
Constant-Space Self-stabilizing Token
Distribution in Trees

Yuichi Sudo1(B), Ajoy K. Datta2, Lawrence L. Larmore2,
and Toshimitsu Masuzawa1

1 Osaka University, 1-5, Yamadaoka, Suita, Osaka, Japan
y-sudou@ist.osaka-u.ac.jp

2 University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV, USA

1 Introduction

The token distribution problem was originally defined by Peleg and Upfal in their
seminal paper [4]. Consider a network of n processes and n tokens. Initially, the
tokens are arbitrarily distributed among processes but with up to a maximum of
l tokens in any process. The problem is to uniformly distribute the tokens such
that every process ends up with exactly one token. We generalize this problem
as follows: the goal is to distribute nk tokens such that every process holds
k tokens where k is any given number. We present a self-stabilizing algorithm
that solves this generalized problem. As we deal with self-stabilizing systems,
the network (tree in this paper) can start in an arbitrary configuration where
the total number of tokens in the network may not be exactly equal to nk.
Each process holds an arbitrary number, from zero to l, of tokens in an initial
configuration. Thus, we assume that only the root process can push/pull tokens
to/from the external store as needed.

We present three silent and self-stabilizing token distribution algorithms for
rooted tree networks in this paper. The performances of the algorithms are
summarized in Table 1. First, we present a self-stabilizing token distribution
algorithm Base. This algorithm has the optimal convergence time, O(nl) (asyn-
chronous) rounds. However, Base may have a large number of redundant token
moves; Θ(nhε) redundant (or unnecessary) token moves happen in the worst
case where ε = min(k, l − k) where h is the height of the tree network. Next, we
combine the algorithm Base with a synchronizer or PIF waves to reduce redun-
dant token moves, which results in SyncTokenDist or PIFTokenDist , respec-
tively. Algorithm SyncTokenDist reduces the number of redundant token moves
to O(nh) without any additional costs while PIFTokenDist drastically reduces
the number of redundant token moves to the asymptotically optimal value, O(n),
at the expense of increasing convergence time from O(nl) to O(nhl) in terms of
rounds. Work space complexities, i.e., the amount of memory to store informa-
tion except for tokens, of all the algorithms are constant both per process and
per link register.

This work was partially supported by Japan Science and Technology Agency (JST)
SICORP.

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 25–29, 2018.
https://doi.org/10.1007/978-3-030-01325-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_4&domain=pdf

26 Y. Sudo et al.

Table 1. Token distribution algorithms for rooted trees. (ε = min(k, l − k))

Conv. time #Red. token
moves

Work space
(Process)

Work space
(Link)

Base O(nl) rounds Θ(nhε) 0 O(1)

SyncTokenDist O(nl) rounds O(nh) O(1) O(1)

PIFTokenDist O(nhl) rounds O(n) O(1) O(1)

Lowerbounds Ω(nl) rounds Ω(n) - -

2 Preliminaries

We consider a tree network T = (V,E) where V is the set of n processes and E is
the set of n−1 links. The tree network is rooted, that is, there exists a designated
process vroot ∈ V , and every process v other than vroot knows its parent p(v).
We denote the set of v’s children by C(v). We define N(v) = C(v)∪{p(v)}. Each
link {u, v} ∈ E has two link registers or just registers ru,v and rv,u. We call ru,v
(resp. rv,u) an output register (resp. an input register) of u. Process u can read
from the both registers and can write only to output register ru,v.

A process v holds at most l tokens at a time, each of which is a bit sequence
of length b. These tokens are stored in a dedicated memory space of the process,
called token store. We denote the token store of v by v.tokenStore and the
number of the tokens in it by |v.tokenStore|. We use a link register to send and
receive a token between processes. Each register ru,v contains at most one token
in a dedicated variable ru,v.token. The root process vroot can access another
token store called the external token store, in which an infinite number of tokens
exist. The root vroot can reduce the total number of tokens in the tree by pushing
a token into the external store and can increase it by pulling a token from the
external store.

Given k ≤ l, our goal is to reach a configuration where every process holds
exactly k tokens in a self-stabilizing fashion. All tokens must not disappear from
the network except in the case that root vr pushes them to the external store. A
process must not create a new token. A new token appears only when the root
pulls it from the external store.

We evaluate token distribution algorithms with three metrics—time com-
plexity, space complexity, and the number of token moves. We measure the time
complexity in terms of (asynchronous) rounds. We measure the space complex-
ity as the work space complexity in each process and in each register of an
algorithm. The work space complexity in each process (resp. in each register)
is the bit length to represent all variables on the process (resp. in the regis-
ter) except for tokenStore (resp. token). We evaluate the number of token
moves as follows. Generally, a token is transferred from a process u to a pro-
cess v in the following two steps: (i) u moves the token from u.tokenStore
to ru,v.token; (ii) v moves the token from ru,v.token to v.tokenStore. In this
paper, we regard the above two steps together as one token move and consider

Constant-Space Self-stabilizing Token Distribution in Trees 27

the number of token moves as the number of the occurrences of the former steps.
We are interested in the number of redundant token moves. Let τ(v) be the num-
ber of tokens in input registers of process v. Then, we define Δ(v) =

∑
u∈Tv

d(u)
where d(u) = |u.tokenStore| + τ(u) − k and Tv is the sub-tree consisting of
all the descendants of v (including v itself). Intuitively, Δ(v) is the number of
tokens that v must send to p(v) to achieve the token distribution if Δ(v) ≥ 0;
Otherwise, p(v) must send −Δ(v) tokens to v. We define the number of redun-
dant token moves in an execution as the total number of token moves in the
execution minus

∑
v∈V |Δ(v)| of the initial configuration of the execution.

3 Algorithms

3.1 Algorithm Base

We use common notation sgn(x) for real number x, that is, sgn(x) = 1, sgn(x) =
0, and sgn(x) = −1 if x > 0, x = 0, and x < 0, respectively.

The basic idea of Base is simple. Each process v always tries to estimate
sgn(Δ(v)), that is, tries to find whether Δ(v) is positive, negative, or just zero.
Then, process v other than vroot reports its estimation to its parent p(v) using a
shared variable rv,p(v).est. When its estimation is negative, p(v) sends a token
to v if p(v) holds a token and rp(v),v.token is empty. When the estimation is
positive, v sends a token to its parent p(v) if v holds a token and rv,p(v).token is
empty. Root vroot always pulls a new token from the external store to increase
Δ(vroot) when its estimation is negative, and pushes a token to the external
store to decrease Δ(vroot) when the estimation is positive. If all processes v
correctly estimate sgn(Δ(v)), each of them eventually holds k tokens. After that,
no process sends a token.

Thus, estimating sgn(Δ(v)) is the key of algorithm Base. Each process v
estimates sgn(Δ(v)) as follows (Est(v) is the estimation):

Est(v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 (d(v) > 0 ∧ ∀u ∈ C(v) : ru,v.est ∈ {1, 0+, 0})
0+ (d(v) = 0 ∧ ∀u ∈ C(v) : ru,v.est ∈ {1, 0+, 0} ∧ ∃w ∈ C(v) : ru,v.est ∈ {0+, 1})
0 (d(v) = 0 ∧ ∀u ∈ C(v) : ru,v.est = 0)

0− (d(v) = 0 ∧ ∀u ∈ C(v) : ru,v.est ∈ {−1, 0−, 0} ∧ ∃w ∈ C(v) : ru,v.est ∈ {0−,−1})
−1 (d(v) < 0 ∧ ∀u ∈ C(v) : ru,v.est ∈ {−1, 0−, 0})
⊥ (otherwise),

where the candidate values 1, 0+, 0, 0−, −1, and ⊥ of Est(v) represent that
the estimation is positive, “never negative”, zero, “never positive”, negative,
and “unsure”, respectively. A process sends a token to its parent only when
its estimation is 1, and it send a token to its child only when the estimation
of the child is −1. Our detailed analysis proves that this simple constant-space
algorithm shows the performance listed in Table 1.

28 Y. Sudo et al.

3.2 Algorithm SyncTokenDist

The key idea of SyncTokenDist is simple. It is guaranteed that every process v
has correct estimation in variable est within 2h asynchronous rounds and no
redundant token moves happen thereafter. However, some processes can send or
receive many tokens in the first 2h asynchronous rounds, which makes Ω(nhε)
redundant token moves in total in the worst case. Algorithm SyncTokenDist sim-
ulates an execution of Base with a simplified version of the Z3 synchronizer [3],
which loosely synchronizes an execution of Base so that the following property
holds;

For any integer x, if a process executes the procedure of Base at least
x + 2 times, then every neighboring process of the process must execute
the procedure of Base at least x times.

Thus, every process v can execute the procedure of Base at most O(h) times
until all agents have correct estimation, after which no redundant token moves
happen.

3.3 Algorithm PIFTokenDist

Algorithm PIFTokenDist uses Propagation and Information with Feedback
(PIF) scheme [1] to reduce the number of redundant token moves. For our pur-
pose, we use a simplified version of PIF. The pseudo code is shown in Algo-
rithm 1. Each process v has a local variable v.wave ∈ {0, 1, 2}, a shared variable
rv,u.wave ∈ {0, 1, 2} for all u ∈ N(v), and all the variables of Base. Process v
always copies the latest value of v.wave to rv,u.wave for all u ∈ N(v) (Line 4). An
execution of PIFTokenDist repeats the cycle of three waves — the 0-wave, the
1-wave, and the 2-wave. Once vroot.wave = 0, the zero value is propagated from
vroot to leaves (Line 1, the 0-value). In parallel, each process v changes v.wave
from 0 to 1 after verifying that all its children already have the zero value in
variable wave (Line 2, the 1-wave). When the 1-wave reaches a leaf, the wave
bounces back to the root, changing the wave-value of processes from 1 to 2 (Line
3, the 2-wave). When the 2-wave reaches the root, it resets vroot.wave to 0, thus
the next cycle begins. A process v executes the procedure of Base every time it
receives the 2-wave, that is, every time it changes v.wave from 1 to 2 (Line 3).

Algorithm 1 PIFTokenDist
[Actions of process v]
1: v.wave ← 0 if (v = vroot ∧ v.wave = 2) ∨ (v
= vroot ∧ rp(v),v.wave = 0)

2: v.wave ← 1 if (v.wave = 0) ∧ (v = vroot ∨ rp(v),v.wave = 1) ∧ ∀u ∈ C(v) : ru,v.wave = 0)

3: v.wave ← 2 and execute the procedure of Base if (v.wave = 1) ∧ (∀u ∈ C(v) : ru,v.wave = 2)
4: rv,u.wave ← v.wave for all u ∈ N(v)

The PIFTokenDist shown in Algorithm 1 is not silent, but it can get the
silence property with slight modification such that the root begins the 0-wave

Constant-Space Self-stabilizing Token Distribution in Trees 29

at Line 1 only when it detects that the simulated algorithm (Base) is not ter-
minated. This modification is easily implemented by using the enabled-signal-
propagation technique presented in [2].

References

1. Bui, A., Datta, A.K., Petit, F., Villain, V.: Snap-stabilization and PIF in tree net-
works. Distrib. Comput. 20(1), 3–19 (2007)

2. Datta, A.K., Larmore, L.L., Masuzawa, T., Sudo, Y.: A self-stabilizing minimal
k-grouping algorithm. In: Proceedings of the 18th International Conference on Dis-
tributed Computing and Networking, pp. 3:1–3:10. ACM (2017)

3. Datta, A.K., Larmore, L.L., Masuzawa, T.: Constant space self-stabilizing center
finding in anonymous tree networks. In: Proceedings of the International Conference
on Distributed Computing and Networking, pp. 38:1–38:10 (2015)

4. Peleg, D., Upfal, E.: The token distribution problem. SIAM J. Comput. 18(2), 229–
243 (1989)

	Constant-Space Self-stabilizing Token Distribution in Trees
	1 Introduction
	2 Preliminaries
	3 Algorithms
	3.1 Algorithm Base
	3.2 Algorithm SyncTokenDist
	3.3 Algorithm PIFTokenDist

	References

