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Abstract. The study of graphs and networks often involves studying
various parameters of the graph vertices, capturing different aspects of
the graph structure, such as the vertex degrees or the distances between
the vertices. Given an n-vertex graph G and a parameter of interest f ,
one may associate with G a vector F(G) = 〈f1, . . . , fn〉 giving the value
of f for each vertex. This vector can be thought of as the f -profile of the
graph. This paper concerns the dual problem, where given an n-entry
f-specification vector F = 〈f1, . . . , fn〉, we need to decide whether it is
possible to find a graph G realizing this specification, namely, whose f -
profile F(G) conforms to F . The paper introduces the notion of graph
realiziations and illustrates a number of example problems related to
finding graph realiziations for given specifications.

1 Introduction

A common theme in the theory of graphs and networks involves extracting and
studying a variety of graph parameters that are useful for understanding the
graph properties. Over the years, numerous types of graph parameters and mea-
sures became the object of attention of graph theorists and network researchers.
As a colloquial running example let us pick vertex degrees. Given an n-vertex
graph G, we denote its degree sequence by DEG(G) = 〈d1, . . . , dn〉, where di

denotes the degree of vertex i. It is easy to extract the degree sequence from a
given graph, and one may use this information in many different ways, depending
on the desired application.

An interesting branch of research, on which we focus here, concerns the dual
problem where, rather than being given the graph, we are given a sequence of
integers D = 〈d1, . . . , dn〉. Thinking of this sequence as a specification for a
desired graph, it is natural to ask whether it is possible to find a graph realizing

A. Bar-Noy—Research was sponsored by the Army Research Laboratory and was
accomplished under Cooperative Agreement Number W911NF-09-2-0053 (the ARL
Network Science CTA).

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 3–13, 2018.
https://doi.org/10.1007/978-3-030-01325-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_1&domain=pdf


4 A. Bar-Noy et al.

this specification, namely, whose degree sequence conforms to D. Formally, given
D, we would like to decide whether there exists a graph G such that DEG(G) =
D. Such a sequence (for which there exists a realization) is sometimes called a
graphic sequence. Note that this problem encapsulates (at least) two separate
questions. The first concerns the principal existence of a realizing graph, namely
it seeks a characterization (or, a necessary and sufficient condition) for a sequence
to be graphic. The second question concerns the practical aspect of the problem,
namely, the existence of an effective (and hopefully efficient) algorithm for finding
such a realizing graph, if exists. Indeed, both problems were studied in the past.
Erdös and Gallai gave a necessary and sufficient condition (which also implies an
O(n) decision algorithm) for a sequence to be graphic [8]. However, it is unclear
how to efficiently construct a graph that has a given graphic sequence using their
method. Havel and Hakimi (independently) gave another algorithm for graphic
sequences [10,11], which also implies an efficient O(m) method for constructing
a realizing graph for a given graphic sequence, where m is the number of edges
in the graph. Their work was later extended in various ways, cf. [19].

In fact, a number of related questions present themselves as well, including
the following: (a) Given a degree sequence, find all the (non-isomorphic) graphs
that realize it. (b) Given a degree sequence, count all its (non-isomorphic) real-
izing graphs. (c) Given a degree sequence, sample a random realization as uni-
formly as possible. (d) Determine the conditions under which a given degree
sequence defines a unique realizing graph. (This may be referred to as the graph
reconstruction problem.) These realization and reconstruction questions are well-
studied in the literature, cf. [5,8,10–12,15–18], and have found several interesting
applications, most notably in the study of social networks, cf. [4,6,13]. Sampling
questions were studied extensively as well, for instance for regular graphs (cf.
[20]). In particular, they are used as a component in algorithms for sampling the
universe of all graphs with the same degree sequence and estimating its size.

The current paper is motivated by the key observation, made already in [1],
that similar questions may be asked for many other types of graph specifica-
tions or profiles, based on a variety of other graph parameters and measures,
and catering to a host of significant applications. For example, for each ver-
tex i, let mi denote the maximum vertex degree in i’s neighborhood. Then
MAX (G) = 〈m1, . . . ,mn〉 is the maximum neighborhood degree profile of G.
The same realizability questions asked above for degree sequences can be asked
for the maximum neighborhood degree profile as well.

This observation paves the road to a rich field of investigation, which to
the best of our knowledge has so far been relatively little explored. The only
examples that we are aware of for a study of a realization problem (other than
for degree sequences) are the results of [1] on the neighborhood list problem
and the closely related shotgun assembly problem, where the characteristic fi

associated with the vertex i is the full description of its neighborhood upto
radius r, Γr(i). This problem and some related variants were studied in [14].
Our main aim in the current paper is to look at a number of illustrative example



Realizability of Graph Specifications: Characterizations and Algorithms 5

profiles and discuss some of the issues that arise, focusing more on questions
than on answers, in the hope of promoting this interesting research direction.

2 Specifications and Realizations

2.1 Basic Notions

Assume that each vertex i (i = 1, . . . , n) in a graph G is associated with a
characteristic fi. We call the vector F(G) = 〈f1, . . . , fn〉 the f-profile of G. The
profile can be composed of Boolean variables, integers, real numbers, or even
pairs or vectors of numbers. In the degree sequence case, fi = di, the degree of
vertex i.

We consider situations where we are given an f-specification vector F =
〈f1, . . . , fn〉 of the right form. Note that this vector might not correspond to (i.e.,
be the f -profile of) any n-vertex graph. We say that a length n f -specification
vector F is a realizable f-profile if there exists an n-vertex graph G whose f -
profile satisfies F(G) = F .

Hereafter, we consider the following problems:

1. Profile realizability: Find a necessary and sufficient condition for an f -
specification vector F to be a realizable f -profile.

2. Profile realization: For a given realizable f -specification F , construct a
realizing graph G (namely, one whose f -profile is F(G) = F ).

3. Approximate realization: For a given non-realizable f -specification F ,
construct a graph G realizing the largest possible fraction of F (namely, one
whose f -profile F(G) matches F for as many vertices as possible).

Let us return to the MAX profile example discussed earlier.

Example 1. Max neighbor degrees: Consider the MAX -profile that con-
tains, for every vertex i, the value mi = maxj∈Γ (i) dj , where Γ (i) denotes the
set of neighbors of i. (This could be the “closed” or “open” neighborhood, i.e.,
including or excluding i itself; for concreteness let us consider closed neighbor-
hoods.) For the realizability problem, it is convenient to represent the input m-
specification vector M alternatively in compressed form, as M̃ = 〈n1, n2, . . . , nk〉,
where ni’s are non-negative integers with

∑k
i=1 ni = n; here the specification

requires that G contains exactly ni vertices whose maximum neighbouring degree
is i. We may also assume that nk is non-zero.

The realizability of a MAX -specification was studied in [2], where it was
shown that a necessary and sufficient condition for the compressed vector M̃ =
〈n1, n2, . . . , nk〉 to be a realizable MAX -profile is that nk ≥ 1 + k and n1 is
even.
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2.2 Boolean Profiles

When the characteristic fi is Boolean, it can be thought of as a vertex property
Pf , such that

fi =
{

1, vertex ihas property Pf ,
0, otherwise.

In many cases, the profile F(G) can be represented more compactly by a pair
of numbers 〈n, �〉, representing the fact that the graph consists of n vertices and
� of them satisfy the property Pf .

Example 2. Degree threshold: The degree threshold k profile DT k is defined
as follows. For 0 ≤ k ≤ n − 1, let

dtki =
{

1, di ≥ k,
0, otherwise.

If k = 0, then the only realizable DT 0-specification is 〈n, n〉. If k ≥ 1, then
every DT k-specification 〈n, �〉 where 0 ≤ � ≤ n and � �= k is realizable. To see
this, consider two cases. If � ≥ k + 1, then the realizing graph G is a split graph
composed of a clique K� of � vertices and an independent set I of n − � isolated
vertices, where there are no edges between K� and I. Otherwise (� ≤ k − 1), the
graph G is a split graph consisting of a clique K� of � vertices and an independent
set I of n− � vertices, where all edges in K� × I are contained in the edge set. In
this case the degree of each of the � vertices in K� is n − 1 ≥ k, and the degree
of each vertex in I is � < k.

In the remaining case where � = k, different situations arise. For example,
� = k = 1 yields an unrealizable pair, and so does � = k = n − 1. For 2 ≤ � =
k ≤ n−2, a possible realizing graph consists of two vertices u and v and a clique
K� of � vertices such that every vertex of K� is connected to exactly one of u
or v, while the degree of u and v is at least 1. The remaining vertices (if exist)
remain isolated. Examples of the constructions are given in Fig. 1.

2.3 Notions of Vertex Happiness

In certain contexts in social networks, research has focused on comparisons
between peers. For example, people often compare their number of friends with
the number of friends of their friends. Consequently, various notions by which a
vertex may compare itself with its neighbors were considered in the literature.
We may say that a vertex i is happy if its degree satisfies a certain condition
compared to its neighbors. Here are two possible definitions of happiness.

Example 3. Low relative loneliness: For any vertex i, the relative loneliness
of i is defined as the ratio rli =

avgj∈Γ (i) dj

di
, where avg denotes the average.

The relative loneliness profile RL can be used to define a Boolean profile of
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(a) Realizations for k �= 4.

K4

I

v

u

(b) Realization for k = 4.

Fig. 1. DT k realizations of 〈7, 4〉 for k < 4, k > 4, and k = 4. In all cases it is a split
graph which consists of K4 and an independent set I with three vertices. In (a), the
dotted edges are used only when k > 4.

happiness by considering a vertex to be happy if its relative loneliness ratio is
small, say, rli < 1. Denote the resulting happiness profile by HRL, where for
every i, hRL

i = 1 if and only if rli < 1, or,

hRL
i =

{
1, di > avgj∈Γ (i) dj ,

0, otherwise.

Example 4. Not lowest: According to this definition of happiness, the vertex i
is happy if di is greater than the degree of some neighbor of i, i.e.,

hNL
i =

{
1, di > dj for some neighborj of i,
0, otherwise.

The resulting (compressed) profile HNL = 〈n, �〉 implies that exactly � of
the n vertices have a neighbor of a lower degree. It is clear that for n = 2, the
only realizable HNL-specification is 〈2, 0〉. So consider n ≥ 3. For � = 0, the
specification 〈n, 0〉 is trivially realizable by a complete graph. It is also easy to
verify that the “all-happy” HNL-specification where � = n is unrealizable, since
the lowest degree vertex in the graph is inevitably unhappy. For 1 ≤ � ≤ n − 2,
one can realize the HNL-specification 〈n, �〉 by a split graph construction similar
to that presented earlier for the degree threshold profile. The only remaining case
is � = n − 1. One can verify that the HNL-specification 〈n, n − 1〉 is realizable
for every n ≥ 7, and direct case analysis reveals that it is unrealizable for n =
3, 4, 5, 6.

For the happiness profile based on relative loneliness, HRL, the well-known
friendship paradox states that in most graphs, and in particular in most social
networks, the relative loneliness ratio of most vertices is greater than 1 (these
are the “sad” vertices, whose friends have more friends on average) [7,9]. Never-
theless, note that there are graphs for which most of the vertices are happy. In
particular, the graph Kn − {1, 2}, i.e., the complete graph minus one edge, has
n − 2 happy vertices, and only two slightly sad vertices.
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2.4 Approximate Realizations

In certain cases, the given f -specification vector F is unrealizable, i.e., it is
impossible to find a graph G whose profile F(G) coincides with F . It may still
be of interest to look for a realization that (exactly or approximately) maximizes
the number of vertices satisfying the specification requirements.

Formally, given an f -specification vector F = 〈f1, . . . , fn〉 and an n-vertex
graph G on the vertices i = 1, . . . , n with F-profile F(G), we define the com-
patibility of G to F , denoted comp(G,F ), as the number of vertices i such that
F(G)i = fi. The graph G realizes F if comp(G,F ) = n. In cases when finding
a realizing graph is hard or impossible, a more modest goal may be to find a
graph G with as large compatibility comp(G,F ) as possible.

For example, consider the profile of happiness based on the “not lowest”
property hNL defined above, namely, having a neighbor of lower degree. As
mentioned earlier, it is impossible to realize the “all-happy” profile when � = n.
Suppose our goal is to find an optimal realization, namely, one maximizing the
number of happy vertices (under this definition). Then we can show that there
are graphs with n − 1 happy vertices.

3 Three Additional Examples

3.1 The Clique Profile

Let G be a simple (with no parallel edges or self loops) undirected connected
graph over the vertex set V = {1, 2, . . . , n}. The clique profile of G, denoted
by CLIQUE(G) = 〈k1, k2, . . . , kn〉 is defined by setting ki to be the size of the
largest clique that includes vertex i, for 1 ≤ i ≤ n. Without loss of generality
assume that k1 ≥ k2 ≥ · · · ≥ kn.

The clique profile of a triangle free graph without singleton vertices, e.g.,
trees and bipartite graphs, is 〈2, 2, . . . , 2〉. In a clique profile of a planar graph,
k1 ≤ 4 because a planar graph does not contain a clique of size 5. If a graph can
be colored with c colors then k1 ≤ c because a clique of size larger than c cannot
be colored with c colors. In the clique profile of a graph with maximum degree
Δ there is no clique number greater than Δ + 1.

Observe that the only way to realize ki = 1 is when vertex i is a singleton
vertex.

The clique profile admits the following complete characterization:
A k-specification vector K = 〈k1 ≥ k2 ≥ · · · ≥ kn〉 is a clique profile if and only
if k1 = k2 = · · · = kk1 .

The “only if” part is straightforward since if vertex 1 is a member of a clique
of size k1 then there are at least k1 − 1 additional vertices whose clique number
is k1. For the if part, we show a realization with an interval graph.

Associate the open interval Ii = (si, fi) = (i − ki, i) of length ki with vertex
i. The resulting graph G contains an edge (i, j) if and only if the intervals Ii and
Ij overlap. See example in Fig. 2. We need to show that CLIQUE(G) = K.
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By definition, f1 < f2 < · · · < fn. Also s1 < s2 < · · · < sn since k1 ≥ k2 ≥
· · · ≥ kn. As a result, if the unit open interval (j, j + 1) is contained in Ii, then
at most ki other intervals contain (j, j + 1). Consequently, for 1 ≤ i ≤ n, the
clique number of vertex i is at most ki. Finally, observe that the first k1 intervals
intersect at the unit open interval (0, 1) and that for any j > k1, the kj intervals
Ij−kj+1, . . . , Ikj

intersect at the unit interval (j − kj , j − kj + 1). Therefore, for
1 ≤ i ≤ n, the clique number of vertex i is at least ki.

-3 -2 -1 0 1 2 3 4 5 6 7 8 9

Fig. 2. A realization of 〈4, 4, 4, 4, 3, 2, 2, 2, 1〉. The dotted line represents the clique of
the first k1 = 4 intervals.

3.2 The Distance Profile

We next discuss several types of profiles representing distances. Generally, in
a distance profile DIST (G) = 〈D1, . . . , Dn〉 of a graph G, the profile Di for
every 1 ≤ i ≤ n is itself an n-entry vector, Di = 〈Di,1, . . . , Di,n〉, where each
entry Di,j is a non-negative integer or ∞, for every 1 ≤ j ≤ n, representing the
distance between i and j in G (defined to be infinity when i and j reside in two
disconnected components of G). Alternatively, the profile can be thought of as
an n × n matrix D.

Given a matrix D, we need to decide whether it is a distance profile, namely, if
there is an n-vertex unweighted undirected graph G = (V,E) over V = {1, . . . , n}
that realizes it, i.e., such that dist(i, j,G) = Di,j for every 1 ≤ i, j ≤ n. We refer
to this problem as the distance realization (DR) problem. We also consider the
variant WDR of this question, where the realizing graph G is allowed to be a
weighted graph. Two more variants we consider, named DR* and WDR*, permit
some of the entries in the matrix D to be left unspecified. That is, we allow entries
Di,j = ∗, in which case dist(i, j,G) may assume any value.

Note that D must be symmetric, as otherwise no realization is possible. Hence
it suffices to look at the upper triangular part of D.
Example: Consider the (unweighted, fully specified) DR problem for n = 3
vertices. Consider the following five input matrices.

D0 =

⎛
⎝

0 ∞ ∞
− 0 ∞
− − 0

⎞
⎠, D1 =

⎛
⎝

0 ∞ 1
− 0 ∞
− − 0

⎞
⎠, D2 =

⎛
⎝

0 1 2
− 0 1
− − 0

⎞
⎠, D3 =

⎛
⎝

0 1 1
− 0 1
− − 0

⎞
⎠, D4 =

⎛
⎝

0 1 1
− 0 3
− − 0

⎞
⎠.
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Then the first four matrices can be realized, respectively, by the empty graph
G0, the graph G1 consisting of the single edge (1, 3), the path graph G2 =
(1, 2, 3), and the complete graph G3 on {1, 2, 3} (see Fig. 3). The last distance
matrix, D4, is unrealizable.

1 2

3

1 2

3

1 2

3

1 2

3

G0 G1 G2 G3

Fig. 3. Realizations of D0, D1, D2, and D3.

Our first observation is that the versions DR and WDR admit a polynomial
time algorithm. The following algorithm solves these problem.

1. Initially set V ← {1, . . . , n} and E ← ∅.
2. For each 1 ≤ i < j ≤ n, add an edge (i, j) to G of weight Di,j . (In DR version

of the problem we add an edge only if Di,j = 1.)
3. Calculate the distance matrix of the resulting graph G, and check if it identical

to D. If not identical, then return “Impossible”, else return G.

In the partially specified weighted problem WDR*, the same algorithm
applies, except that (i) while adding edge to G, all pairs (i, j) such that Di,j = ∗
can be ignored, and (ii) we compare the distance matrix of the resulting graph
G with D only at those index-pairs (i, j) where Di,j �= ∗.

Finally, we claim that the remaining version of the problem, namely, the
unweighted partially specified version DR*, is NP-complete. The problem is
clearly in NP. One can show that it is complete for NP by a reduction from
the coloring problem.

3.3 Realizations by Vertex-Weighted Graphs

A class of more involved realization problems concerns settings where the sought
graphs are vertex-weighted. Let us define two example profiles in this setting.

Example 5. Max vertex-weighted neighbor: The maximum vertex-weighted
neighbor profile MVWN , studied in [3], is defined as follows. For a simple undi-
rected weighted graph (G, ω̄), where G = (V,E), and a vector ω̄ = (ω1, . . . , ωn)
of positive integers, MVWN (G, ω̄) = 〈ϕ1, . . . , ϕn〉, where ϕi = maxj∈Γ (i) ωj .
A ϕ-specification vector Φ = 〈ϕ1, . . . , ϕn〉 of n positive integers is a ϕ-profile if
there exists a realizing weighted graph (G, ω̄) such that MVWN (G, ω̄) = Φ.

The profile realizability problem for maximum vertex-weighted neighbor pro-
files was given a necessary and sufficient condition for realizability in [3].
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Example 6. Vertex-weighted neighborhood sum: The vertex-weighted
neighborhood sum profile, the main problem studied in [3], is defined as fol-
lows. For a weighted graph (G, ω̄) as above, VWNS(G, ω̄) = 〈ϕ1, . . . , ϕn〉, where
ϕi =

∑
j∈Γ (i) ωj . A ϕ-specification vector Φ = 〈ϕ1, . . . , ϕn〉 of n positive inte-

gers is a ϕ-profile if there exists a realizing weighted graph (G, ω̄) such that
VWNS(G, ω̄) = Φ.

The profile realizability problem for vertex-weighted neighborhood sum pro-
files was given necessary and sufficient conditions for even n, as well as for odd
n ≤ 5, but the conditions established for general (odd) n are not tight (although
they are almost tight), so the problem is still open.

4 Extensions, Generalizations and Future Work

This paper focused mostly on illustrating possible questions rather than pro-
viding answers. Yet clearly, many additional directions for future study present
themselves. Let us conclude by mentioning some of these.

1. Questions similar to those discussed in this paper can be raised in other
contexts, such as directed graphs, multigraphs, edge-weighted graphs, hyper-
graphs, and more.

2. Similarly, one may explore such questions where the realizing graph must
belong to some special graph class, such as connected graphs, trees and forests,
bipartite graphs, planar graphs, and so on.

3. Profiles may be defined on the basis of the graph labels. For example, assum-
ing the graph is labeled, let Pf be the property that the vertex i has an
even number of neighbors whose label is greater than i. This yields the large
neighbors parity profile. The specification vector F = (1, 1, 1) is a realizable
Pf -profile, as demonstrated by the 3-vertex path graph (2 − 1 − 3) (or alter-
natively, by the 3-vertex graph G′ composed of three singleton vertices). The
complementary specification vector F ′ = (0, 0, 0) is not realizable, since there
is no 3-vertex graph where all vertices have odd degrees (as implied, e.g., by
the known fact that in every graph, the number of odd degree vertices must
be even).

4. Interesting profiles arise by combining two simple profiles into a more com-
pound one. For example, one may consider the combined profile DEG

∧
H =

〈(d1, h1), . . . , (dn, hn)〉, obtained from the degree profile DEG = 〈d1, . . . , dn〉
and some happiness profile H = 〈h1, . . . , hn〉. The input profile specifies, for
every i, both the degree di and a “happiness bit” hi, and a realizing graph
should satisfy both.

5. The question of establishing necessary and sufficient conditions for the exis-
tence of unique realizations for various profiles promises to yield interesting
challenges for future study.

6. In addition to the profile realizability, profile realization and approximate
realization problems discussed so far, one may consider also the following
questions:
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– Profile enumeration: How many different realizable f -profiles exist?
– Optimizing realization: For a given realizable f -specification vector F ,

and assuming costs on graphs, construct an optimal-cost realizing graph
G (namely, one whose f -profile is F(G) = F and whose cost is minimum).

7. Several other measures for happiness have been considered in the literature.
Some examples are:

– di ≥ maxj∈Γ (i) dj (“largest in the neighborhood”).
– di is greater than the degrees of half the neighbors (“above the median”).
– di is greater than the degrees of at least K neighbors.

8. An interesting question concerns distributed solutions for the realizability and
realization problems, in a setting where vertices are aware only of their own
portion of the profile (e.g., in the congested clique model).

Acknowledgments. We are grateful to Orr Fischer and Andrzej Pelc for helpful
discussions and suggestions.
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