Aeδ2+δ̄2 = k.
(17)

If we take a = iα, k1 = iβ, k2 = iγ , eδ1 = a1 + ib1, and eδ2 = a2 + ib2 for α, β,

γ, a j , b j ∈ R, j = 1, 2 one-soliton solution of standard NLS equation becomes
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q(t, x) = eiβx+
iβ2

2α t (a1 + ib1)

1 + 1
(β+γ )2

ei(β+γ )x+i (β2−γ 2)

2α t (a1 + ib1)(a2 + ib2)
, β �= −γ, (18)

and therefore

|q(t, x)|2 = a21 + b21
4

sec2
(θ

2

)
, (19)

where

θ = (β + γ )x + 1

2α
(β2 − γ 2)t + ω0

for ω0 = arccos((a1a2 − b1b2)/(β + γ )2) with a21 + b21 = (β + γ )2/k and a22 +
b22 = k(β + γ )2. This solution is singular for any choice of the parameters.

Let now r(t, x) = k q̄(μ1t, μ2x) where μ2
1 = μ2

2 = 1 and k is a real constant.
This is an integrable reduction, meaning that the new equation we obtain

aqt (t, x) = −1

2
qxx (t, x) + k q2(t, x) q̄(μ1t, μ2x), (20)

is integrable and the second equation (11) is consistentwith the first one (10) provided
that ā = −μ1 a. The recursion operator of this equation is

R =
(
k q(t, x) D−1

x q̄(μ1t, μ2x) − 1
2 Dx q(t, x) D−1

x q(t, x)
−k2 q̄(μ1t, μ2x) D−1

x q̄(μ1t, μ2x) −k q̄(μ1t, μ2x) D−1
x q(t, x) + 1

2 Dx

)
,

(21)
and one-soliton solution is obtained by letting k2 = μ2 k̄1 and eδ2 = keδ̄1 in (13) as

q(t, x) = eθ1(t,x)

1 + A k eθ1(t,x)+θ̄1(μ1 t,μ2 x)
, (22)

in Type 1 approach.

In Type 2, under the constraints

(1) ā = −μ1a, (2) k1 = −k̄1μ2, (3) k2 = −k̄2μ2, (4) Akeδ1+δ̄1 = 1, (5) Aeδ2+δ̄2 = k, (23)

we obtain a different one-soliton solution.
Nonlocal reductions of NLS system correspond to (μ1, μ2) = {(−1, 1), (1,−1),

(−1,−1)}. Hence we have three different reductions of the NLS system (10)–(11).

(1) T-Symmetric Nonlocal NLS Equations: Let r(t, x) = k q̄(−t, x). This is an inte-
grable equation

aqt (t, x) = −1

2
qxx (t, x) + k q2(t, x) q̄(−t, x), (24)
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provided that ā = a. The recursion operator of this equation is

R =
(
k q(t, x) D−1

x q̄(−t, x) − 1
2 Dx q(t, x) D−1

x q(t, x)
−k2 q̄(−t, x) D−1

x q̄(−t, x) −k q̄(−t, x) D−1
x q(t, x) + 1

2 Dx

)
,

(25)
and one-soliton solution is obtained by letting k2 = k̄1 where k1 = α + iβ, α, β ∈ R,
and eδ2 = keδ̄1 in (13) as

q(t, x) = e(α+iβ)x+ (α+iβ)2

2a t+δ1

1 − k e2αx+
2iαβ
a t+δ1+δ̄1

4α2

, (26)

for α �= 0 in Type 1. To have a real-valued solution we consider q(t, x)q̄(t, x) =
|q(t, x)|2. Here we have

|q(t, x)|2 = 16α4e2αx+
α2−β2

a t+δ1+δ̄1

(ke2αx+δ1+δ̄1 − 4α2 cos( 2αβ

a t))2 + 16α4 sin2( 2αβ

a t)
. (27)

When β �= 0 and

t = anπ

2αβ
, ke2αx+δ1+δ̄1 − 4α2 (−1)n = 0,

where n is an integer, both focusing (sign (k) = −1) and defocusing (sign (k) = 1)
cases have singularities. When β = 0 the focusing case is non-singular but asymp-
totically growing in time.

In Type 2, if we take k1 = iβ, k2 = iγ for β, γ ∈ R, eδ1 = a1 + ib1, and eδ2 =
a2 + ib2 for a j , b j ∈ R, j = 1, 2 then one-soliton solution becomes

q(t, x) = eiβx−
β2

2a t (a1 + ib1)

1 + 1
(β+γ )2

ei(β+γ )x+ (γ 2−β2)

2a t (a1 + ib1)(a2 + ib2)
, β �= −γ. (28)

Hence the function |q(t, x)|2 is

|q(t, x)|2 = e
(γ 2+β2)

2a t (a21 + b21)

2[cosh( (γ 2−β2)

2a t) + cos θ ] , (29)

where
θ = (β + γ )x + ω0
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for ω0 = arccos((a1a2 − b1b2)/(β + γ )2) with a21 + b21 = (β + γ )2/k and a22 +
b22 = k(β + γ )2. Clearly, the solution is singular at t = 0 and θ = (2n + 1)π , n
integer and non-singular for t �= 0.

(2) S-Symmetric Nonlocal NLS Equations: Let r(t, x) = k q̄(t,−x). This is an inte-
grable equation

aqt (t, x) = −1

2
qxx (t, x) + k q2(t, x) q̄(t,−x), (30)

provided that ā = −a. The recursion operator of this equation is

R =
(
k q(t, x) D−1

x q̄(t,−x) − 1
2 Dx q(t, x) D−1

x q(t, x)
−k2 q̄(t,−x) D−1

x q̄(t,−x) −k q̄(t,−x) D−1
x q(t, x) + 1

2 Dx

)
.

(31)
In Type 1, one-soliton solution is obtained by letting k2 = −k̄1 where k1 = α + iβ,
α, β ∈ R, a = iy, y ∈ R, and eδ2 = keδ̄1 in (13) as

q(t, x) = e(α+iβ)x+ (α+iβ)2

2iy t+δ1

1 + k e2iβx+
2αβ
y t+δ1+δ̄1

4β2

, (32)

where β �= 0. Hence the function |q(t, x)|2 is

|q(t, x)|2 = 16β4e2αx+
2αβ

y t+δ1+δ̄1

(ke
2αβ

y t+δ1+δ̄1 + 4β2 cos(2βx))2 + 16β4 sin2(2βx)
. (33)

If α �= 0 the above function is singular at

x = nπ

2β
, ke

2αβ

y t+δ1+δ̄1 + 4β2 (−1)n = 0,

where n is an integer, both for focusing and defocusing cases. If α = 0, the function
(33) becomes

|q(t, x)|2 = 2β2

k[B + cos(2βx)] , (34)

for B = (ρ2 + 16β4)/(8ρβ2)whereρ = keδ1+δ̄1 . Obviously, the solution (34) is non-
singular if B > 1 or B < −1.

Example 1 For the set of parameters
(k1, k2, eδ1 , eδ2 , k, a) = (i, i, i,−i, 1, i/2), we get the solution

|q(t, x)|2 = 16

(17 + 8 cos(2x))
.
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Fig. 1 A periodic solution
corresponding to (34)

This solution represents a periodic solution. Its graph is given in Fig. 1.

For Type 2 if we let a = iα,α ∈ R, eδ1 = a1 + ib1, and eδ2 = a2 + ib2 for a j , b j ∈
R, j = 1, 2 then one-soliton solution becomes

q(t, x) = ek1x+i
k21
2α t (a1 + ib1)

1 − 1
(k1+k2)2

e(k1+k2)x−i
(k21−k22 )

2α t (a1 + ib1)(a2 + ib2)
, k1 �= −k2. (35)

Therefore the function |q(t, x)|2 is

|q(t, x)|2 = e(k1−k2)x (a21 + b21)

2[cosh((k1 + k2)x) − cos θ ] , (36)

where

θ = 1

2α
(k21 − k22)t − ω0

forω0 = arccos((a1a2 − b1b2)/(k1 + k2)2)witha21 + b21 = −(k1 + k2)2/k anda22 +
b22 = −k(k1 + k2)2. Here k1, k2 ∈ R. The solution is singular at x = 0 and θ = 2nπ

for n integer, and non-singular for x �= 0.

(3) ST-Symmetric Nonlocal NLS Equations: Let r(t, x) = k q̄(−t,−x). This is an
integrable equation

a qt (t, x) = −1

2
qxx (t, x) + k q2(t, x) q̄(−t,−x), (37)
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provided that ā = −a. The recursion operator of this equation is

R =
(
k q(t, x) D−1

x q̄(−t,−x) − 1
2 Dx q(t, x) D−1

x q(t, x)
−k2 q̄(−t,−x) D−1

x q̄(−t,−x) −k q̄(−t,−x) D−1
x q(t, x) + 1

2 Dx

)
,

(38)
and one-soliton solution is obtained by letting k2 = −k̄1 where k1 = α + iβ, α, β ∈
R and eδ2 = keδ̄1 in (13) as

q(t, x) = e(α+iβ)x+ (α+iβ)2

2a t+δ1

1 + k e2iβx+
2iαβ
a t+δ1+δ̄1

4β2

, (39)

where β �= 0 in Type 1. Therefore |q(t, x)|2 is

|q(t, x)|2 = 16β4e2αx+
(α2−β2)

a t+δ1+δ̄1

(keδ1+δ̄1 + 4β2 cos(2βx + 2αβ

a t))2 + 16β4 sin2(2βx + 2αβ

a t)
. (40)

This function is singular on the line 2βx + (2αβt/a) = nπ where n is an integer, if
the condition keδ1+δ̄1 + 4β2 (−1)n = 0 is satisfied by the parameters of the solution,
otherwise it represents a non-singularwave solution for both focusing and defocusing
cases. For α = 0, (a > 0), the solution represents a localized wave solution. In Type
2, if we take eδ1 = a1 + ib1 and eδ2 = a2 + ib2 for a j , b j ∈ R, j = 1, 2 we have the
one-soliton solution as

q(t, x) = ek1x+
k21
2a t (a1 + ib1)

1 − 1
(k1+k2)2

e(k1+k2)x+(
(k21−k22 )

2a )t (a1 + ib1)(a2 + ib2)
, k1 �= −k2. (41)

The corresponding function |q(t, x)|2 is

|q(t, x)|2 = eφ(a21 + b21)

1 − 2γ eθ + e2θ
, (42)

where

φ = 2k1x + k21
a
t, θ = (k1 + k2)x + 1

2a
(k21 − k22)t,

γ = (a1a2 − b1b2)/(k1 + k2)2, a21 + b21 = −(k1 + k2)2/k, and a22 + b22 = −k(k1 +
k2)2. Here k1, k2 ∈ R. The above function is singular when the function f (θ) =
e2θ − 2γ eθ + 1 vanishes. It becomes zero when eθ = γ ± √

γ 2 − 1. Hence if γ < 1
the solution is non-singular.



36 M. Gürses and A. Pekcan

4 Standard and Nonlocal MKdV Equations

Letting a2 = 0 and a3 = i/a we get the mKdV system

aqt = 1

4
qxxx − 3

2
qrqx , (43)

art = 1

4
rxxx − 3

2
qrrx . (44)

This system has the same recursion operator (12) as the NLS system. One-soliton
solution of the above system is [22]

q(t, x) = eθ1

1 + Aeθ1+θ2
, r(t, x) = eθ2

1 + Aeθ1+θ2
, (45)

with θi = ki x − (k3i t/4a) + δi , i = 1, 2, and A = −1/(k1 + k2)2. Here k1, k2, δ1,

and δ2 are arbitrary complex numbers. In mKdV case, there are also two types of
approaches represented in [20] to find solutions of the standard mKdV and nonlocal
mKdV (and cmKdV) equations.

1. MKdV Equations: Let r(t, x) = kq(t, x) then mKdV system reduces to the inte-
grable mKdV equation

aqt = 1

4
qxxx − 3k

2
q2 qx . (46)

In Type 1 one-soliton solution is obtained by letting k1 = k2 = α + iβ and eδ2 =
keδ1 = a1 + ib1 for α, β, a1, b1 ∈ R in (45) as

q(t, x) = e(α+iβ)x− (α3−3αβ2)+i(3α2β−β3)

4a t (a1 + ib1)

1 − k
4(α2+β2)2

e2(α+iβ)x− (α3−3αβ2)+i(3α2β−β3)

2a t (a1 + ib1)2(α − iβ)2
. (47)

Therefore we obtain the function

|q(t, x)|2 = Y

W
, (48)

where

Y = e2αx−
(α3−3αβ2)

2a t (a21 + b21),

W = 1 − γ1 cos θ + γ 2
1

4
eφ = γ 2

1

4

[ 4

γ 2
1

(1 − γ1 cos θ) + eφ
]
, (49)
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where

θ = 2βx − 1

2a
(3α2β − β3)t + ω0, φ = 4αx − 1

a
(α3 − 3αβ2)t,

for
ω0 = arccos(((a1α + b1β)2 − (a1β − b1α)2)/(a21 + b21)(α

2 + β2))

and γ1 = k(a21 + b21)/2(α
2 + β2). Hence we conclude that if |γ1| ≤ 1 the solution

(48) is non-singular. Type 2 approach gives k1 = k2 = 0 yielding trivial solution.

2. CmKdV Equations: Let r = kq̄(t, x) then mKdV system reduces to the integrable
cmKdV equation

aqt = 1

4
qxxx − 3k

2
q q̄ qx , (50)

where ā = a. One-soliton solution is obtained by letting k2 = k̄1 = α − iβ forα, β ∈
R and eδ2 = keδ̄1 in (45) in Type 1 as

q(t, x) = e(α+iβ)x− (α3−3αβ2)+i(3α2β−β3)

4a t+δ1

1 − k
4α2 e2αx+

(3αβ2−α3)

2a t+δ1+δ̄1

, (51)

so the function |q(t, x)|2 is

|q(t, x)|2 = e2αx−
(α3−3αβ2)

2a t+δ1+δ̄1

(1 − k
4α2 e2αx+

(3αβ2−α3)

2a t+δ1+δ̄1)2
. (52)

For k < 0, the solution (52) can be written as

|q(t, x)|2 = −α2

k
sech2

(
αx + (3αβ2 − α3)

4a
t + δ1 + δ̄1

2
+ δ

)
, (53)

where δ = ln(−k/4α2)/2. The above solution is non-singular.

We obtain a different one-soliton solution in Type 2 under the constraints
k1 = −k̄1, k2 = −k̄2, Akeδ1+δ̄1 = 1, and Aeδ2+δ̄2 = k used in (45). If we let k1 = iα,
k2 = iβ, eδ1 = a1 + ib1, and eδ2 = a2 + ib2 for α, β, a j , b j ∈ R, j = 1, 2, one-
soliton solution becomes

q(t, x) = eiαx+i α3

4a t (a1 + ib1)

1 + 1
(α+β)2

ei(α+β)x+i (α3+β3)

4a t (a1 + ib1)(a2 + ib2)
, (54)

hence the corresponding function |q(t, x)|2 is
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|q(t, x)|2 = a21 + b21
4

sec2
(θ

2

)
, (55)

where

θ = (α + β)x + 1

4a
(α3 + β3)t + ω0,

for ω0 = arccos((a1a2 − b1b2)/(α + β)2) with a21 + b21 = (α + β)2/k and a22 +
b22 = k(α + β)2. This is a singular solution for θ = (2n + 1)π , n is an integer.

There are also two different types of nonlocal reductions.

1. Nonlocal MKdV Equations: Let r = kq(μ1t, μ2x) then mKdV system reduces
to the integrable nonlocal mKdV equation

aqt (t, x) = 1

4
qxxx (t, x) − 3k

2
q(t, x) q(μ1t, μ2x)qx (t, x), (56)

provided that μ1 μ2 = 1. There is only one possibility (μ1, μ2) = (−1,−1). If we
consider the Type 1 approach, we get k1 = −k2 which gives trivial solution q(t, x) =
0. In Type 2, one-soliton solution is obtained from (45) with the parameters satisfying
the relations Ake2δ1 = 1 and Ae2δ2 = k as

q(t, x) = iσ1ek1x−
k31
4a t (k1 + k2)

√
k(1 + σ1σ2e(k1+k2)x− (k31+k32 )

4a t )

, σ j = ±1, j = 1, 2. (57)

If we let a ∈ R, k1 = α1 + iβ1, and k2 = α2 + iβ2 then we obtain the solution
|q(t, x)|2 corresponding to (57) as

|q(t, x)|2 = eθ ((α1 + α2)
2 + (β1 + β2)

2)

2k[cosh(φ) + σ1σ2 cos(ϕ)] , (58)

where θ = (α1 − α2)x − ((α3
1 − 3α1β

2
1 − α3

2 + 3α2β
2
2 )t/4a), φ = A1x + B1t , and

ϕ = A2x + B2t . Here

A1 = α1 + α2, B1 = − 1

4a
(α3

1 − 3α1β
2
1 + α3

2 − 3α2β
2
2 ),

A2 = β1 + β2, B2 = 1

4a
(β3

1 − 3α2
1β1 + β3

2 − 3α2
2β2).

There are cases where the solution (58) is nonsingular:

(a) If we have k1 = k2 for real k1 and σ1σ2 = 1 then the solution (57) becomes
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Fig. 2 A complexiton
solution corresponding to
(60)

q(t, x) = iσ1k1√
k

sech(k1x − k31
4a

t). (59)

(b) If B1A2 = B2A1 then the solution (58) becomes

|q(t, x)|2 = eθ ((α1 + α2)
2 + (β1 + β2)

2)

2k[cosh(φ) + σ1σ2 cos(
B2
B1

φ)] . (60)

Example 2 If we take (k1, k2, σ1, σ2k, a) = (i, 1 + (i/2), 1, 1,−1, 1/4) then we
have the solution

|q(t, x)|2 = 13e−u

8[cosh(u) + cos(3u/2)] ,

where u = x − t/4. This is a complexiton solution. The graph of this solution is
given in Fig. 2.

2. Nonlocal CmKdV Equations: Let r = kq̄(μ1t, μ2x) then mKdV system reduces
to the integrable nonlocal cmKdV equation

aqt (t, x) = 1

4
qxxx (t, x) − 3k

2
q(t, x) q̄(μ1t, μ2x)qx (t, x), (61)

provided that ā = μ1 μ2 a. One-soliton solution is obtained by letting k2 = μ2k̄1
and eδ2 = keδ̄1 in Type 1. In Type 2, a different one-soliton solution is obtained by
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letting k1 = −k̄1μ2, k2 = −k̄2μ2, Akeδ1+δ̄1 = 1, and Aeδ2+δ̄2 = k. In this case there
are three possibilities (μ1, μ2) = {(−1, 1), (1,−1), (−1,−1)}. Hencewe have three
integrable nonlocal cmKdV equations:

2(i) T-Symmetric Nonlocal CmKdV Equations: Let r = kq̄(−t, x) then mKdV sys-
tem reduces to the nonlocal cmKdV equation

aqt (t, x) = −1

4
qxxx (t, x) + 3

2
kq̄(−t, x)q(t, x)qx (t, x), ā = −a. (62)

In Type 1 if we let a = ib, for nonzero b ∈ R, k1 = α + iβ so k2 = α − iβ for
α, β ∈ R, α �= 0 then one-soliton solution becomes

q(t, x) = e(α+iβ)x+ i(α3−3αβ2)−3α2β+β3

4b t+δ1

1 − k
4α2 e2αx+i α3−3αβ2

2b t+δ1+δ̄1

. (63)

The corresponding function |q(t, x)|2 is

|q(t, x)|2 = e2αx+
(β3−3α2β)

2b t+δ1+δ̄1[
k

4α2 e2αx+δ1+δ̄1 − cos( (α3−3αβ2)

2b t)
]2 + sin2( (α3−3αβ2)

2b t)
. (64)

when α3 − 3αβ2 �= 0 and

t = 2nbπ

(α3 − 3αβ2)
,

k

4α2
e2αx+δ1+δ̄1 − (−1)n = 0,

where n is an integer, for both focusing and defocusing cases, the solution is singular.
When α3 − 3αβ2 = 0 the solution for focusing case is non-singular. When α = 0
the solution is exponentially growing for β3/b > 0 and exponentially decaying for
β3/b < 0.

In Type 2 if we let a = iα, k1 = iβ, k2 = iγ for α, β, γ ∈ R, and eδ1 = a1 + ib1,
eδ2 = a2 + ib2 for a j , b j ∈ R, j = 1, 2 then one-soliton solution becomes

q(t, x) = eiβx+
β3

4α t (a1 + ib1)

1 + 1
(β+γ )2

ei(β+γ )x+ (β3+γ 3)

4α t (a1 + ib1)(a2 + ib2)
. (65)

Hence the function |q(t, x)|2 is

|q(t, x)|2 = e
(β3−γ 3)

4α t (a21 + b21)

2
[
cosh( (β3+γ 3)

4α t) + cos θ
] , (66)
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where
θ = (β + γ )x + ω0

for ω0 = arccos((a1a2 − b1b2)/(β + γ )2) with a21 + b21 = (β + γ )2/k, a22 + b22 =
k(β + γ )2, and β �= −γ . This solution is singular only at t = 0, θ = (2n + 1)π for
n integer.

2(ii) S-Symmetric Nonlocal CmKdV Equations: Let r = kq̄(t,−x) then mKdV
system reduces to the nonlocal cmKdV equation

aqt (t, x) = −1

4
qxxx (t, x) + 3

2
kq̄(t,−x)q(t, x)qx (t, x), ā = −a. (67)

If we consider Type 1 and let a = ib for nonzero b ∈ R, k1 = α + iβ and so k2 =
−α + iβ for α, β ∈ R, β �= 0 then one-soliton solution becomes

q(t, x) = e(α+iβ)x+ iα3−3α2β−3iαβ2+β3

4b t+δ1

1 + k
4β2 e2iβx+i α3−3αβ2

2b t+δ1+δ̄1

, (68)

and so |q(t, x)|2 is

|q(t, x)|2 = e2αx+
(β3−3α2β)

2b t+δ1+δ̄1[
k

4β2 e
(β3−3α2β)

2b t+δ1+δ̄1 + cos(2βx)
]2 + sin2(2βx)

. (69)

For x = nπ/(2β) and ke(β3−3α2β)t/2b+δ1+δ̄1/(4β2) + (−1)n = 0, where n is an inte-
ger, the solution is unbounded but for β2 = 3α2 and keδ1+δ̄1/(4β2) + (−1)n �= 0 we
have a periodical solution. For α = 0, the solution (69) becomes

|q(t, x)|2 = eδ1+δ̄1

γ [σk cosh(
β3

2b t + ln( |γ |
2 )) + cos(2βx)] , (70)

where γ = keδ1+δ̄1/(2β2), σk = 1 if k > 0, and σk = −1 if k < 0. This solution is
non-singular for |γ | > 2, β3/b > 0 and |γ | < 2, β3/b < 0 for any t ≥ 0.

For Type 2 if we let a = iα,α ∈ R, eδ1 = a1 + ib1, and eδ2 = a2 + ib2 for a j , b j ∈
R, j = 1, 2 we obtain the one-soliton solution as

q(t, x) = ek1x+i
k31
4α t (a1 + ib1)

1 − 1
(k1+k2)2

e(k1+k2)x+i
(k31+k32 )

4α t (a1 + ib1)(a2 + ib2)
. (71)

Therefore the function |q(t, x)|2 is
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|q(t, x)|2 = e(k1−k2)x (a21 + b21)

2[cosh((k1 + k2)x) + cos θ ] , (72)

where

θ = 1

4
(k31 + k32)t − ω0

forω0 = arccos((b1b2 − a1a2)/(k1 + k2)2)with a21 + b21 = − (k1+k2)2

k and a22 + b22 =
−k(k1 + k2)2, k1 �= −k2. Here k1, k2 ∈ R. This solution has singularity at x = 0,
θ = (2n + 1)π for n integer.

2(iii) ST-Symmetric Nonlocal CmKdV Equations: Let r = kq̄(−t,−x) then mKdV
system reduces to the nonlocal cmKdV equation

aqt (t, x) = −1

4
qxxx (t, x) + 3

2
kq̄(−t,−x)q(t, x)qx (t, x), ā = a. (73)

In Type 1 if we let k1 = α + iβ and so k2 = −α + iβ for α, β ∈ R, β �= 0 the
one-soliton solution q(t, x) becomes

q(t, x) = e(α+iβ)x− α3+3α2iβ−3αβ2−iβ3

4a t+δ1

1 + k
4β2 e2iβx−i (6α2β−2β3)

4a t+δ1+δ̄1

. (74)

Then we obtain the function |q(t, x)|2 as

|q(t, x)|2 = eθ

μ
[
( 1

μ
+ μ

4 ) + cosφ
] , (75)

where

θ = 2αx + 1

2a
(3αβ2 − α3)t + δ1 + δ̄1, φ = 2βx + 1

2a
(β3 − 3α2β)t,

and μ = keδ1+δ̄1/(2β2). This solution is non-singular for all μ except μ = ±2.

For Type 2, if we take eδ1 = a1 + ib1 and eδ2 = a2 + ib2 for a j , b j ∈ R, j = 1, 2
we obtain the one-soliton solution as

q(t, x) = ek1x−
k31
4a t (a1 + ib1)

1 − 1
(k1+k2)2

e(k1+k2)x− (k31+k32 )

4a t (a1 + ib1)(a2 + ib2)
, (76)

hence the function |q(t, x)|2 is

|q(t, x)|2 = eφ

1 − 2γ eθ + e2θ
, (77)
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Fig. 3 An asymptotically
decaying soliton
corresponding to (76)

where

θ = (k1 + k2)x − 1

4a
(k31 + k32)t, φ = 2k1x − k31

2a
t,

γ = (a1a2 − b1b2)/(k1 + k2)2 with a21 + b21 = −(k1 + k2)2/k and a22 + b22 =
−k(k1 + k2)2, k1 �= −k2. Here k1, k2 ∈ R. The above function has singularity when
eθ = γ ± √

γ 2 − 1. Hence for γ < 1 and k1 > 0, k2 > 0 the solution is non-singular
and bounded.

Example 3 For the set of the parameters (k1, k2, eδ1 , eδ2 , k, a)= ( 12 ,
1
4 , − 3

4 ,
3
4 ,−1, 2) we obtain the following asymptotically decaying soliton

q(t, x) = (−3e
1
2 x− 1

64 t )

4(1 + e
3
4 x− 9

512 t )
,

whose graph is given in Fig. 3.

Remark 1 All dynamical variables considered so far are complex valued functions.
We claim that all the results presented here will be valid if the dynamical variables are
pseudo complex valued functions. Any pseudo complex number is α = a + ibwhere
i2 = 1. Complex conjugation is ᾱ = a − ib. Hence the norm of a pseudo complex
number is not positive definite αᾱ = a2 − b2. NLS equation

iqt = −1

2
qxx + kq2q̄, (78)

has real and imaginary parts (q = u + iv)
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ut = −1

2
vxx + k(u2 − εv2)v,

εvt = −1

2
uxx + k(u2 − εv2)u,

where i2 = ε = ±1.

5 Fordy–Kulish System

Systems of integrable nonlinear partial differential equations arise when the Lax
pairs are given in certain Lie algebras. Fordy–Kulish (FK) system of equations are
examples of such equations [9, 10]. We briefly give the Lax representations of these
equations,

φx = (λHS + QA EA) φ, (79)

φt = (AaHa + BAEA + CDED) φ, (80)

where the dynamical variables are QA = (qα, pα), the functions Aa , BA, and CD

depend on the spectral parameter λ, on the dynamical variables (qα , pα) and their
x-derivatives (for more details see [10, 15, 18]). The system of FK equations is an
example when the functions A, B, and C are quadratic functions of λ. Let qα(t, x)
and pα(t, x) be the complex dynamical variables where α = 1, 2, . . . , N , then the
FK integrable system arising from the integrability condition of Lax equations (79)
and (80) is given by

aqα
t = qα

xx + Rα
βγ−δ q

β qγ pδ, (81)

apα
t = pα

xx + R−α −β−γ δ p
β pγ qδ, (82)

for all α = 1, 2, . . . , N . Here Rα
βγ−δ and R−α −β−γ δ are the curvature tensors of a

Hermitian symmetric space satisfying

(Rα
βγ−δ)

� = R−α −β−γ δ, (83)

and a is a complex number. These equations are known as the FK system which is
integrable in the sense that they are obtained from the zero curvature condition of a
connection defined on a Hermitian symmetric space and these equations can also be
written in a Hamiltonian form.

The standard reduction of the above FK system is obtained by letting pα = k(qα)�

for all α = 1, 2, . . . , N . The FK system (81)–(82) reduces to a single equation

aqα
t = qα

xx + k Rα
βγ−δ q

β qγ (qδ)�, α = 1, 2, . . . , N , (84)
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provided that a� = −a and (83) is satisfied. Here ∗ over a letter denotes complex
conjugation.

6 Nonlocal Fordy–Kulish Equations

Here we will show that the Fordy–Kulish system is compatible with the nonlocal
reduction of Ablowitz–Musslimani type. For this purpose using a similar constraint
as in NLS system we let

pα(t, x) = k[qα(μ1t, μ2x)]�, α = 1, 2, . . . , N , (85)

where μ2
1 = μ2

2 = 1. Under this constraint the FK system (81)–(82) reduces to the
following system of equations:

aqα
t (t, x) = qα

xx (t, x) + k Rα
βγ−δ q

β(t, x) qγ (t, x) (qδ(μ1t, μ2x))
�, (86)

provided that a� = −μ1 a and (83) is satisfied. In addition to (86) we have also
an equation for qδ(μ1t, μ2x) which can be obtained by letting t → μ1t , x → μ2x
in (86). Hence we obtain T-symmetric, S-symmetric, and ST-symmetric nonlocal
FK equations. Nonlocal reductions correspond to (μ1, μ2) = {(−1, 1), (1,−1),
(−1,−1)}. Hence corresponding to these values of μ1 and μ2 we have three dif-
ferent nonlocal integrable FK equations. They are given as follows:

1. T-Symmetric Nonlocal FK Equations:

aqα
t (t, x) = qα

xx (t, x) + k Rα
βγ−δ q

β(t, x) qγ (t, x) (qδ(−t, x))�, (87)

with a� = a.

2. S-Symmetric Nonlocal FK Equations:

aqα
t (t, x) = qα

xx (t, x) + k Rα
βγ−δ q

β(t, x) qγ (t, x) (qδ(t,−x))�, (88)

with a� = −a.

3. ST-Symmetric Nonlocal FK Equations:

aqα
t (t, x) = qα

xx (t, x) + k Rα
βγ−δ q

β(t, x) qγ (t, x) (qδ(−t,−x))�, (89)

with a� = a. All these three nonlocal equations are integrable.
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7 Super Integrable Systems

When the Lax pair, in (1 + 1)-dimensions, is given in a super Lie algebra the resulting
evolution equations are super integrable systems. They are given as a coupled system

qi
t = Fi (qk, εk, qk

x , ε
k
x , q

k
xx , ε

k
xx , . . .), (90)

εit = Gi (qk, εk, qk
x , ε

k
x , q

k
xx , ε

k
xx , . . .), (91)

for all i = 1, 2, . . . , N where Fi and Gi (i = 1, 2, . . . , N ) are functions of the
dynamical variables qi (t, x), εi (t, x), and their partial derivatives with respect to
x . Here qi ’s are bosonic and εi ’s are the fermionic dynamical variables. Since we
start with a super Lax pair then the system (90)–(91) is a super integrable system of
nonlinear partial differential equations.

8 Nonlocal Super NLS and MKdV Equations

As an example taking the Lax pair in super sl(2, R) algebra we obtain the super
AKNS system.We have two bosonic (q, r) and two fermionic (ε, β) dynamical vari-
ables. They satisfy the following evolution equations [16–18]:

i. Bosonic Equations

qt = a2 (−1

2
qxx + q2 r + 2 εx ε + 2qβε) + ia3 (−1

4
qxxx + 3

2
qrqx + 3(εxε)x

−3qβxε + 3qβεx ), (92)

rt = a2 (
1

2
rxx − q r2 + 2 βx β − 2rβε) + ia3 (−1

4
rxxx + 3

2
qrrx − 3(βxβ)x

+3rβxε − 3rβεx ), (93)

ii. Fermionic Equations

βt = a2 (βxx − rεx − 1

2
εrx − 1

2
qrβ) + ia3(−βxxx + 3

4
rqxβ + 3

4
qrxβ + 3

2
qrβx

+3

2
rxεx + 3

4
εrxx ), (94)

εt = a2 (−εxx + qβx + 1

2
βqx + 1

2
qrε) + ia3(−εxxx + 3

4
rqxε + 3

4
qrxε + 3

2
qrεx

+3

2
qxβx + 3

4
βqxx ), (95)

where a2 and a3 are arbitrary constants.
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8.1 Super NLS Equations

Letting a3 = 0 in the equations (92)–(95) we get the super coupled NLS system of
equations. There are two bosonic (q,r ) and two fermionic (ε, β) potentials satisfying

aqt = −1

2
qxx + q2 r + 2εx ε + 2q β ε, (96)

art = 1

2
rxx − q r2 + 2βx β − 2r β ε, (97)

aεt = −εxx + q βx + 1

2
β qx + 1

2
q r ε, (98)

aβt = βxx − r εx − 1

2
ε rx − 1

2
q r β, (99)

where a2 = 1/a. The standard reduction is r = k1 q̄ and β = k2ε̄ where k1 and k2 are
constants, a bar over a quantity denotes the Berezin conjugation in the Grassmann
algebra. If P and Q are super functions (bosonic or fermionic) then PQ = Q P .
Under these constraints the above equations (96)–(99) reduce to the following super
NLS equations provided k1 = k22 and ā = −a,

aqt = −1

2
qxx + k1 q

2 q̄ + 2εx ε + 2k2 q ε̄ ε, (100)

aεt = −εxx + k2 q ε̄x + 1

2
k2 ε̄ qx + 1

2
k1 q q̄ ε. (101)

Here we show that super NLS system (96)–(99) can be reduced to nonlocal super
NLS equations. This can be done by choosing the superAblowitz–Musslimani reduc-
tion as

r(t, x) = k1 q̄(μ1t, μ2x), β(t, x) = k2ε̄(μ1t, μ2x). (102)

where μ2
1 = μ2

2 = 1. Here k1 and k2 are real constants. Under these constraints the
above set (96)–(99) reduces to super NLS equations [26, 27],

aqt (t, x) = −1

2
qxx (t, x) + k1 q2(t, x) q̄(μ1t, μ2x) + 2εx (t, x) ε(t, x)

+2k2 q(t, x) ε̄(μ1t, μ2x)ε(t, x),

aεt (t, x) = −εxx (t, x) + k2 q(t, x) ε̄x (μ1t, μ2x) + 1

2
k2 ε̄(μ1t, μ2x) qx (t, x)

+1

2
k1 q(t, x) q̄(μ1t, μ2x) ε(t, x),

provided that
ā μ1 = −a, k22 μ2 = k1. (103)
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Nonlocal reductions correspond to the choices (μ1, μ2) = {(−1, 1), (1,−1),
(−1,−1)}. They are explicitly given by,

1. T-Symmetric Nonlocal Super NLS Equations:

aqt (t, x) = −1

2
qxx (t, x) + k1 q2(t, x) q̄(−t, x) + 2εx (t, x) ε(t, x)

+2k2 q(t, x) ε̄(−t, x), ε(t, x),

aεt (t, x) = −εxx (t, x) + k2 q(t, x) ε̄x (−t, x) + 1

2
k2 ε̄(−t, x) qx (t, x)

+1

2
k1 q(t, x) q̄(−t, x) ε(t, x),

with a� = a and k1 = k22 .

2. S-Symmetric Nonlocal Super NLS Equations:

aqt (t, x) = −1

2
qxx (t, x) + k1 q2(t, x) q̄(t,−x) + 2εx (t, x) ε(t, x) + 2k2 q(t, x) ε̄(t,−x)ε(t, x),

aεt (t, x) = −εxx (t, x) + k2 q(t, x) ε̄x (t,−x) + 1

2
k2 ε̄(t,−x) qx (t, x)

+1

2
k1 q(t, x) q̄(t,−x) ε(t, x),

with a� = −a and k1 = −k22 .

3. ST-Symmetric Nonlocal Super NLS Equations:

aqt (t, x) = −1

2
qxx (t, x) + k1 q2(t, x) q̄(−t,−x) + 2εx (t, x) ε(t, x)

+2k2 q(t, x) ε̄(−t,−x), ε(t, x),

aεt (t, x) = −εxx (t, x) + k2 q(t, x) ε̄x (−t,−x) + 1

2
k2 ε̄(−t,−x) qx (t, x)

+1

2
k1 q(t, x) q̄(−t,−x) ε(t, x),

with a� = a and k1 = −k22 .

8.2 Super MKdV Systems

Another special case of the super AKNS equations is the super mKdV system [16,
17],
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aqt = −1

4
qxxx + 3

2
r q qx + 3(εx ε)x − 3 q βx ε + 3qβ εx ,

art = −1

4
rxxx + 3

2
r q rx − 3(βx β)x + 3 r βx ε − 3rβ εx ,

aεt = −εxxx + 3

4
(r q)x ε + 3

2
q r εx + 3

2
qx βx + 3

4
β qxx ,

aβt = −βxxx + 3

4
(r q)x β + 3

2
q r βx + 3

2
rx εx + 3

4
ε rxx .

The standard reduction is r = k1q̄, β = k2 ε̄. Then we obtain [16],

aqt = −1

4
qxxx + 3

2
k1 q̄ q qx + 3(εx ε)x − 3 k2q ε̄x ε + 3k2 q ε̄ εx ,

aεt = −εxxx + 3

4
k1(q̄ q)x ε + 3

2
k1q q̄ εx + 3

2
k2 qx ε̄x + 3

4
k2ε̄ qxx ,

provided that k1 = k22 and ā = a. For the supermKdV system,Ablowitz–Musslimani
type of reduction is also possible. Letting

r(t, x) = k1 q̄(μ1t, μ2x), β(t, x) = k2ε̄(μ1t, μ2x), (104)

where μ2
1 = μ2

2 = 1 we get the following system of equations

aqt (t, x) = − 1

4
qxxx (t, x) + 3

2
k1 q̄(μ1t, μ2x) q(t, x) qx (t, x) + 3(εx (t, x) ε(t, x))x

−3 q(t, x) ε̄x (μ1t, μ2x) ε(t, x) + 3k2 q(t, x) ε̄(μ1t, μ2x) εx (t, x), (105)

aεt (t, x) = −εxxx (t, x) + 3

4
k1(q̄(μ1t, μ2x) q(t, x))x ε(t, x) + 3

2
k1q(t, x) q̄(μ1t, μ2x) εx (t, x)

+ 3

2
k2 qx (t, x) ε̄x (μ1t, μ2x) + 3

4
k2ε̄(μ1t, μ2x) qxx (t, x), (106)

provided that ā μ1 μ2 = a, k22μ2 = k1.Nonlocal reductions correspond to the choices
(μ1, μ2) = {(−1, 1), (1,−1), (−1,−1)}. They are explicitly given by,

1. T-Symmetric Nonlocal Super MKdV Equations: Here ā = −a and k1 = k22 .

aqt (t, x) = − 1

4
qxxx (t, x) + 3

2
k1 q̄(−t, x) q(t, x) qx (t, x) + 3(εx (t, x) ε(t, x))x

−3 q(t, x) ε̄x (−t, x) ε(t, x) + 3k2 q(t, x)ε̄(−t, x) εx (t, x), (107)

aεt (t, x) = −εxxx (t, x) + 3

4
k1(q̄(−t, x) q(t, x))x ε(t, x) + 3

2
k1q(t, x) q̄(−t, x) εx (t, x)

+ 3

2
k2 qx (t, x) ε̄x (−t, x) + 3

4
k2ε̄(−t, x) qxx (t, x), (108)

2. S-Symmetric Nonlocal Super MKdV Equations: Here ā = −a and k1 = −k22 .
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aqt (t, x) = − 1

4
qxxx (t, x) + 3

2
k1 q̄(t, −x) q(t, x) qx (t, x) + 3(εx (t, x) ε(t, x))x

−3 q(t, x) ε̄x (t, −x) ε(t, x) + 3k2 q(t, x)ε̄(t, −x) εx (t, x), (109)

aεt (t, x) = −εxxx (t, x) + 3

4
k1(q̄(t, −x) q(t, x))x ε(t, x) + 3

2
k1q(t, x) q̄(t, −x) εx (t, x)

+ 3

2
k2 qx (t, x) ε̄x (t, −x) + 3

4
k2ε̄(t, −x) qxx (t, x), (110)

3. ST-Symmetric Nonlocal Super MKdV Equations: Here ā = a and k1 = −k22 .

aqt (t, x) = − 1

4
qxxx (t, x) + 3

2
k1 q̄(−t, −x) q(t, x) qx (t, x) + 3(εx (t, x) ε(t, x))x

−3 q(t, x) ε̄x (−t, −x) ε(t, x) + 3k2 q(t, x)ε̄(−t, −x) εx (t, x), (111)

aεt (t, x) = −εxxx (t, x) + 3

4
k1(q̄(−t, −x) q(t, x))x ε(t, x) + 3

2
k1q(t, x) q̄(−t, −x) εx (t, x)

+ 3

2
k2 qx (t, x) ε̄x (−t, −x) + 3

4
k2ε̄(−t,−x) qxx (t, x). (112)

9 Concluding Remarks

In this work we first presented all integrable nonlocal reductions of NLS and mKdV
systems. We gave the recursion operators and the soliton solutions of these nonlocal
equations.We then presented the extension of the nonlocal NLS equation to nonlocal
Fordy–Kulish equations on symmetric spaces. Starting with the super AKNS system
we studied all possible nonlocal reductions and found two new super integrable
systems. They are the nonlocal super NLS equations and nonlocal super mKdV
systems of equations. There are three different nonlocal types of super integrable
equations. They correspond to T-, S-, and ST- symmetric super NLS and supermKdV
equations.

From the study ofNLS andmKdV systems (both bosonic and fermionic integrable
systems) we observed that they have standard and nonlocal reductions. Moreover in
both of these systems there are at least one nonlocal reduction to a standard reduction.
For instance both systems have r(t, x) = kq̄(t, x) as a standard reduction and the cor-
responding nonlocal reductions are r(t, x) = kq̄(μ1t, μ2x) where k is real constant
and (μ1, μ2) = {(1,−1), (−1, 1), (−1,−1)}. From these reductions we obtain stan-
dard and nonlocal NLS equations and standard and nonlocal complex mKdV equa-
tions and their nonlocal super integrable extensions. ThemKdVsystemhas additional
standard and nonlocal reductions. Standard reduction is r(t, x) = kq(t, x), where k
is real constant, and its corresponding nonlocal reduction r(t, x) = kq(−t,−x) gives
the nonlocal mKdV equation. From all these experiences we conclude with a con-
jecture: If a system of equations admits a standard reduction then there exists at least
one corresponding nonlocal reduction of the same system.
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Construction of Solvable Structures
from so(3,C)

A. Ruiz and C. Muriel

Abstract For third-order ordinary differential equations admitting a Lie symmetry
algebra isomorphic to so(3,C) it is proved the existence of a solvable structure
constructed out of the symmetry generators of the algebra. This solvable structure is
explicitly obtained in terms of solutions to a second-order linear ordinary differential
equation. Once the solvable structure is known, a complete set of first integrals can
be computed by quadratures. Moreover, it is proved that the general solution can be
obtained in parametric form and expressed in terms of solutions to a second-order
linear equation.

Keywords First integral · Solvable structure · Non-solvable symmetry algebra

1 Introduction

The knowledge of a solvable n-dimensional Lie symmetry algebra for an nth-order
ordinary differential equation (ODE) permits to stepwise reduce the order of the
equation and obtain the general solution after n successive quadratures [10, 11, 17,
18, 23]. However, if the Lie symmetry algebra is non-solvable then this step by step
reduction method is no longer applicable because one of the symmetry generators is
lost at some stage of the procedure. The first case of nth-order ODE admitting a non-
solvable symmetry algebra occurs for n = 3, and corresponds to symmetry algebras
isomorphic to either sl(2,R) or so(3,R). The case of sl(2,R) was addressed in [15]
by using techniques based on λ-symmetries [14] and it was proved that the Lie point
symmetries that are lost in the reduction method can be recovered as λ-symmetries
of the corresponding reduced equation. On the other hand, in [16] it was proved
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that a convenient combination of the symmetry generators of so(3,R) allows one to
recover again the lost symmetries as λ-symmetries.

Other approaches that can be found in the recent literature as a generalization of
the classical Lie method are hidden symmetries [1], μ-symmetries [6, 8], nonlocal
symmetries [2] and solvable structures [3–5, 19]. In this paper we focus on the
concept of solvable structures, which were introduced by Basarab-Horwath in [4]
and further studied in [3, 5, 19]. Solvable structures generalize the classical result on
the integrability by quadratures of involutive distributions of vector fields admitting
a sufficiently large solvable symmetry algebra. In contrast, vector fields that are
involved in a solvable structure are not needed to be symmetries of the distribution.
This degree of freedom permits to characterize the integrability by quadratures by
means of the existence of solvable structures. When the distribution is formed just by
the vector field associated to an nth-order ODE, then the computation of a solvable
structure warrants locally the integrability by quadratures of the given ODE, even if
it does not admit a solvable n-dimensional symmetry algebra.

Although solvable structures are a powerful tool for the integrability by quadra-
tures of ODEs, finding an explicit expression for a solvable structure associated to
an nth-order equation is a difficult task in practice. One of the possible approaches to
construct solvable structures may be to exploit the Lie symmetry algebra admitted by
the equation. The case of sl(2,R) has been recently solved in [20] (see also [21]) and
solvable structureswere explicitly computed by using the symmetry generators of the
algebra. Those theoretical results were applied in [22] to compute first integrals and
parametric general solutions in terms of solutions to second-order linear equations
for third-order ODEs admitting a Lie symmetry algebra isomorphic to sl(2,R).

The goal of this paper is to construct explicitly a solvable structure for third-order
ODEs admitting the non-solvable symmetry algebra so(3,C). Once the solvable
structure is computed, we are able to obtain a complete set of first integrals expressed
in terms of the solutions to a second-order linear equation. Furthermore, from the
corresponding implicit solution, the general solution of the equation is obtained
in parametric form, also in terms of the solutions to a related second-order linear
equation. Other approaches to integrate ODEs admitting non-solvable symmetry
algebras can be found in [7, 9, 12, 16].

The paper is organized as follows. In Sect. 2 we set up the notation and the def-
inition of solvable structure as well as some basic properties adapted to the case of
ODEs. In Sect. 3 solvable structures for third-order ODEs admitting so(3,C) are
constructed from the generators of the algebra by exploiting some results presented
in [20, 21].

Once a procedure to compute solvable structures has been established, in Sect. 4
a complete set of first integrals for third-order ODEs admitting the Lie symmetry
algebra so(3,C) is computed in terms of a fundamental set of solutions to a second-
order linear equation. Besides, from the corresponding implicit solution, the general
solution of the equation is obtained in parametric form and expressed in terms of the
solutions to a related second-order linear equation.

Finally, in Sect. 5 our method is illustrated with two examples of equations admit-
ting a three-dimensional Lie symmetry algebra isomorphic to so(3,C). Therefore
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the equations do not posses additional Lie point symmetries. The general solutions
of the equations considered in Example I and Example II are obtained in paramet-
ric form and expressed in terms of the Kummer functions and the modified Bessel
functions, respectively.

2 Solvable Structures for ODEs

In this section we recall the definition of solvable structure as well as its application
to integrate ODEs by quadratures. For a more extensive study the reader is referred to
[3–5, 19]. From this point on, functions and vector fields are assumed to be smooth
and well defined on an open and simply connected subset D of either Rn or an
n-dimensional manifold Mn .

Definition 1 ([20, Def. 2.1]) LetA = {A1, . . . ,Ar } be a system of r < n indepen-
dent vector fields on D which are in involution.

1. A smooth vector fieldX on D is called a symmetry ofA if the following conditions
hold:

a. A1, . . . ,Ar , and X are independent;
b. [X,Ai ] ∈ span(A ), for 1 ≤ i ≤ r.

2. LetS = 〈 X1, . . . ,Xn−r 〉be anordered set of independent vector fields on D.The
ordered system A ∪ S = 〈 A1, . . . ,Ar ,X1, . . . ,Xn−r 〉 is a solvable structure
with respect to A if

a. S j = {
A1, . . . ,Ar ,X1, . . . ,X j

}
is in involution, for j = 1, . . . , n − r;

b. X1 is a symmetry of A ;
c. X j+1 is a symmetry of S j , for j = 1, . . . , n − r − 1.

The integrability by quadratures can be characterized by means of solvable struc-
tures:

Proposition 1 ([4, Prop. 6]) An involutive systemA is locally integrable by quadra-
tures if and only if there exists a solvable structure with respect to A .

Solvable structures provide a systematic method to obtain a set of functionally
independent first integrals {I1, . . . , In−r } common to the system of vector fields A ,
based on the integration by quadratures of n − r one forms which have particular
closure properties. The reader can consult [3–5, 19] for a deep study on this method.

With the goal of applying solvable structures in the context of ODEs, let us recall
that for a given ODE of the form

θn = F(r, θ, θ1, . . . , θn−1), (1)

where r denotes the independent variable, θ is the dependent variable and θ j = d j θ
dr j

for j = 1, . . . , n, the vector field A associated to Eq. (1) is given by
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A = ∂r + θ1∂θ1 + · · · + F(r, θ, θ1, . . . , θn−1)∂un−1 . (2)

Therefore, if we consider the (trivially) involutive system of vector fields A
formed by just the vector field (2) associated to an nth-order ODE (1), then Propo-
sition1 provides the following corollary:

Corollary 1 An nth-order ODE (1) is locally integrable by quadratures if and only
if there exists a solvable structure with respect to the vector field (2) associated to
the equation.

3 Solvable Structures from so(3,C) for Third-Order ODEs

Let us consider a third-order ODE

θ3 = ϕ(r, θ, θ1, θ2), (3)

where θ j = d j θ
dr j for 1 ≤ j ≤ 3, and letM ⊂ C

2 be an open set of the projection of the
domain of ϕ to the corresponding zero-order jet space. We denote by A(r,θ) = ∂r +
θ1∂θ + θ2∂θ1 + ϕ(r, θ, θ1, θ2)∂θ2 the vector field associated to Eq. (3) and suppose
that Eq. (3) admits the Lie symmetry algebra so(3,C).

A basis of generators {u1,u2,u3} of the algebra satisfying the following commu-
tation relations can be chosen [13]:

[u1,u2] = u3, [u1,u3] = −u2, [u2,u3] = u1. (4)

The commutation relations (4) show that the Lie symmetry algebra so(3,C) is non-
solvable, therefore the Lie reduction method cannot be applied to stepwise reduce
the order of Eq. (3). Furthermore, if we use any of the Lie point symmetries ui , for
i = 1, 2, 3, to reduce the order of Eq. (3), then the remaining symmetry generators
are lost as Lie point symmetries of the corresponding reduced equation.

Our goal in this section is to construct a solvable structure with respect to A(r,θ)

from the basis elements of so(3,C). By using the properties of the Lie bracket it can
be checked that the vector fields

v1 = u2 − iu3, v2 = u2 + iu3, v3 = iu1, (5)

satisfy the commutation relations:

[v1, v3] = v1, [v1, v2] = 2v3, [v3, v2] = v2. (6)

Observe that, by (6), the system of vector fields
{
A(r,θ), v

(2)
i , v(2)

3

}
is involutive

for i = 1, 2, hence, by Frobenius’ Theorem, there exists a non-constant function
Ii = Ii (r, θ, θ1, θ2) such that
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⎧
⎨

⎩

A(r,θ)(Ii ) = 0,
v(2)
i (Ii ) = 0,
v(2)
3 (Ii ) = 0.

(7)

Conditions (7) imply that v(2)
2 (I1) �= 0 and v(2)

1 (I2) �= 0 because A(r,θ), v
(2)
1 , v(2)

2

and v(2)
3 are pointwise linearly independent vector fields defined on the four dimen-

sional space of variables (r, θ, θ1, θ2). Therefore the functions

F1 = 1

v(2)
1 (I2)

and F2 = 1

v(2)
2 (I1)

(8)

are locallywell defined.Besides, it can be checked that F1 and F2 satisfy the following
conditions [20, Lemma4.2]:

⎧
⎨

⎩

v(2)
3 (F1) = F1,

A(r,θ)(F1) = 0,
v(2)
2 (F1) = 0,

⎧
⎨

⎩

v(2)
3 (F2) = −F2,

A(r,θ)(F2) = 0,
v(2)
1 (F1) = 0,

(9)

and, in consequence, by using (5), the following lemma is proved:

Lemma 1 The functions F1 and F2 defined in (8) satisfy

⎧
⎨

⎩

u(2)
1 (F1) = −i F1,

A(r,θ)(F1) = 0,
u(2)
2 (F1) = −iu(2)

3 (F1),

⎧
⎨

⎩

u(2)
1 (F2) = i F2,

A(r,θ)(F2) = 0,
u(2)
2 (F2) = iu(2)

3 (F2).

(10)

The compatibility of the systems given in (10) can be used to prove that
both ordered sets 〈A(r,θ), iu

(2)
1 , F1(u

(2)
2 − iu(2)

3 ), F2(u
(2)
2 + iu(2)

3 )〉 and 〈A(r,θ), iu
(2)
1 ,

F2(u
(2)
2 + iu(2)

3 ), F1(u
(2)
2 − iu(2)

3 )〉 are solvable structures with respect to A(r,θ), as
spelled out in the following theorem:

Theorem 1 Let {u1,u2,u2} be a basis of generators of so(3,C) satisfying the com-
mutation relations (4) and let F1 and F2 be two functions satisfying (10). Then, both
ordered sets

〈A(r,θ), iu
(2)
1 , F1(u

(2)
2 − iu(2)

3 ), F2(u
(2)
2 + iu(2)

3 )〉 (11)

and
〈A(r,θ), iu

(2)
1 , F2(u

(2)
2 + iu(2)

3 ), F1(u
(2)
2 − iu(2)

3 )〉 (12)

are solvable structures with respect to A(r,θ).

Proof Since it is assumed that Eq. (3) admits the Lie symmetry algebra so(3,C), we
have that

[u(2)
i ,A(r,θ)] = ρi A(r,θ), ρi ∈ C∞(M) for i = 1, 2, 3. (13)
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It can be checked by using (4), (13) and Lemma1 that the following commutation
relations hold:

[A(r,θ), iu
(2)
1 ] = −iρ1A(r,θ), [A(r,θ), F1(u

(2)
2 − iu(2)

3 )] = F1(iρ3 − ρ2)A(r,θ)

[A(r,θ), F2(u
(2)
2 + iu(2)

3 )] = −F2(ρ2 + iρ3)A(r,θ),

[iu(2)
1 , F1(u

(2)
2 − iu(2)

3 )] = [iu(2)
1 , F2(u

(2)
2 + iu(2)

3 )] = 0,

[F1(u
(2)
2 − iu(2)

3 ), F2(u
(2)
2 + iu(2)

3 )] = 2F1F2iu
(2)
1 ,

which prove that (11) and (12) are solvable structures with respect to A(r,θ).

4 First Integrals and Parametric General Solution

Once either the solvable structure (11) or (12) is explicitly computed, a complete set
of first integrals to Eq. (3) can be obtained by following the method presented in [4]
(see also [3, 5, 19]). However, let us observe that both functions F1 and F2 defined
in (8) are necessary for the construction of the solvable structures (11) and (12)
and, by Lemma1, such functions are already first integrals of the original equation.
Furthermore, it can be checked that both sets {I1, I2, F1} and {I1, I2, F2} are complete
sets of first integrals to Eq. (3) [20]. Therefore, in this section we focus on obtaining
an explicit expression for the functions I1, I2 and F1.

The action of the Lie group SO(3,C), with Lie algebra so(3,C), on any two-
dimensional complex manifold can be modelled by the Lie algebra spanned by the
vector fields [13]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1 = ∂θ ,

u2 = 1

2
(1 + r2) cos θ∂r + 1

2
(r − r−1) sin θ∂θ ,

u3 = −1

2
(1 + r2) sin θ∂r + 1

2
(r − r−1) cos θ∂θ .

(14)

The corresponding vector fields given in (5) become

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v1 = 1

2
(1 + r2)eiθ ∂r − i

2
(r − r−1)eiθ ∂θ ,

v2 = 1

2
(1 + r2)e−iθ ∂r + i

2
(r − r−1)e−iθ ∂θ ,

v3 = i∂θ .

(15)

It can be checked that by means of the local change of variables
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x = −1

r
e−iθ , u = re−iθ , (16)

the symmetry generators (15) are respectively mapped into

v1 = ∂x + ∂u, v2 = x2∂x + u2∂u, v3 = x∂x + u∂u, (17)

which satisfy the commutation relations (6). In fact, the vector fields (17) correspond
with the basis elements of one of the canonical representations of sl(2,C) considered
in [22, Case 3 in Table1]. The most general third-order ODE admitting the Lie
symmetry algebra sl(2,C) spanned by (17) is [22, Case 3 in Table2]:

u3 = 3u22
2u1

− u21
2(u − x)2C(s)

, where s = (2u1 + 2u21 + u2(−u + x))u−3/2
1 . (18)

A complete set of first integrals {I1, I2, F1} for a SL(2)-invariant third-order equation
of the form (18) was reported in [22]: If ψ1 and ψ2 are two linearly independent
solutions to the second-order linear equation

ψ ′′(s) + s C(s)2 − C ′(s)
C(s)

ψ ′(s) + 4C(s)2ψ(s) = 0, (19)

then a complete set of first integral for Eq. (18) is given by

I1 = 2
√
u1C(s)ψ1(s) + ψ ′

1(s)

2
√
u1C(s)ψ2(s) + ψ ′

2(s)
, I2 = 2

√
u1x C(s)ψ1(s) + uψ ′

1(s)

2
√
u1x C(s)ψ2(s) + uψ ′

2(s)
, (20)

F1 =
(
2C(s)x

√
u1ψ2(s) + uψ ′

2(s)
)2

2
√
u1C(s)(u − x)W (ψ1, ψ2)(s)

,

where W (ψ1, ψ2) denotes the Wronskian determinant of ψ1 and ψ2. By expressing
the first integrals given in (20) in terms of the original coordinates {r, θ, θ1, θ2} we
obtain a complete set of first integrals for the original SO(3)-invariant third-order
Eq. (3). The expressions of such first integrals are presented in the following theorem:

Theorem 2 A complete set of first integrals for a third-order ODE admitting the Lie
symmetry algebra so(3) spanned by (14) is given by

I1 =
2r

√
1 + r2θ2

1C (̂s)ψ1(̂s) + (iθ1r + 1)ψ ′
1(̂s)

2r
√
1 + r2θ2

1C (̂s)ψ2(̂s) + (iθ1r + 1)ψ ′
2(̂s)

,

I2 =
2
√
1 + r2θ2

1C (̂s)ψ1(̂s) − (r + ir2θ1)ψ ′
1(̂s)

2
√
1 + r2θ2

1C (̂s)ψ2(̂s) − (r + ir2θ1)ψ ′
2(̂s)

,
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F1 =
e−iθ

(
2
√
1 + r2θ2

1C (̂s)ψ2(̂s) − (r + ir2θ1)ψ ′
2(̂s)

)2

2(1 + r2)(1 + irθ1)
√
1 + θ2

1 r
2C (̂s)W (ψ1, ψ2)(̂s)

,

where {ψ1, ψ2} is a fundamental set of solutions to the second-order linear Eq. (19)
and ŝ = 2(r3θ2+rθ2−θ1(−2−r2θ2

1 +r4θ2
1 ))

(−1−θ2
1 r

2)3/2
.

In what follows we focus on obtaining the general solution of Eq. (3) by solving
the corresponding transformed Eq. (18). Such solution is implicitly defined by

I1(x, u, u1, u2) = C1, I2(x, u, u1, u2) = C2, F1(x, u, u1, u2) = C3, (21)

where the expressions of I1, I2 and F1 are given in (20) and Ci ∈ C for i =
1, 2, 3. Since both functions ψ1 and ψ2 are evaluated in s = (2u1 + 2u21 + u2(−u +
x))u−3/2

1 , it seems impossible to obtain an explicit solution from (21). With the aim
of overcoming such difficulty, we focus on obtaining the general solution in para-
metric form, as in [22]. Thus, we introduce a new parameter t such that s = s(t) is
determined as follows

s ′(t) = 1

C(s(t))
.

It can be checked that ifψ1 = ψ1(s) andψ2 = ψ2(s) is a fundamental set of solutions
to the second-order linear Eq. (19), then φ1(t) = ψ1(s(t)) and φ2(t) = ψ2(s(t)) are
two linearly independent solutions to the linear equation

φ′′(t) + s(t)φ′(t) + 4φ(t) = 0, (22)

and the implicit solution (21) becomes

2
√
u1φ1(t) + φ′

1(t)

2
√
u1φ2(t) + φ′

2(t)
= C1,

2
√
u1xφ1(t) + uφ′

1(t)

2
√
u1xφ2(t) + uφ′

2(t)
= C2,

(
2x

√
u1φ2(t) + uφ′

2(t)
)2

2
√
u1(u − x)W (φ1, φ2)(t)

= C3.

(23)
From (23), the following parametrized solution to Eq. (18) is obtained:

x(t) = C3(C1 − C2)(C2φ
′
2(t) − φ′

1(t))

C1φ
′
2(t) − φ′

1(t)
, u(t) = C3(C1 − C2)(C2φ2(t) − φ1(t))

C1φ2(t) − φ1(t)
,

(24)
where φ1 and φ2 are two linearly independent solutions to Eq. (22), Ci ∈ C for
i = 1, 2, 3 andC1 �= C2. As a consequence, by expressing the parametrized solution
(24) in terms of the original coordinates by means of (16), the following theorem has
been proved:

Theorem 3 The general solution of a third-order ODE admitting the Lie symmetry
algebra so(3,C) spanned by (14) is given in parametric form through
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r(t) =
(

(C2φ2(t) − φ1(t))(C1φ
′
2(t) − φ′

1(t))

(φ1(t) − C1φ2(t))(C2φ
′
2(t) − φ′

1(t))

)1/2

,

θ(t) = i

2
ln

(
C2
3 (C1 − C2)

2(C2φ2(t) − φ1(t))(C2φ
′
2(t) − φ′

1(t))

(φ1(t) − C1φ2(t))(C1φ
′
2(t) − φ′

1(t))

)
,

(25)

where Ci ∈ C for i = 1, 2, 3, C1 �= C2, and φ1 and φ2 are two linearly independent
solutions to Eq. (22).

5 Examples

5.1 Example I

As a first example, we consider the following third-order equation:

(r3θ5
1 − r3θ3θ2

1 + 3r3θ1θ2
2 + 3θ2

1 r
2θ2 + 4θ3

1 r − rθ3 − 3θ2)(1 + r2)2

(θ2
1 r

2 + 1)3
= 1. (26)

It can be checked that the Lie symmetry algebra of Eq. (26) is three-dimensional and
corresponds to the nonsolvable algebra so(3,C) spanned by the vector fields given
in (14). By means of the local change of coordinates (16), Eq. (26) is mapped into:

(x − u)2(3u22 − 2u1u3)

u31
= −4i, (27)

which corresponds with the SL(2)-invariant third-order Eq. (18) for the particular
case of

C(s) = i

4
.

Once the function C = C(s) has been identified, we can apply Theorem2 to obtain
the following first integrals to Eq. (26):

I1 =
ir

√
1 + r2θ2

1ψ1(̂s) + 2(iθ1r + 1)ψ ′
1(̂s)

ir
√
1 + r2θ2

1ψ2(̂s) + 2(iθ1r + 1)ψ ′
2(̂s)

,

I2 =
i
√
1 + r2θ2

1ψ1(̂s) − 2(r + ir2θ1)ψ ′
1(̂s)

i
√
1 + r2θ2

1ψ2(̂s) − 2(r + ir2θ1)ψ ′
2(̂s)

,
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F1 =
e−iθ

(
i
√
1 + r2θ2

1ψ2(̂s) − 2(r + ir2θ1)ψ ′
2(̂s)

)2

2i(1 + r2)(1 + irθ1)
√
1 + θ2

1 r
2W (ψ1, ψ2)(̂s)

,

where {ψ1, ψ2} is a fundamental set of solutions to the second-order linear equation

ψ ′′(s) − s

4i
ψ ′(s) − 1

4
ψ(s) = 0

and

ŝ = 2
(
r3θ2 + rθ2 − θ1(−2 − r2θ2

1 + r4θ2
1 )

)

(−1 − θ2
1 r

2)3/2
.

Nowwe proceed to compute the general solution to the original Eq. (26) in parametric
form.With this aim, we introduce a new parameter t such that s = s(t) is determined
as follows:

s ′(t) = 1

C(s(t))
= −4i,

which yields
s(t) = −4i t.

As a consequence, the general solution to Eq. (26) can be given in parametric form
by means of two linearly independent solutions to the second-order linear equation

φ′′(t) − 4i tφ′(t) + 4φ(t) = 0. (28)

Let M(a; b; z) andU (a; b; z) denote the Kummer functions of first and second kind,
respectively, with parameters values a = 1

2 + 1
2 i and b = 3

2 . It can be checked that
two linearly independent solutions to Eq. (28) become

φ1(t) = t M(a; b; 2i t2) and φ2(t) = t U (a; b; 2i t2). (29)

Therefore, the general solution to Eq. (26) is given in parametric from through (25),
where the functions φ1 and φ2 are given in (29).

5.2 Example II

Let us consider the third-order equation

(θ5
1 r

3 − θ3r3θ2
1 + 3r3θ1θ2

2 + 3θ2
1 r

2θ2 − θ3r + 4θ3
1 r − 3θ2)(r2 + 1)2

(θ2
1 r

2 + 1)3/2(−θ2r − θ2r3 − 2θ1 − θ3
1 r

2 + θ3
1 r

4)
= 1. (30)
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It can be checked that its Lie symmetry algebra is three-dimensional and spanned by
the vector fields given in (14). By means of the local change of coordinates (16) we
obtain the following transformed equation:

(x − u)2(3u22 − 2u1u3)

2(2u21 + 2u1 + xu2 − uu2)u
3/2
1

= 1,

which corresponds with the SL(2)-invariant third-order ODE (18) for the particular
case of

C(s) = −1

2s
, s = (2u1 + 2u21 + u2(−u + x))u−3/2

1 .

In this example we directly computed the general parametric solution, although a
complete set of first integrals can be deduced by using Theorem2 in the same way
that in the previous example. The condition

s ′(t) = 1

C(s(t))
= −2s(t)

yields
s(t) = e−2t .

By Theorem3, the general solution to Eq. (30) is given in parametric form through
(25), where φ1 and φ2 are two linearly independent solutions to the second-order
linear equation

φ′′(t) + e−2tφ′(t) + 4φ(t) = 0. (31)

If Iν1 and Kν2 stand for the modified Bessel functions of the first and second kinds,
respectively, with parameters ν1 = − 1

2 + i and ν2 = 1
2 − i , then it can be checked

that two linearly independent solutions to Eq. (31) become:

φ1(t) = exp

{
−1

4
e−2t − t

} (
Iν1

(
−1

4
e−2t

)
+ I−ν1

(
−1

4
e−2t

))
,

φ2(t) = exp

{
−1

4
e−2t − t

} (
Kν2

(
−1

4
e−2t

)
− Kν2

(
−1

4
e−2t

))
.

These functions φ1 and φ1 permit to obtain the exact general solution to Eq. (30) in
parametric form through (25).
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6 Concluding Remarks

Solvable structures have been explicitly constructed for third-order ODEs with Lie
symmetry algebra isomorphic to so(3,C). For this type of equations, the computation
of such solvable structures allows to obtain a complete set of first integrals expressed
in terms of solutions to a second-order linear equation. The general solution has been
also obtained in parametric form and in terms of the solutions to a related second-
order linear ODE. The presented results complement the study on the integrability of
third-order ODEs admitting non-solvable symmetry algebra of dimension 3 initiated
in [20–22] for the case of sl(2,R).

Finally, our method has been successfully applied to two examples corresponding
with two third-order equations whose Lie symmetry algebra is three-dimensional and
isomorphic to so(3,C).
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Classification of Scalar Fourth Order
Ordinary Differential Equations
Linearizable via Generalized
Lie–Bäcklund Transformations

Hina M. Dutt and Asghar Qadir

Abstract Lie had shown that there is a unique class of scalar second order ordinary
differential equations (ODEs) that can be converted to linear form by point transfor-
mations. Mahomed and Leach had shown that for higher order (than 2) scalar ODEs
there are always three classes. Separately, Chern had linearized two classes of third
order ODEs by using contact transformations. We provided an (inclusive) classifica-
tion for third order ODEs by using a generalization of contact transformations. Here
we extend that work to the fourth order using a generalization of the Lie–Backlund
transformation and demonstrate that there are (at least) four classes of fourth order
linearizable ODEs.

Keywords Generalized Lie–Bäcklund transformations · Linearization · System of
two second order ODEs

1 Introduction

One of themethods for solving nonlinearDifferential Equations (DEs) is to transform
them to linear form. This procedure, which is called linearization, is a special case
of the equivalence problem. Two DEs are said to be equivalent if there exists an
invertible transformation which maps one equation into another. The transformation
can be a point transformation that involves the change of independent and dependent
variables or it can be contact that also depends on the 1st derivative of the dependent
variable. The equivalence property puts all DEs into classes of equivalent equations.
For 1st order ODEs, the problem is trivial as all 1st order scalar ODEs are equivalent
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to each other [15]. This is not so for 2nd order scalar ODEs. However, all linear 2nd
order scalar ODEs are equivalent and have 8 Lie point symmetry generators. Lie [11–
14] showed that a nonlinear 2nd order scalar ODE is transformable to a linear one, i.e.
linearizable, if it has exactly 8 Lie point symmetries. He proved that a linearizable
2nd order scalar ODE is semilinear and is at most cubic in the 1st derivative with the
coefficients of the ODE satisfying four constraints. These constraints, which involve
two auxiliary functions, were reduced to two (2nd order constraints) by Tressè [21].

For linearizablenth, (n ≥ 3)order scalarODEs,Mahomed andLeach [17] proved
that there are three equivalence classes with n + 1, n + 2 and n + 4 Lie point sym-
metries. According to Laguerre [9, 10], the canonical form of linear 3rd order scalar
ODEs is y′′′ + k(x)y = 0. Chern [1, 2] and Grebot [4, 5] used contact and restricted
point transformations respectively, to reduce 3rd order scalar ODEs to the above form
with constant k. The general 3rd order linearizable ODE was dealt with by Neut and
Petitot [18], and independently by Ibragimov andMeleshko (IM) [6, 7] who used the
Cartan approach and original Lie procedure of point transformations respectively, to
obtain the desired linearazibility criteria for it. The linearization problem of 4th order
scalar ODEs becamemore complicated andwas studied by Ibragimov,Meleshko and
Suksern (IMS) [8, 20]. They used point and contact transformations to linearize 4th
order scalar ODEs.

As mentioned above, Mahomed and Leach obtained three equivalence classes
of nth order scalar ODEs linearizable via point transformations and IMS provided
the necessary form of equations linearizable via contact transformations. But, there
was no attempt made to obtain classes of equations that are linearizable via higher
order derivative transformations. Recently, a new type of transformation, which was
called a generalized contact transformation, was introduced by Dutt and Qadir [3]. It
was used to obtain equivalence classes of generalized contact symmetries of higher
order linearizable scalar ODEs. The equivalence classes of 3rd order ODEs were
obtained and found to be four; namely with 5, 6, 7 and 15 generators [3]. Here,
we define a new class of transformations which we call generalized Lie–Bäcklund
transformations. We reduce scalar ODEs of order n to systems of ODEs of order
≤ n − 2. The point symmetries of the system correspond to the generalized Lie–
Bäcklund symmetries of the scalar ODE. This separates all linearizable ODEs in
equivalence classes on the basis of the number of generators of higher order derivative
transformations. We obtain the canonical form of scalar 4th order ODEs linearizable
via these transformations and perform the group classification of these equations.

The outline of the paper is as follows. In the subsequent section, we obtain the
canonical form of the 4th order scalar ODEs linearizable via our generalization
of the Lie–Bäcklund transformations and perform the group classification of these
equations. Concluding remarks are provided in the last section.

2 Generalized Lie–Bäcklund Transformations

A transformation of the form
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t = ϕ(x, y, y′, y′′, . . . , y(p)i ),

u = ψ(x, y, y′, y′′, . . . , y(p)),
ui = ψi (x, y, y

′, y′′, . . . , y(p)), i = 1, 2, . . . p

is called a Lie–Bäcklund transformation of order p if it satisfies the tangency condi-
tions up to order p:

ui = dui−1

dt
, i = 1, 2, . . . p. (1)

Lie–Bäcklund transformations depend on independent and dependent variables and
derivatives of the dependent variable up to some finite order.

Consider an nth order scalar ODE with (n ≥ 4)

y(n) = f (x, y, y′, y′′, . . . , y(n−1)). (2)

We define p to be

1 < p ≤ n

2
, i f n is even

1 < p ≤ n − 1

2
, i f n is odd.

We replace y(p) = z in (2) to form the following system of two ODEs

y(p) = z,

z(p) = f (x, y, z; z′z′′, . . . , z(p−1)), i f n is even,

and

y(p+1) = z′,
z(p+1) = f (x, y, z; z′z′′, . . . , z(p)), i f n is odd.

A point transformation

t = ϕ(x, y, z), u = ψ(x, y, z), v = ω(x, y, z), (3)

for the above system corresponds to a generalized Lie–Bäcklund transformation of
order p for the scalar ODE (2) with y(p) = z. These transformations depend on
the independent, dependent variables and the pth order derivative of the dependent
variable but do not require the tangency conditions (1) to hold.
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2.1 Group Classification

Consider the general form of a linear, scalar, 4th order ODE

y(4) = π(x) + γ(x)y + ρ(x)y′ + λ(x)y′′ + 	(x)y′′′. (4)

Taking y′′ = z will convert the above equation to a system of two 2nd order ODEs

y′′ = z,

z′′ = π(x) + γ(x)y + ρ(x)y′ + λ(x)z + 	(x)z′. (5)

Any system of second order non-homogeneous ODEs can be mapped invertibly to
one of the two canonical forms [22], given by

y′′ = g1(x)y + g2(x)z,

z′′ = g3(x)y + g4(x)z, (6)

or

y′′ = k1(x)y
′ + k2(x)z

′,
z′′ = k3(x)y

′ + k4(x)z
′. (7)

Since (5) has a nonzero coefficient of z (i.e. 1), so it can only be identified with (6).
This makes all coefficient functions in (5) zero except γ(x) and λ(x). Hence, we
have the following reduced system of linear second order ODEs

y′′ = z,

z′′ = γ(x)y + λ(x)z. (8)

This is the reduced form of the system of ODEs that is obtained from a linear scalar
4th order ODE. The transformation which is used for the conversion of (5)–(8) is
provided in [22] [eq. (5)].

To obtain equivalence classes of generalized Lie–Bäcklund symmetries for the
scalar Eq. (4), we perform the point symmetry group classification for the system
(8). For this purpose, suppose X(2), given by

X(2) = ξ(x, y, z)
∂

∂x
+ η1(x, y, z)

∂

∂y
+ η2(x, y, z)

∂

∂z
+ η(1)1 (x, y, z)

∂

∂y′

+η
(1)
2 (x, y, z)

∂

∂z′
+ η

(2)
1 (x, y, z)

∂

∂y′′ + η
(2)
2 (x, y, z)

∂

∂z′′
, (9)

be the symmetry generator of the system (8). The symmetry conditions give us the
following set of determining PDEs
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ξ,yy = ξ,yz = ξ,zz = 0, η1,zz = η2,yy = 0, η1,yy − 2ξ,xy = 0, (10)
η2,zz − 2ξ,xz = 0, η1,yz − ξ,xz = 0, η2,yz − 2ξ,xy = 0, η1,xz − zξ,z = 0, (11)

2η1,xy − ξ,xx − 3zξ,y − γyξ,z − λzξ,z = 0, η2,xy − λyξ,y − γzξ,y = 0, (12)
2η2,xz − ξ,xx − zξ,y − 3γyξ,z − 3λzξ,z = 0, (13)

−η2 + η1,xx + zη1,y − 2zξ,x + γyη1,z + λzη1,z = 0, (14)
ξyγ,x + ξzλ,x + η1γ + η2λ − η2,xx − zη2,y − γyη2,z + 2γyξ,x

−λzη2,z + 2λzξ,x = 0. (15)

The above system has the following set of solutions

ξ = a1(x), η1 =
(a1,x

2
+ c3

)
y + c1z + v(x), η2 = c2y +

(a1,x
2

+ c4
)
z + w(x), (16)

where (v,w) solves (8), ci , (i = 1, 2, 3, 4) are arbitrary constants and a1(x) satisfies

a1,xxx + 2c1γ − 2c2 = 0, (17)
2a1,x − c1λ − c3 + c4 = 0, (18)

2γa1,x + a1γ,x + (c3 − c4)γ + c2λ = 0, (19)
a1,xxx − 4λa1,x − 2λ,xa1 − c1γ + c2 = 0. (20)

We now consider different cases for γ(x) to be zero, nonzero constant and an arbi-
trary function of x .

Case I γ = 0
With the substitution γ = 0 in (19), it becomes

c2λ = 0, (21)

which prompts the consideration of the following cases.

Case I.1 γ = 0, λ = 0
From (18),wegeta1 = (c3 − c4)

x
2 + c5, so thatwehave ξ = (c3 − c4)

x
2 + c5. There-

fore, in this case, we get the following 8−dimensional Lie algebra

X1 = ∂

∂x
, X2 = ∂

∂y
, X3 = x

∂

∂y
, X4 = y

∂

∂y
+ z

∂

∂z
, (22)

X5 = z
∂

∂y
, X6 = x

∂

∂x
+ 2y

∂

∂y
, X7 = 1

6
x3

∂

∂y
+ x

∂

∂z
, X8 = 1

2
x2

∂

∂y
+ ∂

∂z
.

Case I.2 γ = 0, λ = λ0 �= 0
From (21) we get c2 = 0. From (20) we have a1,x = 0 which implies that a1 = c5.
Hence we get a 7−dimensional Lie algebra. The first four operators are given by
(22) and the other three are

X5 = z
∂

∂y
+ λ0z

∂

∂z
, X6 = e

√
λ0x ∂

∂y
+ λ0e

√
λ0x ∂

∂z
, X7 = e−√

λ0x ∂

∂y
+ λ0e

−√
λ0x ∂

∂z
.
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Case I.3 γ = 0, λ = λ(x)
By taking λ(x) to be an arbitrary function of x , like ex or (x ± c)m, m �= −2, we
get the following 5−dimensional Lie algebra

Yi = v j
∂

∂y
+ w j

∂

∂z
, i = 1, 2, 3, 4, (23)

Y5 = y
∂

∂y
+ z

∂

∂z
,

where (v j , w j ) are linearly independent solutions of (8). In the latter example, λ =
(x ± c)−2 comes in the following special case.
Case I.3.1 γ = 0, λ(x) = (cx + d)−2

This case produces a 6−dimensional Lie algebra. The first four operators are given
by (23), while the extra two operators are

Y5 = y
∂

∂y
+ z

∂

∂z
, Y6 = x

∂

∂x
− 2z

∂

∂z
.

Case II γ(x) �= 0
Here, we have two subcases: either γ is a constant or non constant function of x .
This gives rise to the following sub subcases.

Case II.1 γ = γ0, λ = 0
This case produces a1 = c5 and c2 = γc1. Hence, we have a 7−dimensional Lie
algebra. The first four generators are given by (23) and extending generators are

Y5 = ∂

∂x
, Y6 = y

∂

∂y
+ z

∂

∂z
, Y7 = z

∂

∂y
+ γ0y

∂

∂z
.

Case II.2 γ = γ0, λ = λ0

In this case, we have a 7−dimensional Lie algebra with Y1, Y2, Y3 and Y4 given by
(23). The additional three operators are

Y5 = ∂

∂x
, Y6 = y

∂

∂y
+ z

∂

∂z
, Y7 = z

∂

∂y
+ (γ0y + λ0z)

∂

∂z
.

Case II.3 γ = γ(x) �= 0, λ = λ0

Here we get a 5−dimensional Lie algebra with first four operators given by (23).
The additional operator is

Y5 = y
∂

∂y
+ z

∂

∂z
.

Case II.4 γ = γ(x) �= 0, λ = λ(x)
This case produces the Lie algebra of case I.3.

The system of PDEs (10)−(15) provides us four equivalence classes with 5, 6, 7
and 8 symmetries. These Lie point symmetries of (8) correspond to the generalized
Lie–Bäcklund symmetries of order 2 for a scalar 4th order linear ODE. Thus we have
the following theorem.
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Theorem 1 A linear scalar 4th order ODE can have one of 5, 6, 7 and 8 generators
of the generalized Lie–Bäcklund transformations of order 2.

3 Conclusion

In this paper, we addressed the problem of classification of ODEs linearizable via
higher order derivative transformations which we called generalized Lie–Bäcklund
transformations. We obtained four equivalence classes of generators of these trans-
formations for linear scalar 4th order ODEs. We can carry out the same procedure
for higher order ODEs to get the classes of systems of ODEs by reducing them to
systems of order two lower and finding the point symmetries of the reduced systems.
We can also reduce scalar nth order ODEs to systems of lower order with dimension
three or more.

In reducing the equations to systems of 2nd order ODEs, we have the advantage
of geometric linearization [19], where we can find the solution of the systems eas-
ily by employing the coordinate transformations as the linearizing transformations.
Similarly, any system of ODEs of order n ≥ 3 can be reduced in m steps to a system
of second order ODEs to use the power of geometry. In this way, we can relate the
higher order symmetries of the scalar ODEs with the point symmetries of reduced
systems and can find the equivalence classes of the higher order ODEs. The m steps
of reduction of an ODE can be shrunk into one step by defining the second or higher
order derivative to be a new dependent variable. In this way, the point symmetries of
the reduced system correspond to the generalized Lie Bäcklund symmetries of the
corresponding scalar ODE.

This procedure could be carried out to reduce scalar nth order ODEs to systems
of lower order with three or more dimensions. As an example, consider the scalar
5th order ODE

y(5) = f (x, y; y′, y′′, y′′′, y(4)). (24)

By defining y′′ = z and z′ = u, we can reduce it to a system of three ODEs of order
two

y′′ = z, z′′ = u′, u′′ = f (x, y, z, u; y′, u′), (25)

and investigate the point symmetries of the reduced system. We can also reduce the
scalar ODE (24) to a system of two third ODEs

y′′′ = z′′, z′′′ = f (x, y, z; y′, z′, z′′), (26)

by defining y′′ = z′ and find the Lie point symmetries of the above system. It would
be interesting to find a connection between the equivalence classes of the systems
(25) and (26) and relate their point symmetries.
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On the Symmetries of a Liénard Type
Nonlinear Oscillator Equation

R. Mohanasubha, V. K. Chandrasekar, M. Senthilvelan
and M. Lakshmanan

Abstract In the contemporary nonlinear dynamics literature, the nonlinear
oscillator equation ẍ + kx ẋ + k2

9 x
3 + λ̃x = 0 is being analyzed in various contexts

both classically and quantummechanically.Classically this nonlinear oscillator equa-
tion has been shown to admit three different types of dynamics depending upon the
sign andmagnitude of the parameter λ̃, namely (i) λ̃ = 0, (ii) λ̃ > 0 and (iii) λ̃ < 0.By
considering its importance, in this paper, we present the symmetries of its Lagrangian
and underlying equation of motion for all the three cases. In particular, we present
Lie point symmetries, λ-symmetries, Noether symmetries and telescopic symmetries
of this equation. The utility of the symmetries for all the three cases is demonstrated
explicitly.

Keywords Nonlinear oscillators · Lie point symmetries · λ-symmetries · Noether
symmetries · Telescopic vector fields

1 Introduction

During the past ten years or so considerable interest has been shown on investigating
various properties associated with the Liénard type nonlinear oscillator equation,

R. Mohanasubha
Department of Physics, Anna University, Chennai 600025, India
e-mail: subhajeevi@gmail.com

V. K. Chandrasekar
School of Electrical and Electronics Engineering, Centre for Nonlinear Science
and Engineering, SASTRA University, Thanjavur 613401, India
e-mail: chandru25nld@gmail.com

M. Senthilvelan · M. Lakshmanan (B)
Centre for Nonlinear Dynamics, Bharathidasan University, Tiruchirappalli 620024, India
e-mail: lakshman.cnld@gmail.com

M. Senthilvelan
e-mail: senv0000@gmail.com

© Springer Nature Switzerland AG 2018
V. G. Kac et al. (eds.), Symmetries, Differential Equations and Applications,
Springer Proceedings in Mathematics & Statistics 266,
https://doi.org/10.1007/978-3-030-01376-9_5

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01376-9_5&domain=pdf
mailto:subhajeevi@gmail.com
mailto:chandru25nld@gmail.com
mailto:lakshman.cnld@gmail.com
mailto:senv0000@gmail.com
https://doi.org/10.1007/978-3-030-01376-9_5


76 R. Mohanasubha et al.

Δ(t, x, ẋ, ẍ) = ẍ + kx ẋ + k2

9
x3 + λ̃x = 0, (1)

where overdot denotes differentiation with respect to t , k and λ̃ are arbitrary parame-
ters [4, 8, 12, 15, 22, 24, 27]. Equation (1) arises in the study of equilibrium config-
urations of a spherical gas cloud acting under the mutual attraction of its molecules
and subject to the laws of thermodynamics [3]. Even though a more general equation
of this form with time dependent coefficients has been studied long ago consider-
able interest has been shown on this particular equation when two of the present
authors along with Bindu and Pandey have identified it as one of the linearizable
equations when a Lie symmetry analysis was carried out on the Liénard type equa-
tion ẍ + f (x)ẋ + g(x) = 0, where f (x) and g(x) are arbitrary functions of x [24].
Originally three of the present authors have proved the integrability of system (1) and
demonstrated that this equation admits a conservative non-standard Lagrangian and
Hamiltonian description [4]. They have also shown that the frequency of oscillations
of this system for λ̃ > 0 does not depend on the amplitude of oscillations thereby
showing that the amplitude dependence of frequency is not necessarily a fundamental
property of nonlinear dynamical phenomena [4].

The system (1) admits three different dynamics depending upon the sign of the
linear term in it. For example, for the choice λ̃ ≤ 0, the system (1) admits front like
solution and λ̃ > 0 displays explicit sinusoidal periodic solution [4].

This model has further been investigated by several authors under different per-
spectives [1, 5–7, 9, 15, 16, 22]. For example, it has been demonstrated that the
model (1) admits (i) integrating factors [1, 5, 7, 16], (ii) Lagrangian multipliers [22],
(iii)λ− symmetries [16], (iv)Darbouxpolynomials [15], and (v) alternateLagrangian
[9]. Equation (1) can be transformed (i) to a free particle equation through invertible
point transformation, (ii) to a harmonic oscillator equation through Sundman trans-
formation and (iii) to a linear third order ODE, w′′′ + λ̃w = 0, through a generalized
transformation [5–7, 15, 16].

In one of our earlier works, we have constructed a nonstandard Lagrangian, [4]

L1 = 27λ̃3

2k2

(
1

kẋ + k2
3 x

2 + 3λ̃

)
+ 3λ̃

2k
ẋ − 9λ̃2

2k2
, λ̃ �= 0 (2)

for this equation. Formany of our investigations we stick to the Lagrangian (2) and its
associated Hamiltonian (see Eq. (3) below) since when k → 0 both the Lagrangian
and Hamiltonian reduce to the linear harmonic oscillator Lagrangian and Hamilto-
nian, respectively, as the equation ofmotion does. In a recent work, two of the present
authors with Chithiika Ruby have also demonstrated the quantum solvability of its
Hamiltonian [8]

H = 9λ̃2

2k2

(
2 − 2

(
1 − 2kp

3λ̃

) 1
2 + k2x2

9λ̃
− 2kp

3λ̃
− 2k3x2 p

27λ̃2

)
, (3)



On the Symmetries of a Liénard Type Nonlinear Oscillator Equation 77

where

p = ∂L

∂ ẋ
= −27λ̃3

2k

(
1

(kẋ + k2
3 x

2 + 3λ̃)2

)
+ 3λ̃

2k
. (4)

By observing that the Hamiltonian (3) can also be equivalently considered in the
form

H(x, p) = x2

2m(p)
+U (p), − ∞ < p ≤ 3λ̃

2k
, (5)

where

m(p) = 1

λ̃
(
1 − 2k

3λ̃
p
) and U (p) = 9λ̃2

2k2

⎛
⎝

√
1 − 2k

3λ̃
p − 1

⎞
⎠ (6)

and recognizing that this form coincides with the position dependent mass Hamil-
tonian with the difference that the variables x and p are interchanged, the authors
went on to quantize the position dependent mass Schroedinger equation in momen-
tum space by augmenting with van Roos ordering. The explicit eigenvalues and
eigenvectors have been brought out in an elegant manner.

In this paper we present symmetries of various kinds for Eq. (1) and the non-
standard Lagrangian (2). The reason for consolidating this result is that as far as
symmetries are concerned some of the earlier studies are incomplete. For example,
eventhough Lie point symmetries are known for this equation for all the three para-
metric regimes the order reduction procedure has not been done so far for this system.
In this paper, we intend to complete it. As far as λ-symmetries are concerned even-
though a detailed investigation has been made on the λ̃ = 0 case, the analysis has
not been carried out for the λ̃ �= 0 cases. In this paper we carry out the λ-symmetry
analysis for the λ̃ �= 0 cases and present two independent λ-symmetries and their
associated independent integrals. Similarly eventhough Noether symmetries for the
nonstandard Lagrangian (2) with λ̃ = 0 has been reported it has not been analysed for
the λ̃ �= 0 cases.We present the Noether symmetries for the remaining two important
cases, namely (i) λ̃ > 0 and (ii) λ̃ < 0 as well. The telescopic vector fields, which
are more generalized vector fields that play important role when the Lie point sym-
metries and λ-symmetries are absent for a given second order nonlinear ordinary
differential equation, are also unknown for this equation. We construct the telescopic
vector fields also for Eq. (1).

The plan of the paper is as follows. In Sect. 2, we recall Lie point symmetries
of the nonlinear oscillator equation (1) and carry out order reduction procedure for
this equation. In Sect. 3, we carry-out the λ-symmetry analysis for the nonlinear
oscillator Eq. (1). To begin with, we recall the results that are reported for the case
λ̃ = 0. We then extend the analysis for the cases λ̃ �= 0 and give a complete picture.
In Sect. 4, we recall Noether’s theorem and apply this theorem to the model (1) and
derive Noether’s symmetries for all the three cases, namely (i) λ̃ > 0, (ii) λ̃ < 0 and
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(iii) λ̃ = 0. In Sect. 5, we present the telescopic vector fields for all the three cases.
We present our conclusions in Sect. 6.

2 Lie Point Symmetries of Eq. (1)

Let the evolution equation (1) be invariant under the one parameter Lie group of
infinitesimal transformations [2, 13, 23]

t̃ = t + εξ(t, x) + O(ε2), x̃ = x + εη(t, x) + O(ε2), ε � 1, (7)

where ξ and η represent the symmetries of Eq. (1) and they are functions of the
variables t and x . The associated infinitesimal generator can be written as

X = ξ(t, x)
∂

∂t
+ η(t, x)

∂

∂x
. (8)

Equation (1) is invariant under the action of (8) iff

X (2)(Δ)|Δ=0 = 0, (9)

where

X (2) = ξ
∂

∂t
+ η

∂

∂x
+ η(1) ∂

∂ ẋ
+ η(2) ∂

∂ ẍ
(10)

and η(1) and η(2) are first and second prolongations respectively, whose explicit
expressions can be found in Refs. [2, 13]. For the sake of completeness, we present
symmetries and order reduction procedure for each one of the cases separately.

2.1 Case 1: λ̃ = 0

First let us consider the choice λ̃ = 0. The invariance condition (9) reads (ẍ =
φ(t, x, ẋ))

ξ
∂φ

∂t
+ η

∂φ

∂x
+ η(1) ∂φ

∂ ẋ
− η(2) = 0. (11)

Solving the invariance condition (11), one obtains the following symmetry genera-
tors, namely [24]
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X1 = ∂

∂t
, X2 = t

(
1 − k

6
xt

)
∂

∂t
− k

3
x2t

(
1 − k

6
xt

)
∂

∂x
, X3 = x

∂

∂t
− k

3
x3

∂

∂x
,

X4 = xt
∂

∂t
+ x2

(
1 − k

3
xt

)
∂

∂x
, X5 = − k

6
xt2

∂

∂t
+ x

(
1 − k

3
xt + k2

18
x2t2

)
∂

∂x
,

X6 = t2
(
1 − k

6
xt

)
∂

∂t
+ xt

(
1 − k

2
xt + k2

18
x2t2

)
∂

∂x
,

X7 = k

2
t2

(
1 − k

9
xt

)
∂

∂t
+

(
1 − k2

6
t2x2 + k3

54
t3x3

)
∂

∂x
,

X8 = − k

6
t3

(
1 − k

6
xt

)
∂

∂t
+ t

(
1 − k

2
xt + k2

9
x2t2 − k3

108
x3t3

)
∂

∂x
. (12)

The nonlinear ODE (1) admits maximal symmetry generators and hence it is
linearizable [24]. The symmetry generators constitute sl(3, R) symmetry algebra.
Besides several applications, the symmetry generators can also be used to reduce the
order of the nonlinear ODE (1). In the following, we demonstrate this procedure by
considering the vector field X3 as an example.

Substituting the expression ξ = x and η = −k
3 x3 in the characteristic equation

dt
ξ

= dx
η

= dẋ
η(1) and integrating the resultant equation one finds the invariants u and

v as u = t − 3
kx , and v = 3x

k + x3

ẋ . The second-order invariant can be derived from
the relation w = dv

du . Evaluating and simplifying the resultant equation, we arrive

at dv
du = (kx3+3x ẋ)2

9ẋ2 = k2

9 v
2. Integrating this first order differential equation we find

v = − 9
9I1+k2u , where I1 is an integration constant. Substituting the expressions u and

v in this solution and rewriting the resultant equation for ẋ , we end up with

ẋ − kx(9I1x + k2t x − 3k)

3(9I1 + k2t)
= 0. (13)

Integrating Eq. (13) we obtain the general solution of the MEE equation in the fol-
lowing form,

x(t) = 6(9I1 + k2t)

kt (18I1 + k2t) + 6I2
, (14)

where I2 is the second integration constant. In a similar manner, one can carry out
the order reduction procedure for the rest of the vector fields. Since the procedure is
repetitive, one can move on to investigate the other two cases.
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2.2 Case 2: λ̃ > 0

In this case the corresponding symmetry generators are [24]

X1 = ∂

∂t
, X2 = − k

3λ̃
cos

√
λ̃t

∂

∂t
+

(
cos

√
λ̃t − k

3
√

λ̃
x sin

√
λ̃t

)
∂

∂x
,

X3 =
(
sin 2

√
λ̃t + k

3
√

λ̃
x cos 2

√
λ̃t

)
∂

∂t

+x

(√
λ̃ cos 2

√
λ̃t − 2k

3
x sin 2

√
λ̃t − k2

9
√

λ̃
x2 cos 2

√
λ̃t

)
∂

∂x
,

X4 =
(
cos 2

√
λ̃t − k

3
√

λ̃
x sin 2

√
λ̃t

)
∂

∂t

−x

(√
λ̃ sin 2

√
λ̃t + 2k

3
x cos 2

√
λ̃t − k2

9
√

λ̃
x2 sin 2

√
λ̃t

)
∂

∂x
,

X5 = x sin
√

λ̃t
∂

∂t
+ x2

(√
λ̃ cos

√
λ̃t − k

3
x sin

√
λ̃t

)
∂

∂x
,

X6 = x cos
√

λ̃t
∂

∂t
− x2

(√
λ̃ sin

√
λ̃t + k

3
x cos

√
λ̃t

)
∂

∂x
,

X7 = x
∂

∂t
−

(
3λ̃x

k
+ k

3
x3

)
∂

∂x
,

X8 = − k

3λ̃
sin

√
λ̃t

∂

∂t
+

(
sin

√
λ̃t + k

3
√

λ̃
x cos

√
λ̃t

)
∂

∂x
. (15)

The vector fields (15) can again be shown to form an sl(3, R) algebra.
In the following, we demonstrate the usefulness of the symmetry vector fields by

considering the vector field X7. The associated characteristic equation reads

dt

x
= dx

−( kx
3

3 + 3λ̃x
k )

= dẋ

− ẋ(k2x2+kẋ+3λ̃)

k

. (16)

Now integrating the aboveEq. (16)wefind the invariants u and v to be of the following
forms:

u =
tan−1

(
kx

3
√

λ̃

)
+

√
λ̃t√

λ̃
, v = x(k2x2 + 3kẋ + 9λ̃)

ẋ
. (17)
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The second-order invariant reads dv
du = 9λ̃ + v2

9 . Integrating the later we find v =
9
√

λ̃ tan(9I1
√

λ̃ +
√

λ̃u), where I1 is an integration constant. Substituting the expres-
sions u and v in this solution and rewriting the resultant equation for ẋ , we end up
with

ẋ + k2x3 + 9λ̃x

3

(
kx − 3

√
λ̃ tan

(√
λ̃(9I1 + t) + tan−1

(
kx

3
√

λ̃

))) = 0. (18)

Integrating Eq. (18) we obtain the general solution of (1) with positive values of λ̃ in
the following form,

x(t) = 3
√

λ̃ sin(
√

λ̃(9I1 + t))

I2
√

λ̃ − k cos(
√

λ̃(9I1 + t))
, (19)

where I2 is the second integration constant. One may extend the order reduction
procedure for the remaining vector fields too in a similar fashion. Now we move on
to the third case.

2.3 Case 3: λ̃ < 0

In this case, we find the equation is invariant under the following forms of symmetry
generators: [24]

X1 = ∂

∂t
, X2 = e2

√
λ̃t

[(
1 − k

3
√

λ̃
x

)
∂

∂t
+

[(
k

9
√

λ̃
x3 − 2k

3
x2 +

√
λ̃x

)
∂

∂x

]
,

X3 = e−2
√

λ̃t

[(
1 + k

3
√

λ̃
x

)
∂

∂t
−

(
k

9
√

λ̃
x3 + 2k

3
x2 +

√
λ̃x

)
∂

∂x

]
,

X4 = x
∂

∂t
−

(
k

3
x3 − 3λ̃

k
x

)
∂

∂x
, X5 = e

√
λ̃t

[
x

∂

∂t
−

(
k

3
x3 −

√
λ̃x2

)
∂

∂x

]
,

X6 = e−
√

λ̃t
[
x

∂

∂t
−

(
k

3
x3 +

√
λ̃x2

)
∂

∂x

]
, X7 = e

√
λ̃t

[
∂

∂t
−

(√
λ̃x − 3λ̃

k

)
∂

∂x

]
,

X8 = e−
√

λ̃t

[
∂

∂t
+

(√
λ̃x + 3λ̃

k

)
∂

∂x

]
. (20)

To obtain the general solution for this case, we consider the vector field X6.
Solving the characteristic equation associated with this vector field
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dt

xe−
√

λ̃t
= dx

−e−
√

λ̃t
(
kx3
3 +

√
λ̃x2

)
= dẋ

1

3
e−

√
λ̃t (kx2(

√
λ̃x − 3ẋ) − 3(−λ̃x2 +

√
λ̃x ẋ + ẋ2))

(21)

we obtain the invariants u and v of the form

u = − log(kx + 3
√

λ̃) +
√

λ̃t + log(x)√
λ̃

, (22)

v = 3(−k
√

λ̃x2 + 2kx ẋ − 3λ̃x + 3
√

λ̃ẋ)

2(kx4 + 3
√

λ̃x3 + 3x2 ẋ)
. (23)

The second-order invariant can be found from the relation w = dv
du . In this case, we

find
dv

du
= − (kx + 3

√
λ̃)2(kx2 − 3

√
λ̃x + 3ẋ)

3x2(kx2 + 3(
√

λ̃x + ẋ))
= −

(
k2

3
+ 2

√
λ̃v

)
. (24)

Integrating Eq. (24), we find v = e−2
√

λ̃u I1 − k2

6
√

λ̃
, where I1 is an integration con-

stant. Substituting the expressions u and v in this solution and rewriting the resultant
equation for ẋ , we end up with

ẋ + x(e2
√

λ̃t (kx − 3
√

λ̃) − 6I1(k
√

λ̃x + 3λ̃))

3(e2
√

λ̃t − 6I1
√

λ̃)
= 0. (25)

Integrating Eq. (25), we obtain the general solution of Eq. (1) with negative λ̃ in the
following form

x(t) = 3(
√

λ̃e2
√

λ̃t − 6I1λ̃)

3I2
√

λ̃e
√

λ̃t + 6I1
√

λ̃k + ke2
√

λ̃t
, (26)

where I2 is the second integration constant. One may verify that the remaining vector
fields can also be used to derive the above general solution of the given Eq. (1).

3 λ-Symmetries

Recently efforts have been made to generalize the classical Lie algorithm and obtain
integrals and general solution of nonlinear ODEs, in particular equations which lack
Lie point symmetries. One such generalization is the λ-symmetry approach [17].
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The method of finding λ-symmetries for a second-order ODE has been discussed in
depth by Muriel and Romero [18] and the advantage of finding such symmetries has
also been demonstrated by them. They also have developed an algorithm to deter-
mine integrating factors and integrals from λ-symmetries for second-order ODEs
[19]. The relation among λ-symmetries, Lie point symmetries and local-nonlocal
transformations for Liénard I and II-type equations was studied in Ref. [25]. The
vector fields associated with λ-symmetries are being denoted as v instead of X just
to differentiate λ-symmetries from Lie point symmetry vector fields.

A vector field v is a λ-symmetry of the second-order equation if there exists a
function such that

v[λ,(2)](Δ(t, x, ẋ, ẍ)) = 0 when Δ(t, x, ẋ, ẍ) = 0, (27)

where v[λ,(2)] is given by

v[λ,(2)] = ξ(t, x)
∂

∂t
+ η[λ,(0)](t, x)

∂

∂x
+ η[λ,(1)](t, x, ẋ)

∂

∂ ẋ
+ η[λ,(2)](t, x, ẋ, ẍ)

∂

∂ ẍ
,

(28)

with

η[λ,(0)] = η(t, x), (29)

η[λ,(1)] = (Dt + λ)η[λ,(0)](t, x) − (Dt + λ)(ξ)ẋ, (30)

η[λ,(2)] = (Dt + λ)η[λ,(1)](t, x, ẋ) − (Dt + λ)(ξ)ẍ . (31)

In the above prolongation formula if we put λ = 0, we end up with standard Lie
prolongation expressions. Solving the invariance condition (27) we can determine
the functions ξ , η and λ for the given equation. We note here that three unknowns ξ ,
η and λ have to be determined from the invariance condition (27). The procedure is
as follows.

Let us suppose that the second-order Eq. (1) has Lie point symmetries. In this case,
theλ-function can be determined in amore simplewaywithout solving the invariance
condition (27) as follows. If X is a Lie point symmetry of (1) and Q = η − ẋξ is
its characteristics, then v = ∂

∂x is a λ-symmetry of (1) for λ = D[Q]
Q [25]. The λ-

symmetry satisfies the invariance condition [19]

φx + λφẋ = D[λ] + λ2. (32)

Once the λ-symmetry is determined, we can obtain the first integrals in two differ-
ent ways. In the first way, we can calculate the integral directly from the λ-symmetry
using the four step algorithm given below. In the second way, we can find the inte-
grating factor μ from λ-symmetry directly. With the help of integrating factors and
λ-symmetries we can obtain the first integrals by integrating the system of Eq. (34)
given below. In the following, we enumerate both the procedures.
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(A) Method of finding the first integral directly from λ-symmetry [19]

The method of finding the integral directly from λ-symmetry is as follows:

1. Find a first integralw(t, x, ẋ) of v[λ,(1)], that is a particular solution of the equation
wx + λwẋ = 0, where the subscript denotes partial derivative with respect to that
variable and v[λ,(1)] is the first-order λ-prolongation of the vector field v.

2. Evaluate D[w] and express it in terms of (t,w) as D[w] = F(t,w).
3. Find a first integral G of ∂t + F(t,w)∂w.
4. Evaluate I (t, x, ẋ) = G(t,w(t, x, ẋ)).

(B) Method of finding integrating factors from λ [19]

If X is a Lie point symmetry of (1) and Q = η − ẋξ is its characteristics, then
v = ∂x is a λ-symmetry of (1) for λ = D[Q]/Q and any solution of the first-order
linear system

D[μ] +
(

φẋ − D[Q]
Q

)
μ = 0, μx +

(
D[Q]
Q

μ

)
ẋ

= 0, (33)

is an integrating factor of (1). Here D represents the total derivative operator and it
is given by ∂

∂t + ẋ ∂
∂x + φ ∂

∂ ẋ .
Solving the system of equations (33) one can get μ. Once the integrating factor μ

is known then a first integral I such that Iẋ = μ can be found by solving the system
of equations

It = μ(λẋ − φ), Ix = −λμ, Iẋ = μ. (34)

From the first integrals, we can write the general solution of the given equation.
In the following we apply the above method to Eq. (1)

3.1 Case 1: λ̃ = 0

Bhuvaneshwari et al. had studied the λ-symmetries for Eq. (1) with λ̃ = 0 [1]. They
have found the λ-symmetries from the Lie point symmetries by using the relation λ =
D[Q]
Q , where Q = η − ẋξ . For this purpose they considered the Lie point symmetries

X2 and X4 from Eq. (12). The expressions for Q turns out to be

Q1 = 1

18
(k2t2x3 − 6ktx2 + 3kt2x ẋ − 18t ẋ), Q2 = x2

(
1 − k

3
xt

)
− t x ẋ . (35)
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The two λ-functions are of the form

λ1 =
(
1 − 2

3ktx − k
6 t

2 ẋ + k2

18 t
2x2

)
t
(
1 − k

6 t x
) , λ2 = ẋ

x
− kx

3
. (36)

The associated λ-symmetry is v = ∂
∂x .

3.1.1 First Integrals from λ1 and λ2

By following the above discussed procedure, we have found

w(t, x, ẋ) =
(
1 − 1

3ktx + k
6 t

2 ẋ + k2

18 t
2x2

)
kt2

(
1 − k

6 t x
) . (37)

In the second step, we obtain determining equation for w as

D[w] = ktw2 − 3w

t
(38)

using λ1. In the third step, we obtain the function G(t,w) as

G(t,w) = 1

t3w
− k

t
. (39)

In the final step, we found the integral I1 as

I1 = k

6
t +

(
1 − k

6 t x
)

(
t ẋ − x + k

3 t x
2
) . (40)

In the same way, we have found the function w for λ2 as

w(x, ẋ) = ẋ

x
+ k

3
x . (41)

In the second step, we get the determining equation as

D[w] + w2 = 0. (42)

We get the function G in the third step as

G = t − 1

w
. (43)
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As the final step we get the integral as

I2 = t − x

ẋ + k
3 x

2
. (44)

From the integrals I1 and I2, we can write the general solution as

x(t) = t + I2
k
6 t

2 + k
3 t I2 − I1 I2

. (45)

3.1.2 Integrating Factors from λ1 and λ2

We can also find the integrating factors from λ1 and λ2 using the relation (33).
Substituting the function λ1 in Eq. (33) we get

μ1x +
⎛
⎝

(
1 − 2

3ktx − k
6 t

2 ẋ + k2

18 t
2x2

)
t
(
1 − k

6 t x
) μ1

⎞
⎠

ẋ

= 0. (46)

The characteristic equation associated with Eq. (46) is given by

dx

1
= dẋ(

1− 2
3 ktx− k

6 t
2 ẋ+ k2

18 t
2x2

)
t(1− k

6 t x)

= dμ1

− kt2

6(t− 1
6 kt

2x)
μ1

. (47)

Integrating (47) we find the integrals to be of the form

C1 =
(
1 − 1

3ktx + k
6 t

2 ẋ + k2

18 t
2x2

)
kt2

(
1 − k

6 t x
) , C2 =

(
t − 1

6
kt2x

)
μ1. (48)

From the above, we obtain the general solution as

μ1 = −
C1

[
t

((
1− 1

3 ktx+ k
6 t

2 ẋ+ k2

18 t
2x2

)
kt2(1− k

6 t x)

)]
(
t − 1

6kt
2x

) . (49)

Choosing the function C1 appropriately we get

μ1 = − k2t
(
1 − k

6 t x
)

6
(
1 − 1

3ktx + k
6 t

2 ẋ + k2
18 t

2x2
)2 . (50)
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We find that the expression (50) also satisfies the first equation in (33) as well and
thus forms a compatible solution to the system of equation (33).

To determine the integrating factor associated with λ2 directly we first solve the
second equation in (33), that is

μ2x +
(
ẋ

x
− k

3
x

)
μ2ẋ + 1

x
μ2 = 0. (51)

The characteristic equation associated with the above equation can be written as

dx

1
= dẋ

ẋ
x − k

3 x
= dμ2

μ2

x

. (52)

Integrating (52) we find the integral as

μ2 = − x(
ẋ + k

3 x
2
)2 . (53)

We find that the above expression also satisfies the first equation in (33).

3.2 Case 2: λ̃ �= 0

In the earlier case where λ̃ = 0, we fixed the λ-symmetries from the set of Lie point
symmetries itself. For the two cases λ̃ > 0 and λ̃ < 0 we derive the λ-symmetries
by solving the associated invariance condition which has not been considered so far
for this equation. To determine the λ-symmetry for Eq. (1), we solve the following
determining equation

D[λ] + λ2 + λkx + kẋ + k2

3
x2 + λ̃ = 0. (54)

To obtain a particular solution of Eq. (54), we assume an ansatz

λ = a1 ẋ + a2, (55)

where a1 and a2 are functions of x .
Substituting (55) in (54) and solving the resultant equation, we find

λ1 = ẋ

x
− kx

3
. (56)

Nowwe use the above said procedure and obtain the first integral. The calculations
are given below.
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In the first step, we setup the determining equation for w(t, x, ẋ), that is

wx +
(
ẋ

x
− kx

3

)
wẋ = 0. (57)

A particular solution of (57) is

w(t, x, ẋ) = kx

3
+ ẋ

x
. (58)

In the second step, we express D[w] in terms of (t,w) as D[w] = F(t,w). In this
case, we find

D[w] = −(w2 + λ̃). (59)

In the third step, we fix the function G(t,w) as

G(t,w) =

√
λ̃t + tan−1

(
w√

λ̃

)
√

λ̃
. (60)

Now replacing w with the expression (58) we obtain the first integral in the form

I (t, x, ẋ) =
tan−1

(
kx2+3ẋ

3
√

λ̃x

)
+

√
λ̃t√

λ̃
. (61)

By recalling the formula arctan(x) = 1
2 i[ln(1 − i x) − ln(1 + i x)] and simplifying

the resultant equation we obtain the first integral as

I1 = e−2
√

−λ̃t

(
ẋ + k

3 x
2 + x

√
−λ̃

)
(
ẋ + k

3 x
2 − x

√
−λ̃

) . (62)

To prove the integrability of Eq. (1), we are in need of one more λ-symmetry. To
obtain it, we assume a more general ansatz for λ which is of the form

λ2 = a1(t, x)ẋ + a2(t, x)

a3(t, x)ẋ + a4(t, x)
. (63)

where a1, a2, a3 and a4 are arbitrary functions of t and x and to be determined.
Substituting the above ansatz in the λ-determining Eq. (54) and solving the resultant
equation, we obtain
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λ2 =
kẋ
3 −

(
kx
3 +

√
−λ̃

)2

kx
3 +

√
−λ̃

. (64)

We note here that while solving the Eq. (54) with the ansatz (63) we also obtain
(56) as another particular solution. We do not mention it here as we have already
dealt with it. Following the above said procedure now we find the integral associated
with λ̃2. To begin it, we set up the determining equation for w(t, x, ẋ) as

wx +
kẋ
3 −

(
kx
3 +

√
−λ̃

)2

kx
3 +

√
−λ̃

wẋ = 0. (65)

A particular solution of the above equation is

w(t, x, ẋ) = kx2 + 3
√

−λ̃x + 3ẋ

3(kx + 3
√

−λ̃)
. (66)

The total derivative of w(t, x, ẋ) reads

D[w] =
√

−λ̃w − kw2. (67)

In the third step, we determine the function G(t,w) as

G(t,w) = −
i log

⎛
⎝ ei

√
λ̃t

(
kw−i

√
λ̃

)
w

⎞
⎠

√
λ̃

. (68)

Now replacing the variable w by (66) we obtain the integral associated with λ̃2 in
the form

I (t, x, ẋ) = −
i log

⎛
⎝ ei

√
λ̃t (k(3ẋ+kx2)+9λ̃)

kx2+3

(√
−λ̃x+ẋ

)
⎞
⎠

√
λ̃

. (69)

After rearranging the integral in more elegant form, we obtain

I2 = −6

k
e
√

−λ̃t

(
λ̃ + k

3 ẋ + k2

9 x
2

ẋ + k
3 x

2 + x
√

−λ̃

)
. (70)
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From the integrals I1 and I2, we can write the solution of Eq. (1) for λ̃ > 0 and λ̃ < 0.
First let us consider the case λ̃ > 0.

3.2.1 Case 2: λ̃ > 0

For λ̃ > 0, integrals (62) and (70) are complex. To get the real integrals, we consider
the following combinations of the integrals

Ĩ1 = 4

k I 21 I
2
2

= (3ẋ + kx2)2 + 9λ̃x2

(3kẋ + k2x2 + 9λ̃)2
, (71)

Ĩ2 = − 2eiδ

k|I1 I2| = ei(
√

λ̃t+δ)

(
3ẋ + kx2 − 3i

√
λ̃x

3kẋ + k2x2 + 9λ̃

)
, (72)

where δ is phase constant. Now the integrals Ĩ1 and | Ĩ2| can be considered as two
real integrals of Eq. (1) for λ̃ > 0. The solution for Eq. (1) from the two integrals (62)
and (70) can be written as

x(t) = A sin(
√

λ̃t + δ)

1 − k

3
√

λ̃
A cos(

√
λ̃t + δ)

, 0 ≤ A <
3
√

λ̃

k
, (73)

where A = 3
√

λ̃ Ĩ1 and δ is an arbitrary constant.

3.2.2 Case 3: λ̃ < 0

For λ̃ < 0, integrals (62) and (70) are real fromwhich we can straightforwardly write
the general solution as

x(t) = 3
√

|λ̃|( Ĩ1e2
√

|λ̃|t − 1)

k Ĩ1 Ĩ2e
√

|λ̃|t + k(1 + Ĩ1e2
√

|λ̃|t )
, (74)

where I1 and I2 are constants.

3.2.3 Integrating Factors from λ1 and λ2

To find the integrating factors from λ1 and λ2, we consider the second equation in
(33) and obtain
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μ1x +
(
ẋ

x
− k

3
x

)
μ1ẋ + 1

x
μ1 = 0, (75)

μ2x +
⎛
⎜⎝

kẋ
3 −

(
kx
3 +

√
−λ̃

)2

kx
3 +

√
−λ̃

⎞
⎟⎠ μ1ẋ + k

3
(
kx
3 +

√
−λ̃

)μ2 = 0. (76)

The characteristic equations associated with the above equations can be written as

dx

1
= dẋ

ẋ
x − k

3 x
= dμ1

μ1

x

, (77)

dx

1
= dẋ

kẋ
3 −

(
kx
3 +

√
−λ̃

)2

kx
3 +

√
−λ̃

= dμ2

3μ2

(
kx
3 +

√
−λ̃

)
k

. (78)

Solving the above characteristic equations and choosing the constants appropriately,
we obtain the solutions of the above equations as

μ1 = − 18
√

−λ̃xe−2
√

−λ̃t

(kx2 − 3
√

−λ̃x + 3ẋ)2
, (79)

μ2 = − 18e
√

−λ̃t (k
√

−λ̃x − 3λ̃)

k(kx2 + 3(
√

−λ̃x + ẋ))2
. (80)

The above integrating factors also satisfy the first equation of Eq. (33).

4 Noether’s Theorem and Variational Symmetries

If the given second-order equation has a variational structure then one can also
determine the symmetries which leave the action integral invariant. Such symmetries
are called variational symmetries. Variational symmetries are important since they
provide conservation laws via Noether’s theorem [21]. In the following, we recall
the method of finding variational symmetries [2, 23].

Noether’s theorem states that whenever the action integral S = ∫
L(t, x, ẋ)dt ,

where L is the Lagrangian, is invariant under the one parameter continuous group of
transformations (7) then the solution of Euler’s equation admit the conserved quantity
[11, 14],

I = (ξ ẋ − η)
∂L

∂ ẋ
− ξL + f, (81)

where f is an arbitrary function of t and x . The functions ξ, η and f can be deter-
mined from the equation
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G{L} = −ξ̇L + f, (82)

where overdot denotes differentiation with respect to time and

G{L} = ξ
∂L

∂t
+ η

∂L

∂x
+ (η̇ − ẋ ξ̇ )

∂L

∂ ẋ
. (83)

Equation (83) can be derived by differentiating the Eq. (81) and simplifying the
expressions in the resultant equation. Solving Eq. (83) one can obtain explicit expres-
sions for Noether’s symmetries ξ, η and the arbitrary function f . Now substituting
these expressions into (81) one can get explicitly the associated integrals of motion.

ToderiveNoether’s symmetries associatedwith theLagrangian (2) let us substitute
the expression (2) into (81). Doing so we get

η

(
−9λ̃3x

(kẋ + k2
3 x2 + 3λ̃)2

)
+ (ηt + ẋηx − ẋ(ξt + ẋξx ))

(
−27λ̃3

2k(kẋ + k2
3 x2 + 3λ̃)2

+ 3λ̃

2k

)

= −(ξt + ẋξx )

(
27λ̃3

2k2

(
1

kẋ + k2
3 x2 + 3λ̃

)
+ 3λ̃

2k
ẋ − 9λ̃2

2k2

)
+ ft + ẋ fx . (84)

Now equating the coefficient of various powers of ẋ to zero and solving the resultant
equations we obtain three different forms of infinitesimal symmetries for ξ and η

depending upon the sign and magnitude of λ̃. In the following, we discuss each one
of the cases separately.

4.1 Case 1: λ̃ > 0

Solving the determining equations with λ̃ > 0, the associated vector fields turn out
to be

X1 = 1

λ̃
5
2

[(√
λ̃ sin

√
λ̃t + k

3
cos

√
λ̃t x

)
∂

∂t

−
(
3λ̃

k
+ kx2

3

) (√
λ̃ sin

√
λ̃t + k

3
cos

√
λ̃t x

)
∂

∂x

]
,

X2 = 1

λ̃
5
2

[(
k

3
sin

√
λ̃t x −

√
λ̃ cos

√
λ̃t

)
∂

∂t

−
(
3λ̃

k
+ kx2

3

) (
k

3
sin

√
λ̃t x −

√
λ̃ cos

√
λ̃t

)
∂

∂x

]
,

X3 = 1

λ̃
5
2

[(
3
√

λ̃ sin 2
√

λ̃t + k cos 2
√

λ̃t x
) ∂

∂t
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−
((

k2x2

3
− 3λ̃

)
cos 2

√
λ̃t x + 2k

√
λ̃ sin 2

√
λ̃t x2

)
∂

∂x

]
,

X4 = 1

λ̃
5
2

[
cos

√
λ̃t

(
k sin

√
λ̃t x − 3

√
λ̃ cos

√
λ̃t

) ∂

∂t

−
(
k

3
sin

√
λ̃t x −

√
λ̃ cos

√
λ̃t

)(
3
√

λ̃ sin
√

λ̃t x + k cos
√

λ̃t x2
) ∂

∂x

]
,

X5 = ∂

∂t
. (85)

Substituting each vector field into (81) we obtain the following integrals of motion

I1 = (3ẋ + kx2) cos
√

λ̃t + 3
√

λ̃x sin
√

λ̃t

α
, I2 = (3ẋ + kx2) sin

√
λ̃t − 3

√
λ̃x cos

√
λ̃t

α
,

I3 =
(
(3ẋ + kx2)2 − 9λ̃x2

)
sin 2

√
λ̃t − 6x(3ẋ + kx2)

√
λ̃ cos 2

√
λ̃t

(α)2
,

I4 = k2((3ẋ + kx2)2 − 9k2λ̃x2) cos 2
√

λ̃t + 6k2x(3ẋ + kx2)
√

λ̃ sin 2
√

λ̃t − 9λ̃(k2x2 + 6kẋ + 9λ̃)

(α)2
,

I5 =
(

(3ẋ + kx2)2 + 9λ̃x2

(α)2

)
, (86)

where α = 3kẋ + k2x2 + 9λ̃.
One can select two independent integrals of motions, I1 and I2 from the above.

The remaining integrals of motions can be written in terms of the integrals of motion
I1 and I2. For example, in the present case we get

I3 = 2I1 I2, I4 = −1 + 2k2 I 21 , I5 = (I 21 + I 22 ). (87)

Using I1 and I2 we can construct the general solution in the form

x(t) = 3
√

λ̃

(
I1 sin

√
λ̃t − I2 cos

√
λ̃t

1 − k(I1 cos
√

λ̃t + I2 sin
√

λ̃t)

)
. (88)

The above solution is obviously equivalent to (73). SinceEq. (1) admits fiveNoether’s
symmetries for the case λ̃ > 0 and so the Lagrangian (2) can be considered as a
physically important Lagrangian from Quantum Mechanics point of view.
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4.2 Case 2: λ̃ < 0

Solving the determining equations with λ̃ < 0, its associated symmetry vector fields
turn out to be

X1 = 1

λ̃
5
2

[
e
√

λ̃t

((√
λ̃ − kx

3

)
∂

∂t
+

(√
λ̃

k
− x

3

)(
3λ̃ − k2x2

3

)
∂

∂x

)]
, X2 = ∂

∂t

X3 = 1

λ̃
5
2

[
e−

√
λ̃t

((√
λ̃ + kx

3

)
∂

∂t
+

(√
λ̃

k
+ x

3

) (
3λ̃ − k2x2

3

)
∂

∂x

)]
,

X4 = 1

λ̃
5
2

[
e2

√
λ̃t

((√
λ̃ − kx

3

)
∂

∂t
+ x

(
λ̃ + k2x2

9
− 2

3
kx

√
λ̃

)
∂

∂x

)]
,

X5 = 1

λ̃
5
2

[
e−2

√
λ̃t

((√
λ̃ + kx

3

)
∂

∂t
− x

(
λ̃ + k2x2

9
+ 2

3
kx

√
λ̃

)
∂

∂x

)]
. (89)

Substituting eachvector field into (81)weobtain the following integrals ofmotion,

I1 = kea2t
(
3ẋ − 3a2x + kx2

α

)
, I2 = ke−a2t

(
3ẋ + 3a2x + kx2

α

)
,

I3 = k2e2a2t
[

(−6ka2x3 + k2x4 − 18a2x ẋ + 9ẋ2 + x2(−9λ̃ + 6kẋ))

(α)2

]
,

I4 = k2e−2a2t

[
(6ka2x3 + k2x4 + 18a2x ẋ + 9ẋ2 + x2(−9λ̃ + 6kẋ))

(α)2

]
,

I5 = 9λ̃2

2

(
(3ẋ + kx2)2 + 9λ̃x2

(α)2

)
. (90)

As in the previous case the integrals ofmotions, I1 and I2 are functionally independent
from the rest. In other words the remaining integrals of motions can be written in
terms of the integrals of motion I1 and I2:

I3 = I 21 , I4 = I 22 , I5 = 9λ̃2

2k2
I1 I2. (91)

Using I1 and I2 we can construct the general solution in the form

x(t) = 3a2(I1e2a2t − I2)

k(I2 + I1e2a2t − 2ea2t )
. (92)

The above solution is of front like nature and in this case also we have five Noether’s
symmetries. The underlying Lagrangian (2) is again a physically important one.
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4.3 Case 3: λ̃ = 0

One may note that in the limit λ̃ = 0, Eq. (1) becomes the modified Emden equa-
tion/second order Ricatti equation which is another Liénard type system which pos-
sesses several interesting properties. Interestingly, this system also admits a time
independent Lagrangian and Hamiltonian. In the following, we present the Noether’s
symmetries and their associated constants of motions.

The Lagrangian associated with the MEE equation is,

L = 1

kẋ + k2
3 x

2
. (93)

Solving the determining Eq. (83) with λ̃ = 0, we get

X1 = x
∂

∂t
− kx2

3

∂

∂x
, X2 = xt

∂

∂t
+

(
x2 − ktx3

3

)
∂

∂x
, X3 = ∂

∂t
,

X4 =
(
t − kt2x

2

)
∂

∂t
+

(
2x − ktx2 + k2t2x3

6

)
∂

∂x
,

X5 =
(
k2t3x

18
− kt2

6

)
∂

∂t
+

(
1 − 2ktx

3
+ k2t2x2

6
− k3t3x3

54

)
∂

∂x
. (94)

Substituting each vector field into (81) we obtain the following integrals of motion,

I1 = t − 3x

kx2 + 3ẋ
, I2 = (−3x + ktx2 + 3t ẋ)2

(kx2 + 3ẋ)2
,

I3 = −9k2t2x3 + k3t3x4 − 27x(2 + kt2 ẋ) + 6ktx2(6 + kt2 ẋ) + 9t ẋ(6 + kt2 ẋ)

(kx2 + 3ẋ)2
,

I4 = (18 − 6ktx + k2t2x2 + 3kt2 ẋ)

(kx2 + 3ẋ)
, I5 = 6ẋ + kx2

(kx2 + 3ẋ)2
. (95)

One can easily check that out of the five integrals of motions two are independent
and the remaining three can be expressed in terms of the first two, namely

I2 = I 21 , I3 = I1 I4, I5 = 1

9
(I4 − k I 21 ). (96)

We can construct a general solution of the form

x(t) = 6(t − I1)

kt2 − 2I1kt + I4
, (97)

using I1 and I4. This case also admits five Noether’s symmetries and so the
Lagrangian (93) is physically important for λ̃ = 0 in Eq. (1).
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5 Telescopic Vector Fields

Telescopic vector fields are more general vector fields than the ones discussed so
far. The Lie point symmetries, contact symmetries and λ-symmetries are all sub-
cases of telescopic vector fields. A telescopic vector field can be considered as a
λ-prolongation where the two first infinitesimals can depend on the first derivative of
the dependent variable [10, 20, 26]. In the following, we briefly discuss the method
of finding telescopic vector fields for a second-order ODE. We then present the
telescopic vector fields for Eq. (1).

Let us consider the second-order Eq. (1). The vector field

Ω(2) = ξ
∂

∂t
+ η

∂

∂x
+ ζ (1) ∂

∂ ẋ
+ ζ (2) ∂

∂ ẍ
(98)

is telescopic if and only if [26]

ξ = ξ(t, x, ẋ), η = η(t, x, ẋ), ζ (1) = ζ (1)(t, x, ẋ) (99)

with ζ (2) given by

ζ (2) = D[ζ (1)] − φD[ξ ] + ζ (1) + ẋ D[ξ ] − D[η]
η − ẋξ

(ζ (1) − φξ), (100)

where φ is the given equation (ẍ = φ(t, x, x ẋ)).
To prove that the telescopic vector fields are more general vector fields, let us

introduce two functions g1 and g2 in the following forms, namely

g1(t, x, ẋ) = ζ (1) + ẋξt − ηt + ẋ(ẋξx − ηx )

η − ẋξ
, g2(t, x, ẋ) = ẋξẋ − ηẋ

η − ẋξ
. (101)

We can rewrite the prolongations ζ (1) and ζ (2) using the above functions g1 and g2
as follows:

ζ (1) = D[η] − ẋ D[ξ ] + (g1 + g2φ)(η − ẋξ), (102)

ζ (2) = D[ζ (1)] − φxD[ξ ] + (g1 + g2φ)(ζ (1) − φξ). (103)

The relationship between telescopic vector fields and previously considered vector
fields can be given by the following expressions [10, 26],

ζ (1) = η(1) + (g1 + g2φ)(η − ẋξ), (104)

ζ (2) = η(2) + (g1 + g2φ)(ζ (1) − φξ). (105)

In the above vector fields if we choose g1 = g2 = 0 and ξ 2
ẋ + η2

ẋ = 0 we get the
Lie point symmetries. The choice g1 = g2 = 0 and ξ 2

ẋ + η2
ẋ �= 0 gives the contact
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symmetries. To get λ-symmetries, we should choose g1 �= 0 and ξ 2
ẋ + η2

ẋ = 0. As a
consequence it can be considered as the more general vector field.

Hence the unknowns to be solved inEq. (32) can also be (ξ, η, η[λ,1])by expressing
λ in terms of (ξ, η, η[λ,1]). In other words, if the given equation admits the telescopic
vector field, then it satisfies the following invariance condition

ξ
∂φ

∂t
+ η

∂φ

∂x
+ ζ (1) ∂φ

∂ ẋ
− ζ (2) = 0. (106)

In the above expression, ξ, η and ζ (1) are three unknown functions which we need
in order to write the telescopic vector fields of Eq. (1). Since the above expression
has three unknowns, it is very difficult to find them systematically. For this purpose,
we assume ξ = 0 and the remaining two unknown functions can be obtained in the
following way. In this case, Eq. (106) turns out to be

η
∂φ

∂x
+ ζ (1) ∂φ

∂ ẋ
− ζ (2) = 0. (107)

By assuming suitable ansatz for η and ζ (1) we can find the telescopic vector fields
associated with Eq. (1).

5.1 Case 1: λ̃ = 0

For simplicity, first let us consider the case λ̃ = 0. Assuming the ansatz

η = a01 + b01 ẋ + c01 ẋ2

(d01 + e01 ẋ)m
, ζ (1) = a11 + b11 ẋ + c11 ẋ2

(d11 + e11 ẋ)n
, (108)

forη and ζ (1) and substituting them intoEq. (107) and solving the resultant expression
we find the following telescopic vector fields for the case λ̃ = 0:

Ω1 = 9x

(kx2 + 3ẋ)2
∂

∂x
+ 9ẋ − 3kx2

(kx2 + 3ẋ)2
∂

∂ ẋ
− 18kx ẋ

(kx2 + 3ẋ)2
∂

∂ ẍ
,

Ω2 = −18x(ktx2 + 3t ẋ − 3x)

(kx2 + 3ẋ)3
∂

∂x
+ 6(kx2 − 3ẋ)(ktx2 + 3t ẋ − 3x)

(kx2 + 3ẋ)3
∂

∂ ẋ

+36kx ẋ(ktx2 + 3t ẋ − 3x)

(kx2 + 3ẋ)3
∂

∂ ẍ
,

Ω3 = −81t ẋ(ktx − 2) − 27x(ktx(ktx − 6) + 12)

(kx2 + 3ẋ)3
∂

∂x

+9(−9kt2 ẋ2 + kx2(ktx(ktx − 8) + 18) − 18ẋ)

(kx2 + 3ẋ)3
∂

∂ ẋ
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+18k(k2t x3(3t ẋ + x) − 3kx(−3t2 ẋ2 + 4t x ẋ + x2) − 9ẋ(t ẋ − 3x))

(kx2 + 3ẋ)3
∂

∂ ẍ
,

Ω4 = − 18(ktx − 3)

(kx2 + 3ẋ)2
∂

∂x
+ 6k(x(ktx − 6) − 3t ẋ)

(kx2 + 3ẋ)2
∂

∂ ẋ
+ 18k(kx(2t ẋ + x) − 3ẋ)

(kx2 + 3ẋ)2
∂

∂ ẍ
,

Ω5 = 18ẋ

(kx2 + 3ẋ)3
∂

∂x
− 2kx(kx2 + 9ẋ)

(kx2 + 3ẋ)3
∂

∂ ẋ
+ 2k(k2x4 + 6kx2 ẋ − 9ẋ2)

(kx2 + 3ẋ)3
∂

∂ ẍ
. (109)

The above telescopic vector fields also satisfy the invariance condition (106) with
the choice λ̃ = 0. To find the solution from the above admitted telescopic vector
fields, one has to follow the standard order-reduction procedure. Let us consider the
telescopic vector field Ω1. The corresponding Lagrange system can be written as

dt

0
= dx

9x
(kx2+3ẋ)2

= dẋ
9ẋ−3kx2

(kx2+3ẋ)2

. (110)

Solving the above set of equations, we get the characteristics as

u = t and v = kx2 + 3ẋ

3x
. (111)

From the above expression, we get dv
du as

dv

du
= −v2. (112)

Solution of the above equation is given by

v = 1

u − I1
. (113)

Substituting (111) into (113) and rewriting it, we get a first-order ODE

ẋ + x(I1kx − ktx + 3)

3(I1 − t)
= 0. (114)

Integrating the above equation, we get the general solution of (1) for the choice λ̃ = 0
as

x(t) = 6(I1 − t)

−6I2 + 2I1kt − kt2
, (115)

where I1 and I2 are the integration constants.
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5.2 Case 2: λ̃ > 0

As we did in the previous case, here we obtain the following vector fields for the
case λ̃ > 0:

Ω1 = 9(
√

λ̃kx sin(
√

λ̃t) − 3λ̃ cos(
√

λ̃t))

(α)2
∂

∂x

+ 3
√

λ̃ sin(
√

λ̃t)(9λ̃ − k2x2 + 3kẋ) + 18λ̃kx cos(
√

λ̃t)

(α)2
∂

∂ ẋ

+ 9(λ̃ cos(
√

λ̃t)(3λ̃ − k2x2 + 3kẋ) − 2
√

λ̃kx(2λ̃ + kẋ) sin(
√

λ̃t))

(α)2
∂

∂ ẍ
,

Ω2 = − 9(
√

λ̃kx cos(
√

λ̃t) + 3λ̃ sin(
√

λ̃t))

(α)2
∂

∂x

− 3
√

λ̃ cos(
√

λ̃t)(9λ̃ − k2x2 + 3kẋ) − 18λ̃kx sin(
√

λ̃t)

(α)2
∂

∂ ẋ

+ 9λ̃ sin(
√

λ̃t)(3λ̃ − k2x2 + 3kẋ) + 18
√

λ̃kx(2λ̃ + kẋ) cos(
√

λ̃t)

(α)2
∂

∂ ẍ
,

Ω3 = 18
√

λ̃(αx cos(2
√

λ̃t) − 3
√

λ̃(2kx2 + 3ẋ) sin(2
√

λ̃t))

(α)3
∂

∂x

− 54λ̃x sin(2
√

λ̃t)d1 − 6
√

λ̃ cos(2
√

λ̃t)a1
(α)3

∂

∂ ẋ

+ 18(
√

λ̃x cos(2
√

λ̃t)b1 + λ̃ sin(2
√

λ̃t)c1)

(α)3
∂

∂ ẍ
,

Ω4 = 36
√

λ̃k2(kx sin(
√

λ̃t) − 3
√

λ̃ cos(
√

λ̃t))((kx2 + 3ẋ) cos(
√

λ̃t) + 3
√

λ̃x sin(
√

λ̃t))

(α)3
∂

∂x

+ 54λ̃k2x cos(2
√

λ̃t)d1 + 18λ̃k2x(9λ̃ + k2x2 + 9kẋ) + 6
√

λ̃k2 sin(2
√

λ̃t)a1
(α)3

∂

∂ ẋ

− 18
√

λ̃k2(x sin(2
√

λ̃t)b1 −
√

λ̃ cos(2
√

λ̃t)c1 +
√

λ̃e1)

(α)3
∂

∂ ẍ
,

Ω5 = − 162λ̃ẋ

(α)3
∂

∂x
+ 18λ̃x(9λ̃ + k2x2 + 9kẋ)

(α)3
∂

∂ ẋ
− 18λ̃e1

(α)3
∂

∂ ẍ
, (116)

where a1 = (−k3x4 + 9k(3λ̃x2 + ẋ2) + 27λ̃ẋ), b1 = (−9λ̃2 + 2k3x2 ẋ + k2(7λ̃x2

+ 6ẋ2) + 3λ̃kẋ), c1 = (−k3x4 + 6k2x2 ẋ + 15λ̃kx2 + 9kẋ2 + 9λ̃ẋ),d1 = k(kx2 +
ẋ) − 3λ̃ and e1 = (k3x4 + 6k2x2 ẋ + 9λ̃kx2 − 9kẋ2 − 9λ̃ẋ). The above telescopic
vector fields also satisfy the invariance condition (106). To find the solution from
the above admitted telescopic vector fields, one has to follow the standard order-
reduction procedure. Let us consider the telescopic vector field Ω5. The correspond-
ing Lagrange system can be written as

dt

0
= dx

− 162λẋ
(k2x2+3kẋ+9λ)3

= dẋ
18λx(k2x2+9kẋ+9λ)

(k2x2+3kẋ+9λ)3

. (117)
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Solving the above set of equations, we get the characteristics as

u = t and v = log

(
81

√
3(k2x2 + 3kẋ + 9λ)9√
(k2x2 + 6kẋ + 9λ)9

)
. (118)

From the above expression, we get dv
dt = 0. So the function v itself acts as a first

integral. Then the integral I1 takes the form

I1 = 81
√
3(k2x2 + 3kẋ + 9λ)9√
(k2x2 + 6kẋ + 9λ)9

. (119)

Rewriting the above expression for ẋ and integrating it we obtain the general solution
as in Eq. (88).

5.3 Case 3: λ̃ < 0

For the case λ̃ < 0, we get the telescopic vector fields by following the procedure
discussed in the case λ̃ = 0. The telescopic vector fields are given by

Ω1 = − 9kea2t (3λ̃ + a2kx)

(α)2
∂

∂x

+ 3kea2t (9(−λ̃)3/2 + a2k
2x2 + 6λ̃kx − 3a2kẋ)

(α)2
∂

∂ ẋ

+ 9λ̃kea2t (9λ̃2 − k3x2(a2x + 2ẋ) + k2x(9a2 ẋ − 7λ̃x) + 3λ̃k(5a2x + 3ẋ))

(3λ̃ + a2kx)(α)2

∂

∂ ẍ
,

Ω2 = 9kea2(−t)(a2kx − 3λ̃)

(α)2
∂

∂x

+ 3kea2(−t)(9a2λ̃ + a2(−k2)x2 + 6λ̃kx + 3a2kẋ)

(α)2
∂

∂ ẋ

+ 9λ̃kea2(−t)(9λ̃2 + k3x2(a2x − 2ẋ) − k2x(7λ̃x + 9a2 ẋ) + 3λ̃k(3ẋ − 5a2x))

(3λ̃ − a2kx)(α)2

∂

∂ ẍ
,

Ω3 = − 18k2e2a2t (a2k2x3 + 6λ̃kx2 + 3a2kx ẋ + 9(−λ̃)3/2x + 9λ̃ẋ)

(α)3
∂

∂x

+ 6k2e2a2t (a2k3x4 + 9λ̃k2x3 − 9k(3a2λ̃x2 − λ̃x ẋ + a2 ẋ
2) − 27λ̃(λ̃x + a2 ẋ))

(α)3
∂

∂ ẋ

+ 18k2e2a2t (k3x3(2a2 ẋ − λ̃x) + k2xb2 + 3λ̃kc2 + 9λ̃2(ẋ − a2x))

(α)3
∂

∂ ẍ
,

Ω4 = 18k2e−2a2t (a2k
2x3 + 3kx(a2 ẋ − 2λ̃x) − 9λ̃(a2x + ẋ))

(α)3
∂

∂x

+ 6k2e−2a2t (−a2k
3x4 + 9λ̃k2x3 + 9k(3a2λ̃x2 + λ̃x ẋ + a2 ẋ

2) + 27λ̃(a2 ẋ − λ̃x))

(α)3
∂

∂ ẋ



On the Symmetries of a Liénard Type Nonlinear Oscillator Equation 101

+ 18k2e−2a2t (−k3x3(λ̃x + 2a2 ẋ) + k2xd2 + 3λ̃ke2 + 9λ̃2(a2x + ẋ))

(α)3
∂

∂ ẍ
,

Ω5 = − 729λ̃3 ẋ

(α)3
∂

∂x
+ 81λ̃3x(9λ̃ + k2x2 + 9kẋ)

(α)3
∂

∂ ẋ
− 81λ̃3e1

(α)3
∂

∂ ẍ
, (120)

where a2 =
√

−λ̃, b2 = (7a2λ̃x2 + 6λ̃x ẋ + 6a2 ẋ2), c2 = (5λ̃x2 + a2x ẋ + 3ẋ2),
sd2 = (7(−λ̃)3/2x2 + 6λ̃x ẋ − 6a2 ẋ2), e2 = (5λ̃x2 − a2x ẋ + 3ẋ2). Here also one
can check that the above telescopic vector fields satisfy the invariance condition
(106). To find the solution from the above admitted telescopic vector fields, one
has to follow the standard order-reduction procedure. Let us consider the telescopic
vector field Ω1. The corresponding Lagrange system can be written as

dt

0
= dx

− 9ke
√−λt (k

√−λx+3λ)

(k2x2+3kẋ+9λ)2

= dẋ
3ke

√−λt (k2
√−λx2+6kλx−3k

√−λẋ+9(−λ)3/2)

(k2x2+3kẋ+9λ)2

. (121)

Solving the above set of equations, we get the characteristics as

u = t and v = k
√−λx2 + 3λx + 3

√−λẋ

9
√−λλ − 3kλx

. (122)

From the above expression, we get dv
du as

dv

du
= −3

√−λ

(
kv2

3
+ v

3

)
. (123)

Solution of the above equation is given by

v = eI1

e
√−λu − eI1k

. (124)

Substituting (122) into (124) and rewriting it we get a first-order ODE,

ẋ + eI1
√−λ(k2x2 + 9λ) − xe

√−λt (k
√−λx + 3λ)

3
√−λ(e

√−λt − eI1k)
= 0. (125)

Integrating the above equation, we get the general solution of (1) for the choice λ̃ < 0
as

x(t) = 3
√−λ(−eI1k + 2c1e2

√−λt )

k(2c1e2
√−λt + eI1k − 2e

√−λt )
, (126)

where I1 and I2 are the integration constants. Obviously the solution (126) can be
rewritten in the form (92).
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6 Conclusion

In this paper, we have reviewed four different kinds of symmetries for the Liénard
type nonlinear oscillator Eq. (1). It has already been shown that this equation exhibits
three different kinds of dynamics depending upon the sign of the parameter λ̃. Based
on this earlier result we have divided our analysis into three categories while study-
ing the symmetries of this equation. To begin with, we have considered Lie point
symmetries of this equation. We have derived the general solution for all the three
regimes by considering a vector field in each one of the cases. We then considered
λ-symmetries approach to this equation. As we noted earlier, we carried out this
calculations for the λ̃ = 0 case and demonstrated the applicability of λ-symmetries
approach in establishing the integrability of this equation. We have then studied the
Noether’s symmetries of (1) for the parametric choices λ̃ > 0, λ̃ < 0 and λ̃ = 0.
The underlying Lagrangian is of non-standard type. However in all the three cases,
we found maximal number (five) of Noether’s symmetries for the Lagrangian (2).
Recently it has been proposed that the physical Lagrangian for a second order differ-
ential equation should be the one which admits highest possible number of Noether’s
symmetries. Our results indicate that even though the Lagrangian is of nonstandard
type it can be considered as a physical Lagrangian since it admits maximal number
of symmetries. Finally, we have constructed telescopic vector fields for Eq. (1) in the
parametric regimes λ̃ > 0, λ̃ < 0 and λ̃ = 0. The method of finding general solution
from telescopic vector fields is also explained. Thus we have shown the utility of
symmetry analysis in solving the nonlinear ODEs of Liénard type.
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Symmetries of Equations with Nonlocal
Terms

Sergey V. Meleshko

Abstract An approach for applying group analysis to equations with nonlocal terms
is given in the presentation. Similar to the theory of partial differential equations, for
invariant solutions of equations with nonlocal terms the number of the independent
variables is reduced. The presentation consists of reviewing results obtained by the
author with his colleagues related with applications of the group analysis to equa-
tions with nonlocal terms such as: integro-differential equations, delay differential
equations and stochastic differential equations. The proposed approach can also be
applied for defining a Lie group of equivalence, contact and Lie–Bäcklund transfor-
mations for equations with nonlocal terms. The presentation is devoted to review the
results where the author took a part.

Keywords Lie group · Symmetry · Invariant solution · Integro-differential
equation · Delay differential equation · Stochastic differential equations

1 Introduction

Equations describing real phenomena inmathematical modelling take various forms,
such as ordinary differential equations, partial differential equations, integro-diffe-
rential equations, functional differential equations and many others. The algorith-
mic approach of group analysis was developed especially for differential equations.
Applying it to equations having nonlocal terms presents some difficulties. The main
ones of these arise from the nonlocal terms.

In applications of group analysis to equations with nonlocal operators it is
necessary to use successive steps, as for partial differential equations. The first step
involves constructing an admitted Lie group. Since the definition of an admitted Lie
group given for partial differential equations cannot be applied to equations with
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nonlocal terms, this concept requires further investigation. Notice that even for par-
tial differential equations the notion of an admitted Lie group needs to be discussed:
there are three definitions of the admitted Lie group. The first part of the presentation
is devoted to a discussion of these definitions. This discussion assists in establishing
a definition of an admitted Lie group for differential equations with nonlocal terms.

As for partial differential equations, an admitted Lie group of equations with non-
local terms is a Lie group satisfying determining equations. In contrast to partial
differential equations the admitted Lie group does not have the property of mapping
any solution into a solution of the same equations, although themethod developed for
constructing the determining equations used this property. In practice the algorithm
for obtaining determining equations is no more difficult than for partial differen-
tial equations. The main difficulty consists of solving the determining equations.
Since this depends on the properties of the Cauchy problem, the method of solving
determining equations also depends on the nonlocal equations studied.

Because themethod and some its details are given in [1, 2], the present manuscript
is devoted to review the results obtained by the author with his colleagues after 2010.
It should be noted that the review does not include results of other authors. References
of papers of other authors can be found in the original publications.

1.1 Short Review of the Approaches

As mentioned the main difficulty in applications of group analysis to integro-
differential equations arises from the integral (nonlocal) terms present in these equa-
tions. There are several heuristic ways for overcoming this difficulty. Among these
ways the following are pointed out:

(1) finding a representation of an admitted group or a solution on the basis of a
priory assumptions;

(2) studying a system of moments – the method of moments;
(3) transforming the original equations into differential ones.

The first approach supposes an a priori choice of the form of symmetries or
solutions on the basis of someassumptions. This approach is the simplest and themost
efficient. For example, the well-known BKW-solution of the Boltzmann equation
was found in this way. For the Boltzmann equation this approach was also applied in
[3, 4]. The main problem in this approach is to discover a representation of an
admitted group (or solution).

In the second approach (the method of moments) the original system of integro-
differential equations is reduced to an infinite systemof differential equations (system
of moment equations). For a finite number N of equations of this system, containing
a finite number of terms, the classical group analysis (for differential equations) is
applied. Then the process of taking a limit N → ∞ is carried out. Thefirst application
of this approach for finding an admittedLie groupwas done in [5], and then itwas used
for one of the models of the Boltzmann equation in [6, 7]. There are some problems
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in the application of this approach. One of them is that, for some equations, the
construction of the moment system is impossible. Another problemwith the moment
system is the infinite number of equations that are involved.

In the third approach, as previously, initial integro-differential equations are trans-
formed into differential equations. After that a classical algorithm of group analysis
is applied to the differential equations. In this way there are the same problems as in
the previous approaches.

For a complete description of group properties of equations with nonlocal terms it
is necessary to use successive approaches of group analysis: constructing determin-
ing equations and finding their solutions. Such an approach for integro-differential
equations was started developing in [3, 8]. Details of this developing are summarised
in [2]. The present paper is devoted to discussion of our results obtained after pub-
lishing [2].

1.2 Revisiting Group Analysis of PDEs

For understanding the method for finding admitted Lie group of equations with
nonlocal terms and compare itwith the classicalmethod of finding admittedLie group
of partial differential equations it would be useful to revisit the classical algorithm.

Consider differential equations

Φ(x, u, p) = 0. (1)

Here and further x = (x1, x2, . . . , xn) is the set of independent variables, u =
(u1, u2, . . . , um) is the set of dependent variables, α = (α1, α2, . . . , αn) is a multiin-
dex, p is the vector of the partial derivatives pα = ∂ |α|u

∂x
α1
1 ∂x

α2
2 ...∂xαn

n
. For the multiindex

α the following notations are used |α| = α1 + α2 + · · · + αn , α, j = (α1, . . . , α j−1,

α j + 1, α j+1, . . . , αn), for α = 0 one has p j
0 = u j ; for α j = 1 and αi = 0, (i �= j)

it is denoted by α = j .
In one of definitions, a one-parameter Lie group of transformations

x̄ = f x (x, u; a), ū = f u(x, u; a) (2)

with its infinitesimal generator

X = ζ u j
(x, u)∂u j + ξ xi (x, u)∂xi .

is called admitted if it satisfies the equations:

XLΦ|S = 0, (3)

where XL is the prolongation of X :
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XL = X + ζ p j
α ∂p j

α
.

with the prolongation formulae

ζ
p j
α,k = ζ p j

α − p j
α,i Dxk ξ

xi , (i = 1, 2, . . . , n; j = 1, 2, . . . ,m; |α| = 0, 1, . . . , N − 1).

It is necessary to clarify here the following two questions.

1. How were the determining Eq. (3) found?
2. What is a meaning of |S.

1.2.1 Derivation of Determining Eq. (3)

Let u = u0(x) be a solution of Eq. (1). Applying the Lie group of transformations,
one obtains the transformed function

ua(x̄) = f u(g(x̄, a), u0(g(x̄, a)), a),

where the function x = g(x̄, a) is a solution of the equations

x̄ = f x (x, u0(x), a).

Assuming that the transformed function is a solution of the same systemof differential
equations, one requires that

Φ (x̄, ua(x̄), pa(x̄)) = 0, (4)

where pa(x̄) are derivatives of the transformed function ua(x̄). An alternative form
of Eq. (4) is

Φ
(
f x (x, u0(x), a), f u(x, u0(x), a), f p(x, u0(x), p0(x), a)

) = 0, (5)

where the functions f p are obtained byprolonging theLie group (2) on the derivatives
p. Differentiating the latter form (5)with respect to the group parameter a, and setting
a = 0, one derives the classical form of determining Eq. (3)

XLΦ (x, u0(x), p0(x)) = 0. (6)

Whereas differentiating Eq. (4) with respect to the group parameter a, and setting
a = 0, one derives the alternative form of determining Eq. (3)

XLBΦ (x, u0(x), p0(x)) = 0, (7)

where the operator
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XLB = XL − ξ xi Dxi

is a canonical Lie–Bäcklund operator equivalent to the generator XL .

1.2.2 Discussion of the Meaning |S

According to the derivation of the determining Eq. (3) or (7) the sign |Smeans that the
determining equations are satisfied for any solution of the equationsΦ(x, u, p) = 0.

For many systems of differential equations (for example, Cauchy–Kovalevskaya
type) this condition coincides with the meaning that the determining equations are
considered on the manifold defined by the equations Φ(x, u, p) = 0 or their prolon-
gations: for the determining Eq. (3) the manifold is Φ(x, u, p) = 0; for the deter-
mining Eq. (7) the manifold is defined by Φ(x, u, p) = 0 and Dxi Φ(x, u, p) = 0,
(i = 1, 2, . . . , n).

If a system of differential equations (1) is not involutive it can produce new equa-
tions. If one requires to derive determining equations equivalent to the Eq. (3) or
(7), then the new equations has to be added to the original system of equations.1

The analysis of a Cauchy problem allows one to simplify determining equations by
splitting them with respect to parameter derivatives.

2 Definition of Admitted Lie Group for Equations
with Nonlocal Terms

Let
Φ(x, u, p) = 0

be a system of equations with nonlocal terms. For deriving the determining equa-
tions for the latter equations it is more convenient to use the alternative to classical
approach, where the variables (x̄, a) are considered as the independent variables,

Φ (x̄, ua(x̄), ua(x̄)) = 0. (8)

As for partial differential equations, differentiating the latter equations with
respect to the group parameter a, and setting a = 0, one derives the equations:

XLBΦ (x, u0(x), p0(x)) = 0.

1One of the well-known examples of noninvolutive system of partial differential equations is the
system of the Navier–Stokes equations. Although it should be mentioned that the solution of the
determining equations of the original system of the Navier–Stokes equations and of the system
extended by the equation making the system of the Navier–Stokes equations to be involutive do not
change the admitted group.
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Formally we write them as
XLBΦ|S = 0, (9)

where derivatives in the operator XLB are considered in the Frc̀het sense, and |S
means that the equations XLBΦ = 0 have to be satisfied for any solution of the
equations Φ = 0.

In the process of deriving the determining Eq. (9) it was assumed that all steps
defined above are feasible. Whereas the computation of the determining Eq. (9) does
not require this.

Definition A Lie group of transformations (2) satisfying the determining Eq. (9) is
called a Lie group admitted by equations with nonlocal terms Φ(x, u, p) = 0.

Example (Barba’s equation) Here is an example demonstrating computation of the
determining equations.

Consider the equation
y(x)y′(x) = y (y(x)) . (10)

The Lie group defined by the generator

XL = ξ(x, y)∂x + η(x, y)∂y

is admitted by Eq. (10) if it satisfies the determining equation

cXLB
(
y(x)y′(x) − y (y(x))

) = (
η(x, y(x)) − y′(x)ξ(x, y(x))

)
y′(x)

+y(x)(ηx (x, y(x)) + y′(x)ηy(x, y(x)) − y′′(x)ξ(x, y(x))
−y′(x)(ξx (x, y(x)) + y′(x)ξy(x, y(x)))) − (η(x, y(y(x))) − y′(y(x))ξ(x, y(y(x)))

+y′(y(x))
(
η(x, y(x)) − y′(x)ξ(x, y(x)))

)
.

3 Methods for Solving Determining Equations

Determining Eq. (9) are still nonlocal. In contrast to differential equations there are
no general algorithms of their solving. As for partial differential equations, deter-
mining equations of some types of nonlocal equations can be simplified by splitting
them. The splitting depends not only on a type of equations, but also on their form. In
particular, splitting delay differential equations is similar to the splitting the determin-
ing equations of partial differential equations, whereas for some integro-differential
equations the splitting cannot be applied. Similar to partial differential equations the
algorithm for splitting is defined by the existence of a solution of a Cauchy problem.
Moreover, for equations for which splitting cannot be applied, a choice of arbitrary
elements in solving a Cauchy problem can assist in their solving.
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In this section we demonstrate several methods of solving determining equations
of different types of equations with nonlocal terms.

3.1 Expanding Coefficients of an Admitted Generator
in Taylor Series

Usually the coefficients of admitted generators are assumed to be sufficiently smooth.
In particular, one can suppose that they are analytic. Using a particular class of initial
data and the latter assumption allow one to expand determining Eq. (9) in Taylor
series. This provides equations for coefficients of the Taylor series. Solving these
equations, one finds the general solution of the determining equations.

First application of the above presented method was given in [3],2 where the
Fourier image of the spatially homogeneous and isotropic Boltzmann equation was
analyzed. Later this method was applied to different population balance equations
[9, 10].

3.2 Using Arbitrariness of Integral Terms

Arbitrariness of the initial data of a Cauchy problem allows one to use their for
splitting integro-differential equations. First application of this method was used in
analysis of group properties of one-dimensional motion of viscoelastic media [11].
Recently this method was applied for group analysis of integro-differential equations
describing stress relaxation behavior of one-dimensional viscoelastic materials [12],
and then equations of a linear thermoviscoelasticity [13, 14].

3.3 A Method of Preliminary Group Classification

The classes of equations arising in science usually have undefined functions (arbi-
trary elements). The presence of these functions in the equations requires group
classification with respect to them. The complete solution of the group classification
problem is a nontrivial task. Nevertheless, for many equations with vanishing arbi-
trary elements the group analysis method has been applied. This analysis can assist in
group classification of the equations with nonvanishing arbitrary elements. In [15] an
approach for using this approach for the group classification of equations with nonva-
nishing arbitrary elements was proposed. The proposed approach was demonstrated
not only by partial differential equations, but also by integro-differential equations
and delay differential equations.

2Details can be found in [1, 2].



112 S. V. Meleshko

4 Symmetries of Integro-Differential Equations

Initially the discussed method was considered for integro-differential equations.

4.1 The Boltzmann Equation and Its Models

First application of solving determining Eq. (9) was presented in [3], where the
Fourier image of the spatially homogeneous and isotropic Boltzmann equation [16]
was considered:

ϕt (x, t) + ϕ(x, t)ϕ(0, t) =
∫ 1

0
ϕ(xs, t)ϕ(x(1 − s), t) ds.

Using particular class of initial values, the general solution of the determining equa-
tion was found. Detailed review of the results related with the applications of the
group analysis to the Boltzmann equation one can find in the recent publications
[17, 18].

4.2 Population Balance Equations

Many chemical processes, including crystallization, aerosol formation, polymeriza-
tion, and growth of cell populations, are best described by the population balance
equation (PBE).

In [19], the following one-dimensional homogeneous population balance equa-
tion, used for batch crystallization units, was considered

c
∂ f

∂t
+ cg

∂ f

∂L
= 0,

∂c

∂t
= −cg

∫ ∞

0
f L2 dL .

(11)

where t denotes the time, c is the solution concentration, L is an internal coordinate,
the characteristic length of the particle (it can also represent age, composition, or
other characteristics of an entity in a distribution depending on the system being
modelled, although this may alter the mass balance equation), f (L , t) is the proba-
bility distribution representing the number concentration of particles of a particular
size, L , at the time t (this is commonly known as the population density).

It was found that the infinitesimal generators admitted by Eq. (11) form the three-
dimensional Lie algebra L3 spanned by the generators
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X1 = L
∂

∂L
+

(
1

g
− 4

)
f

∂

∂ f
+ 1

g
c

∂

∂c
, X2 = t

∂

∂t
− 1

g
f

∂

∂ f
− 1

g
c

∂

∂c
, X3 = ∂

∂t
.

(12)
All invariant solutions determined by this Lie algebra were considered in [19]. Anal-
ysis of the reduced equations is provided there.

In [9, 10], the PBE for continuous systems involving aggregation and crystal
growth with one internal coordinate x̄ and one external coordinate y is studied

∂ f (x, y, t)

∂t
= − ∂

∂x
[G f (x, y, t)] − ∂

∂y
[Z f (x, y, t)]

+1

2

∫ x

0
K (x − z, z) f (x − z, y, t) f (z, y, t) dz − f (x, y, t)

∫ ∞

0
K (x, z) f (z, y, t) dz, (13)

where t denotes the time, f is the one-dimensional population density function, G
is the growth rate function. The spatial velocity is defined as the rate of change
of position on the y-axis with respect to time t . Different kernels K (x, y) and
functions G and Z are considered. In particular, for the general homogenous ker-
nel K (αx, αy) = αγ K (x, y), and constant G �= 0 and3 Z = 0, Eq. (13) admits the
infinitesimal generators

X1 = ∂

∂t
, X2 = x

∂

∂x
+ t

∂

∂t
− (2 + γ ) f

∂

∂ f
. (14)

For the case of k = 0, 1, 2 the general solutions of the determining equations were
derived by the method of expanding coefficients of an admitted generator in Taylor
series. The method of preliminary group classification also was applied extending
Eq. (13) by a nonhomogeneous source (sink) term.

4.3 Viscoelastic Materials with Memory

The research in [12–14] deals with a linear viscoelastic models of homogeneous,
aging materials with memory.4

In [12], the considered model describes the stress relaxation behavior of one-
dimensional viscoelastic materials (allowing aging). The system consists of two
partial differential equations and an integral equation:

vt = σx , et = vx , ϕ(σ ) = e +
∫ t

0
H(t, τ )e(τ ) dτ, ϕ′(σ ) �= 0. (15)

3Notice that if Z is constant, then using an equivalence transform it can be reduced to zero.
4Group analysis also was applied to other viscoelastic and nonlocal elastic models [20–22].
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In this system time t and reference position x are independent variables, while the
stress σ , the velocity v, and the strain e are dependent variables, H(t, τ ) is the kernel
of relaxation, and ϕ(σ) is a smooth function of the stress.

Using the method of splitting applied in [11], the determining equations defining
the admitted Lie group of system of Eq. (15) are solved. The solution gave us a com-
plete group classification of Eq. (15) with respect to the function ϕ(σ) and the kernel
H(t, τ ). The group classification separates all models into three classes: (a) the lin-
ear function ϕ(σ) = Eσ ; (b) the function ϕ(σ) = α exp(γ σ ) + β, (αγ �= 0); (c) the
function ϕ(σ) = ασβ + γ , (αβ(β − 1) �= 0). Along with the group classification,
representations of all invariant solutions and reduced equations are constructed in
[12].

The results obtained in [13, 14] extend the study of [12] to the motions of ther-
moviscoelastic materials

cσx = vt , et = vx , θxx = wt ,

σ = Ee +
∫ t

0
G(t, s)e(s)ds − θ −

∫ t

0
L(t, s)θ(s)ds,

w = e +
∫ t

0
L(t, s)e(s)ds + θ +

∫ t

0
c(t, s)θ(s)ds.

(16)

Here t , x are the independent variables, the σ , v, e, θ and w are the dependent
variables, while E is constant, G(t, s), L(t, s) and c(t, s) are relaxation functions.

Complete group classification of Eq. (16) is given. The study is separated into four
different cases. It is shown that in each case, the general solution of the determining
Eq. (16) corresponds to the Lie algebra with the generators

cX1 = ∂x , X2 = v∂v + σ∂σ + e∂e + θ∂θ + w∂w,

Xα = λt x∂v + λt t∂σ + λxx∂e + μt∂θ + μxx∂w,
(17)

where λ(t, x), μ(t, x) are solutions of the system

cλt t − Eλxx + μt −
∫ t

0
G(t, s)λxx (s)ds +

∫ t

0
L(t, s)μt (s)ds = 0,

μxx − λxx − μt −
∫ t

0
L(t, s)λxx (s)ds −

∫ t

0
c(t, s)μt (s)ds = 0.

(18)

Notice that λ(t, x) = t x ,μ(t, x) = 0 is the trivial solution of system (18), and deter-
mines the generator

X3 = ∂v.

Using the two subalgebras {X1, X2} and {X1, X2, X3}, two classes of partially invari-
ant solutions of Eq. (16) were studied.



Symmetries of Equations with Nonlocal Terms 115

4.4 Evolutionary Integro-Differential Equations Describing
Nonlinear Waves

One of the most general evolution equations used in nonlinear wave physics is
[23, 24]:

(ux − uut − wtt )t = uyy + uzz,

w =
∫ ∞

0
K (s) u (t − s) ds.

(19)

Here the variable t is the time, and x, y, z are the spatial Cartesian coordinates.
The coordinate x is distinguished as a “longitudinal” one. It coincides with a pre-
ferred orientation of the wave propagation. Other coordinates y, z are identified as
“transversal” ones.

The paper [25] provides a first step in application of the Lie group analysis to
Eq. (19). The analysis of the determining equation for the integro-differential equa-
tion allows, in particular, to single out a class of kernels used for deriving mathemat-
ical models in medical applications of ultrasound [26].

For particular kernels the integro-differential equation (19) becomes a partial dif-
ferential equation or a delay partial differential equation. In these cases the complete
group classification of Eq. (19) was obtained. Complete study of particular cases is
given in the paper. Along with admitted Lie groups, representations of exact solu-
tions and reduced equations are constructed in the paper. Solutions and a physical
interpretations of some of them are presented in [25].

4.5 Kinetic Equation in a Nonlinear Thermal Transport
Problem

In [27] an application of group analysis for finding and classifying analytic solu-
tions of the electron kinetic equations in a nonlinear thermal transport problem is
discussed. An electron kinetic model is formulated by keeping only the first two har-
monics in the expansion of the electron distribution function, fe = f0 + μ f1, where
μ is the cosine of the angle between the electron velocity vector and the plasma inho-
mogeneity direction (x direction). The following set of kinetic equations for f0 and
f1 corresponds to the diffusive approximation in a one-dimensional inhomogeneous
plasma with immobile ions:

c3 f0t + v f1x − E v−2(v2 f1)v − 3Cee( f0, f0) = 0 ,

v f0x − E f0v + νei (v) f1 = 0 ,
(20)

where E = eE/m, E is the ambipolar electric field defined by the quasineutrality
condition for the zero electric current,



116 S. V. Meleshko

j ≡
∫ ∞

0
v6 (E f0v − v f0x ) dv = 0 , (21)

and νei (v) = 4πe4ZnΛ/m2v3 ≡ ZY/v3 is the velocity-dependent electron–ion col-
lision frequency. The electron–electron collision term is a nonlinear integro-
differential operator,

Cee = νee(v)v∂v
(
f0 I

0
0 + v

3

(
I 02 + J 0

−1

)
f0v

)
, (22)

involving the velocity-dependent electron–electron collision frequency νee(v) =
Y/v3 and the first three Rosenbluth potentials

I 00 = 4π

n

∫ v

0
v2 f0 dv , I 02 = 4π

nv2

∫ v

0
v4 f0 dv , J 0

−1 = 4π

n
v
∫ ∞

v
v f0 dv .

(23)
It is more convenient to use differential consequences of the latter Eq. (23),

I 00v = 4π

n
v2 f0 , I 02v + 2

v
I 02 = 4π

n
v2 f0 , J 0

−1v − 1

v
J 0
−1 = −4π

n
v2 f0 . (24)

In (20) and (22), the electron–electron and electron–ion collision frequencies
νee(v) and νei (v) depend on v and n, the second-order momentum of the distribution
function,

νee(v) = knv−3 , νei (v) = k1nv
−3 , n = 4π

∫ ∞

0
v2 f0 dv , (25)

where k = 4πe4Λ/m2 and k1 = kZ .
The key idea of solving the determining equations was to find the symmetry group

for differential equations (20) and (24) supplemented with the differential equalities

Ev = 0 , nv = 0 , (26)

which are obvious from the physical standpoint. It gave five infinitesimal group
generators of the so-called intermediate symmetry:

cX1 = x∂x + v∂v + E ∂E + 3n∂n,

X2 = t∂t + x∂x − f0∂ f0 − f1∂ f1 − E ∂E − n∂n , X3 = ∂t , X4 = ∂x ,

X5 = x∂x + f1∂ f1 − E ∂E − 2n∂n + 2I 00 ∂I 00 + 2I 02 ∂I 02 + 2J 0−1∂J 0−1
.

(27)

Verifying the invariance conditions for nonlocal relations (21) and (25) under the
group transformations given by (27) yielded additional limitations on this group
which excluded the generator X5. Finally, admitted symmetries are defined by the
generators X1, X2, X3, and X4. The optimal system of one and two-dimensional
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subalgebras was constructed, and representations of invariant solutions are presented
in [27].

5 Symmetries of Delay Differential Equations

Our recent applications of the group analysis method to delay differential equations
can be separated in two groups. Results of the first group [15, 28, 29] were obtained,
where a delay consideredunchangeable by admittedLie group.Whereas in the studies
presented in the second group [30, 31] the delay is allowed to be changed under the
Lie group of transformations.

5.1 Nonlinear Klein–Gordon Equation

The delay in the delay differential equations in all previous applications [2] of the
group analysis method to delay differential equations has been assumed to be con-
stant. In [28, 29], the group analysis of the nonlinear Klein–Gordon equation with
a time-varying delay was studied. The derived analysis is applied to the nonlinear
two-dimensional equation

utt = uxx + uyy + g(u, ū), gū(u, ū) �= 0, (28)

where ū(t, x, y) = u(t − τ(t), x, y), τ(t) depends on t , and τ(t) > 0.
First, the determining equations for equations with a time-varying delay are

derived. Then the developed analysis is applied to Eq. (28). The complete group
classification of this equation with respect to the arbitrary function g is obtained.
All admitted Lie algebras are classified. These classifications are used for deriving
invariant solutions. Representations of all invariant solutions are also given in [29].

5.2 Delay Ordinary Differential Equations

For ordinary differential equations with a single dependent variable, group classifi-
cation (in the general case) is obtained by using the realizations of all Lie algebras
nonequivalent with respect to a change of the variables. Lie gave the classification
of all dissimilar Lie algebras (under complex change of variables) in two complex
variables. The authors of [32] ordered the Lie classification and extended it to the real
case [33]. Using differential invariants of these Lie algebras up to a studied order,
representations of ordinary differential equations were found.

Similar strategy was applied in [34] for classification of second-order delay ordi-
nary differential equations of the form
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y′′ = f (x, y, yτ , y
′, y′

τ ) (29)

where τ > 0 is a constant delay, yτ = y(x − τ) and y′
τ = y′(x − τ). As a nonsingular

change of the dependent and independent variables is not an equivalence transfor-
mation in contrast to ordinary differential equations, for delay differential equations
the authors of [34] applied additional two steps. The following strategy was used:

(a) change the variables x and y

x̄ = h(x, y), ȳ = g(x, y); (30)

(b) find invariants of the Lie algebra in the space of the changed variables
(x̄, ȳ, ȳτ , ȳ′, ȳ′

τ , ȳ
′′);

(c) use the found invariants to form a second-order delay ordinary differential
equation.

The delay τ was not allowedbeing changed.Applying this strategy, representations of
all second-order delay ordinary differential equations admitting a finite dimensional
Lie algebra were obtained. It should be noted here that the application of steps (a)
and (c) is a weakness of the used strategy. This weakness does not allow to direct
use of the classification obtained in [34].

Recently [30, 31] a new strategy for classification of delay differential equations
was applied. The strategy consists of use of differential invariants of the Lie algebras
[33], and allowing for the delay to be changed. Using differential invariants of these
Lie algebras up to a first order, complete group classification of first-order delay
ordinary differential equations supplemented by equations for the delay were given
in [30, 31].

6 Applications to Stochastic Differential Equations

Additional complications in applications of the group analysis method to stochastic
differential equations are due to (a) the fact that the derivative of a composition
of functions is calculated using the Itô formula, unlike in the case of deterministic
equations; (b) stochastic differential equations contain integrals of two types (Itô and
Riemann).5

5The determining equations are derived by equating the integrands of each of the integrals. It requires
justification. Necessary and sufficient conditions for this justificationwere obtained recently in [35].
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6.1 Symmetries of Stochastic Fluid Dynamics Equations

6.1.1 Determining Equations

On a complete probability space (Ω,F , P) consider the stochastic Cauchy problem

vi (t, y) = vi (t0, y) +
∫ t

t0

Ai (τ, y) dτ +
m∑

j=1

∫ t

t0

Bi j (τ, y) dw j (τ ), (i = 1, n)

(31)
where

Ai (t, y) = Ai (t, y, v(t, y), vyk (t, y), vyk yl (t, y)), Bi j (t, y) = Bi j (t, y, v(t, y)),

w(t) is a vector of m independent standard Wiener processes, v(t0, y) = v0(y) a
vector of random functions, t ∈ [t0, T ] and y = (y1, . . . , yN )T ∈ RN . It is assumed
that the set of Lie group of transformations belongs to the class of the change of the
dependent and independent variables

r = α(t), y = h(t, x), v = g(t, x, u), (32)

where the functions α(t), h(t, x) and g(t, x, u) are locally invertible with respect to
t , x and u.

The determining equations defining an admitted Lie group have the form

X̃(Ai − uit ) = 0, (33)

X̃ Bi j + 1

2
Bi jψt −

n∑

k=1

Bkjζ ui

uk = 0 (34)

where
X = ψ(t)∂t + ξ xk (t, x)∂xk + ζ ui (t, x, u)∂ui ,

is the infinitesimal generator of the group. The coefficients of the prolonged operator
X̃ of the generator X are the same as for differential equations except the coefficients
ζ uit which are related with the derivatives uit :

ζ uit =
n∑

j=1

(

A jψt + A jζ i
u j + 1

2

n∑

k=1

(
m∑

σ=1

B jσ Bkσ

)

ζ i
u j uk

)

.
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6.1.2 The Gas Dynamics Equations

Group properties of stochastic gas- and hydro-dynamics equations were analyzed in
[36].

Consider the gas dynamics partial differential equations with stochastic part,

ρt + uρx + ρux = 0,
pt + upx + γ pux = 0,

du = −
(
uux + 1

ρ
px

)
dt + B(t, x, u, p, ρ) dW (t).

(35)

The stochastic part, determined by the function B(t, x, u, p, ρ), can be interpreted as
a stochastic external force. This function presents an arbitrary element for the group
classification of Eq. (35).

Applying the operator X̃ to Eq. (35) and substituting ρt = −(uρx + ρux ), pt =
−(upx + γ pux ), one obtains the determining equations:

X̃(ρt + uρx + ρux ) = 0,
X̃(pt + upx + γ pux ) = 0,

X̃
[(

−uux − 1
ρ
px

)
− ut

]
= 0,

(36)

X̃ B + B

2
ψt − Bζ u

u = 0. (37)

For the group classification of Eq. (35), one can apply the algebraic approach used
in [37]. This approach is performed in two steps. First, one finds the general solution
of the determining Eq. (36). For γ �= 3 this solution gives that

X = c1X1 + c2X2 + c3X3 + c4X4 + c5X5 + c6X6

where ci , (i = 1, 2, . . . , 6) are arbitrary constants, and

X1 = x∂x + u∂u − 2ρ∂ρ, X2 = ∂t , X3 = t∂t − u∂u + 2ρ∂ρ,

X4 = ∂x , X5 = t∂x + ∂u, X6 = p∂p + ρ∂ρ.
(38)

The generators Xi , (i = 1, 2, . . . , 6) compose a six-dimensional Lie algebra L6. On
the second step, using a subalgebra of the Lie algebra L6 which provides the constants
ci , one solves Eq. (37).

Similar studies were given for the two-dimensional Navier Stokes stochastic par-
tial differential equations,

du1 = [
u1x1x1 + u1x2x2 − (u1u1x1 + u2u1x2 + px1)

]
dt + B11dW1(t) + B12dW 2(t),

du2 = [
u2x1x1 + u2x2x2 − (u1u2x1 + u2u2x2 + px2)

]
dt + B21dW 1(t) + B22dW 2(t),

u1x1 + u2x2 = 0.
(39)
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where Bi j = Bi j (t, x, u, p), 1 ≤ i, j ≤ 2.
These studies demonstrated a first experience in application of the group analysis

method for constructing invariant solutions of stochastic differential equations of the
gas and hydro dynamics.

6.2 Trajectory Approach

In [38] a new approach for application of the group analysis method to one-
dimensional stochastic ordinary differential equations was proposed. Using this
approach, the problem of group analysis of stochastic differential equations reduces
to the same problem for an ordinary differential equation whose right-hand side gen-
erally depends on the path of the Wiener process. The reduction to the analysis of
ordinary differential equation is based on the following result derived by F.S.Nasyrov
in [35].

Let on the probability space (Ω, F, (Ft )0≤t≤T , P) be given a Brownian motion
W (t), t ∈ [0, T ]. Consider the stochastic differential equation

u(t) = u0 +
∫ t

0
b(s, u(s))ds +

∫ t

0
σ(s, u(s)) ∗ dW (s), t ∈ [0, T ], (40)

where the second integral on the right-hand is a stochastic Stratonovich integral. We
assume that the coefficients b(s, φ) and σ(s, φ) satisfy the following conditions (C
and D are constant):

(1) the condition of linear growth: |b(t, φ)| + |σ(t, φ)| ≤ C(1 + |φ|);
(2) the Lipschitz condition: |b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ D|x − y|;
(3) σ 2(t, φ) > 0,∀t ∈ [0, T ].

These assumptions ensure the existence and uniqueness of the Cauchy problem of
Eq. (40). Furthermore, condition (3) can be used to determine for every t the function
φ∗(t, v) which is inverse to the function

v = γ (t, Φ) =
∫

dΦ

σ(t, Φ)
.

It has been proved in [35] that a solution u(t) of Eq. (40) has the structure:

u(t) = φ∗(t,W (t) + C(t)), (41)

where the deterministic function φ∗(t, v)was defined above, and the smooth function
C(t) is the solution of the Cauchy problem

C ′(t) = H(t,W (t) + C(t)), φ∗(0,W (0) + C(0)) = u0, (42)
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and

H(t, v) = b(t, φ∗(t, v)) − (φ∗)t (t, v)
σ (t, φ∗(t, v))

.

Thus, one considers the Lie group admitted by Eq. (42). These transformations
have the form t̄ = f (t, a), C̄ = h(t,C, a) under which Eq. (42) becomes unchange-
able:

C̄ ′(t̄) = H(t̄, C̄(t̄) + W̄ (t̄)), (43)

where
C̄(t̄) = h( f (t̄,−a),C( f (t̄,−a)), a). (44)

6.3 Linearization of Systems of Two Second-Order Equations

Linear stochastic ordinary differential equations play a role similar to that of linear
equations in the deterministic theory of ordinary differential equations. However,
the change of variables in stochastic ordinary differential equations differs from
that in ordinary differential equations due to the Itô formula. The transformation of
nonlinear stochastic ordinary differential equations into linear ones via an invertible
stochastic mapping proves to be useful in obtaining the closed form solutions.

Consider the system of two second-order SODEs,

d Ẋ = f1(t, X,Y, Ẋ,Ẏ ) dt + g1(t, X,Y, Ẋ,Ẏ ) dW
dẎ = f2(t, X,Y, Ẋ,Ẏ ) dt + g2(t, X,Y, Ẋ,Ẏ ) dW,

(45)

where fi and gi , (i = 1, 2) are deterministic functions and dW is the infinitesimal
increment of the Wiener process. System (45) is said to be linear if the functions
fi and gi are linear functions with respect to variables X and Y and their respec-
tive derivatives. For the linearization problem one considers the class of equations
equivalent to linear equations with respect to the change of variables

x1 = ϕ(t, x, y), p1 = ϕ2(t, x, y, p, q); y1 = ψ(t, x, y), q1 = ψ2(t, x, y, p, q)

(46)
with

Δ = ϕxψy − ϕyψx �= 0,

In [39], the complete solution of the linearization problem of systems of two
second-order stochastic ordinary differential equations is presented. Necessary and
sufficient conditions for linearization by an invertible transformation are given in
terms of coefficients of the system. Some illustrative examples are provided. More-
over, a code using REDUCE for checking whether a system of two second-order
stochastic ordinary differential equations is linearizable has developed.
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A Note on the Multiplier Approach
for Derivation of Conservation Laws
for Partial Differential Equations
in the Complex Domain

R. Naz and F. M. Mahomed

Abstract We study the conservation laws of scalar partial differential equations
(PDEs) with two real independent variables in the complex plane. The complex PDE
is split into a system of two real coupled or uncoupled PDEs.We invoke themultiplier
method for the derivation of conserved quantities for the complex PDEs and their split
systems. The approach is applied to both variational and non-variational complex
PDEs. The decomposed complex multipliers of the complex PDE yields two real
multipliers for the related split system in the real plane. The multipliers of the split
system are derived by utilizing the multiplier method. The multipliers of the split
system are comparedwith themultipliers of the complex PDE after decomposition of
the complex multipliers. It is demonstrated that the split multipliers of the complex
PDE are not in general the same as the multipliers of the decomposed system of
real PDEs. They are shown to be identical when all the multipliers of the complex
PDE have either pure real or imaginary parts. We moreover look at the number of
conserved vectors that arise by a complex split and from the real system by use of
the multipliers.

Keywords Multiplier approach · Complex domain · Conservation laws

1 Introduction

Conserved quantities are of significance in the study of differential equations and
their applications. There are different approaches in the construction of conservation
laws and these are discussed in [1]. The direct construction method as presented in
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[2, 3] can be invoked for the determination of conserved quantities for both variational
and non-variational equations. Complex symmetry analysis for ordinary differential
equations (ODEs) in the complex domain are investigated in [4–6]. Recently the idea
of hypercomplex analysis of ODEs was initiated in [7]. The symmetries for complex
partial differential equations (PDEs) and their decomposed systems are studied in [8].
It was shown that the split Lie-like operators of the complex PDEs are in general not
symmetries of the decomposed system of real PDEs. Also a proposition provides for
when the Lie-like operators are indeedLie symmetries of the decomposed system [8].
A complex variational method for the variational PDEs was developed by Naz and
Mahomed [9]. It was shown that the decomposed conserved vectors of the complex
PDE were identical to the conserved vectors of the decomposed system of real PDEs
for coupled systems whereas these were different for the uncoupled split system [9].

Here we study complex PDEs with two real independent variables which are
variational and non-variational. The complex PDE is split into a system of two real
PDEs. The multiplier approach is utilized for the derivation of the conservation laws
for the complex PDEs and their split systems. The split of the complex multipliers
of a complex PDE yields two real multipliers for the associated decomposed system
in the real plane. The multipliers of the split system are derived by utilizing the
multiplier approach aswell. Themultipliers of the split systemare checked against the
multipliers after split of the complex multipliers of the complex PDE via examples.
It is shown that the decomposed multipliers of the complex PDE are not in general
identical with the multipliers of the decomposed system of real PDEs.We show them
to be identical when all the multipliers of the complex PDE have either pure real or
imaginary parts.

The paper is organized in the following manner: in Sect. 2, we provide the multi-
plier approach for the complex PDEs and their decomposed systems. In Sect. 3, we
establish the conservation laws for several complex PDEs and their decomposed sys-
tems. We investigate both Lagrangian and non-variational complex PDEs. In Sect. 4,
the concluding remarks are presented.

2 The Multiplier Approach: Complex and Real Domains

Suppose we have the r th-order complex PDE

E
(
t, x, w, wt , w(1), w(2), . . . , w(r)

) = 0 , (1)

where t is the time, x is a real independent variable, w is a complex-valued function
of x and t with the coordinates w = u + iv and w(r) being the r th-derivative of w

with respect to x . Equation (1) decomposes into a system of two, real coupled or
uncoupled, PDEs
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E1
(
t, x, u, v, ut , vt , u(1), v(1), u(2), v(2), . . . , u(r), v(r)

) = 0,

E2
(
t, x, u, v, ut , vt , u(1), v(1), u(2), v(2), . . . , u(r), v(r)

) = 0, (2)

in which E = E1 + i E2.
1. A conserved vectors for (1) satisfies

DtT1 + DxT2 = 0. (3)

By setting Tj = R j + i I j , we have that

Dt R
1 + Dx R

2 = 0

Dt I
1 + Dx I

2 = 0 (4)

and thus (R1, R2) and (I 1, I 2) are two conserved vectors for the decomposed system
(2).

2. Suppose that Eq. (1) has a complex multiplier � depending upon the usual
dependent, independent variables and derivatives of the dependent variables up to
certain fixed order. The complex multiplier satisfies

�E = DtT1 + DxT2 (5)

where T1 and T2 are conserved vectors of the complex PDE (1). Equation (5) splits
into

�1E1 − �2E2 = Dt R
1 + Dx R

2 (6)

�1E2 + �2E1 = Dt I
1 + Dx I

2

where � = �1 + i�2, �1(t, x, u, v, ut , vt , ux , vx , . . .) and �2(t, x, u, v, ut , vt , ux ,

vx , . . .).
3. Let (T 1, T 2) be a conserved vector for the decomposed system (2). Formultipli-

ers of the form�1(t, x, u, v, ut , vt , ux , vx , . . .) and�2(t, x, u, v, ut , vt , ux , vx , . . .),
we have

�1E1 + �2E2 = DtT
1 + DxT

2. (7)

4. From Eqs. (6) and (7) we observe that if

�1 = �1,�2 �→ −�2 (8)

then the real part of the conserved vector for Eq. (1) is the conserved vector for the
decomposed system (2). Similarly, Eqs. (6) and (7) yield

�2 = �1,�1 = �2 (9)
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so that the imaginary part of the conserved vector for Eq. (1) is the conserved vector
for the decomposed system (2).

3 Applications

In this section, we invoke the multiplier method for the derivation of conservation
laws for several complex PDEs and their decomposed systems for both Lagrangians
and non-variational problems. The applications include the nonlinear spherical KdV,
the Maxwellian tails equation, the Boussinesq equation and the wave equation in the
complex domain.

3.1 The Nonlinear Spherical KdV Equation in the Complex
Domain

Consider the nonlinear spherical KdV equation in the complex domain

wt + 6wwx + wxxx + w

t
= 0, (10)

where w = u + iv and t is the time. It is a non-variational problem. The multipliers
of the form �(t, x, w) for (10) are

�(1) = t, �(2) = t2w, �(3) = t x + 6t2(1 − ln t)w. (11)

For the multipliers (11), we have the following conservation law fluxes:

T1
1 = tw, T2

1 = 3tw2 + twxx ,

T1
2 = 1

2
t2w2, T2

2 = 2t2w3 + t2wwxx − 1

2
t2w2

x ,

T1
3 = tw

[
x + 3tw(1 − ln t)

]
,

T2
3 = t2(1 − ln t)(12w3t + 6wwxx − 3w2

x ) + 3w2t x + t xwxx − twx . (12)

If we consider higher-order multipliers we obtain the same conserved vectors as
in (12).

Equation (10) splits into the following coupled system

E1 = ut + 6uux − 6vvx + uxxx + u

t
= 0,

E2 = vt + 6vux + 6uvx + vxxx + v

t
= 0. (13)
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By setting �( j) = �1
( j) + i�2

( j) in (11) yields the following split multipliers:

�1
(1) = t, �2

(1) = 0,

�1
(2) = t2u, �2

(2) = t2v,

�1
(3) = t x + 6t2(1 − ln t)u, �2

(3) = 6t2(1 − ln t)v. (14)

By using Tj = R j + i I j in (12), we have

R1
1 = tu, R2

1 = t (3u2 − 3v2 + uxx ),

I 11 = tv, I 21 = t (6uv + vxx ),

R1
2 = t2

2

(
u2 − v2

)
,

R2
2 = t2

(
2u3 − 6uv2 − 1

2
u2x + 1

2
v2
x + uuxx − vvxx

)
,

I 12 = t2uv, I 22 = t2
(
6u2v − 2v3 + uvxx + vuxx − uxvx

)
,

R1
3 = 3t2(1 − ln t)(u2 − v2) + t xu,

R2
3 = t2(1 − ln t)(12u3 − 36uv2 + 6uuxx − 6vvxx − 3u2x + 3v2

x )

+3t xu2 − 3t xv2 − tux + t xuxx ,

I 13 = 6t2(1 − ln t)uv + t xv,

I 23 = t2(1 − ln t)(36u2v − 12v3 + 6uvxx + 6vuxx − 6uxvx )

+6t xuv − tvx + t xvxx . (15)

The multiplier approach on the decomposed system (13) gives the following six
multipliers:

�1
(1) = t, �2

(1) = 0,

�1
(2) = 0, �2

(2) = t,

�1
(3) = t2u, �2

(3) = −t2v,

�1
(4) = t2v, �2

(4) = t2u,

�1
(5) = 6ut2 ln t − t x, �2

(5) = −6vt2 ln t,

�1
(6) = 6vt2 ln t, �2

(6) = 6ut2 ln t − t x, (16)

and the corresponding conserved vectors are

T 1
1 = tu, T 2

1 = t (3u2 − 3v2 + uxx ),

T 1
2 = tv, T 2

2 = t (6uv + vxx ),

T 1
3 = t2

2

(
u2 − v2),
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T 2
3 = t2

(
−6uv2 + 2u3 + uuxx − 1

2
u2x − vvxx + 1

2
v2
x

)
,

T 1
4 = t2uv, T 2

4 = t2
(
6u2v − 2v3 + uvxx + vuxx − uxvx

)
,

T 1
5 = 3t2 ln t (u2 − v2) − t xu,

T 2
5 = t2 ln(t)(12u3 − 36uv2 + 6uuxx − 6vvxx − 3u2x + 3v2

x )

−3xtu2 + 3xtv2 + tux − t xuxx

T 1
6 = 6t2uv ln t − t xv,

T 2
6 = t2 ln t (36u2v − 12v3 + 6uvxx + 6vuxx − 6uxvx )

−6t xuv + tvx − t xvxx . (17)

The split multipliers are different from the multipliers of the decomposed system but
they satisfy (8) or (9). It is of value to see that Ri

3 = 6T i
3 − T i

5 and I i3 = 6T i
4 − T i

6 ,
where i = 1, 2. For the nonlinear spherical KdV equation, the split conversed vectors
are indeed conserved vectors for the decomposed coupled system as they should be.
We have used the GeM package [10, 11] for computation of the multipliers and
conservation law fluxes.

3.2 The Complex Maxwellian Tails Equation

Next we consider a variational problem. We apply the multiplier method on the
complex Maxwellian tails equation. It decomposes into a coupled system of two
real PDEs. From Table1, we observe that the split multipliers are different from the
multipliers of the decomposed system. The split conversed vectors are conserved
vectors for the decomposed coupled system.

3.3 The Complex Boussinesq Equation

We apply the multiplier method to the fourth-order Boussinesq equation in the com-
plex domain. From Table2, we observe that the multipliers are purely real. The
multipliers of the decomposed system and the multipliers after split of the complex
multipliers of the complex Boussinesq equation are the same as all the multipliers
are purely real. Also, the split conserved vectors of the complex Boussinesq equation
are identical in number to the conserved vectors of the decomposed system of the
real coupled PDEs.

For the complex nonlinear spherical KdV, the complex Maxwellian tails equation
and the complex Boussinesq equation the decomposed system of PDEs is coupled.
We see that the split conserved vectors of the complex PDE are the same number
as the conserved vectors of the decomposed system of real PDEs in the case of the
coupled system for both Lagrangian and non-variational problems.
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Table 1 Multipliers and conserved vectors of the nonlinear complex and split Maxwallian tail
equation

The Maxwellian equation: wt x + wx + w2 = 0

Complex multipliers and conserved vectors Split multipliers and conserved vectors

�(1) = e2twx

T1
1 = 1

2 e
2tw2

x T2
1 = 1

3 e
2tw3

�1
(1) = e2t ux , �2

(1) = e2tvx
R1
1 = 1

2 e
2t (u2x − v2x )

R2
1 = 1

3 e
2t (u3 − 3uv2)

I 11 = e2t uxvx
I 21 = 1

3 e
2t (3u2v − v3)

�(2) = e2t (w + wt + xwx )

T1
2 = e2t ( 13w3 + 1

2wwx + 1
2 xw

2
x )

T2
2 = e2t ( 13 xw

3 + 1
2wwt + 1

2w2
t )

�1
(2) = e2t (u + ut + xux ),

�2
(2) = e2t (v + vt + xvx )

R1
2 = e2t [ 13 (u3 − 3uv2)

+ 1
2uux − 1

2vvx + x
2 (u2x − v2x )]

R2
2 = e2t [ x3 (u3 − 3uv2)

+ 1
2uut − 1

2vvt + 1
2u

2
t − 1

2v2t ]
I 12 = e2t [ 13 (3u2v − v3)

+ 1
2vux + 1

2uvx + xuxvx ]
I 22 = e2t [ x3 (3u2v − v3)

+ 1
2vut + 1

2uvt + utvt ]

�(3) = e3t (w + wt )

T1
3 = e3t ( 13w3 + 1

2wwx )

T2
3 = e3t (− 1

4w2 + 1
2wwt + 1

2w2
t )

�1
(5) = e3t (u + ut ), �2

(5) = e3t (v + vt )

R1
3 = e3t [ 13 (u3 − 3uv2)

+ 1
2uux − 1

2vvx ]
R2
3 = e3t [− 1

4 (u2 − v2)

+ 1
2uut − 1

2vvt + 1
2u

2
t − 1

2v2t ]
I 13 = e3t [ 13 (3u2v − v3)

+ 1
2vux + 1

2uvx ]
I 23 = e3t [− 1

2uv

+ 1
2vut + 1

2uvt + utvt ]
utx + ux + u2 − v2 = 0, vt x + vx + 2uv = 0

Multipliers for the split system Conserved vectors for the split system

�1
(1) = e2t ux , �2

(1) = −e2tvx
T 1
1 = 1

2 e
2t (u2x − v2x )

T 2
1 = 1

3 e
2t (u3 − 3uv2)

�1
(2) = e2tvx , �2

(2) = e2t ux
T 1
2 = e2t uxvx

T 2
2 = 1

3 e
2t (3u2v − v3)

�1
(3) = e2t (u + ut + xux )

T 1
3 = e2t [ 13 (u3 − 3uv2)

+ 1
2uux − 1

2vvx + x
2 (u2x − v2x )]

�2
(3) = −e2t (v + vt + xvx )

T 2
3 = e2t [ x3 (u3 − 3uv2)

+ 1
2uut − 1

2vvt + 1
2u

2
t − 1

2v2t ]

�1
(4) = e2t (v + vt + xvx ), �2

(4) =
e2t (u + ut + xux )

T 1
4 = e2t [ 13 (3u2v − v3)

+ 1
2vux + 1

2uvx + xuxvx ]
T 2
4 = e2t [ x3 (3u2v − v3)

+ 1
2vut + 1

2uvt + utvt ]
(continued)
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Table 1 (continued)

The Maxwellian equation: wt x + wx + w2 = 0

Complex multipliers and conserved vectors Split multipliers and conserved vectors

�1
(5) = e3t (u + ut ), �2

(5) = −e3t (v + vt )

T 1
5 = e3t [ 13 (u3 − 3uv2)

+ 1
2uux − 1

2vvx ]
T 2
5 = e3t [− 1

4 (u2 − v2)

+ 1
2uut − 1

2vvt + 1
2u

2
t − 1

2v2t ]

�1
(6) = e3t (v + vt ), �2

(6) = e3t (u + ut )

T 1
6 = e3t [ 13 (3u2v − v3)

+ 1
2vux + 1

2uvx ]
T 2
6 = e3t [− 1

2uv

+ 1
2vut + 1

2uvt + utvt ]

Table 2 Multipliers and conserved vectors of the nonlinear complex and split Boussinesq equation

The Boussinesq equation: wt t − wxx + 3wwxx + 3w2
x + wxxxx = 0

Complex multipliers and conserved vectors Split multipliers and conserved vectors

�(1) = 1

T1
1 = wt T2

1 = 3wwx + wxxx − wx

�1
(1) = 1, �2

(1) = 0

R1
1 = ut

R2
1 = −3vvx + 3uux + uxxx − ux

I 11 = vt

I 21 = 3uvx + 3uxv + vxxx − vx

�(2) = t

T1
2 = −w + twt

T2
2 = 3twwx + twxxx − twx

�1
(2) = t,

�2
(2) = 0

R1
2 = −u + tut

R2
2 = t (3uux − 3vvx + uxxx − ux )

I 12 = −v + tvt
I 22 = t (3uvx + 3vux + vxxx − vx )

�(3) = x

T1
3 = xwt

T2
3 = 3xwwx − 3

2w2

+w + xwxxx − xwx − wxx

�1
(3) = x, �2

(3) = 0

R1
3 = xut

R2
3 = −3xvvx − 3

2u
2 + 3xuux + 3

2v2 + u

+xuxxx − xux − uxx
I 13 = xvt

I 23 = 3xuvx + 3xvux − 3uv + xvxxx
+v − xvx − vxx

�(4) = xt

T1
4 = −xw + xtwt

T2
4 = 3xtwwx − 3

2 tw
2

+tw + xtwxxx − xtwx − twxx

�1
(4) = xt, �2

(4) = 0

R1
4 = −xu + xtut

R2
4 = −3xtvvx − 3

2 tu
2 + 3xtuux

+ 3
2 tv

2 + tu + xtuxxx − xtux − tuxx
I 14 = −xv + xtvt

I 24 = 3xtuvx + 3xtvux − 3tuv

+xtvxxx + tv − xtvx − tvxx

(continued)
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Table 2 (continued)

The Boussinesq equation: wt t − wxx + 3wwxx + 3w2
x + wxxxx = 0

Complex multipliers and conserved vectors Split multipliers and conserved vectors

utt − uxx + 3uuxx − 3vvxx + 3u2x − 3v2x + uxxxx = 0
vt t − vxx + 3vuxx + 3uvxx + 6uxvx + vxxxx = 0

Multipliers for the split system Conserved vectors for the split system

�1
(1) = 1, �2

(1) = 0
T 1
1 = ut

T 2
1 = −3vvx + 3uux + uxxx − ux

�1
(2) = 0, �2

(2) = 1
T 1
2 = vt

T 2
2 = 3uvx + 3uxv + vxxx − vx

�1
(3) = t T 1

3 = −u + tut
�2

(3) = 0 T 2
3 = t (3uux − 3vvx + uxxx − ux )

�1
(4) = 0, �2

(4) = t
T 1
4 = −v + tvt

T 2
4 = t (3uvx + 3vux + vxxx − vx )

�1
(5) = x, �2

(5) = 0

T 1
5 = xut

T 2
5 = −3xvvx − 3

2u
2 + 3xuux + 3

2v2 + u

+xuxxx − xux − uxx

�1
(6) = 0, �2

(6) = x

T 1
6 = xvt

T 2
6 = 3xuvx + 3xvux − 3uv + xvxxx

+v − xvx − vxx

�1
(7) = xt, �2

(7) = 0

T 1
7 = −xu + xtut

T 2
7 = −3xtvvx − 3

2 tu
2 + 3xtuux

+ 3
2 tv

2 + tu + xtuxxx − xtux − tuxx

�1
(8) = 0, �2

(8) = xt

T 1
8 = −xv + xtvt

T 2
8 = 3xtuvx + 3xtvux − 3tuv

+xtvxxx + tv − xtvx − tvxx

3.4 The Complex Wave Equation

We apply the multiplier method to the wave equation in the complex domain. From
Table3, we see that the decomposed multipliers are different from the multipliers
of the decomposed system. In this split case we obtain more conserved vectors.
The conserved vector (T 1

7 , T 2
7 ) is not deduced from the split conserved vectors of the

wave equationwith dissipative terms in the complex domain. Thus if the decomposed
system is uncoupled, the conserved vectors for the decomposed system and split
conserved vectors are not generally one to one. The arbitrary functions α(t, x) and
β(t, x) satisfy the wave equation with dissipation.



134 R. Naz and F. M. Mahomed

Table 3 Multipliers and conserved vectors of the nonlinear complex and split wave equation with
dissipation

The wave equation with dissipation: wt t + wt = wxx

Complex multipliers and conserved vectors Split multipliers and conserved vectors

�(1) = etwx

T1
1 = −etwxwt T2

1 = 1
2 e

t (w2
t + w2

x )

�1
(1) = et ux , �2

(1) = etvx
R1
1 = et (−utux + vtvx )

R2
1 = 1

2 e
t (u2t + u2x − v2t − v2x )

I 11 = −et (uxvt + utvx )

I 21 = et (utvt + uxvx )

�(2) = 1
2 e

t (2wt + w)

T1
2 = − 1

2 e
t (w2

t + w2
x + wwt )

T2
2 = et ( 12wwx + wxwt )

�1
(2) = 1

2 e
t (2ut + u),

�2
(2) = 1

2 e
t (2vt + v)

R1
2 = − 1

2 e
t (uut + u2t + u2x − vvt − v2t − v2x )

R2
2 = 1

2 e
t (uux + 2utux − vvx − 2vtvx )

I 12 = − 1
2 e

t (vut + uvt + 2utvt + 2uxvx )

I 22 = 1
2 e

t (vux + 2uxvt + uvx + 2utvx )

�(3) = 1
2 e

t (2xwt + xw + 2twx )

T1
3 = − 1

2 e
t (xw2

t + xw2
x

+xwwt + 2twtwx )

T2
3 = 1

2 e
t (tw2

t + tw2
x

+xwwx + 2xwxwt − 1
2w2)

�1
(3) = 1

2 e
t (2xut + xu + 2tux ),

�2
(3) = 1

2 e
t (2xvt + xv + 2tvx )

R1
3 = − 1

2 e
t (xuut + xu2t + 2tut ux

+xu2x − xvvt − xv2t − 2tvtvx − xv2x )

R2
3 = 1

2 e
t (tu2t + xuux + 2xut ux + tu2x

−tv2t − xvvx − 2xvtvx − tv2x + 1
2v2 − 1

2u
2)

I 13 = − 1
2 e

t (xvut + xuvt

+2xutvt + 2tuxvt + 2tutvx + 2xuxvx )

I 23 = 1
2 e

t (xvux + xuvx

+2tutvt + 2xuxvt + 2xutvx + 2tuxvx − uv)

�α = αet

T1
α = et (αwt − αtw)

T2
α = et (−αwx + αxw)

�1
α = αet , �2

α = 0

R1
α = et (αut − αt u)

R2
α = et (−αux + +uαx )

I 1α = et (αvt − vαt )

I 2α = et (−αvx + vαx )

utt + ut − uxx = 0, vt t + vt − vxx = 0

Multipliers for the split system Conserved vectors for the split system

�1
(1) = −uxet , �2

(1) = vx et
T 1
1 = et (−utux + vtvx )

T 2
1 = 1

2 e
t (u2t + u2x − v2t − v2x )

�1
(2) = vx et , �2

(2) = uxet
T 1
2 = −et (uxvt + utvx )

T 2
2 = et (utvt + uxvx )

�1
(3) = − 1

2 (u + 2ut )et
T 1
3 = − 1

2 e
t (uut + u2t + u2x
−vvt − v2t − v2x )

�2
(3) = 1

2 (v + 2vt )et T 2
3 = 1

2 e
t (uux + 2utux − vvx − 2vtvx )

�1
(4) = 1

2 (v + 2vt )et , �2
(4) = 1

2 (u + 2ut )et
T 1
4 = − 1

2 e
t (vut + uvt + 2utvt + 2uxvx )

T 2
4 = 1

2 e
t (vux + 2uxvt + uvx + 2utvx )

�1
(5) = − 1

2 (xu + 2xut + 2tux )et
T 1
5 = − 1

2 e
t (xuut + xu2t + 2tut ux

+xu2x − xvvt − xv2t − 2tvtvx − xv2x )

(continued)
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Table 3 (continued)

The wave equation with dissipation: wt t + wt = wxx

Complex multipliers and conserved vectors Split multipliers and conserved vectors

�2
(5) = 1

2 (xv + 2xvt + 2tvx )et
T 2
5 = 1

2 e
t (tu2t + xuux + 2xut ux + tu2x

−tv2t − xvvx − 2xvtvx − tv2x + 1
2v2 − 1

2u
2)

�1
(6) = 1

2 (xv + 2xvt + 2tvx )et
T 1
6 = − 1

2 e
t (xvut + xuvt + 2xutvt

+2tuxvt + 2tutvx + 2xuxvx )

�2
(6) = 1

2 (xu + 2xut + 2tux )et
T 2
6 = 1

2 e
t (xvux + xuvx + 2tutvt

+2xuxvt + 2xutvx + 2tuxvx − uv)

�1
(7) = vet , �2

(7) = −uet
T 1
7 = 2et (−uvt + vut )

T 2
7 = 2et (uvx − vux )

�1
α = αet , �2

α = 0
T 1

α = et (αt u − αut )

T 2
α = et (−uαx + αux )

�1
β = 0, �2

β = βet
T 1

β = et (βtv − βvt )

T 2
β = et (−vβx + βvx )

4 Conclusion

A complex PDE was decomposed into a system of two real PDEs. The multi-
plier method was investigated for the derivation of conserved quantities for an
r th-order complex PDE and their decomposed systems for both Lagrangian and
non-Lagrangian systems. The multipliers of the decomposed system were derived
by utilizing the multiplier method. The multipliers of the decomposed system were
not in general identical to the multipliers of the decomposed system of real PDEs.
We have shown the result when they are the same. We finally concluded that the
decomposed conserved vectors of the complex PDE were identical in number to the
conserved vectors of the decomposed system of real PDEs in the case of the coupled
system for both Lagrangian and non-Lagrangian systems. For an uncoupled decom-
posed system all the decomposed conserved vectors were not in general one to one
with the conserved vectors for the decomposed system of real PDEs.
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The Calculation and Use of Generalized
Symmetries for Second-Order Ordinary
Differential Equations

C. Muriel, J. L. Romero and A. Ruiz

Abstract New relationships between generalized symmetries, commuting symme-
tries, and generalized C∞−symmetries for second-order ordinary differential equa-
tions are established. The sets of solutions of the respective determining equations
are interrelated, which provides new strategies for solving them. Particular solutions
of these determining equations can be appropriately combined in order to provide
first integrals and Jacobi last multipliers for the equation.

Keywords Differential equation · Generalized symmetry · First integral · Jacobi
last multiplier

1 Introduction

In many of the cases where an exact solution of a differential equation can be found,
some type of symmetry for the equation is involved. Symmetries are usually defined
through some transformations of variables that leave a given differential equation
invariant. For instance, Lie point symmetries of an ordinary differential equation
(ODE) are related to point transformations locally defined in the space of the inde-
pendent and dependent variables of the ODE which map solutions into solutions [1,
4, 13–15]. If the transformations are allowed to act not only over the independent
and dependent variables but also over their derivatives, new classes of symmetries
appear. This is the case, for instance, of contact symmetries and of generalized (or
dynamical) symmetries. The more general the admissible transformations are, the
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more symmetries will exist, but the more difficult it will be to find and use them to
integrate the equation [15].

It is well-known that Lie point symmetries always exist for first-order ODEs,
although there is no systematic way to find all of them. Something similar happens
to contact transformations for second-order ODEs: contact symmetries always exist
but, in general, they cannot be found explicitly. In order to find particular solutions
of the corresponding determining equations it is usual to assume some ad hoc ansatz
and check if it leads to some solution. Whereas Lie point symmetries can be used
to reduce the order of a given ODE in a systematic way, a similar procedure does
not apply for contact or generalized symmetries. In fact, applications of generalized
symmetries are very rare in the literature and most of the examples are concerned
only with systems of ODEs derivable from a Lagrangian.

This paper is devoted to establish some relationships between several mathemat-
ical objects related to a given second-order ODE such as generalized symmetries,
commuting symmetries, first integrals, C∞−symmetries, Jacobi last multipliers etc.
As a consequence, by using some of these objects, several integration procedures
can be combined.

In Sect. 2, after fixing the notations and collecting some basic notions and pre-
liminary results, it is considered the concept of equivalence between generalized
symmetries that lets to restrict our study to a special subclass of generalized symme-
tries. This is initially justified in Sect. 3 through Theorem 2: a first relation between
commuting symmetries and generalized C∞−symmetries [7, 11] is stated, and it is
used later to derive important properties of the structure of the sets of solutions of
the determining equations for both commuting and generalized C∞−symmetries.

In sect. 4 we investigate how to find some solutions to any of the determining
equations for commuting and generalized C∞−symmetries by using solutions of
several equations related to the differential operator associated to the given ODE.
In particular, it is shown how some solutions to these equations can be combined in
various ways to provide first integrals and Jacobi last multipliers of the equation.

The theoretical results have been supplemented throughout the paper by several
examples that, for the sake of clarity, have been chosen to show the many different
integration strategies that can be followed combining some of the mentioned objects.
Although some of the presented equations could also have been solved by classical
methods, the procedures used in this paper are completely different and provide new
strategies of integration, which can be used even for equations lacking Lie point
symmetries.
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2 Generalized Symmetries and Generalized
C∞−Symmetries

2.1 Notations and Some Concepts on Symmetries

Throughout this paper M will denote an open subset of the space of the independent
and dependent variables (x, u) of the second-order ODE

u2 = φ(x, u, u1), (1)

where ui denotes the derivative of order i of u with respect to x, i = 1, 2. Let

Δ = {(x, u, u1, u2) ∈ M (2) : u2 = φ(x, u, u1)} (2)

denote the manifold on M (2) defined by (1). The restriction of the total derivative
operator Dx to Δ determines the vector field A = ∂x + u1∂u + φ(x, u, u1)∂u1 asso-
ciated to (1).

In what follows in this section, we provide some basic definitions and results
for three different concepts of symmetry for an equation (1). Some relationships
between these concepts will be studied in Sect. 3.

A.- It is well-known [1, 13–15] that the ordinary differential equation (1) admits
a Lie point symmetry with generator v = ξ(x, u)∂x + η(x, u)∂u if and only if

v(2)(u2 − φ(x, u, u1)
) = 0 mod. u2 = φ(x, u, u1), (3)

where v(2) denotes the standard 2nd-order prolongation of v. Equivalently, v is a Lie
point symmetry of (1) if and only if

[
v(1),A

] = −A(ξ)A (4)

holds [15].
B.- The generalized symmetries of (1) are generalized vector fields

v = ξ(x, u, u1)∂x + η(x, u, u1)∂u (5)

such that (3) holds. These symmetries can also be characterized as the vector fields
(5) such that [

v(1)
Δ ,A

]
= −A(ξ) · A, (6)

where v(1)
Δ denotes the restriction of v(1) to Δ.

C.- Let v = ξ(x, u, u1)∂x + η(x, u, u1)∂u be a generalized vector field and let
λ0 = λ0(x, u, u1) be a smooth function. The pair (v, λ0) is called a generalized
C∞(M (1))−symmetry (or briefly, a C∞−symmetry) of equation (1) if the first-order
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λ0−prolongation of v [7, 11]

v[λ0,(1)] = v + (
(A + λ0)(η) − (A + λ0)(ξ)u1

)
∂u1 (7)

verifies [
v[λ0,(1)],A

] = λ0 · v[λ0,(1)] − (A + λ0)(ξ) · A. (8)

This is equivalent to the following invariance condition:

v[λ0,(2)](u2 − φ(x, u, u1)) = 0 mod. u2 = φ(x, u, u1). (9)

The original concept of (standard) C∞−symmetry [7] refers to the case when the
infinitesimals ξ and η of v do not depend on u1. In this case, the operator A can be
replaced by Dx in (7). It is also clear from (4), (6) and (8) that Lie point (resp. gen-
eralized) symmetries correspond to standard (resp. generalized) C∞−symmetries
such that λ0 = 0.

2.2 A−Equivalence

It must be observed that if (5) is a generalized symmetry of the equation (1) then,
for an arbitrary smooth function ζ = ζ(x, u, u1), the generator v

(1)
Δ + ζ(x, u, u1)A

is also related to a generalizaed symmetry of the equation (1); in particular, v(1)
Δ −

ξ(x, u, u1)A corresponds to a generalized symmetry of the equation such that the
coefficient of ∂x is null. To get rid of this degree of freedom,we consider the following
equivalence relationship:

Definition 1 We will say that two generalized vector fields V1,V2 on M (1) are

A−equivalent, and we will use the notation V1
A∼ V2, if and only if the vector fields

A,V1,V2 are linearly dependent over C∞(M (1)).

The concept of A−equivalent vector fields can be translated to C∞−symme-
tries by considering their first λ−prolongations: two C∞−symmetries (v1, λ1) and
(v2, λ2) of (1) are called A−equivalent if v[λ1,(1)]

1 and v[λ2,(1)]
2 are A−equivalent

according toDefinition1.We refer to [11] for a detailed description of the significance
of this notion.

If v = ξ(x, u, u1)∂u + η(x, u, u1)∂u and (v, λ0) is a C∞−symmetry of (1), it can
be checked [11] that v[λ0,(1)] has the form

v[λ0,(1)] = Q(∂u)
[λ,(1)] + ξA, (10)

where Q = η − ξu1 is the characteristic of v and

λ = λ0 + A(Q)

Q
. (11)
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It can be proved [11] that this function λ satisfies the equation

A(λ) + λ2 = φu + λφu1 (12)

and conversely, if λ satisfies (12) then (∂u, λ) is a C∞− symmetry of (1). As a con-
sequence of (10), the vector fields v[λ0,(1)] and (∂u)

[λ,(1)] are A−equivalent. The pair
(∂u, λ) is also a C∞−symmetry of (1) which will be called the canonical represen-
tative of the A−equivalence class corresponding to (v, λ0); this canonical represen-
tative is uniquely defined by (11).

3 Relationships Between Generalized Symmetries
and Generalized C∞−Symmetries

In this section we derive several characterizations and relationships between the
concepts considered in Sect. 2.

3.1 Commuting Symmetries

Let us recall that the evolutionary form of a given generalized symmetry v =
ξ(x, u, u1)∂x + η(x, u, u1)∂u of (1) is the vector field vQ = Q∂u, where Q =
η − ξu1 is the characteristic of v. The following properties of vQ can be easily
proven:

1. vQ(x) = 0,
2. [v(1)

Q ,A] = 0,

3. v(1)
Q = Q∂u + A(Q)∂u1 ,

4. A2(Q) = φu1A(Q) + φuQ, where A2(Q) = A
(
A(Q)

)
.

For the reasons considered at the beginning of Sect. 2.2, in most studies on gen-
eralized symmetries the attention is focused on symmetries whose generators have
no ∂x term. Let us observe that if v = ξ(x, u, u1)∂x + η(x, u, u1)∂u is a general-
ized vector field, the condition v(x) = 0 is equivalent to the condition ξ = 0. In

this case, v is a generalized symmetry of (1) if and only if
[
v(1)

Δ ,A
]

= 0. In this

paper the term commuting symmetry will refer to vector fieldsV on M (1) of the form
V = ξ(x, u, u1)∂x + η(x, u, u1)∂u + η1(x, u, u1)∂u1 that have properties similar to
those satisfied by v(1)

Q . More precisely:

Definition 2 We will say that a vector field V defined on M (1) is a commuting
symmetry of equation (1) if V(x) = 0 and [V,A] = 0.
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For further references, we include the following proposition, which can be easily
proved by using the properties of the Lie bracket; it provides a characterization of
commuting symmetries in terms of a function f = f (x, u, u1).

Proposition 1 A vector field V on M (1) is a commuting symmetry of equation (1) if
and only if V can be written as

V = f ∂u + A( f )∂u1 (13)

where f = f (x, u, u1) is a solution of

A2( f ) = φu1A( f ) + φu f. (14)

In what follows Eq. (14) will be called determining equation for commuting symme-
tries.

Although the set of generalized symmetries of an equation (1) strictly contains
the set of commuting symmetries, next we prove that the first prolongation of any
generalized symmetry of (1) is A−equivalent to a commuting symmetry:

Proposition 2 If v is a generalized symmetry of equation (1) then there exists a com-
muting symmetry V which is A−equivalent to v(1)

Δ . Conversely, if V is a commuting
symmetry of (1) then there exist a generalized symmetry v such that V = v(1)

Δ .

Proof Let v = ξ(x, u, u1)∂x + η(x, u, u1)∂u be a generalized symmetry of the equa-
tion (1) and let v(1)

Q denote the restriction to Δ of the first prolongation of the evolu-
tionary form of v. It can be checked that

v(1)
Δ = v(1)

Q + ξA

holds, which implies that v(1)
Δ and v(1)

Q are A−equivalent. Since [v(1)
Q ,A] = 0, the

vector field V = v(1)
Q is a commuting symmetry of equation (1).

Conversely, let V be a commuting symmetry of equation (1). By Proposition1,
we canwriteV = f ∂u + A( f )∂u1 ,where f = f (x, u, u1) satisfies the equation (14).
We define the (generalized) vector field v = f ∂u . Clearly v(1)

Δ = V, which implies
that [v(1)

Δ ,A] = 0,
(
i.e. v is a generalized symmetry of (1)

)
.

3.2 Relationships Between Commuting Symmetries
and C∞−Symmetries

Let us suppose that V = f ∂u + A( f )∂u1 is a commuting symmetry of (1), where
f = f (x, u, u1) is a non-zero solution for (14). Let λ = λ(x, u, u1) be the function
defined by
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λ = A( f )

f
. (15)

Then V can be written as V = f (∂u + λ∂u1) and, by using (14), we can write

A(λ) = A
(
A( f )

)
f − A( f )A( f )

f 2
=

(
φu f + φu1A( f )

)
f − (λ f )(λ f )

f 2

= φu + φu1λ − λ2.

This proves that the function λ given by (15) satisfies

A(λ) = φu + φu1λ − λ2, (16)

which coincides with Eq. (12) and therefore (∂u, λ) is a C∞−symmetry of (1)
[11]. Throughout this paper Eq. (16) will be called determining equation for C∞−
symmetries.

Conversely, let us assume that λ is an arbitrary solution of (16) and let f =
f (x, u, u1) be any function such that

A( f ) = λ f. (17)

Then, by using (16), we can write

A2( f ) = A(A( f )) = A(λ f ) = A(λ) f + λA( f ) = (
φu + φu1λ − λ2

)
f + λ(λ f )

= φu f + φu1(λ f ) = φu f + φu1A( f ).

Therefore, f satisfies the second-order linear partial differential equation (14) and
the vector field V = f (∂u + λ∂u1) is a commuting symmetry of (1).

We have proved the result that follows, which shows the relationships between
commuting symmetries and generalized C∞−symmetries.

Theorem 1 If (∂u, λ) is a C∞−symmetry of the equation (1) then for any function
f such that A( f ) = λ f the vector field

V = f (∂u + λ∂u1) = f (∂u)
[λ,(1)]

is a commuting symmetry of (1). Equivalently, if λ satisfies (16) and f is such that
A( f ) = λ f then f satisfies (14).

Conversely, ifV = f ∂u + A( f )∂u1 is a commuting symmetry of (1) then the func-
tion λ defined by (15) is such that (∂u, λ) is a C∞−symmetry of (1). Equivalently, if
f satisfies (14) then the function λ defined by (15) satisfies (16).

Remark 1 Commuting symmetries of (1) are determined by the solutions of (14),
which is a 2nd-order linear partial differential equation. The solutions for this equa-
tion can be obtained from the solutions λ and f of the first-order partial differential
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equations (16) and (17), respectively. Whereas A( f ) = λ f is a linear equation, the
determining equation (16) for the C∞−symmetries of (1) is a quasilinear first-order
PDE. Therefore the commuting symmetries of (1) could be found by obtaining a
solution λ of (16), a non null solution f for the equation A( f ) = λ f and by using
Theorem1.

3.3 Form of the Solutions of the Determining Equation (14)
for Commuting Symmetries

It this section we analyse the form of the solutions of the determining equation (14)
for commuting symmetries.

Let f1 and f2 be two solutions of (14) and let V1,V2 be the corresponding com-
muting symmetries. Let us suppose that the set of vector fields {A,V1,V2} is linearly
independent. This means that

W ( f1, f2) =
∣∣
∣∣
f1 A( f1)
f2 A( f2)

∣∣
∣∣ =

∣∣∣
∣∣∣

1 u1 φ

0 f1 A( f1)
0 f2 A( f2)

∣∣∣
∣∣∣
�= 0, (18)

which implies that V1 is not A−equivalent to V2. Let I1, I2 be two arbitrary first
integrals of A. The function f defined by f = I1 f1 + I2 f2 satisfies

A( f ) = A(I1) f1 + I1A( f1) + A(I2) f2 + I2A( f2) = I1A( f1) + I2A( f2),

A2( f ) = A(I1)A( f1) + I1A2( f1) + A(I2)A( f2) + I2A2( f2)

= I1A2( f1) + I2A2( f2)

= I1(φu f1 + φu1A( f1)) + I2(φu f2 + φu1A( f2))

= φu(I1 f1 + I2 f2) + φu1A(I1 f1 + I2 f2) = φu f + φu1A( f ).

(19)

Therefore, f = I1 f1 + I2 f2 is also a solution of (14).
We next prove that if f1 and f2 are two solutions of (14) such that (18) holds then

any solution f to (14) can be written in the form f = I1 f1 + I2 f2 for some first
integrals I1, I2 of A. In order to motivate our proof, let us observe that in such case
we would also have A( f ) = I1A( f1) + I2A( f2) and λ f = λ1 I1 f1 + λ2 I2 f2, where
λ1 = A( f1)/ f1, λ2 = A( f2)/ f2 and λ = A( f )/ f . Hence, the pair I1, I2 would be a
solution of the linear system

f1 I1 + f2 I2 = f,
λ1 f1 I1 + λ2 f2 I2 = λ f.

(20)

Let us observe that, by (18), the determinant of the system (20) is W ( f1, f2) �= 0
and, by Cramer’s rule, I1, I2 would be uniquely given by
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I1 = f (λ2 − λ)

f1(λ2 − λ1)
, I2 = f (λ − λ1)

f2(λ2 − λ1)
. (21)

After this motivation that provides us with the form of the first integrals I1, I2 of
A, let us proceed to the proof of the announced result.

If f1 and f2 are two functions such that (18) holds then, for any solution f to (14),
the functions I1, I2 in (21) are well defined and they satisfy f = I1 f1 + I2 f2. Since
λ, λ1 and λ2 are solutions of (16), it can directly be checked thatA(I1) = A(I2) = 0;
i.e., I1, I2 are first integrals of A.

As a consequence, the following theorem shows the forms of commuting sym-
metries and the solutions of (14):

Theorem 2 Let f1, f2 be two solutions of (14) such that (18) holds and let Vi =
fi∂u + A( fi )∂u1 , i = 1, 2, be the corresponding commuting symmetries. Then:

1. If f is an arbitrary solution of (14) andV = f ∂u + A( f )∂u1 is the corresponding
commuting symmetry then there exist two first integrals I1, I2 of A such that
f = I1 f1 + I2 f2 and V = I1V1 + I2V2.

2. Conversely, if a function f = f (x, u, u1) can be written in the form f = I1 f1 +
I2 f2, where I1, I2 are first integrals of A, then f solves (14).

3.4 Form of the Solutions of the Determining Equation (16)
for C∞−Symmetries

Theorems1 and 2 can be used to determine the form of the solutions of (16). Let us
suppose that λ, λ1 and λ2 are three solutions of (16) such that λ1 �= λ2. Let f, f1, f2
be such thatA( f ) = λ f ,A( f1) = λ1 f1 andA( f2) = λ2 f2. ByTheorem2, there exist
two first integrals I1, I2 of A such that (20) holds. Therefore

λ = A( f )

f
= λ1

I1 f1
I1 f1 + I2 f2

+ λ2
I2 f2

I1 f1 + I2 f2

= λ1
1

1 + (I2 f2)/(I1 f1)
+ λ2

(I2 f2)/(I1 f1)

1 + (I2 f2)/(I1 f1)
= 1

1 + h
λ1 + h

1 + h
λ2,

(22)

where h is defined by h = I2 f2
I1 f1

and satisfies

A(h) = (λ2 − λ1)h. (23)

As a consequence, the following theorem holds.

Theorem 3 Let (∂u, λ), (∂u, λ1) and (∂u, λ2) be three C∞−symmetries of (1). If

λ1 �= λ2 then the function h defined by h = λ1 − λ

λ − λ2
satisfies
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λ = 1

1 + h
λ1 + h

1 + h
λ2 (24)

and the equation A(h) = (λ2 − λ1)h.
Conversely, if (∂u, λ1) and (∂u, λ2) are two different C∞−symmetries of (1) and

h is any solution to the equation A(h) = (λ2 − λ1)h then the function λ given by
(24) is such that (∂u, λ) is a C∞−symmetry of (1).

3.5 An Application of Theorem3 to the Equations in the
Class A1

In this subsection we use Theorem3 to determine all the C∞−symmetries (∂u, λ)

admitted by a family of second-order equations that has been extensively studied
in the recent literature. Such class of equations has been denoted by A1 in [8] and
contains equations of the form

u2 + a2(x, u)u21 + a1(x, u)u1 + a0(x, u) = 0 (25)

whose coefficients a2, a1, a0 satisfy the following conditions [2, 8] :

S1 = a1u − 2a2x = 0,
S2 = (a0a2 + a0u)u + (a2x − a1u)x + (a2x − a1x )a1 = 0.

Relevant properties of the equations in this class have been deeply studied
concerning, for instance, to their linearisation through both local and nonlocal
transformations, as well as to the admitted first integrals and C∞− symmetries
[2, 8, 9].

In particular, the equations in the class A1 can be characterized as the Eq. (25)
that admit two functionally independent first integrals of the form Ii = Ai (x, u)u1 +
Bi (x, u), for i = 1, 2. The associated C∞−symmetries (∂u, λ1) and (∂u, λ1) are
defined by functions λ1 and λ2 that are also linear in u1 (see Theorem4 in [8] for
details). The search of such first integrals and C∞−symmetries is based on the
construction of the function f = f (x) defined by

f (x) = a0a2 + a0u − 1

2
a1x − 1

4
a1

2, (26)

which does not depend on u [8].
Let g1 = g1(x), g2 = g2(x) be a fundamental set of solutions of the linear second-

order ODE g′′(x) + f (x)g(x) = 0. According to [8], the functions
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λ1(x, u, u1) = −a2(x, u)u1 − a1(x, u)

2
+ g′

1(x)

g1(x)
,

λ2(x, u, u1) = −a2(x, u)u1 − a1(x, u)

2
+ g′

2(x)

g2(x)
,

(27)

are two different solutions of (16). By the other hand, it can be checked that h0 =
g2/g1 solves the equationA(h) = (λ2 − λ1)h and therefore any solution to this linear
equation is of the form

h = I · g2
g1

, (28)

where I = I (x, u, u1) is some first integral of A.

The general solution of the corresponding determining equation (16) for C∞−
symmetries is given by (24). However, it is important to observe that it can be
checked, by using the function h given in (28) and some simplifications, that the
general solution of the corresponding equation (16) can also be written in the form

λ = −a2(x, u)u1 − a1(x, u)

2
+ g′

1(x) + Ig′
2(x)

g1(x) + Ig2(x)
, (29)

where I is a first integral of A.

Example 1 As an example of an equation in the classA1,wewill consider theMorse
equation

u2 + u21 + 1 − e−u = 0. (30)

For this equation the corresponding function (26) becomes f (x) = 1. Two inde-
pendent solutions of the corresponding linear equation g′′ + f g = 0 are g1(x) =
sin x, g2(x) = cos x . According with the previous discussion, two different C∞−
symmetries (∂u, λ2) and (∂u, λ3) are given by the following particular solutions of
(16)

λ2 = −u1 + cot x and λ3 = −u1 − tan x, (31)

which satisfy λ3 − λ2 = − tan x − cot x . The solutions of A(h) = (λ3 − λ2)h are
of the form h = I · cot x, where I is a first integral of (30). In consequence, any
C∞−symmetry (∂u, λ) of (30) is determined by a function λ of the form

λ = −u1 + cos x − I · sin x
sin x + I · cos x , (32)

where I is a first integral of A.
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4 Combined Use of Solutions of the Determining Equations
for Commuting Symmetries and C∞−Symmetries

In this section we show how some solutions of any of the Eqs. (14) or (16) can be
used to obtain solutions of several equations related to the differential operator A.

4.1 Reductions of the Determining Equations (16) and (14)

As it has been mentioned in Remark1, the solutions f for (14) can be obtained by
solvingfirst the equation (16) and then by solving an equation of the formA( f ) = λ f ,
where λ is an arbitrary solution of (16). In this subsection we analyse the structure
of the solutions of equation (16) by following a strategy similar to the classical
transformation of a Riccati-type equation into a Bernoulli-type equation and a linear
one [5].

Let us assume that λ1 = λ1(x, u, u1) is a known particular solution of (16). It can
be checked that if λ is an arbitrary solution of (16) then the function μ = λ − λ1 is
a solution of

A(μ) = (−2λ1 + φu1)μ − μ2. (33)

Conversely, it can also be checked that if μ is an arbitrary solution of (33) then the
function λ = μ + λ1 is a solution of (16).

The equation (33) is a Bernoulli-type equation; if μ = μ(x, u, u1) is a non-zero
solution of (33) then ν = 1/μ satisfies the (non-homogeneous) linear equation

A(ν) = (2λ1 − φu1)ν + 1. (34)

Conversely, ifν = ν(x, u, u1) is a non-zero solutionof (34) thenμ = 1/ν is a solution
of (33).

In order to transform (34) into an homogeneous linear equation, let us assume
that ν1 is a particular solution of (34). It can be easily checked that a function ν is
a solution of (34) if and only if the function ζ = ν − ν1 is a solution of the linear
homogeneous equation

A(ζ ) = (2λ1 − φu1)ζ. (35)

Let us assume that ζ1 = ζ1(x, u, u1) is a particular solution of (35). Since (35) is
a linear equation, if I is a first integral of A then ζ(x, u, u1) = I ζ1 is a solution of
(35) and conversely: any solution ζ of (35) is of the form ζ(x, u, u1) = I ζ1, where
I is a first integral of A.

Previous discussion shows that any solution of (16) can be expressed in terms of a
particular solutionλ1 of (16), a particular solution ν1 of the linear (non-homogeneous)
equation (34) and a solution of the linear equation (35):
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Proposition 3 Let λ1, ν1 and ζ1 be particular solutions of the equations (16), (34)
and (35), respectively. If I = I (x, u, u1) is any first integral of A then the function

λ = 1

I ζ1 + ν1
+ λ1 (36)

is a solution of (16). Conversely, if λ is any solution to (16) then the function I defined
through (36) as

I = 1

ζ1

(
1

λ − λ1
− ν1

)
(37)

is a first integral of A.

Remark 2 There are several circumstances wherein particular solutions ν1 or ζ1 of
(34) or (35), respectively, can be obtained by using several classes of solutions of
equations associated to the differential operator A of the given equation.

As an example, let us observe that if λ2 is a second known particular solution of
(16) then μ1 = λ2 − λ1 is a particular solution of (33). If μ1 is a non-zero function
then ν1 = 1/μ1 = 1/(λ2 − λ1) is a particular solution of (34). Therefore, if λ is a
solution to (16) written in the form (36), the expression ν1 = 1/(λ2 − λ1) is used in
(36) and the resulting expression is simplified then we get that the function λ can
also be written as

λ = 1

1 + h
λ1 + h

1 + h
λ2, (38)

where

h = 1

(λ2 − λ1)I ζ1
(39)

satisfies A(h) = (λ2 − λ1)h. These expressions should be compared with (24).
Conversely, if a function λ = λ(x, u, u1) can be written in the form (38)–(39),

where λ1 and λ2 are particular solutions of (16), and h satisfies the equation A(h) =
(λ2 − λ1)h then a direct calculation shows that λ is a solution of (16).

Therefore, Theorem3 could also have been proved by using the discussion in this
subsection.

Remark 3 Aswe havementioned before, Theorem3 is similar to awell-known result
for a Riccati equation [5]

y′ = f2(x)y
2 + f1(x)y + f0(x). (40)

If y1(x) and y2(x) are two solutions of this equation then the general solution of the
Riccati equation can be written in a form similar to (38):

y = Cy1 +U (x)y2
C +U (x)

= 1

1 + h
y1 + h

1 + h
y2,
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where U (x) = exp

(∫
f2(x)

(
y1(x) − y2(x)

)
dx

)
, C is an arbitrary constant and

h = U/C .
Let also recall that another well-known property of a Riccati equation (40) is

that it can be transformed into a second-order linear equation by means of the new
dependent variable given by

u(x) = exp

(
−

∫
f2(x)y(x)dx

)
.

At the beginning of this section we have shown that a similar result holds for the
Eq. (16), by considering the differential operator A instead of the derivative y′.

Remark 4 Let us recall that a function M = M(x, u, u1) such that

A(M) = −φu1M

is known in the literature with the name of Jacobi last multiplier for (1) [12]. In this
remark we show how Jacobi last multipliers are narrowly linked to the solutions of
(14), (16) and (35).

For instance, if M is a Jacobi last multiplier for (1), λ1 is a particular solution of
(16) and f satisfies A( f ) = λ1 f , then A

(
f 2

) = 2λ1 f 2 and ζ1 = M f 2 satisfies

A(ζ1) =A
(
M f 2

)
=A(M) f 2 + MA

(
f 2

)
= −φu1M f 2 + 2λ1 f 2M = (2λ1 − φu1)M f 2

= (2λ1 − φu1)ζ1.

Therefore ζ1 is a solution of (35).
Conversely, let us suppose that λ1 is a particular solution of (16) and that f, ζ1

satisfy
A( f ) = λ1 f, A(ζ1) = (2λ1 − φu1)ζ1.

It can be checked that
M = ζ1 f

−2 (41)

is a Jacobi last multiplier for (1).
Similarly, it can be checked that if M is a Jacobi last multiplier for (1), λ1 a

particular solution of (16) and ζ1 satisfies A(ζ1) = (2λ1 − φu1)ζ1 then

f =
(

ζ1

M

)1/2

satisfies A( f ) = λ1 f and therefore V = f ∂u + λ1 f ∂u1 is a commuting symmetry
of (1).

Finally, let λ1, λ2 be two different particular solutions of (12), let f1, f2 be two
non-null functions such that A( f1) = λ1 f1 and A( f2) = λ2 f2, respectively, and let
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W ( f1, f2) be the function defined by (18). Then, by using (14), it can be directly
checked that

M = (W ( f1, f2))
−1 =

⎛

⎝

∣
∣∣∣∣∣

1 u1 φ

0 f1 A( f1)
0 f2 A( f2)

∣
∣∣∣∣∣

⎞

⎠

−1

= 1

f1A( f2) − f2A( f1)

= 1

f1 f2(λ2 − λ1)

(42)

is a Jacobi last multiplier for (1). This result is, for second-order ordinary differential
equations, a new version of a well-known result on the determination of a Jacobi
last multiplier when a sufficient number (the order of the equation) of symmetries is
known [12, 16].

4.2 Combining Solutions of (16)

The following theorem shows that a commuting symmetry and twodifferent solutions
of (16) let determine the remaining commuting symmetries.

Theorem 4 Let V1 = f1(∂u + λ1∂u1) be a commuting symmetry of (1) and λ1 =
A( f1)/ f1. Let λ2, λ3 be two different solutions of (16).

1. The functions f2 and f3 defined by

f2 = f1
λ1 − λ3

λ2 − λ3
and f3 = f1

λ1 − λ2

λ3 − λ2
(43)

satisfy A( f2) = λ2 f2 and A( f3) = λ3 f3, respectively.
2. If f̃2 and f̃3 are non-null functions such that A( f̃2) = λ2 f̃2 and A( f̃3) = λ3 f̃3

then the functions I1 and I2 defined by

I1 = f1(λ3 − λ1)

f̃2(λ3 − λ2)
, I2 = f1(λ2 − λ1)

f̃3(λ2 − λ3)
(44)

are first integrals of (1).

Proof By using Eq. (16), it can be checked that the functions h2, h3 defined by

h2 = λ1 − λ3

λ2 − λ3
and h3 = λ1 − λ2

λ3 − λ2
(45)

satisfy
A(h2) = (λ2 − λ1)h2, A(h3) = (λ3 − λ1)h3. (46)
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Therefore, f2 = h2 · f1 and f3 = h3 · f1 satisfy

A( f2) = A(h2 f1) = λ2(h2 f1) = λ2 f2,
A( f3) = A(h3 f1) = λ3(h3 f1) = λ2 f3,

which proves the first part of this theorem.
The second part of this theorem can be directly proved because, for instance, the

function I1 given in (44) can be written as I1 = f2/ f̃2, being f2 and f̃2 solutions of
the same linear equationA( f ) = λ2 f . A similar situation happens with I2 = f3/ f̃3.
Alternatively, this second part is a consequence of Theorem2, because Eq. (44) is a
consequence of (21) and the hypotheses of this Theorem.

Remark 5 Theorem4 might be used in the following circumstance. Let us suppose
that (∂u, λ2) and (∂u, λ3) are two C∞−symmetries of (1) and let v = ξ∂x + η∂u
be an additional known Lie point symmetry of (1) then, by setting f1 = Q and
λ1 = A(Q)/Q in (43) we obtain two functions f2 and f3 such thatV2 = f2

(
∂ [λ2,(1)]
u

)

and V3 = f3
(
∂ [λ3,(1)]
u

)
are commuting symmetries of the given equation.

An example of the use of Remark5 is given at the beginning of Example3: a Lie
point symmetry and two C∞−symmetries can be used for the direct construction of
a first integral of the equation. In our next example we consider the case where the
equation has two known Lie point symmetries and a known C∞−symmetry.

Example 2 In this example we consider the equation

u2 + 4u2u1 + u5 = 0. (47)

This is the second equation in the Abel chain [10]. It is known that (47) admits the
Lie point symmetries v1 and v2 given by

v1 = ∂x , v2 = −2x∂x + u∂u . (48)

The characteristics of these symmetries are Q1 = −u1 and Q2 = u + 2xu1, respec-
tively. The corresponding C∞−symmetries, written in canonical form, are (∂u, λ1)

and (∂u, λ2), where λ1 and λ2 are given by

λ1 = A(Q1)

Q1
= −4u2 − u5

u1
, λ2 = A(Q2)

Q2
= (3 − 8xu2)u1 − 2xu5

u + 2xu1
. (49)

On the other hand, it has been proved in [10] that (47) admits the C∞−symmetry

(∂u, λ3) =
(
∂u,

u1
u

− 2u2
)
, (50)

which is also admitted by any equation in the Abel chain.
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By using the first function in (43), taking f1 = Q1, we can directly obtain that
the function

f2 = Q1
λ1 − λ3

λ2 − λ3
= − (u1 + u3)(2xu1 + u)

2(xu1 + xu3 − u)
(51)

satisfies A( f2) = λ2 f2. Similarly, by using the second function in (43) we obtain
that

f3 = Q1
λ1 − λ2

λ3 − λ2
= − (3u1 + u3)u

xu1 + xu3 − u
(52)

satisfies A( f3) = λ3 f3.
The functions in (44) let to obtain first integrals for Eq. (47); by considering the

function f̃2 = Q2 we have that

I1 = − u1 + u3

2(xu1 + xu3 − u)
(53)

is a non-trivial first integral of (47). If we take f̃3 = f3, then the second equation in
(44) provides a constant first integral I2.

In order to complete the integration of equation (47), we could use, for instance,
the Jacobi last multiplier corresponding to (42):

M12 = 1

f1 f2(λ2 − λ1)
= − 1

(3u1 + u3)(u1 + u3)
.

The Jacobi last multiplier provides an integrating factor for the auxiliary equation
I1 = C1,C1 ∈ R written in normal form:

u1 = −u(u2(2C1x + 1) − 2C1)

(2C1x + 1)
.

Such integrating factor becomes (see [11, Theorem 8] and [6, Corollary6] for
details):

μ = 1

2C1u(u2(2C1x + 1) − 3C1)
.

We omit here the expression of the general solution to equation (47) which can be
obtained by using the classical method of Lie. The main purpose of this example is to
illustrate how the combined use of twoLie point symmetries and oneC∞−symmetry
provide directly a first integral and a Jacobi last multiplier which permit the complete
integration of the equation.
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4.3 First Integrals Derived from Several C∞−Symmetries.

The following proposition shows that some first integrals of A can be obtained from
solutions of several equations associated to the differential operator A.

Proposition 4 Let λ1, λ2 and λ3 be three mutually different particular solutions of
(12).

1. If ζ1 satisfies A(ζ1) = (2λ1 − φu1)ζ1 then

I123 = 1

ζ1

(
1

λ3 − λ1
− 1

λ2 − λ1

)
(54)

is a first integral of A.

2. If h is a non-null function satisfying A(h) = (λ2 − λ1)h then

Ĩ123 = λ1 − λ3

h(λ3 − λ2)
(55)

is a first integral of A.

Proof (1) By Theorem3 the function λ3 can be written in the form λ3 = 1
1+h0

λ1 +
h0

1+h0
λ2, where h0 = λ1−λ3

λ3−λ2
satisfies A(h0) = (λ2 − λ1)h0. On the other hand, (38)–

(39) implies that h0 must be of the form h0 = 1/
(
(λ2 − λ1)I123ζ1

)
, where I123 is a

first integral of A. Now (54) is a consequence of

λ1 − λ3

λ3 − λ2
= 1

(λ2 − λ1)I123ζ1
.

(2) Since h and h0 are solutions of the equation A(h) = (λ2 − λ1)h, necessarily
there exist a first integral Ĩ123 such that h0 = Ĩ123h. This implies (55).

When four particular solutions of the determining equation (12) are known, the
ratio of the corresponding first integrals I123 and I124 is also a first integral of A.

Corollary 1 Let λ1, λ2, λ3 and λ4 be particular solutions of (12). Then

I = (λ2 − λ4)(λ3 − λ1)

(λ2 − λ3)(λ4 − λ1)
(56)

is a first integral of A.

Proof The function I given in (56) is the ratio of the corresponding first integrals I123
and I124 given in (54), when the same solution ζ1 ofA(ζ1) = (2λ1 − φu1)ζ1 is used for
both first integrals. Alternatively, if h is a solution of the equationA(h) = (λ2 − λ1)h
and Ĩ123 and Ĩ124 are the corresponding first integrals given by (55), then I is also
the ratio of Ĩ123 and Ĩ124.
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Example 3 In this example we consider, again, the Morse equation (30) to illustrate
how the solutions of several equations related to the vector field A can be combined
to obtain different objects related to the given equation.

Morse equation admits the trivial Lie point symmetry ∂x . Its characteristic is
f1 = Q1 = −u1 and

λ1 = A( f1)

f1
= e−u − 1 − u21

u1

defines a C∞−symmetry (∂u, λ1) for (30). By using the C∞−symmetries

(∂u, λ2) = (∂u,−u1 + cot x), (∂u, λ3) = (∂u,−u1 − tan x),

which were defined in (31), and Remark5, we can obtain without any kind of integra-
tion two functions f2 and f3 such thatA( f2) = λ2 f2 andA( f3) = λ3 f3, respectively.
By using (43) we get that

f2 = sin x
(− sin x · u1 − cos x · (e−u − 1)

)
(57)

and
f3 = cos x

(− cos x · u1 + sin x · (e−u − 1)
)
, (58)

determine two functions that define, respectively, two commuting symmetries V2

and V3 such that A,V2,V3 are linearly independent.
It can be checked that h0 = g2(x)

g1(x)
= cot x satisfiesA(h0) = (λ3 − λ2)h0. Further-

more,

h1 = f3
f2

= cos x
(− cos x · u1 + (e−u − 1) sin x

)

sin x (− sin x · u1 − (e−u − 1) cos x)

satisfiesA(h1) = (λ3 − λ2)h1. Therefore h0 and h1 are solutions of the sameequation
A(h) = (λ3 − λ2)h. Consequently, J0 = h1

h0
is a first integral of (30):

J0 = h1
h0

= − cos x · u1 + (e−u − 1) sin x

− sin x · u1 − (e−u − 1) cos x
. (59)

On the other hand, if we use h0 instead of h in (55) we get that the first integral

J1 = 1

h0

λ2 − λ1

λ1 − λ3

is J0. Of course, we could also have used h1 instead of h in (55); however, it can be
checked that the first integral calculated in this way is constant.

So far, the only Lie point symmetry we have used in this example is the trivial
symmetry v1 = ∂x . Let us recall that the equations in class A1 admit a maximal
algebra of Lie point symmetries [8]. If v1 = ∂x , v2, . . . , v8 are the generators of this
Lie algebra and the fi = Qi , 1 ≤ i ≤ 8, are the corresponding characteristics then the
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functions λi = A(Qi )/Qi , are particular solutions of the corresponding determining
equation (12) (or (16)). These functions could be used to compute first integrals of
the equation by using Proposition4 or Corollary1, by using λi and Qi instead of λ1

and Q1, for 2 ≤ i ≤ 8. Of course, some of the first integrals that can be calculated in
this way could be functionally dependent on the first integral previously obtained.

Example 4 The family of 2nd-order equations

u2 = 1

2 u
u21 − 2 uu1 − 1

2
u3 + ku − 1

2 u
, k ∈ R (60)

is a particular case of the XXVII equation in the Painlevé-Gambier classification
[5], which clearly admits v1 = ∂x as Lie point symmetry. It can be checked that v
is the unique Lie point symmetry admitted by (60). According to Proposition2, v1
defines the commuting symmetry V1 = Q1∂u + A(Q1)∂u1 , where Q1 = −u1 is the
characteristic of v1 and A denotes the vector field associated to (60).

It is also known [3] that Eq. (60) admits theC∞−symmetries (∂u, λ2) and (∂u, λ3),

defined by:

λ2 = u1
u

− u + 1

u
, λ3 = u1

u
− u − 1

u
. (61)

By using (43), the functions

f2 = Q1
λ1 − λ3

λ2 − λ3
= 1

4

(
(u1 − 1)2 + u2(2u1 − 2k + u2)

)
,

f3 = Q1
λ1 − λ2

λ3 − λ2
= 1

4

(−(u1 + 1)2 − u2(2u1 − 2k + u2)
)

(62)

satisfy A( f2) = λ2 f2 and A( f3) = λ3 f3, respectively. For this example, it can be
checked that the corresponding first integrals that appear in (44) are constant and
hence they are not useful to reduce or integrate equation (60).

Next, we show how the functions given in (61) and (62) can still be used to
integrate equation (60) by quadratures. By Theorem1, for i = 2, 3, the vector field
Vi = fi∂u + λi fi∂u1 is a commuting symmetry of (60) which isA−equivalent to the
C∞−symmetry (∂u, λi ). Besides [V2,V3] = 0 and by Theorem5 in [11] two func-
tionally independent first integrals can be computed by quadratures from systems:

(I1)x = λ2u1 − φ

f3(λ3 − λ2)
, (I1)u = −λ2

f3(λ3 − λ2)
, (I1)u1 = 1

f3(λ3 − λ2)
, (63)

and

(I2)x = λ3u1 − φ

f2(λ2 − λ3)
, (I2)u = −λ3

f2(λ2 − λ3)
, (I2)u1 = 1

f2(λ2 − λ3)
, (64)

whereφ denotes the right-hand side of (60). The corresponding first integrals become
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I1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x −
√

2

1 − k
arctan

(
u1 + u2 − 1

u
√
2(1 − k)

)
, for k < 1

−x + 2 u

u1 + u2 − 1
, for k = 1

x −
√

2

k + 1
arctanh

(
u1 + u2 + 1

u
√
2(k + 1)

)
, for k > 1.

and

I2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x −
√

2

−(k + 1)
arctan

(
u1 + u2 + 1

u
√−2(k + 1)

)
, for k < −1

x − 2 u

u1 + u2 + 1
, for k = −1

x −
√

2

k + 1
arctanh

(
u1 + u2 + 1

u
√
2(k + 1)

)
, for k > −1.

Once the complete set {I1, I2} of first integrals has been determined, the general
solution to equation (60) can be easily obtained by eliminating u1 from the system
I1 = C1, I2 = C2, where C1,C2 ∈ R.

5 Concluding Remark

Several new interconnections between the determining equations for generalized,
commuting, and generalized C∞−symmetries, as well as other equations related to
the linear operator associated to a second-orderODE, have been established. This lets
to exploit and combine various solutions to some of these equations in order to find
particular solutions of some of the others. As a consequence, newways of computing
first integrals and Jacobi last multipliers of the equation have been found; these
quantities play a fundamental role in the integrability of the equations under study.
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Differential Invariants for Two and Three
Dimensional Linear Parabolic Equations

Adnan Aslam, Asghar Qadir and Muhammad Safdar

Abstract Wefind equivalence transformations for linear parabolic equations having
two and three spatial dimensions. Invariants associatedwith these higher dimensional
linear parabolic equations are derived using the obtained set of equivalence transfor-
mations. We apply Lie infinitesimal method to deduce the associated invariants. We
find first order invariants for the the higher dimensional parabolic equations due to
an invertible change of the dependent and independent variables separately. Further,
obtained invariants are employed to reduce these linear higher dimensional parabolic
equations to their simplest forms.

Keywords Semi-invariants · Joint differential invariants · Lie infinitesimal method

1 Introduction

Lie infinitesimal method has been widely employed to derive differential invariants
for linear and nonlinear differential equations (DEs). The said method comprises
of two steps: Derivation of the equivalence group associated with the concerned
equation and calculation of invariants using this equivalence group. Equivalence
transformations are invertible transformations of the dependent and independent
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variables that preserve e.g. the order, form, linearity and homogeneity of a DE . Basic
theory of equivalence groups, differential invariants and algorithms to derive them
can be found in [1–3]. These invariants ensure existence of point transformations,
i.e., an invertible change of the dependent and/or independent variables to map two
equations into each other, if for both the equations associated invariants remain
unaltered.

Developing integration theory for hyperbolic equations

uxy + a(x, y)ux + b(x, y)uy + c(x, y)u = 0, (1)

Laplace [4] found the following quantities

λ1 := ax + ab − c, λ2 := by + ab − c, (2)

that remain unaltered (called semi-invariants) when only dependent variable under-
goes a linear change u = σ(x, y)ū. These are first order semi-invariants as they
contain at most first order partial derivatives of the coefficients a(x, y), and b(x, y).
Further, Cotton [5] investigated Laplace invariants of the elliptic equation

uxx + uyy + a(x, y)ux + b(x, y)uy + c(x, y)u = 0, (3)

and he came across the following first order invariants

λ3 := ay − bx , λ4 := ax + by + 1

2
(a2 + b2) − 2c. (4)

Ibragimov in his attempt to fill the gap by finding invariants of the parabolic equation

ut + a(t, x)uxx + b(t, x)ux + c(t, x)u = 0, (5)

do not only derived the associated invariant

λ5 := 1

2
b2ax + (at + aaxx − a2x )b + (aax − ab)bx − abt − a2bxx + 2a2cx , (6)

for parabolic equation by employing the infinitesimal approach, indeed he re-derived
semi-invariants (2) and (4) using the said method [6], for the hyperbolic and ellip-
tic equations respectively. Attempts have also been made to find semi-invariants
associated with the partial differential equations (PDEs) of the types mentioned,
due to a change of the independent variables. Joint invariants of these equations
via an infinitesimal change of both the dependent and independent variables are also
obtained [7–10]. Further, infinitesimal approach has also been engaged to find invari-
ants of the linear systems of two elliptic, hyperbolic and parabolic type equations
[11–14]. Moreover, by means of Lie infinitesimal method invariants for two and
three-dimensional hyperbolic equations have been deduced [15].
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In this paper we obtain semi-invariants associated with the parabolic equations

E1 : ut = a1(t, x, y)uxx + a2(t, x, y)uyy + b1(t, x, y)ux + b2(t, x, y)uy

+c(t, x, y)u, (7)

and

E2 : ut = a1(t, x, y, z)uxx + a2(t, x, y, z)uyy + a3(t, x, y, z)uzz + b1(t, x, y, z)ux

+b2(t, x, y, z)uy + b3(t, x, y, z)uz + c(t, x, y, z)u, (8)

where the subscripts denote partial derivatives, due to a change of the dependent and
independent variables, separately. Firstly we find the associated group of equivalence
transformations for both (7) and (8). Secondly we derive semi-invariants associated
with these equations by adopting infinitesimal method. These invariants are obtained
by considering infinitesimal transformations of both the dependent and independent
variables, separately. We show that with the help of the deduced invariants Eqs. (7)
and (8) are reducible to

ut = a1(t, x, y)uxx + a2(t, x, y)uyy, (9)

and

ut = a1(t, x, y, z)uxx + a2(t, x, y, z)uyy + a3(t, x, y, z)uzz, (10)

respectively, under a linear transformation of the dependent variables. Further, due to
an invertible change of the independent variables Eqs. (7) and (8) are transformable
to the following simple forms

ut = α1uxx + α2(x)uyy + c(t, x, y)u, (11)

and

ut = α1uxx + α2(x)uyy + α3uzz + c(t, x, y, z)u, (12)

respectively, where α1 and α3, are nonzero constants, α2,x �= 0 and c remains the
same as is in (7) and (8).

In the second section equivalence transformations for Eqs. (7) and (8) are deter-
mined. The third section is on the derivation of the semi-invariants associated with
these equations. Algorithm to find point transformations to map higher dimen-
sional parabolic equations into each other is presented in fourth section. Subsequent
section is on application of the obtained invariants which when agree for two higher-
dimensional linear parabolic equations are shown to map them into each other. The
last section concludes our work.
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2 Equivalence Transformation Groups for Two and
Three-Dimensional Parabolic Equations

Equivalence transformations play an essential role in deriving invariants of differ-
ential equations using infinitesimal method. The group formed by set of all equiv-
alence transformations associated with a family of equations is called equivalence
group. There are two methods to obtain these transformations [3, 16], the first one
is called direct method while the second one is known as Lie infinitesimal method.
Although the direct method has the benefit of providing the most general group of
equivalence transformations, it is seldom used due to considerable computational
difficulties involved. Here we use the infinitesimal method to get the equivalence
transformations for Eqs. (7) and (8).

Consider the parabolic equation (7) with three independent variables to derive
the equivalence transformations which map this family into itself, in general with
different coefficients e.g. a j , b j and c, where j = 1, 2. These transformations in
general form are

t = φ1(t, x, y, u), x = φ2(t, x, y, u), y = φ3(t, x, y, u), u = ψ(t, x, y, u). (13)

The arbitrary functions φk and ψ for k = 1, 2, 3, are such that ∂(φk, ψ)/∂(t, x, y,
u) �= 0. An operator of the form

X = ξ1
∂

∂t
+ ξ2

∂

∂x
+ ξ3

∂

∂y
+ η

∂

∂u
+ μ1

∂

∂a1
+ μ2

∂

∂a2

+μ3
∂

∂b1
+ μ4

∂

∂b2
+ μ5

∂

∂c
, (14)

where ξk = ξk(t, x, y, u) for k = 1, 2, 3, η = η(t, x, y, u) and μm = μm(t, x, y, u,

a j , b j , c) form = 1, 2, 3, 4, 5, and j = 1, 2, is used to derive the continuous group of
equivalence transformations associated with Eq. (7). We employ the twice extended
generator (14) on (7), that is

X[2](E1)|(E1) = 0. (15)

The notation |E(1) means evaluated on Eq. (7) and

X[2] = X + ηt ∂

∂ut
+ ηx ∂

∂ux
+ ηy ∂

∂uy
+ ηxx ∂

∂uxx
+ ηyy ∂

∂uyy
, (16)

where

ηt = Dtη − ut Dtξ1 − ux Dtξ2 − uyDtξ3,

ηx = Dxη − ut Dxξ1 − ux Dxξ2 − uyDxξ3,

ηy = Dyη − ut Dyξ1 − ux Dyξ2 − uyDyξ3,
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ηxx = Dxη
x − utx Dxξ1 − uxx Dxξ2 − uxy Dxξ3,

ηyy = Dyη
y − uty Dyξ1 − uxy Dyξ2 − uyy Dyξ3. (17)

The operators Dt , Dx , and Dy denote the total derivatives with respect to t, x, and
y, respectively

Dt = ∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ uty

∂

∂uy
+ · · · ,

Dx = ∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut
+ uxx

∂

∂ux
+ uxy

∂

∂uy
+ · · · ,

Dy = ∂

∂y
+ uy

∂

∂u
+ uty

∂

∂ut
+ uxy

∂

∂ux
+ uyy

∂

∂uy
· · · . (18)

For detailed extension procedure reader is referred to [3, 17]. All the coefficients
of derivatives of u(t, x, y) and their different powers readable from (15), provide a
set of determining equations when they all are set equal to zero. These determining
equations constitute a system of linear PDEs. To solve this system we used MAPLE
which reveals the infinitesimal coordinates of (14) that read as

ξ1 = ξ1(t),

ξ2 = ξ2(t, x),

ξ3 = ξ3(t, y),

η = η(t, x, y)u,

μ1 = a1(2ξ2x − ξ1t ),

μ2 = a2(2ξ3y − ξ1t ),

μ3 = a1(ξ2xx − 2ηx ) + b1(ξ2x − ξ1t ) − ξ2t ,

μ4 = a2(ξ3yy − 2ηy) + b2(ξ3y − ξ1t ) − ξ3t ,

μ5 = ηt − a1ηxx − a2ηyy − b1ηx − b2ηy − cξ1t , (19)

where ξ1(t), ξ2(t, x), ξ3(t, y) and η(t, x, y) are arbitrary functions and t, x, y in
the subscripts denote their partial derivatives. We apply (14) with the infinitesimal
coordinates (19) in the next section to derive semi-invariants associated with the
Eq. (7).We construct semi-invariants for the class (7), consideringfirst a linear change
of the dependent variable

u = ψ(t, x, y, u) := η(t, x, y)u, (20)

and then an arbitrary change of the independent variables

t = φ1(t, x, y, u) := ξ1(t),

x = φ2(t, x, y, u) := ξ2(t, x),
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y = φ3(t, x, y, u) := ξ3(t, y). (21)

For the second class of parabolic equations (8) we follow the same procedure
to find equivalence group of transformations. Here the operator takes the following
form

Z = ξ1
∂

∂t
+ ξ2

∂

∂x
+ ξ3

∂

∂y
+ ξ4

∂

∂z
+ η

∂

∂u
+ μ1

∂

∂a1
+ μ2

∂

∂a2
+ μ3

∂

∂a3

+μ4
∂

∂b1
+ μ5

∂

∂b2
+ μ6

∂

∂b3
+ μ7

∂

∂c
, (22)

where ξl = ξl(t, x, y, z, u) for l = 1, 2, 3, 4, η = η(t, x, y, z, u) and μp = μp(t, x,
y, z, u, ak, bk, c) for p = 1, 2, 3, 4, 5, 6, 7, and k = 1, 2, 3, to get the required equiv-
alence mappings. Inserting the set of determining equations obtained from

Z[2](E2)|(E2) = 0, (23)

in MAPLE provides the following infinitesimal coordinates

ξ1 = ξ1(t),

ξ2 = ξ2(t, x),

ξ3 = ξ3(t, y),

ξ4 = ξ4(t, z),

η = η(t, x, y, z)u,

μ1 = a1(2ξ2x − ξ1t ),

μ2 = a2(2ξ3y − ξ1t ),

μ3 = a3(2ξ4z − ξ1t ),

μ4 = a1(ξ2xx − 2ηx) + b1(ξ2x − ξ1t ) − ξ2t ,

μ5 = a2(ξ3yy − 2ηy) + b2(ξ3y − ξ1t ) − ξ3t ,

μ6 = a3(ξ4zz − 2ηz) + b3(ξ4z − ξ1t ) − ξ4t ,

μ7 = ηt − a1ηxx − a2ηyy − a3ηzz − b1ηx − b2ηy − b3ηz − cξ1t , (24)

for (22).Theoperator of the equivalence transformations (22)with the above infinites-
imal coordinates is employed in subsequent section to derive semi-invariants for (8).
We consider transformations of the dependent and independent variables provided
above, separately, to derive associated semi-invariants.

A zeroth order differential invariant of a PDE under equivalence group of trans-
formations is a function of all or a few coefficients of the concerned equation. For
instance, in case of (7) and (8) it reads as

J0(a j , b j , c), j = 1, 2, (25)
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and

J0(ak, bk, c), k = 1, 2, 3, (26)

respectively. Similarly, a first order differential invariant associated with both the
PDEs is

J1(a j , b j , c, a j,σ , b j,σ , cσ ), σ ∈ {t, x, y}, (27)

and

J1(ak, bk, c, ak,τ , bk,τ , cτ ), τ ∈ {t, x, y, z}, (28)

respectively. Notice that J1 contains first order partial derivatives of the coefficients
of (7) and (8). Likewise, a differential invariant of an arbitrary order q involves qth
order derivatives of all or a few coefficients of the concerned equation.

To find an invariant of order zero for a PDE we incorporate operators Xk , for
k = 1, 2, . . . , n, in the invariance criterion

Xk J0 = 0, (29)

where X1,X2, . . .,Xn , characterize continuous group of equivalence transformations
associated with the concerned equation. If a generator Xp, contains l arbitrary func-
tions and m derivatives of these functions then l + m, is the number of linear PDEs
obtained by the invariance criterion. In order to find the first and higher order dif-
ferential invariants of a PDE one needs to extend the operators Xk , k = 1, 2, . . . , n,.
Such an operator for (7) is given by (14), which can be extended as

X[1] = X + μ
i1
1

∂

∂a1,i1
+ μ

i1
2

∂

∂a2,i1
+ μ

i1
3

∂

∂b1,i1
+ μ

i1
4

∂

∂b2,i1
+ μ

i1
5

∂

∂ci1
,

X[2] = X[1] + μ
i1i2
1

∂

∂a1,i1i2
+ μ

i1i2
2

∂

∂a2,i1i2
+ μ

i1i2
3

∂

∂b1,i1i2
+ μ

i1i2
4

∂

∂b2,i1i2
+ μ

i1i2
5

∂

∂ci1i2
,

.

.

.
.
.
.

.

.

.

X[q] = X[q−1] + μ
i1i2···iq
1

∂

∂a1,i1i2···iq
+ μ

i1i2···iq
2

∂

∂a2,i1i2···iq
+ μ

i1i2···iq
3

∂

∂b1,i1i2···iq

+ μ
i1i2···iq
4

∂

∂b2,i1i2···iq
+ μ

i1i2···iq
5

∂

∂c2,i1i2···iq
, i1, i2, . . . , iq ∈ {t, x, y},

(30)

where

μ
i1i2···iq
1 = Diq μ

i1i2···iq−1
1 − a1,i1i2···iq−1t Diq (ξ1) − a1,i1i2···iq−1x Diq (ξ2) − a1,i1i2···iq−1 y Diq (ξ3),

μ
i1i2···iq
2 = Diq μ

i1i2···iq−1
2 − a2,i1i2···iq−1t Diq (ξ1) − a2,i1i2···iq−1x Diq (ξ2) − a2,i1i2···iq−1 y Diq (ξ3),
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μ
i1i2···iq
3 = Diq μ

i1i2···iq−1
3 − b1,i1i2···iq−1t Diq (ξ1) − b1,i1i2···iq−1x Diq (ξ2) − b1,i1i2···iq−1 y Diq (ξ3),

μ
i1i2···iq
4 = Diq μ

i1i2···iq−1
4 − b2,i1i2···iq−1t Diq (ξ1) − b2,i1i2···iq−1x Diq (ξ2) − b2,i1i2···iq−1 y Diq (ξ3),

μ
i1i2···iq
5 = Diq μ

i1i2···iq−1
5 − ci1i2···iq−1t Diq (ξ1) − ci1i2···iq−1x Diq (ξ2) − ci1i2···iq−1 y Diq (ξ3).

(31)

Here

Dα = ∂

∂α
+ a1,α

∂

∂a1
+ a2,α

∂

∂a2
+ b1,α

∂

∂b1
+ b2,α

∂

∂b2
+ cα

∂

∂c
+ a1,αβ

∂

∂a1,β

+a2,αβ
∂

∂a2,β
+ b1,αβ

∂

∂b1,β
+ b2,αβ

∂

∂b2,β
+ cαβ

∂

∂cβ
+ · · · ,

α, β ∈ {t, x, y}. (32)

3 Semi-invariants of Two and Three-Dimensional
Parabolic Equations

Semi-invariants associated with Eq. (7) when the dependent variable undergoes a
linear change of the type (20) can be find using an operator

XD = −2a1ηx
∂

∂b1
− 2a2ηy

∂

∂b2
+ (ηt − b1ηx − b2ηy − a1ηxx − a2ηyy)

∂

∂c
, (33)

that characterizes the said infinitesimal change in coefficients of (7) and obtained
by setting all ξk = ξk(t, x, y, u) for k = 1, 2, 3, equal to zero in the infinitesimal
coordinates of (14). By plugging (33) in the invariants criterion

XD J (a j , b j , c) = 0, j = 1, 2, (34)

we obtain

− 2a1ηx
∂ J

∂b1
− 2a2ηy

∂ J

∂b2
+ (ηt − b1ηx − b2ηy − a1ηxx − a2ηyy)

∂ J

∂c
= 0. (35)

Further this equation yields a system of first order linear PDEs when coefficients
of ηx , ηy, ηxx , and ηyy are equated to zero due to arbitrariness of η. We arrive at
∂ J
∂b j

= 0, and ∂ J
∂c = 0 that results in J = J (a j ), as the zeroth order invariant of (7).

Similarly, the first order invariants are obtainable from

X[1]
D J (a j , b j , c, a jt , b jt , ct , a jx , b jx , cx , a jy , b jy , cy) = 0, (36)
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where X[1]
D denotes the once extended generator (33) which reads as

X[1]
D = XD − ρ1

∂

∂b1t
− ρ2

∂

∂b2t
+ ρ3

∂

∂ct
− ρ4

∂

∂b1x
− ρ5

∂

∂b2x
+ ρ6

∂

∂cx

−ρ7
∂

∂b1y
− ρ8

∂

∂b2y
+ ρ9

∂

∂cy
, (37)

where

ρ1 = 2(a1ηt x + a1tηx ),

ρ2 = 2(a2ηt y + a2t ηy),

ρ3 = ηt t − b1ηt x − b2ηt y − a1ηt xx − a2ηt yy
− a1tηxx − a2tηyy − b1tηx − b2t ηy,

ρ4 = 2(a1ηxx + a1xηx ),

ρ5 = 2(a2ηxy + a2xηy),

ρ6 = ηt x − b1ηxx − b2ηxy − a1ηxxx − a2ηxyy

− a1xηxx − a2xηyy − b1xηx − b2xηy,

ρ7 = 2(a1ηxy + a1yηx ),

ρ8 = 2(a2ηyy + a2yηy),

ρ9 = ηt y − b1ηxy − b2ηyy − a1ηxxy − a2ηyyy

− a1yηxx − a2yηyy − b1yηx − b2yηy . (38)

Equation (36) produces a system of linear PDEs on setting coefficients of all the
first, second and third order derivatives of η(t, x, y) to zero. Solving it we find a first
order semi-invariant

λ11 := a21(b2a2x − a2b2x ) + a22(a1b1y − b1a1y )

a1a22
, (39)

and

J = J (a j , a jt , a jx , a jy ). (40)

Where Eq. (40) implies that a j and all its first order derivatives remain unaltered in
both the equations which could be mapped into each other by means of an invertible
point transformation (20) when (39) agrees for both of them. For derivation of semi-
invariants of (7) under transformation of only the independent variables we use a
subgroup (21) of the equivalence transformations. An operator
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XI = ξ1(t)
∂

∂t
+ ξ2(t, x)

∂

∂x
+ ξ3(t, y)

∂

∂y
+ a1(2ξ2x − ξ1t )

∂

∂a1

+a2(2ξ3y − ξ1t )
∂

∂a2
+ (a1ξ2xx + b1(ξ2x − ξ1t ) − ξ2t )

∂

∂b1

+(a2ξ3yy + b2(ξ3y − ξ1t ) − ξ3t )
∂

∂b2
− cξ1t

∂

∂c
, (41)

characterizes the said infinitesimal change that is obtained from (14) by eliminating
η, and its derivatives from the corresponding infinitesimal coordinates (19). The
invariance criterion

XI J (a j , b j , c) = 0, j = 1, 2, (42)

leads to a trivial invariant, i.e., J = constant. However, the first order invariants are
as follows

λ21 := a3/22 a1y

a3/21 a2x
, λ22 := a22c

a1a22x
, λ23 := a32cx

a1a32x
, λ24 := a7/22 cy

a3/21 a32x
,

λ25 :=
√
a2(2a2b2x − a2x a2y )√

a1a22x
, λ26 := a5/22 (2a1b1y − a1x a1y )

a5/21 a22x
, (43)

that are derived by applying first extension of (41), that is

X[1]
I = XI + ρ10

∂

∂a1t
+ ρ11

∂

∂a2t
+ ρ12

∂

∂b1t
+ ρ13

∂

∂b2t
− ρ14

∂

∂ct
+ ρ15

∂

∂a1x

+ρ16
∂

∂a2x
+ ρ17

∂

∂b1x
+ ρ18

∂

∂b2x
− ρ19

∂

∂cx
+ ρ20

∂

∂a1y
+ ρ21

∂

∂a2y

+ρ22
∂

∂b1y
+ ρ23

∂

∂b2y
− ρ24

∂

∂cy
, (44)

with

ρ10 = a1(2ξ2t x − ξ1t t ) + 2a1t (ξ2x − ξ1t ) − a1x ξ2t − a1yξ3t ,

ρ11 = a2(2ξ3t y − ξ1t t ) + 2a2t (ξ3y − ξ1t ) − a2x ξ2t − a2yξ3t ,

ρ12 = a1ξ2t xx + b1(ξ2t x − ξ1t t ) + a1t ξ2xx + b1t (ξ2x − 2ξ1t )

− b1x ξ2t − b1yξ3t − ξ2t t ,

ρ13 = a2ξ3t yy + b2(ξ3t y − ξ1t t ) + a2t ξ3yy + b2t (ξ3y − 2ξ1t )

− b2x ξ2t − b2yξ3t − ξ3t t ,

ρ14 = cξ1t t + 2ctξ1t + cxξ2t + cyξ3t ,

ρ15 = 2a1ξ2xx + a1x (ξ2x − ξ1t ),

ρ16 = a2x (2ξ3y − ξ1t − ξ2x ),
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ρ17 = a1ξ2xxx + b1ξ2xx + a1x ξ2xx − b1x ξ1t − ξ2t x ,

ρ18 = a2x ξ3yy + b2x (ξ3y − ξ1t − ξ2x ),

ρ19 = cx (ξ1t + ξ2x ),

ρ20 = a1y (2ξ2x − ξ1t − ξ3y ),

ρ21 = 2a2ξ3yy + a2y (ξ3y − ξ1t ),

ρ22 = a1yξ2xx + b1y (ξ2x − ξ1t − ξ3y ),

ρ23 = a2ξ3yyy + b2ξ3yy + a2yξ3yy − b2yξ1t − ξ3t y ,

ρ24 = cy(ξ1t + ξ3y ), (45)

on J (a j , b j , c, a jt , b jt , ct , a jx , b jx , cx , a jy , b jy , cy).
Likewise, semi-invariants of the parabolic equation with three spatial dimensions

(8) are derived. Firstly we look for semi-invariants associated with (8) due to a linear
infinitesimal change of dependent variable u. Generator (22) enables deduction of
the said invariants after restricting its infinitesimal coordinates (24) to only contain
η and its derivatives, which reads as

ZD = −2a1ηx
∂

∂b1
− 2a2ηy

∂

∂b2
− 2a3ηz

∂

∂b2
+ (ηt − b1ηx − b2ηy − b3ηz

−a1ηxx − a2ηyy − a3ηzz)
∂

∂c
. (46)

Considering the invariance test

ZD J (ak, bk, c) = 0, k = 1, 2, 3, (47)

and solving the obtained system we find nonexistence of zero order invariant for (8)
except

J = J (ak), (48)

that implies ak, for k = 1, 2, 3, should remain the same for both the equations that
can be transformed into each other by means of point transformations. Extending
(46) once we get

Z[1]
D = ZD − ρ1

∂

∂b1t
− ρ2

∂

∂b2t
− ρ3

∂

∂b3t
+ ρ4

∂

∂ct
− ρ5

∂

∂b1x
− ρ6

∂

∂b2x

−ρ7
∂

∂b3x
+ ρ8

∂

∂cx
− ρ9

∂

∂b1y
− ρ10

∂

∂b2y
− ρ11

∂

∂b3y
+ ρ12

∂

∂cy

−ρ13
∂

∂b1z
− ρ14

∂

∂b2z
− ρ15

∂

∂b3z
+ ρ16

∂

∂cz
, (49)

with
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ρ1 = 2(a1ηt x + a1tηx ),

ρ2 = 2(a2ηt y + a2tηy),

ρ3 = 2(a3ηt z + a3tηz),

ρ4 = ηt t − a1ηt xx − a2ηt yy − a3ηt zz − b1ηt x − b2ηt y − b3ηt z
− a1tηxx − a2tηyy − a3tηzz − b1t ηx − b2tηy − b3tηz,

ρ5 = 2(a1ηxx + a1xηx ),

ρ6 = 2(a2ηxy + a2xηy),

ρ7 = 2(a3ηxz + a3xηz),

ρ8 = ηt x − a1ηxxx − a2ηxyy − a3ηxzz − b1ηxx − b2ηxy − b3ηxz

− a1xηxx − a2xηyy − a3xηzz − b1xηx − b2xηy − b3xηz,

ρ9 = 2(a1ηxy + a1yηx ),

ρ10 = 2(a2ηyy + a2yηy),

ρ11 = 2(a3ηyz + a3yηz),

ρ12 = ηt y − a1ηxxy − a2ηyyy − a3ηyzz − b1ηxy − b2ηyy − b3ηyz

− a1yηxx − a2yηyy − a3yηzz − b1yηx − b2yηy − b3yηz,

ρ23 = 2(a1ηxz + a1zηx ),

ρ14 = 2(a2ηyz + a2zηy),

ρ15 = 2(a3ηzz + a3zηz),

ρ16 = ηt z − a1ηxxz − a2ηyyz − a3ηzzz − b1ηxz − b2ηyz − b3ηzz

− a1zηxx − a2zηyy − a3zηzz − b1zηx − b2zηy − b3zηz, (50)

which enables derivation of the associated first order invariants. We apply Z[1]
D , i.e.,

Z[1]
D J (ak, bk, c, akt , bkt , ct , akx , bkx , cx , aky , bkz , cy, akz , bkz , cz) = 0, (51)

which splits into a system of linear PDEs when all the coefficients of ηxxx , ηxyy , ηxxy ,
ηxzz , ηyyy , ηyzz , ηt t , ηt x , ηt y , ηt z , ηxx , ηxy , ηxz , ηyy , ηyz , ηzz , ηt , ηx , ηy and ηz , are
equated to zero. Solution of obtained system provides the following semi-invariants

λ31 := a21(b2a2x − a2b2x ) + a22(a1b1y − b1a1y )

a1a22
,

λ32 := a21(b3a3x − a3b3x ) + a23(a1b1z − b1a1z )

a1a23
,

λ33 := a22(b3a3y − a3b3y ) + a23(a2b2z − b2a2z )

a2a23
, (52)

with
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J = J (ak, akt , akx , aky , akz , c, cx , cy), (53)

as invariant quantities.
Semi-invariants associated with (8) due to a change of the independent variables

are derivable from

ZI J = ξ1(t)
∂ J

∂t
+ ξ2(t, x)

∂ J

∂x
+ ξ3(t, y)

∂ J

∂y
+ ξ4(t, z)

∂ J

∂z
+ η(t, x, y, z)u

∂ J

∂u

+a1(2ξ2x − ξ1t )
∂ J

∂a1
+ a2(2ξ3y − ξ1t )

∂ J

∂a2
+ a3(2ξ4z − ξ1t )

∂ J

∂a3

+(a1(ξ2xx − 2ηx ) + b1(ξ2x − ξ1t ) − ξ2t )
∂ J

∂b1
+ (a2(ξ3yy − 2ηy)

+b2(ξ3y − ξ1t ) − ξ3t )
∂ J

∂b2
+ (a3(ξ4zz − 2ηz) + b3(ξ4z − ξ1t ) − ξ4t )

∂ J

∂b2

+(ηt − a1ηxx − a2ηyy − a3ηzz − b1ηx − b2ηy − b3ηz − cξ1t )
∂ J

∂c
= 0, (54)

where ZI, is obtained by eliminating η and its derivatives from its infinitesimal
coordinates (24). On equating coefficients of all derivatives of ξl , for l = 1, 2, 3, 4,
in (54) to zero leads us to a systemof linear PDEs that solves to generate J =constant.
Furthermore, a system of linear PDEs

∂ J

∂a1t
= 0,

∂ J

∂a2t
= 0,

∂ J

∂a3t
= 0,

∂ J

∂b1
= 0,

∂ J

∂b2
= 0,

∂ J

∂b3
= 0,

∂ J

∂b1t
= 0,

∂ J

∂b2t
= 0,

∂ J

∂b3t
= 0,

∂ J

∂b1x
= 0,

∂ J

∂b2y
= 0,

∂ J

∂b3z
= 0,

∂ J

∂ct
= 0,

2a1
∂ J

∂a1x
+ a1y

∂ J

∂b1y
+ a1z

∂ J

∂b1z
= 0,

2a2
∂ J

∂a2y
+ a2x

∂ J

∂b2x
+ a2z

∂ J

∂b2z
= 0,

2a3
∂ J

∂a3z
+ a3x

∂ J

∂b3x
+ a3y

∂ J

∂b3y
= 0,

2a1
∂ J

∂a1
+ a1x

∂ J

∂a1x
− a2x

∂ J

∂a2x
− a3x

∂ J

∂a3x
+ 2a1y

∂ J

∂a1y
+ 2a1z

∂ J

∂a1z

−b2x
∂ J

∂b2x
− b3x

∂ J

∂b3x
+ b1y

∂ J

∂b1y
+ b1z

∂ J

∂b1z
− cx

∂ J

∂cx
= 0,

2a2
∂ J

∂a2
− a1y

∂ J

∂a1y
+ 2a2x

∂ J

∂a2x
+ a2y

∂ J

∂a2y
+ 2a2z

∂ J

∂a2z
− a3y

∂ J

∂a3y

−b1y
∂ J

∂b1y
+ b2x

∂ J

∂b2x
+ b2z

∂ J

∂b2z
− b3y

∂ J

∂b3y
− cy

∂ J

∂cy
= 0,

2a3
∂ J

∂a3
− a1z

∂ J

∂a1z
− a2z

∂ J

∂a2z
+ 2a3x

∂ J

∂a3x
+ 2a3y

∂ J

∂a3y
+ a3z

∂ J

∂a3z
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−b1z
∂ J

∂b1z
− b2z

∂ J

∂b2z
+ b3x

∂ J

∂b3x
+ b3y

∂ J

∂b3y
− cz

∂ J

∂cz
= 0,

a1
∂ J

∂a1
+ a2

∂ J

∂a2
+ a3

∂ J

∂a3
+ c

∂ J

∂c
+ a1x

∂ J

∂a1x
+ a1y

∂ J

∂a1y
+ a1z

∂ J

∂a1z

+a2x
∂ J

∂a2x
+ a2y

∂ J

∂a2y
+ a2z

∂ J

∂a2z
+ a3x

∂ J

∂a3x
+ a3y

∂ J

∂a3y
+ a3z

∂ J

∂a3z

+b1y
∂ J

∂b1y
+ b1z

∂ J

∂b1z
+ b2x

∂ J

∂b2x
+ b2z

∂ J

∂b2z
+ b3x

∂ J

∂b3x
+ b3y

∂ J

∂b3y

+cx
∂ J

∂cx
+ cy

∂ J

∂cy
+ cz

∂ J

∂cz
= 0, (55)

surfaces from

Z[1]
I J (ak, bk, c, akt , bkt , ct , akx , bkx , cx , aky , bkz , cy, akz , bkz , cz) = 0, (56)

when all the coefficients of ξl and its derivatives of all orders are equated to zero.
Solution of the system (55) reveals following first order semi-invariants

λ41 := a2a3x
a3a2x

, λ42 := a3/22 a1y

a3/21 a2x
, λ43 := a3/22 a3y√

a1a3a2x
, λ44 := a2

√
a3a1z

a3/21 a2x
,

λ45 :=
√
a3a2z√
a1a2x

, λ46 :=
√
a2(2a2b2x − a2x a2y )√

a1a22x
, λ47 := a22(2a3b3x − a3x a3z )√

a1a
3/2
3 a22x

,

λ48 := a5/22 (2a1b1y − a1x a1y )

a5/21 a22x
, λ49 := a5/22 (2a3b3y − a3y a3z )

a1a
3/2
3 a22x

,

λ50 := a22
√
a3(2a1b1z − a1x a1z )

a5/21 a22x
, λ51 :=

√
a2

√
a3(2a2b2z − a2y a2z )

a1a22x

λ52 := a22c

a1a22x
, λ53 := a32cx

a1a32x
, λ54 := a7/22 cy

a3/21 a32x
, λ55 := a32

√
a3cz

a3/21 a32x
. (57)

4 Invertible Point Transformations for Families of Two
and Three-Dimensional Parabolic Equations

Equivalence transformations for two and three-dimensional parabolic PDEs have
been derived in Sect. 2. An algorithm is presented here to obtain the invertible point
transformations tomap two and three-dimensional parabolic equations into equations
of the same dimensions when corresponding semi-invariants agree. Considering first
Eq. (7) and transforming the dependent variable linearly (20). Under this transfor-
mation (7) gets into the same form but with new coefficients a j , b j , c that are given
below
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a j = a j ,

b1 = b1 + 2a1
ηx

η
,

b2 = b2 + 2a2
ηy

η
,

c = c + a1ηxx + a2ηyy + b1ηx + b2ηy − ηt

η
. (58)

Similarly, the most general transformations of the independent variables that map
the parabolic two-dimensional equation to an equation of the same type are given
in (21). Incorporating it in (7) leads us to an equation with the coefficients a j , b j , c
given by

a1 = a1
ξ1t

ξ 2
2x

,

a2 = a2
ξ1t

ξ 2
3y

,

b1 = (b1ξ1t + ξ2t )ξ
2
2x − a1ξ2xx ξ1t

ξ 3
2x

,

b2 = (b2ξ1t + ξ3t )ξ
2
3y − a2ξ3yyξ1t

ξ 3
3y

,

c = cξ1t . (59)

The relationships (58) and (59) provides the algorithms to work out invertible trans-
formations to map two-dimensional parabolic equations into each other for which
the derived semi-invariants remain unaltered.

For the three-dimensional case the coefficients of the parabolic equation (8), under
linear transformation of the dependent variable

u = ψ(t, x, y, z, u) := η(t, x, y, z)u, (60)

and the following change of independent variables

t = φ1(t, x, y, u) := ξ1(t),

x = φ2(t, x, y, u) := ξ2(t, x),

y = φ3(t, x, y, u) := ξ3(t, y),

z = φ4(t, x, y, u) := ξ4(t, z), (61)

become ak, bk, c given by
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ak = ak,

b1 = b1 + 2a1
ηx

η
,

b2 = b2 + 2a2
ηy

η
,

b3 = b3 + 2a3
ηz

η
,

c = c + a1ηxx + a2ηyy + a3ηzz + b1ηx + b2ηy + b3ηz − ηt

η
, (62)

and

a1 = a1
ξ1t

ξ 2
2x

,

a2 = a2
ξ1t

ξ 2
3y

,

a3 = a3
ξ1t

ξ 2
4z

,

b1 = (b1ξ1t + ξ2t )ξ
2
2x − a1ξ2xx ξ1t

ξ 3
2x

,

b2 = (b2ξ1t + ξ3t )ξ
2
3y − a2ξ3yyξ1t

ξ 3
3y

,

b3 = (b3ξ1t + ξ4t )ξ
2
4z − a3ξ4zzξ1t

ξ 3
4z

,

c = cξ1t , (63)

respectively. Now we present application of the obtained semi-invariants.

5 Applications

1. The following parabolic two-dimensional equations

ut − uxx − uyy − 4

x
ux − 2

y
uy − 2

x2
u = 0, (64)

and

ut − uxx − uyy = 0, (65)
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are transformable into each other as is ensured by the semi-invariants (39), i.e., for
both of them λ11 = 0. Existence of invertible point transformation to map given
equations into each other is therefore guaranteed, for which we employ (58) to get

u = 1

x2y
u. (66)

2. A parabolic equation of the form

ut − yuxx − xuyy + 2yux − 2x

y
uy −

(
1 + 2t y

t

)
u = 0, (67)

is transformable to a relatively simple linear two-dimensional parabolic equation

ut − yuxx − xuyy − yu = 0, (68)

via an invertible point transformation

u = ex

ty
u. (69)

Coefficients of both the equations when inserted in (39) gives the same result.
3. Consider the following linear partial differential equation in four independent

variables

ut + c1(ux + uxx ) + c2(uy + uyy) − 4αt + (c1 + c2)α(t)

α(t)
(uz + uzz)

+2αt + α(t)

α(t)
u = 0. (70)

It has λ31 = λ32 = λ33 = 0 and could be mapped to a parabolic three-dimensional
equation

ut + c1uxx + c2uyy − 4αt + (c1 + c2)α(t)

α(t)
uzz + 2αt + α(t)

α(t)
u = 0, (71)

since all invariants (52) are zero. Invertible point transformation which relates both
the equations is

u = α(t)e− 1
2 (x+y+z)u. (72)

4. An equation of the form

ut + 1

t2
uxx + x

4t y2
uyy − x

t
ux − 1

2

(
y

t
+ x

2t y3

)
uy + u = 0, (73)
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transforms to

ut + uxx + xuyy + u = 0, (74)

via

t = t, x = x

t
, y =

√
y

t
. (75)

These transformations along with the coefficients of both the PDEs (73) and (74)
generate λ21 = 1

x , λ22 = λ23 = λ24 = λ25 = λ26 = 0.
5. The linear parabolic equation with four independent variables

ut − x2

t2
uxx + t3 ln xuyy + z2uzz −

(
x

t2
+ x ln x

t

)
ux + y

t
uy + zuz + u = 0, (76)

is reducible to the following simplest linear form

ut − uxx + xuyy + uzz + u = 0, (77)

under the transformations

t = t, x = exp

(
x

t

)
, y = t y, z = exp(z). (78)

All the invariants (57) agree for both the equations under (78).

6 Conclusion

Lie Infinitesimal method has been employed to derive semi-invariants of the two and
three-dimensional parabolic PDEs. Equivalence transformations for both the cases
are obtained for which we employed MAPLE, as for linear PDEs and systems of
such equations the said package has a built in code that constructs the group of
equivalence transformations. These equivalence transformations lead to first order
semi-invariants of the two and three dimensional parabolic equations associated due
to invertible transformations of the dependent and independent variables separately.
Deduced invariants ensure existence of invertible point transformations between two
equations if they agree for both of them, this fact enabled to get mappings which
transform the corresponding linear parabolic equations of dimension two and three
to much simpler forms, in applications.
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Kaleidoscope of Classical Vortex Images
and Quantum Coherent States

Oktay K. Pashaev and Aygül Koçak

Abstract The Schrödinger cat states, constructed from Glauber coherent states and
applied for description of qubits are generalized to the kaleidoscope of coherent
states, related with regular n-polygon symmetry and the roots of unity. This quantum
kaleidoscope is motivated by our method of classical hydrodynamics images in a
wedge domain, described by q-calculus of analytic functions with q as a primitive
root of unity. First we treat in detail the trinity states and the quartet states as descrip-
tive for qutrit and ququat units of quantum information. Normalization formula for
these states requires introduction of specific combinations of exponential functions
with mod 3 and mod 4 symmetry, which are known also as generalized hyperbolic
functions. We show that these states can be generated for an arbitrary n by the Quan-
tum Fourier transform and can provide in general, qudit unit of quantum information.
Relations of our states with quantum groups and quantum calculus are discussed.

Keywords Coherent states · Quantum information · Qubit · Qutrit
Qudit · Quantum Fourier transform

1 Introduction

1.1 Classical Vortex Kaleidoscope

The classical problem of point vortices in a domain bounded by two infinite circular
cylinders with arbitrary radiuses and positions in the plane, can be formulated as the
Apollonius circles problem, reducible byMöbius transformation to the one in annular
domain between two concentric circles [1]. Recently we have formulated the two
circles theorem, allowing one to construct an arbitrary flow in such annular domain
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by the complex potential F(z) as q-periodic analytic function, F(qz) = F(z), where
q = R2/r2 is determined by ratio of two circle radiuses. Depending on the number
and the position of vortices, sources or sinks, one can fix singularities of this function
in terms of q-elementary functions [2]. Similar theorem [3] formulated for the flow in
the wedge domain with angle π

n , requires construction of complex potential F(z) as
q2-periodic function, F(q2z) = F(z)with q as a root of unity q2n = 1. It determines
complex velocity V (z) = dF(z)/dz as q2- self-similar analytic function

V (q2z) = q−2 V (z).

The wedge theorem describes the fluid flow as superposition of complex analytic
functions

F(z) =
n−1∑

k=0

f (q2k z) +
n−1∑

k=0

f̄ (q2k z) , (1)

representing the kaleidoscope of images associated with the regular 2n - polygon.
For the point vortex located at z0, the theorem gives q2-periodic complex potential

F(z) = iΓ

2π
ln

zn − zn0
zn − z̄n0

= F(q2z), (2)

which due to the Kummer expansion

zn − zn0 = (z − z0)(z − q2z0)(z − q4z0) . . . (z − q2(n−1)z0) ,

appears as the set of vorticeswith even images at points z0, q2z0, q4z0, . . . , q2(n−1)z0
and with odd images at z̄0, q2 z̄0, q4 z̄0, . . . , q2(n−1) z̄0. This kaleidoscope of vortex
images we called the Kummer kaleidoscope.

1.2 Quantum Kaleidoscope and Coherent States

Since analytical functions are related intrinsically with quantum coherent states and
the Fock–Bargman representation, here we extend our ideas to the Hilbert space
for the coherent states. The problem is to construct q-periodic quantum states and
q-self-similar quantum states. Similar problem, relating self-similarity properties of
fractals, the theory of entire analytical functions and the q-deformed algebra with
coherent states was discussed recently in [4]. In the present paper we consider the
case, when q is the primitive root of unity q2n = 1 and show that it leads to the
kaleidoscope of coherent states |α〉, |q2α〉, …, |q2(n−1)α〉, located at vertices of the
regular polygon. By acting with dilatation operator on analytic function

f (q2z) = q2z d
dz f (z) (3)
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we can rewrite the wedge theorem (1) in a compact form

F(z) =
n−1∑

k=0

(
q2z d

dz

)k [ f (z) + f̄ (z)] = [n]
q2z d

dz
[ f (z) + f̄ (z)], (4)

where we have used non-symmetric Q̂-number

[n]Q̂ = 1 + Q̂ + Q̂2 + · · · Q̂n−1 = Q̂n − 1

Q̂ − 1
,

with the operator base
Q̂ ≡ q2z d

dz . (5)

From this representation, q2-periodicity of function F(z) follows easily. Due to the
identity Q̂n = q2nz d

dz = 1 we have

Q̂[n]Q̂ = [n]Q̂
and as follows

F(q2z) = Q̂F(z) = Q̂[n]Q̂[ f (z) + f̄ (z)] = [n]Q̂[ f (z) + f̄ (z)] = F(z).

It is noticed that the differential operator (5) is the Fock–Bargman representation for
the dilatation operator Q̂ = q2N̂ , acting on coherent states as

q2N̂ |α〉 = |q2α〉, (6)

where N̂ = â†â is the number operator. Then, by analogy with the wedge theorem
(1) and (4), we can construct q2-periodic quantum state as superposition of coherent
states

|0〉α ≡ |α〉 + |q2α〉 + |q4α〉 + · · · + |q2(n−1)α〉
= (I + q2N̂ + q4N̂ + · · · + q2(n−1)N̂ )|α〉 = [n]q2N̂ |α〉. (7)

The q2-periodicity for this quantum state

q2N̂ |0〉α = |0〉α
follows easily from the relation Q̂n = q2nN̂ = I . This suggests also that to find q2-
self-similar quantum states, one can take the following superpositions of coherent
states

|1〉α ≡ [n]q2N̂+2 |α〉, |2〉α ≡ [n]q2N̂+4 |α〉, . . . , |n − 1〉α ≡ [n]q2N̂+2(n−1) |α〉,
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satisfying self-similarity conditions

q2N̂ |1〉α = q2|1〉α, q2N̂ |2〉α = q4|2〉α, . . . , q2N̂ |n − 1〉α = q2(n−1)|n − 1〉α.

It turns out that this construction provides the set of orthogonal quantum states. The
similar superpositions of coherent stateswere discussed indifferent context by several
authors, as the generalized coherent states [5, 6], as factorization problem for the
Schrödinger equation with self-similar potential [7] and as the Schrödinger cat states
[8]. The Schrödinger cat states [9] as superposition of Glauber’s optical coherent
states with opposite phases, become important tool for construction of qubits, as a
units of quantum information [10] in quantum optics [11]. They correspond to even
and odd quantum states with q2 = −1. Here we generalize this construction to the
kaleidoscope of coherent states, related with regular n-polygon symmetry and the
roots of unity. Superposition of coherent states with such symmetry plays the role of
the quantum Fourier transform and provides the set of orthonormal quantum states,
as a description of qutrits, ququats and qudits. Such quantum states, considered as
a units of quantum information processing and corresponding to an arbitrary base
number n, could have advantage in secure quantum communication.

1.3 Glauber Coherent States

We consider the Heisenberg–Weyl algebra, written in terms of creation and annihi-
lation operators, satisfying bosonic commutation relation

[
â, â†

] = Î.

The annihilation operator determines the vacuum state â|0〉 = 0 from the Hilbert
space |0〉 ∈ H and the creation operator â† repeatedly applied to this state, gives

orthonormal set of states |n〉 = (â†)n√
n! |0〉. Coherent states are defined as eigenstates

of annihilation operator [12]:
â|α〉 = α|α〉 ,

where α ∈ C . This gives us a relation between complex plane and the Hilbert space,
such that α ∈ C ↔ |α〉 ∈ H . Another equivalent definition is given by the displace-
ment operator,

D(α) = eαâ†−ᾱâ = e− 1
2 |α|2eαâ†e−ᾱâ (8)

so that,

|α〉 = D(α)|0〉 = e− 1
2 |α|2

∞∑

n=0

αn

√
n! |n〉 . (9)
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From this we get the following representation of coherent states:

|α〉 = eαâ†

√
e|α|2 |0〉,

which is instructive for our generalizations. The inner product of coherent states,

〈α|β〉 = e− 1
2 |α|2− 1

2 |β|2+ᾱβ

is never zero, |〈α|β〉|2 = e−|α−β|2 	= 0. This iswhy coherent states are not orthogonal.
The aimof the present paper is to construct an orthogonal set of states as superposition
of coherent states with discrete regular polygon symmetry.

2 Schrödinger’s Cat States

In description of the Schrödinger cat states one introduces two orthogonal states as
superpositions of |α〉 and | − α〉 states, which are called even and odd cat states [8],

|Cateven〉 ∼ |α〉 + | − α〉 , |Catodd〉 ∼ |α〉 − | − α〉.

The states in this superpositions are related by rotation to angle π , which corresponds
to primitive root of unity q2 = q 2 = −1, so that q4 = 1. The normalization constants
for these states

|0〉α = N0√
2
( |α〉 + |q2α〉 ) , |1〉α = N1√

2
( |α〉 + q 2|q2α〉 ) , (10)

are calculated as:

N0 = e
|α|2
2√

2
√
cosh |α|2 , N1 = e

|α|2
2√

2
√
sinh |α|2 . (11)

Transformation to these states can be described in the matrix form as an action by
the Hadamard gate,

⎡

⎣
|0〉α
|1〉α

⎤

⎦ = N
1√
2

⎡

⎣
1 1

1 q 2

⎤

⎦

︸ ︷︷ ︸
Hadamard gate

⎡

⎣
|α〉

|q2α〉

⎤

⎦ , (12)

where the normalization matrix
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N = e
|α|2
2√
2
diag

(
0e

|α|2 , 1e
|α|2

)−1/2
(mod 2) ≡ diag (N0, N1) (13)

is defined by the even (0 mod 2) and the odd (1 mod 2) exponential functions, coin-
ciding with hyperbolic functions,

(mod 2) 0e
|α|2 ≡

∞∑

k=0

(|α|2)2k
(2k)! = e|α|2 + eq

2|α|2

2
= cosh |α|2,

(mod 2) 1e
|α|2 ≡

∞∑

k=0

(|α|2)2k+1

(2k + 1)! = e|α|2 + q̄2eq
2|α|2

2
= sinh |α|2.

2.1 Mod 2 Representation of Cat States

In terms of these exponential functions we can rewrite the Schrödinger cat states in
a compact form:

|0〉α = 0eαâ†

√
0e|α|2 |0〉 (mod 2) = cosh αâ†√

cosh |α|2 |0〉 ,

|1〉α = 1eαâ†

√
1e|α|2 |0〉 (mod 2) = sinh αâ†√

sinh |α|2 |0〉.

2.2 Eigenvalue Problem for Cat States

Since |α〉 is an eigenstate of annihilation operator â, â|α〉 = α|α〉, it is also the
eigenstate of operator â2:

â2|α〉 = α2|α〉.

However, the last equation admits one more eigenstate | − α〉 with the same eigen-
value α2, so that

â2| ∓ α〉 = α2| ∓ α〉.

Hence, any superposition of states {| + α〉, | − α〉} is also an eigenstate of operator
â2, with the same eigenvalue. This implies that Schrödinger cat states are eigenstates
of this operator,

â2|0〉α = α2|0〉α, â2|1〉α = α2|1〉α,
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constituting orthonormal basis {|0〉α, |1〉α}. It can be used to define the qubit coherent
state:

|ψ〉α = c0|0〉α + c1|1〉α,

where |c0|2 + |c1|2 = 1, representing a unit of quantum information in quantum
optics. This qubit state is an eigenstate of operator â2 as well:

â2|ψ〉α = α2|ψ〉α.

2.3 Number of Photons in Cat States

The cat states are not eigenstates of the annihilation operator â. On the contrary,
action of this operator gives flipping between cat states |0〉α and |1〉α:

â|0〉α = α
N0

N1
|1〉α , â|1〉α = α

N1

N0
|0〉α .

By using these equations we find number of photons in Schrödinger’s cat states as :

α〈0|N̂ |0〉α = |α|2 N
2
0

N 2
1

= |α|2 1e|α|2

0e|α|2 = |α|2 tanh |α|2,

α〈1|N̂ |1〉α = |α|2 N
2
1

N 2
0

= |α|2 0e
|α|2

1e|α|2 = |α|2 coth |α|2.

It shows deviation from number of photons in coherent states

〈α|N̂ |α〉 = |α|2

shown in Fig. 1. In the limiting case |α| → ∞ both distributions asymptotically goes
to this value

lim|α|→∞ α〈0|N̂ |0〉α = lim|α|→∞ α〈1|N̂ |1〉α ≈ |α|2.

The cat states for |α|2 � 1 are reduced to the so called Schrödinger’s kitten states
with number of photons 0 and 1:

lim|α|→0
α〈0|N̂ |0〉α = 0, lim|α|→0

α〈1|N̂ |1〉α = 1.
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Fig. 1 Photon numbers in Schrödinger’s cat states

2.4 Fermionic Representation of Cat States

The dilatation operator q2N̂ = eiπ N̂ = (−1)N̂ is the parity operator for cat states,
so that |0〉α and |1〉α states are eigenstates of this operator. The first state is the
q2-periodic state and the second one is q2-self-similar state,

q2N̂ |0〉α = |0〉α , q2N̂ |1〉α = q2|1〉α. (14)

These states represent kaleidoscope of two coherent states |α〉 and | − α〉, rotated by
angle π , and can be rewritten in terms of parity operator

|0〉α = N0 [2]q2N̂ |α〉 = N0(I + q2N̂ )|α〉,
|1〉α = N1 [2]q2N̂+2 |α〉 = N1(I + q2q2N̂ )|α〉, (15)

or

|0〉α = N0(I + (−1)N̂ )|α〉 ,

|1〉α = N1(I − (−1)N̂ )|α〉 . (16)

It is noticed that the cat states are eigenstates also of q2- non-symmetric number
operator

[N̂ ]q2 = q2N̂ − 1

q2 − 1
,

where q2 = −1,
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[N̂ ]q2 |0〉α = [0]q2 |0〉α, [N̂ ]q2 |1〉α = [1]q2 |1〉α,

with eigenvalues [0]q2 = 0 and [1]q2 = 1. In the Fock basis |n〉, n = 0, 1, 2..., these
number operator is diagonal, with eigenvalues 0 for even numbers n = 2k, and 1
for odd numbers n = 2k + 1. This number operator in the cat basis is matrix of the
fermion number operator

[N̂ ]q2 =
(
0 0
0 1

)
= N̂F

factorized by fermionic creation and annihilation operators N̂F = b̂†b̂, with algebra

b̂b̂† + b̂†b̂ = I, b̂2 = 0, (b̂†)2 = 0,

and matrix representation

b̂ =
(
0 1
0 0

)
, b̂† =

(
0 0
1 0

)
.

The cat states in this basis then are just computational basis qubit states:

|0〉 =
(
1
0

)
, |1〉 =

(
0
1

)
.

3 Trinity States

The Schrödinger cat states can be generalized to the kaleidoscope of coherent states.
We start this generalization from the set of three coherent states, rotated by angle 2π

3
and located at vertices of equilateral triangle, which corresponds to roots of unity
q6 = 1. First we define superposition

|0〉α = N0√
3

(|α〉 + |q2α〉 + |q4α〉) .

Due to identity

q6n − 1 = (q2n − 1)(1 + q2n + q4n) = 0 ⇒

1 + q2n + q4n = 3 δn,0(mod 3),

with

δk,0 (mod 3) =
{
1, k = 0 (mod 3);
0, k 	= 0 (mod 3),

(17)
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the normalization constant is N0 = e
|α|2
2 (3 0e|α|2)−1/2, where we have introduced

(mod 3) exponential function

0e
|α|2(mod 3) ≡

∞∑

k=0

(|α|2)3k
(3k)! = 1

3

(
e|α|2 + eq

2|α|2 + eq
4|α|2

)
.

In a similar way we obtain the set of orthonormal states |0〉α, |1〉α and |2〉α:

|0〉α = e
|α|2
2

|α〉 + |q 2α〉 + |q 4α〉√
3
√
e|α|2 + eq2|α|2 + eq4|α|2

= e
|α|2
2

|α〉 + |q 2α〉 + |q 4α〉
3
√

0e|α|2(mod 3)
,

|1〉α = e
|α|2
2

|α〉 + q2|q 2α〉 + q4|q 4α〉√
3
√
e|α|2 + q2eq2|α|2 + q4eq4|α|2 = e

|α|2
2

|α〉 + q2|q 2α〉 + q4|q 4α〉
3
√

1e|α|2(mod 3)
,

|2〉α = e
|α|2
2

|α〉 + q4|q 2α〉 + q2|q 4α〉√
3
√
e|α|2 + q4eq2|α|2 + q2eq4|α|2 = e

|α|2
2

|α〉 + q4|q 2α〉 + q2|q 4α〉
3
√

2e|α|2(mod 3)
.

3.1 Matrix Form of Trinity States

These states appear by action of the trinity gate, playing the role of three dimensional
analogue of Hadamard gate

⎡

⎣
|0〉α
|1〉α
|2〉α

⎤

⎦ = N
1√
3

⎡

⎢⎣
1 1 1

1 q2 (q2)2

1 q4 (q4)2

⎤

⎥⎦

︸ ︷︷ ︸
Trini t y gate

⎡

⎣
|α〉

|q2α〉
|q4α〉

⎤

⎦ , (18)

with normalization constants

N = e
|α|2
2√
3
diag

(
0e

|α|2 ,1 e|α|2 ,2 e|α|2
)−1/2

(mod 3) ≡ diag (N0, N1, N2) (19)

and identity
1 + q2(n−k) + q4(n−k) = 3 δn,k(mod 3), 0 ≤ k ≤ 2,

where

δn,k (mod 3) =
{
1, n = k (mod 3);
0, n 	= k (mod 3).

(20)

Trinity states as superposition of coherent states have the following explicit phase
shift :
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|0〉α = N0(|α〉 + |ei 2π3 α〉 + |e−i 2π3 α〉),
|1〉α = N1(|α〉 + e−i 2π3 |ei 2π3 α〉 + ei

2π
3 |e−i 2π3 α〉),

|2〉α = N2(|α〉 + ei
2π
3 |ei 2π3 α〉 + e−i 2π3 |e−i 2π3 α〉).

By using three different (mod 3) exponential functions, we can rewrite these
states in a compact form:

|0〉α = 0eαâ†

√
0e|α|2 |0〉 , |1〉α = 1eαâ†

√
1e|α|2 |0〉 , |2〉α = 2eαâ†

√
2e|α|2 |0〉 (mod 3).

3.2 Eigenvalue Problem for Trinity States

Coherent states {|α〉, |q2α〉, |q4α〉} are eigenstates of operator â with different eigen-
values α, q2α, q4α, and the eigenstates of operator â3 with the same eigenvalue α3.
Due to this, our trinity states {|0〉α, |1〉α, |2〉α} are also eigenstates of operator â3 :

â3|q2kα〉 = α3|q2kα〉 ⇒ â3|k〉α = α3|k〉α, k = 0, 1, 2.

From trinity states we can construct the qutrit coherent state

|ψ〉α = c0|0〉α + c1|1〉α + c2|2〉α,

where |c0|2 + |c1|2 + |c2|2 = 1, as a unit of quantum informationwith base 3. It turns
out that this state is an eigenstate of operator â3:

â3|ψ〉α = α3|ψ〉α.

3.3 Number of Photons in Trinity States

The annihilation operator â acts on states |0〉α, |1〉α and |2〉α as cyclic permutation:

â|0〉α = α
N0

N2
|2〉α , â|1〉α = α

N1

N0
|0〉α , â|2〉α = α

N2

N1
|1〉α . (21)

This equation allows us to calculate number of photons in trinity states (see Fig. 2):

α〈0|N̂ |0〉α = |α|2
[

2e|α|2

0e|α|2

]
= |α|2

⎡

⎢⎣
1 + 2e

−3|α|2
2 cos

(√
3
2 |α|2 + 2π

3

)

1 + 2e
−3|α|2

2 cos
(√

3
2 |α|2

)

⎤

⎥⎦ ,



190 O. K. Pashaev and A. Koçak

Fig. 2 Photon numbers in trinity states

α〈1|N̂ |1〉α = |α|2
[

0e|α|2

1e|α|2

]
= |α|2

⎡

⎢⎣
1 + 2e

−3|α|2
2 cos

(√
3
2 |α|2

)

1 + 2e
−3|α|2

2 cos
(√

3
2 |α|2 − 2π

3

)

⎤

⎥⎦ ,

α〈2|N̂ |2〉α = |α|2
[

1e|α|2

2e|α|2

]
= |α|2

⎡

⎢⎣
1 + 2e

−3|α|2
2 cos

(√
3
2 |α|2 − 2π

3

)

1 + 2e
−3|α|2

2 cos
(√

3
2 |α|2 + 2π

3

)

⎤

⎥⎦ .

3.3.1 Matrix Representation

Due to N̂ |n〉 = n|n〉, n ≥ 0 from the eigenvalue problem

q2N̂ |0〉α = |0〉α, q2N̂ |1〉α = q2|1〉α, q2N̂ |2〉α = q4|2〉α ,

we find the matrix representation of operators in our kaleidoscope basis as the clock
and the shift matrix

q2N̂ =
⎛

⎝
1 0 0
0 q2 0
0 0 q4

⎞

⎠ , â = α

⎛

⎜⎝
0 N1

N0
0

0 0 N2
N1

N0
N2

0 0

⎞

⎟⎠ = α

⎛

⎜⎝

N1
N0

0 0
0 N2

N1
0

0 0 N0
N2

⎞

⎟⎠

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ . (22)

This gives for the q2-number operator [N̂ ]q2 = q2N̂−1
q2−1 , the diagonal form with

matrix elements
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α〈0|[N̂ ]q2 |0〉α = [0]q2 , α〈1|[N̂ ]q2 |1〉α = [1]q2 , α〈2|[N̂ ]q2 |2〉α = [2]q2 ,

as q2 numbers: [0]q2 = 0, [1]q2 = 1, [2]q2 = 1+i
√
3

2 .

4 Quartet States

We define four states, rotated by angle π
2 and determined by primitive roots of unity:

q8 = 1. Superposition of these states with proper coefficients give us quartet of
orthonormal basis states:

⎡

⎢⎢⎣

|0〉α
|1〉α
|2〉α
|3〉α

⎤

⎥⎥⎦ = N
1√
4

⎡

⎢⎢⎣

1 1 1 1

1 q2
(
q2
)2 (

q2
)3

1 q4
(
q4
)2 (

q4
)3

1 q6
(
q6
)2 (

q6
)3

⎤

⎥⎥⎦

︸ ︷︷ ︸
Quartet gate

⎡

⎢⎢⎣

|α〉
|q2α〉
|q4α〉
|q6α〉

⎤

⎥⎥⎦ , (23)

where normalization constants are defined as

N = e
|α|2
2√
4
diag

(
0e

|α|2 ,1 e|α|2 ,2 e|α|2 ,3 e|α|2
)−1/2

(mod 4) ≡ diag (N0, N1, N2, N3)

and the identity is

1 + q2(n−k) + q4(n−k) + q6(n−k) = 4 δn,k(mod 4) , 0 ≤ k ≤ 3

with

δn,k (mod 4) =
{
1, n = k (mod 4);
0, n 	= k (mod 4).

(24)

The quartet states are superpositions of cat states with explicit form of phase shift
as

|0〉α = N0 [(|α〉 + | − α〉) + (|iα〉 + | − iα〉)] ,
|1〉α = N1 [(|α〉 − | − α〉) − i(|iα〉 − | − iα〉)] ,
|2〉α = N2 [(|α〉 + | − α〉) − (|iα〉 + | − iα〉)] ,
|3〉α = N3 [(|α〉 − | − α〉) + i(|iα〉 − | − iα〉)] .

By using (mod 4) exponential functions we get representation of these states in a
compact form:
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|0〉α = 0eαâ†

√
0e|α|2 |0〉, |1〉α = 1eαâ†

√
1e|α|2 |0〉, |2〉α = 2eαâ†

√
2e|α|2 |0〉, |3〉α = 3eαâ†

√
3e|α|2 |0〉 .

4.1 Eigenvalue Problem for Quartet States

As easy to see, the quartet states are eigenstates of operator â4 with eigenvalue α4:

â4|q2kα〉 = α4|q2kα〉 ⇒ â4|k〉α = α4|k〉α k = 0, 1, 2, 3.

As a result, the ququat state, defined as

|ψ〉α = c0|0〉α + c1|1〉α + c2|2〉α + c3|3〉α,

where |c0|2 + |c1|2 + |c2|2 + |c3|2 = 1, describes a unit of quantum informationwith
base 4, and is an eigenstate of operator â4:

â4|ψ〉α = α4|ψ〉α.

4.2 Number of Photons in Quartet States

The annihilation operator â implements cyclic permutation of states |k〉α, k =
0, 1, 2, 3:

â|0〉α = α
N0

N3
|3〉α , â|1〉α = α

N1

N0
|0〉α , â|2〉α = α

N2

N1
|1〉α , â|3〉α = α

N3

N2
|2〉α ,

allowing us to calculate number of photons in quartet states (See Fig. 3):

α〈0|N̂ |0〉α = |α|2
[

3e|α|2

0e|α|2

]
= |α|2

[
sinh |α|2 − sin |α|2
cosh |α|2 + cos |α|2

]
,

α〈1|N̂ |1〉α = |α|2
[

0e|α|2

1e|α|2

]
= |α|2

[
cosh |α|2 + cos |α|2
sinh |α|2 + sin |α|2

]
,

α〈2|N̂ |2〉α = |α|2
[

1e|α|2

2e|α|2

]
= |α|2

[
sinh |α|2 + sin |α|2
cosh |α|2 − cos |α|2

]
,

α〈3|N̂ |3〉α = |α|2
[

2e|α|2

3e|α|2

]
= |α|2

[
cosh |α|2 − cos |α|2
sinh |α|2 − sin |α|2

]
.

The quartet states are also eigenstates of q2-number operator [N̂ ]q2 :
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Fig. 3 Photon numbers in quartet states

q2N̂ |k〉α = q2k |k〉α ⇒ [N̂ ]q2 |k〉α = [k]q2 |k〉α ,where k = 0, 1, 2, 3. (25)

5 Kaleidoscope of Quantum Coherent States

As a generalization of previous results, here we consider superposition of n coherent
states, which are belonging to vertices of regular n-polygon, rotated by angle π

n
(Fig. 4). It is related with primitive roots of unity: q2n = 1. For the inner product of
q2k rotated coherent states we have

〈q2kα|q2kα〉 = 1,

〈q2kα|q2lα〉 = e|α|2(q2(l−k)−1), 0 ≤ k, l ≤ n − 1.

To calculate orthogonality and normalization conditions we apply the following
lemma; For q2n = 1 , 0 ≤ s ≤ n − 1,

• 1 + q2m + q4m + · · · + q2m(n−1) = nδm,0(mod n)

• 1 + q2(m−s) + q4(m−s) + · · · + q2(m−s)(n−1) = nδm,s(mod n)

where

δm,s (mod n) =
{
1, m = s (mod n);
0, m 	= s (mod n).

(26)
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Fig. 4 The regular n-polygon

Fig. 5 General structure of kaleidoscope states

5.1 Quantum Fourier Transformation

Our construction (Fig. 5) shows that orthogonal kaleidoscope of coherent states can
by described by the Quantum Fourier transform

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

|̃0〉α
|̃1〉α
|̃2〉α
|̃3〉α

...

| ˜n − 1〉α

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

= 1√
n

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 ... 1
1 w w2 ... wn−1

1 w2 w4 ... w2(n−1)

1 w3 w6 ... w3(n−1)

...
...

...
. . .

...

1 w(n−1) w2(n−1) ... w(n−1)(n−1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

|α〉
|q2α〉
|q4α〉
|q6α〉

...

|q2(n−1)α〉

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

where w = e
−2π i
n = q̄2 is the nth root of unity, so that corresponding transformation

matrix, the Vandermonde matrix as generalized Hadamard gate,

|̃k〉α = 1√
n

n−1∑

j=0

w jk |q2 jα〉 0 ≤ k ≤ n − 1, (29)

is the unitary gate QQ† = Q†Q = I . For orthonormal stateswe define normalization
matrix,
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N = e
|α|2
2√
n
diag

(
0e

|α|2 ,1 e|α|2 ,2 e|α|2 , . . . ,n−1 e
|α|2

)−1/2
(mod n)

in terms of (mod n) exponential functions:

fs(|α|2) =s e
|α|2(mod n) ≡

∞∑

k=0

(|α|2)nk+s

(nk + s)! , 0 ≤ s ≤ n − 1 . (30)

These functions represent superposition of standard exponentials

se
|α|2(mod n) = 1

n

n−1∑

k=0

q2skeq
2k |α|2 , 0 ≤ s ≤ n − 1 , (31)

related to each other by derivatives

∂

∂|α|2
[
se

|α|2
]

= s−1e
|α|2 ,

∂

∂|α|2
[
0e

|α|2
]

=n−1 e
|α|2 .

According to this, function fs defined in (30) is a solution of ordinary differential
equation of degree n

f (n)
s = fs , where 0 ≤ s ≤ n − 1, (32)

with proper initial values: f (s)
s (0) = 1 and

fs(0) = f ′
s (0) = · · · = f (s−1)

s (0) = f (s+1)
s (0) = · · · = f (n−1)

s (0) = 0.

As we have learned recently, these functions as the generalized hyperbolic func-
tions were introduced also in [13]. By using these functions one can derive compact
expression for the kaleidoscope states as

|α〉 = e− 1
2 |α|2eαâ† |0〉 ⇒ |s〉α = seαâ†

√
se|α|2 |0〉 (mod n), 0 ≤ s ≤ n − 1. (33)

5.2 Number of Photons in Kaleidoscope of Quantum
Coherent States

Cyclic permutation of kaleidoscope states, generated by annihilation operator â,
allows us to calculate average number of photons in these states
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â|s〉α = α
Ns

Ns−1
|s − 1〉α ⇒ (34)

α〈s|N̂ |s〉α = |α|2
[

s−1e|α|2

se|α|2

]
, 1 < s ≤ n − 1 , (35)

â|0〉α = α
N0

Nn−1
|n − 1〉α ⇒ (36)

α〈0|N̂ |0〉α = |α|2
[

n−1e|α|2

0e|α|2

]
. (37)

Asymptotically they approach the coherent states average number value

lim|α|→∞ α〈s|N̂ |s〉α ≈ |α|2 = 〈α|N̂ |α〉

while for small occupation numbers give integers

lim|α|→0
α〈s|N̂ |s〉α = s .

6 Quantum Algebra

Our kaleidoscope coherent states (33) are eigenstates of operator q2N̂ :

q2N̂ |k〉α = q2k |k〉α, k = 0, 1 . . . , n − 1.

In the Fock space this operator is an infinite matrix of the form

Σ3 ≡ q2N̂ = I ⊗

⎛

⎜⎜⎜⎜⎜⎝

1 0 0 ... 0
0 q2 0 ... 0
0 0 q4 ... 0
...

...
...

. . .
...

0 0 0 ... q2(n−1)

⎞

⎟⎟⎟⎟⎟⎠
, Σ1 = I ⊗

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 ... 1
1 0 0 ... 0
0 1 0 ... 0
...

...
...

. . .
...

0 0 0 ... 0

⎞

⎟⎟⎟⎟⎟⎠
. (38)

Here the n × n matrices are called the Sylvester clock and shift matrices correspond-
ingly. They are q-commutative

Σ1Σ3 = q2Σ3Σ1,

satisfy relations
Σn

1 = I, Σn
3 = I
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and are connected by the unitary transformation:

Σ1 = (I ⊗ Q)q2N̂ (I ⊗ Q+).

HermannWeyl in book [14] proposed them for description of quantummechanics of
finite dimensional systems. By dilatation operator q2N̂ we define q2-number operator

[N̂ ]q2 = q2N̂ − 1

q2 − 1

for non-symmetrical q-calculus, and

[N̂ ]q̃2 = q2N̂ − q−2N̂

q2 − q−2

for the symmetrical one. In our kaleidoscope basis, these number operators are diag-
onal and given by q-numbers:

[N̂ ]q2 = diag([0]q2 , [1]q2 , . . . , [n − 1]q2),

with [n]q2 = q2n−1
q2−1 for non-symmetric case, and

[N̂ ]q̃2 = diag([0]q̃2 , [1]q̃2 , . . . , [n − 1]q̃2),

with [n]q̃2 = q2n−q−2n

q2−q−2 for the symmetrical one.
For symmetric case the q-number operator is Hermitian and can be factorized as

[N̂ ] = B̂+ B̂, [N̂ + 1] = B̂ B̂+,

where

B̂ = â

√ [N ]q̃2

N
.

Explicitly in matrix form it is

B̂ = I ⊗

⎛

⎜⎜⎜⎝

0
√[1] 0 ... 0

0 0
√[2] ... 0

...
...

...
. . .

...

0 0 0 ... 0

⎞

⎟⎟⎟⎠ , B̂+ = I ⊗

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 ... 0√[1] 0 0 ... 0
0

√[2] 0 ... 0
...

...
...

. . .
...

0 0 0 ... 0

⎞

⎟⎟⎟⎟⎟⎠
(39)

and B̂n = 0, (B̂+)n = 0. In non-symmetric case the number operator is not Hermi-
tian.
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6.1 Symmetric Case

For symmetric case we have the quantum algebra

B̂ B̂+ − q2 B̂+ B̂ = q−2N̂ , (40)

B̂ B̂+ − q−2 B̂+ B̂ = q2N̂ , (41)

and quantum q2-oscillator with Hamiltonian

Ĥ = �ω

2

(
[N̂ ]q̃2 + [N̂ + I ]q̃2

)
.

In the kaleidoscope states as the eigenstates, the spectrum of this Hamiltonian is

Ek = �ω

2

sin 2π
n (k + 1

2 )

sin π
n

. (42)

The same spectrum was obtained in [15] for description of physical system of two
anyons.Appearance of quantumalgebraic structure in twodifferent physical systems,
as optical coherent states and the anyons problem is instructive.

6.2 Non-symmetric Case

In this case the quantum algebra of operators is q2-deformed

B̂ B̂+ − q2 B̂+ B̂ = I, (43)

B̂ B̂+ − B̂+ B̂ = q2N̂ , (44)

with periodic (mod n) ([k + n]q2 = [k]q2 ) q2-numbers

[k]q2 = ei
π
n (k−1) sin

π
n k

sin π
n

. (45)

7 Conclusions

Kaleidoscope of coherent states considered in present paper can be realized by proper
phase superposition of coherent states of light (the Gaussian states) and it can provide
a unit of quantum information corresponding not only to diadic, but also to an arbi-



Kaleidoscope of Classical Vortex Images and Quantum Coherent States 199

trary number base n. These states furnish the representation of quantum symmetry
related with quantum q-oscillator.

As a generalization of the Schrödinger cat states, from our kaleidoscope states
one can construct multi qudits entangled quantum states. This work is in progress.
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