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Abstract. We present a deterministic distributed 2-approximation
algorithm for the Minimum Weight Vertex Cover problem in the CON-
GEST model whose round complexity is O(log n log Δ/ log2 log Δ). This
improves over the currently best known deterministic 2-approximation
implied by [KVY94]. Our solution generalizes the (2 + ε)-approximation
algorithm of [BCS17], improving the dependency on ε−1 from lin-
ear to logarithmic. In addition, for every ε = (log Δ)−c, where c ≥
1 is a constant, our algorithm computes a (2 + ε)-approximation in
O(log Δ/ log log Δ) rounds (which is asymptotically optimal).

1 Introduction

The Minimum Weight Vertex Cover Problem (MWVC) is defined as follows.
The input is a graph G = (V,E) with nonnegative vertex weights w(v). A subset
U ⊆ V is a vertex cover if, for every edge e = {u, v}, the intersection U ∩{u, v} is
not empty. The weight of a subset of vertices U is

∑
v∈U w(v). The goal is to find

a minimum weight vertex cover. This problem is one of the classical NP-hard
problems [Kar72].

In this paper we deal with distributed deterministic approximation algo-
rithms for MWVC. We focus on the CONGEST model of distributed computa-
tion in which the communication network is the graph G itself.1 Computation
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1 In the CONGEST model vertices have distinct IDs (that are polynomial in |V |),
however, as in [BCS17], our algorithm works also in the case of anonymous vertices.
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proceeds in synchronous rounds. Each round consists of three parts: each ver-
tex receives messages from its neighbors, performs a local computation, and
sends messages to its neighbors. The sent messages arrive at their destination
in the beginning of the next round. In the CONGEST model, message lengths
are bounded by O(log |V |). In order to send vertex weights, we assume that
all the vertex weights are positive integers bounded by polynomial in n � |V |.
See [BCS17,ÅS10] for detailed overviews of distributed algorithms for MWVC.

Let Δ denote the maximum vertex degree in G. Two of the most rele-
vant results in this setting to our paper are the lower bound of [KMW16]
and the upper bound of [BCS17]. The lower bound of Kuhn et al. [KMW16]
states that every constant approximation algorithm for MWVC requires at least
Ω(log Δ/ log log Δ) rounds of communication. The upper bound of Bar-Yehuda
et al. [BCS17] presents a deterministic distributed (2 + ε)-approximation algo-
rithm (BCS Algorithm) that requires O(log Δ/(ε·log log Δ)) rounds for ε ∈ (0, 1).
For ε = Ω(log log Δ/ log Δ), the running time is O(log Δ/ log log Δ), with no
dependence on ε, and is optimal according to [KMW16].

In this paper, we present a generalization of the BCS Algorithm with
improved guarantees on the running time for certain ranges of ε. We focus
on decreasing the dependency of the number of rounds on ε. Since the round
complexity of the BCS Algorithm is optimal for constant values of ε (and even
ε = Ω(log log Δ/ log Δ)), we consider values of ε that depend on Δ.

Our main result2 is a deterministic distributed (2 + ε)-approximation algo-
rithm in which the number of rounds is bounded by

O

(
log Δ

log log Δ
+

log ε−1 log Δ

log2 log Δ

)

.

This result assumes that all the vertices know Δ or an estimate that is a poly-
nomial in Δ. This result leads to the following consequences:

1. If ε−1 = (log Δ)c, for a constant c > 0, then the number of rounds asymp-
totically matches the lower bound, and is thus optimal. In [BCS17] the same
asymptotic running time is guaranteed only for ε−1 = O(log Δ/ log log Δ).

2. If ε−1 = (log Δ)ω(1), then the dependency of the round complexity on 1/ε
is reduced from linear to logarithmic. In addition, the round complexity is
decreased by an additional factor of log log Δ.

3. Every (2 + ε)-approximation is a 2-approximation if ε < 1/(nW ), where
W = maxv w(v). Since we assume that W = nO(1), where n = |V |,
we obtain a 2-approximate deterministic distributed algorithm for MWVC
with round complexity O(log n · log Δ/ log2 log Δ). This improves over the
2-approximation in O(log2 n) rounds implied by [KVY94]3 (which has the
lowest round complexity for deterministic 2-approximation to the best of our
knowledge).

2 All logarithms are base 2 unless the basis is written explicitly.
3 The actual result is stated as a (2 + ε)-approximation in O(log ε−1 log n) rounds,

from which we infer a 2-approximation by setting ε = 1/nW .
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Our round complexity increases for the case that the maximum degree Δ is
unknown to the vertices of the graphs. We propose two alternatives for the case
that Δ is unknown. The first alternative holds for every ε ∈ (0, 1), and achieves
a (2 + ε)-approximate solution with a round complexity of O

(
log ε−1 log Δ

log log Δ

)
. The

second alternative holds for ε > (log Δ)q, where q > 0 is a constant. In the second
alternative, a (2+ε)-approximation is achieved with an optimal asymptotic round
complexity of O(log Δ/ log log Δ).

Our algorithm builds on the BCS Algorithm [BCS17]. This algorithm adapts
the local ratio framework [BE85] to the distributed setting, with several improve-
ments that provide the desired speedup. The BCS Algorithm can be also inter-
preted as the following “primal-dual” algorithm. Essentially the algorithm aims
to increase the edge variables (i.e., dual) such that the following holds:

1. The sum of edge variables incident to every node does not exceed its weight
(feasibility of edge variables).

2. The set of vertices whose edge variable sum is at least (1 − ε)-fraction of the
vertex weight constitute a vertex cover.

The above conditions yield a (2 + ε)-approximation for MWVC.
The challenge in the above framework is to maintain feasibility of the edge

variables while converging as fast as possible to a vertex cover. To increase the
edge variables, vertices send offers to their neighbors. The neighbors respond
to these offers in a way that guarantees feasibility of the edge variables. This
requires a coordination mechanism in the distributed setting, as a vertex both
sends and receives offers simultaneously. To this end, the weight of every vertex
is divided into two parts: vault and bank. Offers are allocated from the vault,
while responses are allocated from the bank, respectively. Hence the agreed
upon increases to the edge variables do not violate the feasibility of the edge
variables. The BCS algorithm sets the vault to be an ε-fraction of the vertex
weight (and the bank to be the remainder). This leads to a running time of
O(ε−1 log Δ/ log log Δ) and O(log Δ/ log log Δ) if ε = Ω(log log Δ/ log Δ).

Our algorithm introduces three modifications to the BCS Algorithm, which
allows us to improve the round complexity. First, we attach levels to the vertices
that measure by how much the remaining weight of a vertex has decreased. Sec-
ond, the size of the vault decreases as the level of the vertex increases. Third,
offers are not sent to all the neighbors. Instead, offers are sent only to the neigh-
bors whose level is the smallest level among the remaining neighbors.

Related Work. An excellent overview of the related work is presented in
[BCS17,ÅS10] which we summarize hereinafter. Minimum vertex cover is one
of Karp’s 21 NP-hard problems [Kar72]. A simple 2-approximation for the
unweighted version can be achieved by a reduction from maximal matching (see,
e.g., [CLRS09,GJ79]). For the weighted case, [BE81] achieves the first linear-
time 2-approximation algorithm using the primal-dual schema, while [BE85]
achieves the same result using the local-ratio technique. Prior to that, the first
polynomial-time 2-approximation algorithm was due to [NJ75] and observed
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by [Hoc82]. For any constant ε > 0, if the Unique Games conjecture holds, no
polynomial-time algorithm can compute a (2−ε) approximation of the minimum
vertex cover [KR08].

Let us now turn our attention to the distributed setting. Let us start
from the unweighted case. A 2-approximation can be found in O(log4 n)
rounds [HKP01] and in O(Δ+log∗ n) rounds [PR01]. Completely local algorithms
with no dependence on n are presented in [ÅFP+09] which gives an O(Δ2)-
round 2-approximation algorithm, and in [PS09] which gives an O(Δ)-round 3-
approximation algorithm. Using the maximal matching algorithm of [BEPS12]
gives a 2-approximation algorithm for vertex cover in O(log Δ + (log log n)4)
rounds. This can be made into a (2+1/polyΔ)-approximation algorithm within
O(log Δ) rounds [Pet16].

For the weighted case, [GKP08] presents a randomized 2-approximation algo-
rithm in O(log n + log W ) rounds (where W is a bound on the vertex weights).
In [KY11] the first (randomized) 2-approximation algorithm running in O(log n)
rounds is presented (note that the running time is logarithmic in n and indepen-
dent of the weights). A deterministic 2-approximation algorithm in O(Δ+log∗ n)
rounds is given within [PR01]. In [KVY94], a deterministic (2+ε)-approximation
algorithm is given within O(log ε−1 log n) rounds. As for deterministic algo-
rithms independent of n, [KMW06] presents a (2 + ε)-approximation algorithm
in O(ε−4 log Δ) rounds and [ÅFP+09] presents a 2-approximation algorithm in
O(1) rounds for Δ ≤ 3, while [ÅS10] presents a 2-approximation algorithm in
O(Δ + log∗ W ) rounds (where W � maxv w(v)). Finally in [BCS17] a determin-
istic (2 + ε)-approximation which runs in O(ε log Δ/ log log Δ) rounds is given.
In [Sol18] a (2 + ε)-approximation in O(ε−1 log(α/ε)/ log log(α/ε)) rounds for
graphs of arboricity bounded by α.

As the result of [Sol18] uses the algorithm of [BCS17] as a black box, plugging
Δ = α/ε, our results can also be used. This means all of results stated in this
paper also hold for bounded arboricity graphs setting Δ = α/ε. We list the
previous results and the results of this paper in Table 1 (Adapted from [ÅS10]).

2 The MWVC Local Ratio Template

In this section we overview [BCS17]’s local ratio paradigm for approximating
MWVC. We note that the template does not assume anything about the model of
computation and that our algorithms will fit into this framework. This template
can also be viewed via the primal-dual schema.

Let G = (V,E) denote a graph with a vertex-weight function w : V →
R

+. An edge-weight function δ : E → R
+ is G-valid if for every vertex v the

incident edges weight sum does not exceed w(v); that is, δ is G-valid if ∀v ∈ V :∑
v�e δ(e) ≤ w(v). (In fact, a G-valid function δ is a feasible solution to the dual

edge packing LP.)
Next, for a G-valid function δ, define the vertex-weight function w̃δ : V → R

+

by w̃δ(v) =
∑

e:v∈e δ(e). Let Sδ = {v ∈ V | w(v) − w̃δ(v) ≤ ε′w(v)} be the set of
vertices for which w and w̃ differ by at most ε′w(v), for ε′ = ε/(2 + ε). We refer
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Table 1. In the table (adapted from [ÅS10]), n = |V | and ε ∈ (0, 1). The running
times are stated for the case of unit weight vertices. For randomized algorithms the
running times hold in expectation or with high probability.

Deterministic Weighted Approximation Time (W = 1) Algorithm

no yes 2 O(log n) [GKP08]

no yes 2 O(log n) [KY09]

yes no 3 O(Δ) [PS09]

yes no 2 O(log4 n) [HKP01]

yes no 2 O(Δ2) [ÅFP+09]

yes yes 2 + ε O(log ε−1 log n) [KVY94]

yes yes 2 O(log2 n) [KVY94]

yes yes 2 + ε O(ε−4 log Δ) [Hoc82,KMW06]

yes yes 2 O(Δ + log∗ n) [PR01]

yes yes 2 O(Δ) [ÅS10]

yes yes 2 O(1) for Δ ≤ 3 [ÅFP+09]

yes yes 2 + ε O(ε−1 log Δ/ log log Δ) [BCS17]

yes yes 2 + log log Δ
log Δ O(log Δ/ log log Δ) [BCS17]

yes yes 2 + ε O
(

log Δ
log log Δ + log ε−1 log Δ

log2 log Δ

)
This work

yes yes 2 + (log Δ)−c O(log Δ/ log log Δ) This work, ∀c = O(1)

yes yes 2 O(log n log Δ/ log2 log Δ) This work

to vertices in Sδ as ε′-tight vertices. The essence of the template consists of two
parts: (1) The sum of the weights of the vertices in Sδ is at most (2+ε) times the
weight of an optimal solution to MWVC. (2) When the algorithm terminates,
Sδ is a vertex cover.

Theorem 1. ([BCS17]) Fix ε > 0 and let δ be a G-valid function. Let OPT be
the sum of weights of vertices in a minimum weight vertex cover SOPT of G.
Then

∑
v∈Sδ

w(v) ≤ (2 + ε)OPT . In particular, if Sδ is a vertex cover, then it
is a (2 + ε)-approximation for MWVC for G.

3 A Fast Distributed Implementation

In this section, we present a modification of the distributed algorithm for MWVC
of Bar-Yehuda et al. [BCS17]. The pseudo-code for our algorithm is given in
Algorithm 1. In this section we assume that the maximal degree Δ is known to
all vertices.4 In Sect. 4 we provide an algorithm with a slightly higher running
time in which this assumption is lifted.

For clarity of presentation, we first describe an implementation for the
LOCAL model. This algorithm can be easily adapted to the CONGEST model
using the techniques of [BCS17].

4 A polynomial upper bound of ΔO(1) would yield the same asymptotic bound on the
number of rounds.
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Overview of Algorithm 1. The algorithm uses the following parameters: (i) ε′ �
ε/(2 + ε), (ii) γ ∈ (0, 1), (iii) z �

⌈
logγ ε′⌉. The parameter ε′ is used for defining

tightness of the dual packing constraint. The parameter γ is used for defining
levels. Loosely speaking, in every iteration the weight of a vertex is reduced, and
the level of a vertex is proportional to logγ(wi(v)/w0(v)). The parameter z is
used to bound the number of levels till a vertex becomes ε′-tight, meaning that
wi(v)/w0(v) ≤ ε′.

Our algorithm, listed as Algorithm 1, is a variation of the Algorithm of Bar-
Yehuda et al. [BCS17] with a few modifications. We begin with a description
of the common features. In the course of the algorithm, the weight of each
vertex is reduced. Once a vertex v becomes ε′-tight (i.e., the reduced weight
is an ε′-fraction of its original weight) it decides to join the vertex cover and
terminates after sending the message (v, cover) to its remaining neighbors. The
message (v, cover) causes the neighbors of v to erase v from their list of remaining
neighbors. If a vertex v loses all its neighbors (i.e., becomes isolated), it decides
that v is not in the vertex cover, and terminates. Upon termination, the ε′-tight
vertices constitute a vertex cover.

The handling of offers is as in [BCS17]. Vertex v sends an irrevocable offer
requesti(v, u) to every u ∈ Ni(v). The offers are allocated from the vault. The
responses to the offers are allocated greedily from the bank, namely v’s responses
satisfy: budgeti(v, u) ≤ requesti(u, v) and

∑
u budgeti(v, u) ≤ banki(v). The

updating of the weights can be interpreted as follows. For every edge e = {u, v}
the dual edge packing variable δ(e) is increased by budgeti(u, v) + budgeti(v, u).
The remaining weight satisfies wi+1(v) = w0(v) − ∑

e�v δ(e). Note that each
iteration of the while-loop requires a constant number of communication rounds.

The first modification is that we attach a level to each vertex as follows. Let
wi(v) denote the weight of v in the beginning of iteration i of the while-loop.
The level of v in iteration i satisfies �i(v) = 1+

⌊
logγ

wi(v)
w0(v)

⌋
. Note that the initial

level is one, and that if the level of v is greater than z, then v is ε′-tight (see
Claim 3.1).

The second modification is how we partition wi(v) between the vault and the
bank. Instead of using a fixed fraction of the initial weight for the vault, our vault
decreases as the level of the vertex increases. Formally, vaulti(v) � w0(v) ·γ�i(v).
The bank is the rest of the weight, namely, banki(v) � wi(v) − vaulti(v).

The third modification is that in each iteration, every vertex v only sends
offers to its remaining neighbors with the smallest level. Let Ni(v) denote the set
of remaining neighbors of v in the beginning of the ith iteration. The smallest
level of the neighbors of v is defined by �′

i(v) � min{�i(u) | u ∈ Ni(v)}. The set
of neighbors of lowest level is defined by N ′

i(v) � {u ∈ Ni(v) | �i(u) = �′
i(v)}.

Let d′
i(v) = |N ′

i(v)|. The size of each offer sent is vaulti(v)/d′
i(v).

Note that if γ = ε′, then Algorithm 1 reduces to the BCS Algorithm because
there is just one level, and the vault size is fixed and equals to ε′ · w0(v). On
the other hand, if γ = 1/2, then there are O(log 1/ε) levels. Per level �i(v), the
algorithm can be viewed as a version of the BCS algorithm with ε′ = 1/2�i(v).
This also explains why our algorithm may be adapted to the CONGEST model
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of distributed computation using the techniques of [BCS17]. In essence they give
an adaptation for a single level of our algorithm, which can easily be extended
to multiple levels.

We now state the main theorem of this work.

Theorem 2. Algorithm 1 (with γ = 1√
log Δ

if Δ > 16 and γ = 0.5
otherwise) is a deterministic distributed (2 + ε)-approximation algorithm for
MWVC. The number of rounds required for the algorithm to terminate is
O

(
log Δ

log log Δ + log ε−1 log Δ
log2 log Δ

)
if Δ > 16 and O(log ε−1) otherwise.

3.1 Proof of Theorem 2

Notation. In the analysis we use wi(v), �i(v), d′
i(v) to denote the value of these

variables at the beginning of the ith iteration.
The following claim states an invariant that Algorithm 1 satisfies.

Claim. The following invariant holds in every iteration of the while-loop:

γ�i(v) <
wi(v)
w0(v)

≤ γ�i(v)−1 (1)

Hence, (i) vaulti(v) < wi(v) and (ii) if �i+1(v) ≥ z + 1, then wi+1(v)
w0(v)

≤ ε′.

This invariant of Claim 3.1 implies, among other things, that every vertex
that decides to join the vertex cover is ε′-tight. This property, together with
the fact that the set of vertices that join the vertex cover constitute a vertex
cover leads to the proof that Algorithm 1 is a (2 + ε)-approximation algorithm.
An analogous lemma and its proof also appears in [BCS17]. We remark that
termination of the algorithm is implied by the upper bound on the number of
iterations of the while-loop proved in the sequel.

Lemma 1. ([BCS17, Lemma 3.2]) For every ε, γ ∈ (0, 1), upon termination
Algorithm 1 computes a (2 + ε)-approximate solution to MWVC.

In the following lemma we show that, for every vertex v and every iteration of
the while-loop, either many of v’s neighbors of the smallest level have increased
their level or v’s weight has decreased significantly.

Lemma 2. Let K > 1. Let i be an iteration of the while-loop in the execution
of Algorithm 1 by vertex v in which v does not join the cover. At least one of
following conditions must hold:

1. At least d′
i(v)(1−1/K) of the neighbors of v of the lowest level have increased

their level. Formally, If �′
i+1(v) = �′

i(v), then d′
i+1(v) < d′

i(v)/K.
2. wi+1(v) ≤ wi(v) − w0(v)γ�i(v)/K.
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Algorithm 1. A distributed (2 + ε)-approximation algorithm for MWVC,
code for vertex v. (Listing taken from [BCS17] and edited to include our
modifications.)

1 γ = parameter in the interval (0, 1).
2 ε′ = ε/(2 + ε)
3 z =

⌈
logγ ε′⌉

4 w0(v) = w(v)
5 �0(v) = 1

6 N0(v) = N(v), di(v) � |Ni(v)|
7 //Let N ′

i(v) be the set of neighbors of lowest level in iteration i and

d′
i(v) � |N ′

i(v)|
8 i = 0
9 while true do

10 vaulti(v) = w0(v) · γ�i(v)

11 banki(v) = wi(v) − vaulti(v)
12 wi+1(v) = wi(v) and �i+1(v) ← �i(v)
13 foreach u ∈ N ′

i(v) do
14 requesti(v, u) = vaulti(v)/d′

i(v)
15 Send requesti(v, u) to u
16 Let budgeti(u, v) be the response from u
17 wi+1(v) = wi+1(v) − budgeti(u, v)

18 Let u1 . . . umi be an arbitrary order of neighbors that sent requests in this
iteration

19 foreach k = 1, . . . , mi do
20 Let requesti(uk, v) be received from uk ∈ N ′

i(v)

21 budgeti(v, uk) = min{requesti(uk, v), banki(v) − ∑k−1
t=1 budgeti(v, ut)}

22 Send budgeti(v, uk) to uk

23 wi+1(v) = wi+1(v) − ∑di(v)
k=1 budgeti(v, uk)

24 if wi+1(v) �= 0 and wi+1(v) ≤ vaulti(v) then

25 �i+1(v) = 1 +
⌊
logγ

wi+1(v)

w0(v)

⌋

26 if wi+1(v) = 0 or �i+1(v) ≥ z + 1 then
27 Send (v, cover) to all neighbors
28 Return InCover

29 foreach (u, cover) received from u ∈ Ni(v) do
30 Ni(v) = Ni(v) \ {u}
31 if di(v) = 0 then
32 Return NotInCover

33 Ni+1(v) = Ni(v)
34 i = i + 1
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Proof. Assume that �′
i+1(v) = �′

i(v) and d′
i+1(v) ≥ d′

i(v)/K. Note that if the level
of a vertex remains unchanged (i.e., �′

i+1(v) = �′
i(v)), then either wi+1(v) = 0

or wi+1(v) > vaulti(v). If wi+1(v) = 0, then v joins the cover, a contradiction.
If wi+1(v) > vaulti(v), then the bank was not exhausted and budgeti(u, v) =
requesti(v, u). To conclude, at least d′

i(v)/K vertices u ∈ N ′
i(v) responded with

budgeti(u, v) = requesti(v, u). This implies that

wi(v) − wi+1(v) ≥ d′
i(v)
K

· vaulti(v)
d′

i(v)

= w0(v)γ�i(v)/K.

Lemma 3. For every γ ∈ (0, 1) and K > 1, the number of iterations of the
while-loop for every vertex v is bounded by:

z ·
(

K

γ
+

log d(v)
log K

)

.

Proof. The number of levels is bounded by z. Hence it suffices to prove that the
number of rounds per level is at most K/γ + logK d(v). Indeed, the number of
rounds that satisfy Condition 1 per level is bounded by logK d(v) because d′

i(v)
is divided by at least K in each such iteration.

We now bound the number of iterations that satisfies Condition 2 per level.
By Claim 3.1, w0(v) · γ�i(v)−1 ≥ wi(v). Hence, the number of iterations that
satisfies Condition 2 is bounded by K/γ, as required, and the lemma follows.

We now prove Theorem 2.

Proof. First, consider the case where Δ ≤ 16. We set γ = 0.5 (hence, z =
O(log ε−1)) and K = 2. Lemma 3 immediately shows that the termination
time is O(log ε−1). Next, assume that Δ > 16 (thus hereafter: log log Δ > 2,
log Δ/ log log Δ > 2, 1/

√
log Δ < 1/2, and

√
log Δ/log log Δ > 1). We set

γ = 1/
√

log Δ and K =
√

log Δ/ log log Δ. Now we can express the running
time as:

z ·
(

K

γ
+

log d(v)

logK

)
≤ z

(
Kγ−1 +

logΔ

logK

)
= z

(
logΔ

log logΔ
+

logΔ

0.5 log logΔ − log log logΔ

)

= O

(
z logΔ

log logΔ

)
.

Let us analyze the running time according to the values of ε. First, consider
the case where ε−1 = logO(1) Δ. Since ε ∈ (0, 1), it follows that ε′ = Θ(ε). We
get that z < 1+ logγ ε′ = O(1+ log ε−1/ log γ−1) = O(1+ log log Δ/ log log Δ) =
O(1). Thus, the total running time for this case is O(log Δ/ log log Δ). Next
we consider the complementary case, where ε−1 = logω(1) Δ. This means that
log ε−1 =ω(log log Δ). Therefore, z =O(log ε−1/ log γ−1)= O(log ε−1/ log log Δ),
and the running time for the second case is given by O(log ε−1 log Δ/ log2 log Δ).
Thus, we may express the running time of our algorithm asymptotically as:

O(log Δ/ log log Δ + log ε−1 log Δ/ log2 log Δ).

The number of rounds is bounded as required, and the theorem follows.
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4 An Algorithm Without Knowing Δ

The bound on the round complexity in Theorem 2 assumes that every vertex
knows the maximum degree Δ (or a polynomial upper bound on Δ). This is
required in order to determine the value of γ. In this section we consider the
setting in which Δ is unknown to the vertices.

Note that the analysis in Lemma 3 is per a vertex. Hence, in the analysis of
the round complexity, we may use a different K per a vertex. Let Kv denote the
value of K that is used in the analysis for bounding the round complexity of v.

We propose two alternatives for the setting of unknown maximum degree, as
follows:

1. In the first setting, we simply set γ = 1/2 in the algorithm. For the analysis,
we consider Kv = log d(v)

log log d(v) , where d(v) denotes the degree of v. Plugging in

these parameters in Lemma 3 gives a round complexity of O
(

log ε−1 log d(v)
log log d(v)

)
.

2. For any q = O(1), we can set γ = ε1/2q (hence, z = O(1)). An analysis with Kv

= γ log d(v)
log log d(v) shows that v terminates in the optimal O (log d(v)/ log log d(v))

rounds for any ε > (log Δ)−q. This is because

Kv =
ε1/2q log d(v)
log log d(v)

>
log−0.5 d(v) log d(v)

log log d(v)
=

log0.5 d(v)
log log d(v)

.

That allows us to express the running time as

z
(
Kvγ−1 + log d(v)/ log Kv

)
= O (log d(v)/ log log d(v)) .
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