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Abstract. A widely studied model of influence diffusion in social net-
works represents the network as a graph G = (V, E) with an influence
threshold t(v) for each node. Initially the members of an initial set S ⊆ V
are influenced. During each subsequent round, the set of influenced nodes
is augmented by including every node v that has at least t(v) previously
influenced neighbours. The general problem is to find a small initial set
that influences the whole network. In this paper we extend this model
by using incentives to reduce the thresholds of some nodes. The goal is
to minimize the total of the incentives required to ensure that the pro-
cess completes within a given number of rounds. The problem is hard
to approximate in general networks. We present polynomial-time algo-
rithms for paths, trees, and complete networks.

1 Introduction

The spread of influence in social networks is the process by which individuals
adjust their opinions, revise their beliefs, or change their behaviours as a result
of interactions with others (see [14] and references therein quoted). For exam-
ple, viral marketing takes advantage of peer influence among members of social
networks for marketing [13]. The essential idea is that companies wanting to
promote products or behaviours might try to target and convince a few indi-
viduals initially who will then trigger a cascade of further adoptions. The intent
of maximizing the spread of viral information across a network has suggested
several interesting optimization problems with various adoption paradigms. We
refer to [5] for a recent discussion of the area. In the rest of this section, we will
explain and motivate our model of information diffusion, describe our results,
and discuss how they relate to the existing literature.

1.1 The Model

A social network is a graph G = (V,E), where the node set V represents the
members of the network and E represents the relationships among members.
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We denote by n = |V | the number of nodes, by N(v) the neighbourhood of v,
and by d(v) = |N(v)| the degree of v, for each node v ∈ V .

Let t : V → N = {1, 2, . . .} be a function assigning integer thresholds to the
nodes of G; we assume w.l.o.g. that 1 ≤ t(v) ≤ d(v) holds for all v ∈ V . For
each node v ∈ V , the value t(v) quantifies how hard it is to influence v, in the
sense that easy-to-influence elements of the network have “low” t(·) values, and
hard-to-influence elements have “high” t(·) values [16]. An influence process in
G starting from a set S ⊆ V of initially influenced nodes is a sequence of node
subsets,1

InfluencedG[S, 0] = S

InfluencedG[S, �]=InfluencedG[S, �−1]∪
{

v :
∣∣N(v)∩ InfluencedG[S, �−1]

∣∣ ≥ t(v)
}

,

� > 0.
Thus, in each round �, the set of influenced nodes is augmented by including every
uninfluenced node v for which the number of already influenced neighbours is
at least as big as v’s threshold t(v). We say that v is influenced at round � > 0
if v ∈ InfluencedG[S, �] \ InfluencedG[S, � − 1]. A target set for G is a set S such
that it will influence the whole network, that is, InfluencedG[S, �] = V , for some
� ≥ 0.

The classical Target Set Selection (TSS) problem having as input a network
G = (V,E) with thresholds t : V −→ N, asks for a target set S ⊆ V of minimum
size for G [1,8]. The TSS problem has roots in the general study of the spread
of influence in social networks (see [5,14]). For instance, in the area of viral
marketing [13], companies wanting to promote products or behaviors might try
to initially convince a small number of individuals (by offering free samples or
monetary rewards) who will then trigger a cascade of influence in the social
network leading to the adoption by a much larger number of individuals.

In this paper, we extend the classical model to make it more realistic. It was
first observed in [12] that the classical model limits the optimizer to a binary
choice between zero or complete influence on each individual whereas customized
incentives could be more effective in realistic scenarios. For example, a company
promoting a new product may find that offering one hundred free samples is far
less effective than offering a ten percent discount to one thousand people.

Furthermore, the papers mentioned above do not consider the time (number
of rounds) necessary to complete the influence diffusion process. This could be
quite important in viral marketing; a company may want to influence its poten-
tial customers quickly before other companies can market a competing product.

With this motivation, we formulate our model as follows. An assignment
of incentives to the nodes of a network G = (V,E) is a function p : V →
N0 = {0, 1, 2, . . .}, where p(v) is the amount of influence initially applied on
v ∈ V . The effect of applying the incentive p(v) on node v is to decrease its
threshold, i.e., to make v more susceptible to future influence. It is clear that
to start the process, there must be some nodes for which the initially applied
influences are at least as large as their thresholds. We assume, w.l.o.g., that

1 We will omit the subscript G whenever the graph G is clear from the context.
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0 ≤ p(v) ≤ t(v) ≤ d(v). An influence process in G starting with incentives given
by a function p : V → N0 = {0, 1, 2, . . .} is a sequence of node subsets
Influenced[p, 0] = {v : p(v) = t(v)}
Influenced[p, �] = Influenced[p, �−1]∪

{
v :

∣∣N(v)∩Influenced[p, �−1]
∣∣ ≥ t(v)−p(v)

}
,

� > 0.
The cost of the incentive function p : V −→ N0 is

∑
v∈V p(v).

Let λ be a bound on the number of rounds available to complete the pro-
cess of influencing all nodes of the network. The Time-Bounded Targeting with
Incentives problem is to find incentives of minimum cost which result in all nodes
being influenced in at most λ rounds:

Time-Bounded Targeting with Incentives (TBI).
Instance: A network G = (V,E) with thresholds t : V −→ N and time

bound λ.
Problem: Find incentives p : V −→ N0 of minimum cost

∑
v∈V p(v) s.t.

Influenced[p, λ] = V.

Example 1. Solutions to the TBI problem can be quite different from solutions to
the TSS problem for a given network. Consider a complete graph K8 on 8 nodes
with thresholds shown in Fig. 1. The optimal target set is S={v8} which results
in all nodes being influenced in 4 rounds. The TBI problem admits different
optimal solutions (with different incentive functions) depending on the value of
λ, as shown in Fig. 1.

Fig. 1. A complete graph K8. The number inside each circle is the node threshold.
Optimal solutions for the TSS problem and the TBI problem, with various values of
λ, are shown.

1.2 Related Work and Our results

The study of the spread of influence in complex networks has experienced a
surge of interest in the last few years. Kempe et al. [17] introduced the Influence
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Maximization (IM) problem, where the goal is to find a subset of nodes in a
social network that has cardinality bounded by a certain budget β and that
could maximize the spread of influence. However, they were mostly interested in
networks with randomly chosen thresholds.

Chen [6] studied the TSS problem. He proved a strong inapproximability
result that makes unlikely the existence of an algorithm with approximation
factor better than O(2log

1−ε |V |). Chen’s result stimulated a series of papers
including [1–4,7–9,15,20,22] that isolated many interesting scenarios in which
the problem (and variants thereof) become tractable.

The problem of maximizing the number of nodes activated within a specified
number of rounds has also been studied [8,9,23]. The problem of dynamos or
dynamic monopolies in graphs is essentially the target set problem with every
node threshold being half its degree [21].

The Influence Maximization problem with incentives was introduced in [12].
In this model the authors assume that the thresholds are randomly chosen values
in [0, 1] and they aim to understand how a fractional version of the Influence
Maximization problem differs from the original version. To that purpose, they
introduced the concept of partial influence and showed that, in theory, the frac-
tional version retains essentially the same computational hardness as the integral
version, but in practice, better solutions can be computed using heuristics in the
fractional setting.

The Targeting with Partial Incentives (TPI) problem, of finding incentives
p : V −→ N0 of minimum cost

∑
v∈V p(v) such that all nodes are eventually

influenced, was studied in [11]. Exact solutions to the TPI problem for special
classes of graphs were proposed in [10,11]. Variants of the problem, in which the
incentives are modelled as additional links from an external entity, were studied
in [18,19]. The authors of [23] study the case in which offering discounts to nodes
causes them to be influenced with a probability proportional to the amount of
the discount.

It was shown in [11] that the TPI problem cannot be approximated to within
a ratio of O(2log

1−ε n), for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)),
where n is the number of nodes in the graph. As a consequence, for general
graphs, the same inapproximability result still holds for the time bounded version
of the problem that we study in this paper.

Theorem 1. The TBI problem cannot be approximated to within a ratio of
O(2log

1−ε n), for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)), where
n is the number of nodes in the graph.

Our Results. Our main contributions are polynomial-time algorithms for path,
complete, and tree networks. In Sect. 2, we present a linear-time greedy algorithm
to allocate incentives to the nodes of a path network. In Sect. 3, we design a
O(λn log n) dynamic programming algorithm to allocate incentives to the nodes
of a complete network. In Sect. 4, we give an O(λ2Δn})algorithm to allocate
incentives to a tree with n nodes and maximum degree Δ.
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2 A Linear-Time Algorithm for Paths

In this section, we present a greedy algorithm to allocate incentives to nodes of
a path network. We prove that our algorithm is linear-time.

We denote by L(0, n − 1) the path with n nodes 0, . . . , n − 1 and edges
{(i, i + 1) : 0 ≤ i ≤ n − 2}. Since the threshold of each node cannot exceed its
degree, we have that t(0) = t(n − 1) = 1 and t(i) ∈ {1, 2}, for i = 1, . . . , n−2.
For 0 ≤ j ≤ k ≤ n − 1, we denote by L(j, k) the subpath induced by the nodes
j, . . . , k.

Fig. 2. An example of the execution of the Algorithm 1 on a path L(0, 21) with a 2-
path satisfying Lemma 3 and two 2-paths satisfying Lemma 4. Filled nodes represents
nodes having threshold 2. Dashed nodes represents dummy nodes. The number inside
the nodes represents the incentive assigned to the node.

Lemma 1. Let L(j, k) be a subpath of L(0, n−1) with t(j+1) = · · · = t(k−1) =
2 and t(j) = t(k) = 1. For any incentive function p : V → {0, 1, 2} that solves
the TBI problem on L(0, n − 1) and for any λ,

k−1∑

i=j+1

p(i) ≥

⎧
⎪⎨

⎪⎩

k−j−2 if both j + 1 and k − 1 are influenced by j and k, resp.

k−j−1 if either j + 1 or k − 1 is influenced by its neighbour (j or k)

k − j otherwise.

Proof. Let p be an incentive function that solves the TBI problem on L(0, n−1).
For any node i ∈ {j + 1, . . . , k − 1}, let inf(i) ∈ {0, 1, 2} be the amount of
influence that i receives from its neighbours in L(0, n − 1) during the influence
process starting with p (that is, the number of i’s neighbours that are influenced
before round i).
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For each i = j + 1, . . . , k − 1, it must hold that inf(i) + p(i) ≥ t(i) = 2.
Hence,

k−1∑
i=j+1

p(i) ≥
k−1∑

i=j+1

(2 − inf(i)) ≥ 2(k − j − 1) −
k−1∑

i=j+1

inf(i). (1)

Noticing that each link in E is used to transmit influence in at most one direction,
we have

k−1∑

i=j+1

inf(i) ≤

⎧
⎪⎨

⎪⎩

k−j, if both j + 1 and k − 1 are influenced by j and k, resp.

k−j−1, if either j+1 or k−1 is influenced by its neighbour (j or k)

k−j−2, otherwise.

As a consequence, using Eq. (1) gives the desired result.
In the following we assume that λ ≥ 2. The case λ = 1 will follow from the

results in Sect. 4, since the algorithm for trees has linear time when both λ and
the maximum degree are constant.

Definition 1. We denote by OPT (0, n − 1) the value of an optimal solution
p : V → {0, 1, 2} to the TBI problem on L(0, n−1) in λ rounds. For any subpath
L(j, k) of L(0, n − 1), we denote by:

(i) OPT (j, k) the value
∑k

i=j p(i) where p is an optimal solution to the TBI
problem on L(j, k);

(ii) OPT (j, k,←) the value
∑k

i=j p(i) where p is an optimal solution to the TBI
problem on L(j, k) with the additional condition that the node k gets one
unit of influence from k + 1;

(iii) OPT (j, k, �→) the value
∑k

i=j p(i) where p is an optimal solution to the TBI
problem on L(j, k) with the additional condition that k is influenced by round
λ − � without getting influence from node k + 1;

(iv) OPT (→, j, k) the value
∑k

i=j p(i) where p is an optimal solution to the
TBI problem on L(j, k) with the additional condition that j gets one unit
of influence from j − 1;

(v) OPT ( �←, j, k) the value
∑k

i=j p(i) where p is an optimal solution to the TBI
problem on L(j, k) with the additional condition that node j is influenced
by round λ − � without getting influence from j − 1.

Lemma 2. For any subpath L(j, k) and for each 1 ≤ � < �′ ≤ λ:
(1) If t(k) = 1 then OPT (j, k, ←) ≤ OPT (j, k) ≤ OPT (j, k, �

→) ≤ OPT (j, k, �′
→)

≤ OPT (j, k, ←)+1.

(2) If t(j) = 1 then OPT (→, j, k) ≤ OPT (j, k) ≤ OPT ( �
←, j, k) ≤ OPT (�′

←, j, k) ≤
OPT (→, j, k)+1.

Proof. We first prove (1). We notice that each of the first three inequali-
ties OPT (j, k,←) ≤ OPT (j, k), OPT (j, k) ≤ OPT (j, k, �→), OPT (j, k, �→) ≤
OPT (j, k, �′

→) is trivially true since each solution that satisfies the assumptions of
the right term is also a solution that satisfies the assumptions of the left term. It
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remains to show that OPT (j, k, �′
→) ≤ OPT (j, k,←)+1. Let p be a solution that

gives OPT (j, k,←). Consider p′ such that p′(i) = p(i), for each i = j, . . . , k − 1
and p′(k) = 1. Recalling that t(k) = 1, we get that the cost increases by at most
1 and p′ is a solution in which node k is influenced at round 0 ≤ λ− �′. A similar
proof holds for (2). 
�
Definition 2. L(j, k), with j + 1 ≤ k − 1, is called a 2-path if t(j + 1) = . . . =
t(k − 1) = 2 and t(j) = t(k) = 1.

Lemma 3. For any value of λ, if L(j, k) is a 2-path with m = k − j − 1 �= 2
then OPT (0, n − 1) = OPT (0, j, 1→) + k − j − 2 + OPT ( 1←, k, n − 1).

Outline of Proof. The proof shows that one can always find an optimal solution
in which the m = k − j − 1 nodes in L(j + 1, k − 1) receive the incentives using
the sequence 0(20)∗ when m is odd and 01(20)∗ when m > 2 is even. See Fig. 2
for an example of the odd case. 
�
Lemma 4. For any time bound λ > 1, if t(0) = t(1) = . . . = t(j − 1) = 1 and
L(j, j + 3) is a 2-path then OPT (0, n−1) is equal to

1+ min
{

OPT (0, j, 1→)+OPT ( 2←, j+3, n−1), OPT (0, j, 2→)+OPT ( 1←, j+3, n−1)
}

.

Outline of Proof. The proof is a case analysis that shows that there is always
an optimal solution in which either

1. p(j + 1) = 0, p(j + 2) = 1 or 2. p(j + 1) = 1, p(j + 2) = 0. 
�
Lemma 5. For any value of λ, the minimum cost for the TBI problem on a
path of n nodes having threshold 1 is n/(2λ + 1)�.
Outline of Proof. The basic idea is to break the path into subpaths of 2λ + 1
nodes and assign an incentive of 1 to the middle node of each subpath and
incentive 0 to the others. 
�
Remark 1. OPT (j, k, �→) can be obtained by solving the TBI problem on an
augmented path L(j, k + �) obtained from L(j, k) by concatenating � dummy
nodes on the right of k with t(k + 1) = t(k + 2) = . . . = t(k + �) = 1. Notice
that, for � ≤ λ, it is always possible to find an optimal assignment of incentives
for the augmented path L(j, k + �) in which all dummy nodes get incentive 0.
Indeed it is possible to obtain such an assignment starting from any optimal
assignment and moving the incentives from the dummy nodes to node k. An
analogous observation holds for OPT ( �←, j, k).

Our algorithm iterates from left to right, identifying all of the 2-paths and,
using Lemma 3 or 4 and Lemma 5, it optimally assigns incentives both to the
nodes of threshold 2 and to the nodes (of threshold 1) on the left. It then removes
them from the original path. Eventually, it will deal with a last subpath in which
all of the nodes have threshold 1.
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Algorithm 1. TBI-Path(L(0, n−1))
Input: A Path L(0, n−1), thresholds t(i) ∈ {1, 2}, i = 0, . . . , n − 1, and a time

bound λ.
Output: A solution p(i) : V → {0, 1, 2} of the TBI problem.

1 i = 0
2 while there exists a node j with t(j) = 2 for some i < j < n − 1 do
3 Identify the leftmost 2-path in the current path L(i, n − 1); let it be L(j, k).
4 if L(j, k) is a 2-path satisfying Lemma 3 then
5 assign incentives to the nodes j + 1, . . . , k − 1 as in Lemma 3;
6 t(j + 1) = t(k − 1) = 1;
7 obtain p(i), . . . , p(j) by using Lemma 5 on L(i, j+1) with

t(i) = · · · = t(j+1) = 1;
8 i = k − 1;

9 else if L(j, k = j + 3) is a 2-path satisfying Lemma 4 then
10 if j − i + 2 = c(2λ + 1) for some c > 0 then // Case 1 of Lemma 4
11 p(j + 1) = 0; p(j + 2) = 1; i′ = j + 1;

12 else // Case 2 of Lemma 4
13 p(j + 1) = 1; p(j + 2) = 0; i′ = j + 2;

14 t(j + 1) = t(j + 2) = 1;
15 obtain p(i), . . . , p(j) by using Lemma 5 on L(i, i′) with

t(i) = · · · = t(i′) = 1;
16 i = i′;

17 Assign incentives to L(i, n − 1) (with t(i) = . . . = t(n − 1) = 1), using Lemma 5;
18 return p;

Theorem 2. For any time bound λ > 1, Algorithm 1 provides an optimal solu-
tion for the TBI problem on any path L(0, n−1) in time O(n).

Proof. We show that the algorithm selects an optimal strategy according to
the length and the position of the leftmost 2-path L(j, k) and then iteratively
operates on the subpath L(i, n − 1) where i = k − 1 (one dummy node on the
left) or i = k − 2 (two dummy nodes on the left). See Fig. 2.

Let L(i, n − 1) be the current path and L(j, k) be the leftmost 2-path. If
L(j, k) satisfies the hypothesis of Lemma 3, then we have

OPT (i, n − 1) = OPT (i, j, 1→) + k − j − 2 + OPT ( 1←, k, n − 1).

Hence, we can obtain optimal incentives for nodes i, . . . , j by using the result in
Lemma 5 on L(i, j + 1) (where j + 1 is a dummy node). Moreover, we assign
k − j − 2 incentives to the nodes j + 1, . . . , k − 1 as suggested in Lemma 3 (i.e.,
0(20)∗ when the length of the 2-path is odd and 01(20)∗ otherwise) and the
algorithm iterates on L(k − 1, n − 1) (where k − 1 is a dummy node).

Now suppose that L(j, k = j + 3) satisfies the hypothesis of Lemma 4. We
have that OPT (i, n−1) is equal to

1+min
{

OPT (i, j, 1→)+OPT ( 2←, k, n−1), OPT (i, j, 2→)+OPT ( 1←, k, n−1)
}

. (2)
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We have two cases to consider, according to the distance between i and j.
First assume that j−i+2 = c(2λ+1) for some c > 0. By Lemma 5 and Remark 1
we know that in this case OPT (i, j, 2→) = OPT (i, j, 1→) + 1 and since by (2) of
Lemma 2 we know that OPT ( 2←, k, n − 1) ≤ OPT ( 1←, k, n − 1)+1, we have that
OPT (i, j, 1→) + OPT ( 2←, k, n − 1) corresponds to the minimum of Eq. (2) and
hence the solution described by case 1 in Lemma 4 (i.e., p(j+1) = 0, p(j+2) = 1)
is optimal. Incentives to i, . . . , j are assigned exploiting the result in Lemma 5
on L(i, j + 1) (where j + 1 is a dummy node) and the algorithm iterates on
L(k − 2, n − 1) (where both k − 1 and k − 2 are dummy nodes).
Now assume that j − i + 2 �= c(2λ + 1) for some c > 0. In this case, we have
OPT (i, j, 2→) = OPT (i, j, 1→).
By (1) of Lemma 2 we know that OPT ( 1←, k, n − 1) ≤ OPT ( 2←, k, n − 1). Hence,
OPT (i, j, 2→) + OPT ( 1←, k, n − 1) corresponds to the minimum of Eq. (2) and
the solution in case 2 in Lemma 4 (i.e., p(j + 1) = 1, p(j + 2) = 0) is optimal.
Incentives to i, . . . , j are assigned using the result in Lemma 5 on L(i, j + 2)
(considering both j + 1 and j + 2 as dummy nodes) and the algorithm iterates
on L(k − 1, n − 1) (where k − 1 is a dummy node).

If there remains a last subpath of nodes of threshold one, this is solved
optimally using Lemma 5.

Complexity. The identification of the 2-paths and their classification can be
easily done in linear time. Then, the algorithm operates in a single pass from
left to right and the time is O(n). 
�

3 An O(λn log n) Algorithm for Complete Graphs

In this section, we present an O(λn log n) dynamic programming algorithm to
allocate incentives to the nodes of a complete network Kn = (V,E). We begin
by proving that for any assignment of thresholds to the nodes of Kn, there is
an optimal solution in which the thresholds of all nodes that are influenced at
round � are at least as large as the thresholds of all nodes that are influenced
before round � for every 1 ≤ � ≤ λ.

Let Km be the subgraph of Kn that is induced by Vm = {v1, v2, . . . , vm}.
We will say that an incentive function p : Vm −→ N0 is �-optimal for Km,
1 ≤ m ≤ n, 0 ≤ � ≤ λ, if

∑
v∈Vm

p(v) is the minimum cost to influence all nodes
in Vm in � rounds.

Lemma 6. Given Km, thresholds t(v1) ≤ t(v2) ≤ . . . ≤ t(vm), and 1 ≤ � ≤ λ, if
there exists an �-optimal solution for Km that influences k < m nodes by the end
of round �−1, then there is an �-optimal solution that influences {v1, v2, . . . , vk}
by the end of round � − 1.

Proof. Let p∗ be an �-optimal incentive function for Km that influences a set
V ∗

k = {u1, u2, . . . , uk} of k nodes of Km by the end of round � − 1. We will show
how to construct an �-optimal incentive function for Km that influences nodes
Vk = {v1, v2, . . . , vk} by the end of round �− 1 where t(v1) ≤ t(v2) ≤ . . . ≤ t(vk)
and t(vj) ≥ t(vk) for j = k + 1, k + 2, . . . ,m.
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Suppose that p is an incentive function for Km that influences nodes Vk =
{v1, v2, . . . , vk} by the end of round � − 1. If V ∗

k is different from Vk, then there
is some ui ∈ V ∗

k \Vk and some vj ∈ Vk\V ∗
k such that t(ui) ≥ t(vj). Since vj is

influenced at round � in the �-optimal solution p∗, it must require the influence
of t(vj) − p∗(vj) neighbours. (If it required the influence of fewer neighbours,
then p∗ would not be �-optimal.) Note that t(vj) − p∗(vj) ≥ 0. Similarly, ui

requires the influence of t(ui)−p∗(ui) ≥ 0 neighbours. Consider the set of nodes
V ∗

k ∪ {vj}\{ui} and define p as follows. Choose p(vj) and p(ui) as

t(vj) − p(vj) = t(ui) − p∗(ui) and t(ui) − p(ui) = t(vj) − p∗(vj)

so that vj is influenced at the same round as ui was influenced in the �-optimal
solution and ui is influenced at round �. Set p(v) = p∗(v) for all other nodes in
Km. The difference in value between p and p∗ is

p(vj)+p(ui)−p∗(vj)−p∗(ui) = 0

We can iterate until we find an �-optimal solution that influences {v1, v2, . . . , vk}
by the end of round � − 1. 
�

By Lemma 6, our algorithm can first sort the nodes by non-decreasing thresh-
old value w.l.o.g. The sorting can be done in O(n) time using counting sort
because 1 ≤ t(v) ≤ n − 1 = d(v) for all v ∈ V . In the remainder of this section,
we assume that t(v1) ≤ t(v2) ≤ . . . ≤ t(vn).

Let Opt�(m) denote the value of an �-optimal solution for Km, 1 ≤ m ≤ n,
0 ≤ � ≤ λ. Any node v that is influenced at round 0 requires incentive p(v) = t(v)
and it follows easily that

Opt0(m) =
m∑

i=1

t(vi), 1 ≤ m ≤ n. (3)

Now consider a value Opt�(m) for some 1 ≤ m ≤ n and 1 ≤ � ≤ λ. If exactly
j nodes, 1 ≤ j ≤ m, are influenced by the end of round � − 1 in an �-optimal
solution for Km, then each of the m − j remaining nodes in Vm has j influenced
neighbours at the beginning of round � and these neighbours are v1, v2, . . . , vj

by Lemma 6. For such a remaining node v to be influenced at round �, either
t(v) ≤ j or v has an incentive p(v) such that t(v) − p(v) ≤ j. It follows that

Opt�(m) = min
1≤j≤m

{
Opt�−1(j) +

m∑
i=j+1

max{0, t(vi) − j}
}

, 1 ≤ m ≤ n. (4)

We will use Ind�(m) to denote the index that gives the optimal value
Opt�(m), that is,

Ind�(m) = arg min
1≤j≤m

{
Opt�−1(j) +

m∑
i=j+1

max{0, t(vi) − j}
}

, 1 ≤ m ≤ n. (5)
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A dynamic programming algorithm that directly implements the recurrence
in Eqs. (3) and (4) will produce the optimal solution value Optλ(n) in time
O(λn3). We can reduce the complexity by taking advantage of some structural
properties.

Lemma 7. For any 1 ≤ � ≤ λ, if k < m then Ind�(k) ≤ Ind�(m), 1 ≤ k ≤ n−1,
2 ≤ m ≤ n.

Outline of Proof. The lemma always holds when k < Ind�(m). Assuming that
Ind�(k) > Ind�(m) when k ≥ Ind�(m) leads to a contradiction.

Theorem 3. For any complete network Kn = (V,E), threshold function t :
V −→ N, and λ ≥ 1, the TBI problem can be solved in time O(λn log n).

Proof. Our dynamic programming algorithm computes two n × (λ + 1) arrays
VALUE and INDEX and returns a solution p of n incentives. VALUE [m, �] =
Opt�(m) is the value of an �-optimal solution for Km (for a given threshold
function t : V −→ N), and INDEX [m, �] = Ind�(m) is the index that gives the
optimal value, 1 ≤ m ≤ n, 0 ≤ � ≤ λ.

The array entries are computed column-wise starting with column 0. The
entries in column VALUE [∗, 0] are sums of thresholds according to (3) and the
indices in INDEX [∗, 0] are all 0, so these columns can be computed in time O(n).
In particular, VALUE [j, 0] =

∑j
i=1 t(vi), j = 1, . . . , m.

Suppose that columns 1, 2, . . . , �− 1 of VALUE and INDEX have been com-
puted according to (4) and (5) and consider the computation of column � of the
two arrays. To compute INDEX [m, �] for some fixed m, 1 ≤ m ≤ n, we define a
function

A(j) = Opt�−1(j) +
∑m

i=j+1
max{0, t(vi) − j}, 1 ≤ j ≤ m

and show how to compute each A(j) in O(1) time.
By (5), Ind�(m) = arg min{A(j) | 1 ≤ j ≤ m}.

First we compute an auxiliary vector a where a[j] contains the smallest inte-
ger i ≥ 1 such that t(vi) ≥ j, 1 ≤ j ≤ n. This vector can be precomputed once
in O(n) time because the nodes are sorted by non-decreasing threshold value.
Furthermore, the vector a together with the entries in column VALUE [∗, 0] allow
the computation of

∑m
i=j+1 max{0, t(vi) − j} in O(1) time for each 1 ≤ j ≤ n.

Since Opt�−1(j) = VALUE [j, �−1] has already been computed, we can compute
A(j) in O(1) time. The values Opt�(m) = VALUE [m, �] can also be computed
in O(1) time for each 1 ≤ m ≤ n given Ind�(m) = INDEX [m, �], vector a, and
column VALUE [∗, 0]. The total cost so far is O(λn). It remains to show how to
compute each column INDEX [∗, �] efficiently.

The following algorithm recursively computes the column INDEX [m, �], 1 ≤
m ≤ n assuming that columns 0, 1, 2, . . . , � − 1 of INDEX and VALUE have
already been computed. The algorithm also assumes that two dummy rows have
been added to array INDEX with INDEX [0, �] = 1 and INDEX [n + 1, �] = n,
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0 ≤ � ≤ λ, to simplify the pseudocode. The initial call of the algorithm is
COMPUTE-INDEX(1, n).

We claim that algorithm COMPUTE-INDEX(1, n) correctly computes the
values INDEX [m, �] for 1 ≤ m ≤ n. First, it can be proved by induc-
tion that when we call COMPUTE-INDEX(x, y), the indices INDEX [x − 1, �]
and INDEX [y + 1, �] have already been correctly computed. By Lemma 7,
Ind�(x − 1) ≤ Ind�(x+y

2 �) ≤ Ind�(y + 1), so the algorithm correctly searches
for INDEX [m, �] between INDEX [x − 1, �] and INDEX [y + 1, �].

Algorithm 2. COMPUTE-INDEX(x, y)
Input: Indices x, y.
Output: The values INDEX [i, �] for i = x, . . . y.

1 if x ≤ y then // Assume that INDEX [0, �] = 1 and INDEX [n + 1, �] = n
2 m = �x+y

2
	;

3 INDEX [m, �] =
arg min {A(j) | INDEX [x − 1, �] ≤ j ≤ min{INDEX [y + 1, �], m}};

4 COMPUTE-INDEX(x, m − 1);
5 COMPUTE-INDEX(m + 1, y);

It is not hard to see that the height of the recursion tree obtained calling
COMPUTE-INDEX(1, n) is log(n + 1)�. Furthermore, the number of values
A(j) computed at each level of the recursion tree is O(n) because the ranges
of the searches in line 3 of the algorithm do not overlap (except possibly the
endpoints of two consecutive ranges) by Lemma 7. Thus, the computation time
at each level is O(n), and the computation time for each column � is O(n log n).
After all columns of VALUE and INDEX have been computed, the value of the
optimal solution will be in VALUE [n, λ]. The round during which each node is
influenced and the optimal function p of incentives can then be computed by
backtracking through the array INDEX in time O(λ + n). The total complexity
is O(λn log n). 
�

4 A Polynomial-Time Algorithm for Trees

In this section, we give an algorithm for the TBI problem on trees. Let T = (V,E)
be a tree having n nodes and the maximum degree Δ. We will assume that T is
rooted at some node r. Once such a rooting is fixed, for any node v, we denote by
Tv the subtree rooted at v, and by C(v) the set of children of v. We will develop
a dynamic programming algorithm that will prove the following theorem.

Theorem 4. For any λ > 1, the TBI problem can be solved in time O(nλ2Δ)
on a tree having n nodes and maximum degree Δ.
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The rest of this section is devoted to the description and analysis of the
algorithm that proves Theorem 4. The algorithm performs a post-order traversal
of the tree T so that each node is considered after all of its children have been
processed. For each node v, the algorithm solves some TBI problems on the
subtree Tv, with some restrictions on the node v regarding its threshold and the
round during which it is influenced. For instance, in order to compute some of
these values we will consider not only the original threshold t(v) of v, but also
the reduced threshold t′(v) = t(v)−1 which simulates the influence of the parent
node.

Definition 3. For each node v ∈ V , integers � ∈ {0, 1, . . . , λ}, and t ∈
{t′(v), t(v)}, let us denote by P [v, �, t] the minimum cost of influencing all of
the nodes in Tv, in at most λ rounds, assuming that

• the threshold of v is t, and for every u ∈ V (Tv) \ {v}, the threshold of u is
t(u);

• v is influenced by round � in Tv and is able to start influencing its neighbours
by round � + 1.2

Formally the value of P [v, �, t] corresponds to P [v, �, t] =

min
p:Tv→N0, InfluencedTv [p,λ]=Tv

|C(v)∩InfluencedF (v,d)[p,�−1]|≥t−p(v)

{ ∑
v∈Tv

p(v)

}
We set P [v, �, t] = ∞ when the

above problem is infeasible. Denoting by pv,�,t : V (Tv) → N0 the incentive
function attaining the value P [v, �, t], the parameter � is such that:

1. if � = 0 then pv,�,t(v) = t,
2. otherwise, v’s children can influence v at round �, i.e. |{C(v) ∩

Influenced[pv,�,t, � − 1]}| ≥ t − pv,�,t(v).

Remark 2. It is worthwhile mentioning that P [v, �, t] is monotonically non-
decreasing in t. However, P [v, �, t] is not necessarily monotonic in �.

Indeed, partition the set C(v) into two sets: C ′(v), which contains the c children
that influence v, and C ′′(v), which contains the remaining |C(v)| − c children
that may be influenced by v. A small value of c may require a higher cost on
subtrees rooted at a node u ∈ C ′(v), and may save some budget on the remaining
subtrees; the opposite happens for a large value of c.

The minimum cost to influence the nodes in T in λ rounds follows from
decomposing the optimal solution according to the round on which the root is
influenced and can then be obtained by computing

min
0≤�≤λ

P [r, �, t(r)]. (6)

2 Notice that this does not exclude the case that v becomes an influenced node at
some round �′ < �.
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We proceed using a post-order traversal of the tree, so that the computations of
the various values P [v, �, t] for a node v are done after all of the values for v’s
children are known. For each leaf node v we have

P [v, �, t] =

⎧
⎪⎨
⎪⎩

1 if � = 0 and t = t(v) = 1
0 if 1 ≤ � ≤ λ and t = t(v) − 1 = 0
∞ otherwise.

(7)

Indeed, a leaf v with threshold t(v) = 1 is influenced in the one-node subtree Tv

only when either pv,�,t(v) = 1 (� = 0), or for some 1 ≤ � ≤ λ, it is influenced by
its parent (i.e., the residual threshold t = t(v) − 1 = 0).

For any internal node v, we show how to compute each value P [v, �, t] in time
O(d(v) · t · λ).

In the following we assume that an arbitrary order has been fixed on the
d = d(v) − 1 children of any node v, that is, we denote them as v1, v2, . . . , vd,
according to the fixed order. Also, we define F (v, i) to be the forest consisting of
the subtrees rooted at the first i children of v. We will also use F (v, i) to denote
the set of nodes it includes.

Definition 4. Let v be a node with d children and let � = 0, 1, . . . , λ. For
i = 0, . . . , d, j = 0, 1, . . . , t(v), we define Av,�[i, j] (resp. Av,�[{i}, j]) to be the
minimum cost for influencing all nodes in F (v, i), (resp. Tvi

) within λ rounds,
assuming that:

(i) if � �= λ, at time � + 1 the threshold of vk is t′(vk), for each k = 1, . . . , i;
(ii) if � �= 0, at least j nodes in {v1, v2, . . . , vi} (resp. {vi}) are influenced by

round � − 1, that is

|{v1, v2, . . . , vi} ∩ Influenced[πv,�,i,j , � − 1]| ≥ j,

where πv,�,i,j : F (v, i) → N0 denotes the incentive function attaining
Av,�[i, j].

We also define Av,�[i, j] = ∞ when the above constraints are not satisfiable.

By decomposing a solution according to how many nodes in C(v) are influ-
enced prior to the root v being influenced and denoting this number as j, the
remaining cost to influence the root v is t−j Hence, we can easily write P [v, �, t]
in terms of Av,�[d, j] as follows.

Lemma 8. For each node v with d children, each � = 0, . . . , λ and each t ∈
{t(v), t′(v)}

P [v, �, t] =

{
t + Av,0[d, 0] if � = 0

min0≤j≤t

{
t − j + Av,�[d, j]

}
otherwise.

(8)

Lemma 9. For each node v, each t∈{t(v), t′(v)}, and each �=1, . . . , λ, it is
possible to compute Av,�[d, t], as well as Av,0[d, 0], recursively in time O(λdt)
where d is the number of children of v.
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Outline of Proof. The proof shows that the values Av,0[d, 0] and Av,�[d, t]
can be computed, in time O(λd) and O(λdt) respectively, using the follow-
ing recursive equations. Let M(�1, �2, t) = min�1≤�′≤�2{P [vi, �

′, t]} we have
Av,0[d, 0] =

∑
vi∈C(v)

min {P [vi, 0, t(vi)],M(1, λ, t′(vi))} ,

Av,�[i, j]=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if i = j = 0
∞, if i < j

min
{

Av,�[i−1, j−1] + M(0, �−1, t(vi)),

Av,�[i−1, j]+ min
{

M(0, �, t(vi)),M(�+1, λ, t′(vi))
}}

, otherwise.


�
Lemmas 8 and 9 imply that for each v ∈ V, for each � = 0, . . . , λ,

and t ∈ {t′(v), t(v)}, the value P [v, �, t] can be computed recursively in time
O(λd(v)t(v)). Hence, the value in (6) can be computed in time∑

v∈V O(λd(v)t(v)) × O(λ) = O(λ2Δ) × ∑
v∈V O(d(v)) = O(λ2Δn), where Δ

is the maximum node degree. Standard backtracking techniques can be used to
compute the (optimal) influence function p∗ that influences all of the nodes in
the same O(λ2Δn) time.
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