
Zvi Lotker · Boaz Patt-Shamir (Eds.)

 123

LN
CS

 1
10

85

25th International Colloquium, SIROCCO 2018
Ma’ale HaHamisha, Israel, June 18–21, 2018
Revised Selected Papers

Structural Information
and Communication
Complexity

Lecture Notes in Computer Science 11085

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Zvi Lotker • Boaz Patt-Shamir (Eds.)

Structural Information
and Communication
Complexity
25th International Colloquium, SIROCCO 2018
Ma’ale HaHamisha, Israel, June 18–21, 2018
Revised Selected Papers

123

Editors
Zvi Lotker
Ben-Gurion University of the Negev
Beer-Sheva, Israel

Boaz Patt-Shamir
Tel Aviv University
Tel Aviv, Israel

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-01324-0 ISBN 978-3-030-01325-7 (eBook)
https://doi.org/10.1007/978-3-030-01325-7

Library of Congress Control Number: 2018955971

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at the 25th International Colloquium on
Structural Information and Communication Complexity (SIROCCO 2018). This year
was particularly special for SIROCCO, as it was the half-jubilee of SIROCCO. The
conference and celebration were held during June 18–21, in Ma’ale HaHamisha, Israel.

This year we received 46 submissions in response to the call for papers. Each
submission was reviewed by at least three reviewers; we had a total of 21 Program
Committee members and 49 external reviewers. The Program Committee decided to
accept 23 papers for regular presentations, and eight papers for brief announcements.
All these papers are included in this volume.

In addition the conference program included five additional talks: four keynote talks,
and one talk by the winner of the SIROCCO Prize for Innovation in Distributed
Computing. The invited speakers were Kurt Melhorn, David Peleg, Claire Mathieu,
and Seth Pettie. Additionally, there was a talk by Zvi Lotker, the recipient of the 2018
SIROCCO Prize for Innovation in Distributed Computing. Papers representing these
talks are also included in this volume.

The Program Committee selected the following paper as the winner of the
SIROCCO 2018 Best Student Paper Award: “Mixed Fault Tolerance in Server
Assignment: Combining Reinforcement and Backup,” by Tal Navon and David Peleg.
Selected papers will also appear in a special issue of the Theoretical Computer Science
journal devoted to SIROCCO 2018.

We would like to thank all of the authors for their high-quality submissions and all
of the speakers for their excellent talks. We are grateful to the Program Committee and
all external reviewers for their efforts in putting together a great conference program, to
the Steering Committee, chaired by Andrzej Pelc, for their help and support, and to
everyone who was involved in the local organization for making it possible to have
SIROCCO 2018 in lovely Israel. Thanks also to Michael Borokhovich for his work as
the proceedings chair.

August 2018 Zvi Lotker
Boaz Patt-Shamir

Organization

Conference Committee

General Chair

Boaz Patt-Shamir Tel Aviv University, Israel

Web

Chen Avin Ben Gurion University, Israel

Proceedings

Michael Borokhovich

Jubilee Celebration

Pierre Fraigniaud CNRS, France

Publicity

Moti Medina Ben Gurion University, Israel

Steering Committee

Shantanu Das Aix-Marseille University, France
Andrzej Pelc (Chair) UQO
Nicola Santoro Carleton University, Canada
Christian Scheideler University of Paderborn, Germany
Sébastien Tixeuil University of Paris 6, France
Jukka Suomela Aalto University, Finland

Program Committee

Ittai Abraham Hebrew University, Israel
Amotz Bar-Noy CUNY, USA
Jurek Czyzowicz University of Québec Outaouais, Canada
Taisuke Izumi Nagoya IT, Japan
Paola Flocchini University of Ottawa, Canada
Luisa Gargano University of Salerno, Italy
Leszek Gąsieniec University Liverpool, UK
Danny Hendler Ben-Gurion University, Israel
Qiang-Sheng Hua HUST
Adrian Kosowski Inria, France
Zvi Lotker (Program Co-chair) Ben-Gurion University, Israel

Euripides Markou University of Thessaly, Greece
Gopal Pandurangan University of Houston, USA
Merav Parter Weizmann Institute of Science, Israel
Boaz Patt-Shamir (Program

Co-chair)
Tel Aviv University, Israel

Sriram Pemmaraju University of Iowa, USA
Harald Räcke TU Munich, Germany
Sergio Rajsbaum UNAM
Ivan Rappaport University of Chile
Adi Rosén CNRS and University of Paris Diderot, France
Ladislav Stacho Simon Fraser University, Canada
Lewis Tseng Boston College, USA

Additional Reviewers

James Aspnes
Przemysław Uznański
Yossi Azar
Lelia Blin
Lucas Boczkowski
Benedikt Bollig
Costas Busch
Soumyottam Chatterjee
Huda Chuangpishit
Gennaro Cordasco
Shantanu Das
Giuseppe Di Luna
Gabriele Di Stefano
Nguyen Dinh Pham
Michal Dory
Arun Ganesh
Vijay Garg
Konstantinos Georgiou
Sukumar Ghosh
Robert Gmyr
Emmanuel Godard
Maurice Herlihy
Riko Jacob
Eleni Kanellou
Ryan Killick

David Kirkpatrick
Christian Konrad
Kishori Konwar
Rastislav Kralovic
Arnaud Labourel
Nikos Leonardos
Reut Levi
Pedro Montealegre
William Moses
Yoram Moses
Alfredo Navarra
Shreyas Pai
Paolo Penna
Joseph Peters
Franck Petit
Adele Rescigno
Talal Riaz
Eric Ruppert
Dimitris Sakavalas
Stefan Schmid
Paulo Sérgio Almeida
Gokarna Sharma
Giovanni Viglietta
Mengchuan Zou

Sponsoring Institutions

We gratefully acknowledge the generous support that was provided to the SIROCCO
2018 Conference by the Israel Science Foundation, the Israel Ministry of Science
Technology and Space, and Springer.

VIII Organization

Invited Talks (Abstracts)

The Distributed Lovász Local
Lemma Problem

Seth Pettie

University of Michigan
seth@pettie.net

Abstract. The Lovász Local Lemma (LLL) is a well known tool to prove the
existence of a combinatorial object, by showing that a randomly chosen object
satisfies some property with positive (but small) probability. The LLL has been
applied in numerous areas, e.g., to compute graph colorings, packet-routing
schedules, and satisfying assignments to CNF-SAT formulae. Algorithmic
versions of the LLL can compute such objects efficiently, in polynomial time.

In this talk I will define the Distributed LLL problem and survey its role in
algorithm design and complexity theory in the LOCAL model. Among the
take-away messages from this talk are the following:

– The LLL is instrumental for designing fast algorithms for edge-coloring,
defective coloring, frugal coloring, and other problems.

– There is an exponential gap between randomized and deterministic com-
plexity in the LOCAL model, and the Distributed LLL is the foremost
problem realizing this gap.

– The randomized Distributed LLL is complete for sublogarithmic randomized
time. In particular, any sublogarithmic time algorithm for a locally checkable
labeling problem can be automatically sped up to match the time of the
Distributed LLL.

– The deterministic complexity of the Distributed LLL is inextricably
linked to computing network decompositions deterministically. On the
one hand, network decompositions are the basis of the fastest
Distributed LLL algorithms. Conversely, a deterministic polylogðnÞ
LLL algorithm implies a deterministic ðpolylogðnÞ; polylogðnÞÞ-
network decomposition algorithm. (The Distributed LLL is
PSLOCAL-hard.)

Keywords: LOCAL model � Probabilistic method � Graph coloring
Lovász local lemma

Supported by NSF grants CCF-1514383 and CCF-1637546.

On Fair Division for Indivisible Goods

Kurt Mehlhorn

Max Planck Institute for Informatics, Saarland Informatics Campus (SIC),
66123 Saarbrücken, Germany

We consider the task of dividing indivisible goods among a set of n agents in a fair
manner. More precisely, we consider the following scenario. We have m distinct goods.
Goods are available in several copies or items; there are kj items of good j. The agents
have decreasing utilities for the different items of a good, i.e., for all i and j

ui;j;1 � ui;j;2 � . . .� ui;j;kj :

An allocation assigns the items to the agents. For an allocation x, xi denotes the
multi-set of items assigned to agent i, and mðj; xiÞ denotes the multiplicity of j in xi. The
total utility of bundle xi under valuation ui is given by

uiðxiÞ :¼
X

j

X

1� ‘�mðj;xiÞ
ui;j;‘:

Each agent has a utility cap ci. The utility of bundle xi for agent i is defined as
�uiðxiÞ ¼ minðci; uiðxiÞÞ:

Our notion of fairness is Nash social welfare (NSW) [Nas50], i.e., the goal is to
maximize the geometric mean

NSWðxÞ ¼
Y

1� i� n

�uiðxiÞ
 !1=n

of the capped utilities. All utilities and caps are assumed to be integers.
The problem has a long history. For divisible goods, maximizing Nash Social

Welfare (NSW) for any set of valuation functions can be expressed via an
Eisenberg-Gale program [EG59]. For additive valuations (ci ¼ 1 for each agent i and
kj ¼ 1 for each good j) this program is equivalent to a Fisher market with identical
budgets and maximizing NSW is achieved via the well-known fairness notion of
competitive equilibrium with equal incomes (CEEI) [Mou03].

For indivisible goods, the problem is NP-complete [NNRR14] and APX-hard
[Lee17]. Several constant-factor approximation algorithms are known for the case of
additive valuations. They use different approaches.

The first one was pioneered by Cole and Gkatzelis [CG15] and uses
spending-restricted Fisher markets. Each agent comes with one unit of money to the
market. Spending is restricted in the sense that no seller wants to earn more than one
unit of money. If the price p of a good is higher than one in equilibrium, only a fraction
1=p of the good is sold. Cole and Gkatzelis showed how to compute a spending
restricted equilibrium in polynomial time and how to round its allocation to an integral

allocation with good NSW. In the original paper they obtained an approximation ratio
of 2e1=e � 2:889. Subsequent work [CDG+17] improved the ratio to 2.

The second approach is via stable polynomials. Anari et al. [AGSS17] obtained an
approximation factor of e.

The third approach is via integral allocations that are Pareto-optimal and envy-free
up to one good introduced by Barman et al. [BMV17]. Let xi be the set of goods that
are allocated to agent i. An allocation is envy-free up to one good if for any two agents i
and k, there is a good j such that uiðxk � jÞ� uiðxiÞ, i.e., after removal of one good from
k’s bundle its value for i is no larger than the value of i’s bundle for i. Caragiannis et al.
[CKM+16] have shown that an allocation maximizing NSW is Pareto-optimal and
envy-free up to one good. Barman et al. [BMV17] studied allocations that are
Pareto-optimal and almost envy-free up to one good (e-EF1), i.e., uiðxk � gÞ�
ð1þ eÞuiðxiÞ, where e is an approximation parameter. They showed that a
Pareto-optimal and e-EF1 allocation approximates NSW up to a factor e1=e þ
e � 1:445þ e. They also showed how to compute such an allocation in polynomial
time.

There are also constant-factor approximation algorithms beyond additive utilities.
Garg et al. [GHM18] studied budget-additive utilities (kj ¼ 1 for all goods j and

arbitrary ci). They showed how to generalize the Fisher market approach and obtained
an 2e1=2e � 2:404-approximation.

Anari et al. [AMGV18] investigated multi-item concave utilities (ci ¼ 1 for all i
and kj arbitrary). They generalized the Fisher market and the stable polynomial
approach and obtained approximation factors of 2 and e2, respectively.

In [CCG+18] is shown that the envy-free allocation approach can handle both
generalizations combined and yields an approximation ratio of e1=e þ e � 1:445þ e.
The approach via envy-freeness does not only yield better approximation ratios, it is
also easier to state and to analyse.

References

[AGSS17] Anari, N., Gharan, S.O., Saberi, A., Singh, M.: Nash social welfare, matrix
permanent, and stable polynomials. In: ITCS, pp. 36:1–36:12 (2017)

[AMGV18] Anari, N., Mai, T., Gharan, S.O., Vazirani, V.V.: Nash social welfare for
indivisible items under separable, piecewise-linear concave utilities. In: SODA,
pp. 2274–2290 (2018)

[BMV17] Barman, S., Murthy, S.K.K., Vaish, R.: Finding fair and efficient allocations.
CoRR, abs/1707.04731 (2017). To appear in EC 2018

[CCG+18] Cheung, Y.K., Chaudhuri, B., Garg, J., Garg, N., Hoefer, M., Mehlhorn, K.: On
Fair Division of Indivisible Items. CoRR, abs/1805.06232 (2018)

[CDG+17] Cole, R., Devanur, N.R., Gkatzelis, V., Jain, K., Mai, T., Vazirani, V.V.,
Yazdanbod, S.: Convex program duality, fisher markets, and Nash social welfare.
In: EC, pp. 459–460 (2017)

[CG15] Cole, R., Gkatzelis, V.: Approximating the Nash social welfare with indivisible
items. In: STOC, pp. 371–380 (2015)

On Fair Division for Indivisible Goods XIII

[CKM+16] Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A.D., Shah, N., Wang, J.:
The unreasonable fairness of maximum Nash welfare. In: EC, pp. 305–322
(2016)

[EG59] Eisenberg, E., Gale, D.: Consensus of subjective probabilities: the pari-mutuel
method. Ann. Math. Statist. 30, 165–168 (1959)

[GHM18] Garg, J., Hoefer, M., Mehlhorn, K.: Approximating the nash social welfare with
budget-additive valuations. In: SODA 2018, pp. 2326–2340 (2018)

[Lee17] Lee, E.: APX-hardness of maximizing Nash social welfare with indivisible items.
Inf. Process. Lett. 122, 17–20 (2017)

[Mou03] Moulin, H.: Fair Division and Collective Welfare. MIT Press (2003)
[Nas50] Nash, J.: The bargaining problem. Econometrica 18, 155–162 (1950)
[NNRR14] Nguyen, N.-T., Nguyen, T.T., Roos, M., Rothe, J.: Computational complexity

and approximability of social welfare optimization in multiagent resource
allocation. Autonom. Agents Multi-Agent Syst. 28(2), 256–289 (2014)

XIV K. Mehlhorn

College Admissions in Practice

Claire Mathieu

CNRS, Paris, France

Abstract. The Gale-Shapley algorithm is the standard method in practice for
stable marriage in large matching markets, but must be adapted to the constraints
of each situation. We study the design of college admissions in a setting with the
following features and constraints:

– Lack of trust in the platform: students worry that the rankings of students by
schools will factor in their own ranking of schools

– Simplicity: the general public must be able to understand the method
– Transparency: the final result must not be given as a black box but come with

an “explanation” that helps rebuild trust
– Quotas: schools have a legal obligation to respect certain quotas of student

types. The types and quotas vary from school to school
– Housing: schools provide need-based housing to some of their students.

Some students can only afford to attend if housing is provided. The offers
must thus take into account both the students’ academic ranking and their
ranking according to need.

I will present some preliminary work to address such issues, with an
application to the French higher education admissions problem.

This is ongoing joint work with Hugo Gimbert.

Taking Turing to the Theater
(Abstract of Award Lecture)

Zvi Lotker

Ben Gurion University in Israel
zvilo@bgu.ac.il

Abstract. Computer science has grown out of the seed of imitation. From von
Neumann’s machine to the famous Turing test, which sparked the field of AI,
algorithms have always tried to imitate humans and nature. Examples of such
“imitation algorithms” are simulated annealing which imitates thermodynamics,
genetic algorithms which imitate biology, or deep learning which imitates
human learning.
In this talk, I describe an algorithm which imitates human psychology.

Specifically, I discuss M algorithms, which serve as a simple example of
psychology-based imitation algorithms. The M algorithm is one of the simplest
natural language processing (NLP) algorithms.
Respecting the long tradition of imitation algorithms, the M algorithm is

simple yet powerful. Like other imitation algorithms, the M algorithm is able to
efficiently solve difficult problems. The M algorithm pinpoints critical events in
films, theater productions, and other scripts, revealing the rhythm of the texts.
At first glance, when trying to design an algorithm which pinpoints critical

events of a text, it seems necessary for the algorithm to understand the complete
text. Additionally, it would be expected that all layers of the narrative, back-
ground information, etc., would also be necessary. In short, it would be expected
that the algorithm would imitate the human process of comprehending a text.
Surprisingly, the M algorithm utilizes the structure of the complete text itself

without understanding even a single word, sentence, or character in order to
discover critical events. The content of the narrative is not necessary for the
algorithm to work. Other than an awareness of the illusion of time, borrowed
from psychology, the M algorithm circumvents the human process of reading.
In the link below, we can see the computerized summary of several movies

and relevant data. The M algorithm extracted the critical points on all those
movies. As you can see these synopsis provides an “executive” summary of the
movies. https://zvilotker.myportfolio.com/psychological-alg.
This talk is based on my upcoming book (in process).

https://zvilotker.myportfolio.com/psychological-alg

Contents

Invited Talks and Brief Announcments

Realizability of Graph Specifications: Characterizations and Algorithms. 3
Amotz Bar-Noy, Keerti Choudhary, David Peleg, and Dror Rawitz

A Self-Stabilizing Algorithm for Maximal Matching
in Link-Register Model . 14

Johanne Cohen, George Manoussakis, Laurence Pilard,
and Devan Sohier

Message-Efficient Self-stabilizing Transformer Using Snap-Stabilizing
Quiescence Detection. 20

Anaïs Durand and Shay Kutten

Constant-Space Self-stabilizing Token Distribution in Trees 25
Yuichi Sudo, Ajoy K. Datta, Lawrence L. Larmore,
and Toshimitsu Masuzawa

Distributed Counting Along Lossy Paths Without Feedback 30
Vitalii Demianiuk, Sergey Gorinsky, Sergey Nikolenko, and Kirill Kogan

Make&Activate-Before-Break: Policy Preserving Seamless Routes
Replacement in SDN . 34

Yefim Dinitz, Shlomi Dolev, and Daniel Khankin

Brief Announcement: Fast Approximate Counting and Leader Election
in Populations. 38

Othon Michail, Paul G. Spirakis, and Michail Theofilatos

One-Max Constant-Probability Networks: Results and Future Work. 43
Mark Korenblit

Reaching Distributed Equilibrium with Limited ID Space. 48
Dor Bank, Moshe Sulamy, and Eyal Waserman

Full Papers

Crash-Tolerant Consensus in Directed Graph Revisited (Extended Abstract) . . . 55
Ashish Choudhury, Gayathri Garimella, Arpita Patra, Divya Ravi,
and Pratik Sarkar

A Distributed Algorithm for Finding Hamiltonian Cycles in Random
Graphs in Oðlog nÞ Time . 72

Volker Turau

Simple and Local Independent Set Approximation. 88
Ravi B. Boppana, Magnús M. Halldórsson, and Dror Rawitz

On the Strongest Message Adversary for Consensus in Directed
Dynamic Networks . 102

Ulrich Schmid, Manfred Schwarz, and Kyrill Winkler

Symmetric Rendezvous with Advice: How to Rendezvous in a Disk 121
Konstantinos Georgiou, Jay Griffiths, and Yuval Yakubov

Two Rounds Are Enough for Reconstructing Any Graph (Class)
in the Congested Clique Model. 134

Pedro Montealegre, Sebastian Perez-Salazar, Ivan Rapaport,
and Ioan Todinca

Space-Efficient Uniform Deployment of Mobile Agents in Asynchronous
Unidirectional Rings . 149

Masahiro Shibata, Hirotsugu Kakugawa, and Toshimitsu Masuzawa

Explorable Families of Graphs . 165
Andrzej Pelc

A Characterization of t-Resilient Colorless Task Anonymous Solvability 178
Carole Delporte-Gallet, Hugues Fauconnier, Sergio Rajsbaum,
and Nayuta Yanagisawa

Deterministic Distributed Ruling Sets of Line Graphs 193
Fabian Kuhn, Yannic Maus, and Simon Weidner

Broadcast with Energy-Exchanging Mobile Agents Distributed on a Tree. . . . 209
Jurek Czyzowicz, Krzysztof Diks, Jean Moussi, and Wojciech Rytter

A Deterministic Distributed 2-Approximation for Weighted Vertex Cover
in OðlogN logD= log2 logDÞ Rounds . 226

Ran Ben-Basat, Guy Even, Ken-ichi Kawarabayashi,
and Gregory Schwartzman

Online Service with Delay on a Line . 237
Marcin Bienkowski, Artur Kraska, and Paweł Schmidt

Mixed Fault Tolerance in Server Assignment: Combining Reinforcement
and Backup . 249

Tal Navon and David Peleg

XVIII Contents

Communication Complexity in Vertex Partition Whiteboard Model 264
Tomasz Jurdzinski, Krzysztof Lorys, and Krzysztof Nowicki

Time-Bounded Influence Diffusion with Incentives 280
Gennaro Cordasco, Luisa Gargano, Joseph G. Peters,
Adele A. Rescigno, and Ugo Vaccaro

Balanced Allocations and Global Clock in Population Protocols:
An Accurate Analysis . 296

Yves Mocquard, Bruno Sericola, and Emmanuelle Anceaume

On Knowledge and Communication Complexity in Distributed Systems 312
Daniel Pfleger and Ulrich Schmid

Connectivity and Minimum Cut Approximation in the Broadcast
Congested Clique . 331

Tomasz Jurdziński and Krzysztof Nowicki

Biased Clocks: A Novel Approach to Improve the Ability To Perform
Predicate Detection with O(1) Clocks . 345

Vidhya Tekken Valapil and Sandeep Kulkarni

Gathering in the Plane of Location-Aware Robots in the Presence of Spies. . . . 361
Jurek Czyzowicz, Ryan Killick, Evangelos Kranakis, Danny Krizanc,
and Oscar Morale-Ponce

Formalizing Compute-Aggregate Problems in Cloud Computing 377
Pavel Chuprikov, Alex Davydow, Kirill Kogan, Sergey Nikolenko,
and Alexander Sirotkin

Priority Evacuation from a Disk Using Mobile Robots (Extended Abstract) . . . 392
Jurek Czyzowicz, Konstantinos Georgiou, Ryan Killick,
Evangelos Kranakis, Danny Krizanc, Lata Narayanan,
Jaroslav Opatrny, and Sunil Shende

Author Index . 409

Contents XIX

Invited Talks and Brief Announcments

Realizability of Graph Specifications:
Characterizations and Algorithms

Amotz Bar-Noy1, Keerti Choudhary2, David Peleg2, and Dror Rawitz3(B)

1 City University of New York (CUNY), New York, USA
amotz@sci.brooklyn.cuny.edu

2 Weizmann Institute of Science, Rehovot, Israel
{keerti.choudhary,david.peleg}@weizmann.ac.il

3 Bar Ilan University, Ramat-Gan, Israel
dror.rawitz@biu.ac.il

Abstract. The study of graphs and networks often involves studying
various parameters of the graph vertices, capturing different aspects of
the graph structure, such as the vertex degrees or the distances between
the vertices. Given an n-vertex graph G and a parameter of interest f ,
one may associate with G a vector F(G) = 〈f1, . . . , fn〉 giving the value
of f for each vertex. This vector can be thought of as the f -profile of the
graph. This paper concerns the dual problem, where given an n-entry
f-specification vector F = 〈f1, . . . , fn〉, we need to decide whether it is
possible to find a graph G realizing this specification, namely, whose f -
profile F(G) conforms to F . The paper introduces the notion of graph
realiziations and illustrates a number of example problems related to
finding graph realiziations for given specifications.

1 Introduction

A common theme in the theory of graphs and networks involves extracting and
studying a variety of graph parameters that are useful for understanding the
graph properties. Over the years, numerous types of graph parameters and mea-
sures became the object of attention of graph theorists and network researchers.
As a colloquial running example let us pick vertex degrees. Given an n-vertex
graph G, we denote its degree sequence by DEG(G) = 〈d1, . . . , dn〉, where di

denotes the degree of vertex i. It is easy to extract the degree sequence from a
given graph, and one may use this information in many different ways, depending
on the desired application.

An interesting branch of research, on which we focus here, concerns the dual
problem where, rather than being given the graph, we are given a sequence of
integers D = 〈d1, . . . , dn〉. Thinking of this sequence as a specification for a
desired graph, it is natural to ask whether it is possible to find a graph realizing

A. Bar-Noy—Research was sponsored by the Army Research Laboratory and was
accomplished under Cooperative Agreement Number W911NF-09-2-0053 (the ARL
Network Science CTA).

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 3–13, 2018.
https://doi.org/10.1007/978-3-030-01325-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_1&domain=pdf

4 A. Bar-Noy et al.

this specification, namely, whose degree sequence conforms to D. Formally, given
D, we would like to decide whether there exists a graph G such that DEG(G) =
D. Such a sequence (for which there exists a realization) is sometimes called a
graphic sequence. Note that this problem encapsulates (at least) two separate
questions. The first concerns the principal existence of a realizing graph, namely
it seeks a characterization (or, a necessary and sufficient condition) for a sequence
to be graphic. The second question concerns the practical aspect of the problem,
namely, the existence of an effective (and hopefully efficient) algorithm for finding
such a realizing graph, if exists. Indeed, both problems were studied in the past.
Erdös and Gallai gave a necessary and sufficient condition (which also implies an
O(n) decision algorithm) for a sequence to be graphic [8]. However, it is unclear
how to efficiently construct a graph that has a given graphic sequence using their
method. Havel and Hakimi (independently) gave another algorithm for graphic
sequences [10,11], which also implies an efficient O(m) method for constructing
a realizing graph for a given graphic sequence, where m is the number of edges
in the graph. Their work was later extended in various ways, cf. [19].

In fact, a number of related questions present themselves as well, including
the following: (a) Given a degree sequence, find all the (non-isomorphic) graphs
that realize it. (b) Given a degree sequence, count all its (non-isomorphic) real-
izing graphs. (c) Given a degree sequence, sample a random realization as uni-
formly as possible. (d) Determine the conditions under which a given degree
sequence defines a unique realizing graph. (This may be referred to as the graph
reconstruction problem.) These realization and reconstruction questions are well-
studied in the literature, cf. [5,8,10–12,15–18], and have found several interesting
applications, most notably in the study of social networks, cf. [4,6,13]. Sampling
questions were studied extensively as well, for instance for regular graphs (cf.
[20]). In particular, they are used as a component in algorithms for sampling the
universe of all graphs with the same degree sequence and estimating its size.

The current paper is motivated by the key observation, made already in [1],
that similar questions may be asked for many other types of graph specifica-
tions or profiles, based on a variety of other graph parameters and measures,
and catering to a host of significant applications. For example, for each ver-
tex i, let mi denote the maximum vertex degree in i’s neighborhood. Then
MAX (G) = 〈m1, . . . ,mn〉 is the maximum neighborhood degree profile of G.
The same realizability questions asked above for degree sequences can be asked
for the maximum neighborhood degree profile as well.

This observation paves the road to a rich field of investigation, which to
the best of our knowledge has so far been relatively little explored. The only
examples that we are aware of for a study of a realization problem (other than
for degree sequences) are the results of [1] on the neighborhood list problem
and the closely related shotgun assembly problem, where the characteristic fi

associated with the vertex i is the full description of its neighborhood upto
radius r, Γr(i). This problem and some related variants were studied in [14].
Our main aim in the current paper is to look at a number of illustrative example

Realizability of Graph Specifications: Characterizations and Algorithms 5

profiles and discuss some of the issues that arise, focusing more on questions
than on answers, in the hope of promoting this interesting research direction.

2 Specifications and Realizations

2.1 Basic Notions

Assume that each vertex i (i = 1, . . . , n) in a graph G is associated with a
characteristic fi. We call the vector F(G) = 〈f1, . . . , fn〉 the f-profile of G. The
profile can be composed of Boolean variables, integers, real numbers, or even
pairs or vectors of numbers. In the degree sequence case, fi = di, the degree of
vertex i.

We consider situations where we are given an f-specification vector F =
〈f1, . . . , fn〉 of the right form. Note that this vector might not correspond to (i.e.,
be the f -profile of) any n-vertex graph. We say that a length n f -specification
vector F is a realizable f-profile if there exists an n-vertex graph G whose f -
profile satisfies F(G) = F .

Hereafter, we consider the following problems:

1. Profile realizability: Find a necessary and sufficient condition for an f -
specification vector F to be a realizable f -profile.

2. Profile realization: For a given realizable f -specification F , construct a
realizing graph G (namely, one whose f -profile is F(G) = F).

3. Approximate realization: For a given non-realizable f -specification F ,
construct a graph G realizing the largest possible fraction of F (namely, one
whose f -profile F(G) matches F for as many vertices as possible).

Let us return to the MAX profile example discussed earlier.

Example 1. Max neighbor degrees: Consider the MAX -profile that con-
tains, for every vertex i, the value mi = maxj∈Γ (i) dj , where Γ (i) denotes the
set of neighbors of i. (This could be the “closed” or “open” neighborhood, i.e.,
including or excluding i itself; for concreteness let us consider closed neighbor-
hoods.) For the realizability problem, it is convenient to represent the input m-
specification vector M alternatively in compressed form, as M̃ = 〈n1, n2, . . . , nk〉,
where ni’s are non-negative integers with

∑k
i=1 ni = n; here the specification

requires that G contains exactly ni vertices whose maximum neighbouring degree
is i. We may also assume that nk is non-zero.

The realizability of a MAX -specification was studied in [2], where it was
shown that a necessary and sufficient condition for the compressed vector M̃ =
〈n1, n2, . . . , nk〉 to be a realizable MAX -profile is that nk ≥ 1 + k and n1 is
even.

6 A. Bar-Noy et al.

2.2 Boolean Profiles

When the characteristic fi is Boolean, it can be thought of as a vertex property
Pf , such that

fi =
{

1, vertex ihas property Pf ,
0, otherwise.

In many cases, the profile F(G) can be represented more compactly by a pair
of numbers 〈n, �〉, representing the fact that the graph consists of n vertices and
� of them satisfy the property Pf .

Example 2. Degree threshold: The degree threshold k profile DT k is defined
as follows. For 0 ≤ k ≤ n − 1, let

dtki =
{

1, di ≥ k,
0, otherwise.

If k = 0, then the only realizable DT 0-specification is 〈n, n〉. If k ≥ 1, then
every DT k-specification 〈n, �〉 where 0 ≤ � ≤ n and � �= k is realizable. To see
this, consider two cases. If � ≥ k + 1, then the realizing graph G is a split graph
composed of a clique K� of � vertices and an independent set I of n − � isolated
vertices, where there are no edges between K� and I. Otherwise (� ≤ k − 1), the
graph G is a split graph consisting of a clique K� of � vertices and an independent
set I of n− � vertices, where all edges in K� × I are contained in the edge set. In
this case the degree of each of the � vertices in K� is n − 1 ≥ k, and the degree
of each vertex in I is � < k.

In the remaining case where � = k, different situations arise. For example,
� = k = 1 yields an unrealizable pair, and so does � = k = n − 1. For 2 ≤ � =
k ≤ n−2, a possible realizing graph consists of two vertices u and v and a clique
K� of � vertices such that every vertex of K� is connected to exactly one of u
or v, while the degree of u and v is at least 1. The remaining vertices (if exist)
remain isolated. Examples of the constructions are given in Fig. 1.

2.3 Notions of Vertex Happiness

In certain contexts in social networks, research has focused on comparisons
between peers. For example, people often compare their number of friends with
the number of friends of their friends. Consequently, various notions by which a
vertex may compare itself with its neighbors were considered in the literature.
We may say that a vertex i is happy if its degree satisfies a certain condition
compared to its neighbors. Here are two possible definitions of happiness.

Example 3. Low relative loneliness: For any vertex i, the relative loneliness
of i is defined as the ratio rli =

avgj∈Γ (i) dj

di
, where avg denotes the average.

The relative loneliness profile RL can be used to define a Boolean profile of

Realizability of Graph Specifications: Characterizations and Algorithms 7

K4

I

(a) Realizations for k �= 4.

K4

I

v

u

(b) Realization for k = 4.

Fig. 1. DT k realizations of 〈7, 4〉 for k < 4, k > 4, and k = 4. In all cases it is a split
graph which consists of K4 and an independent set I with three vertices. In (a), the
dotted edges are used only when k > 4.

happiness by considering a vertex to be happy if its relative loneliness ratio is
small, say, rli < 1. Denote the resulting happiness profile by HRL, where for
every i, hRL

i = 1 if and only if rli < 1, or,

hRL
i =

{
1, di > avgj∈Γ (i) dj ,

0, otherwise.

Example 4. Not lowest: According to this definition of happiness, the vertex i
is happy if di is greater than the degree of some neighbor of i, i.e.,

hNL
i =

{
1, di > dj for some neighborj of i,
0, otherwise.

The resulting (compressed) profile HNL = 〈n, �〉 implies that exactly � of
the n vertices have a neighbor of a lower degree. It is clear that for n = 2, the
only realizable HNL-specification is 〈2, 0〉. So consider n ≥ 3. For � = 0, the
specification 〈n, 0〉 is trivially realizable by a complete graph. It is also easy to
verify that the “all-happy” HNL-specification where � = n is unrealizable, since
the lowest degree vertex in the graph is inevitably unhappy. For 1 ≤ � ≤ n − 2,
one can realize the HNL-specification 〈n, �〉 by a split graph construction similar
to that presented earlier for the degree threshold profile. The only remaining case
is � = n − 1. One can verify that the HNL-specification 〈n, n − 1〉 is realizable
for every n ≥ 7, and direct case analysis reveals that it is unrealizable for n =
3, 4, 5, 6.

For the happiness profile based on relative loneliness, HRL, the well-known
friendship paradox states that in most graphs, and in particular in most social
networks, the relative loneliness ratio of most vertices is greater than 1 (these
are the “sad” vertices, whose friends have more friends on average) [7,9]. Never-
theless, note that there are graphs for which most of the vertices are happy. In
particular, the graph Kn − {1, 2}, i.e., the complete graph minus one edge, has
n − 2 happy vertices, and only two slightly sad vertices.

8 A. Bar-Noy et al.

2.4 Approximate Realizations

In certain cases, the given f -specification vector F is unrealizable, i.e., it is
impossible to find a graph G whose profile F(G) coincides with F . It may still
be of interest to look for a realization that (exactly or approximately) maximizes
the number of vertices satisfying the specification requirements.

Formally, given an f -specification vector F = 〈f1, . . . , fn〉 and an n-vertex
graph G on the vertices i = 1, . . . , n with F-profile F(G), we define the com-
patibility of G to F , denoted comp(G,F), as the number of vertices i such that
F(G)i = fi. The graph G realizes F if comp(G,F) = n. In cases when finding
a realizing graph is hard or impossible, a more modest goal may be to find a
graph G with as large compatibility comp(G,F) as possible.

For example, consider the profile of happiness based on the “not lowest”
property hNL defined above, namely, having a neighbor of lower degree. As
mentioned earlier, it is impossible to realize the “all-happy” profile when � = n.
Suppose our goal is to find an optimal realization, namely, one maximizing the
number of happy vertices (under this definition). Then we can show that there
are graphs with n − 1 happy vertices.

3 Three Additional Examples

3.1 The Clique Profile

Let G be a simple (with no parallel edges or self loops) undirected connected
graph over the vertex set V = {1, 2, . . . , n}. The clique profile of G, denoted
by CLIQUE(G) = 〈k1, k2, . . . , kn〉 is defined by setting ki to be the size of the
largest clique that includes vertex i, for 1 ≤ i ≤ n. Without loss of generality
assume that k1 ≥ k2 ≥ · · · ≥ kn.

The clique profile of a triangle free graph without singleton vertices, e.g.,
trees and bipartite graphs, is 〈2, 2, . . . , 2〉. In a clique profile of a planar graph,
k1 ≤ 4 because a planar graph does not contain a clique of size 5. If a graph can
be colored with c colors then k1 ≤ c because a clique of size larger than c cannot
be colored with c colors. In the clique profile of a graph with maximum degree
Δ there is no clique number greater than Δ + 1.

Observe that the only way to realize ki = 1 is when vertex i is a singleton
vertex.

The clique profile admits the following complete characterization:
A k-specification vector K = 〈k1 ≥ k2 ≥ · · · ≥ kn〉 is a clique profile if and only
if k1 = k2 = · · · = kk1 .

The “only if” part is straightforward since if vertex 1 is a member of a clique
of size k1 then there are at least k1 − 1 additional vertices whose clique number
is k1. For the if part, we show a realization with an interval graph.

Associate the open interval Ii = (si, fi) = (i − ki, i) of length ki with vertex
i. The resulting graph G contains an edge (i, j) if and only if the intervals Ii and
Ij overlap. See example in Fig. 2. We need to show that CLIQUE(G) = K.

Realizability of Graph Specifications: Characterizations and Algorithms 9

By definition, f1 < f2 < · · · < fn. Also s1 < s2 < · · · < sn since k1 ≥ k2 ≥
· · · ≥ kn. As a result, if the unit open interval (j, j + 1) is contained in Ii, then
at most ki other intervals contain (j, j + 1). Consequently, for 1 ≤ i ≤ n, the
clique number of vertex i is at most ki. Finally, observe that the first k1 intervals
intersect at the unit open interval (0, 1) and that for any j > k1, the kj intervals
Ij−kj+1, . . . , Ikj

intersect at the unit interval (j − kj , j − kj + 1). Therefore, for
1 ≤ i ≤ n, the clique number of vertex i is at least ki.

-3 -2 -1 0 1 2 3 4 5 6 7 8 9

Fig. 2. A realization of 〈4, 4, 4, 4, 3, 2, 2, 2, 1〉. The dotted line represents the clique of
the first k1 = 4 intervals.

3.2 The Distance Profile

We next discuss several types of profiles representing distances. Generally, in
a distance profile DIST (G) = 〈D1, . . . , Dn〉 of a graph G, the profile Di for
every 1 ≤ i ≤ n is itself an n-entry vector, Di = 〈Di,1, . . . , Di,n〉, where each
entry Di,j is a non-negative integer or ∞, for every 1 ≤ j ≤ n, representing the
distance between i and j in G (defined to be infinity when i and j reside in two
disconnected components of G). Alternatively, the profile can be thought of as
an n × n matrix D.

Given a matrix D, we need to decide whether it is a distance profile, namely, if
there is an n-vertex unweighted undirected graph G = (V,E) over V = {1, . . . , n}
that realizes it, i.e., such that dist(i, j,G) = Di,j for every 1 ≤ i, j ≤ n. We refer
to this problem as the distance realization (DR) problem. We also consider the
variant WDR of this question, where the realizing graph G is allowed to be a
weighted graph. Two more variants we consider, named DR* and WDR*, permit
some of the entries in the matrix D to be left unspecified. That is, we allow entries
Di,j = ∗, in which case dist(i, j,G) may assume any value.

Note that D must be symmetric, as otherwise no realization is possible. Hence
it suffices to look at the upper triangular part of D.
Example: Consider the (unweighted, fully specified) DR problem for n = 3
vertices. Consider the following five input matrices.

D0 =

⎛
⎝

0 ∞ ∞
− 0 ∞
− − 0

⎞
⎠, D1 =

⎛
⎝

0 ∞ 1
− 0 ∞
− − 0

⎞
⎠, D2 =

⎛
⎝

0 1 2
− 0 1
− − 0

⎞
⎠, D3 =

⎛
⎝

0 1 1
− 0 1
− − 0

⎞
⎠, D4 =

⎛
⎝

0 1 1
− 0 3
− − 0

⎞
⎠.

10 A. Bar-Noy et al.

Then the first four matrices can be realized, respectively, by the empty graph
G0, the graph G1 consisting of the single edge (1, 3), the path graph G2 =
(1, 2, 3), and the complete graph G3 on {1, 2, 3} (see Fig. 3). The last distance
matrix, D4, is unrealizable.

1 2

3

1 2

3

1 2

3

1 2

3

G0 G1 G2 G3

Fig. 3. Realizations of D0, D1, D2, and D3.

Our first observation is that the versions DR and WDR admit a polynomial
time algorithm. The following algorithm solves these problem.

1. Initially set V ← {1, . . . , n} and E ← ∅.
2. For each 1 ≤ i < j ≤ n, add an edge (i, j) to G of weight Di,j . (In DR version

of the problem we add an edge only if Di,j = 1.)
3. Calculate the distance matrix of the resulting graph G, and check if it identical

to D. If not identical, then return “Impossible”, else return G.

In the partially specified weighted problem WDR*, the same algorithm
applies, except that (i) while adding edge to G, all pairs (i, j) such that Di,j = ∗
can be ignored, and (ii) we compare the distance matrix of the resulting graph
G with D only at those index-pairs (i, j) where Di,j �= ∗.

Finally, we claim that the remaining version of the problem, namely, the
unweighted partially specified version DR*, is NP-complete. The problem is
clearly in NP. One can show that it is complete for NP by a reduction from
the coloring problem.

3.3 Realizations by Vertex-Weighted Graphs

A class of more involved realization problems concerns settings where the sought
graphs are vertex-weighted. Let us define two example profiles in this setting.

Example 5. Max vertex-weighted neighbor: The maximum vertex-weighted
neighbor profile MVWN , studied in [3], is defined as follows. For a simple undi-
rected weighted graph (G, ω̄), where G = (V,E), and a vector ω̄ = (ω1, . . . , ωn)
of positive integers, MVWN (G, ω̄) = 〈ϕ1, . . . , ϕn〉, where ϕi = maxj∈Γ (i) ωj .
A ϕ-specification vector Φ = 〈ϕ1, . . . , ϕn〉 of n positive integers is a ϕ-profile if
there exists a realizing weighted graph (G, ω̄) such that MVWN (G, ω̄) = Φ.

The profile realizability problem for maximum vertex-weighted neighbor pro-
files was given a necessary and sufficient condition for realizability in [3].

Realizability of Graph Specifications: Characterizations and Algorithms 11

Example 6. Vertex-weighted neighborhood sum: The vertex-weighted
neighborhood sum profile, the main problem studied in [3], is defined as fol-
lows. For a weighted graph (G, ω̄) as above, VWNS(G, ω̄) = 〈ϕ1, . . . , ϕn〉, where
ϕi =

∑
j∈Γ (i) ωj . A ϕ-specification vector Φ = 〈ϕ1, . . . , ϕn〉 of n positive inte-

gers is a ϕ-profile if there exists a realizing weighted graph (G, ω̄) such that
VWNS(G, ω̄) = Φ.

The profile realizability problem for vertex-weighted neighborhood sum pro-
files was given necessary and sufficient conditions for even n, as well as for odd
n ≤ 5, but the conditions established for general (odd) n are not tight (although
they are almost tight), so the problem is still open.

4 Extensions, Generalizations and Future Work

This paper focused mostly on illustrating possible questions rather than pro-
viding answers. Yet clearly, many additional directions for future study present
themselves. Let us conclude by mentioning some of these.

1. Questions similar to those discussed in this paper can be raised in other
contexts, such as directed graphs, multigraphs, edge-weighted graphs, hyper-
graphs, and more.

2. Similarly, one may explore such questions where the realizing graph must
belong to some special graph class, such as connected graphs, trees and forests,
bipartite graphs, planar graphs, and so on.

3. Profiles may be defined on the basis of the graph labels. For example, assum-
ing the graph is labeled, let Pf be the property that the vertex i has an
even number of neighbors whose label is greater than i. This yields the large
neighbors parity profile. The specification vector F = (1, 1, 1) is a realizable
Pf -profile, as demonstrated by the 3-vertex path graph (2 − 1 − 3) (or alter-
natively, by the 3-vertex graph G′ composed of three singleton vertices). The
complementary specification vector F ′ = (0, 0, 0) is not realizable, since there
is no 3-vertex graph where all vertices have odd degrees (as implied, e.g., by
the known fact that in every graph, the number of odd degree vertices must
be even).

4. Interesting profiles arise by combining two simple profiles into a more com-
pound one. For example, one may consider the combined profile DEG

∧
H =

〈(d1, h1), . . . , (dn, hn)〉, obtained from the degree profile DEG = 〈d1, . . . , dn〉
and some happiness profile H = 〈h1, . . . , hn〉. The input profile specifies, for
every i, both the degree di and a “happiness bit” hi, and a realizing graph
should satisfy both.

5. The question of establishing necessary and sufficient conditions for the exis-
tence of unique realizations for various profiles promises to yield interesting
challenges for future study.

6. In addition to the profile realizability, profile realization and approximate
realization problems discussed so far, one may consider also the following
questions:

12 A. Bar-Noy et al.

– Profile enumeration: How many different realizable f -profiles exist?
– Optimizing realization: For a given realizable f -specification vector F ,

and assuming costs on graphs, construct an optimal-cost realizing graph
G (namely, one whose f -profile is F(G) = F and whose cost is minimum).

7. Several other measures for happiness have been considered in the literature.
Some examples are:

– di ≥ maxj∈Γ (i) dj (“largest in the neighborhood”).
– di is greater than the degrees of half the neighbors (“above the median”).
– di is greater than the degrees of at least K neighbors.

8. An interesting question concerns distributed solutions for the realizability and
realization problems, in a setting where vertices are aware only of their own
portion of the profile (e.g., in the congested clique model).

Acknowledgments. We are grateful to Orr Fischer and Andrzej Pelc for helpful
discussions and suggestions.

References

1. Aigner, M., Triesch, E.: Realizability and uniqueness in graphs. Discret. Math.
136, 3–20 (1994)

2. Bar-Noy, A., Choudhary, K., Peleg, D., Rawitz, D.: Graph realizations for max-
and min-neighborhood degree profiles. Unpublished manuscript (2018)

3. Bar-Noy, A., Peleg, D., Rawitz, D.: Vertex-weighted realizations of graphs. Unpub-
lished manuscript (2017)

4. Blitzstein, J.K., Diaconis, P.: A sequential importance sampling algorithm for
generating random graphs with prescribed degrees. Internet Math. 6(4), 489–522
(2011)

5. Choudum, S.A.: A simple proof of the Erdös-Gallai theorem on graph sequences.
Bull. Aust. Math. Soc. 33(1), 67–70 (1991)

6. Cloteaux, B.: Fast sequential creation of random realizations of degree sequences.
Internet Math. 12(3), 205–219 (2016)

7. Eom, Y.-H., Jo, H.-H.: Generalized friendship paradox in complex networks. CoRR
arxiv: abs/1401.1458 (2014)

8. Erdös, P., Gallai, T.: Graphs with prescribed degrees of vertices [hungarian]. Mat.
Lapok 11, 264–274 (1960)

9. Feld, S.L.: Why your friends have more friends than you do. Amer. J. Soc. 96,
1464V–1477 (1991)

10. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a
linear graph-I. SIAM J. Appl. Math. 10(3), 496–506 (1962)

11. Havel, V.: A remark on the existence of finite graphs [in Czech]. Casopis Pest. Mat.
80, 477–480 (1955)

12. Kelly, P.J.: A congruence theorem for trees. Pacific J. Math. 7, 961–968 (1957)
13. Mihail, M., Vishnoi, N.: On generating graphs with prescribed degree sequences

for complex network modeling applications. In: 3rd Workshop on Approximation
and Randomization Algorithms in Communication Networks (2002)

14. Mossel, E., Ross, N.: Shotgun assembly of labeled graphs. CoRR
arxiv: abs/1504.07682 (2015)

http://arxiv.org/abs/abs/1401.1458
http://arxiv.org/abs/abs/1504.07682

Realizability of Graph Specifications: Characterizations and Algorithms 13

15. O’Neil, P.V.: Ulam’s conjecture and graph reconstructions. Amer. Math. Monthly
77, 35–43 (1970)

16. Sierksma, G., Hoogeveen, H.: Seven criteria for integer sequences being graphic. J.
Graph Theory 15(2), 223–231 (1991)

17. Tripathi, A., Tyagi, H.: A simple criterion on degree sequences of graphs. Discret.
Appl. Math. 156(18), 3513–3517 (2008)

18. Ulam, S.M.: A Collection of Mathematical Problems. Wiley, New York (1960)
19. Wang, D.L., Kleitman, D.J.: On the existence of n-connected graphs with pre-

scribed degrees (n > 2). Networks 3, 225–239 (1973)
20. Wormald, N.C.: Models of random regular graphs. Surv. Comb. 267, 239–298

(1999)

A Self-Stabilizing Algorithm for Maximal
Matching in Link-Register Model

Johanne Cohen1, George Manoussakis2(B), Laurence Pilard3,
and Devan Sohier3

1 LRI-CNRS, Université Paris-Sud, Université Paris Saclay, Orsay, France
johanne.cohen@lri.fr

2 Ben-Gurion University of the Negev, Beer-Sheva, Israel
gomanous@gmail.com

3 LI-PaRAD, Université Versailles-St. Quentin,
Université Paris Saclay, Versailles, France

{laurence.pilard,devan.sohier}@uvsq.fr

Abstract. This paper presents a new distributed self-stabilizing
algorithm solving the maximal matching problem under the fair dis-
tributed daemon. This is the first maximal matching algorithm in the
link-register model under read/write atomicity. This work is composed
of two parts. As we cannot establish a move complexity analysis under
the fair distributed daemon, we first design an algorithm A1 under the
unfair distributed daemon dealing with some relaxed constraints on the
communication model. Second, we adapt A1 so that it can handle the
fair distributed daemon, leading to the A2 algorithm. We prove that
algorithm A1 stabilizes in O(mΔ) moves and algorithm A2 in O(mΔ)
rounds, with Δ the maximum degree and m the number of edges.

1 Introduction

The matching problem consists in building disjoint pairs of adjacent nodes. The
matching is maximal if no new pair can be built. This problem has a wide range
of applications in networking and parallel computing, such as the implementa-
tion of load balancing [2,10]. We deal with the possible occurence of faults using
the paradigm of self-stabilization [8]. In this context, there are two main daemon
types, the sequential and distributed one. A daemon is said fair if every eligible
process is eventually scheduled for execution or unfair if it only guarantees global
progress. It is well-known that one cannot design a self-stabilizing distributed
algorithm for a non-trivial task in the link-register model under read/write atom-
icity, converging under the unfair distributed daemon. In this paper we use the
strongest possible daemon under this setting: the fair distributed one.

A network that uses locally shared registers can be modeled by a graph where
nodes represent processors, and an edge joins two nodes if and only if the corre-
sponding processors communicate directly. Two variants are defined by specify-
ing whether the registers are single-writer/multi-reader and located at the nodes

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 14–19, 2018.
https://doi.org/10.1007/978-3-030-01325-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_2&domain=pdf

A Self-Stabilizing Algorithm for Maximal Matching in Link-Register Model 15

(the state model), or single-writer/single-reader and located on the edges (the
link-register model). Several kinds of atomicities exist in both models. In the
composite atomicity model, a node can read in all its neighbors registers, and
write in its own in one atomic step. In the read/write atomicity model, a node
can perform either a single read operation or a single write operation in one
register in one atomic step.

Thus, communication models are classified following two criteria: the register
type and the atomicity. In the literature, the combination of these two criteria
only leads to three distinct models [14]. No work is based on the link-register
model with composite atomicity since by definition, the composite atomicity only
makes sense with the state model. Figure 1 presents the different communication
models; references only concern matching works.

State Model Link-Register Model

Composite atomicity Composite State Model None[1, 6, 18, 23, 28]

Read/Write atomicity Atomic State Model Atomic Register Model
[5] Our work

Fig. 1. Three main communication models.

In this paper, we present two algorithms. Both of them are self-stabilizing
and solve the maximal matching problem under the distributed daemon. The
first one allows nodes to read in their own registers (so that they are not atomic
registers). This allows us to design a self-stabilizing matching algorithm A1 under
the distributed unfair daemon. We prove a O(mΔ) step complexity for this
algorithm.

The second algorithm we present, A2, uses the classical atomic register model
and converges under the unfair distributed daemon. We build A2 from A1 by
removing from A1 all reading actions of the out-registers of a node and including
some other actions to make the algorithm correct.

2 State of the Art

Various self-stabilizing algorithms for computing maximal matching have been
designed in the composite state model (anonymous network [1] or not [23],
weighted or unweighted, see [12] for a survey). For an unweighted graph, Hsu
and Huang [15] gave the first self-stabilizing algorithm, and proved a bound of
O(n3) on the number of moves under a sequential daemon, later improved by
Hedetniemi et al. [13]. Manne et al. [19] gave a self-stabilizing algorithm that
converges in O(m) moves under a distributed unfair daemon. Cohen et al. [6]
extended this result, and proposed a randomized self-stabilizing algorithm for
computing a maximal matching in an anonymous network. The complexity is
O(n2) moves with high probability, under the unfair distributed daemon.

16 J. Cohen et al.

Chattopadhyay et al. [5] presents this solution under the atomic state model
and in a general anonymous network, under the fair distributed daemon, and
with linear round complexity. Their algorithm assumes a different model than
ours. Moreover, they assume that nodes know an upper bound on the system
size while our algorithm does not.

It is possible to design transformers from the composite atomicity to the
read/write atomicity. One approach is to implement a local mutual exclusion
among the neighboring nodes. For example, a node u can execute an action
of algorithm A only when is has the critical section access [3]. Moreover, a
solution to the dining philosopher problem can also be considered as a solution
to the local mutual exclusion problem, see [4,7,16,21,22]. Another solution using
timestamp is presented in [20]. Finally, alternators are also a solution to the
local mutual exclusion problem [11,18]. On the other side, less is known when
considering transformations from the state model to the link-register model. As
far as we know, Higham and Johnen [14] present the only transformer from
the atomic state model to the atomic register model under some additional
conditions. However no time complexity is given.

Dolev [9] presents a transformer from the composite state model to the atomic
register model under the fair sequential daemon. Together with the Manne et al.
algorithm [19], this yields a self-stabilizing algorithm for a maximal matching
construction in the atomic register model. But this transformer has exponential
round complexity at worst. Thus, our solution assumes a stronger daemon and
stabilizes more quickly.

Another approach would be to use communication primitives giving some
nice properties on read and write atomic actions and leading to the simulation
of the composite state model [17]. However, these primitives cannot be trivially
used as a base for a transformer.

3 Model

The system consists in a set of nodes V and a set E ⊂ V × V of links with
n = |V | and m = |E|. The set of neighbors of a node u is noted N(u) =
{v ∈ V/(u, v) ∈ E}; a node in N(u) is said adjacent to u.

All nodes have the same local variables; if var is a variable, varu denotes the
instance of this variable on node u. Node u is the only node allowed to read or to
write in varu. Each node u has a unique identifier idu; for the sake of simplicity,
we do not distinguish between u and idu. For every adjacent node v of u, there
exists a shared register ruv in which u is the only node allowed to write, and that
v can read. Here, we consider two register models. The first is the classical link-
register model that we use in algorithm A2 (Sect. 5). In this model, the only node
allowed to read in ruv is v. The second model, called strong-link-register model,
allows u and v to read in ruv. This model is used in algorithm A1 (Sect. 4).

The moment when a node u writes in register ruv is the time from which the
written value ruv is available to v. Thus, the writing is analogous to a message
reception by v in a message-passing model. In algorithm A1 which uses the

A Self-Stabilizing Algorithm for Maximal Matching in Link-Register Model 17

strong-link-register model, a node u reads in its register ruv in all guards. This
allows to check the writing register of a node has reached its correct value. This
can be paralleled with an acknowledgement. Observe that this cannot be done
in A2 (Sect. 5) that uses the classical link-register model.

4 Algorithm A1 - Under the Unfair Daemon

Algorithm A1 builds a maximal matching under the strong-link-register model
and the unfair distributed daemon. At worst, the algorithm has to take O(mΔ)
moves before reaching a maximal matching.

Algorithm description. Each node u has two local variables. Variable pu ∈
N(u) ∪ {null} is the identifier of the node u points to: nodes u and v are said
to be married to each other if and only if pu = v (u points to v in the following)
and pv = u. We also use a variable mu indicating the progress of u’s marriage:
mu ∈ {0, 1, 2, 3}. Also, each node u has a four bit register ruv for each of its
neighbors v. The first two bits ruv.p can take the value Idle if u points to null,
You if it points to v, and Other if it points to a node different from v. The last
two bits ruv.m can be 0, 1, 2 or 3, and indicate the progress of u’s marriage.
In particular, a configuration solves the maximal matching if it is such that
∀u, (pu �= null ⇒ ppu

= u) ∧ (pu = null ⇒ ∀v ∈ N(u), pv �= null).

Predicates and functions:

Correct register value(u, a) ≡ if pu = null then return (Idle, 0)

else if pu = a then return (You,mu)

else return (Other,mu)

PRabandonment(u) ≡ [pu �= null ∧ (rpuu.p �= Y ou ∧ (u > pu ∨mu �= 0)) ∨ (rpuu = (Other, 3) ∧u < pu)]

PRreset(u) ≡ (pu �= null) ∧ (rpuu.p = Y ou) ∧ (

(|mu − rpuu.m| ≥ 2)

∨ (mu = 0 ∧ rpuu.m = 1 ∧ u > pu) ∨ (mu = 1 ∧ rpuu.m = 0 ∧ u < pu)

∨ (mu = 1 ∧ rpuu.m = 2 ∧ u < pu) ∨ (mu = 2 ∧ rpuu.m = 1 ∧ u > pu)

∨ (mu = 3 ∧ rpuu.m = 2 ∧ u > pu) ∨ (mu = 2 ∧ rpuu.m = 3 ∧ u < pu))

Rules for each node u:

∀a ∈ N(u), Write(a) :: rua �= Correct register value(u, a) → rua := Correct register value(u, a)

Seduction(a) :: pu = null ∧ rua = Correct register value(u, a)

∧ rau = (Idle, 0) ∧ (u < a) → (pu,mu) := (a, 0)

Marriage(a) :: pu = null ∧ rua = Correct register value(u, a)

∧ rau = (You, 0) ∧ (u > a) → (pu,mu) := (a, 0)

Increase :: pu �= null ∧ rupu
= Correct register value(u, pu) ∧ (rpuu.p = Y ou) ∧

((mu = 0) ∧ [(u < pu ∧ rpuu.m = 1) ∨ (u > pu ∧ rpuu.m = 0)]

∨ (mu = 1) ∧ [(u < pu ∧ rpuu.m = 1) ∨ (u > pu ∧ rpuu.m = 2)]

∨ (mu = 2) ∧ [(u < pu ∧ rpuu.m = 2) ∨ (u > pu ∧ rpuu.m = 3)])

→ mu := mu + 1

Reset :: pu �= null ∧ rupu
=Correct register value(u, pu) ∧ (PRabandonment(u)

∨PRreset(u)) → (pu,mu) := (null, 0)

18 J. Cohen et al.

5 Algorithm A2 - Under the Atomic Register Model and
the Fair Daemon

In A2, we juste add a ToTrue rule and a local variable writeu. writeu is a boolean
array indexed by the neighbors of u. This array, together with the ToTrue rule,
is used to cyclically update all out-registers of u. Then, algorithm A2 mimics the
behavior of A1 in a setting in which it is not allowed to read its output registers.
Rules for each node u:
∀a ∈ N(u), Write(a) :: writeu[a] → writeu[a] := false ; rua := Correct register value(u, a)

Seduction(a) :: pu = null ∧ ¬writeu[a] ∧ rau = (Idle, 0) ∧ (u < a)

→ writeu[a] := true ; (pu,mu) := (a, 0)

Marriage(a) :: pu = null ∧ ¬writeu[a] ∧ rau = (You, 0) ∧ (u > a)

→ writeu[a] := true ; (pu,mu) := (a, 0)

Increase :: pu �= null ∧ ¬writeu[pu] ∧ (rpuu.p = Y ou) ∧
((mu = 0) ∧ [(u < pu ∧ rpuu.m = 1) ∨ (u > pu ∧ rpuu.m = 0)]

∨ (mu = 1) ∧ [(u < pu ∧ rpuu.m = 1) ∨ (u > pu ∧ rpuu.m = 2)]

∨ (mu = 2) ∧ [(u < pu ∧ rpuu.m = 2) ∨ (u > pu ∧ rpuu.m = 3)])

→ writeu[pu] := true ; mu := mu + 1

Reset :: pu �= null ∧ ¬writeu[pu] ∧ (PRabandonment(u) ∨ PRreset(u))

→ ∀a ∈ N(u) : writeu[a] := true ; (pu,mu) := (null, 0)

ToTrue :: (∀a ∈ N(u) : ¬writeu[a])

∧ [∀a ∈ N(u) : ¬(pu = null ∧ rau = (Idle, 0) ∧ (u < a))

∧¬(pu = null ∧ rau = (You, 0) ∧ (u > a))]

∧ ¬[pu �= null ∧ (rpuu.p = Y ou) ∧ (

(mu = 0) ∧ [(u < pu ∧ rpuu.m = 1) ∨ (u > pu ∧ rpuu.m = 0)]

∨ (mu = 1) ∧ [(u < pu ∧ rpuu.m = 1) ∨ (u > pu ∧ rpuu.m = 2)]

∨ (mu = 2) ∧ [(u < pu ∧ rpuu.m = 2) ∨ (u > pu ∧ rpuu.m = 3)])]

∧ ¬(pu �= null ∧ (PRabandonment(u) ∨ PRreset(u)))

→ ∀a ∈ N(u) : writeu[a] := true

References

1. Asada, Y., Inoue, M.: An efficient silent self-stabilizing algorithm for 1-maximal
matching in anonymous networks. In: Rahman, M.S., Tomita, E. (eds.) WALCOM
2015. LNCS, vol. 8973, pp. 187–198. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-15612-5 17

2. Berenbrink, P., Friedetzky, T., Martin, R.A.: On the stability of dynamic diffusion
load balancing. Algorithmica 50(3), 329–350 (2008)

3. Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In:
PODC, pp. 150–159. ACM (2004)

4. Cantarell, S., Datta, A.K., Petit, F.: Self-stabilizing atomicity refinement allowing
neighborhood concurrency. In: Huang, S.-T., Herman, T. (eds.) SSS 2003. LNCS,
vol. 2704, pp. 102–112. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-45032-7 8

5. Chattopadhyay, S., Higham, L., Seyffarth, K.: Dynamic and self-stabilizing dis-
tributed matching. In: PODC, pp. 290–297. ACM (2002)

6. Cohen, J., Lefevre, J., Maâmra, K., Pilard, L., Sohier, D.: A self-stabilizing algo-
rithm for maximal matching in anonymous networks. PPL 26(04), 1–17 (2016)

7. Danturi, P., Nesterenko, M., Tixeuil, S.: Self-stabilizing philosophers with generic
conflicts. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp.
214–230. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-49823-
0 15

https://doi.org/10.1007/978-3-319-15612-5_17
https://doi.org/10.1007/978-3-319-15612-5_17
https://doi.org/10.1007/3-540-45032-7_8
https://doi.org/10.1007/3-540-45032-7_8
https://doi.org/10.1007/978-3-540-49823-0_15
https://doi.org/10.1007/978-3-540-49823-0_15

A Self-Stabilizing Algorithm for Maximal Matching in Link-Register Model 19

8. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

9. Dolev, S.: Self-Stabilization. MIT Press (2000)
10. Ghosh, B., Muthukrishnan, S.: Dynamic load balancing by random matchings. J.

Comput. Syst. Sci. 53(3), 357–370 (1996)
11. Gouda, M.G., Haddix, F.F.: The alternator. Distrib. Comput. 20(1), 21–28 (2007)
12. Guellati, N., Kheddouci, H.: A survey on self-stabilizing algorithms for indepen-

dence, domination, coloring, and matching in graphs. J. Parallel Distrib. Comput.
70(4), 406–415 (2010)

13. Hedetniemi, S.T., Pokrass Jacobs, D., Srimani, P.K.: Maximal matching stabilizes
in time O(m). Inf. Process. Lett. 80(5), 221–223 (2001)

14. Higham, L., Johnen, C.: Relationships between communication models in networks
using atomic registers. In: IPDPS, Proceedings, pp. 25–29 (2006)

15. Hsu, S.-C., Huang, S.-T.: A self-stabilizing algorithm for maximal matching. Inf.
Process. Lett. 43(2), 77–81 (1992)

16. Huang, S.-T.: The fuzzy philosophers. In: Rolim, J. (ed.) IPDPS 2000. LNCS,
vol. 1800, pp. 130–136. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45591-4 16

17. Johnen, C., Lavallee, I., Lavault, C.: Reliable self-stabilizing communication for
quasi rendezvous. arXiv preprint arXiv:1005.5630 (2010)

18. Kulkarni, S.S., Bolen, C., Oleszkiewicz, J., Robinson, A.: Alternators in read/write
atomicity. Inf. Process. Lett. 93(5), 207–215 (2005)

19. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A new self-stabilizing maximal
matching algorithm. Theor. Comput. Sci. (TCS) 410(14), 1336–1345 (2009)

20. Mizuno, M., Nesterenko, M.: A transformation of self-stabilizing serial model pro-
grams for asynchronous parallel computing environments. Inf. Process. Lett. 66(6),
285–290 (1998)

21. Nesterenko, M., Arora, A.: Dining philosophers that tolerate malicious crashes. In:
Proceedings 22nd International Conference on Distributed Computing Systems,
pp. 191–198 (2002)

22. Nesterenko, M., Arora, A.: Stabilization-preserving atomicity refinement. J. Par-
allel Distrib. Comput. 62(5), 766–791 (2002)

23. Turau, V., Hauck, B.: A new analysis of a self-stabilizing maximum weight match-
ing algorithm with approximation ratio 2. Theor. Comput. Sci. (TCS) 412(40),
5527–5540 (2011)

https://doi.org/10.1007/3-540-45591-4_16
https://doi.org/10.1007/3-540-45591-4_16
http://arxiv.org/abs/1005.5630

Message-Efficient Self-stabilizing
Transformer Using Snap-Stabilizing

Quiescence Detection

Anäıs Durand(B) and Shay Kutten

Technion - Israel Institute of Technology, Haifa, Israel
danais@technion.ac.il, kutten@ie.technion.ac.il

Abstract. By presenting a message-efficient snap-stabilizing quiescence
detection algorithm, we also facilitate a transformer that converts
non self-stabilizing algorithms into self-stabilizing ones. We propose
a message-efficient snap-stabilizing ongoing quiescence detection algo-
rithm. (Notice that by definition it is also self-stabilizing and can detect
termination.) This algorithm works for diffusing computations. We are
not aware of any other self-stabilizing or snap-stabilizing ongoing quies-
cence or termination detection algorithm.

Keywords: Fault-tolerance · Snap-stabilization · Quiescence
Termination · Diffusing computations

1 Introduction

Self-stabilization [11] is a property of distributed systems that withstand tran-
sient faults. After transient faults set it into an arbitrary state, a self-stabilizing
system recovers in finite time a correct behavior. Multiple transformers that
transform non self-stabilizing algorithms A into self-stabilizing ones [2,4–6]
works roughly as follows. First, A is executed. When A terminates, a local
checking algorithm is executed (called “local detection” algorithm [2] or local
verifier of a Proof Labeling Scheme [19]). This verifier detects an illegal state if
and only if a fault occurred. A self-stabilizing reset algorithm, e.g., [3], is then
executed to bring all the nodes to an initial state that is legal for A. The cycle
is then started again, i.e., A is executed, termination detected, etc. Note that a
proof labeling scheme has to be designed especially for A, and some change to
A may be needed in order to generate the specific proof labeling scheme.

The above transformers assume a synchronous network in order to know that
A terminated and the verifier could be activated to verify the output (otherwise,
the verifier would signal a fault since the output is not yet computed). We
do not want this assumption. Alternatively [18], such transformers use a self-
stabilizing synchronizer [3,7]. This is a very message intensive function. It uses
Ω(m) messages per round (where m is the number of edges). For example, if A’s
time complexity is Ω(n), its self-stabilizing version (using such a transformer),
c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 20–24, 2018.
https://doi.org/10.1007/978-3-030-01325-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_3&domain=pdf

Message-Efficient Self-stabilizing Transformer 21

would need Ω(nm) messages till stabilization. An earlier transformer uses even
more messages [17]. (It assumed a self stabilizing leader election, which was then
provided by [2]). The snap-stabilizing quiescence detection algorithm presented
here is a much more message-efficient termination detection method in place of
the self-stabilizing synchronizer, at least for diffusing computations [12] (e.g.,
DFS, BFS, token circulation).

Still, one needs yet another component for the transformer. Indeed, since A
is not self-stabilizing, if a fault occurs, A may never terminates. The missing
component is one that enforces termination. Here we use a very simple enforcer:
assume that a node sends at most some x messages executing A when there is
no fault. To implement the enforcer, each node just refuses to send more than x
messages. It turns out that even under these constraints (diffusing computations
and the simple enforcer) the resulting transformer sends less messages than the
traditional ones for various algorithms.

Quiescence detection. A distributed system reaches quiescence [9,21] when no
messages are in the communication links and a local indicator of stability holds
at every process. Termination and deadlock are two examples of quiescence prop-
erties. Detecting quiescence is fundamental. When a deadlock is detected, some
measures can be taken such as initiating a reset. Detecting the termination of a
task allows the system to use its computed result or issue another operation. In
particular, a distributed application is often composed of several modules where
one must wait for the termination of a module before starting the next one. It
is considered easier to design a task that eventually terminates and combine it
with a termination detection protocol, see [15].

The quiescence detection problem and its sub-problems have been exten-
sively studied in distributed computing since the seminal works of Dijkstra and
Scholten [12] and Francez [14] on termination detection. One can distinguish
two main kinds of quiescence detection algorithms. Ongoing detection algorithms
must monitor the execution since its beginning and eventually detects quiescence
when it is reached, e.g., [12]. Immediate detection algorithms answers whether
the system has reached quiescence by now or not, e.g., [14]. Ongoing quiescence
detection is needed for the transformer, and for most other applications. Ongoing
detection can be designed using an immediate detection algorithm by repeatedly
executing the detection algorithm until it actually detects quiescence, however
it might be highly inefficient.

Cournier et al. [10] explain how to design a snap-stabilizing1 immediate ter-
mination detection algorithm using their Propagation of Information and Feed-
back (PIF) algorithm in the locally shared memory model. This does not seem
applicable for the message efficient transformer - not only this is not an ongoing
detection, the memory requirement is large since the whole state of the sys-
tem must be locally computed and stored (this can also increase the message
complexity in the CONGEST model).

1 Snap-stabilization [8] is a variant of self-stabilization that ensures immediate recovery
after transient faults. Notice that a snap-stabilizing algorithm is also self-stabilizing.

22 A. Durand and S. Kutten

Contributions. We propose the first self-stabilizing and snap-stabilizing ongoing
quiescence detection algorithm Q for diffusing computations.2 Using Q, we also
implement a message-efficient self-stabilizing transformer.

Q requires O(Δ log n) bits per process, where Δ is the maximum degree. If
the execution is k-synchronous3 [16], its cost in messages depends on tab, mA,
tA, n, m and k, where tab is the number of rounds needed to empty all the
initial messages out of the channels and reach stabilization of the alternating
bit protocol of Afek and Brown [1]. The message (resp. round) complexity of A,
the monitored algorithm, is denoted mA (resp. tA). The additional cost of Q is
O(tab + mA + n) rounds.

2 Quiescence Detection Algorithm Q
We assume the CONGEST model [20] with FIFO channels of message capacity
one (see [1,4] to enforce this).

A (global) quiescent property is defined by a local quiescent-indicator quiet(p)
at each process p such that: (a) while quiet(p) holds, p does not send messages
and, as long as p does not receives a message, quiet(p) continues to hold; (b) the
channels are empty and quiet(p) holds at every process p if and only if quiescence
is reached.

In the context of snap-stabilization (see [8]), a quiescence detection algorithm
can start from an arbitrary configuration that leads processes to signal quies-
cence even if quiescence is not actually reached. In particular, some message
can initially be in some channel (p, q) while neither p or q are aware of it until q
receives it. Thus, processes have two output signals: SignalQ() and SignalE(). A
process calls SignalQ() when it detects (global) quiescence. SignalE() is called
when an error is detected, i.e., the execution did not start from a clean config-
uration. For example, in a clean configuration of our algorithm Q it is required,
among other things, that channels are empty and an execution of A starting
from this configuration is actually a diffusing computation.

Definition 1. Q is a snap-stabilizing ongoing quiescence detection algorithm if,
for every execution Γ where Q monitors algorithm A since the beginning of its
execution:

– Eventual Detection: If the execution of A reaches quiescence, a process even-
tually calls SignalQ() or SignalE().

– Soundness: If SignalQ() is called, either the execution of A actually reached
quiescence or the initial configuration of Q was not clean.

– Relevance: If the execution of A satisfies E and the initial configuration of Q
is clean, no process ever calls SignalE().

2 In a diffusing computation, a unique process, the initiator, can spontaneously send
a message to one or more of its neighbors and only once [12]. After receiving their
first message, the other processes can freely send messages to their neighbors.

3 In a k-synchronous execution, the difference of speed between any two processes is
at most k.

Message-Efficient Self-stabilizing Transformer 23

The relevance property prevents a trivial and useless detection algorithm where
a process calls SignalE() all the time. Notice that there is no hypothesis on
A, i.e., we do not require A to be self-stabilizing or even to compute a correct
result.

Overview of the Algorithm. A and Q are composed using a fair composition [13].
To avoid confusion, we call packets the messages of A. The idea of Q adapts the
algorithm of Dijkstra and Scholten [12] to the snap-stabilizing context using
local checking [2]. To monitor A and detect quiescence, Q builds the tree of
the execution. The initiator of the diffusing computation is the root. When a
process that is not in the tree receives a packet m, it joins the tree by choosing
the sender of m as parent. When a process p has no children and quiet(p) holds,
p leaves the tree. SignalQ() is called when the initiator has no children and its
local quietness-indicator holds.

To ensure that quiescence is not signaled when some messages are traveling,
Q uses acknowledgments to wait until messages are received before taking any
action of leaving the tree. In [12], counters are used to keep track of how many
messages have not been acknowledged yet. In a stabilizing context, maintaining
counters is not easy. Thus, Q sends and receives packets of A using a self-
stabilizing alternating bit protocol [1]. Simple proof labeling schemes [19] are
used in various parts of the algorithm to make sure it performs correctly. (Those
schemes are somewhat generalized in the sense that they are used to verify
properties of the algorithm while the algorithm is still running.) See the full
version of the paper.

Acknowledgement. This research was carried with a partial support of the Israel
Ministry of Science and Technology.

References

1. Afek, Y., Brown, G.M.: Self-stabilization over unreliable communication media.
Distrib. Comput. 7(1), 27–34 (1993)

2. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its application
to self-stabilization. Theor. Comput. Sci. 186(1–2), 199–229 (1997)

3. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time opti-
mal self-stabilizing synchronization. In: STOC 1993, pp. 652–661 (1993)

4. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking
and correction (extended abstract). In: FOCS 1991, pp. 268–277 (1991)

5. Awerbuch, B., Patt-Shamir, B., Varghese, G., Dolev, S.: Self-stabilization by
local checking and global reset. In: Tel, G., Vitányi, P. (eds.) WDAG 1994.
LNCS, vol. 857, pp. 326–339. Springer, Heidelberg (1994). https://doi.org/10.1007/
BFb0020443

6. Awerbuch, B., Varghese, G.: Distributed program checking: a paradigm for building
self-stabilizing distributed protocols. In: FOCS 1991, pp. 258–267 (1991)

7. Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization.
PODC 2004, 150–159 (2004)

https://doi.org/10.1007/BFb0020443
https://doi.org/10.1007/BFb0020443

24 A. Durand and S. Kutten

8. Bui, A., Datta, A.K., Petit, F., Villain, V.: State-optimal snap-stabilizing PIF in
tree networks. In: WSS 1999, pp. 78–85 (1999)

9. Chandy, K.M., Misra, J.: An example of stepwise refinement of distributed pro-
grams: quiescence detection. ACM TOPLAS 8(3), 326–343 (1986)

10. Cournier, A., Datta, A.K., Devismes, S., Petit, F., Villain, V.: The expressive power
of snap-stabilization. Theor. Comput. Sci. 626, 40–66 (2016)

11. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

12. Dijkstra, E.W., Scholten, C.S.: Termination detection for diffusing computations.
Inf. Process. Lett. 11(1), 1–4 (1980)

13. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
14. Francez, N.: Distributed termination. ACM TOPLAS 2(1), 42–55 (1980)
15. Francez, N., Rodeh, M., Sintzoff, M.: Distributed termination with interval asser-

tions. In: Dı́az, J., Ramos, I. (eds.) ICFPC 1981. LNCS, vol. 107, pp. 280–291.
Springer, Heidelberg (1981). https://doi.org/10.1007/3-540-10699-5 105

16. Hendler, D., Kutten, S.: Bounded-wait combining: constructing robust and high-
throughput shared objects. Distrib. Comput. 21(6), 405–431 (2009)

17. Katz, S., Perry, K.J.: Self-stabilizing extensions for message-passing systems. Dis-
trib. Comput. 7(1), 17–26 (1993)

18. Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self-stabilizing verifica-
tion, computation, and fault detection of an MST. In: PODC 2011, pp. 311–320
(2011)

19. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),
215–233 (2010)

20. Peleg, D.: Distributed Computing: A Locality-sensitive Approach. Society for
Industrial and Applied Mathematics (2000)

21. Shavit, N., Francez, N.: A new approach to detection of locally indicative stability.
In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226, pp. 344–358. Springer, Heidelberg
(1986). https://doi.org/10.1007/3-540-16761-7 84

https://doi.org/10.1007/3-540-10699-5_105
https://doi.org/10.1007/3-540-16761-7_84

Constant-Space Self-stabilizing Token
Distribution in Trees

Yuichi Sudo1(B), Ajoy K. Datta2, Lawrence L. Larmore2,
and Toshimitsu Masuzawa1

1 Osaka University, 1-5, Yamadaoka, Suita, Osaka, Japan
y-sudou@ist.osaka-u.ac.jp

2 University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV, USA

1 Introduction

The token distribution problem was originally defined by Peleg and Upfal in their
seminal paper [4]. Consider a network of n processes and n tokens. Initially, the
tokens are arbitrarily distributed among processes but with up to a maximum of
l tokens in any process. The problem is to uniformly distribute the tokens such
that every process ends up with exactly one token. We generalize this problem
as follows: the goal is to distribute nk tokens such that every process holds
k tokens where k is any given number. We present a self-stabilizing algorithm
that solves this generalized problem. As we deal with self-stabilizing systems,
the network (tree in this paper) can start in an arbitrary configuration where
the total number of tokens in the network may not be exactly equal to nk.
Each process holds an arbitrary number, from zero to l, of tokens in an initial
configuration. Thus, we assume that only the root process can push/pull tokens
to/from the external store as needed.

We present three silent and self-stabilizing token distribution algorithms for
rooted tree networks in this paper. The performances of the algorithms are
summarized in Table 1. First, we present a self-stabilizing token distribution
algorithm Base. This algorithm has the optimal convergence time, O(nl) (asyn-
chronous) rounds. However, Base may have a large number of redundant token
moves; Θ(nhε) redundant (or unnecessary) token moves happen in the worst
case where ε = min(k, l − k) where h is the height of the tree network. Next, we
combine the algorithm Base with a synchronizer or PIF waves to reduce redun-
dant token moves, which results in SyncTokenDist or PIFTokenDist , respec-
tively. Algorithm SyncTokenDist reduces the number of redundant token moves
to O(nh) without any additional costs while PIFTokenDist drastically reduces
the number of redundant token moves to the asymptotically optimal value, O(n),
at the expense of increasing convergence time from O(nl) to O(nhl) in terms of
rounds. Work space complexities, i.e., the amount of memory to store informa-
tion except for tokens, of all the algorithms are constant both per process and
per link register.

This work was partially supported by Japan Science and Technology Agency (JST)
SICORP.

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 25–29, 2018.
https://doi.org/10.1007/978-3-030-01325-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_4&domain=pdf

26 Y. Sudo et al.

Table 1. Token distribution algorithms for rooted trees. (ε = min(k, l − k))

Conv. time #Red. token
moves

Work space
(Process)

Work space
(Link)

Base O(nl) rounds Θ(nhε) 0 O(1)

SyncTokenDist O(nl) rounds O(nh) O(1) O(1)

PIFTokenDist O(nhl) rounds O(n) O(1) O(1)

Lowerbounds Ω(nl) rounds Ω(n) - -

2 Preliminaries

We consider a tree network T = (V,E) where V is the set of n processes and E is
the set of n−1 links. The tree network is rooted, that is, there exists a designated
process vroot ∈ V , and every process v other than vroot knows its parent p(v).
We denote the set of v’s children by C(v). We define N(v) = C(v)∪{p(v)}. Each
link {u, v} ∈ E has two link registers or just registers ru,v and rv,u. We call ru,v
(resp. rv,u) an output register (resp. an input register) of u. Process u can read
from the both registers and can write only to output register ru,v.

A process v holds at most l tokens at a time, each of which is a bit sequence
of length b. These tokens are stored in a dedicated memory space of the process,
called token store. We denote the token store of v by v.tokenStore and the
number of the tokens in it by |v.tokenStore|. We use a link register to send and
receive a token between processes. Each register ru,v contains at most one token
in a dedicated variable ru,v.token. The root process vroot can access another
token store called the external token store, in which an infinite number of tokens
exist. The root vroot can reduce the total number of tokens in the tree by pushing
a token into the external store and can increase it by pulling a token from the
external store.

Given k ≤ l, our goal is to reach a configuration where every process holds
exactly k tokens in a self-stabilizing fashion. All tokens must not disappear from
the network except in the case that root vr pushes them to the external store. A
process must not create a new token. A new token appears only when the root
pulls it from the external store.

We evaluate token distribution algorithms with three metrics—time com-
plexity, space complexity, and the number of token moves. We measure the time
complexity in terms of (asynchronous) rounds. We measure the space complex-
ity as the work space complexity in each process and in each register of an
algorithm. The work space complexity in each process (resp. in each register)
is the bit length to represent all variables on the process (resp. in the regis-
ter) except for tokenStore (resp. token). We evaluate the number of token
moves as follows. Generally, a token is transferred from a process u to a pro-
cess v in the following two steps: (i) u moves the token from u.tokenStore
to ru,v.token; (ii) v moves the token from ru,v.token to v.tokenStore. In this
paper, we regard the above two steps together as one token move and consider

Constant-Space Self-stabilizing Token Distribution in Trees 27

the number of token moves as the number of the occurrences of the former steps.
We are interested in the number of redundant token moves. Let τ(v) be the num-
ber of tokens in input registers of process v. Then, we define Δ(v) =

∑
u∈Tv

d(u)
where d(u) = |u.tokenStore| + τ(u) − k and Tv is the sub-tree consisting of
all the descendants of v (including v itself). Intuitively, Δ(v) is the number of
tokens that v must send to p(v) to achieve the token distribution if Δ(v) ≥ 0;
Otherwise, p(v) must send −Δ(v) tokens to v. We define the number of redun-
dant token moves in an execution as the total number of token moves in the
execution minus

∑
v∈V |Δ(v)| of the initial configuration of the execution.

3 Algorithms

3.1 Algorithm Base

We use common notation sgn(x) for real number x, that is, sgn(x) = 1, sgn(x) =
0, and sgn(x) = −1 if x > 0, x = 0, and x < 0, respectively.

The basic idea of Base is simple. Each process v always tries to estimate
sgn(Δ(v)), that is, tries to find whether Δ(v) is positive, negative, or just zero.
Then, process v other than vroot reports its estimation to its parent p(v) using a
shared variable rv,p(v).est. When its estimation is negative, p(v) sends a token
to v if p(v) holds a token and rp(v),v.token is empty. When the estimation is
positive, v sends a token to its parent p(v) if v holds a token and rv,p(v).token is
empty. Root vroot always pulls a new token from the external store to increase
Δ(vroot) when its estimation is negative, and pushes a token to the external
store to decrease Δ(vroot) when the estimation is positive. If all processes v
correctly estimate sgn(Δ(v)), each of them eventually holds k tokens. After that,
no process sends a token.

Thus, estimating sgn(Δ(v)) is the key of algorithm Base. Each process v
estimates sgn(Δ(v)) as follows (Est(v) is the estimation):

Est(v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 (d(v) > 0 ∧ ∀u ∈ C(v) : ru,v.est ∈ {1, 0+, 0})
0+ (d(v) = 0 ∧ ∀u ∈ C(v) : ru,v.est ∈ {1, 0+, 0} ∧ ∃w ∈ C(v) : ru,v.est ∈ {0+, 1})
0 (d(v) = 0 ∧ ∀u ∈ C(v) : ru,v.est = 0)

0− (d(v) = 0 ∧ ∀u ∈ C(v) : ru,v.est ∈ {−1, 0−, 0} ∧ ∃w ∈ C(v) : ru,v.est ∈ {0−,−1})
−1 (d(v) < 0 ∧ ∀u ∈ C(v) : ru,v.est ∈ {−1, 0−, 0})
⊥ (otherwise),

where the candidate values 1, 0+, 0, 0−, −1, and ⊥ of Est(v) represent that
the estimation is positive, “never negative”, zero, “never positive”, negative,
and “unsure”, respectively. A process sends a token to its parent only when
its estimation is 1, and it send a token to its child only when the estimation
of the child is −1. Our detailed analysis proves that this simple constant-space
algorithm shows the performance listed in Table 1.

28 Y. Sudo et al.

3.2 Algorithm SyncTokenDist

The key idea of SyncTokenDist is simple. It is guaranteed that every process v
has correct estimation in variable est within 2h asynchronous rounds and no
redundant token moves happen thereafter. However, some processes can send or
receive many tokens in the first 2h asynchronous rounds, which makes Ω(nhε)
redundant token moves in total in the worst case. Algorithm SyncTokenDist sim-
ulates an execution of Base with a simplified version of the Z3 synchronizer [3],
which loosely synchronizes an execution of Base so that the following property
holds;

For any integer x, if a process executes the procedure of Base at least
x + 2 times, then every neighboring process of the process must execute
the procedure of Base at least x times.

Thus, every process v can execute the procedure of Base at most O(h) times
until all agents have correct estimation, after which no redundant token moves
happen.

3.3 Algorithm PIFTokenDist

Algorithm PIFTokenDist uses Propagation and Information with Feedback
(PIF) scheme [1] to reduce the number of redundant token moves. For our pur-
pose, we use a simplified version of PIF. The pseudo code is shown in Algo-
rithm 1. Each process v has a local variable v.wave ∈ {0, 1, 2}, a shared variable
rv,u.wave ∈ {0, 1, 2} for all u ∈ N(v), and all the variables of Base. Process v
always copies the latest value of v.wave to rv,u.wave for all u ∈ N(v) (Line 4). An
execution of PIFTokenDist repeats the cycle of three waves — the 0-wave, the
1-wave, and the 2-wave. Once vroot.wave = 0, the zero value is propagated from
vroot to leaves (Line 1, the 0-value). In parallel, each process v changes v.wave
from 0 to 1 after verifying that all its children already have the zero value in
variable wave (Line 2, the 1-wave). When the 1-wave reaches a leaf, the wave
bounces back to the root, changing the wave-value of processes from 1 to 2 (Line
3, the 2-wave). When the 2-wave reaches the root, it resets vroot.wave to 0, thus
the next cycle begins. A process v executes the procedure of Base every time it
receives the 2-wave, that is, every time it changes v.wave from 1 to 2 (Line 3).

Algorithm 1 PIFTokenDist
[Actions of process v]
1: v.wave ← 0 if (v = vroot ∧ v.wave = 2) ∨ (v
= vroot ∧ rp(v),v.wave = 0)

2: v.wave ← 1 if (v.wave = 0) ∧ (v = vroot ∨ rp(v),v.wave = 1) ∧ ∀u ∈ C(v) : ru,v.wave = 0)

3: v.wave ← 2 and execute the procedure of Base if (v.wave = 1) ∧ (∀u ∈ C(v) : ru,v.wave = 2)
4: rv,u.wave ← v.wave for all u ∈ N(v)

The PIFTokenDist shown in Algorithm 1 is not silent, but it can get the
silence property with slight modification such that the root begins the 0-wave

Constant-Space Self-stabilizing Token Distribution in Trees 29

at Line 1 only when it detects that the simulated algorithm (Base) is not ter-
minated. This modification is easily implemented by using the enabled-signal-
propagation technique presented in [2].

References

1. Bui, A., Datta, A.K., Petit, F., Villain, V.: Snap-stabilization and PIF in tree net-
works. Distrib. Comput. 20(1), 3–19 (2007)

2. Datta, A.K., Larmore, L.L., Masuzawa, T., Sudo, Y.: A self-stabilizing minimal
k-grouping algorithm. In: Proceedings of the 18th International Conference on Dis-
tributed Computing and Networking, pp. 3:1–3:10. ACM (2017)

3. Datta, A.K., Larmore, L.L., Masuzawa, T.: Constant space self-stabilizing center
finding in anonymous tree networks. In: Proceedings of the International Conference
on Distributed Computing and Networking, pp. 38:1–38:10 (2015)

4. Peleg, D., Upfal, E.: The token distribution problem. SIAM J. Comput. 18(2), 229–
243 (1989)

Distributed Counting Along Lossy Paths
Without Feedback

Vitalii Demianiuk1,2(B), Sergey Gorinsky1, Sergey Nikolenko2,3,
and Kirill Kogan1

1 IMDEA Networks Institute, Leganés, Spain
{vitalii.demianiuk,sergey.gorinsky,kirill.kogan}@imdea.org

2 Steklov Institute of Mathematics at St. Petersburg, Saint Petersburg, Russia
sergey@logic.pdmi.ras.ru

3 Neuromation OU, 10111 Tallinn, Estonia

Abstract. Network devices need packet counters for a variety of appli-
cations. For a large number of concurrent flows, on-chip memories can
be too small to support a separate counter per flow. While a single net-
work element might struggle to implement flow accounting on its own, in
this work we study alternatives leveraging underutilized resources else-
where in the network and implement flow accounting on multiple network
devices. This paper takes the first step towards understanding the design
principles for robust network-wide accounting with lossy unidirectional
channels without feedback.

1 Background and Problem Settings

Scalability Chalenges. Per-flow packet counting in network devices is a crucial
functionality in network operation, management, and accounting [1–5]. When a
packet arrives to a network device that needs to perform per-flow counting, fast-
path processing in the device determines the flow associated with the packet
and increments the flow counter. Packet counting is traditionally done in a sin-
gle network device, but it becomes prohibitively expensive—if at all feasible—
to maintain per-flow counters as the number of flows and link speeds grow.
Proposed solutions either sacrifice counting accuracy or adopt complex mem-
ory architectures. Our paper explores an alternative of network-wide packet
counting.

Horizontal vs. Vertical Counter Split. To count packets in a flow, network
devices involved in distributed accounting have to lie on the flow’s path; at the
very least, each flow traverses two switches, its source and destination. Assuming
reliable communication, a flow counter can be allocated in any one of the network
elements in its path; we call this representation a horizontal split. In this work,
we relax the constraints on interconnecting links as much as possible, assuming

This work was partially supported by a grant from the Cisco University Research
Program Fund, an advised fund of Silicon Valley Community Foundation and by the
Regional Government of Madrid on Cloud4BigData grant S2013/ICE-2894.

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 30–33, 2018.
https://doi.org/10.1007/978-3-030-01325-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_5&domain=pdf

Distributed Counting Along Lossy Paths Without Feedback 31

an unreliable unidirectional communication without feedback. Then horizontal
split becomes infeasible since packets can be dropped before they ever reach
the counter, so some part of the counter should be allocated on the source
network element. We split the counter into two chunks for source and destination
switches; we call this a vertical split. Since any given switch stores only a fraction
of the counter, it needs less memory to support counting the same number of
flows. With our relaxed assumptions on interconnecting links, it is crucial to
make distributed execution robust to packet reordering and loss; moreover, we
also assume that each packet is allowed to carry only a few bits, which can
significantly complicate the operation of distributed counters.

Problem Statement. An asynchronous network delivers a flow f of packets
from source switch S to destination switch D, where pi is an i-th packet of f at
S, i = 0, . . . , |f | − 1. Our goal is to compute |f |, i.e., number of packets received
by ingress switch S from a flow f . Switches S, D maintain partial counter states
of at most n bits. The proposed distributed counter representations should be
able to exactly reconstruct the counter value after a flow terminates; during a
flow’s lifetime, counter values returned by queries should not decrease in time
and cannot exceed the actual counter value. We study the problem of correctly
executing counters under space constraints despite potential packet reordering
and loss. We assume that a packet can be prepended by at most t bits.

2 Proposed Method

Splitting a counter between source and destination switches is a ubiquitous model
since it does not make any assumptions about routing. Robustness of the dis-
tributed accounting to packet reordering and loss certainly has its fundamental
limits, e.g., the loss of all packets in the network disables stateful communica-
tion. To characterize the limits of achievable robustness, we represent delivery
disruptions with two parameters:

– reordering parameter R is the maximal extent of packet reordering, i.e., the
destination switch can receive packet pj before packet pi only if j ≤ i + R;

– loss parameter L is the length of a maximal interval of consecutive losses, i.e.,
the destination switch receives at least one packet from any range pi, . . . , pi+L.

To overcome delivery disruptions, both S and D use t bits of the n-bit counter
chunk as synch bits to synchronize the two counter chunks. These t synch bits
are the most significant bits in S’s chunk c1, least significant in D’s chunk c2,
and middle bits in flow f ’s merged two-chunk counter c, which counts up to
22n−t. Upon receiving a packet p, switch S records synch bits from its counter
c1 into packet header h[p] and increments the n-bit counter. When p arrives
to D, the latter computes the difference between packet header h[p] and the t
synch bits in counter c2. If this difference is between 1 and 2t−1, switch D adds
it to c2. Upon the completion of flow f , the controller managing accounting net-
work infrastructure collects the c1 and c2 values from S and D to obtain |f |, i.e.,
the total number of flow f ’s packets received by switch S: the controller sets

32 V. Demianiuk et al.

Algorithm 1: Two-switch counting.

procedure SourceUpdate(p)
h[p] = c1 � (n − t)
c1 = (c1 + 1) mod 2n

end procedure

function Difference(a,b,t)
δ := (a + 2t − b mod 2t) mod 2t

return δ
end function

procedure DestinationUpdate(p)
diff := Difference(h[p], c2, t)
If 1 ≤ diff ≤ 2t−1 then

c2 := c2 + diff
end procedure

procedure TotalCount(c1, c2)
c := c2 � (n − t)
c := c + Difference(c1, c, n)

end procedure

the n most significant bits of counter c to c2 and then adds to c the dif-
ference between c1 and the n least significant bits of c. Algorithm 1 consists
of the SourceUpdate, DestinationUpdate, and TotalCount procedures
described above.

Theorem 1. Algorithm 1 correctly counts up to 22n−t packets under the follow-
ing conditions:

L + R < 2n−1 and R ≤ 2n−1 − 2n−t. (1)

Proof. To prove correctness, we have to show that each update of c2 by switch
D is correct, i.e., c2 becomes equal to i � (n − t) after D receives any packet
that updates c2 . We prove it by induction. When D receives its first packet, the
packet’s index is at most L + R (this can happen if the first L packets of the
flow are lost, and packet pL+R arrives to D first, before pL, . . . , pL+R−1). For
this packet h[p] ≤ (L + R) � (n − t) ≤ 2t−1, therefore, it correctly updates c2.

For the induction step, suppose c2 = i � (n − t) after D processes packet
pi updating c2 and consider the next arrival of packet pj to D that updates c2.
Figure 1 partitions the packet sequence at switch S into groups of 2n−t consecu-
tive packets that have the same synch bits. Let I and J denote the groups of pi
and pj respectively. For I < J ≤ I +

⌈
L+R+1
2n−t

⌉
, Algorithm 1 correctly updates c2

due to
⌈
L+R+1
2n−t

⌉ ≤ 2t−1, i.e., the difference between packet header h[pj] and c2
is at most 2t−1. Since at least one packet from the considered sequence of groups
arrives to D after pi, no packet from a group later than I + 2t arrives first due
to R. By definition of j, packet pj does not belong to groups I+2t−1+1 through
I+2t because D does not update c2 for a packet of these groups. J ≤ I is impos-
sible since conditions (1) imply that J ≥ I − ⌈

R
2n−t

⌉ ≥ I − 2n−1−2n−t

2n−t > I −2t−1,
the difference between h[pj] and c2’s synch bits is either 0 or greater than 2t−1,
and Algorithm 1 appropriately does not change c2. This establishes correctness
for each update of c2.

When flow f ends, c1 contains the n least significant bits of |f |, and the index
of the last packet that updates c2 differs from |f | by at most L+R+ 1 packets.
Since L + R + 1 < 2n, Algorithm 1 accounts for all subsequent missing packets
when TotalCount increases c2 � (n− t) by making its n least significant bits
equal to c1. Thus, counter c correctly computes |f |.

Distributed Counting Along Lossy Paths Without Feedback 33

flow f

2n−t packets2t−1 − 1 groups 2t−1 groups = 2n−1 packets

pi

R packets L + R packets

Fig. 1. Packet sequence in the proof of Theorem 1.

Parameter t represents a tradeoff between increasing R and decreasing L
and |f |. Without packet reordering, when R = 0, Algorithm 1 correctly counts
packets with loss of up to L < 2n−1 consecutive packets. When R > 2n−1,
Algorithm 1 is never guaranteed to work correctly. Since c2 never decreases, and
c2 � (n− t) never exceeds the number of packets that have arrived to switch S,
c2 � (n − t) can be used as a real-time lower bound on the number of packets
arrived to S.

Algorithm 1 has attractive robustness in practical settings. For example,
when a counter chunk contains 12 bits and uses 2 of them as synch bits,
Algorithm 1 correctly counts up to 222 packets despite the loss of up to 1023
consecutive packets and reordering stretch up to 1024 packets. Doubling the
number of synch bits from 2 to 4 increases the tolerated reordering stretch to
1792 packets, reducing loss tolerance to 255 consecutive packets and decreasing
supported flow size to 220 packets.

3 Conclusion

In this work, we have studied distributed counter implementation under packet
reordering and loss. The basic idea of our design is to exploit the state over-
lap between two communicating switches to maintain correctness of distributed
counter state under network noise.

References

1. Lu, Y., Montanari, A., Prabhakar, B., Dharmapurikar, S., Kabbani, A.: Counter
braids: a novel counter architecture for per-flow measurement. In: SIGMETRICS,
pp. 121–132 (2008)

2. Ramabhadran, S., Varghese, G.: Efficient implementation of a statistics counter
architecture. In: SIGMETRICS, pp. 261–271 (2003)

3. Shah, D., Iyer, S., Prabhakar, B., McKeown, N.: Analysis of a statistics counter
architecture. In: HOTI, pp. 107–111 (2001)

4. Wang, N., Ho, K.H., Pavlou, G., Howarth, M.P.: An overview of routing optimiza-
tion for internet traffic engineering. IEEE Commun. Surv. Tutorials 10(1–4), 36–56
(2008)

5. Zhao, Q., Xu, J.J., Liu, Z.: Design of a novel statistics counter architecture with opti-
mal space and time efficiency. In: SIGMETRICS/Performance, pp. 323–334 (2006)

Make&Activate-Before-Break: Policy
Preserving Seamless Routes Replacement

in SDN

Yefim Dinitz1, Shlomi Dolev1, and Daniel Khankin1,2(B)

1 Ben-Gurion University of the Negev, Beersheba, Israel
{dinitz,dolev}@cs.bgu.ac.il,danielkh@post.bgu.ac.il
2 Shamoon College of Engineering (SCE), Beersheba, Israel

daniehe@ac.sce.ac.il

Keywords: Software-Defined Networking · SDN · MABB · RRV
Routes update · Seamless routes update · Network policy · Network
function · Dependence graph

Software-Defined Networking (SDN) allows decoupling of the control plane from
the data plane. With this separation, the network switches become simple for-
warding devices, while the control logic is implemented in a logically centralized
controller [5]. Such separation allows frequent modifications to the routing rules,
simplified policy enforcement, and flexible network updates. In SDN, devices do
not react to network events such as topological changes, failures, or modifica-
tions to table entries. In turn, the controller manages the network update for
every such event by orchestrating the switches (see, e.g., [4]).

The routes replacement problem is important in networking and plays a
central role in SDN. One line of its study began with the work [2], where the
single route replacement problem was considered. There, executing a sequence
of sub-routes replacements was suggested for solving it. The new sub-routes are
launched in order from the end of the new route to its beginning. For verifying
the readiness of a new sub-route N ′ for flow F , going from switch r1 to switch
r2, the following idea was proposed in [2]. The controller sends a special packet
from itself to r1 via N ′ to r2 and then back to itself. The arrival of that packet at
the controller is an evidence that sub-route N ′ is ready. After that, the controller
reroutes F to N ′ and proceeds to replace the next sub-route. As a result, a way
of seamless route updating was declared. However, the suggested idea remained
raw, since no network protocol was suggested in [2].

In further research [3], the study was continued for the problem of several
routes replacements in SDN, taking into account possible congestion on links.
This problem is known to be NP-hard [1]. In [3], finding a schedule of sub-routes
replacements was suggested for solving it. No a priori restriction on the order
of the new sub-route launchings is posed. The dependence graph model was
suggested there for detecting legitimate sub-route replacements at any stage of
the replacement process. That model was proposed to establish foundations for

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 34–37, 2018.
https://doi.org/10.1007/978-3-030-01325-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_6&domain=pdf

Make&Activate-Before-Break 35

AI solutions to the problem. In [3], the verification idea of [2] was implemented
in the form of a (high level) network protocol, which supports the seamless
processing of the sequence of flow packets in order.

In the first part of this research, the extended setting of the routes updates
problem including preserving network policies is studied. A network policy
requires packets belonging to some flow to pass in order through a certain net-
work function (NF). A migration of NF to another place (switch) requires moving
it with its state, if any, and preserving passing the flow packets through it in
order.

In one of the considered problem settings, NF migrations are allowed. We
observe that the dependence graph model of [3] suits the extended problem.
We develop network protocols for a sub-route replacement for all cases of NF
migration. We suggest delivering the NF state to the new location encapsulated
in a message. As an alternative, we suggest a duplication of packets (see [2] for
details on such update method) based migration, so that a copy of a duplicated
packet, followed by the recently updated state, arrive at the current and new
NFs. For this, we assume that each of the NFs is wrapped into an active function
that handles the arrival of duplicated packets in a way that preserves the state
consistency of the NFs, until the migration process is certainly finished.

In the other problem setting, migrations are forbidden, which defines a new
type of deadlock. (A deadlock during the replacement process is the situation
in which no new sub-route launching is possible.) We reveal the concrete obsta-
cles to be eliminated in order to avoid such deadlocks. Then, we enrich the
formal dependence graph model by adding special explicit dependences, while
preserving its equivalence. Such explicit dependences are essential for solving the
problem using AI methods.

In the second part of this work, we develop in detail a proper implementation
of the sub-route replacement considered in [2,3] on a high level. The OpenFlow
communication interface standard was developed for SDN [9]. It is known that
OpenFlow provides no way to verify when the controller commands are actu-
ally executed by switches. This gap substantially restricts SDN abilities; using
half-made routes might result in routing cycles, forwarding inconsistencies, and
network functions losing their states. This situation is widely known; see, e.g.,
[12, Sect. 2.2] (also [6,11]). The state-of-art even includes SOS style suggestions,
such as waiting a constant time before a new configuration is installed [10] and
the time-triggered updates method [8], which was proposed in [7] to become an
SDN standard for use in network updates. Summarizing, no reliable verification
method currently exists in SDN.

We implement the verification idea of [2] up to a network protocol based on
the OpenFlow standard. We suggest to call that implementation Route Readiness
Verifier (RRV) tool for SDN, and stress that it is suited for general use in SDN.
We believe that using RRV and its variants would enable closing most of, if not
the entire, above-mentioned gap in the OpenFlow standard.

Notably, RRV supports the Make&Activate-Before-Break (MABB) approach
used in [2,3] as a general one for rerouting in SDN. Summarizing, for the routes

36 Y. Dinitz et al.

replacement problem, MABB suggests: (a) activating a new route part only after
it is completely ready for use, and (b) correct stitching of the previously sent
flow on the replaced route part with its continuation on the replacing route part.

The sequence of steps in the suggested RRV tool is as follows. We assume
that the new sub-route N ′ of flow F goes from switch r1 to switch r2. We denote
by O′ the part of the current route of F from r1 to r2, and by C the controller.

– Instructing the switches on N ′, except for r1, on forwarding packets of F
along N ′.

– Sending a special tagged packet p1 of F (that is marked artificially as belong-
ing to F) from C via N ′ to itself (that is, sending it to r1, with the special
rule to return it from r2 to C). Afterwards, C is waiting for the return of p1
from r2. Maybe several such rounds would be needed, recurrently sending p1
up to success.

– Instructing r2 to pause packets of F arriving along N ′. For verifying the
execution of this instruction, C sends a tagged packet p2 of F to the switch
before r2 of N ′, with the special rule to return it from r2 to C. C waits for the
message from r2 on suspension of p2. As above, maybe several such rounds
would be needed.

– Instructing r1 to forward packets of F to the next switch on N ′. For verifying
the execution of this instruction, C sends a tagged packet p3 of F to r1. Its
tag prescribes returning p3 to C at both switches following r1 at N ′ and O′.
C waits for the return of p3 from the next switch of N ′. As above, maybe
several such rounds would be needed.

– Sending a tagged packet p4 of F from C via O′ to itself, and waiting for the
return of p4 from r2. Getting p4 at C ensures that no packets are left traversing
O′, because of the FIFO order of processing the packets in F .

– Instructing r2 to cancel pausing F , thus releasing all packets of F sent along
N ′ and previously suspended by r2.

– Instructing the switches along O′, except for r1 and r2, to remove the rule for
forwarding packets of F . In order to verify that, the controller sends tagged
packet px to each switch rx along O′, excluding r1 and r2, with a special
instruction to return each px back to C from r2. Each switch rx should return
px back to C if the forwarding rule of F has already been removed. The
controller C repeats this process for each switch rx that did not return px
back.

Acknowledgments. This research was (partially) funded by the Office of the Israel
Innovation Authority of the Israel Ministry of Economy under Neptune - the Israeli
Consortium for Network Programming, generic research project, and by the Lynne and
William Frankel Center for Computer Science.

Make&Activate-Before-Break 37

References

1. Amiri, S.A., Dudycz, S., Schmid, S., Wiederrecht, S.: Congestion-Free Rerouting
of Flows on DAGs. [cs, math], November 2016. arXiv: 1611.09296

2. Delaet, S., Dolev, S., Khankin, D., Tzur-David, S., Godinger, T.: Seamless SDN
route updates. In: 2015 IEEE 14th International Symposium on Network Com-
puting and Applications, pp. 120–125, September 2015. https://doi.org/10.1109/
NCA.2015.24

3. Dinitz, Y., Dolev, S., Khankin, D.: Dependence graph and master switch for seam-
less dependent routes replacement in SDN (extended abstract). In: 2017 IEEE
16th International Symposium on Network Computing and Applications (NCA),
pp. 1–7, October 2017. https://doi.org/10.1109/NCA.2017.8171386

4. Foerster, K.T., Schmid, S., Vissicchio, S.: A Survey of Consistent Network Updates
(2016)

5. Kreutz, D., et al.: Software-defined networking: a comprehensive survey. Proc.
IEEE 103(1), 14–76 (2015)

6. Kuzniar, M., Canini, M., Kostic, D.: OFTEN testing OpenFlow networks. In: 2012
European Workshop on Software Defined Networking, pp. 54–60, October 2012.
https://doi.org/10.1109/EWSDN.2012.21

7. Mizrahi, T., Moses, Y.: Time4: Time for SDN. IEEE Trans. Netw. Serv. Manag.
13(3), 433–446 (2016). https://doi.org/10.1109/TNSM.2016.2599640

8. Mizrahi, T., Moses, Y.: Time-based updates in software defined networks. In:
Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Soft-
ware Defined Networking, HotSDN 2013, pp. 163–164. ACM, New York, NY, USA
(2013). https://doi.org/10.1145/2491185.2491214

9. ONF: OpenFlow Switch Specification Ver 1.5.1. Open Networking Foun-
dation (2015). https://www.opennetworking.org/software-defined-standards/
specifications/

10. Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., Walker, D.: Abstractions
for network update. SIGCOMM Comput. Commun. Rev. 42(4), 323–334 (2012).
https://doi.org/10.1145/2377677.2377748

11. Talayco, D.: [openflow-discuss] Question about barrier messages, March 2010.
https://mailman.stanford.edu/pipermail/openflow-discuss/2010-March/000820.
html

12. Zhang, P., Li, H., Hu, C., Hu, L., Xiong, L., Wang, R., Zhang, Y.: Mind the
gap: monitoring the control-data plane consistency in software defined networks.
In: Proceedings of the 12th International on Conference on Emerging Networking
EXperiments and Technologies, CoNEXT 2016, pp. 19–33. ACM, New York, NY,
USA (2016). https://doi.org/10.1145/2999572.2999605

http://arxiv.org/abs/1611.09296
https://doi.org/10.1109/NCA.2015.24
https://doi.org/10.1109/NCA.2015.24
https://doi.org/10.1109/NCA.2017.8171386
https://doi.org/10.1109/EWSDN.2012.21
https://doi.org/10.1109/TNSM.2016.2599640
https://doi.org/10.1145/2491185.2491214
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://doi.org/10.1145/2377677.2377748
https://mailman.stanford.edu/pipermail/openflow-discuss/2010-March/000820.html
https://mailman.stanford.edu/pipermail/openflow-discuss/2010-March/000820.html
https://doi.org/10.1145/2999572.2999605

Brief Announcement: Fast Approximate
Counting and Leader Election

in Populations

Othon Michail1(B), Paul G. Spirakis1,2(B), and Michail Theofilatos1(B)

1 Department of Computer Science, University of Liverpool, Liverpool, UK
{Othon.Michail,P.Spirakis,Michail.Theofilatos}@liverpool.ac.uk

2 Computer Engineering and Informatics Department,
University of Patras, Patras, Greece

Keywords: Population protocol · Epidemic · Leader election
Counting · Approximate counting · Polylogarithmic time protocol

1 Introduction

Population protocols [2] are networks that consist of very weak computational
entities (also called nodes or agents), regarding their individual capabilities and
it has been shown that are able to perform complex computational tasks when
they work collectively. Leader Election is the process of designating a single
agent as the coordinator of some task distributed among several nodes. The
nodes communicate among themselves in order to decide which of them will get
into the leader state, starting from the same initial state q. An algorithm A
solves the leader election problem if eventually the states of agents are divided
into leader and follower, a unique leader remains elected and a follower can never
become a leader. A randomized algorithm R solves the leader election problem if
eventually only one leader remains in the system w.h.p.. Counting is the problem
where nodes must determine the size n of the population. We call Approximate
Counting the problem in which nodes must determine an estimation n̂ of the
population size, where n̂

a < n < n̂. We call a the estimation parameter. Consider
the setting in which an agent is in an initial state a, the rest n − 1 agents are
in state b and the only existing transition is (a, b) → (a, a). This is the one-way
epidemic process and it can be shown that the expected time to convergence
under the uniform random scheduler is Θ(n log n) (e.g., [3]), thus parallel time
Θ(log n).

2 Related Work

The framework of population protocols was first introduced by Angluin et al. [2]
in order to model the interactions in networks between small resource-limited

All authors were supported by the EEE/CS initiative NeST. The last author was also
supported by the Leverhulme Research Centre for Functional Materials Design.

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 38–42, 2018.
https://doi.org/10.1007/978-3-030-01325-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_7&domain=pdf

Brief Announcement: Fast Approximate Counting 39

mobile agents. There are many solutions to the problem of leader election, such as
in networks with nodes having distinct labels or anonymous networks [1,4,5]. In a
recent work, Gasieniec and Stachowiak [5] designed a space optimal (O(log log n)
states) leader election protocol, which stabilizes in O(log2 n) parallel time. They
use the concept of phase clocks (introduced in [3] for population protocols), which
is a synchronization and coordination tool in distributed computing. Regarding
the counting problem, in a recent work, Michail [6] proposed a terminating pro-
tocol in which a pre-elected leader equipped with two n-counters computes an
approximate count between n/2 and n in O(n log n) parallel time w.h.p..

3 Contribution

In this work we employ the use of simple epidemics in order to provide efficient
solutions to approximate counting and also to leader election in populations.
Our model is that of population protocols. Our goal for both problems is to get
polylogarithmic parallel time and to use small memory per agent. (a) We start
by providing a protocol which provides an upper bound n̂ of the size n of the
population, where n̂ is at most na for some a > 1. This protocol assumes the
existence of a unique leader in the population. The runtime of the protocol until
stabilization is Θ(log n) parallel time. Each node except the unique leader uses
only a constant number of states. However, the leader is required to use Θ(log2 n)
states. (b) We then look into the problem of electing a leader. We assume an
approximate knowledge of the size of the population and provide a protocol
(parameterized by the size m of a counter for drawing local random numbers)
that elects a unique leader w.h.p. in O(log

2 n
logm) parallel time, with number of

states O(max{m, log n}) per node. By adjusting the parameter m between a
constant and n, we obtain a leader election protocol whose time and space can
be smoothly traded off between O(log2 n) to O(log n) parallel time and O(log n)
to O(n) states.

4 The Model

In this work, the system consists of a population V of n distributed and anony-
mous (i.e., do not have unique IDs) agents, that are capable to perform local
computations. Each of them is executing as a deterministic state machine from a
finite set of states Q according to a transition function δ : Q×Q → Q×Q. Their
interaction is based on the probabilistic (uniform random) scheduler, which picks
in every discrete step a random edge from the complete graph G on n vertices.
When two agents interact, they mutually access their local states, updating them
according to the transition function δ. The transition function is a part of the
population protocol which all nodes store and execute locally. The time is mea-
sured as the number of steps until stabilization, divided by n (parallel time).

40 O. Michail et al.

5 Fast Counting with a Unique Leader

Our probabilistic algorithm for solving the approximate counting problem
requires a unique leader who is responsible to give an estimation on the number
of nodes. There is initially a unique leader l and all other nodes are in state q.
The leader l stores two counters in its local memory, initially both set to 0, and
after the first interaction it starts an epidemic by turning a q node into an a
node. Whenever a q node interacts with an a node, its state becomes a. When-
ever the leader l interacts with a q node, the value of the counter cq is increased
by one and whenever l interacts with an a node, ca is increased by one. The
termination condition is cq = ca and then the leader holds a constant-factor
approximation of log n. Chernoff bounds then imply that repeating this protocol
a constant number of times suffices to obtain n/2 ≤ ne ≤ 2n w.h.p..

Analysis

Theorem 1. Our Approximate Counting protocol obtains a constant-factor
approximation of log n in O(log n) parallel time w.h.p..

Proof. We divide the process into two phases, with the first phase starting
when the unique leader initiates the spreading of an epidemic, and the second
phase starting when half of the agents become infected. During the first phase,
cq reaches O(log n), while ca is increased by a small constant number w.h.p..
This means that our protocol does not terminate w.h.p. until more than half of
the population has been infected. During the second phase, when the infected
agents are in the majority, cq is increased by a small constant number, while ca
eventually catches up the first counter. The termination condition (cq = ca) is
satisfied and the leader obtains a constant-factor approximation of log n. Finally,
our protocol terminates after Θ(log n) parallel time w.h.p.. After half of the
population has been infected, it holds that |cq − ca| = Θ(log n). When the
a nodes are in the majority, this difference reaches zero after Θ(log n) leader
interactions. Thus, the total parallel time to termination is Θ(log n).

6 Leader Election with Approximate Knowledge of n

We assume that the nodes know an upper bound on the population size nb,
where n is the number of nodes and b is any big constant number. All nodes
store three variables; the round e, a random number r and a counter c and
they are able to compute random numbers within a predefined range [1,m] (m
is the maximum number that the nodes can generate). We define two types of
states; the leaders (l) and the followers (f). Initially, all nodes are in state l,
indicating that they are all potential leaders. The protocol operates in rounds
and in every round, the leaders compete with each other trying to survive (i.e.,
do not become followers). During the first interaction of two l nodes, one of them
becomes follower, a random number in [1,m] is being generated, the leader enters
the first round and the follower copies the tuple (r, e) from the leader to its local

Brief Announcement: Fast Approximate Counting 41

memory. The followers are only being used for information spreading purposes
among the potential leaders and they cannot become leaders again.

Information Spreading. All leaders try to spread their tuple (r, e) throughout
the population, but w.h.p. all of them except one eventually become followers.
We say that a node x wins during an interaction with node y if: (a) ex > ey or
(b) if (ex = ey), rx > ry. One or more leaders L are in the dominant state if their
tuple (r1, e1) wins every other tuple in the population. Then, the tuple (r1, e1)
is being spread as an epidemic throughout the population, independently of the
other leaders’ tuples (all leaders or followers with the tuple (r1, e1) always win
their competitors). We also call leaders L the dominant leaders.

Transition to Next Round. After the first interaction, a leader l enters the
first round. As long as a leader survives (i.e., does not become a follower), in
every interaction it increases it’s counter c by one. When c reaches b log n, where
nb is the upper bound on n, it resets it and round e is increased by one. Finally,
the followers can never increase their round or generate random numbers.

Stabilization. Our protocol stabilizes, as the whole population will eventually
reach in a final configuration of states. To achieve this, when the round of a leader
l reaches � 2b logn−log(b log2 n)

logm �, l stops increasing its round e, unless it interacts
with another leader. This rule guarantees the stabilization of our protocol.

Analysis. The protocol proceeds by monotonously reducing the set of possible
leaders, until only one candidate for a leader remains. There are initially k0 = n
leaders in the population (round e = 0) and between successive rounds, the
number of the dominant leaders is given by ke = n

me .

Theorem 2. Our Leader Election protocol elects a unique leader in O(log
2 n

logm)
parallel time w.h.p..

Proof. During a round e, the dominant tuple spreads throughout the popu-
lation in Θ(log n) parallel time. No leader can enter to the next round if their
epidemic has not been spread throughout the whole population before, thus, for
m = b log n the overall parallel time is O(log2 n

log log n). Finally, during an execu-
tion of the protocol, at least one leader will always exist in the population (i.e.,
a unique leader can never become follower) and a follower can never become
leader again. The rule which says that leaders stop increasing their rounds if
e >= 2b logn−log (b log2 n)

logm , unless they interact with another leader, implies that

the population stabilizes in O(log
2 n

logm) parallel time w.h.p. and when this happens,
there will exist only one leader in the population and eventually, our protocol
always elects a unique leader.

42 O. Michail et al.

References

1. Alistarh, D., Gelashvili, R.: Polylogarithmic-time leader election in population pro-
tocols. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.)
ICALP 2015. LNCS, vol. 9135, pp. 479–491. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-47666-6 38

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253
(2006)

3. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. Distrib. Comput. 21(3), 183–199 (2008)

4. Fischer, M., Jiang, H.: Self-stabilizing Leader election in networks of finite-state
anonymous agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305,
pp. 395–409. Springer, Heidelberg (2006). https://doi.org/10.1007/11945529 28

5. Gasieniec, L., Stachowiak, G.: Fast space optimal leader election in population pro-
tocols. In: SODA 2018: ACM-SIAM Symposium on Discrete Algorithms, pp. 265–
266 (2018)

6. Michail, O.: Terminating distributed construction of shapes and patterns in a fair
solution of automata. In: Proceedings of the 2015 ACM Symposium on Principles
of Distributed Computing, pp. 37–46 (2015)

https://doi.org/10.1007/978-3-662-47666-6_38
https://doi.org/10.1007/978-3-662-47666-6_38
https://doi.org/10.1007/11945529_28

One-Max Constant-Probability Networks:
Results and Future Work

Mark Korenblit(B)

Holon Institute of Technology, Holon, Israel
korenblit@hit.ac.il

Abstract. In a number of our works we present and use the tree-like
network models, so called one-max constant-probability models charac-
terized by the following newly studied principles: (i) each new vertex may
be connected to at most one existing vertex; (ii) any connection event
is realized with the same probability p due to external factors; (iii) the
probability Π that a new vertex will be connected to vertex i depends
not directly on its degree di but on the place of di in the sorted list of ver-
tex degrees. In this announcement we describe features and applications
of these models and discuss possible ways of their generalization.

According to the well-known Barabási-Albert random graph model [1], scale-
free networks are characterized by two main mechanisms: continuous growth
and preferential attachment. That is, (a) the networks expand continuously by
addition of new vertices, and (b) there is a higher probability that a new vertex
will be linked to a vertex already having many connections (high-degree vertex).
Vertex degrees in a scale-free network are distributed by a power law. Most
vertices have only a few connections while there are a few highly connected
hubs. Vertices of a scale-free network are the elements of any system and its
edges represent the interaction between them. Irrespective of the nature, many
complex systems may be simulated using scale-free networks.

The Barabási-Albert model is described as follows. Starting with a small
number m0 of vertices, at every time step we add a new vertex with m ≤ m0

edges that link the new vertex to m different vertices already present in the
system. To incorporate preferential attachment, we assume that the probability
Π that a new vertex will be connected to vertex i depends on the degree di of
that vertex.

The mechanism of preferential attachment is assumed to be linear in the
model, i.e., Π(di) is proportional to di [1]. However, as noted in the same
work, in general relationship between Π(di) and di could have an arbitrary form
and, therefore, different types of preferential attachment may be considered. For
instance, [2] presents the two-levels network model using a preference function
that takes into consideration a vertex’s degree and degrees of vertices connected
to this vertex. Weighted scale-free networks [3] are created by attachment of
new vertices to ends of preferentially chosen weighted edges and by updating
the weights of these edges.
c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 43–47, 2018.
https://doi.org/10.1007/978-3-030-01325-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_8&domain=pdf

44 M. Korenblit

In the special case, when in every step a new vertex is connected to only
one of the old vertices (m = 1) we have a tree-like network model. This model
has a number of applications. Specifically, it may serve for modeling pyramidal
structures based on the principle “success breeds success” and for simulation of
stock markets. Tree-like network models may also be convenient for simulation
of scale-free networks with m0 close to 1 in which m does not exceed 1 in most
of steps. Decentralized and centralized networks of hubs to which a new node
(e.g., personal computer or server, Web page or media file) may always be added,
present examples of such networks.

In [5] we introduced a number of tree-like network models which are not
exactly scale-free, so called one-max constant-probability (CP) models. These
models are characterized by the following features: (i) each new vertex may be
connected to at most one old vertex; (ii) any connection event is realized with
the same probability p due to external factors; iii) the probability Π that a new
vertex will be connected to vertex i depends not directly on its degree di but on
the place of di in the sorted list of vertex degrees.

The proposed network model is rather realistic because in real life the choice
of an object may be determined not by an absolute characteristic of the object
but by a relative status of this object among other objects. The status itself
depends, in its turn, on the objects’ characteristics. Besides, this model explic-
itly defines the order of priorities in the search of appropriate connection and,
therefore, it allows not just to analyze the topology of networks, but also to exam-
ine the network dynamics step-by-step. As noted in [4], one of disadvantages of
commonly used techniques for the random generation of graphs is their lack of
bias with respect to history of the evolution of the graph. Our model introduces
an explicit dependency of the graph’s topology on its previous evolution.

In accordance to one of the models presented in [5], so called constant-
probability ordered model (CPOM), the list of existing vertices is kept sorted
in decreasing order of their degrees so that the vertex with a maximum degree
is in the top of the list. The list is scanned from the top and a new vertex is con-
nected to the first vertex v which “is allowed to be connected by the probability
p”. The degree of vertex v is incremented by 1 and this vertex is moved toward
the top of the list to find a proper new place for it. The new vertex’s degree is
assigned to 1 and this vertex is inserted into the list above vertices with degrees
0 (isolated vertices) if it has been connected to any vertex.

CPOM is characterized by the following phenomenon for low p. Some vertices
which come first may remain isolated since while a network is not large, a new
vertex may rather connect to no existing vertices and find oneself at the bottom
of the list. Next later vertices will find more vertices in the network and the
probability of their connecting to one of existing vertices will be higher. At that,
they will be linked with a higher probability to vertices with larger degrees and
their degrees after connection will be 1. Therefore, as the size of the network
increases, the chance of vertices with zero degrees “to be found” by new vertices
decreases. Figure 1 illustrates the simulation results for p = 0.1. A network after

One-Max Constant-Probability Networks: Results and Future Work 45

100 time steps (Fig. 1(a)) and the same network after 1000 time steps (Fig. 1(b))
have the same six isolated vertices with order numbers 1, 5, 11, 15, 23, 27.

Fig. 1. The phenomenon of first isolated vertices for CPOM.

That is, given an n-vertex network based on CPOM, the expected num-
ber In of isolated vertices in the network reaches saturation for large n, i.e.,
limn→∞ In = I(p), where I(p) is a function of p.

Another model called constant-probability ordered non-0 model (CPOM-N0)
is designed to neutralize the negative effect described above, when some vertices
which come first may remain isolated. A new vertex connected to one of existing
vertices is not inserted above isolated vertices and remains at the bottom of the
list. Thus old vertices with zero degrees will not be at the bottom and the list
will be sorted only concerning degrees exceeding 1. Simulations indicate that in
n-vertex networks based on CPOM-N0, isolated vertices disappear for large n,
i.e., limn→∞ In = 0.

Some laws of network evolution discovered in [5] have been applied in the
algorithms for struggle with malicious networks [6]. In accordance to the pro-
posed approach, a wrong network development is forced using these laws and by
means of short-term information distortions. Specifically, artificial decentraliza-
tion of a network is caused by periodical swapping of the vertices which are in
the top of the list of vertex degrees (network’s centers) with random vertices in
the list that prevents occurrence of high-degree vertices in the malicious network.

As shown in [5], an isolated vertex is a start vertex of a new autonomous part
in the network. Therefore, the number of connected components (collections of
connected vertices which have no connections to one another) in the network is
equal to the number of vertices which were isolated some time. It is proved that
in an n-vertex one-max CP network, the expected number of connected compo-
nents tends to 1

p with increase of n. In order to create the network consisting of
more than 1

p connected components which appear not only in the first steps, we
proposed the mechanism of appearance of artificial isolated vertices that leads
to artificial fragmentation of the malicious network [6].

The proposed model opens the way for future research of the network topol-
ogy evolution. One possible generalization of the one-max CP network is the
m-max CP network (m ≥ 1) in which every new vertex may be connected to

46 M. Korenblit

at most m old vertices (non-tree-like networks). The probability of connecting
the new vertex to none of old vertices does not depend on m and, therefore,
m does not influence on the expected number of appearances of isolated ver-
tices. However, increase of m increases the chance of isolated vertices “to be
found” by new vertices and, ultimately, leads do decrease of the number of iso-
lated vertices. Moreover, the new vertex may be linked to vertices belonging to
different autonomous parts of the network and thus to connect them into one
component. Therefore, the number of connected components in a large m-max
CP network that grows naturally is expected to be less than 1

p . Our intent is to
study structures and behaviors of these networks.

Another direction of the future research is to move from a constant-
probability model to a degree-dependent-probability model (DDPM) in which
connection of a new vertex to vertex i is realized with probability pi depending
on its degree di. Thus the probability Π(di) that a new vertex will be connected
to vertex i depends both on the absolute value of di and on the place of di in
the sorted list of vertex degrees. Our preliminary studies of the one-max DDPM
have yielded results significantly different from findings described above. The
probability of connecting a new vertex to a “grabbed the lead” vertex is set
after first time steps to an approximately constant value while probabilities of
its connecting to vertices with less degrees decrease in the course of the network’s
growth. That is, the measure of concentration around the maximum-degree ver-
tex is higher than for CP models and networks based on the one-max DDPM
are more centralized. Notice that isolated vertices do not stop to appear on the
network growth, even for rather high probability that is set for the maximum-
degree vertex. That is, a new vertex that has not been connected to the “leader”,
has a small chance to link to any other vertex and “slides down the list”.

The most general network model which is the m-max degree-dependent-
probability model will form our future research agenda.

Acknowledgments. The author thanks Ilya Levin, Eugene Levner and Vadim Talis
for their contribution to the studies.

References

1. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

2. Dangalchev, C.: Generation models for scale-free networks. Phisica A 338, 659–671
(2004)

3. Dorogovtsev, S.N., Mendes, J.F.F.: Minimal models of weighted scale-free net-
works, arXiv.org, Cornell University Library, http://arxiv.org/abs/cond-mat/
0408343 (2004)

4. Gustedt, J.: Generalized attachment models for the genesis of graphs with high clus-
tering coefficient. In: Fortunato, S., Mangioni, G., Menezes, R., Nicosia, V. (eds.)
Complex Networks. Studies in Computational Intelligence, vol. 207. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-01206-8 9

http://arxiv.org/abs/org
http://arxiv.org/abs/cond-mat/0408343
http://arxiv.org/abs/cond-mat/0408343
https://doi.org/10.1007/978-3-642-01206-8_9

One-Max Constant-Probability Networks: Results and Future Work 47

5. Korenblit, M., Talis, V., Levin, I.: One-max constant-probability models for complex
networks. In: Contucci, P., Menezes, R., Omicini, A., Poncela-Casasnovas, J. (eds.)
Complex Networks V. SCI, vol. 549, pp. 181–188. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-05401-8 17

6. Korenblit, M.: A new approach to weakening and destruction of malicious internet
networks. In: Pichardo-Lagunas, O., Miranda-Jiménez, S. (eds.) MICAI 2016. LNCS
(LNAI), vol. 10062, pp. 460–469. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-62428-0 37

https://doi.org/10.1007/978-3-319-05401-8_17
https://doi.org/10.1007/978-3-319-05401-8_17
https://doi.org/10.1007/978-3-319-62428-0_37
https://doi.org/10.1007/978-3-319-62428-0_37

Reaching Distributed Equilibrium
with Limited ID Space

Dor Bank(B), Moshe Sulamy(B), and Eyal Waserman

Tel-Aviv University, Tel Aviv, Israel
dorbank@gmail.com, moshesulamy@mail.tau.ac.il

Abstract. We examine the relation between the size of the id space
and the number of rational agents in a network under which equilibrium
in distributed algorithms is possible. When the number of agents in the
network is not a-priori known, but the id space is limited, a single agent
may duplicate to gain an advantage but each duplication involves a risk
of being caught. Given an id space of size L, we provide a method of
calculating the threshold, the minimal value t such that agents know that
n ≥ t, such that the algorithm is in equilibrium. We apply the method
to Leader Election and Knowledge Sharing, and provide a constant-time
approximation t ≈ L

5
of the threshold for Leader Election.

Keywords: Rational agents · Game theory · Leader Election

1 Introduction

We consider the model of distributed game theory [1–5,8,9], in which the partici-
pants are rational agents, and may deviate from the algorithm when it increases
their personal gain. The goal is to design distributed algorithms that are in
equilibrium, that is, where no agent has an incentive to cheat.

Previous works [3–5,8,9] assumed that n, the number of agents in the net-
work, is a-priori known to all agents. When n is not a-priori known, in some
distributed algorithms an agent may cheat by duplicating itself (perform a Sybil
Attack [7]) in order to gain an advantage. We consider the case where the id
space is limited and any duplication involves a risk of detection, i.e., guessing an
id that might already be taken by some other agent.

For the id-space ID = {1, 2, ..., L}, and when all agents a-priori know that
n, the true number of agents in the network, distributes uniformly n ∼ U [t, L],
what is the minimal threshold t we must provide the agents for the algorithm
to reach equilibrium?

2 Model

The model is a standard synchronous message-passing model of a 2-vertex con-
nected network of n ≥ 3 nodes, each node representing an agent.

This research was supported by the Israel Science Foundation (grant 1386/11).

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 48–51, 2018.
https://doi.org/10.1007/978-3-030-01325-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_9&domain=pdf

Reaching Distributed Equilibrium with Limited ID Space 49

Each agent a-priori know its input (if any), its id, the id-space {1, 2, ..., L}
and the threshold t ∈ N s.t 3 ≤ t ≤ n ≤ L. We assume the prior over any
unknown information is uniformly distributed over all possible values. We assume
all agents start the protocol together. If not, we can use the Wake-Up building
block [5] to relax this assumption.

Each rational agent A wants to maximize its utility function uA : O → R

where O is the set of all possible outputs to the algorithm. A rational agent
participates in the algorithm but may deviate from it if a deviation increases its
expected utility, while assuming all other agents follow the protocol.

To differentiate from Byzantine faults, all utility functions must satisfy the
Solution Preference [5] property, which ensures agents never prefer an outcome in
which the algorithm fails over one in which it terminates correctly. An algorithm
is said to be in equilibrium if no agent, at any point in the algorithm execution,
can unilaterally increase its utility by deviating from the algorithm.

2.1 Duplication

Since n is not a-priori known to agents, an agent A can deviate by simulating m
imaginary agents. Each duplicated agent must be assigned an id and duplication
involves a risk of choosing an id that already exists, rendering it non-unique,
and causing the algorithm failure. We assume m and the ids of all m duplicated
agents must be chosen at round 0, before the algorithm starts.

2.2 Leader Election

Each agent A outputs oA ∈ {0, 1}, oA = 1 if A was elected leader, and oA =
0 otherwise. The set of legal output vectors is defined as: OL =

{
o | ∃A :

oA = 1, ∀A′ 	= A : oA′ = 0
}

We assume a fair leader election [3] where, at the beginning of the algorithm,
each agent has an equal chance to be elected leader, and assume agents prefer
to be elected leader.

2.3 Knowledge Sharing

In the problem (from [4], adapted from [5]), each agent A has a private input iA
and a function q, where q is identical at all agents. An output is legal if all agents
output the same value. An output is correct if all agents output q(I) where
I = {i1, . . . , in}. The function q satisfies the Full Knowledge property [4,5],
which states that when one or more input values are not known, any output in
the range of q is equally possible. We assume that each agent A prefers a certain
output value pA. Following [4], in this paper we only discuss Knowledge Sharing
in ring graphs.

50 D. Bank et al.

3 Solution Basis

Equation 1 defines the necessary condition for equilibrium in the distributed
problem in the presence of rational agents:

L∑

k=t

e0(k) ≥ max
m

L−m∑

k=t

pm(k)em(k) (1)

Where em(k) is the expected utility of an agent simulating m false dupli-
cates, when k true agents participate in the network; pm(k) is the probability

of successfully choosing m ids that are not yet taken, generally pm(k) = (L−k
m)

(L−1
m) .

We are interested in the minimal threshold t that satisfies Eq. 1, and it can be
calculated in O(L3) running time, by trying all values for t.

3.1 Enhancements

Linear Threshold. For most algorithms there exists L0 such that for any L >
L0, there exists a pivot value t0 such that for any t ≥ t0 the algorithm is in
equilibrium, and for any t < t0 it is not in equilibrium. In such cases we can use
binary search to improve the running time to O(L2 logL).

Limited Duplications. For some algorithms there exists a specific duplication
number m′, such that if there exists m for which agent has an incentive to
deviate, then it also has an incentive to deviate with m′ duplications. For such
algorithms we only need to examine a single duplication value, improving the
running time to O(L logL).

For algorithms that satisfy both enhancements, the running time is improved
to O(L logL).

4 Contributions

Here we summarize our contributions. Details and full proofs are provided in the
full paper [6].

4.1 Leader Election

The Leader Election algorithm [3,5] satisfies both enhancements. Thus, the min-
imal threshold can be found in O(L logL) time.

Particularly, whenever an agent has an incentive to deviate by duplicating m
agents, it also has an incentive to deviate by duplicating 1 agent. Thus, to check
for equilibrium it suffices to check the case m = 1.

Furthermore, we prove a constant-time approximation of the Leader Election
threshold that shows the minimal threshold t for equilibrium is in the range
0.2L < t < 0.21L.

Reaching Distributed Equilibrium with Limited ID Space 51

4.2 Knowledge Sharing

The Knowledge Sharing algorithm [4,5] (in a ring) satisfies only the “Lin-
ear Threshold” enhancement. Thus, the minimal threshold can be found in
O(L2 logL) time.

Acknowledgment. We would like to thank Yehuda Afek for helpful discussions and
his course on Distributed Computing which has inspired this research, and to Sivan
Schick for his contributions to this paper.

References

1. Abraham, I., Alvisi, L., Halpern, J.Y.: Distributed computing meets game theory:
combining insights from two fields. SIGACT News 42(2), 69–76 (2011). https://doi.
org/10.1145/1998037.1998055

2. Abraham, I., Dolev, D., Gonen, R., Halpern, J.Y.: Distributed computing meets
game theory: robust mechanisms for rational secret sharing and multiparty compu-
tation. In: PODC, pp. 53–62 (2006)

3. Abraham, I., Dolev, D., Halpern, J.Y.: Distributed protocols for leader election:
a game-theoretic perspective. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp.
61–75. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41527-2 5

4. Afek, Y., Rafaeli, S., Sulamy, M.: Cheating by duplication: equilibrium requires
global knowledge. ArXiv e-prints, November 2017

5. Afek, Y., Ginzberg, Y., Landau Feibish, S., Sulamy, M.: Distributed computing
building blocks for rational agents. In: Proceedings of the 2014 ACM Symposium
on Principles of Distributed Computing, PODC 2014, pp. 406–415. ACM, New York
(2014). https://doi.org/10.1145/2611462.2611481

6. Bank, D., Sulamy, M., Waserman, E.: Reaching distributed equilibrium with limited
ID space. ArXiv e-prints, April 2018

7. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45748-8 24

8. Halpern, J.Y., Vilaça, X.: Rational consensus: extended abstract. In: Proceedings of
the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016,
pp. 137–146. ACM, New York (2016). https://doi.org/10.1145/2933057.2933088

9. Yifrach, A., Mansour, Y.: Fair leader election for rational agents. In: PODC 2018
(2018)

https://doi.org/10.1145/1998037.1998055
https://doi.org/10.1145/1998037.1998055
https://doi.org/10.1007/978-3-642-41527-2_5
https://doi.org/10.1145/2611462.2611481
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1145/2933057.2933088

Full Papers

Crash-Tolerant Consensus in Directed
Graph Revisited (Extended Abstract)

Ashish Choudhury1(B), Gayathri Garimella3, Arpita Patra2, Divya Ravi2,
and Pratik Sarkar4

1 International Institute of Information Technology Bangalore, Bengaluru, India
ashish.choudhury@iiitb.ac.in

2 Department of Computer Science and Automation,
Indian Institute of Science, Bengaluru, India

{arpita,divya.ravi}@iisc.ernet.in
3 Oregon State University, Corvallis, USA
AnnapurnaGayathri.Garimella@iiitb.org

4 Boston University, Boston, USA
pratik.sarkar@iisc.ernet.in

Abstract. Fault-tolerant distributed consensus is a fundamental prob-
lem in secure distributed computing. In this work, we consider the prob-
lem of distributed consensus in directed graphs tolerating crash failures.
Tseng and Vaidya (PODC’15) presented necessary and sufficient con-
dition for the existence of consensus protocols in directed graphs. We
improve the round and communication complexity of their protocol.
Moreover, we prove that our protocol requires the optimal number of
communication rounds, required by any protocol belonging to a restricted
class of crash-tolerant consensus protocols in directed graphs.

Keywords: Directed graph · Consensus · Crash failure
Round complexity

1 Introduction

Fault-tolerant reliable consensus [7,8,12] is a fundamental problem in distributed
computing. Informally, a consensus protocol allows a set of n mutually distrust-
ing parties, each with some private input, to agree on a common output. This is
ensured even in the presence of a computationally unbounded centralized adver-
sary, who may corrupt any f out of the n parties and try to prevent the remain-
ing parties from achieving consensus. Since its inception [12], the problem has
been widely studied in the literature and several interesting results have been
obtained regarding the possibility, feasibility and optimality of reliable consensus

P. Sarkar and G. Garimella—The research was conducted while these two authors
were at the Indian Institute of Science and International Institute of Information
Technology Bangalore, respectively.

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 55–71, 2018.
https://doi.org/10.1007/978-3-030-01325-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_10&domain=pdf

56 A. Choudhury et al.

(see [2,9,11,14] and their references for the exhaustive list of work done in this
area). However, all these results are derived assuming the underlying communi-
cation network to be a complete undirected graph, where the parties are assumed
to be directly connected with each other by pair-wise private and authentic chan-
nels. There are scenarios, where such undirected graphs may not be available.
For example, in a typical wireless network, the communication links may support
only uni-directional communication. In a radio network, a base station can com-
municate to the receiving nodes, but communication in the other direction may
not be possible. Further, it may be the case that a node is connected to some
other node “indirectly” via intermediate nodes. Thus in a practical network like
the Internet it is hard to ensure that every user is directly connected with every
other user by a dedicated channel. This scenario can be appropriately modelled
by a more generic incomplete directed graph. We are interested in the consensus
problem in such arbitrary directed graphs.

In a series of beautiful work [15–17], the possibility of consensus protocols in
arbitrary directed graphs is studied, where necessary and sufficient conditions
are presented for the existence of consensus protocols. Separate conditions are
derived for the fail-stop and Byzantine adversary model. The fail-stop model
is a weaker adversary model and assumes that the adversary can crash any f
nodes during the execution of a protocol. The more stronger Byzantine adver-
sary model assumes that the adversary has full control over the set of f nodes
under its control, which can be forced to behave in any arbitrary fashion dur-
ing the protocol execution. In this work, we revisit the crash-tolerant version
of the consensus problem in arbitrary directed graphs; specifically we look into
the round complexity of crash-tolerant consensus protocols in arbitrary directed
graphs. We stress that even though the fail-stop model is a weaker adversary
model, it is practically motivated. For instance, in a typical distributed system,
the chances that some of the “components” of the system stop working are more
compared to some of the components behaving erratically. More specifically, it
is relatively simpler for an attacker to crash a system and make it stop working
completely, compared to taking full control of it and make it behave in an erro-
neous fashion. Hence studying the round complexity of consensus protocols in
arbitrary directed networks against fail-stop corruption is practically motivated.

Existing Results for Crash-tolerant Consensus in Directed Graphs: The
necessary (and sufficient) condition for the existence of crash-tolerant consensus
protocol in directed graphs is presented in [15] and this is not a straight-forward
extension of the necessary condition for the existence of crash-tolerant consensus
in undirected1 graphs. Informally, in directed graphs the necessary condition
demands that even if an arbitrary set of f nodes crashes, there should still exist
a special node in the graph, called source, which should have a directed path to
every other node in the remaining graph (see Sect. 2 for the formal definition of
source node and other related terms). The authors in [15] proved the sufficiency

1 In undirected graphs, f + 1 node connectivity is both and necessary and sufficient
for the existence of crash-tolerant consensus.

Crash-Tolerant Consensus in Directed Graph Revisited (Extended Abstract) 57

of their necessity condition by presenting two consensus protocols, one for the
binary and the other for the multi-valued case.2

The protocols of [15] are significantly different from the traditional consensus
protocols developed for undirected graphs. Specially they belong to a special
class of consensus protocols, based on “flooding”. In more detail, the protocols
consist of several “phases”, each consisting of d rounds of “send-receive-update”,
where d is called the crash-tolerant diameter of a directed graph. Informally, d is
the maximum distance of any node from a potential source in the graph. Thus
any given potential source can propagate its value to all remaining nodes in a
single phase within the d rounds of flooding. In a round every node (including
the source) broadcasts its value to its neighbours. At the end of the round, each
node “updates” its value, by locally applying an update function to the received
values. In the subsequent round, nodes broadcast their updated value. Now, two
types of update function applied are a min function for a min phase and a max
function for a max phase. The min function requires nodes to update their value
by taking the minimum of all the received values (including its own value) and
symmetrically in the max function nodes update by taking the maximum of all
the received values. In [15], it was also shown that the usage of two different types
of update function is necessary to achieve consensus for anonymous directed
graphs.

The binary consensus protocol of [15] requires 2f + 2 alternate min-max
phases, each with d rounds. The round complexity of the protocol is (2f + 2) ·
d rounds and the communication complexity is O(nfd) bits (the number of
neighbours of a node is O(n)). In [15] the authors claimed that their binary
consensus protocol based on min-max strategy cannot be extended trivially to
the multi-valued case. Hence they present a different multi-valued consensus
protocol, which in essence runs their binary consensus protocol K times, when
the inputs are in the set {0, . . . , K}. The idea is to run an instance of the min-max
based binary consensus for each candidate k ∈ {0, . . . , K} to verify if some source
node has a value k and if so, then try to reach agreement on this value k. The
protocol requires (2f +2)·d·K rounds of communication and the communication
complexity is O(nfdK log K) bits since a node has to communicate log K bits
to every neighbour in a round. Clearly the protocol has exponential round and
communication complexity, as K = 2log K .

Our Motivation and Results: In this work, we revisit the consensus protocols
of [15] based on min-max strategy. Our main motivation is to improve the round
and communication complexity of their protocols because the number of commu-
nication rounds and the amount of communication done in each round are crucial
resources in a distributed protocol. We consider the binary consensus protocol
of [15] and observe that if instead of d, we allow d + 1 rounds of communication
in each of the phases, then it is possible to achieve consensus with just f + 2
alternate min-max phases, thus making the round complexity (f +2)(d+1). We
then show an optimization of our protocol, where we allow only d rounds in the
2 In the binary consensus problem, the inputs of each node is a binary value. On the

other hand in the multi-valued case, the inputs belong to a publicly known domain.

58 A. Choudhury et al.

first and the last phase, thus reducing the round complexity to (f +2)(d+1)−2.
Interestingly, we show that our protocol works even for the multi-valued case,
with no modifications what so ever. Hence, unlike [15], the round complexity of
our multi-valued consensus protocol is independent of K. The communication
complexity of our protocol is O(nfd log K) bits and for significantly large values
of K our protocol improves upon the round and communication complexity of
the multi-valued consensus protocols of [15]. Moreover, we improve the number
of rounds for the binary consensus, for every f, d ≥ 2.

We also address the problem of lower bound on the minimum number of
rounds required by any crash-tolerant consensus protocol in a directed graph,
based on min-max strategy and derive three interesting lower bounds. We first
consider the case, where only f + 1 min-max phases are allowed in the protocol
and with no restriction on the number of communication rounds in each phase.
We show that it is impossible to achieve crash-tolerant consensus within f + 1
phases. Next we consider min-max based consensus protocols with at least d
rounds in each phase. For such protocols, we show that it is impossible to achieve
consensus in general with (f + 2)(d + 1) − 3 rounds in total. This further shows
that our min-max based protocol with (f +2)(d+1)−2 rounds is round optimal.
Finally we consider min-max based consensus protocols with exactly d rounds of
communication in each phase. Note that the consensus protocols of [15] belong
to this class. For several values of f and d, we show that the minimum number
of phases required to achieve consensus in this case is 2f + 2, thus showing that
the binary consensus protocol of [15] has the optimal number of communication
rounds.

All the above lower bounds are derived by presenting non-trivial directed
graphs and corresponding adversary strategies, which ensure that consensus is
not achieved till sufficient number of min-max phases are allowed in the underly-
ing protocol. We stress that different graphs and adversary strategies are required
to derive the lower bound for different cases. Even though the lower bounds are
for a restricted class of protocols (namely the one based on min-max strategy),
to the best of our knowledge, these are the first (non-trivial) lower bounds on
the round complexity of consensus protocols in directed graphs. More impor-
tantly, the lower bounds establish that our protocol is the best in terms of the
round complexity if one is interested to design consensus protocols based on min-
max strategy. Hence to obtain further improvements in the round complexity, a
different approach (other than the min-max based strategy) is required.

Informal Discussion on Our Protocol: Our starting point is the binary
consensus protocol of [15] with 2f + 2 phases, each with d rounds. The correct-
ness of their protocol is based on the guaranteed occurrence of two consecutive
crash-free phases, among the 2f + 2 alternate min-max phases, within which
consensus is shown to be achieved. We observe that if instead of d rounds, we
allow d + 1 rounds in each phase then consensus can be achieved if we either
have two consecutive crash-free phases or a crashed phase followed by a crash-
free phase, provided only one node crashes during the crashed phase. The base
of our observation is the following: if during the crashed phase the single node to

Crash-Tolerant Consensus in Directed Graph Revisited (Extended Abstract) 59

be crashed is a non-source node, then it is equivalent to having two consecutive
crash-free phases (with source node(s) being unaltered) and so consensus will
be achieved within these two phases. On the other hand, if during the crashed
phase the single node to be crashed is a source node, then at least one of new
source nodes will be at a distance of one from the crashed source (this observa-
tion lies at the heart of our protocol). If the crashed source node sends its value
to one of the new source node before crashing, there will be still d rounds left
for this new source node in the crashed phase to further propagate the crashed
source node’s value in the remaining graph. So in essence, we still get the effect
of two consecutive crash-free phases. We further show that with f + 2 alternate
min-max phases, there always exist either two crash-free phases or a crashed
phase with a single crash, followed by a crash-free phase, irrespective of the way
adversary crashes the f nodes.

Moving from the binary case to the multi-valued case, we find that the above
ideas are applicable even for the multi-valued case. For simplicity, we consider
the case when there are two crash-free phases and without loss of generality,
let these be a min phase followed by a max phase. Let λmin be the least value
among the source nodes at the beginning of crash-free min phase. If the non-
source nodes have their value greater than or equal to λmin at the beginning of
this phase, then clearly consensus will be achieved at the end of this min phase
itself; this is because each node will update their value to λmin at the end of
the min phase. On the other hand, if some non-source node has a value smaller
than λmin at the beginning of the crash-free min phase, then consensus will not
be achieved in this phase. However, at the end of this min phase, the modified
values of all the nodes (both source as well as non-source) is upper bounded
by λmin; moreover all the source nodes will have λmin as their modified value.
Hence in the next crash-free phase which is a max phase, the value λmin of the
source nodes will be the maximum value in the graph and hence consensus will
be achieved at the end of the crash-free max phase3. The above argument also
works for the case when there is a crashed phase followed by a crash-free phase,
where it is guaranteed that exactly one node crashes during the crashed phase.

Related Work: In [5], possibility of approximate crash-tolerant consensus in
dynamic directed graphs is studied; informally in an approximate consensus
protocol, the fault-free nodes are supposed to produce outputs within a certain
constant ε of each other, where ε > 0. On contrary, we are interested in the
exact consensus, where ε = 0. As mentioned earlier, most of the literature on
consensus considers a complete graph, where parties are connected by pair-wise
reliable channels and where the graph is assumed to be static. However, there
are few works which consider different variations of this model. For example, [3]
considers undirected graphs and shows that all-pair reliable communication is
not necessary to achieve consensus against Byzantine adversary, provided nodes
can use some authentication mechanism. In [1], Byzantine consensus in unknown

3 This argument also shows that the binary consensus protocol of [15] with 2f +
2 alternate min-max phases will work for the multi-valued case as well, with no
modifications; this is because there will be always two consecutive crash-free phases.

60 A. Choudhury et al.

networks is considered, where the underlying network remains fully connected.
[4,10] considers fault-free, approximate consensus protocols where there are no
faults, but the underlying graph is partially connected and dynamic. In [13], the
authors consider edge corruptions, where edges may get Byzantine corrupted,
but nodes remain fault-free. All these variations of consensus is different from
the setting considered in this paper and so these results are incomparable to
ours. Hence we do not consider these works for further discussion.

2 Preliminaries, Definitions and Notations

We consider a distributed synchronous network modelled as a simple directed
graph G = (V,E) where V represents the set of n nodes {v1, v2, . . . , vn} and E
represents the set of directed edges between the nodes in V. The communica-
tion network is assumed to be static; i.e. edges and nodes are not allowed to be
inserted or deleted dynamically. Node vi can communicate to node vj if and only
if the directed edge (vi, vj) ∈ E. Moreover we assume that each node can send
messages to itself. For a node v ∈ V, the set N+

v denotes the set of “outgoing
neighbours” of v in G. That is, N+

v = {vj |(v, vj) ∈ E}. Thus, v can “directly”
send messages to the nodes in the set N+

v . The set N−
v denotes the set of “incom-

ing neighbours” of v in G. That is, N−
v = {vj |(vj , v) ∈ E}. Thus, the nodes in N−

v

can “directly” send messages to the node v. The network is assumed to be syn-
chronous where all the nodes are synchronised and there exists a known upper
bound on message delay. Any protocol in such a network is assumed to proceed
as a sequence of rounds, where in every round, each node sends messages to its
outgoing neighbours, receives messages sent by its incoming neighbours in that
round, followed by local computation. We assume a computationally unbounded
adaptive adversary A, which can corrupt any f nodes in G in a fail-stop fashion,
where a corrupted node can crash at any point of time during the execution of
a protocol; however till the node crashes, it honestly follows the instructions of
the underlying protocol. We also assume that if a node crashes during a round,
then an arbitrary subset of its outgoing messages for that round are delivered
to the corresponding neighbours, as decided by A. We next define the consensus
problem.

Definition 1 (Multi-valued Crash-Tolerant Consensus [15]). Let Π be a
synchronous protocol for the n nodes in G, where each node vi ∈ V has an input
ini ∈ {0, . . . , K} and each party has an output outi ∈ {0, . . . , K}, where K is
publicly known. Then Π is called a crash-tolerant consensus protocol tolerating A
if the following holds: (1) Agreement: All fault-free nodes should have the same
output. That is, for every fault-free nodes vi, vj ∈ V, the condition outi = outj
holds. (2) Validity: the output at any fault-free node must be some node’s input.
That is outi ∈ {in1, . . . , inn} should hold. (3) Termination: every fault-free
node eventually decides on an output.

We next recall few definitions from [15].

Crash-Tolerant Consensus in Directed Graph Revisited (Extended Abstract) 61

Definition 2 (Reduced Graph [15]). Given a directed graph G = (V,E) and a
subset F ⊂ V, the reduced graph induced by F is GF = (VF,EF), where VF = V−F
and EF = E \ {(vi, vj)|vi ∈ F or vj ∈ F}.
Definition 3 (Crash-tolerant Node Connectivity [15]). A graph G =
(V,E) is said to satisfy k crash-tolerant node connectivity if for any F ⊂ V
with |F| ≤ k, there is at least one node s ∈ V \ F that has a directed path to all
the nodes in the corresponding reduced graph GF.

Definition 4 (Source of a Reduced Graph [15]). Let G = (V,E) be a graph
and let F ⊂ V, with GF being the corresponding reduced graph. Then a node vs

in GF is called the source of GF if there exists a directed path from vs to all the
nodes in GF.

For a reduced graph GF, we denote by SGF the set of source nodes. The necessity
condition for the existence of crash-tolerant consensus in a directed graph is given
in Theorem 1.

Theorem 1 (Necessary Condition for Crash-Tolerant Consensus [15]).
Crash-tolerant consensus tolerating A is possible in a directed graph G only if
G has f crash-tolerant node connectivity.

We end this section with the definition of crash-tolerant diameter d of a directed
graph. Informally it denotes the maximum number of rounds over all possible
reduced graphs induced by various subsets of size atmost f , within which the
message of a potential source node can reach all the remaining nodes in a reduced
graph.

Definition 5 (Crash-tolerant Diameter [15]). A spanning tree in a directed
graph G = (V,E) is said to be a rooted spanning tree rooted at a node vr ∈ V
if vr has a directed path to all the nodes in V. Let tree(vr,G) denote the set
of rooted spanning trees, rooted at vr. We define height(vr,G) as the minimum
height of all the trees T ∈ tree(vr,G). That is:

height(vr,G) = min
T ∈ tree(vr,G)

(height of T).

The crash-tolerant diameter d is defined as follows:

d = max
F ⊂ V, |F| ≤ f

max
vs ∈ SGF

(height(vs,GF)).

Note that in a directed graph with n nodes, d is always upper bounded by n.

2.1 Some Properties of Graphs with f Crash-Tolerant Node
Connectivity

In this section we state few properties of reduced graphs which will be used
in the rest of the paper. In the rest of this section we consider an arbitrary

62 A. Choudhury et al.

directed graph G = (V,E) which has f crash-tolerant node connectivity. More-
over we consider a scenario where during the execution of an arbitrary protocol,
A crashes a subset of nodes F ⊂ V, where |F| ≤ f . The corresponding reduced
graph is denoted as GF = (VF,EF). If A further crashes additional |T| nodes
in GF, with |F ∪ T| ≤ f , then the corresponding reduced graph is denoted as
GF′ = (VF′ ,EF′), where F′ = F∪T denotes the set of nodes, crashed by A so far.
We use the notation GF → GF′ to denote the transition when the additional
nodes in T get crashed. The set SGF and SGF′ will denote the set of source nodes
for GF and GF′ respectively. Note that both SGF and SGF′ will be non-empty,
as we are assuming G to have f crash-tolerant node connectivity. Due to space
constraints, the proofs of the following properties are available in [6].

The following proposition states that if a node has a directed path to a source
node in a reduced graph then the node also is a source node of the reduced graph.

Proposition 1. If a node vi ∈ VF has a directed path to any node vj ∈ SGF in
GF, then vi ∈ SGF .

As an immediate corollary of the above we get the following:

Corollary 1. Let vi, vj ∈ SGF with vi �= vj. Then all intermediate nodes along
any directed path4 between vi and vj also belong to SGF .

We next claim that during the execution of a protocol, a non-source node in a
reduced graph cannot become a source node in the next reduced graph, as long
as there exists at least one source node in the old reduced graph that is not
crashed by the adversary.

Claim. Consider an arbitrary vi ∈ VF, such that vi /∈ SGF . Moreover let vi ∈ VF′

(i.e. node vi is not crashed during the transition GF → GF′). Let there exist at
least one node, say vj ∈ SGF that is not crashed by the adversary during the
transition GF → GF′ (i.e. vj �∈ T). Then vi /∈ SGF′ .

Based on the above claim, we next claim that during the execution of a protocol,
the source set remains intact in reduced graphs, unless some subset of nodes
within the source set crashes.

Claim. If during the transition GF → GF′ T ∩ SGF = ∅, then SGF = SGF′ .

Finally we claim that if a source node of GF crashes during the transition GF →
GF′ , then at least one of the outgoing neighbours of this crashed source node
will be the source for the next reduced graph.

Claim. Let T = {vs}, where vs ∈ SGF (i.e. during GF → GF′ the only node
to crash is vs). Then N+

vs
∩ SGF′ �= ∅, where N+

vs
denotes the set of outgoing

neighbours of vs in the reduced graph GF.

4 Note that a directed path will exist from vi to vj and from vj to vi in GF as both
vi and vj are source nodes.

Crash-Tolerant Consensus in Directed Graph Revisited (Extended Abstract) 63

3 Multi-valued Consensus Protocol Based on Min-Max
Strategy

Let G = (V,E) be a directed graph where |V| = n, such that G has f crash-
tolerant node connectivity. We present a multi-valued crash-tolerant consensus
protocol called MinMax (see Fig. 1) tolerating A. Similar to the consensus pro-
tocols of [15], the algorithm is based on min-max strategy, consisting of f + 2
phases, with even numbered phases being a min phase while odd numbered
phases being a max phase. Each phase further consists of d + 1 rounds, where d
denotes the crash-tolerant diameter of G.

Protocol MinMax(G)

The input of the ith node is ini where ini ∈ [0,K]. For i = 1, . . . , n, each node vi executes
the following code:

– Repeat for phase p = 1 to f + 2:
• If p mod 2 = 0 then repeat the following steps d+ 1 times (Min Phase):

- Send ini to all the nodes in N+
vi .

- Receive values from the nodes ina N−
vi .

- Set ini to the minimum of all the values received.
• Else repeat the following steps d+ 1 times (Max Phase):

- Send ini to all the nodes in N+
vi .

- Receive values from the nodes in N−
vi .

- Set ini to the maximum of all values received.
– Output outi := ini and terminate.

a We assume that each node can communicate to itself. Hence vi also sends its value to itself
and receives the same.

Fig. 1. Multi-valued crash-tolerant consensus based on min-max strategy

We now prove the properties of MinMax. We first claim that irrespective of
the strategy followed by A during the execution of MinMax, there always exist
either two consecutive crash-free phases or a crashed phase with a single crash,
followed by a crash-free phase. Formally, let ki denote the total number of crashes
that occur during the ith phase of MinMax, where k1 + . . . + kf+2 ≤ f and each
ki ∈ {0, . . . , f}. Then we have the following lemma.

Lemma 1. Irrespective of the strategy followed by A during MinMax, there exists
at least one subsequence ki−1ki such that either ki−1 = 0, ki = 0 or ki−1 = 1, ki =
0, where i ∈ {2, . . . f + 2}.
Proof. We prove the lemma using strong induction, over the values of f .

1. Consider the base case where, f = 1 and the number of phases are f +2 = 3.
The set of all possible sequence k1k2k3 is {000, 100, 010, 001} and each of
them has either the subsequence 00 or 10.

64 A. Choudhury et al.

2. Assume the lemma is true for all f where 1 ≤ f ≤ t − 1; i.e. either the
subsequence 00 or 10 occurs among all possible sequence k1k2 . . . kf+2, where
f ≤ t − 1.

3. Now consider f = t. We focus on the last term kt+2, where there are two
possible cases:

– If kt+2 ≥ 1 then it implies that at most t−1 faults could occur in the first
t+1 phases. However by induction hypothesis it follows that irrespective
of the adversary strategy, the subsequence 00 or 10 will occur among all
possible sequence k1k2 . . . kt+1 if at most t − 1 faults are allowed during
t + 1 phases. This automatically implies that the subsequence 00 or 10
will occur among all possible sequence k1k2 . . . kt+2.

– If kt+2 = 0 then we further focus on the term kt+1. If kt+1 has value 1
or 0 we meet our subsequence requirement. However if kt+1 ≥ 2 then it
implies that at most t − 2 faults could occur in the first t phases. How-
ever by induction hypothesis it follows that irrespective of the adversary
strategy, the subsequence 00 or 10 will occur among all possible sequence
k1k2 . . . kt if at most t−2 faults are allowed during t phases. This automat-
ically implies that the subsequence 00 or 10 will occur among all possible
sequence k1k2 . . . kt+2.

��
We next claim that if there are two consecutive crash-free phases then protocol
MinMax achieves consensus within those two phases.

Lemma 2. Let G have f crash-tolerant node connectivity. If during the execu-
tion of MinMax there are two consecutive phases, say pt and pt+1, such that no
crash occurs in any of these two phases then consensus is achieved by the end of
phase pt+1.

Proof. Without loss of generality let pt be a min phase and pt+1 be a max phase.
Let F be the set of nodes that have crashed before phase pt. So pt and pt+1 are
executed over the reduced graph GF = (VF,EF) with the set of source nodes
SGF . Note that the source set does not change during these two phases since no
crash occurs. Let λmin denote the minimum value among the nodes in SGF at the
beginning of pt and let Smin

GF
be the set of source nodes possessing the minimum

value λmin. Now there are two possible cases:

– All the nodes in the set VF \ Smin
GF

have values which are greater that or equal
to λmin at the beginning of pt: In this case, at the end of pt, all the nodes in VF

will have their value equal to λmin. This is because pt is a min phase and by
the definition of crash-tolerant diameter, the value λmin will propagate to each
node in VF within d rounds of communication. Hence in this case, consensus
is achieved at the end of pt.

– At least one node in the set VF \SGF has value less than λmin at the beginning
of pt: In this case, all the nodes in the source set SGF will have their value set
to λmin at the end of pt. This is because no node in the source set SGF will

Crash-Tolerant Consensus in Directed Graph Revisited (Extended Abstract) 65

ever see a value smaller than λmin being propagated during pt, otherwise it
contradicts the assumption that λmin is the minimum value among the nodes
in SGF at the beginning of pt. Moreover all the nodes in the set VF \ SGF will
have their values set to a value which is less than or equal to λmin at the end
of pt. This is because pt is a min phase and the minimum value propagated to
any node in VF \SGF within d rounds of communication will be either λmin or
a value less that it. This implies that at the beginning of the next phase pt+1,
the value λmin will be the maximum value of any node. Since all the nodes in
SGF have λmin as their value during pt+1 and since pt+1 is a max phase, no
node will ever see a value greater than λmin being propagated during pt+1.
Moreover by the definition of d, the value λmin will be propagated to every
non-source node during pt+1. Hence at the end of pt+1 all the nodes in GF

will set their values to λmin, thus achieving consensus at the end of pt+1.

��
We next show that consensus will be achieved even if there is crashed phase
followed by a crash-free phase, provided only one node crashes during the crashed
phase.

Lemma 3. Let G have f crash-tolerant node connectivity. If during the execu-
tion of MinMax there are two consecutive phases, say pt and pt+1, such that only
one node crashes during pt and no node crashes during pt+1, then consensus is
achieved by the end of phase pt+1.

Proof: Without loss of generality let pt be a min phase and pt+1 be a max
phase. Let F denote the nodes that have crashed before the phase pt and let
GF = (VF,EF) be the reduced graph at the beginning of pt. Let GF → GF′

denote the transition, where a single node in GF, say vc, crashes during the
phase pt, resulting in the reduced graph GF′ . Let SGF and SGF′ denote the set
of source nodes for the reduced graphs GF and GF′ respectively. If the crashed
node vc �∈ SGF then the proof of the lemma is exactly the same as Lemma 2, as
in this case SGF = SGF′ (follows from Claim 2.1). So we next consider the case
when vc ∈ SGF . We have two further sub-cases:

– If the node vc crashes during the first round of pt and without propagating its
value to any node in SGF′ : in this case we can effectively ignore the effect of
the initial source set SGF . Moreover, from the second round onward of pt, each
node in the source set SGF′ will get the required d rounds of communication
to propagate their value to every other node in GF′ during pt. Furthermore,
during pt+1, the source set remains the same as SGF′ . In essence, this is
equivalent to as if pt and pt+1 are executed over the reduced graph GF′ with
at least d rounds of communication, with the source set being SGF′ and with
no crash occurring in these phases. So using exactly the same arguments as
in Lemma 2, we can conclude that consensus will be achieved by the end of
phase pt+1.

66 A. Choudhury et al.

– If the node vc crashes after propagating its value to at least one node in SGF′ :
let λ denote the value of vc at the beginning of pt. We first note that there
exists at least one source node, say vs′ ∈ SGF′ , such that vs′ receives λ from
vc at the end of the first round of pt. This is because the node vs′ will be
an outgoing neighbour of the node vc in GF (this follows from Claim 2.1).
Moreover, the node vs′ can propagate λ to all the remaining nodes in GF′

during pt. This follows from the definition of d and the fact that pt has still
d rounds of communication left.
Let λmin

G′ denote the minimum value among the nodes in SGF′ at the beginning
of pt and let λmin = min(λ, λmin

G′). We claim that at the end of pt, all the nodes
in SGF′ will have λmin as their updated value. This is because no node in SGF′
will ever see a value smaller than λmin being propagated. Next we claim that
all the non-source nodes in GF′ will have their value updated to λmin or a
smaller value at the end of pt. More specifically, if the non-source nodes in
GF′ have their value greater than λmin at the beginning of phase pt, then all
these non-source nodes will set λmin as their updated value at the end of pt

and consensus will be achieved at the end of pt. This is because λmin will be
propagated to all these nodes. On the other hand, if some non-source node
has a value smaller than λmin at the beginning of pt, then the node will set
a value smaller than λmin as its updated value at the end of pt. In this case,
at the beginning of pt+1, the value λmin will be maximum value of any node.
Moreover, all the nodes in SGF′ will have λmin as their value. Since pt+1 is a
max phase and no crash occurs during pt+1, it follows from the definition of
d that λmin will be propagated to all the nodes in GF′ and every node will set
λmin as their updated value at the end of pt+1, thus attaining consensus. �

The following theorem follows from Lemmas 1–3 and the fact that every node
will terminate the protocol after (f + 2)(d + 1) rounds. In every round, each
node has to send log |K| bits to all its outgoing neighbours and there are O(n)
outgoing neighbours of every node; this proves the communication complexity.

Theorem 2. Let G = (V,E) be a directed graph with f crash-tolerant node
connectivity and crash-tolerant diameter d, where |V| = n. Then protocol MinMax
is a (f + 2)(d + 1) round protocol for multi-valued consensus tolerating A. The
protocol has communication complexity O(nfd log |K|) bits.

Further optimization in the round complexity of MinMax: In [6], we
present a modified version of MinMax called MinMax′′, where we allow the first
phase and the last phase to have exactly d rounds; the remaining f phases still
consist of d + 1 rounds of communication. Hence the total round complexity is
(f + 2)(d + 1) − 2. We show that MinMax′′ still achieves consensus. The idea is
as follows: we first consider a variation MinMax′ of MinMax, where only the first
phase is restricted to d rounds and show that MinMax′ still achieves consensus
within f + 2 phases. This is argued depending upon whether the first phase of
MinMax′ is crash-free or not. If it is crash-free, then the execution of MinMax′ is
“equivalent” to that of MinMax, where there are d + 1 rounds in the first phase
and where the first phase is crash-free. On the other hand, if the first phase of

Crash-Tolerant Consensus in Directed Graph Revisited (Extended Abstract) 67

MinMax′ is not crash-free, then in the remaining f + 1 phases (each of which
has d + 1 rounds), at most f − 1 crashes can occur. Now using Lemma 1, we
can say that in these f + 1 phases, either there will be at least two consecutive
crash-free phases or a crashed phase with a single crash followed by a crash-free
phase. So consensus will be achieved by the end of (f + 2)th phase. We then
consider protocol MinMax′′, which is a variation of MinMax′ in that the last
phase is now restricted to d rounds. Now again depending upon whether the last
phase of MinMax′′ is crash-free or not we show that consensus will be achieved
by MinMax′′.

4 Lower Bounds on Round Complexity of Consensus
Protocols Based on Min-Max Strategy

In this section we consider crash-tolerant consensus protocols based on min-max
strategy, consisting of alternate min and max phases and show few impossibility
results regarding the minimum number of rounds required by consensus pro-
tocols. Based on these results, we conclude that our protocol MinMax requires
optimal number of communication rounds. We assume protocols which have
alternate min-max phases, where the first phase is a min phase (this is without
loss of generality).

4.1 Impossibility of Consensus in f + 1 Phases (Irrespective of the
Number of Rounds)

Consider the family of graphs with f -crash-tolerant node connectivity such
that every graph G = (V,E) has the following properties (see Fig. 2): V =
{v1, v2, ..., vf+3} and d = 1. The edge set E = {(vi, vj)}, where i < j and
1 ≤ i ≤ f + 2. Clearly |E| = ((f+3)2−(f+3))

2 − 1. The graph has two “sink” nodes
vf+2, vf+3, which do not have any outgoing edges. Node v1 has input 1, while
v2, . . . , vf+3 have input 0.

Fig. 2. The family of graphs in which
it is impossible to achieve consensus in
f + 1 phases.

Let ΠMinMax be an arbitrary protocol
for G, consisting of f + 1 alternate min-
max phases, where the first phase is a min
phase. Moreover, each phase has at least
d rounds of communication5. We consider
the following adversary strategy AMinMax

by A during ΠMinMax: No crash occurs dur-
ing phase p1. Adversary crashes node vi

during phase pi+1 for i = 1, . . . , f in the
following fashion: during the first round of

5 The number of rounds in each phase need to be finite so that ΠMinMax should termi-
nate for each node.

68 A. Choudhury et al.

pi+1, the node vi sends its value to nodes vi+2, . . . , vf+3 and crashes. Hence,
except vi+1, all the neighbours of vi receive vi’s value. The adversarial strategy
ensures the following: if pi+1 is a min (resp. max) phase, then vi will be the
source node at the beginning of pi+1 with value 0 (resp. 1), while all the remain-
ing nodes vi+1, . . . , vf+3 will have value 1 (resp. 0). At the end of pi+1, the node
vi+1 will be the source node with value 1 (resp. 0), while all the remaining nodes
vi+2, . . . , vf+3 will have value 0 (resp. 1). Hence at the end of each min (resp.
max) phase, all the nodes in the graph except the source will have value 0 (resp.
1). So at the end of ΠMinMax, the reduced graph will have nodes vf+1, vf+2 and
vf+3, with vf+1 being the source and where vf+2 and vf+3 will have values,
different from vf+1. The formal proof is available in [6].

Theorem 3. Consensus will not be achieved in G (Fig. 2) by ΠMinMax against
the strategy AMinMax.

4.2 Impossibility of Consensus with (f + 2)(d + 1) − 3 Rounds
in Total

Here we consider min-max protocols with f + 2 phases and (f + 2)(d + 1) − 3
rounds in total, with each phase having at least d rounds. We present a fam-
ily of directed graphs and a corresponding adversarial strategy against which
consensus will not be achieved at the end of f + 2 phases. This shows that the
minimum number of rounds required is (f + 2)(d + 1) − 2, implying that our
protocol MinMax′′ (optimized variant of MinMax) is round optimal. Note that the
adversarial strategy AMinMax and the graph of Fig. 2 cannot be used to derive
the lower bound. This is because if we allow f + 2 phases then consensus will
be achieved in the graph of Fig. 2 against AMinMax. Hence we need to modify the
graph and also the adversary strategy.

Let Π be an arbitrary min-max based protocol with f +2 phases p1 . . . , pf+2

and (f + 2)(d + 1) − 3 rounds, with each phase having at least d rounds. We
first state few properties of Π, based on counting arguments, whose proofs are
available in [6].

Lemma 4. In Π there exist at least three phases consisting of exactly d rounds
each.

Based on Lemma 4, we next show that in Π, other than the first and the
last phase, there exists at least one “intermediate phase” p� ∈ {p2, . . . , pf+1}
consisting of exactly d rounds; moreover if p� �= pf+1 then it holds that the
phase p�+2 in Π has at most d + 1 rounds6. More specifically, let r1, . . . , rf+2

6 Note that if p� = pf+1 then there is no phase p�+2 in Π. If phase p�+2 exists in Π
then it will have either d or d + 1 rounds because in Π each phase has at least d
rounds.

Crash-Tolerant Consensus in Directed Graph Revisited (Extended Abstract) 69

denote the number of rounds in phase p1, . . . , pf+2 of Π respectively, where each
ri ≥ d and where r1 + . . .+rf+2 = (f +2)(d+1)−3. Then we have the following
lemma.

Lemma 5. In protocol Π, one of the following holds:

– There exists a phase p� ∈ {p2, . . . , pf}, where r� = d and r�+2 ≤ d + 1.
– rf+1 = d.

Now consider the directed graph G (see Fig. 3) with f crash-tolerant node con-
nectivity and with crash-tolerant diameter d. We next specify an adversary strat-
egy AΠ consisting of sub-strategies A1

Π and A2
Π against the protocol Π, executed

over G:

– From p1 to p�−1, A1
Π is followed, which is same as the strategy AMinMax.

Namely p1 is crash-free. Then in p2, . . . , p�−1, the source node crashes dur-
ing the first round of the phase after sending its value to all its outgoing
neighbours, except the next source in the L1 layer.

– Between p� and p�+2, the sub-strategy A2
Π is followed: at the beginning of

phase p�, the node v�−1 in the L1 layer will be the source node. During the
first round of p�, the source v�−1 crashes after sending its value to the next
source v�. The next phase p�+1 is a crash-free phase. During p�+2, the source
node v� crashes in one of the following two ways, depending upon whether
p�+2 has d or d + 1 rounds:

• p�+2 has d rounds: here v� crashes after sending its value to all its neigh-
bours (both in the L1 layer as well as the P (1) layer), except the next
source v�+1.

• p�+2 has d + 1 rounds: here v� crashes after sending its value only to its
neighbours in the L1 layer (and not to the neighbours in P (1) layer),
except v�+1.

– For the remaining phases p�+3, . . . , pf+2, sub-strategy A1
Π is followed, where

in each phase, the source node in L1 layer crashes after sending its value to
all its neighbour (in L1 layer and P (1) layer), except the next source in the
L1 layer.

Note that in the above description, we assumed that p� �= pf+1, so that phase
p�+2 exists in Π. In case p� = pf+1, then A1

Π is followed from p1 to pf , while
A2

Π is followed during pf+1 and pf+2. Finally we state the following theorem.

Theorem 4. Let Π be a min-max protocol wth f + 2 phases with total (f +
2)(d + 1) − 3 rounds, where each phase has at least d rounds. Then consensus
will not be achieved in G (Fig. 3) by Π against AΠ .

70 A. Choudhury et al.

4.3 Impossibility of Consensus Based on Min-Max Strategy
in 2f + 1 Phases with D Rounds

Fig. 3. Graphs in which it is impossible to
achieve consensus in f + 2 phases with each
round having at least d rounds and with
total (f + 2)(d + 1) − 3 rounds.

Here we consider protocols based on
min-max strategy, consisting of 2f +
1 alternate min and max phases,
with each phase having d rounds of
communication. For several values of
f and d, we show that there exist
graphs for which it is impossible to
reach consensus within 2f +1 phases.
The adversary strategy in all these
graphs will be the following: with-
out loss of generality, we will assume
that the first phase is a min phase.
Hence there will be f + 1 min phases
and f max phases. There will be no
crash during the min phases and dur-
ing each max phase, one new node
will get crashed by the adversary. Moreover, the node to be crashed will be the
source node of the reduced graph at the beginning of that phase. It will be always
ensured that every reduced graph has only one source node. It will be ensured
that no consensus is achieved during any of the min phases. This is achieved by
ensuring that at the beginning of each min phase, the source has value 1 and
there exists at least one non-source node with value 0. As a result, at the end
of each min phase, the source will retain 1 as its value (as it will never see the
value 0 during the min phase because there will be only one source), while there
will be at least one node, which retains 0 as its value. During each of the f max
phases, the adversary will crash the source node. The crashed node will crash
during the first round of a max phase, after sending its value 1 only to the new
source of the reduced graph. The new source will further get d − 1 rounds to
propagate the value 1 that it received from the crashed source. However, it will
be ensured that there is some node with value 0 which is d distance apart from
the new source, such that it never sees the value 1 during the max phase and as
a result, it retains its original value 0, thus preventing consensus being achieved
during the crashed max phase.

Presenting a generalized graph which maintains the above properties for a
general value of f and d is an extremely challenging task. In [6], we present
graphs for several values of f and d, where consensus is achieved only at the end
of 2f + 2 phases.

Acknowledgments. We thank the anonymous referees of SIROCCO 2018 for their
helpful comments. The work of the first two authors is financially supported by Infosys
foundation. The third author would like to acknowledge the financial support by SERB
Women Excellence Award from Science and Engineering Research Board of India and
INSPIRE Faculty Fellowship from Department of Science & Technology, India

Crash-Tolerant Consensus in Directed Graph Revisited (Extended Abstract) 71

References

1. Alchieri, E.A.P., Bessani, A.N., da Silva Fraga, J., Greve, F.: Byzantine consensus
with unknown participants. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS
2008. LNCS, vol. 5401, pp. 22–40. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-92221-6 4

2. Attiya, H., Welch, J.: Distributed Computing: Fundamentals. Simulation and
Advanced Topics, Wiley series on Parallel and Distributed Computing (2004)

3. Bansal, P., Gopal, P., Gupta, A., Srinathan, K., Vasishta, P.K.: Byzantine agree-
ment using partial authentication. In: Peleg, D. (ed.) DISC 2011. LNCS, vol.
6950, pp. 389–403. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24100-0 38

4. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical
Methods. Athena Scientific, Optimization and Neural Computation Series (1997)

5. Charron-Bost, B., Függer, M., Nowak, T.: Approximate consensus in highly
dynamic networks: the role of averaging algorithms. In: Halldórsson, M.M., Iwama,
K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 528–
539. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6 42

6. Choudhury, A., Garimella, G., Patra, A., Ravi, D., Sarkar, P.: Crash-tolerant con-
sensus in directed graph revisited. Cryptology ePrint Archive, Report 2018/436
(2018)

7. Dolev, D.: The Byzantine generals strike again. J. Algorithms 3(1), 14–30 (1982)
8. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed

consensus problems. In: PODC, pp. 59–70. ACM (1985)
9. Fitzi, M.: Generalized communication and security models in byzantine agreement.

Ph.D. thesis, ETH Zurich (2002)
10. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous

agents using nearest neighbor rules. IEEE Trans. Automat. Contr. 48(6), 988–1001
(2003)

11. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
12. Pease, M., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of

faults. JACM 27(2), 228–234 (1980)
13. Schmid, U., Weiss, B., Keidar, I.: Impossibility results and lower bounds for con-

sensus under link failures. SIAM J. Comput. 38(5), 1912–1951 (2009)
14. Tseng, L.: Recent results on fault-tolerant consensus in message-passing networks.

In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 92–108. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48314-6 7

15. Tseng, L., Vaidya, N.H.: Crash-tolerant consensus in directed graphs. CoRR,
abs/1412.8532, 2014. Conference version appeared as [16]

16. Tseng, L., Vaidya, N.H.: Fault-tolerant consensus in directed graphs. In: PODC,
pp. 451–460. ACM (2015)

17. Tseng, L., Vaidya, N.H.: A note on fault-tolerant consensus in directed networks.
SIGACT News 47(3), 70–91 (2016)

https://doi.org/10.1007/978-3-540-92221-6_4
https://doi.org/10.1007/978-3-540-92221-6_4
https://doi.org/10.1007/978-3-642-24100-0_38
https://doi.org/10.1007/978-3-642-24100-0_38
https://doi.org/10.1007/978-3-662-47666-6_42
https://doi.org/10.1007/978-3-319-48314-6_7

A Distributed Algorithm for Finding
Hamiltonian Cycles in Random Graphs

in O(logn) Time

Volker Turau(B)

Institute for Telematics, Hamburg University of Technology,
Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany

turau@tuhh.de

https://www.ti5.tuhh.de/staff/turau/

Abstract. It is known for some time that a random graph G(n, p) con-
tains w.h.p. a Hamiltonian cycle if p is larger than the critical value
pcrit = (log n+log log n+ωn)/n. The determination of a concrete Hamil-
tonian cycle is even for values much larger than pcrit a nontrivial task. In
this paper we consider random graphs G(n, p) with p in Ω̃(1/

√
n), where

Ω̃ hides poly-logarithmic factors in n. For this range of p we present
a distributed algorithm AHC that finds w.h.p. a Hamiltonian cycle in
O(log n) rounds. The algorithm works in the synchronous model and
uses messages of size O(log n) and O(log n) memory per node.

Keywords: Distributed algorithm · Hamiltonian cycle
Random graph

1 Introduction

Surprisingly few distributed algorithms have been designed and analyzed for ran-
dom graphs. To the best of our knowledge the only work dedicated to the analysis
of distributed algorithms for random graphs is [5,16,17]. This is rather surprising
considering the profound knowledge about the structure of random graphs avail-
able since decades [3,10]. While algorithms designed for general graphs obviously
can be used for random graphs the specific structure of random graphs often
allows to prove asymptotic bounds that are far better. In the classical Erdős and
Rényi model for random graphs a graph G(n, p) is an undirected graph with n
nodes where each edge independently exists with probability p [7]. The complex-
ity of algorithms for random graphs often depends on p, e.g., Krzywdziński et
al. [16] proposed a distributed algorithm that finds w.h.p. a coloring of G(n, p)
with 18np colors in O(ln ln p−1) rounds.

In this work we focus on finding Hamiltonian cycles in random graphs. The
decision problem, whether a graph contains a Hamiltonian cycle, is NP-complete.

This work is supported by the Deutsche Forschungsgemeinschaft (DFG) under grant
DFG TU 221/6-2.

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 72–87, 2018.
https://doi.org/10.1007/978-3-030-01325-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_11&domain=pdf
http://orcid.org/0000-0001-9964-8816

Finding Hamiltonian Cycles in Random Graphs in O(log n) Time 73

It is a non-local graph problem, i.e., it is required to always consider the entire
graph in order to solve the problem. It is impossible to solve it in the local
neighborhoods. For this reason there is almost no work on distributed algorithms
for finding Hamiltonian cycles in general graphs. On the other hand it is well
known that G(n, p) contains w.h.p. a Hamiltonian cycle, provided p ≥ pcrit =
(log n + log log n + ω(n))/n, where ω(n) satisfies limn→∞ ω(n) = ∞ [3, Th. 8.9].
There is a large body of work on sequential algorithms for computing w.h.p. a
Hamiltonian cycle in a random graph (e.g. [1,4,21–23]).

We are only aware of two distributed algorithms for computing Hamiltonian
cycles in random graphs. The algorithm by Levy et al. [17] outputs w.h.p. a
Hamiltonian cycle provided p = ω(

√
log n/n1/4). It works in synchronous dis-

tributed systems, terminates in linear worst-case number of rounds, requires
O(n3/4+ε) rounds on expectation, and uses O(n) space per node. The algorithm
of Chatterjee et al. [5] works for p ≥ c log n/nδ and has a run time of Õ(nδ).

The search for a distributed algorithm for a Hamiltonian cycle is motivated
by the usage of virtual rings for routing in wireless networks [19,25]. A vir-
tual ring is a directed closed path involving each node of the graph, possibly
several times. Virtual rings enable routing with constant space routing tables,
messages are simply forwarded along the ring. The downside is that they may
incur a linear path stretch. To attenuate this, distributed algorithms for find-
ing short virtual rings have been proposed [12,25]. Hamiltonian cycles are the
shortest possible virtual rings and therefore of great interest. Short virtual rings
are also of interest for all token circulation techniques as discussed in [8]. Kim
et al. discuss the application of random Hamiltonian cycles for peer-to-peer
streaming [13].

This paper uses the synchronous CONGEST model, i.e., each message con-
tains at most O(log n) bits. Furthermore, each node has only O(log n) bits of
local memory. Without these two assumptions there is a very simple solution
provided the nodes have unique identifiers. First a BFS-tree rooted in a node
v0 is constructed. Then the adjacency list of each node is convergecasted to v0
which applies a sequential algorithm to compute w.h.p. a Hamiltonian path (see
Sec. 1.1). The result is broadcasted into the graph and thus each node knows its
neighbor in the Hamiltonian cycle. This can be achieved in O(diam(G)) rounds.
Note that if p = ωn log n/n then w.h.p. diam(G(n, p)) = O(log n/ log np) [6,10].
In particular for p in Ω̃(1/

√
n) w.h.p. the diameter of G(n, p) is constant [2].

For the stated restrictions on message size and local storage we propose an
algorithm that terminates in a logarithmic number of rounds, this is a signifi-
cant improvement over previous work [5,17]. Our contribution is the distributed
algorithm AHC, its properties can be summarized as follows.

Theorem 1. Let G(n, p) with p ≥ (log n)3/2/
√

n be a random graph. Algorithm
AHC computes in the synchronous model w.h.p. a Hamiltonian cycle for G using
messages of size O(log n). AHC terminates in O(log n) rounds and uses O(log n)
memory per node.

74 V. Turau

1.1 Related Work

Pósa showed already in 1976 that almost all random graphs with cn log n edges
possess a Hamiltonian cycle [21]. Later Komlós et al. determined the precise
threshold pcrit for the existence of a Hamiltonian cycle in a random graph [14]. A
sequential deterministic algorithm that works w.h.p. at this threshold requiring
O(n3+o(1)) time is due to Bollobás et al. [4]. For larger values of p or restrictions
on the minimal node degree, more efficient algorithms are known [1,11].

The above cited algorithms were all designed for the sequential computing
model. Some exact algorithms for finding Hamiltonian cycles in G(n, p) on par-
allel computers have been proposed [9]. The first operates in the EREW-PRAM
model and uses O(n log n) processors and O(log2 n) time, while the second
one uses O(n log2 n) processors and O((log log n)2) time in the P-RAM model.
MacKenzie and Stout proposed an algorithm for CRCW-PRAM machines that
operates in O(log∗ n) expected time and requires n/ log∗ n processors [18].

There are several approaches to construct a Hamiltonian cycle. The approach
used by Levy et al. at least goes back to the work of MacKenzie and Stout [18].
They initially construct a small cycle with Θ(

√
n) nodes. As many as possible

of the remaining nodes are assorted in parallel into
√

n vertex-disjoint paths.
During the final phase, each path and each non-covered vertex is patched into
the initial cycle. The second approach is used in the proofs to establish the
critical value pcrit (e.g., [15,21]) and all derived sequential algorithms (e.g., [4]).
Initially a preferably long path is constructed, e.g., using a depth first search
algorithm [11]. This path is extended as long as the node at the head of the
path has a neighbor that is not yet on the path. Then the path is rotated until
it can be extended again. A rotation of the path cuts off a subpath beginning at
the head, reverses the order of the subpath’s nodes, and reattaches the subpath
again. The procedure stops when no sequence of rotations leads to an extendable
path. The algorithm in [5] follows this approach.

2 Computational Model and Assumptions

This work employs the synchronous CONGEST model of the distributed message
passing model [20], i.e., each message contains at most O(log n) bits. Further-
more, each node has only O(log n) bits of local memory. The communication
network is represented by an undirected graph G = (V,E), where V is a set
of n processors (nodes) and E represents the set of m bidirectional communi-
cation links (edges) between them. Each node carries a unique identifier. Com-
munication between nodes is performed in synchronous rounds using messages
exchanged over the links. Upon reception of a message, a node performs local
computations and possibly sends messages to its neighbors. These operations
are assumed to take negligible time.

The prerequisite of Algorithm AHC is a distinguished node v0 which is the
starting point of the Hamiltonian cycle and acts as a coordinator in the final
phases of AHC. The results proved in this work hold with high probability (w.h.p.)
which means with probability tending to 1 as n → ∞.

Finding Hamiltonian Cycles in Random Graphs in O(log n) Time 75

3 Informal Description of Algorithm AHC

Algorithm AHC operates in sequential phases, each of them succeeds w.h.p. The
first two phases last O(log n) rounds. Each subsequent phase requires a constant
number of rounds only. Phase 0 lasts 3(3 log n−1) rounds and constructs a path
P of length 3 log n starting in v0. In the next 3 log n rounds Phase 1 closes P into
a cycle C of length at most 4 log n. The following 16 log(n) phases are called the
middle phases. In each of those phases the number of nodes in C is increased.
The increase is by a constant factor until C has n/7 nodes. Afterwards, the
increase declines roughly linearly until C has n − 3 log n nodes. In each middle
phase the algorithm tries to concurrently integrate as many nodes into C as
possible. This is achieved by replacing edges (v, w) of C by two edges (v, x) and
(x,w), where x is a node outside of C. At the end of the middle phases w.h.p.
C has more than n − 3 log n nodes.

The integration of the remaining 3 log n nodes requires a more sophisticated
algorithm. This is done in the final phases. The idea is to remove two edges –
not necessarily adjacent – from C and insert three new edges. This requires to
reverse the edges of a particular segment of C of arbitrary length. Thus, this is
no longer a local operation. Furthermore, segments may overlap and hence, the
integration of several nodes can only be performed sequentially. Thus, this task
requires coordination. Node v0 takes over the role of a coordinator.

At the beginning of each final phase all nodes outside C that can be integrated
report this to v0, which in turn selects one of these nodes to perform this step.
For this purpose a tree routing structure is set up, so that each node can reach
v0 w.h.p. in 3 hops. In order for the nodes of the segment to perform the
reordering concurrently, the nodes of C are numbered in an increasing order
(not necessarily consecutively) beginning with v0. The assignment of numbers is
embedded into the preceding phases with no additional overhead. The numbering
is also maintained in the final 3 log n integration steps. In order to accomplish the
integration in a constant number of rounds – i.e., independent of the length of
the segment – node v0 floods the numbers of the terminal nodes of the segment
to be reversed into the network. Upon receiving this information, each node
can determine if it belongs to the segment to be reversed and can recompute
its number to maintain the ordering. Note that this routing structure requires
only O(log n) memory per node. Each of the 3 log n final phases lasts a constant
number of rounds.

Algorithm AHC stops when either C is a Hamiltonian cycle or no more nodes
can be integrated into C. The first event occurs w.h.p.

4 Formal Description of Algorithm AHC

Algorithm AHC operates in synchronous rounds. By counting the rounds a node
is always aware in which round and therefore also in which phase it is. Each
phase lasts a known fixed number of rounds. If the work is completed earlier,
the network is idle for the remaining rounds. This requires each node to know n.

76 V. Turau

Algorithm AHC gradually builds an oriented cycle C starting with node v0. The
cycle is maintained as a doubly linked list to support insertions. The orientation
of C is administered with the help of variable next – initially null – which stores
the identifier of the next node on the cycle in clockwise order. In the following
each phase is described in detail.

4.1 Pre-processing

The algorithm is started by node v0 which executes algorithm Flood [20] to
construct a BFS tree. By Corollary 8 (i) of [2] the diameter of G is w.h.p. at
most 3. Thus, in 3 rounds a BFS tree rooted in v0 is constructed (Lemma 5.3.1,
[20]). After a further 6 rounds each node is aware of n the number of nodes in
the network. This allows to run each phase for the stated number of rounds.

4.2 Phase 0

In phase 0 an oriented path P starting in v0 of length 3 log n is constructed.
Phase 0 lasts 3(3 log n − 1) rounds. Initially P = {v0} and v0.next = v0. The
following steps are repeated 3 log n − 1 times.

1. The final node v of P sends an invitation message to all neighbors. All neigh-
bors not on P (i.e., nodes with next = null) respond to v.

2. If v does not receive any response the algorithm halts. Otherwise v randomly
selects among the nodes that have responded a node w, sets v.next := w,
informs w that it is the new final node, and instructs w to continue with
phase 0. This message includes the id of node v0, i.e., at any point in time all
nodes of P know v0.

4.3 Phase 1

In phase 1 path P is extended into an oriented cycle C of length at most 4 log n.
The following steps are repeated at most log n times. Phase 1 lasts 3 log n rounds.

1. The final node v of P sends an invitation message containing the id of node v0
to all neighbors. All neighbors not on P respond to v. The response includes
the information whether the recipient is connected to v0.

2. If v does not receive any response the algorithm halts. If at least one respond-
ing node is connected to v0, then v randomly selects such a node w, sets
v.next = w, and informs w to close the cycle C, i.e., to set w.next = v0.
Otherwise v randomly selects a responding node w to extend P as in phase
0 and instructs w to repeat phase 1.

3. If after log n repetitions P is not a cycle then the algorithm halts otherwise
the middle phases start.

Finding Hamiltonian Cycles in Random Graphs in O(log n) Time 77

4.4 Middle Phases

While in the first two phases actions were executed sequentially, in the middle
phases many nodes are integrated concurrently. In each of the subsequent phases
the following steps are performed (see Fig. 1). Each of the 16 log n middle phases
is performed in three rounds.

1. Each node w on C broadcasts its own id and the id of its predecessor on C
using message I1.

2. If a node v outside C receives a message I1 from a node w such that the
predecessor of w on C is a neighbor of v, it inserts w into the set Cv.

3. Each node v outside C with Cv �= ∅ randomly selects a node w from Cv and
sends an invitation message I2 to the predecessor of w on C.

4. Each node w ∈ C that received an invitation I2 randomly selects a node v
from which it received an invitation, sets w.next = v, and informs v with
acceptance message I3 to set its variable next to the old successor w′ of w.
In other words the edge (w,w′) is replaced by the edges (w, v) and (v, w′).

It is unnecessary to store Cv. Using reservoir sampling this step can be imple-
mented with O(log n) storage. Individual extensions do not interfere with each
other. Each node outside C gets in the last round of a middle phase at most one
request for extension and for each edge of C at most one request is sent.

w1
w2 w3 w4 w5

v1 v2

I1 I1

I1 I1

I1

I1

I2

I2

I3

Fig. 1. The integration of nodes during a middle phase: Nodes wi sent a message I1
to all nodes outside C (red arrows). Nodes v1 and v2 sent a message I2 back to w4;
v2 might have also selected w4 and sent I3 to w5. Node w4 selected v1 and sent back
message I3. Edge (w4, w3) is replaced by the edges (w4, v1) and (v1, w3). The extended
cycle is depicted by the blue ribbon. (Color figure online)

4.5 Final Phases

After the completion of the middle phases the cycle C has w.h.p. at least n −
3 log n nodes. At that point the expected number of nodes v ∈ V \C that send an
invitation I2 becomes too low to complete the cycle. Therefore, the integration of
the remaining nodes requires a more complex integration procedure as depicted

78 V. Turau

in Fig. 2. The procedure of the final phases is as follows. Each node v ∈ V \ C
with identifier id sends a message I1(id) to each of its neighbors. A node w1 ∈ C
that receives a message I1(id) sends a message I2(id) to its neighbor w2 on
C in clockwise order. If w2 also received a message I1(id) (with the same id),
then nodes w1, w2 and the initiating node v with identifier id form a triangle.
Then v can be directly integrated into C as done in the middle phases. In this
case w1 asks v to initiate the integration step. A node on C receives w.h.p. at
most 15 messages I1 with different identifiers. Each node will aggregate all these
identifiers into one message I2. The same argument is applied to messages of
type I3. Thus, a final phase can be implemented with messages of size O(log n).

w3

w4

w2

w1

v

I1 I1

I2

I2

I3

Fig. 2. The integration of node v into C during the final phase. The thin red arrows
indicate the flow of the messages I1, I2, and I3 initiated by v. The extended cycle is
depicted by the blue ribbon. The edges (w1, w2) and (w4, w3) are replaced by the edges
(w1, v), (v, w4), and (w2, w3). The order of the edges between w4 and w2 is reversed.
(Color figure online)

Otherwise, if node w2 did not receive a message I1(id), then it sends a message
I3(id) to all neighbors that are on C. If a node w3 on C that receives this message
I3(id) also received a message I2(id) from its predecessor w4 on C, then node v
can be integrated into C as shown in Fig. 2. This is achieved by replacing edges
(w1, w2) and (w4, w3) from C by edges (w1, v), (v, w4), and (w2, w3). Also, the
edges on the segment from w2 to w4 must be traversed in opposite order, note
that the number of nodes between w2 and w4 is not bounded. A naive explicit
reversing of the order of the edges on the middle segment may require more than
O(log n) rounds. Thus, we propose a different approach.

Apart from the reversal of the edges in the middle segment this integration
can be implemented within five rounds. Node w3 informs v about this integration
possibility, this notification also includes the identifiers of nodes w4 and w2. The
participating nodes w4, w2 and w1 are also informed. The approach to invert the
middle segment in a constant number of rounds is explained below.

Unfortunately there is another issue. While each node outside C can be
integrated individually, these integration steps cannot be executed concurrently.
A problem arises if the segments, which are inverted (e.g. from w2 to w4), overlap.

Finding Hamiltonian Cycles in Random Graphs in O(log n) Time 79

This can result in separate cycles as shown in Fig. 3. Even if the integration of
the remaining nodes is performed sequentially, a problem appears if the reversal
of the middle segment is not made explicit. In this case nodes receiving message
I1 may not have a consistent view with respect to the clockwise order of C.

Fig. 3. The depicted scenario shows that the integration of two nodes with overlapping
segments cannot be performed concurrently as this would lead to two cycles (shown in
green and blue). If v2 would be integrated first, then v1 can no longer be integrated,
since the predecessor of w6 is then w5 which is not connected to w3. (Color figure
online)

The solution to the problem of interfering concurrent integrations is to seri-
alize all integration steps. For this purpose node v0 acts as a coordinator. In
each of the final phases each node v outside C first checks if can be integrated
using the above described sequence of messages I1 to I3. If this is the case then v
randomly selects one of these possibilities and informs v0. This message includes
information about the four nodes on C that characterize the integration (see
below for details). Node v0 selects among all offers a single node v and informs
it. Upon receiving the integration order, a node v initialize the integration which
is completed after fives rounds. Then the integration of the next node can start.

The solution for the second problem – the reversal of the segment – is based
on an ascending numbering of the nodes. Such a numbering can easily be estab-
lished in the first and middle phases. During phases 0 and 1 the nodes are
numbered as follows: Node v0 has number 0. In clockwise order the nodes have
numbers n14, 2n14, 3n14, . . ., βn14 for some integer constant β ≤
4 log n�. Thus,
the difference between two consecutive nodes is n14. During the middle phases
when a node v is integrated into C between two nodes with numbers f < l the
integrated node gets the number
(f +l)/2�. This is an integer strictly between f
and l as long as |f − l| ≥ 2. If a node is integrated between v0 and the node with
the highest number y, the new number is y +
(β + 1)n/2�. It is straightforward
to verify that all numbers are different and are ascending along the cycle begin-
ning with v0. The choice of the initial numbers guarantees that the difference of
the numbers of two consecutive nodes is always at least 2.

In case a node v is integrated during the final phase it gets the number

(n1 +n2)/2� as if it would be inserted between w1 and w2 with numbers n1 and
n2 (see Fig. 2). The numbers of the nodes between w2 and w4 need to be updated

80 V. Turau

such that overall the numbers are ascending. When a node can be integrated it
includes in the notification message to v0 the numbers of the end nodes of the
segment that would be reversed if this node is integrated, i.e., the numbers of
w2 and w4 (referred to as f and l in the following). Afterwards, when v0 informs
the selected node it distributes a message to all nodes in the network that also
includes the numbers f and l. A node receiving this message checks if its own
number x is between f and l. In this case it changes its number to f + l − x.
Thus, the numbers of the nodes in the segment are reflected on the mid point
of the segment (see Fig. 4). Each node that changes its number also updates it
next pointer to the other neighbor on C. Also nodes v, w1, and w2 update their
next pointer.

260
250

229 220 200 160 144 124 112
100

v

260
250

124 133 153 193 209 229 112
100

v
118

Fig. 4. Node v is to be integrated into C. The nodes w1 and w2 have the numbers
f = 124 and l = 229. Node v will receive number �(112 + 124)/2� = 118. Upon
receiving the message form node v0, nodes with a number between 124 and 229 change
their numbers. The left sides shows the old numbers and the right side the new numbers.

This procedure results in a cycle including v with a numbering that is con-
sistent with the orientation. Thus, when the integration phase of the next node
starts, cycle C is in a consistent state. To carry out this phase a short route
from each node to v0 and vice versa is needed. This is provided by the BFS tree
constructed in the pre-processing phase: Each node reaches v0 in at most 3 hops.
Thus, each final phase lasts 11 rounds.

5 Analysis of Algorithm AHC

This section proves the correctness and analyzes the complexity of the individual
phases and proves the main theorem. Proofs not contained in this paper can be
found in [24]. First, we prove that AHC produces the numbering that guarantees
that the final phases work correctly. Afterwards, the individual phases are ana-
lyzed. Some of the results are proved for values of p less than (log n)3/2/

√
n to

make them more general.

Lemma 1. At the end of each phase each node has a different number and the
numbers are ascending beginning with number 0 for node v0 in clockwise order.

Proof. After phase 1 starting with node v0 the nodes have the numbers n14, 2n14,
3n14, . . ., βn14, i.e., the difference between the numbers of two neighboring nodes
on C is n14. A node v that is inserted between two nodes with integral numbers

Finding Hamiltonian Cycles in Random Graphs in O(log n) Time 81

x and y in middle phase gets the number
(x + y)/2�. Let x < y. If x + y is
even then |x −
(x + y)/2�| = |y −
(x + y)/2�| = d/2. If x + y is odd then
|x −
(x + y)/2�| = (d + 1)/2 and |y −
(x + y)/2�| = (d − 1)/2. This yields
that the distance d between two consecutive numbers is approximately at most
cut in half, i.e., the smaller part is at least (d − 1)/2. After i middle phases the
distance between to numbers is at least

d/2i − (1 − 1/2i) (1)

Since there are 16 log n middle phases the distance between two consecutive
numbers is n14/216 log n − (1 − 1/216 log n) > 2(3 log n)+1. This implies that after
the middle phases the numbering of the nodes satisfies the stated condition.

Let v be a node that is inserted in a final phase into C. Assume that the
smallest distance between the numbers of two consecutive nodes on C is at least
2. Consider Fig. 2 for reference. Let f (resp. l) the number of w1 (resp. w3) at
the beginning of the corresponding final phase. Denote the nodes between w2

and w4 by w′
1, . . . , w

′
k with w2 = w′

1 and w4 = w′
k. Furthermore, let n′

1, . . . , n
′
k

be the numbers of these nodes. Thus, f < n′
1 < . . . < n′

k < l. The order of these
nodes on C at the end of the phase is w1, v, w′

k, . . . , w′
1, w3. Denote by ni the

new number of node w′
i, i.e., ni = n′

1 + n′
k − n′

i. Thus, we need to prove

f <
(f + n′
1)/2� < nk < nk−1 < . . . < n1 < l.

Since n′
1 > f + 1 it follows f <
(f + n′

1)/2� and since nk = n′
1 + n′

k − n′
k =

n′
1 > f + 1 it follows
(f + n′

1)/2� < nk. Furthermore, n′
i < n′

i+1 implies ni+1 =
n′
1 + n′

k − n′
i+1 < n′

1 + n′
k − n′

i = ni. Finally, n1 = n′
1 + n′

k − n′
1 = n′

k < l.
As shown above at the end of the middle phases d > 2(3 log n)+1. Hence, after

the last of the 3 log n final phases we have d > 1 by Eq. (1). Thus, the numbers
of all nodes are different and ascending. �

The challenge in proving properties of iterative algorithms on random graphs
is to organize the proof such that one only slowly uncovers the random choices
in the input graph while constructing the desired structure, e.g., a Hamiltonian
cycle. This is done in order to cleanly preserve the needed randomness and inde-
pendence of events that establish the correctness proof. The coupling technique is
well know to solve this problem ([10], p. 5). For γ ∈ N let p̂ = 1− (1−p)1/γ log n.
Then p = 1 − (1 − p̂)γ log n. Thus G(n, p) is equal to the union of γ log n inde-
pendent copies of G(n, p̂). For p = (log n)3/2/

√
n we have

(
1 −

√
log n

γ
√

n

)γ log n

= e
(log n)3/2

√
n

log
(
1−

√
log n

γ
√

n

)
γ

√
n√

log n ≥ e
− (log n)3/2

√
n ≥ 1 − (log n)3/2

√
n

hence p̂ ≥
√

log n/γ
√

n and thus,

γ log n⋃
i=1

G(n,
√

log n/γ
√

n) ⊆ G(n, p).

82 V. Turau

We superimpose γ log n independent copies of G(n,
√

log n/γ
√

n) and replace any
double edge which may appear by a single one. In the following proof in each
phase we will uncover a new copy of G(n,

√
log n/γ

√
n). There will be 21 log n

phases, thus γ = 21. We set q =
√

log n/γ
√

n for the rest of this paper. All but
the final phases also work for values of p slightly smaller than (log n)3/2/

√
n and

thus smaller values of q (i.e., q = 1/γ
√

n for p = log n/
√

n). This is reflected in
the following proofs.

Let Gi be the union of i independent copies of G(n, q). In phase i the con-
structed cycle C consists of edges belonging to Gi. The subsequent proofs use
the following fact: The probability that any two nodes of V are connected with
an edge from Gi+1\Gi is q. Thus, in each phase a new copy of G(n, q) is revealed.
In each phase we consider the nodes outside C. For each such node we consider
unused edges incident to it, each of those exist with probability q independent
of the choice of C, because C consist of edges of other copies of G(n, q). Some
of these unused edges may also exist in Gi, but that does not matter.

5.1 Phases 0 and 1

Phase 0 sequentially builds a path P by randomly choosing a node to extend
P . Even for p = log n/n this allows to build paths of length Ω(

√
n) in time

proportional to the length of P . Since we aim at a runtime of O(log n) the
following lemma suffices to prove that w.h.p. phase 0 terminates successfully.

Lemma 2. If q ≥ log n/γn phase 0 completes w.h.p. after 3 log n rounds with
a path of length 3 log n.

Phase 1 sequentially tries to extend P into a cycle C in at most 3 log n rounds.

Lemma 3. If q ≥ 1/γ
√

n phase 1 finds w.h.p. in 3 log n rounds a cycle with at
most 4 log n nodes.

5.2 Middle Phases

The middle phases contribute the bulk of nodes towards a Hamiltonian cycle.
In each phase the number of nodes is increased by a constant factor w.h.p. by
concurrently testing all edges in C for an extension. In the following we prove
a lower bound for the number of nodes that are integrated w.h.p. into C in a
middle phase. This will be done in two steps. First we state a lower bound for
the number of nodes v ∈ V \ C that send an invitation I2. Based on this bound
we prove a lower bound for the number of nodes that received an acceptance
message I3. Note that each node v ∈ V \ C that receives an acceptance message
I3 is integrated into C and each v ∈ V \ C receives at most one I3 message.

Let c = |C| and v ∈ V \C. The event that an edge e of C together with v forms
a triangle has probability q2. Unfortunately these events are not independent in
case the edges have a node in common. To have a lower bound for the probability
that v is connected to at least one pair of consecutive nodes on C we consider only
every second edge on C. Denote the edges of C by e0, . . . , ec−1 with ei = (vi, ui).

Finding Hamiltonian Cycles in Random Graphs in O(log n) Time 83

Let πv,i be the event that node v forms a triangle with edge e2i such that the
edges (v, vi) and (v, ui) belong to newly uncovered copy of G(n, q). For fixed v
the events πv,i are independent and each occurs with probability q2. Let πv be
the event that for node v ∈ V \C at least one of the events πv,0, πv,2, πv,4, . . . , πv,c

occurs. Clearly the events πv are independent and each occurs with probability
1 − (1 − q2)c/2.

For v ∈ V \ C let Xv be a random variable that is 1 if event πv occurs.
The variables Xv1 , . . . , Xvn−c

are independent Bernoulli-distributed random vari-
ables. Define a random variable X as X =

∑
v∈V \C Xv. Then we have

E[X] = (n − c)(1 − (1 − q2)c/2). (2)

Obviously X is a lower bound for the number of nodes of V \C that are connected
to at least one pair of consecutive nodes on C, i.e., the number of nodes v ∈
V \ C that sent an invitation I2. Next let Y be a random variable denoting
the number of nodes of V \ C that receive an acceptance message I3 provided
that X = x nodes sent an invitation I2. We compute the conditional expected
value E[Y |X = x]. The computation of Y can be reduced to the urns and balls
model: The number of balls is x and the number of bins is c. Each ball is thrown
randomly in any of the c bins. Note that the probability that a node v in C is
connected to a node w in V \ C is independent of v and w at least q. Thus, Y
is equal to the number of nonempty bins and hence

E[Y |X = x] = c(1 − (1 − 1/c)x). (3)

Note that for a given value of x variable Y is the number of nodes inserted into
C in one phase. Y/c is the ratio of the number of newly inserted nodes to the
number of nodes in C. The next subsections give a lower bound for Y/c that
holds w.h.p. We distinguish the cases x ≥ n/7 and x < n/7. The reason is
that the variance of X behaves differently in these two ranges: For x < n/7 the
variance is rather large, whereas for x ≥ n/7 the variance tends to 0. In both
cases we first compute a lower bound for X and then derive a lower bound for
Y/c with respect to the bound for X.

Instead of using q =
√

log n/γ
√

n the analysis of the middle phases is done
for the smaller value q = 1/

√
n. This saves us from using the constant γ and

simplifies the exposition of the proofs.

5.3 The Case c < n/7

Next we prove that while c < n/7 in each middle phase the number of nodes in
C is increased by a factor of 2 − e−1/3 and that after 3 log n phases the bound
n/7 is exceeded.

Lemma 4. Let 3 log n < c < n/7. Then there exists d > 0 such that X > c/3
with probability 1 − 1/nd.

Lemma 5. Let β = 0.92 and 3 log n < c < n/7. Then there exist d > 0 such
that Y

c ≥ β
(
1 − 1

e1/3

)
with probability 1 − 1/nd.

84 V. Turau

Proof. From equation (3) it follows

E[Y |X ≥ c/3] ≥ c

(
1 −

(
1 − 1

c

)c/3
)

.

Let δ2 = 3α log n/c with α = (1 − β)2. Then δ2 < 1 and

e−E[Y |X≥c/2]δ2/2 ≤ e−3α log n(1−(1−1/c)c/3)/2 =
(

1
n

)3α(1−(1−1/c)c/3)/2

.

The Chernoff bound implies that

Y |(X ≥ c/3) > (1 − δ)E[Y |X ≥ c/3] ≥
(

1 −
√

3α log n

c

)
c

(
1 −

(
1 − 1

c

)c/3
)

with probability 1−1/n3α(1−(1−1/c)c/3)/2. Hence, by Lemma 4 there exists d > 0
such that

Y ≥
(

1 −
√

3α log n

c

)
c

(
1 −

(
1 − 1

c

)c/3
)

with probability 1 − 1/nd. This gives for any c ≥ 3 log n

Y

c
=

(
1 −

√
3α log n

c

)(
1 −

(
1 − 1

c

)c/3
)

≥ β

(
1 − 1

e1/3

)
.

�

Lemma 6. Let C be a cycle with at least 3 log n nodes. Then after at most
3 log n phases C has w.h.p. at least n/7 nodes.

Proof. Lemma 5 yields that while the circle has less than n/7 nodes w.h.p. in i
phases the number of nodes in C grows from c to (1+β(1− 1

e1/3))ic, i.e., in three
phases to (1 + 0.92(1 − 1

e1/3))3c > 2c, i.e., it doubles at least every three phases.
Hence, starting with c = 3 log n, after at i phases C has at least 2i/33 log n
nodes. Note that 2i0/33 log n ≥ n/7 for i0 = 3 log (n/(21 log n)) / log 2. Since
3 log n ≥ i0, the union bound implies that after at most 3 log n phases w.h.p.
the circle has at least n/7 nodes. �

5.4 The Case c ≥ n/7

Next we show that the size of C is still growing by a constant factor, but the
factor is decreasing in each phase. This allows to infer that after 13 log n phases
w.h.p. C has at least n − 3 log n nodes.

Finding Hamiltonian Cycles in Random Graphs in O(log n) Time 85

Lemma 7. Let c = ξn with 1/7 ≤ ξ < 1 − 3(log n)/n. Then there exists d > 0
such that with probability 1 − 1/nd

X >

(
1 −

√
3 log n

n(1 − ξ)

)
c(1/ξ − 1)(1 − (1 − q2)c/2).

Note that this Lemma proves that w.h.p. in each phase there exists at least
one node that can be used to extend the cycle as long as c < n − 3 log n holds.
Lemma 8. Let c = ξn with 1/7 ≤ ξ < 1 − 3(log n)/n. Then there exists d > 0

such that Y
c ≥

(
1 −

√
3 log n
n(1−ξ)

) (
1 − e(1−1/ξ)(1−e−ξ/2)

)
with probability 1 − 1/nd.

Lemma 9. Let p ≥ log n/
√

n and C be a cycle with at least n/7 nodes. Then
after 13 log n phases C has w.h.p. at least n − 3 log n nodes.

5.5 Final Phases

After the middle phases w.h.p. there are at most 3 log n nodes outside C. The
following lemma proves the correctness of the final phases.

Lemma 10. If p ≥ (log n)3/2/
√

n the final 3 log n phases integrate w.h.p. all
remaining nodes into C.

6 Proof of Theorem 1

The pre-processing phase lasts 9 rounds. By Lemmas 2 and 3 phases 0 and 1
terminate after O(log n) rounds w.h.p. with a cycle with at most 4 log n nodes.
Each middle phase lasts a constant number of rounds. According to Lemma 6
after at 3 log n middle phases the cycle C has w.h.p. n/7 nodes and by Lemma 9
after another 13 log n middle phases w.h.p. n−3 log n nodes. Then in 3 log n final
phases, each lasting a constant number of rounds, C is w.h.p. a Hamiltonian
cycle by Lemma 10. This leads to the total time complexity of O(log n) rounds.
The statements about message size and memory per node are evident from the
description of AHC.

7 Conclusion

This paper presented an efficient distributed algorithm to compute in O(log n)
rounds w.h.p. a Hamiltonian cycle for a random graph G(n, p) provided p ≥
(log n)3/2/

√
n. This constitutes a large improvement over the state of the art

with respect to p = c log n/nδ (0 < δ ≤ 1) and run time Õ(nδ). It is well known
that G(n, p) contains w.h.p. a Hamiltonian cycle, provided p ≥ pcrit. There is
a large gap between (log n)3/2/

√
n and pcrit. It appears that by maxing out the

arguments of this paper it is possible to prove Theorem 1 for p =
√

log n/n. All
but the final phases already work for p ≥ log n/

√
n. We suspect that finding a

distributed O(log n) round algorithm for p ∈ o(1/
√

n) is a hard task.

Acknowledgments. The author is grateful to the reviewers’ valuable comments that
helped to improve the paper.

86 V. Turau

References

1. Angluin, D., Valiant, L.: Fast probabilistic algorithms for hamiltonian circuits and
matchings. J. Comput. Syst. Sci. 18(2), 155–193 (1979)

2. Bollobás, B.: The diameter of random graphs. Trans. Am. Math. Soc. 267(1),
41–52 (1981)

3. Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge
(2001)

4. Bollobás, B., Fenner, T.I., Frieze, A.M.: An algorithm for finding hamilton paths
and cycles in random graphs. Combinatorica 7(4), 327–341 (1987)

5. Chatterjee, S., Fathi, R., Pandurangan, G., Dinh Pham, N.: Fast and efficient dis-
tributed computation of Hamiltonian cycles in random graphs. In: 38th IEEE Inter-
national Conference on Distributed Computing Systems, ICDCS 2018, Vienna,
Austria, 2–6 July 2018, pp. 764–774 (2018). https://doi.org/10.1109/ICDCS.2018.
00079

6. Chung, F., Lu, L.: The diameter of sparse random graphs. Adv. Appl. Math. 26(4),
257–279 (2001)

7. Erdős, P., Rényi, A.: On random graphs I. Publ. Math. (Debr.) 6, 290–297 (1959)
8. Franceschelli, M., Giua, A., Seatzu, C.: Quantized consensus in hamiltonian graphs.

Automatica 47(11), 2495–2503 (2011)
9. Frieze, A.: Parallel algorithms for finding hamilton cycles in random graphs. Inf.

Process. Lett. 25(2), 111–117 (1987)
10. Frieze, A., Karoński, M.: Introduction to Random Graphs. Cambridge University

Press, Cambridge (2015)
11. Frieze, A.M., Haber, S.: An almost linear time algorithm for finding hamilton cycles

in sparse random graphs with minimum degree at least three. Random Struct.
Algorithms 47(1), 73–98 (2015)

12. Hélary, J., Raynal, M.: Depth-first traversal and virtual ring construction in dis-
tributed systems. Research Report RR-0704, INRIA Rennes (1987)

13. Kim, J., Srikant, R.: Peer-to-peer streaming over dynamic random hamilton cycles.
In: 2012 Infernational Theory & Applications Workshop, pp. 415–419, February
2012

14. Komlós, J., Szemerédi, E.: Limit distribution for the existence of hamiltonian cycles
in a random graph. Discret. Math. 43(1), 55–63 (1983)

15. Krivelevich, M., Panagiotou, K., Penrose, M., McDiarmid, C.: Random Graphs,
Geometry and Asymptotic Structure‘. London Mathematical Society Student Texts
(84). Cambridge University Press, Cambridge (2016)

16. Krzywdziński, K., Rybarczyk, K.: Distributed algorithms for random graphs.
Theor. Comput. Sci. 605, 95–105 (2015)

17. Levy, E., Louchard, G., Petit, J.: A distributed algorithm to find hamiltonian cycles
in G(n, p) random graphs. In: López-Ortiz, A., Hamel, A.M. (eds.) CAAN 2004.
LNCS, vol. 3405, pp. 63–74. Springer, Heidelberg (2005). https://doi.org/10.1007/
11527954 7

18. MacKenzie, P.D., Stout, Q. F.: Optimal parallel construction of hamiltonian cycles
and spanning trees in random graphs. In: Proceedings of the Fifth Annual ACM
Symposium on Parallel Algorithms & Architectures, pp. 224–229, New York (1993)

19. Malkhi, D., Sen, S., Talwar, K., Werneck, R.F., Wieder, U.: Virtual ring routing
trends. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 392–406. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04355-0 42

https://doi.org/10.1109/ICDCS.2018.00079
https://doi.org/10.1109/ICDCS.2018.00079
https://doi.org/10.1007/11527954_7
https://doi.org/10.1007/11527954_7
https://doi.org/10.1007/978-3-642-04355-0_42

Finding Hamiltonian Cycles in Random Graphs in O(log n) Time 87

20. Peleg, D.: Distributed computing: a locality-sensitive approach. In: Monographs
on Discrete Mathematics and Applications. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA (2000)

21. Pósa, L.: Hamiltonian circuits in random graphs. Discret. Math. 14(4), 359–364
(1976)

22. Shamir, E.: How many random edges make a graph hamiltonian? Combinatorica
3(1), 123–131 (1983)

23. Thomason, A.: A simple linear expected time algorithm for finding a hamilton
path. Discret. Math. 75(1), 373–379 (1989)

24. Turau, V.: A Distributed Algorithm for Finding Hamiltonian Cycles in Random
Graphs in O(log n) Time. (2018). arXiv preprint arXiv:1805.06728

25. Turau, V., Siegemund, G.: Scalable routing for topic-based publish/subscribe sys-
tems under fluctuations. In: Proceedings of the 37th International Conference on
Distributed Computing Systems (2017)

http://arxiv.org/abs/1805.06728

Simple and Local Independent Set
Approximation

Ravi B. Boppana1, Magnús M. Halldórsson2, and Dror Rawitz3(B)

1 Department of Mathematics, MIT, Cambridge, USA
rboppana@mit.edu

2 School of Computer Science, Reykjavik University, Reykjavik, Iceland
mmh@ru.is

3 Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
dror.rawitz@biu.ac.il

Abstract. We bound the performance guarantees that follow from
Turán-like bounds for unweighted and weighted independent sets in
bounded-degree graphs. In particular, a randomized approach of Bop-
pana forms a simple 1-round distributed algorithm, as well as a streaming
and preemptive online algorithm. We show it gives a tight (Δ + 1)/2-
approximation in unweighted graphs of maximum degree Δ, which is
best possible for 1-round distributed algorithms. For weighted graphs,
it gives only a (Δ + 1)-approximation, but a simple modification results
in an asymptotic expected 0.529(Δ + 1)-approximation. This compares
with a recent, more complex Δ-approximation [6], which holds determin-
istically.

1 Introduction

Independent sets are among the most fundamental graph structures. A classic
result of Turán [25] says that every graph G = (V,E) contains an independent
set of size at least

Turán(G) .=
n

d + 1
,

where n = |V | is the number of vertices and d = 2m/n is the average degree,
where m = |E|. Turán’s bound is tight for regular graphs, but for non-regular
graphs an improved bound was given independently by Caro [10] and Wei [26]:

α(G) ≥ CaroWei(G) .=
∑

v∈V

1
d(v) + 1

, (1)

where α(G) is the cardinality of a maximum independent set in G and d(v) is
the degree of vertex v ∈ V .

M. M. Halldórsson—Supported by grants nos. 152679-05 and 174484-05 from the Ice-
landic Research Fund.
D. Rawitz—Supported by the Israel Science Foundation (grant no. 497/14).

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 88–101, 2018.
https://doi.org/10.1007/978-3-030-01325-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_12&domain=pdf

Simple and Local Independent Set Approximation 89

There are numerous proofs of the Caro-Wei bound, some involving simple
greedy algorithms. Arguably the simplest argument known is a probabilistic
one:

Uniformly randomly permute the vertices, and output the set of
vertices that precede all their neighbors in the permutation. (2)

Each node v precedes its neighbors with probability 1/(d(v)+1), so by linearity
of expectation the expected size of the output matches exactly CaroWei(G).
This argument, which first appeared in the book of Alon and Spencer [3], is
due to Boppana [9]. It clearly leads to a very simple local decision rule once the
permutation is selected.

An alternative formulation of the algorithm is practical in certain contexts.

Each vertex v picks a random real number xv from [0, 1]. The
vertex joins the independent set if its random number is larger
than that of its neighbors.

(3)

It suffices to select the numbers with precision 1/n3, for which collisions are very
unlikely.

This leads to a fully 1-local algorithm, in which each node decides whether to
join the independent set after a single round of communication with its neighbors.
The same O(log n) bits a node transmits go to all of its neighbors, which matches
the Broadcast-CONGEST model of distributed algorithms. Furthermore, it is
asynchronous. This is just about the simplest distributed algorithm one could
hope for.

The simplicity of the approach also allows for other applications. The basic
algorithm works well with edge streams, storing only the permutation and the
current solution as a bit-vector. The storage can be reduced with an ε-min-
wise permutation, at a small cost in performance. This can also be viewed as a
preemptive online algorithm, where edges can cause nodes to be kicked out of
the solution but never reenter.

1.1 Our Contribution

The main purpose of this essay is to analyze the performance guarantees of
Boppana’s algorithm on graphs of maximum degree Δ. We show that it achieves
a tight (Δ + 1)/2-approximation, which then also gives a bound on the fidelity
of the Caro-Wei bound. In terms of the average degree d, the performance is
at most (d + 2)/1.657. We also show that the Turán bound has strictly (but
only slightly) worse performance than the Caro-Wei bound for bounded-degree
graphs, or (Δ + 1)/2 + 1/(8Δ).

We then address the case of weighted graphs, and find that unchanged Bop-
pana’s algorithm gives only a (Δ + 1)-approximation. However, a slight mod-
ification yields an improved approximation which asymptotically approaches
0.529(Δ + 1).

90 R. B. Boppana et al.

1.2 Related Work

Turán [25] showed that α(G) ≥ Turán(G). Caro [10] and Wei [26] indepen-
dently showed (in unpublished technical reports) that α(G) ≥ CaroWei(G).
The bound can also be seen to follow from an earlier work of Erdős [16], who
showed that the bound is tight only for disjoint collections of cliques. Observe
that CaroWei(G) ≥ Turán(G), for every graph G.

The min-degree greedy algorithm iteratively adds a minimum-degree node
to the graph, removes it and its neighbors and repeats. It achieves the Caro-Wei
bound [26] (see also [16]). Griggs [18] (see also Chvátal and McDiarmid [13])
showed that the max-degree greedy algorithm also attains the Caro-Wei bound,
where the algorithm iteratively removes the vertex of maximum degree until the
graph is an independent set. Sakai et al. [23] analyzed three greedy algorithms for
weighted independent sets and showed them to achieve certain absolute bounds
as well as a (Δ + 1)-approximation.

The best sequential approximation known is Õ(Δ/ log2 Δ),1 by Bansal
et al. [5], which uses semi-definite programming. This matches the inapprox-
imability result known, up to doubly-logarithmic factors, that holds assum-
ing the Unique Games Conjecture [4]. The problem is known to be NP-hard
to approximate within an O(Δ/ log4 Δ) factor [12]. For small values of Δ, a
(Δ + 3)/5-approximation [7] is achievable combinatorially, but requires exten-
sive local search. As for simple greedy algorithms, it was shown in [20] that the
performance guarantee of the min-degree greedy algorithm is (Δ+2)/3, and also
pointed out that the max-degree algorithm attains no better than a (Δ + 1)/2
ratio.

Most works on distributed algorithms have focused on finding maximal inde-
pendent sets, rather than optimizing their size. Boppana’s algorithm corresponds
to the first of O(log n) rounds of Luby’s maximal independent set algorithm (see
also Alon et al. [2]). As for approximations, nΘ(1/k)-approximation is achiev-
able and best possible for local algorithms running in k rounds [8], where the
upper bound assumes both unlimited bandwidth and computation. Bar-Yehuda
et al. [6] gave a Δ-approximation algorithm for weighted independent sets using
the local ratio technique that runs in time O(MIS · log W) rounds in the CON-
GEST model, where MIS is the number of rounds needed to compute a maximal
independent set and W is the ratio between the largest and smallest edge weight.
We improve this approximation ratio by nearly a factor of 2 using only a single
round, but at the price of obtaining a bound only on expected performance.
Ghaffary, Kuhn, and Maus [17] gave a (1 + ε)-approximation algorithm that
requires a poly-logarithmic number of rounds in the LOCAL model.

Alon [1] gave nearly tight bounds for testing independence properties; his
lower bound carries over to distributed algorithms, as we shall see in Sect. 2.4.
For matchings, which correspond to independent sets in line graphs, Kuhn
et al. [22] showed that achieving any constant factor approximation requires
Ω(max(log Δ/ log log Δ,

√
log n/ log log n)) rounds. Censor-Hillel, Khoury, and

1 Õ(·) suppresses log log n factors.

Simple and Local Independent Set Approximation 91

Paz [11] presented a nearly quadratic lower bound on the number of rounds for
solving maximum independent set exactly in the CONGEST model.

Halldórsson and Konrad [21] examined how well the Caro-Wei bound per-
forms in different subclasses of graphs. They also gave a randomized one-round
distributed algorithm where nodes broadcast only a single bit that yields an
independent set of expected size at least 0.24 ·CaroWei(G) on every graph G.
This is provably the least requirement for an effective distributed algorithm, as
without degree information, the bounds are polynomially worse.

Streaming algorithms (including Boppana’s) achieving Turán-like bounds in
graphs and hypergraphs were considered in [19], and streaming algorithms for
approximating CaroWei(G) were given recently by Cormode et al. [14].

Motivated by a packet forwarding application, Emek et al. [15] considered the
online set packing problem that corresponds to maintaining strong independent
sets of large weight in hypergraphs under edge additions. We give a tight bound
on their method for the special case of graphs.

2 Performance of Caro-Wei-Turán Bounds

We examine here how well the Caro-Wei and the Turán bounds perform on
(unweighted) bounded-degree and sparse graphs.

Let opt be an optimal independent set of size α = α(G) and let V ′ = V \opt.
We say that a bound B(G) has a performance ratio f(Δ) if, for all graphs G
with Δ(G) = Δ it holds that

α(G) ≥ B(G) ≥ α(G)
f(Δ)

.

2.1 Caro-Wei in Bounded-Degree Graphs

Theorem 1. CaroWei has performance ratio (Δ + 1)/2.

Proof. Let G be a graph. Let Oi, for i = 1, 2, . . . ,Δ, denote the number of
vertices in opt of degree i. Our approach is to separate the contributions of the
different Ois to the Caro-Wei bound. The nodes of high degree have a smaller
direct contribution, but also have an indirect contribution in forcing more nodes
to be in V ′.

Let mopt be the number of edges with an endpoint in opt. Each such edge
has the other endpoint in V ′, whereas nodes in V ′ are incident on at most Δ
edges. Thus,

Δ∑

i=1

i · Oi = mopt ≤ Δ|V ′|. (4)

92 R. B. Boppana et al.

We then obtain

CaroWei(G) =
∑

v∈V

1
d(v) + 1

=
Δ∑

i=1

Oi · 1
i + 1

+
∑

v∈V ′

1
d(v) + 1

≥
Δ∑

i=1

Oi · 1
i + 1

+ |V ′| 1
Δ + 1

≥ 1
Δ + 1

Δ∑

i=1

Oi

(
Δ + 1
i + 1

+
i

Δ

)
(Applying (4))

=
1

Δ + 1

Δ∑

i=1

Oi

(
2 +

Δ − i

i + 1
− Δ − i

Δ

)

≥ 1
Δ + 1

Δ∑

i=1

Oi · 2

=
2

Δ + 1
α(G),

obtaining the approximation upper bound claimed. Observe that the bound is
tight only if the graph is regular.

To see that the ratio attained is no better than (Δ + 1)/2, observe that in
any regular graph, Boppana’s algorithm achieves a solution of exactly n/(Δ+1),
while in bipartite regular graphs the optimal solution has size n/2. ��
Remark. Selkow [24] generalized the Caro-Wei bound by extending Boppana’s
algorithm to two rounds. Namely, it adds also the nodes with no neighbor ordered
earlier among those that did not get removed in the first round. For regular
graphs, however, his bound reduces to the Caro-Wei bound, and thus does not
attain a better performance ratio, given our lower bound construction.

2.2 Caro-Wei in Sparse Graphs

We now analyze the performance of the Caro-Wei bound in terms of the average
degree d = 2m/n. We shall use a certain application of the Cauchy-Schwarz
inequality, which we state more generally in hindsight of its application in the
following section.

Lemma 1. If x1, x2, . . . , xN and w1, w2, . . . , wN are positive reals, then

N∑

i=1

w2
i

xi
≥

(∑N
i=1 wi

)2

∑N
i=1 xi

.

Simple and Local Independent Set Approximation 93

Proof. The Cauchy-Schwarz inequality implies that for u1, u2, . . . , uN and
v1, v2, . . . , vN ,

(
N∑

i=1

uivi

)2

≤
(

N∑

i=1

u2
i

)(
N∑

i=1

v2
i

)
.

The claim now follows using ui =
√

xi and vi = wi/
√

xi. ��
Note that applying Lemma 1 with wv = 1 and xv = d(v) + 1 yields that

CaroWei(G) =
∑

v∈V

1
d(v) + 1

≥ n2

∑
v(d(v) + 1)

=
n

d + 1
= Turán(G).

Theorem 2. CaroWei has performance ratio at most (d + 2)/1.657.

Proof. Let opt be an optimal independent set of size α = α(G) and let V ′ =
V \opt. Observe that when |V ′| = n−α ≥ α, the Turán bound gives n/(d+1) ≥
α · 2/(d + 1), for a performance ratio of at most (d + 1)/2. We assume therefore
that α ≥ 1

2n.
Our approach is to first apply Lemma 1 separately on the parts of

CaroWei(G) corresponding to opt and V ′. We then show that the worst case
occurs when all edges cross from opt to V ′, indeed when the graph is bipartite
with regular sides. Optimizing over the possible sizes of the sides then yields a
tight upper and lower bounds.

Let mopt denote the number of edges with an endpoint in opt, mV ′ the
number of edges with both endpoints in V ′ and m = mopt + mV ′ be the total
number of edges. Observe that

∑
v∈opt d(v) = mopt while

∑
v∈V ′ d(v) = mopt +

2mV ′ .
Lemma 1 (with wv = 1 and xv = d(v)+ 1) applied to opt and V ′ separately

yields that

CaroWei(G) =
∑

v∈opt

1
d(v) + 1

+
∑

v∈V ′

1
d(v) + 1

≥ α2

mopt + α
+

(n − α)2

mopt + 2mV ′ + (n − α)
,

Denoting t = mopt/m, we get that

CaroWei(G) ≥ α2

t · m + α
+

(n − α)2

(2 − t)m + n − α
. (5)

Considered as a function f of t, the r.h.s. of (5) has derivative

df

dt
= −m

α2

(tm + α)2
+ m

(n − α)2

((2 − t)m + n − α)2
.

94 R. B. Boppana et al.

Since we assume α ≥ n/2, it holds that α2(m + n − α)2 ≥ (n − α)2(m + α)2,
and thus df/dt ≤ 0 for all t ∈ [0, 1]. Hence, denoting τ = α/n, we obtain that

CaroWei(G) ≥ α2

m + α
+

(n − α)2

m + n − α
= α

(
τ

d/2 + τ
+

(1 − τ)2/τ

d/2 + 1 − τ

)
. (6)

The expression in the parenthesis then upper bounds the reciprocal of the per-
formance guarantee of CaroWei.

To see that (6) is tightest possible, consider bipartite graphs G with regular
sides. Let τ be such that τn is the size of the larger side and q is the degree
of those vertices. Then the number of edges is m = q · τn, average degree is
d = 2m/n = 2qτ , and the degree of the nodes on the other side is m/((1−τ)n) =
d/(2(1 − τ)). Clearly α(G) = τn, while the Caro-Wei bound gives

CaroWei(G) =
τn

d/(2τ) + 1
+

(1 − τ)n
d/(2(1 − τ)) + 1

= α(G)
(

1
d/(2τ) + 1

+
(1 − τ)/τ

d/(2(1 − τ)) + 1

)
,

which matches (6).
If we round up the lower order terms in the denominator of (6), we obtain a

simpler expression for the asymptotic performance with d:

CaroWei(G) ≥ α(G)
(

τ + (1 − τ)2/τ

d/2 + 1

)
,

which is minimized when τ = 1/
√

2, for a performance ratio at most (d +
2)/(4(

√
2 − 1)) ≤ (d + 2)/1.657. ��

2.3 Turán Bound

Recall Turán’s theorem that

α(G) ≥ Turán(G) =
n

d + 1
=

n2

2m + n
.

We find that the guarantee of the Turán bound is strictly weaker than that of
Caro-Wei, yet asymptotically equivalent.

Theorem 3. Turán has performance ratio
(2Δ + 1)2

8Δ
=

Δ + 1
2

+
1

8Δ
.

Proof. Because opt = V \V ′ is independent, each of the m edges of G is incident
to at least one vertex in V ′. Conversely, each vertex in V ′ is incident to at most
Δ edges. So by counting edges, we get

m ≤ Δ|V ′| = Δ(n − α).

Simple and Local Independent Set Approximation 95

Therefore

2m + n ≤ 2Δ(n − α) + n = (2Δ + 1)n − 2Δα.

Multiplying by 8Δα and using the inequality 4xy ≤ (x + y)2 gives

8Δα(2m + n) ≤ 4(2Δα)[(2Δ + 1)n − 2Δα] ≤ [(2Δ + 1)n]2.

Dividing both sides by 8Δ(2m + n) gives

α ≤ (2Δ + 1)2

8Δ
· n2

2m + n
=

(2Δ + 1)2

8Δ
Turán(G).

The argument above shows that the performance ratio of Turán’s bound is
at most (2Δ+1)2

8Δ . This performance ratio is tight as a function of Δ. To see
why, given Δ > 0, let A, B, and C be disjoint sets of size 2Δ − 1, 2Δ − 1,
and 2, respectively. Let G be any Δ-regular bipartite graph with parts A and
B, together with two isolated vertices in C. We can check that n = 4Δ, m =
(2Δ − 1)Δ, Turán(G) = 8Δ

2Δ+1 , and α(G) = 2Δ + 1. So the performance ratio

of Turán’s bound on this graph is indeed (2Δ+1)2

8Δ . ��

2.4 Limitations of Distributed Algorithms

We may assume that we are equipped with unique labels from a universe of N
labels, where N ≥ Δ · n. The nodes have knowledge of n, Δ and N , and have
unlimited bandwidth and computational ability. The nodes have distinct ports
for communication with their neighbors, but do not initially know their labels.

Our result for Boppana’s algorithm is optimal for 1-round algorithms.
Observe that the lower bounds below hold also for randomized algorithms.

Theorem 4. Every 1-round distributed algorithm has performance ratio at least
(Δ + 1)/2, even on unweighted regular graphs.

Proof. In a single round, each node can only learn the labels of their neighbors
and their random bits.

Consider the graph G1 = KΔ+1, and G2, which is any Δ-regular bipartite
graph. Distributions over neighborhoods are identical. Hence, no 1-round algo-
rithm can distinguish between these graphs.

All nodes will join the independent set with the same probability, averaged
over all possible labelings, since they share the same views. This probability
can be at most 1/(Δ + 1), as otherwise the algorithm would produce incorrect
answers on KΔ+1. The size of the solution is then at most n/(Δ + 1), while on
every Δ-regular bipartite graphs, the optimal solution contains n/2 nodes. ��

It is not clear if better results can be obtained when using more rounds. A
weaker lower bound holds even for nearly logarithmic number of rounds.

96 R. B. Boppana et al.

Theorem 5. There are positive constants c1 and c2 such that the following
holds: Every c1 logΔ n-round distributed algorithm has performance ratio at least
c2Δ/ log Δ.

Proof. Alon [1] constructs a Δ-regular graph G1 of girth Ω(log n/ log Δ) with
independence number O(n/Δ · log Δ), and notes that it is well known that there
exists a bipartite Δ-regular graph G2 of girth Ω(log n/ log Δ). The distributions
over the k-neighborhoods of these graphs are identical, for k = O(log n/ log Δ).
Hence, no k-round distributed algorithm can distinguish between the two. ��

3 Approximations for Weighted Graphs

In the weighted setting, each node v is assigned a positive integral weight w(v)
and the objective is to find an independent set I maximizing the total weight∑

v∈I w(v). For a set X ⊆ V , denote w(X) =
∑

x∈X w(x).
Boppana’s algorithm can be applied unchanged to weighted graphs, produc-

ing a solution B of expected weight

E[w(B)] =
∑

v∈B

w(v) · 1
d(v) + 1

,

by linearity of expectation. This immediately implies that E[w(B)] ≥ w(V)/(Δ+
1), for a performance ratio at most Δ+1. To see that this is also the best possible
bound, consider the complete bipartite graphs KN,N , where the nodes on one
side have weight 1 and on the other side weight Q, for a parameter Q ≥ Δ2. The
expected weight of the algorithm solution is (N+NQ)/(Δ+1), while the optimal
solution is of weight NQ. The performance ratio is then (Δ+1)/(1+1/Q), which
goes to Δ + 1 as Q gets large.

We therefore turn our attention to modifications that take the weights into
account.

3.1 Modified Algorithm

We consider now a variation, Max, previously considered in an online setting
in [15].

Each node v picks a random real number xv uniformly from [0, 1]. It
broadcasts the values xv and wv to its neighbors, who compute from it
rv = x

1/wv
v . As before, each node u joins the solution if its value ru is the

highest among its neighbors.

The only difference is the computation of rv, which now depends on the weight
wv. Again the algorithm runs in a single round of Broadcast-CONGEST, with
correctness following as before. The algorithm was previously shown in [15] to
attain a Δ-approximation.

We obtain a tight bound, which does not have a nice closed expression.

Simple and Local Independent Set Approximation 97

Theorem 6. The performance ratio ρ(Δ) of Max, as a function of Δ, is
given by

1
ρ(Δ)

= min
x∈[0,1]

(
x2

Δ + x
+

1
xΔ + 1

)
.

We prove Theorem 6 in the following subsection.
If we focus on the asymptotics as Δ gets large, we can ignore the additive

terms in the denominators, obtaining that the performance ratio approaches

1
ρ(Δ)

→
Δ→∞

min
x∈[0,1]

(
x2

Δ + 1
+

1
x(Δ + 1)

)
=

minx∈[0,1]

(
x2 + 1/x

)

Δ + 1
.=

1
ρ̃(Δ)

.

The derivative is of g(x) = x2 + 1/x is dg(x)
dx = 2x − 1/x2. Hence, ρ̃(Δ) is

maximized when x = 2−1/3 for a ratio of

ρ̃(Δ) =
22/3

3
(Δ + 1) ∼ (Δ + 1)/1.89 ∼ 0.529(Δ + 1).

Theorem 7. The asymptotic performance ratio of Max is 22/3

3 (Δ + 1) ∼
0.529(Δ + 1).

Figure 1 shows ρ(Δ)/(Δ + 1) as a function of Δ.
For Δ = 2, we find that 1/ρ ∼ 0.593, or ρ ∼ 1.657 ∼ 0.562(Δ + 1), which

is about 6% larger than 0.529(Δ + 1), but 20% smaller than Δ. For Δ = 1,
the algorithm can be made optimal by preferring nodes with higher weight than
their sole neighbor.

0 5 10 15 20 25 30

0.53

0.54

0.55

0.56

Δ

f
(Δ

)

ρ(Δ)
Δ+1

0.529

Fig. 1. Bounds on performance ratio, for small values of Δ.

98 R. B. Boppana et al.

3.2 Analysis

The key property of the Max rule that leads to improved approximation is that
the probability that a node is selected is now proportional to the fraction of its
weight within its closed neighborhood (consisting of itself and its neighbors). We
then obtain a bound in terms of weights of sets of nodes – the optimal solution
and the remaining nodes – using the Cauchy-Schwarz inequality. We safely upper
bound the degree of each node by Δ, but the main effort then is to show that
the worst case occurs when the graph is bipartite with equal sides. This leads to
matching upper and lower bounds.

Let N(v) denote the set of neighbors of vertex v and N [v] = {v} ∪ N(v) its
closed neighborhood. Let Max also refer to the set of nodes selected by Max.

The key property of the Max rule is that the probability that a node is
selected is now proportional to the fraction of its weight within its closed neigh-
borhood. We provide a proof for the next lemma for completeness.

Lemma 2 ([15]). For each vertex v ∈ V , we have that P[v ∈ Max] =
w(v)

w(N [v])
.

Proof. Let rmax = max{ru : u ∈ N(v)}. By independence of the random choices
we have, for α ∈ [0, 1], that

P[rmax < α] =
∏

u∈N(v)

P[ru < α] =
∏

u∈N(v)

P[xu < αw(u)] = α
∑

u∈N(v) w(u) = αw(N(v)).

It follows that rmax has distribution Dw(N(v)), where the distribution Dz has
density fz(α) = zαz−1, for α ∈ [0, 1]. Hence,

P[rv > rmax] =
∫ 1

0

P[rmax < α] · frv
(α)dα

=
∫ 1

0

αw(N(v)) · w(v)αw(v)−1dα =
w(v)

w(N [v])
,

as required. ��
Note that by Lemma 2 and linearity of expectation, we have that

E[w(S ∩ Max)] =
∑

v∈S

P[v ∈ Max] · w(v) =
∑

v∈S

w(v)2

w(N [v])
, (7)

for any subset S ⊆ V . Applying Lemma 1 (with xv = w(N [v])) gives:

Lemma 3. For any subset S ⊆ V we have that

E[w(S ∩ Max)] ≥ w(S)2∑
v∈S w(N [v])

.

Applying Lemma 3 with S = V gives an absolute lower bound on the solution
size.

Simple and Local Independent Set Approximation 99

Lemma 4. E[w(Max)] ≥ w(V)2∑
v∈V w(N [v])

=
w(V)2∑

v∈V (d(v) + 1)w(v)
≥ w(V)

Δ + 1
.

We need the following lemma when showing that worst case occurs for bipar-
tite graphs.

Lemma 5. Let a > b > 0 and let Z − Y ≥ X > 0. Then

min
t∈[0,1]

{
a

Y + tX
+

b

Z + (1 − t)X

}
=

a

Y + X
+

b

Z
.

Proof. Let f(t) = a
Y +tX + b

Z+(1−t)X . We have that

df(t)
dt

= − aX

(Y + tX)2
+

bX

(Z + (1 − t)X)2
,

which is negative for any t ∈ [0, 1], since a > b and Y + tX ≤ Z + (1 − t)X. ��
Now we are ready to prove Theorem 6.

Proof (of Theorem 6). Let opt be an optimal solution, and define V ′ .= V \opt,
and β

.= w(V ′)/w(opt). When β ≥ 1, Lemma 4 implies that the performance
ratio is at most (Δ + 1)/2. We therefore focus on the case where β < 1.

We first apply Lemma 3 separately on opt and on V ′, obtaining:

w(Max) = w(Max ∩ opt)) + w(Max ∩ V ′)

≥ w(opt)2∑
v∈opt w(N [v])

+
w(V ′)2∑

v∈V ′ w(N [v])
. (8)

Let W =
∑

v∈V ′ w(v) · |N(v) ∩ opt| =
∑

v∈opt w(N(v)) be the weighted
degree of the nodes of V ′ into opt, which can be viewed as the total of the
weights of neighborhoods of nodes in opt. Thus,

∑

v∈opt

w(N [v]) = w(opt) +
∑

v∈V ′
w(v)|N(v) ∩ opt| = w(opt) + W. (9)

and
∑

v∈V ′
w(N [v]) = w(V ′) +

∑

v∈V ′
w(N(v))

= w(V ′) +
∑

v∈opt

w(v) · |N(v) ∩ V ′| +
∑

v∈V ′
w(v) · |N(v) ∩ V ′|

≤ w(V ′) + Δw(opt) +
∑

v∈V ′
w(v) · (Δ − |N(v) ∩ opt|)

= w(V ′) + Δw(opt) + Δw(V ′) − W. (10)

Applying (9) and (10) to (8) gives

w(Max) ≥ w(opt)2

w(opt) + W
+

w(V ′)2

w(V ′) + Δw(opt) + Δw(V ′) − W
.

100 R. B. Boppana et al.

Since β < 1 and W ≤ Δw(V ′) we can use Lemma 5 with a = w(opt)2, b =
w(V ′)2, Y = w(opt), Z = w(V ′) + Δw(opt), X = Δw(V ′), and t = W/X.
Hence,

w(Max) ≥ w(opt)2

w(opt) + Δw(V ′)
+

w(V ′)2

w(V ′) + Δw(opt)

= w(opt) ·
(

1
1 + Δβ

+
β2

β + Δ

)
. (11)

The upper bound of the theorem therefore follows.
To see that bound (11) is tight, consider any Δ-regular bipartite graph G =

(V,E) with V partitioned into two sets L and R, where |L| = |R|. Set the weight
of nodes in L and in R as 1 and β, respectively, for some β ≤ 1. Clearly, the
weight of the optimal solution is w(opt) = |L|. Observe that

w(Max) = |L| · 1
1 + Δβ

+ |R|β · β

β + Δ
= w(opt) ·

(
1

1 + βΔ
+

β2

β + Δ

)
,

matching (11). ��
Remark. Sakai et al. [23] considered the following greedy algorithm (named
GWMIN2): add the vertex v maximizing w(v)/w(N [v]) to the solution, remove
its closed neighborhood, and recurse on the remaining graph. They derived a
(Δ + 1)-approximation upper bound but not a matching lower bound. Since
their algorithm attains the bound (7) (see [23]), our analysis implies that it also
attains the bound of Theorem 6.

4 Conclusion

It is surprising that the best distributed approximations known of independent
sets are obtained by the simplest algorithm. Repeating the algorithm on the
remaining graph will certainly give a better solution – the challenge is to quantify
the improvement.

References

1. Alon, N.: On constant time approximation of parameters of bounded degree graphs.
In: Goldreich, O. (ed.) Property Testing - Current Research and Surveys. LNCS,
vol. 6390, pp. 234–239. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16367-8 14

2. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)

3. Alon, N., Spencer, J.H.: The Probabilistic Method, 4th edn. Wiley, Hoboken (2016)
4. Austrin, P., Khot, S., Safra, M.: Inapproximability of vertex cover and independent

set in bounded degree graphs. In: 24th IEEE CCC, pp. 74–80 (2009)
5. Bansal, N., Gupta, A., Guruganesh, G.: On the Lovász theta function for indepen-

dent sets in sparse graphs. In: 47th ACM STOC, pp. 193–200 (2015)

https://doi.org/10.1007/978-3-642-16367-8_14
https://doi.org/10.1007/978-3-642-16367-8_14

Simple and Local Independent Set Approximation 101

6. Bar-Yehuda, R., Censor-Hillel, K., Ghaffari, M., Schwartzman, G.: Distributed
approximation of maximum independent set and maximum matching. In: PODC,
pp. 165–174 (2017)

7. Berman, P., Fujito, T.: On approximation properties of the independent set prob-
lem for low degree graphs. Theor. Comput. Syst. 32(2), 115–132 (1999)

8. Bodlaender, M.H., Halldórsson, M.M., Konrad, C., Kuhn, F.: Brief announcement:
local independent set approximation. In: PODC, pp. 377–378. ACM (2016)

9. Boppana, R.B.: Personal communication to Joel Spencer (1987)
10. Caro, Y.: New results on the independence number. Technical report, Tel Aviv

Univ. (1979)
11. Censor-Hillel, K., Khoury, S., Paz, A.: Quadratic and near-quadratic lower bounds

for the CONGEST model. In: 31st International Symposium on Distributed Com-
puting, pp. 10:1–10:16 (2017)

12. Chan, S.O.: Approximation resistance from pairwise-independent subgroups. J.
ACM 63(3), 27 (2016)

13. Chvátal, V., McDiarmid, C.: Small transversals in hypergraphs. Combinatorica
12(1), 19–26 (1992)

14. Cormode, G., Dark, J., Konrad, C.: Independent set size approximation in graph
streams. Technical report arXiv:1702.08299, CoRR (2017)

15. Emek, Y., Halldórsson, M.M., Mansour, Y., Patt-Shamir, B., Radhakrishnan, J.,
Rawitz, D.: Online set packing. SIAM J. Comput. 41(4), 728–746 (2012)

16. Erdős, P.: On the graph theorem of Turán. Mat. Lapok 21, 249–251 (1970). (in
Hungarian)

17. Ghaffari, M., Kuhn, F., Maus, Y.: On the complexity of local distributed graph
problems. In: 49th Annual ACM SIGACT Symposium on Theory of Computing,
pp. 784–797 (2017)

18. Griggs, J.R.: Lower bounds on the independence number in terms of the degrees.
J. Combin. Theor. B 34, 22–39 (1983)

19. Halldórsson, B.V., Halldórsson, M.M., Losievskaja, E., Szegedy, M.: Streaming
algorithms for independent sets in sparse hypergraphs. Algorithmica 76, 490–501
(2016)

20. Halldórsson, M., Radhakrishnan, J.: Greed is good: approximating independent
sets in sparse and bounded-degree graphs. Algorithmica 18(1), 145–163 (1997)

21. Halldórsson, M.M., Konrad, C.: Computing large independent sets in a single
round. Distrib. Comput. 31(1), 69–82 (2018)

22. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: lower and upper
bounds. J. ACM 63(2), 17:1–17:44 (2016)

23. Sakai, S., Togasaki, M., Yamazaki, K.: A note on greedy algorithms for the maxi-
mum weighted independent set problem. Discrete Appl. Math. 126(2–3), 313–322
(2003)

24. Selkow, S.M.: A probabilistic lower bound on the independence number of graphs.
Discrete Math. 132(1–3), 363–365 (1994)

25. Turán, P.: On an extremal problem in graph theory. Mat. Fiz. Lapok 48, 436–452
(1941). (in Hungarian)

26. Wei, V.: A lower bound on the stability number of a simple graph. Technical report,
Bell Laboratories (1981)

http://arxiv.org/abs/1702.08299

On the Strongest Message Adversary
for Consensus in Directed Dynamic

Networks

Ulrich Schmid, Manfred Schwarz(B), and Kyrill Winkler

Embedded Computing Systems Group, TU Wien, Vienna, Austria
{s,mschwarz,kwinkler}@ecs.tuwien.ac.at

Abstract. Inspired by the successful chase for the weakest failure detec-
tor in asynchronous message passing systems with crash failures and sur-
prising relations to synchronous directed dynamic networks with message
adversaries established by Raynal and Stainer [PODC’13], we introduce
the concept of message adversary simulations and use it for defining a
notion for strongest message adversary for solving distributed comput-
ing problems like consensus and k-set agreement. We prove that every
message adversary that admits all graph sequences consisting of perpet-
ual star graphs and is strong enough for solving multi-valued consensus
is a strongest one. We elaborate on seemingly paradoxical consequences
of our results, which also shed some light on the fundamental difference
between crash-prone asynchronous systems with failure detectors and
synchronous dynamic networks with message adversaries.

Keywords: Dynamic networks · Strongest message adversary
Failure detectors · Consensus

1 Introduction

Synchronous distributed systems consisting of a possibly unknown number n
of processes that never fail but where a message adversary (MA) [1] controls
the ability to communicate is a well-established model for dynamic networks
[24]. Runs are determined by sequences of communication graphs G1,G2, . . .
here, where a directed edge (p, q) is in Gr iff the message adversary does not
suppress the message sent by p to q in round r; we will use the notation p →r q
to concisely express this. A message adversary can be identified by the set of
(infinite) graph sequences it may generate, which are called admissible graph
sequences. Research has provided various possibility and impossibility results
for agreement problems, in particular, (deterministic) consensus, in this setting,
both in undirected [25] and directed dynamic networks [7–9,32,33]. Albeit these

This work has been supported by the Austrian Science Fund FWF under the projects
ADynNet (P28182) and RiSE/SHiNE (S11405).

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 102–120, 2018.
https://doi.org/10.1007/978-3-030-01325-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_13&domain=pdf

On the Strongest Message Adversary 103

results enclose the impossibility/possibility border of consensus quite tightly, no
“strongest” message adversary for consensus is known yet.

Raynal and Stainer [29] established an interesting relation between syn-
chronous systems (abbreviated SMP) with message adversaries and asyn-
chronous message-passing systems (abbreviated AMP) with process crashes
augmented by failure detectors [12]. Among other results, they showed that
AMP in conjunction with the weakest failure detector (Ω,Σ) for consensus with
an arbitrary number of crashes [17] can be simulated in SMP with the mes-
sage adversary (SOURCE,QUORUM) (and vice versa). This message adversary
guarantees communication graphs that are all rooted1 and where, for every pair
of processes p, q and every pair of rounds r, r′, there is some process � such that
� →r p and � →r′ q. Additionally, there is a process p and some round r0 such
that for all processes q and all rounds r > r0 we have p →r q. Consequently,
every (Ω,Σ)-based consensus algorithms for AMP can be employed atop of this
simulation in SMP with (SOURCE,QUORUM).

However, the question arises whether failure detector-based consensus algo-
rithms on top of failure detector implementations can indeed compete with
specifically designed consensus algorithms for SMP for some given MA. In par-
ticular, is it always possible to implement the weakest failure detector (Ω,Σ)
atop of SMP with a message adversary that admits a consensus algorithm?
Conversely, given that (Ω,Σ) is a weakest failure detector for consensus, is it
somehow possible to simulate SMP with a strong(est) message adversary for
consensus atop of AMP augmented with (Ω,Σ)? Interestingly, it follows from
our results in [9] that neither is possible: Σ cannot be implemented in SMP
with some message adversary VSSCD,E(∞) that admits a consensus algorithm,
and the latter cannot be implemented in AMP equipped with (Ω,Σ) either.
Essentially, the reason is that all properties achievable in AMP with failure
detectors are inherently time-free, i.e., of eventual-type, whereas SMP with
message adversaries facilitates time-dependent properties: The latter are some-
times too short-lived to guarantee eventual properties, however, and, conversely,
cannot be extracted from eventual properties either.

In this paper, we avoid the detour via failure detectors and introduce the
simple concept of message adversary simulations in SMP, using the HO model
[15] as a basis. Inspired by the definition of a weakest failure detector, we also
define a notion for a strongest message adversary : A strongest MA S for a given
problem P is such that (i) it admits a solution algorithm for the problem P in
SMP equipped with S, and (ii) every MA A that admits a solution algorithm
for P in SMP with A allows to simulate SMP equipped with S.

Using MA simulations, we prove that the message adversary STAR (which
generates an infinite sequence of identical star graphs G,G, . . .) is a strongest
message adversary for multi-valued consensus. Moreover, we show that every
message adversary A that satisfies STAR ⊆ A and allows to solve multi-
valued consensus is also a strongest message adversary. It hence turns out
that both (SOURCE,QUORUM) and VSSCD,E(∞) are strongest message

1 A graph is rooted if it has a rooted directed spanning tree.

104 U. Schmid et al.

adversaries, even though neither (SOURCE,QUORUM) ⊆ VSSCD,E(∞) nor
(SOURCE,QUORUM) ⊇ VSSCD,E(∞) holds. Moreover, there are interesting
and sometimes apparently paradoxical consequences resulting from our findings,
like the one that AMP with (Ω,Σ) allows to simulate SMP with the strongest
message adversary (SOURCE,QUORUM), which in turn can be transformed
into SMP with the strongest message adversary VSSCD,E(∞), which in turn
does not allow to simulate AMP with (Ω,Σ)!

The remainder of our paper is organized as follows: After a short account
of related work in Sect. 2, we define our synchronous message passing models
SMP with message adversaries in Sect. 3. Asynchronous message passing models
AMP with failure detectors are introduced in Sect. 4, along with a collection of
failure detector-related definitions and results. In Sect. 5, we introduce a simple
simulation relation between message adversaries and prove that the message
adversary STAR is strongest for solving consensus in SMP. We also show that
this result generalizes to a fairly large class of strongest message adversaries.
In Sect. 6, we discuss the consequences arising from the fact that STAR is a
strongest message adversary. Some conclusions in Sect. 7 complete our paper.

2 Related Work

There is a huge amount of work on relations between different distributed com-
puting models. The implementability of failure detectors in timing-based models
of computation has already been addressed in Chandra and Toueg’s seminal work
[12], and received quite some attention in the chase for the weakest system model
for implementing Ω [2–5,19,21,26,27].

There are also several papers that establish more abstract relations between
various synchronous models and asynchronous models with failure detectors. For
example, Charron-Bost, Guerraoui and Schiper showed that the partially syn-
chronous model [18] with Φ = 1 and Δ ≥ 1 is not equivalent to the asynchronous
model with perfect failure detectors in terms of problem solvability. Rajsbaum,
Raynal and Travers showed in [28] that failure detectors do not increase the
solution power of the iterated immediate snapshot model over asynchronous
read/write shared memory. A more general relation between various eventu-
ally synchronous models and asynchronous models with stabilizing failure detec-
tors, which also considers efficiency of the algorithmic transformations, has been
established by Biely et. al. in [6]: Among other results, it establishes that Ω is
essentially equivalent to models with an eventually timely source, as well as to
eventual lock-step rounds. [14,22] shed some light on limitations of the failure
detector abstraction in timing-based models of computation, which are relevant
in our context.

Research on consensus in synchronous message passing systems subject to
communication failures dates back at least to the seminal paper [30] by Santoro
and Widmayer; generalizations have been provided in [10,13,15,16,31]. The term
message adversary was coined by Afek and Gafni in [1]. Whereas the message
adversaries in all the work above are oblivious, in the sense that they may choose

On the Strongest Message Adversary 105

the graph for a round arbitrarily from a fixed set of graphs, [7] and some follow-up
work [8,32] allows arbitrary sequences of communication graphs (that can also
model stabilizing behavior, for example). In [29], Raynal and Stainer related
stabilizing message adversaries to asynchronous systems with failure detectors,
which actually stimulated our interest in the problem addressed in this paper.
As our first step, we showed in [9] that Σ cannot be implemented in SMP
with message adversary VSSCD,E(∞) that admits a consensus algorithm, and
the latter cannot be implemented in AMP equipped with (Ω,Σ) either. In this
paper, we will show that these results also hold for a simpler message adversary.

Researchers have also developed several “round-by-round” frameworks, which
allow to relate models of computation with different degrees of synchrony and
failures. Examples are round-by-round fault detectors by Gafni [20], the GIRAF
framework by Keidar and Shraer [23], and the HO model by Charron-Bost and
Schiper [15].

3 The Model SMP
The model for SMP used in this paper will be based on the HO model intro-
duced in [15], which provides all the features needed for defining our MA simula-
tions. It consists of a non-empty set Π = {p1, . . . , pn} of n processes with unique
ids, and a set of messages M , which includes a null placeholder indicating the
empty message. Each process p ∈ Π consists of the following components: a set
of states denoted by statesp, a subset initp of initial states, for each positive
integer r ∈ N∗, called round number, a message sending function Sr

p mapping
states p×Π to a unique (possibly null) message mp, and a state-transition func-
tion T r

p mapping statesp and partial vectors (indexed by Π) zp of elements of
M to statesp. The collection of the pairs of message sending function and state-
transition function of the processes for every round r > 0 is called an algorithm
on Π.

Computations in the HO model are composed of infinitely many rounds,
which are communication-closed layers in the sense that any message sent in a
round can be received only at that round. In each round r, process p first applies
Sr

p to the current state sr−1
p ∈ statesp, emits the messages to be sent to each

process, and then, for a subset HO(p, r) of Π (indicating the processes which
p hears of), applies T r

p to its current state and the partial vector of incoming
messages whose support is HO(p, r) to compute sr

p.
A communication predicate P is defined to be a predicate over heard-of

collections, that is a Boolean function over the collections of subsets of Π indexed
by Π × N∗:

P : (2Π)Π×N∗ ⇒ {true, false}
Rather than directly using communication predicates for describing our mes-

sage adversaries, however, we will exploit the fact that we can easily derive Gr,
given HO(p, r) for all p ∈ Π. Consequently, we will usually stick to the admissi-
ble graph sequences of a given MA, and make the trivial assumption that they
are translated to the according communication predicate.

106 U. Schmid et al.

In order to describe information propagation in a sequence Gr,Gr+1 . . . ,Gr+�

of communication graphs, the notion of edges in the compound graph Gr ◦Gr+1 ◦
· · · ◦ Gr+� becomes useful: Given two graphs G = 〈V,E〉, G′ = 〈V,E′〉 with the
same vertex-set V , the compound graph G ◦ G′ := 〈V,E′′〉 where p → q ∈ E′′

if and only if for some p′ ∈ V : p → p′ ∈ E and p′ → q ∈ E′. By sr
p � sr′

q ,
we express the fact that (the state sr

p of) p at the end of round r influences
(the state sr′

q of) q at the end of round r′, which obviously requires a chain of
messages from p to q. Consequently, sr

p � sr′
q if and only if p → q in Gr ◦· · ·◦Gr′ .

Following [29], the abbreviation used for such models in the sequel is
SMPn[adv : MA], where n is the number of processes and MA is the name
assigned to a set of admissible graph sequences. For example, SMPn[adv :
SOURCE,QUORUM] denotes the synchronous model with message adversary
(SOURCE,QUORUM) defined below.

We will restrict our attention to the (uniform2) consensus problem in this
paper, which is defined as follows: Every process p ∈ Π has an input value
xp ∈ V from some arbitrary domain V (we use the term multi-valued consensus
when it is important to stress that V is not restricted) and a decision value yp,
initially undefined yp = ⊥. Uniform consensus requires every process p that does
not crash before it decides to irrevocably assign a value from V to yp according
to the following properties:

(V) Validity: yp has to be equal to one of the xq’s.
(A) Agreement: yp = yq for every pair of processes p, q ∈ Π that decide.
(T) Termination: yp has to be assigned a value in finite time at every process p

that does not crash in the run.

A generalization/relaxation of consensus is k-set agreement [11], which allows
at most k different decision values system-wide; 1-set agreement is equivalent to
consensus.

We say that a problem like consensus is impossible under some model
SMPn[adv : MA], if there is no deterministic algorithm that solves the prob-
lem for every admissible communication graph sequence of MA. For example,
every problem that requires at least some communication among the processes is
impossible under the unrestricted message adversary ∞, as the sequence G,G, . . .
where G does not contain even a single edge is also admissible here.

We will now specify four message adversaries, which are primarily used in
this paper. The first two, Definitions 1 and 2, are simplified versions of MAs
introduced in [9], where we strengthened the properties as much as possible,
albeit in a way that neither sacrificed their sufficiency for solving consensus
resp. k-set agreement nor their insufficiency for implementing certain failure
detectors.

Definition 1 (Message adversary VSSC(∞)). The message adversary
VSSC(∞) is the set of all sequences of communication graphs (Gr)r>0, where
the following holds:
2 Note that we will also study consensus in asynchronous systems with crash failures

later on. In SMP, no process ever crashes.

On the Strongest Message Adversary 107

(i) For every round r > 0, ∃p ∈ Π,∀q ∈ Π: there exists a (directed) path from
p to q in every Gr.

(ii) There exists a round r > 0 such that ∀r′ > r : Sr = Sr′ , where the set Sr is
such that p ∈ Sr if ∀q ∈ Π: there exists a path from p to q in Gr.

The property that the set S consists of the same vertices for some duration
or even, as in (ii) above, forever is called vertex stability [9].

Definition 2 (k-set message adversary VSSCk(∞)). The message adversary
VSSCk(∞) is the set of all sequences of communication graphs (Gr)r>0, where

(i) there is some k > 0 and P1 ∪ · · · ∪ Pk = Π, such that, in every Gr, r > 0,
every Pi is an isolated, weakly connected component,

(ii) VSSC(∞) holds independently in every partition Pi.

Since it turns out that VSSC(∞) ⊂ VSSCD,E(d) for D = E = n − 1, d = ∞,
where VSSCD,E(d) is a message adversary introduced in [9] that allows to solve
consensus, it follows that consensus can also be solved in SMPn[adv : VSSC(∞)]
(by using the consensus algorithm for VSSCD,E(d)), and that k-set agreement
can be solved in SMPn[adv : VSSCk(∞)] (by the same algorithm). In order
to prove that VSSC(∞) resp. VSSCk(∞) allow to solve consensus resp. k-set
agreement, we need to restate some basic notation (Definitions 3–7) from [9].

Definition 3 (Source Component). A source component S �= ∅ of a graph G
is the set of vertices of a strongly connected component in G that has no incoming
edges from other components, formally ∀p ∈ S,∀q ∈ G : q → p ∈ G ⇒ q ∈ S.

Note that every weakly connected directed simple graph G has at least one source
component. If a graph G contains only one source component S, it is called a
root component.

Vertex-stable source/root components are source components that remain
the same for multiple rounds in a given graph sequence, albeit their actual inter-
connection topology may vary.

Definition 4 (Vertex-Stable Source Component). Given a graph sequence
(Gr)r>0, we say that the consecutive sub-sequence of communication graphs Gr

for r ∈ I = [a, b], b ≥ a, contains an I-vertex-stable source component S, if, for
r ∈ I, every Gr contains S as a source component.

We abbreviate I-vertex-stable source component as I-VSSC, and write |I|-VSSC
if only the length of I matters. Note carefully that we assume |I| = b − a + 1
here, since I = [a, b] ranges from the beginning of round a to the end of round b.

One can show that a certain amount of information propagation is guaranteed
in any strongly connected component C that is vertex-stable, i.e., whose vertex
set remains the same, for a given number of rounds:

Lemma 1. Let C ⊆ Π with |C| > 1, let a ∈ N and let C form a SCC of Gr for
all r ∈ [a + 1, a + |C| − 1]. Then, ∀p, q ∈ C, it holds that sa

p � s
a+|C|−1
q .

108 U. Schmid et al.

Corollary 1 follows immediately from Lemma 1 and the fact that, by defini-
tion, VSSCs are strongly connected components.

Corollary 1. For every I-vertex-stable source component S with |S| > 1 and
I = [a, b], it holds that ∀p, q ∈ S, ∀x, y ∈ I: y ≥ x + |S| − 2 ⇒ sx−1

p � sy
q .

In order to also model message adversaries that guarantee faster information
propagation, Definition 5 introduces a system parameter D ≤ n − 1, called the
dynamic source diameter.

Definition 5 (D-bounded I-VSSC). A I-VSSC S is D-bounded with
dynamic source diameter D, if ∀p, q ∈ S, ∀r, r′ ∈ I: r′ ≥ r+D−1 ⇒ sr−1

p � sr′
q .

Analogous considerations apply for the dynamic network depth E ≤ n − 1 in
communication graphs Gr with a single source component.

Definition 6 (E-influencing I-VSSC). A I-VSSC S is E-influencing with
dynamic network depth E, if ∀p ∈ S, ∀q ∈ Π, ∀r, r′ ∈ I: r′ ≥ r + E − 1 ⇒
sr−1

p � sr′
q .

We can now specify the message adversary VSSCD,E(d) introduced in [7,9],
which allows to solve consensus for a sufficiently large d (in particular, for d =
∞):

Definition 7 (Consensus message adversary VSSCD,E(d)). For d > 0, the
message adversary VSSCD,E(d) is the set of all sequences of communication
graphs (Gr)r>0, where

(i) for every round r, Gr contains exactly one source component,
(ii) all vertex-stable source components occurring in any (Gr)r>0 are D-bounded

and E-influencing
(iii) for each (Gr)r>0, there exists some rST > 0 and an interval of rounds J =

[rST , rST +d−1] with a D-bounded and E-influencing J-vertex-stable source
component.

We conclude this paragraphs by showing that VSSC(∞) ⊂ VSSCD,E(d)
for D = E = n − 1. This follows immediately from setting, in addition to
D = E = n − 1, d = ∞ and the following facts:

(1) (i) demands in both adversaries that every graph is rooted.
(2) (ii) is trivially fulfilled by any rooted graph sequence if D = E = n − 1, as

shown by Corollary 1.
(3) If d = ∞, (iii) demands in both cases that the single source component

eventually consists of the same vertices forever.

Thus, VSSC(∞) = VSSCn−1,n−1(∞) holds. Solvability for VSSCk(∞) follows
from the fact that the solution algorithm for VSSC(∞) can be run in every
partition: as consensus is solved in every partition, k-set agreement is guaranteed
for the whole system.

The next two message adversaries have been introduced in [29]: SOURCE
requires that, eventually, there is a round after which some process successfully
sends a message to every process in the system:

On the Strongest Message Adversary 109

Definition 8 (Message adversary SOURCE). The message adversary
SOURCE is the set of all sequences of communication graphs (Gr)r>0, where
∃p ∈ Π : ∃r0 ≥ 1 : ∀r ≥ r0 : ∀q ∈ Π : p →r q.

QUORUM requires that every two processes p, q ∈ Π hear from some com-
mon process � ∈ Π, in every pair of rounds rp, rq. Moreover, it requires that
the set of processes that appear strongly correct (formally introduced in Defini-
tion 14) is non-empty:

Definition 9 (Message adversary QUORUM). The message adversary
QUORUM is the set of all sequences of communication graphs (Gr)r>0, where
∀p, q ∈ Π : ∀rp, rq : ({� : � →rp

p} ∩ {� : � →rq
q} �= 0)], and the set of strongly

correct processes is not empty.

SMPn[adv : SOURCE,QUORUM] and SMPn[adv : VSSC(∞)] allow a
solution algorithm for consensus according to [29] and [9], respectively.

4 Failure Detectors in Asynchronous Systems

In asynchronous systems (AMP), processes may take steps at any time, and
the time between two steps must be finite and larger than 0. Given some initial
configuration C0 = (s01, . . . , s

0
n) consisting of the initial states of all processes,

a run (also called execution) in AMP is a sequence of infinitely many steps of
every process starting from C0, where every message sent must eventually be
received and processed in finite time (except when failures occur, see below).
Note that the end-to-end delay of a single message, from the time it is broadcast
to the time it is received and processed, can be different for different recipients.
Conceptually, we assume a (non-observable) clock with domain T = {0, 1, 2, . . . }
and require all computing steps in a run to occur synchronized with this clock.

A convenient way to characterize consensus and k-set solvability in dis-
tributed systems where processes are (usually) subject to crash failures are
(weakest) failure detectors [12]. Again, we restate the appropriate notations from
[9].

Definition 10 (Process crashes). We say that process pi crashes at time
t ≥ 0, if it stops executing its computing step at time t (possibly leaving it
incomplete) and does not execute further steps at time t′ > t.

A failure detector [12] is an oracle that can be queried by any process in
any computing step. Formally, a failure detector D with range R maps each
failure pattern F to a non-empty set of histories with range R, where a history
H with range R is a function H : Π × T → R. The failure pattern is a function
F : T → 2Π that maps each t ∈ T to the processes that have crashed by t.
The set of all possible failure patterns is called the environment. Finally, D(F)
denotes the set of possible failure detector histories permitted by D for the failure
pattern F .

110 U. Schmid et al.

Definition 11. AMPn,x[fd : FD] denotes the asynchronous message passing
model consisting of n processes, at most x of which may crash in a run, aug-
mented by failure detectors FD.

Two important failure detectors for consensus in AMP are Σ and Ω, as their
combination (Ω,Σ) is known to be a weakest failure detector in the wait-free
environment [17].

Definition 12. The eventual leader failure detector Ω has range Π. For each
failure pattern F , for every history H ∈ Ω(F), there is a time t ∈ T and a
correct process s.t. for every process p, H(p, t) = q.

Definition 13. The quorum failure detector Σ has range 2Π . For each failure
pattern F , for every H ∈ Σ(F), two properties hold: (1) for every t, t′ ∈ T and
p, q ∈ Π we have H(p, t) ∩ H(q, t′) �= ∅ and (2) there is a time t ∈ T s.t. for
every process p, H(p, t) ⊆ Π \

⋃
t∈T F (t).

In order to relate such failure detector models to our message adversaries, we
use the simple observation that the externally visible effect of a process crash
can be expressed in our setting: Since correct processes in asynchronous message
passing systems perform an infinite number of steps, we can assume that they
send an infinite number of (possibly empty) messages that are eventually received
by all correct processes. As in [29], we hence assume that the correct (= non-
crashing) processes in the simulated AMP are the strongly correct processes.
Informally, a strongly correct process is able to disseminate its state to all other
processes infinitely often.

Definition 14 (Faulty and strongly correct processes). Given an infinite
sequence of communication graphs σ, process p is faulty in a run with σ if there
is a round r s.t., for some process q, for all r′ > r: sr

p �� sr′
q .

Let C(σ) =
{

p ∈ Π | ∀q ∈ Π,∀r ∈ N,∃r′ > r : sr
p � sr′

q

}
denote the strongly

correct (= non-faulty) processes in any run with σ.

If a given process influences just one strongly correct process infinitely often,
it would transitively influence all processes in the system, hence would also be
strongly correct. Therefore, in order not to be strongly correct, a faulty process
must not influence any strongly correct process infinitely often. We can hence
define failure patterns as follows:

Definition 15 (Failure Pattern). The failure pattern associated with com-
munication graph sequence σ is a function Fσ : N → 2Π s.t. p ∈ Fσ(r) if, and
only if, for all processes q ∈ C(σ), for all r′ > r: sr

p �� sr′
q .

Note that Fσ(r) ⊆ Fσ(r + 1) as required.
The following lemmas have originally been proven for the message adversary

VSSCD,E(d) in [9]. Fortunately, these proofs translate almost literally to the
weaker message adversaries given in Definitions 1 and 2.

On the Strongest Message Adversary 111

Lemma 2. SMPn[adv : VSSC(∞)] does not allow to implement AMPn,n−1

[fd : Σ].

Proof. [9, Proof of Lemma 28]: We will prove our lemma for n = 2 for simplicity,
as it is straightforward to generalize the proof for arbitrary n. Suppose that,
for all rounds r and any processes p, some algorithm A computes out(p, r) s.t.
for any admissible failure pattern F , out ∈ Σ(F). Consider the graph sequence
σ = (p → q)r≥1. Clearly, the failure pattern associated with σ is Fσ(r) = {q}.
Hence, in the run ε starting from some initial configuration C0 with sequence σ,
there is some round r′ s.t. out(p, r) = {p} for any r > r′ by Definition 13. Let
σ′ = (p → q)r′

r=1(p ← q)r>r′ . By similar arguments as above, in the run ε′ that
starts from C0 with sequence σ′, there is a round r′′ such that out(q, r) = {q}
for any r > r′′. Finally, for σ′′ = (p → q)r′

r=1(p ← q)r′′
r=r′+1(p ↔ q)r>r′′ , let ε′′

denote the run starting from C0 with graph sequence σ′′. Until round r′, ε′′ ∼p ε,
hence, as shown above, out(p, r′) = {p} in ε′′. Similarly, until round r′′, ε′′ ∼q ε′

and hence out(q, r′′) = {q} in ε′′. Clearly, σ, σ′, σ′′ ∈ VSSC(∞) and Fσ′′(r) = {},
that is, no process is faulty in σ′′. However, in ε′′, out(p, r′) ∩ out(q, r′′) = ∅, a
contradiction to Definition 13. ��

We continue with the definitions of generalized failure detectors for the k-set
agreement setting in crash-prone asynchronous message passing systems.

Definition 16. The range of the failure detector Ωk is all k-subsets of 2Π . For
each failure pattern F , for every history H ∈ Ωk(F), there ∃LD = {q1, . . . , qk} ∈
2Π and t ∈ T such that LD ∩ C �= ∅ and for all t′ ≥ t, p ∈ C : H(p, t′) = LD.

Definition 17. The failure detector Σk has range 2Π . For each failure pattern
F , for every H ∈ Σk(F), two properties must hold: (1) for every t, t′ ∈ T and
S ∈ Π with |S| = k + 1, ∃p, q ∈ S : H(p, t) ∩ H(q, t′) �= ∅, (2) there is a time
t ∈ T s.t. for every process p, for every t′ ≥ t: H(p, t′) ⊆ C.

k-set agreement in our lock-step round model with link failures allows non-
temporary partitioning, which in turn makes it impossible to use the definition
of crashed and correct processes from the previous section: In a partitioned
system, every process p has at least one process q such that ∀r′ > r : sr

p � sr′
q ,

but no p usually reaches all q ∈ Π here. Definition 10 hence implies that there
is no correct process in this setting. Hence, we employ the following generalized
definition:

Definition 18. Given a infinite graph sequence σ, let a minimal source set S
in σ be a set of processes with the property that ∀q ∈ Π,∀r > 0 there exists
p ∈ S, r′ > r such that sr

p � sr′
q . The set of weakly correct processes WC(σ) of

a sequence σ is the union of all minimal source sets S in σ.

This definition is a quite natural extension of correct processes in a model,
which allows perpetual partitioning of the system. Based on this definition of
weakly correct processes, it is possible to generalize some of our consensus-related
results (obtained for Σ and Ω). First, we show that Σk cannot be implemented,
since VSSCk(∞) allows the system to partition into k isolated components.

112 U. Schmid et al.

Lemma 3. AMPn,n−1[fd : Σk] cannot be implemented in SMPn[adv :
VSSCk(∞)].

Proof. [9, Proof of Lemma 30]: For k = 1, we can rely on Lemma Lemma 2, as
every σ ∈ VSSC(∞) is also admissible in VSSCk(∞). Hence, Σ1 = Σ cannot be
implemented in VSSCk(∞).

The impossibility can be expanded to k > 1 by choosing some σ that (i)
perpetually partitions the system into k components P̃ = {P1, . . . , Pk} that each
have a single source component and consist of the same processes throughout
the run, and (ii) demands eventually a vertex stable source component in every
partition forever. Pick an arbitrary partition P ∈ P̃ . If |P | > 1, such a sequence
does not allow to implement Σ in P (e.g., the message adversary could emulate
the graph sequence used in Lemma Lemma 2 in P). We hence know that ∃p, p′ ∈
P and ∃r, r′ such that out(p, r) ∩ out(p′, r′) = ∅. Furthermore, and irrespective
of |P |, as for every p ∈ P , it is indistinguishable whether any q ∈ P̃ \ P is faulty
in σ or not, p has to assume that every process q ∈ P̃ \ P is faulty. Hence,
for every p ∈ P , we must eventually have out(p, ri) ⊆ P for some sufficiently
large ri.

We now construct a set S of k+1 processes that violates Definition Definition
17: fix some P ∈ P̃ with |P | > 1 and add the two processes p, p′ ∈ P , as
described above, to S. For every partition Pj ∈ P̃ \ P , add one process pi

from Pj to S. Since there exist r, r′ such that out(p, r) ∩ out(p′, r′) = ∅, and
∀Pj ∈ P̃ \P,∀p ∈ Pj ,∃ri : out(pi, ri) ⊆ Pi and, by the construction of S, we have
that ∀p, q ∈ S, ∃ri, rj such that out(p, ri) ∩ out(q, rj) = ∅. This set S clearly
violates Definition Definition 17, as required. ��

Lemma 4. For k > 1, AMPn,n−1[fd : Ωk] cannot be implemented in
SMPn[adv : VSSCk(∞)].

Proof. [9, Proof of Lemma 31]: We show the claim for k = 2 and n = 3, as it
is straightforward to derive the general case from this. So suppose that some
algorithm implements Ωk under this message adversary. The following graph
sequences (a)–(e) are all admissible sequences under VSSCk(∞) (we assume
that nodes not depicted are isolated):

(a) (p3 ← p1 → p2)r>0

(b) (p3 ← p2 → p1)r>0

(c) (p2 ← p3 → p1)r>0

(d) (p1 → p2)r>0

(e) (p1 → p3)r>0

Let εa, . . . , εe be the runs resulting from the above sequences applied to the same
initial configuration. By Definitions 16and 18, LD has to include p1 in εa, p2 in
εb, and p3 in εc. By Definition 16, in εd, because εa ∼p1 εd and εc ∼p3 εd in all
rounds, for some t > 0, for all t′ > t, out(p1, t′) = {p1, p3}. A similar argument
shows that in εe, for some t > 0, for all t′ > t, out(p1, t′) = {p1, p2}, because
εa ∼p1 εe and εb ∼p2 εe. The indistinguishability εd ∼p1 εe provides the required

On the Strongest Message Adversary 113

contradiction, as for some t > 0, for all t′ > t, out(p1, t′) should be the same in
εd and εe. ��

Lemma 3 may come as a surprise, since the proof of the necessity of Σk for
k-set agreement (hence the necessity of Σ = Σ1 for consensus) developed by
Raynal et. al. [11] only relies on the availability of a correct k-set agreement
algorithm. However, their reduction proof works only in AMPn,n−1, i.e., crash-
prone asynchronous message passing systems: It relies crucially on the fact that
there cannot be a safety violation (i.e., a decision on a value that eventually
leads to a violation of k-agreement) in any finite prefix of a run. This is not the
case in the simulation running atop of SMPn,0[adv : VSSC(∞)], however, as we
cannot ensure the crash failure semantics of faulty processes (that is needed for
ensuring safety in arbitrary prefixes) here. Hence, we cannot apply their result
(or adapt their proof) in our setting.

From these negative results, we conclude that, given SMP with some mes-
sage adversary, looking out for simulations of AMPn,n−1[fd : (Σ,Ω)] in order
to be able to run standard failure detector-based consensus algorithms is not
a viable alternative to the development of a tailored consensus algorithm, and
is hence also no substitute for the chase for strongest message adversaries in
SMP. We hence need a different way for approaching the latter, which will be
presented in the following section.

5 Message Adversary Simulations and the Strongest
Message Adversary for Consensus

The lemmas in the previous section showed that AMPn,n−1[fd : Σ,Ω] cannot
be simulated atop of SMPn[adv : MA] with some message adversary MA that
allows to solve consensus. Even though failure detectors cannot hence be used
directly to find a strongest message adversary, the concept of comparing models
with different restrictions in terms of their computational power is nevertheless
attractive. This idea was already used in [15] to structure communication pred-
icates in the HO model, albeit the “general translations” introduced for this
purpose suffered from the fact that one would need to solve repeated consensus.
In sharp contrast, the message adversary simulations introduced below only need
a single instance of consensus.

Our equivalent of a failure detector simulation is a message adversary simu-
lation of MA M atop of M ′, using a suitable simulation algorithm A running in
SMPn[adv : M ′] that emulates SMPn[adv : M]. Note that A may also depend
on the algorithm A that is to be run in SMPn[adv : M] here. If such a simu-
lation exists, for every A, then M ′ and M have the same computational power,
i.e., M ′ allows a solution for every problem where M allows a solution. We will
now describe the details of our MA simulation, using the HO model as a basis.

Consider the HO model corresponding to SMPn[adv : M ′], and let A be a
still to-be-defined algorithm that maintains a variable NewHOp ⊆ Π at every
process p. For some positive integer k, let the macro-round ρ ≥ 1 for process

114 U. Schmid et al.

p be the sequence of the k consecutive rounds r1 = k(ρ − 1) + 1, . . . , rk = kρ.
Note that k = k(p, ρ) may be different for different (receiver) processes p and
macro rounds ρ here. We say that A emulates (macro-)rounds ρ ∈ {1, 2, . . . } of
SMPn[adv : M], if, in any run of the latter, the value of NewHO

(ρ)
p computed

at the end of macro-round ρ satisfies:

(E1) q ∈ NewHO
(ρ)
p iff sr1−1

q � srk
p , i.e., if there exist an integer l in {1, ..., k},

a chain of l + 1 processes p0, p1, ..., pl from p0 = q to pl = p, and a
subsequence of l increasing round numbers r1, ..., rl in macro-round ρ such
that, for any index i, 1 ≤ i ≤ l, we have pi−1 ∈ HO(pi, ri).

(E2) The collection NewHO
(ρ)
p for all p ∈ Π, ρ > 0 satisfies M .

Clearly, the purpose of (E1) and (E2) is to guarantee well-defined and correct
emulations, respectively.

Implementing the above emulation, i.e., the emulation algorithm A, is trivial:
Let mr

q→p represent the message sent by q to p in round r in SMPn[adv : M ′],

and m
(ρ)
q→p the message sent in macro-round ρ in the simulated SMPn[adv : M].

A just piggy-backs m
(ρ)
q→p on message mj

q→p, for every (ρ−1)k+1 ≤ j ≤ ρk, and

delivers m
(ρ)
q→p in z

(ρ)
p in macro-round ρ, along with maintaining NewHO

(ρ)
p in

accordance with (E1). Unfortunately, however, this emulation is too restrictive
for our purpose.

Our next step will hence be to define a more abstract simulation of
SMPn[adv : M], by relaxing (E1) in a way that still guarantees well-defined
simulations. We recall that, by definition, q ∈ HO(p, r) iff mr

q→p ∈ zr
p, and

that mr
q→p = Sr

q (sr−1
q , p). Now consider the following relaxed variant of (E1),

where we replace the requirement of p having received the message mr
q→p by the

requirement of q having attempted to send mr
q→p:

(E1’) q ∈ NewHO
(ρ)
p , iff there exists at least one j, (ρ − 1)k + 1 ≤ j ≤ ρk, for

which p has acquired local knowledge of m′ with m′ = Sj
q(sj−1

q , p).

We say that A simulates (macro-)rounds ρ > 0 of SMPn[adv : M], if, in any
run of the latter, the value of NewHO

(ρ)
p computed at the end of macro-round

ρ satisfies (E1’) and (E2). At the first glance, (E1’) appears to be equivalent to
(E1), as it has the same outcome in the case where a chain of messages from q
to p as specified in (E1) exists. However, the essential difference is played out in
the case where such a chain does not exist: Sometimes, it may be possible for
the simulation algorithm A at process p to locally simulate the execution of A
at process q, and hence to locally compute m′ without actual communication!

Using this type of message adversary simulations, in conjunction with the fact
that every communication predicate can be viewed as a message adversary, we
will prove in Lemma 5 below that consensus solvability and the ability to simulate
the communication predicate SP UNIF introduced in [15] are equivalent.

Definition 19. Let SP UNIF be the communication predicate where for all
p, q, r : HO(p, r) = HO(q, r).

On the Strongest Message Adversary 115

Lemma 5. The following assertions are equivalent:

(1) For any set of initial values V , there is an algorithm A that solves consensus
in SMPn[adv : M ′].

(2) M ′ allows to simulate SMPn[adv : SP UNIF] in the execution of every
algorithm A.

Proof. The direction (2) → (1) follows from the fact that [15] provided a (triv-
ial) algorithm that solves multi-valued consensus. We can hence plug-in this
algorithm in (2) to obtain a consensus algorithm in SMPn[adv : M ′].

To show the direction (1) → (2), let A be an algorithm that solves multi-
valued consensus in SMPn[adv : M ′], and consider an arbitrary algorithm A to
be executed in SMPn[adv : SP UNIF]. We design an algorithm B based on A
and A, which allows to simulate SMPn[adv : SP UNIF] in the execution of A.
Note that B executes only one instance of the consensus algorithm A throughout
its execution.

To simulate the first macro-round ρ = 1, B first executes A on every process
until consensus is solved. More specifically, p starts A with the local input value
xp = state

(0)
p , where state

(0)
p denotes algorithm A’s initial state. Let v be the

common decision value, and v.id = � for v = state
(0)
� . When A terminates at

process p, B sets NewHO
(1)
p := {v.id}. By validity, v is indeed the initial state

state
(0)
� of some process � ∈ Π, and by agreement, NewHO

(1)
p = NewHO

(1)
q for

every p, q ∈ Π.
Now, assuming inductively that every process p knows state

(ρ−1)
� and

state
(ρ−1)
p (as well as A), B at p can also locally compute the message m

(ρ)
�→� =

S
(ρ)
� (state

(ρ−1)
� , �) and m

(ρ)
�→p = S

(ρ)
� (state

(ρ−1)
� , p) sent by � in macro round ρ.

Moreover, B sets the message vector z
(ρ)
� of the messages “received” by the sim-

ulated algorithm A for process � to z
(ρ)
� = {m

(ρ)
�→�} and z

(ρ)
p = {m

(ρ)
�→p} , from

where it can locally compute state
(ρ)
� = T

(ρ)
� (state

(ρ−1)
� , z

(ρ)
�) and state

(ρ)
p =

T
(ρ)
p (state

(ρ−1)
p , z

(ρ)
p). Finally, p sets NewHO

(ρ)
p = {�} accordingly.

By construction, (E1’) clearly holds. Moreover, since agreement secures
NewHO

(1)
p = NewHO

(1)
q , which in turn leads to NewHO

(ρ)
p = NewHO

(ρ)
q

for every ρ ≥ 1 due to the identical local computations at p and q, B indeed
simulates SMPn[adv : SP UNIF], which confirms also (E2). ��

With these preparations, we will now define and discuss our notion of a
strongest message adversary :

Definition 20 (Strongest message adversary). A message adversary M is a
strongest message adversary for some problem P, if P is solvable in SMPn[adv :
M] and if, on top of every SMPn[adv : M ′] for which P is solvable, we can
(algorithmically) simulate some feasible execution of any algorithm A that solves
P in SMPn[adv : M].

116 U. Schmid et al.

A property that follows directly from Definition 20 is:

Corollary 2. If a strongest message adversary for multi-valued consensus
allows to solve some problem P, it holds that every message adversary that allows
to solve multi-valued consensus also allows to solve P.

By Lemma 5, SP UNIF is a strongest message adversary for multi-valued
consensus. Even more, the simulation algorithm A used in the proof of Lemma 5
actually simulates the message adversary STAR ⊂ SP UNIF , where there is
some p ∈ Π such that HO(q, r) = p for every r ≥ 0 and every q ∈ Π. Since
multi-valued consensus is trivially solvable under STAR, this reveals that STAR
is also a strongest message adversary for multi-valued consensus.

Since every other message adversary that contains STAR and allows to solve
multi-valued consensus is also a strongest message adversary by definition, we
finally obtain the following Corollary 3:

Corollary 3 (Class of strongest message adversaries for consensus). Let
STAR be the message adversary that consists of all sequences of any perpetually
repeated star graph. Every message adversary that includes STAR and allows to
solve multi-valued consensus, is a strongest message adversary for multi-valued
consensus.

Examples for such message adversaries are (SOURCE,QUORUM), VSSC(∞)
introduced in Sect. 3, and SP UNIF .

Interestingly, the findings above can be easily be adapted for k-set agreement
as well: The same simulation algorithm B as used in the proof of Lemma 5 can be
used to simulate any perpetually repeated graph that consists of k star graphs,
atop of a message adversary M ′ that allows to solve k-set agreement: As any
k-set agreement algorithm A guarantees at most k different decision values, B
indeed allows to simulate any perpetually repeated graph that consists of at
most k star graphs, with the k decisions as the centers. Hence:

Corollary 4 (Class of strongest message adversaries for k-set agree-
ment). Every message adversary that contains all sequences of any perpetually
repeated graph that consists of k star graphs and allows to solve k-set agreement,
is a strongest message adversary for k-set agreement.

Examples for strongest message adversaries for k-set agreement are VSSCk(∞)
and the message adversary V SSCD,H(n,∞) + MAJINF (k) introduced in [9].

6 Consequences of Our Results

The results of Sect. 4, in particular, Lemma 2, reveal the following facts:

(i) Since VSSC(∞) does not allow to implement Σ, we cannot hope to run
(Σ,Ω)-based consensus algorithms on top if it.

On the Strongest Message Adversary 117

(ii) The message adversary (SOURCE,QUORUM) considered in [29],
VSSC(∞) and SP UINF are all incomparable in terms of graph sequence
inclusion, even though they all belong to the class of strongest message
adversaries.

(ii) There are message adversaries like the one introduced in [32], which (unlike
VSSC(∞)) do not even guarantee a single strongly correct process in some
runs. Implementing Σ subject to Definition 13 atop of such message adver-
saries is trivially impossible, as its specification becomes void.

On the other hand, the results of Sect. 5, in particular, Lemma 5, reveals that
it is possible to simulate the message adversary SP UNIF atop of any message
adversary (hence also VSSC(∞)) that allows to solve multi-valued consensus.
However, it is trivial to simulate (Σ,Ω) in AMP in SMPn[adv : SP UNIF]:
Initially, process p outputs p as the leader and Π as the quorum. At the end of
round 1, both the leader and the quorum is set to NewHO(p, r). Therefore, we
seem to have arrived at a contradiction of Lemma 2!

This seemingly paradoxical result is traceable to the fact that the set
NewHO(p, r) provided by the simulation of SP UNIF need not contain a
strongly correct process! Indeed, recall that the infinite repetition of G can also
be achieved by letting every process p in the system locally simulate the behav-
ior of some �’s algorithm. This is possible, since p knows both �’s deterministic
algorithm and its initial state, from the star graph G in round 1.

Hence, it finally turns out that the impossibility of implementing Σ estab-
lished in Lemma 2 depends crucially on the assumption to consider strongly
correct processes as correct in the simulated AMP. In principle, it might be
possible to implement Σ (and also Ω) atop of any message adversary that allows
to solve consensus if a weaker alternative of Definition 10 of correct processes
in AMP was used: For �, it would essentially be sufficient if it managed to dis-
seminate its initial state to all processes in the system once. Quite obviously,
though, such a definition of a correct process would severely affect the semantics
of failure detectors and hence the wealth of known results.

In addition, the principal ability to simulate (Σ,Ω) atop of the simulated
system SMPn[adv : SP UNIF] is not very useful in practice, as it hinges on
the availability of a consensus algorithm for the bottom-level message adversary
M ′. Consequently, this possibility does not open up a viable alternative to the
development of consensus algorithms tailored to specific message adversaries like
the ones introduced in [32,33].

Overall, it turns out that strongest message adversaries according to Def-
inition 20 do not have much discriminating power, as essentially all message
adversaries known to us that allow to solve consensus are strongest according
to Corollary 3. Finding a better definition of a strongest message adversary
is a topic of future research. Note, however, that naive ideas like one that (i)
admits a solution algorithm and (ii) is maximal w.r.t. its set of admissible graph
sequences it may generate do not easily work out: Given that the latter set is
usually uncountable, as admissible graph sequences are infinite, it is not clear
whether (ii) is well-defined in general.

118 U. Schmid et al.

7 Conclusions

We defined message adversary simulations as a means for defining a notion of a
strongest message adversary for consensus in synchronous directed dynamic net-
works. It turned out that every message adversary that allows to solve consensus
and admits all sequences consisting of perpetual star graphs is a strongest one.
We elaborate on some seemingly paradoxical consequences of our results and
their relation to asynchronous systems with failure detectors.

Acknowledgments. This work has been supported by the Austrian Science Fund
FWF under the projects ADynNet (P28182) and RiSE/SHiNE (S11405).

References

1. Afek, Y., Gafni, E.: Asynchrony from synchrony. In: Frey, D., Raynal, M., Sarkar,
S., Shyamasundar, R.K., Sinha, P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 225–
239. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35668-1 16

2. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing
Omega with weak reliability and synchrony assumptions. In: Proceeding of the
22nd Annual ACM Symposium on Principles of Distributed Computing (PODC
2003), pp. 306–314. ACM Press, New York (2003)

3. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable leader elec-
tion. In: Welch, J. (ed.) DISC 2001. LNCS, vol. 2180, pp. 108–122. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45414-4 8

4. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-
efficient leader election and consensus with limited link synchrony. In: PODC 2004,
pp. 328–337. ACM Press, St. John’s, Newfoundland (2004)

5. Anceaume, E., Fernández, A., Mostéfaoui, A., Neiger, G., Raynal, M.: A neces-
sary and sufficient condition for transforming limited accuracy failure detectors. J.
Comp. Sys. Sci. 68(1), 123–133 (2004)

6. Biely, M., Hutle, M., Penso, L.D., Widder, J.: Relating stabilizing timing assump-
tions to stabilizing failure detectors regarding solvability and efficiency. In:
Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 4–20. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76627-8 4

7. Biely, M., Robinson, P., Schmid, U.: Agreement in directed dynamic networks. In:
Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 73–84.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31104-8 7

8. Biely, M., Robinson, P., Schmid, U., Schwarz, M., Winkler, K.: Gracefully degrad-
ing consensus and k -set agreement in directed dynamic networks. In: Bouajjani,
A., Fauconnier, H. (eds.) NETYS 2015. LNCS, vol. 9466, pp. 109–124. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-26850-7 8

9. Biely, M., Robinson, P., Schmid, U., Schwarz, M., Winkler, K.: Grace-
fully degrading consensus and k-set agreement in directed dynamic networks.
Theor. Comput. Sci. 726, 41–77 (2018). https://doi.org/10.1016/j.tcs.2018.02.019.
http://www.sciencedirect.com/science/article/pii/S0304397518301166

10. Biely, M., Schmid, U., Weiss, B.: Synchronous consensus under hybrid
process and link failures. Theor. Comput. Sci. 412(40), 5602–5630 (2011).
https://doi.org/10.1016/j.tcs.2010.09.032. http://www.sciencedirect.com/science/
article/pii/S0304397510005359

https://doi.org/10.1007/978-3-642-35668-1_16
https://doi.org/10.1007/3-540-45414-4_8
https://doi.org/10.1007/978-3-540-76627-8_4
https://doi.org/10.1007/978-3-642-31104-8_7
https://doi.org/10.1007/978-3-319-26850-7_8
https://doi.org/10.1016/j.tcs.2018.02.019
http://www.sciencedirect.com/science/article/pii/S0304397518301166
https://doi.org/10.1016/j.tcs.2010.09.032
http://www.sciencedirect.com/science/article/pii/S0304397510005359
http://www.sciencedirect.com/science/article/pii/S0304397510005359

On the Strongest Message Adversary 119

11. Bonnet, F., Raynal, M.: On the road to the weakest failure detector for k-set
agreement in message-passing systems. Theor. Comput. Sci. 412(33), 4273–4284
(2011)

12. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed
systems. J. ACM 43(2), 225–267 (1996). http://www.cs.cornell.edu/home/sam/
FDpapers/CT96-JACM.ps

13. Charron-Bost, B., Függer, M., Nowak, T.: Approximate consensus in highly
dynamic networks: the role of averaging algorithms. In: Halldórsson, M.M., Iwama,
K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 528–
539. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6 42

14. Charron-Bost, B., Hutle, M., Widder, J.: In search of lost time. Inf. Process. Lett.
110(21), 928–933 (2010)

15. Charron-Bost, B., Schiper, A.: The Heard-Of model: computing in distributed
systems with benign faults. Distrib. Comput. 22(1), 49–71 (2009)

16. Coulouma, É., Godard, E., Peters, J.G.: A characterization of oblivious message
adversaries for which consensus is solvable. Theor. Comput. Sci. 584, 80–90 (2015).
http://dx.doi.org/10.1016/j.tcs.2015.01.024

17. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Hadzilacos, V., Kouznetsov,
P., Toueg, S.: The weakest failure detectors to solve certain fundamental problems
in distributed computing. In: PODC 2004, pp. 338–346. ACM Press (2004)

18. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)

19. Fernández, A., Raynal, M.: From an asynchronous intermittent rotating star to an
eventual leader. IEEE Trans. Parallel Distrib. Syst. 21(9), 1290–1303 (2010)

20. Gafni, E.: Round-by-round fault detectors (extended abstract): unifying synchrony
and asynchrony. In: Proceedings of the Seventeenth Annual ACM Symposium on
Principles of Distributed Computing. pp. 143–152. ACM Press, Puerto Vallarta
(1998)

21. Hutle, M., Malkhi, D., Schmid, U., Zhou, L.: Chasing the weakest system
model for implementing omega and consensus. IEEE Trans. Dependable
Secur. Comput. 6(4), 269–281 (2009). http://www.vmars.tuwien.ac.at/documents/
extern/1803/paper.pdf

22. Jayanti, P., Toueg, S.: Every problem has a weakest failure detector. In: PODC
2008, pp. 75–84. ACM, New York (2008)

23. Keidar, I., Shraer, A.: Timeliness, failure detectors, and consensus performance.
In: PODC 2006, pp. 169–178. ACM Press, New York (2006)

24. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT News
42(1), 82–96 (2011)

25. Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks.
In: PODC 2011, ACM (2011)

26. Malkhi, D., Oprea, F., Zhou, L.: Ω Meets Paxos: leader election and stability
without eventual timely links. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724,
pp. 199–213. Springer, Heidelberg (2005). https://doi.org/10.1007/11561927 16

27. Mostéfaoui, A., Raynal, M.: Solving consensus using chandra-toueg’s unreliable
failure detectors: a general quorum-based approach. In: Jayanti, P. (ed.) DISC
1999. LNCS, vol. 1693, pp. 49–63. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48169-9 4

28. Rajsbaum, S., Raynal, M., Travers, C.: An impossibility about failure detectors in
the iterated immediate snapshot model. Inf. Process. Lett. 108(3), 160–164 (2008).
https://doi.org/10.1016/j.ipl.2008.05.001

http://www.cs.cornell.edu/home/sam/FDpapers/CT96-JACM.ps
http://www.cs.cornell.edu/home/sam/FDpapers/CT96-JACM.ps
https://doi.org/10.1007/978-3-662-47666-6_42
http://dx.doi.org/10.1016/j.tcs.2015.01.024
http://www.vmars.tuwien.ac.at/documents/extern/1803/paper.pdf
http://www.vmars.tuwien.ac.at/documents/extern/1803/paper.pdf
https://doi.org/10.1007/11561927_16
https://doi.org/10.1007/3-540-48169-9_4
https://doi.org/10.1007/3-540-48169-9_4
https://doi.org/10.1016/j.ipl.2008.05.001

120 U. Schmid et al.

29. Raynal, M., Stainer, J.: Synchrony weakened by message adversaries vs asynchrony
restricted by failure detectors. In: PODC 2013, pp. 166–175 (2013)

30. Santoro, N., Widmayer, P.: Time is not a healer. In: Monien, B., Cori, R. (eds.)
STACS 1989. LNCS, vol. 349, pp. 304–313. Springer, Heidelberg (1989). https://
doi.org/10.1007/BFb0028994

31. Schmid, U., Weiss, B., Keidar, I.: Impossibility results and lower bounds for
consensus under link failures. SIAM J. Comput. 38(5), 1912–1951 (2009).
http://www.vmars.tuwien.ac.at/documents/extern/2554/paper.pdf

32. Schwarz, M., Winkler, K., Schmid, U.: Fast consensus under eventually stabiliz-
ing message adversaries. In: ICDCN 2016, pp. 7:1–7:10. ACM, New York (2016).
http://doi.acm.org/10.1145/2833312.2833323

33. Winkler, K., Schwarz, M., Schmid, U.: Consensus in directed dynamic networks
with short-lived stability. CoRR abs/1602.05852 (2016). http://arxiv.org/abs/
1602.05852

https://doi.org/10.1007/BFb0028994
https://doi.org/10.1007/BFb0028994
http://www.vmars.tuwien.ac.at/documents/extern/2554/paper.pdf
http://doi.acm.org/10.1145/2833312.2833323
http://arxiv.org/abs/1602.05852
http://arxiv.org/abs/1602.05852

Symmetric Rendezvous with Advice: How
to Rendezvous in a Disk

Konstantinos Georgiou(B), Jay Griffiths, and Yuval Yakubov

Department of Mathematics, Ryerson University,
350 Victoria St., Toronto, ON M5B 2K3, Canada

{konstantinos,jay.griffiths,yyakubov}@ryerson.ca

Abstract. In the classic Symmetric Rendezvous problem on a Line
(SRL), two robots at known distance 2 but unknown direction execute
the same randomized algorithm trying to minimize the expected ren-
dezvous time. A long standing conjecture is that the best possible ren-
dezvous time is 4.25 with known upper and lower bounds being very close
to that value. We introduce and study a geometric variation of SRL that
we call Symmetric Rendezvous in a Disk (SRD) where two robots at dis-
tance 2 have a common reference point at distance ρ. We show that even
when ρ is not too small, the two robots can meet in expected time that
is less than 4.25. Part of our contribution is that we demonstrate how
to adjust known, even simple and provably non-optimal, algorithms for
SRL, effectively improving their performance in the presence of a refer-
ence point. Special to our algorithms for SRD is that, unlike in SRL, for
every fixed ρ the worst case distance traveled, i.e. energy that is used,
in our algorithms is finite. In particular, we show that the energy of our
algorithms is O

(
ρ2

)
, while we also explore time-energy tradeoffs, con-

cluding that one may be efficient both with respect to time and energy,
with only a minor compromise on the optimal termination time.

1 Introduction

In a rendezvous game two players reside at unknown locations in a given domain
and they wish to minimize the (expected) meeting (rendezvous) time. Various
rendezvous problems have been studied intensively, with applications in com-
puter science and real-world modeling, such as the search for a mate problem in
which species with a low spatial density try to find suitable partners [9]. Ren-
dezvous problems can be classified as asymmetric, in which each agent may use
a different strategy, or symmetric, in which each agent follows the same algo-
rithm; moreover, strategies can be classified as mixed, incorporating randomness,
or pure which are deterministic.

A full version of this work is posted on the Computing Research Repository [28].
K. Georgiou—Research supported in part by NSERC Discovery Grant.
J. Griffiths—Research supported in part by NSERC Undergraduate Student Research
Award.
Y. Yakubov—Research supported in part by the FoS Undergraduate Research Pro-
gram, Ryerson University.

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 121–133, 2018.
https://doi.org/10.1007/978-3-030-01325-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_14&domain=pdf

122 K. Georgiou et al.

In this paper, we discuss symmetric rendezvous with advice. Two speed-1
robots (mobile agents) start at known distance but at unknown locations and
they are trying to meet (rendezvous). At any time, robots have the option to
meet at a known immobile reference point that is initially placed ρ away from
both agents. The goal is to design mixed strategies so as to minimize the expected
rendezvous time, i.e. the expected value of the first time that robots meet. After
scaling, our problem can be equivalently described as a Symmetric Rendezvous
problem in a unit Disk (SRD), where mobile agents lie at the perimeter of disk
at known arc distance 2α, having the option to always meet at the origin.

SRD is a geometric variation of the well-studied Symmetric Rendezvous prob-
lem on a Line (SRL) where no reference point is available, and for which a
long-standing conjecture stipulates that it can be solved in expected time 4.25.
Critical differences between the two problems is that in SRD (a) the rendezvous
can always be realized deterministically, (b) the performance can be much bet-
ter than the distance from the reference point ρ and better than the conjectured
4.25 even for not too small values of ρ and (c) the worst case rendezvous time
can be bounded in ρ even when one tries to minimize the expected rendezvous
time. The latter is an important property, since if the two agents are vehicles
with limited fuel, our strategies can be used to guarantee rendezvous before the
fuel runs out.

1.1 Related Work

The rendezvous problem is a special type of a search game where two or more
agents (robots) attempt to occupy the same location at the same time in a
domain. Search games and rendezvous have a long history; see [4,9] for a thor-
ough introduction to the area, and [3] for a not so recent survey. The challenge
of the task (search or rendezvous) is induced by limitations related to com-
munication, coordination, synchronization, mobility, visibility, or other types of
resources, whereas examples of rendezvous domains include networks, discrete
nodes and geometric environments. Notably, each of the aforementioned spec-
ifications, along with combinations of them, have given rise to a long list of
publications, a short representative list of which we discuss below.

The rendezvous problem was first proposed informally by Alpern [1] in 1976,
and received attention due to the seminal works of Anderson and Weber [12]
for discrete domains and of Alpern [2] for continuous domains. Our work is a
direct generalization of the special and so-called Symmetric Rendezvous Search
Problem on a Line (SRL) proposed by Alpern [2] in 1995. In that problem, two
blind agents are at known distance 2 on a line, and they can perform the same
synchronized randomized algorithm (with no shared randomness). The original
algorithm of Alpern [2] had performance (expected rendezvous time) 5, which
was later improved to 4.5678 [13], then to 4.4182 [15], then to 4.3931 [36], and
finally to the best performance known of 4.2574 [29] by Han et al. Similarly, a
series of proven lower bounds [8,36] have lead to the currently best value known
of 4.1520 [29].

Symmetric Rendezvous with Advice: How to Rendezvous in a Disk 123

A number of variations of SRL have been exhaustively studied, and below
we mention just a few. The symmetric rendezvous problem with unknown initial
distance or with partial information about it has been considered in [16,17]. A
number of different topologies have been considered including labeled network
[10], labeled line [18], ring [27,32] (see survey monograph [31]), torus [30], planar
lattice [5], and high dimensional host spaces [7]. We note here that the topology
we consider in this work follows a long list studies of relevant search/rendezvous-
type problems in the disk. The rendezvous problem with faulty components has
been studied in [24,25]. Asynchronous strategies have been explored in [34,35].
Studied variations of robots capabilities include sense of direction [6,14], memory
[20], visibility [22], speed [26], power consumption [11] and location awareness
[19]. Interesting variations of communication models between agents have been
studied in [23] (whiteboards), [21] (tokens), [31] (mobile tokens), and [34] (look-
compute-move model). Finally, [33] is a comprehensive survey in deterministic
rendezvous in networks.

1.2 Formal Definitions, Notation and Terminology

Problem Definition. In the Symmetric Rendezvous problem in a Disk (SRD)
two agents (robots) are initially placed on the plane at known distance from
each other but at unknown location. A common reference point O is at known
distance and known location to both robots. The robots can move at speed 1
anywhere on the plane, and they detect each other only if they are at the same
location, i.e. when the meet. Given that robots run the same (randomized) and
synchronized algorithm, the goal is to design trajectory movements so as to
minimize the (expected) meeting, also known rendezvous, time.

The natural way to model SRD is to have robots start on the perimeter
of disk, where its center serves as the common reference point. We adopt two
equivalent parameterizations of the problem that arise by either normalizing
robots’ initial distance or the radius of the disk. In SRDρ the disk has radius
ρ, and the robots have Euclidean distance 2, while in SRDα robots start on the
perimeter of a unit disk at arc distance 2α.

As we explain below, SRDρ is the natural extension of the well-studied ren-
dezvous on a line problem, while SRDα is convenient for analyzing the per-
formance of trajectory movements. We will use both perspectives of the prob-
lem interchangeably. Clearly, the initial Euclidean distance of the two robots in
SRDα is 2 sin (α). Hence, after scaling the instance by 1/ sin (α), the initial dis-
tance of the robots becomes 2, and the reference point (the origin) is at distance
ρ = 1/ sin (α). Therefore, SRDρ and SRDα are equivalent under transforma-
tion α = arcsin (1/ρ). Moreover, we will silently assume that 0 < α < π/4 as
otherwise SRDα is degenerate, or that ρ >

√
2 for SRDρ.

The Related Rendezvous on a Line Problem. In the well-studied Ren-
dezvous problem on a Line (SRL), two robots, with the same specifications as
in SRD are placed at known distance 2, but at unknown locations on the line.

124 K. Georgiou et al.

The objective is again to minimize the (expected) rendezvous time. Note that
SRL is exactly the same as SRD∞.

Natural randomized algorithms for solving SRL are so-called k-Markovian
Strategies, i.e. random processes that iterate indefinitely, so that in every itera-
tion each robot follows a partial trajectory of total length k (or k times more than
the original distance of the agents). The simplest 2-Markovian Strategy achieves
expected rendezvous time 7: each robot with probability 1/2 moves distance 1 to
the left and then to the right, back to its original position (and robot follows the
symmetric trajectory to the right with the complementary probability). Note
that robots meet with probability 1/4 after time 1, and otherwise they repeat
the experiment after moving distance 2. If f denotes the expected meeting time,
then clearly f = 1

4 + 3
4 (2 + f) from which we obtain f = 7.

An elegant refinement was proposed by Alpern [2] and achieves expected
rendezvous time 5. In this 3-Markovian Strategy each robot with probability 1/2
moves distance 1 to the left, then to the right back to its original position and
then further right at distance (and robot follows the symmetric trajectory to the
right with the complementary probability). Robots meet with probability 1/4
after time 1, and with probability 1/4 after time 3, otherwise the repeat the same
process. If f denotes the expected meeting time, then f = 1

4 + 1
43+ 1

2 (3 + f) from
which we obtain f = 5. Interestingly, this is also the best possible 3-Markovian
strategy.

Alpern’s algorithm above is a distance-preserving algorithm, that is, after
each iteration robots either meet or they preserve their original distance (but not
their original locations). After a series of improvements, this idea was fruitfully
generalized to k-Markovian Strategies by Han et al. [29] giving the best known
rendezvous time 4.2574 (for k = 15). Notably, the best lower bound know is
4.1520 [29], which has resulted into the believable conjecture that 4.25 is the
best rendezvous time possible.

Measures of Efficiency. SRD and SRL can be viewed as online problems,
where robots attempt to solve the problem only with partial input information.
The natural measure of efficiency of any proposed online algorithm is the so-
called competitive ratio, defined as the ratio between the (expected) online algo-
rithm performance over the best possible performance achievable by an offline
algorithm that knows the input. With this terminology in mind, it is immediate
that Alpern’s Algorithm [2] for SRL is 5-competitive, while the conjecture above
stipulates that 4.25 is the best possible competitive ratio for the problem.

Using the terminology above, the best offline algorithm can solve SRDρ in
time 1, and SRDα in time sin (α), hence for our competitive analysis we will
always scale the expected performance of our randomized algorithms accordingly.
As a result, the competitive ratio of our algorithms will be described by functions
of ρ and α for SRDρ and SRDα, respectively, that are at least 1 for all values of
the parameters.

Our main goal will be to beat the psychological threshold of 4.25 for SRDρ,
even for not too small values of ρ, demonstrating this way both the usefulness

Symmetric Rendezvous with Advice: How to Rendezvous in a Disk 125

of a reference point and the effectiveness of our algorithms. In order to quantify
this more explicitly, we introduce one more alternative measure of efficiency:
an algorithm for SRDρ will be called δ-effective, if δ is the largest value of ρ for
which the expected rendezvous time is no more than 4.25. If such ρ does not exist,
i.e. if the algorithm has expected rendezvous time at least 4.25 for all ρ >

√
2,

then we call the algorithm 0-effective. To conclude, apart from calculating the
competitive ratio of our algorithms for SRDρ, we will complementarily comment
also on the effectiveness, with the understanding that the higher their value is,
the better the algorithm is. Note that the naive algorithm that simply has robots
go to the reference point is ρ-competitive and 4.25-effective.

Finally, we also consider the worst case performance of our algorithms that
we call energy. Formally, the energy of a rendezvous algorithm is defined as the
supremum of the time by when the rendezvous is realized with probability 1.
Note that any algorithm for SRL is bound to have infinite energy, whereas we
show in this paper a family of algorithms for SRD that have bounded energy.

1.3 Our Results

Techniques Outline. Our main contribution is the exploration of 3-Markovian
strategies for SRD. In particular, we adjust Alpern’s optimal 3-Markovian
algorithm [2] so as to take advantage of the reference point. Similar to the
algorithm for SRL, our algorithm uses infinitely many random bits. In each ran-
dom step, robots attempt to meet twice. If the rendezvous is not realized, then
the projection of their trajectory to the perimeter of the original disk has length
3, however agents reside in a smaller disk but still at the same arc-distance.
Then, robots repeat the process, so that, overall, the distances of the possible
meeting points to the origin are strictly decreasing, i.e. the disk is sequentially
shrinking. The trajectories of the robots are determined by two critical angles,
that determine the distance of the possible meeting points to the origin, i.e. how
much the disk are shrunk.

If in each iteration, the disk is shrunk “a lot”, then robots move much more
than half their Euclidean distance in order to meet, however when they repeat
the experiment, they are solving a simpler problem since they are at the same
arc-distance but the reference point is closer. If, on the other hand, the new disk
is comparable to the original one, then robots attempt to greedily rendezvous as
fast as possible, however if the meeting is not realized, robots have to solve an
identical rendezvous problem (and such a strategy is bound to have a competitive
ratio no better than 5, i.e. the ratio of the original SRL). Hence, the heart of the
difficulty is to determine the two critical angles so that the instance that robots
have to solve in each step shrinks by the right amount. Part of our contribution is
that we demonstrate how to model the latter problem as a non-trivial non-linear
optimization problem, which we also solve.

High Level Contributions. As it is typical in online algorithmic problems,
the impossibility of achieving optimal solutions is due to the unknown input

126 K. Georgiou et al.

(in our case the exact location of the robots). Our work contributes toward the
fundamental algorithmic question as to whether additional resources (partial
information about the unknown input - in our case a reference point) could
yield improved upper bounds. Not only we answer this question in the positive,
and we quantify properly our findings, but our trajectories also demonstrate how
a rendezvous can be realized in 2 dimensions, even though the detection visibility
of the robots in one dimensional. Part of our contribution is to also demonstrate
how to adjust known algorithms for SRL so as to solve SRD. In particular, our
methods can be generalized and induce improved competitive ratio upper bounds
when the starting rendezvous algorithm is some other k-Markovian trajectory,
k > 3 (see [29]). However, each such adaptation requires the determination of
more than two critical angles, and the induced non-linear optimization problems
would be possible to solve only numerically, rather than analytically as we do in
this work. At the end, our algorithms are simple, yet powerful enough to induce
good performance for a wide range of SRD instances.

Discussion on Energy. We also consider the worst case rendezvous time for
our algorithms that we deliberately call energy. In real-life applications, robots
are bound to run only for limited time due to restricted resources (e.g. fuel).
Assuming that the actual energy spent (fuel burnt) by a robot is proportional
to it’s operation time, we view the worst-case running time of our algorithms
as the minimum energy required by the robots that ensures that the execution
of the algorithm terminates successfully with probability 1. Note that in the
original SRL problem, and for any feasible rendezvous strategy, there is a posi-
tive probability (though exponentially small) that the rendezvous is arbitrarily
large. Given that mobile robots should have access to bounded energy (fuel),
the probability that the rendezvous is never realized is positive. In contrast, we
show that our algorithms for SRD require bounded energy, that there is a finite
time by when the rendezvous is realized with probability 1. We show that this
property holds true under mild conditions for our algorithms, and in particular
it holds true for our algorithm that minimizes the expected rendezvous time. For
the latter algorithm we show that the energy required in Θ

(
ρ2

)
. Finally, and

somehow surprising, we also show that by compromising slightly on the expected
termination time, the required energy becomes Θ (ρ).

Paper Organization. Section 2 is devoted to the optimization problem of
minimizing the expected rendezvous time. First, in Sect. 2.1 we introduce some
simple rendezvous algorithms that are mostly used as benchmark results for what
will follow. Section 2.2 introduces the first non-trivial refinement, by providing
a single random bit 1-Markovian algorithm. Our observations and results of
that section are later used in Sect. 2.3, where we discuss general 3-Markovian
strategies. Our main contribution is the determination of optimal critical angles,
as well as of the induced competitive ratio, and induced effectiveness. We also
provide the asymptotic behavior of the critical angles, as well as the convergence
to competitive ratio 5, as the distance ρ of the reference point goes to infinity.

Symmetric Rendezvous with Advice: How to Rendezvous in a Disk 127

Then, in Sect. 3 we study the worst case rendezvous time induced by our most
efficient algorithm for SRD. In particular, the main contribution of Sect. 3.1 is
the asymptotic analysis of the worst case rendezvous time for our algorithm
that is meant to minimize the expected rendezvous time, and is shown to be
Θ

(
ρ2

)
. Motivated by this, we study in Sect. 3.2 time-energy tradeoffs. More

specifically, we show that asymptotically in ρ, the expected termination time
can stay optimal achieving improved but still Θ

(
ρ2

)
energy, while only slightly

suboptimal termination time allows for Θ (ρ) energy. Many of our proofs are
omitted from this extended abstract due to space limitations. The interested
reader may consult [28] for a full version of this paper.

2 Rendezvous Algorithms in a Disk

2.1 Some Immediate Benchmark Upper Bounds

First we establish some immediate positive results that can be used as bench-
marks for rendezvous trajectories that we will present in subsequent sections.
Recall that the naive “go-to-origin” algorithm is 4.25-effective.

The first attempt is to blindly implement the 4.2574-competitive algorithm
of [29] for SRL. Indeed, given instance SRDα, robots can be restricted to move
on the perimeter of the disk. It is clear that the resulting algorithm has expected
rendezvous time α, and hence competitive ratio 4.2574 α

sin(α) for SRDα (note that
α

sin(α) ≥ 1). However, one can slightly improve upon this by making robots move
along chords instead. Indeed, the algorithm of [29] for SRL has the property
that robots always move and attempt to meet at integral points, assuming that
one of the robots starts from the origin of the real line. Now for problem SRDρ

in the disk, and given any initial location of the robots, consider an infinite
sequence of clockwise and of counterclockwise arcs of length 2, along with their
corresponding chords of length 2 sin (1). Any integral movement of robots in the
line can be simulated by movements on the chords by multiples of sin (1), while
sin (1) is also the optimal offline solution. Therefore, we immediately obtain the
following.

Theorem 1. SRDρ admits an online algorithm which is 4.2574-competitive and
0-effective.

Next we show that Theorem 1 admits an easy refinement using a simple
3-Markovian process, which is a direct application of [2].

Theorem 2. SRDρ admits an online algorithm which is
(

7ρ2+8
√

ρ2−1ρ−3

3ρ2+1

)
-

competitive and 2.57-effective.

128 K. Georgiou et al.

2.2 Rendezvous with Minimal Randomness

Theorems 1 and 2 were obtained by algorithms that use infinitely many random
bits. This section is devoted into showing that even with 1 random bit, we
can perform better than the naive “go-to-origin” algorithm, as well as of the
algorithms of Theorems 1 and 2, at least for certain values of α, ρ. This will also
help as a warm-up for our later results.

Consider instance SRDα and mobile agents at arc distance α. Each of them
knows that their peer is α away either clockwise or counterclockwise, and con-
sider the corresponding arcs. Notice that in both algorithms of Theorems 1 and
2 robots attempt to meet at the bisectors of the two arcs. Given a fixed angle
β, each robot, and at each iteration chooses uniformly at random either the cw
or the ccw direction, and moves in that direction with respect to the origin till
the bisector is hit. We call this move a random β-darting. Notice that 0-darting
corresponds to going to the origin, while the algorithm of Theorem 2 we have
β = π/2 − α. The main idea behind 1RB with parameter β is to choose the
optimal β ∈ [0, π/2 − α) that minimizes the expected termination time.

Algorithm 1. 1RBβ

1: Do a random β-darting.
2: Go to origin (if peer is not already met).

Theorem 3. The optimal 1RBβ algorithm uses β = max (0,− sin (1/ρ) +

arccos
(
3
4

))
in which case the algorithm is 3

√
ρ2−1+

√
7

4 -competitive and 4.88813-
effective.

2.3 Improved Rendezvous with 3-Markovian Trajectories

In this section we generalize the algorithm of Sect. 2 in two ways; first we allow
more random bits, and second, in every random trial, we allow robots trajec-
tories two darting attempts (recall that Algorithm 1RBβ allows for only one
darting attempts. In the language of the established results for SRL we will
adopt Alpern’s 3-Markovian trajectory [2].

The main idea behind our new algorithms is as follows
At every random step, robots will reside at the perimeter of a disk, and they

will be at constant arc distance α. As in 1RBβ , each robot is associated with
two bisectors in which robot will make an attempt to meet her peer. A fixed
angle β along with a random bit will determine the direction (cw or ccw) of the
random β-darting that will bring the robot in one of the bisectors. Note that
due to the symmetry imposed by the trajectory, a meeting is realized in this step
with probability 1/4. If the rendezvous is not realized, the robot will attempt a
deterministic γ-darting to the other bisector, and the meeting is realized in this
step with probability 1/4 as well. If the rendezvous fails again, then the process
repeats or robots go to the origin to meet. A process that involves k random bits

Symmetric Rendezvous with Advice: How to Rendezvous in a Disk 129

Algorithm 2. k-RBβ,γ

1: Repeat k times
2: Do a random β-darting.
3: Do a γ-darting in the opposite direction
4: Go to origin (if peer is not already met).

(and hence 2k possible meeting points) will be referred to as k-step 3-Markovian.
Note that we allow k = ∞. The formal description of the algorithm is as follows.

Observe that the algorithm of Theorem 2 can be alternatively described as
∞-RBπ/2−α/2,π/2−α/2, while 1RBβ is equivalent to 1-RBβ,0. Next we analyze
k-RBβ,γ for all values of k, β, γ. Our goal is to analyze the expected rendezvous
time, denoted by Rk (β, γ). We adopt the language either of SRDρ or of SRDα

depending on what is more convenient, in which case Rk (β, γ) will be either a
function of ρ or of α. To make this more explicit in our notation, and in order to
remove any ambiguity, we will be writing Rρ

k (β, γ) and Rα
k (β, γ) for the expected

running time in SRDρ and SRDα, respectively. Note that Rρ
k (β, γ) = Rα

k (β,γ)
sin(α) .

Theorem 4. Consider problem SRDρ. If ρ < csc
(
1
2 cos−1

(
2
3

)) ≈ 2.44949, then
the optimal 1-RBβ,γ algorithm is obtained for γ = 0, and the algorithm is iden-
tical to the optimal 1RBβ algorithm (see Theorem 3).

If ρ ≥ csc
(
1
2 cos−1

(
2
3

))
, then the optimal 1-RBβ,γ is obtained for the follow-

ing parameters

γ = cos−1

(
2
3

)
− 2 sin−1

(
1
ρ

)

β = cos−1

(
3
4

cos
(

cos−1

(
2
3

)
− 2 sin−1

(
1
ρ

)))
− sin−1

(
1
ρ

)

For the optimal parameters, the algorithm has competitive ratio cos
(
β
)

which
equals

1
2

⎛

⎜
⎜
⎝−

√
5

ρ2
+

√
ρ2 − 1 − 2

√
ρ2 − 1
ρ2

+ 2

√√
√
√

1 −

(
ρ

(√
5 − 5

ρ2 + ρ
)

− 2
)2

4ρ4
+

√
5

⎞

⎟
⎟
⎠

and it is 5.32366-effective.

We can now compute also the optimal parameters for ∞-RBβ,γ . Since the
competitive ratio becomes a lengthy expression in ρ for SRDρ, we choose to only
comment on the effectiveness of the resulting algorithm. The competitive ratio
will be explicit from our calculations.

Theorem 5. For all ρ ≥ 1/ sin (1/2) ≈ 2.08583, the optimal ∞-RBβ,γ algorithm
for SRDρ uses parameters β, γ satisfying equations

3
4 cos (γ) = cos

(
arcsin (1/ρ) + β

)
(1)

2
3 cos

(
β
)

= cos (2 arcsin (1/ρ) + γ) . (2)

130 K. Georgiou et al.

In particular, we have

β := arctan

⎛

⎝
−v +

√
v2 − (94 cos2 α − 1)(54 − v2)

9
4 cos2 α − 1

⎞

⎠ (3)

γ := arccos
(
4
3 cos

(
α + β

))
. (4)

where v := (2 cos α − cos 2α) csc 2α and α = arcsin (1/ρ). Also for these values
of β, γ, the algorithm is 7.13678-effective.

We conclude this section by providing some asymptotic analysis for the opti-
mal parameters β, γ of Algorithm ∞-RBβ,γ as ρ → ∞. As expected, both β, γ
tend to π/2, as well as Rρ

∞
(
β, γ

)
tends to 5 (the competitive ratio of the SRL

algorithm we are extending). This is what we make explicit with the next theo-
rem, by also providing the rate of convergence.

Theorem 6. For the optimal parameters β = β(ρ), γ = γ(ρ) of Algorithm ∞-
RBβ,γ , we have limρ→∞ ρ2(5 − Rρ

∞
(
β, γ

)
) = 289/6.

3 Energy-Efficient Rendezvous

3.1 Energy Analysis of Our Infinite-Step Rendezvous Algorithm

A unique feature of the SRD problem is that, unlike in SRL, the worst case
rendezvous time can be finite. As before we distinguish whether we calculate
the energy of ∞-RBβ,γ in SRDρ or in SRDα by writing Eρ

∞ (β, γ) and Eα
∞ (β, γ),

respectively.

Lemma 1. The energy Eα
∞ (β, γ) of ∞-RBβ,γ for SRDα is finite if and only if

sin (β) sin (γ) < sin (α + β) sin (2α + γ) . Moreover

Eα
∞ (β, γ) :=

sin (α) csc(α + β) + sin (β) csc(α + β) sin (2α) csc (2α + γ)
1 − sin (β) csc(α + β) sin (γ) csc (2α + γ)

. (5)

Lemma 2. For any fixed ρ, the energy Eρ
∞

(
β, γ

)
of the optimal ∞-RBβ,γ is

finite.

Using values β, γ (see (3) and (4) of Theorem 5), and substituting in (5) of
Lemma 1 we obtain an explicit function of α (or equivalently of ρ = 1/ sin (α))
for Eα

∞
(
β, γ

)
. Using Mathematica we can observe graphically that Eρ

∞
(
β, γ

)

is strictly increasing (which is also expected), and that Eρ
∞

(
β, γ

)
/ρ2 is strictly

decreasing in ρ > 2. However a formal proof is eluding us due to the complication
of the formulas. Nevertheless, we can find the asymptotic behaviour of the energy
as ρ → ∞.

Theorem 7. For the optimal parameters β = β(ρ), γ = γ(ρ) of Algorithm ∞-

RBβ,γ , we have limρ→∞
Eρ

∞(β,γ)
ρ2 = 18

79 .

An immediate corollary of Theorem 7 is that Eρ
∞

(
β, γ

)
= Θ(ρ2). As long as

the rendezvous between the two agents is not realized, both follow random-walk-
like trajectories.

Symmetric Rendezvous with Advice: How to Rendezvous in a Disk 131

3.2 Expected Rendezvous Time - Energy Tradeoffs

In this section we attempt to understand how energy constraints can impact the
performance of ∞-RBβ,γ . By Theorem 6 we know that the optimal ∞-RBβ,γ

Algorithm induces competitive ratio 5, asymptotically in ρ → ∞. By Theorem 7
we know that the same algorithm (with the same parameters) requires Θ

(
ρ2

)

energy. In the other extreme, if the energy is less that ρ, then the problem admits
no solution (and if the energy equals ρ, then the best rendezvous is attained when
robots go directly to the reference point). Hence, we are motivated to study the
problem of minimizing the expected rendezvous time in SRDρ given that agents’
energy is between ρ and 18

79ρ2. Somehow surprisingly, we show below that for
every ε > 0 we can preserve a competitive ratio of 5 and energy no more than
ερ2 + o(ρ2) or competitive ratio 5+ ε and energy no more than 2√

ε
ρ+ o(ρ), both

asymptotically in ρ.

Theorem 8. The following claims are true asymptotically for SRDρ as ρ → ∞.
For every ε > 0, there exist β1, γ1 so that the competitive ratio of ∞-RBβ1,γ1 is
5, as well as Eρ

∞ (β1, γ1) /ρ2 ≤ ε. Moreover, for every δ > 0, there exist β2, γ2 so
that the competitive ratio of ∞-RBβ2,γ2 is 5+δ, as well as Eρ

∞ (β1, γ1) /ρ ≤ 2/
√

δ.

4 Conclusion

We introduced and studied a new geometric variant of symmetric rendezvous
that we call Symmetric Rendezvous in a Disk (SRD). Our main contribution
pertains to the algorithmic reduction of known suboptimal algorithms for the
classic Symmetric Rendezvous problem on a Line (SRL) to SRD. Since SRD
can also be interpreted as a variant of SRL in which agents are equipped with
additional advice, our results demonstrate how this advice can be beneficial
to the expected rendezvous time, beating in some cases the conjectured best
possible time for SRL. Special to SRD is also that, unlike in SRL, our algorithms
induce bounded worst case (energy) performance. Motivated by this, we also
studied energy-efficiency tradeoffs, and we showed that, somehow surprisingly,
one can achieve rendezvous with limited energy (and with probability 1) by
compromising only slightly on the expected rendezvous time.

Our techniques can be generalized for all known improved rendezvous proto-
cols for SRL, however optimal reductions will be challenging to obtain. Never-
theless, it is interesting to investigate heuristic reductions, which we leave as an
open research direction. Other interesting variants of our problem include the
introduction of more agents, or relaxations of the notion of advice that we are
using.

References

1. Alpern, S.: Hide and seek games. Seminar (1976)
2. Alpern, S.: The rendezvous search problem. SIAM J. Control Optim. 33(3), 673–

711 (1995)

132 K. Georgiou et al.

3. Alpern, S.: Rendezvous search: a personal perspective. Oper. Res. 50(5), 772–795
(2002)

4. Alpern, S.: Ten Open Problems in Rendezvous Search, pp. 223–230. Springer, New
York (2013). https://doi.org/10.1007/978-1-4614-6825-7 14

5. Alpern, S., Baston, V.: Rendezvous on a planar lattice. Oper. Res. 53(6), 996–1006
(2005)

6. Alpern, S., Baston, V.: A common notion of clockwise can help in planar ren-
dezvous. Eur. J. Oper. Res. 175(2), 688–706 (2006)

7. Alpern, S., Baston, V.: Rendezvous in higher dimensions. SIAM J. Control Optim.
44(6), 2233–2252 (2006)

8. Alpern, S., Gal, S.: Rendezvous search on the line with distinguishable players.
SIAM J. Control Optim. 33(4), 1270–1276 (1995)

9. Alpern, S., Gal, S.: The theory of search games and rendezvous. In: International
Series in Operations Research & Management Science, vol. 55. Springer, Heidelberg
(2003). https://doi.org/10.1007/b100809

10. Steve Alpern and Wei Shi Lim: Rendezvous of three agents on the line. Naval Res.
Logist. (NRL) 49(3), 244–255 (2002)

11. Anaya, J., Chalopin, J., Czyzowicz, J., Labourel, A., Pelc, A., Vaxès, Y.: Collecting
information by power-aware mobile agents. In: Aguilera, M.K. (ed.) DISC 2012.
LNCS, vol. 7611, pp. 46–60. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33651-5 4

12. Anderson, E.J., Weber, R.R.: The rendezvous problem on discrete locations. J.
Appl. Probab. 27(4), 839–851 (1990)

13. Anderson, E.J., Essegaier, S.: Rendezvous search on the line with indistinguishable
players. SIAM J. Control Optim. 33(6), 1637–1642 (1995)

14. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election of
mobile agents: impact of sense of direction. Theory Comput. Syst. 40(2), 143–162
(2007)

15. Baston, V.J.: Two rendezvous search problems on the line. Naval Res. Logist. 46,
335–340 (1999)

16. Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is
given by an unknown probability distribution. SIAM J. Control Optim. 36(6),
1880–1889 (1998)

17. Beveridge, A., Ozsoyeller, D., Isler, V.: Symmetric rendezvous on the line with an
unknown initial distance. Technical report (2011)

18. Chester, E.J., Tütüncü, R.H.: Rendezvous search on the labeled line. Oper. Res.
52(2), 330–334 (2004)

19. Collins, A., Czyzowicz, J., G ↪asieniec, L., Kosowski, A., Martin, R.: Synchronous
rendezvous for location-aware agents. In: Peleg, D. (ed.) DISC 2011. LNCS, vol.
6950, pp. 447–459. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24100-0 42

20. Cooper, C., Frieze, A., Radzik, T.: Multiple random walks and interacting parti-
cle systems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 399–410. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-02930-1 33

21. Czyzowicz, J., Dobrev, S., Kranakis, E., Krizanc, D.: The power of tokens: ren-
dezvous and symmetry detection for two mobile agents in a ring. In: Geffert, V.,
Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM
2008. LNCS, vol. 4910, pp. 234–246. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-77566-9 20

https://doi.org/10.1007/978-1-4614-6825-7_14
https://doi.org/10.1007/b100809
https://doi.org/10.1007/978-3-642-33651-5_4
https://doi.org/10.1007/978-3-642-33651-5_4
https://doi.org/10.1007/978-3-642-24100-0_42
https://doi.org/10.1007/978-3-642-24100-0_42
https://doi.org/10.1007/978-3-642-02930-1_33
https://doi.org/10.1007/978-3-540-77566-9_20
https://doi.org/10.1007/978-3-540-77566-9_20

Symmetric Rendezvous with Advice: How to Rendezvous in a Disk 133

22. Czyzowicz, J., Pelc, A., Labourel, A.: How to meet asynchronously (almost) every-
where. ACM Trans. Algorithms 8(4), 37:1–37:14 (2012)

23. Das, S.: Distributed computing with mobile agents: solving rendezvous and related
problems. Ph.D. thesis, University of Ottawa, Canada (2007)

24. Das, S.: Mobile agent rendezvous in a ring using faulty tokens. In: Rao, S.,
Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS,
vol. 4904, pp. 292–297. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-77444-0 29

25. Das, S., Luccio, F.L., Markou, E.: Mobile agents rendezvous in spite of a malicious
agent. In: Bose, P., G ↪asieniec, L.A., Römer, K., Wattenhofer, R. (eds.) ALGO-
SENSORS 2015. LNCS, vol. 9536, pp. 211–224. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-28472-9 16

26. Feinerman, O., Korman, A., Kutten, S., Rodeh, Y.: Fast Rendezvous on a cycle by
agents with different speeds. In: Chatterjee, M., Cao, J., Kothapalli, K., Rajsbaum,
S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 1–13. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-45249-9 1

27. Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple mobile
agent rendezvous in a ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol.
2976, pp. 599–608. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24698-5 62

28. Georgiou, K., Griffiths, J., Yakubov, Y.: Symmetric rendezvous with advice: How
to rendezvous in a disk. CoRR, abs/1805.03351 (2018)

29. Han, Q., Donglei, D., Vera, J., Zuluaga, L.F.: Improved bounds for the symmetric
rendezvous value on the line. Oper. Res. 56(3), 772–782 (2008)

30. Kranakis, E., Krizanc, D., Markou, E.: Mobile agent rendezvous in a synchronous
torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 653–664. Springer, Heidelberg (2006). https://doi.org/10.1007/11682462 60

31. Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem
in the Ring. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, San Rafael (2010)

32. Kranakis, E., Santoro, N., Sawchuk, C., Krizanc, D.: Mobile agent rendezvous in
a ring. In: Distributed Computing Systems, pp. 592–599. IEEE (2003)

33. Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks
59(3), 331–347 (2012)

34. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots.
Theor. Comput. Sci 384(2–3), 222–231 (2007)

35. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts, and strongly
universal exploration sequences. ACM Trans. Algorithms 10(3), 12:1–12:15 (2014)

36. Patchrawat Patch Uthaisombut: Symmetric rendezvous search on the line using
move patterns with different lengths. Working paper (2006)

https://doi.org/10.1007/978-3-540-77444-0_29
https://doi.org/10.1007/978-3-540-77444-0_29
https://doi.org/10.1007/978-3-319-28472-9_16
https://doi.org/10.1007/978-3-319-28472-9_16
https://doi.org/10.1007/978-3-642-45249-9_1
https://doi.org/10.1007/978-3-540-24698-5_62
https://doi.org/10.1007/978-3-540-24698-5_62
https://doi.org/10.1007/11682462_60

Two Rounds Are Enough
for Reconstructing Any Graph (Class)

in the Congested Clique Model

Pedro Montealegre1(B), Sebastian Perez-Salazar2, Ivan Rapaport3,
and Ioan Todinca4

1 Facultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
p.montealegre@edu.uai

2 ISyE, Georgia Institute of Technology, Atlanta, USA
sperez@gatech.edu

3 DIM-CMM (UMI 2807 CNRS), Universidad de Chile, Santiago, Chile
rapaport@dim.uchile.cl

4 Université d’Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans, France
ioan.todinca@univ-orleans.fr

Abstract. In this paper we study the reconstruction problem in the
congested clique model. In the reconstruction problem nodes are asked
to recover all the edges of the input graph G. Formally, given a class of
graphs G, the problem is defined as follows: if G /∈ G, then every node
must reject; on the other hand, if G ∈ G, then every node must end up
knowing all the edges of G. It is not difficult to see that the cost Rb
of any algorithm that solves this problem (even with public coins) is at
least Ω(log |Gn|/n), where Gn is the subclass of all n-node labeled graphs
in G, R is the number of rounds and b is the bandwidth.

We prove here that the lower bound above is in fact tight and that
it is possible to achieve it with only R = 2 rounds and private coins.
More precisely, we exhibit (i) a one-round algorithm that achieves this
bound for hereditary graph classes; and (ii) a two-round algorithm that
achieves this bound for arbitrary graph classes. Later, we show that the
bound Ω(log |Gn|/n) cannot be achieved in one round for arbitrary graph
classes, and we give tight algorithms for that case.

From (i) we recover all known results concerning the reconstruction
of graph classes in one round and bandwidth O(log n): forests, planar
graphs, cographs, etc. But we also get new one-round algorithms for
other hereditary graph classes such as unit-disc graphs, interval graphs,
etc. From (ii), we can conclude that any problem restricted to a class of
graphs of size 2O(n logn) can be solved in the congested clique model in
two rounds, with bandwidth O(log n). Moreover, our general two-round
algorithm is valid for any set of labeled graphs, not only for graph classes.

Partially supported by CONICYT PIA/Apoyo a Centros Cient́ıficos y Tecnológicoss
de Excelencia AFB 170001 (P.M. and I.R.), Fondecyt 1170021 (I.R.) and CONICYT
+ PAI + CONVOCATORIA NACIONAL SUBVENCIÓN A INSTALACIÓN EN LA
ACADEMIA CONVOCATORIA AÑO 2017 + PAI77170068 (P.M.).

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 134–148, 2018.
https://doi.org/10.1007/978-3-030-01325-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_15&domain=pdf

Graph Reconstruction in the Congested Clique 135

Keywords: Congested clique · Round complexity
Reconstruction problem · Graph classes · Hereditary graphs

1 Introduction

The congested clique model –a message-passing model of distributed computa-
tion where the underlying communication network is the complete graph [20]– is
receiving increasingly more attention [4,8–11,14]. This model allows us to sep-
arate and understand the impact of congestion in distributed computing. The
point is the following: if the communication network is a complete graph and the
cost of local computation is ignored, then the only obstacle to perform any task
is due to congestion alone. In other words, by isolating the effect of the band-
width, we intend to understand it. Despite the theoretical motivation of the
congested clique model, examples of distributed and parallel systems, where the
efficiency depends heavily on the bandwidth and therefore might benefit from
our results, are increasingly less exceptional [5,21,26]. For instance, in [12], the
authors show that fast algorithms in the congested clique model can be trans-
lated into fast algorithms in the MapReduce model. Many theoretical models,
aiming to bridging the gap between theory and previously mentioned softwares,
have emerged [1,16,17] (These models are all very similar, but not completely
identical, to the congested clique model).

The congested clique model is defined as follows. There are n nodes which
are given distinct identities (IDs), that we assume for simplicity to be numbers
between 1 and n. In this paper we consider the situation where the joint input
to the nodes is a graph G. More precisely, each node v receives as input an n-bit
boolean vector xv ∈ {0, 1}n, which is the indicator function of its neighborhood
in G. Note that the input graph G is an arbitrary n-node graph, a subgraph of the
communication network Kn. Nodes execute an algorithm, communicating with
each other in synchronous rounds and their goal is to compute some function f
that depends on G. In every round, each of the n nodes may send up to n − 1
different b-bit messages through each of its n − 1 communication links. When
an algorithm stops every node must know f(G). We call f(G) the output of
the distributed algorithm. The parameter b is known as the bandwidth of the
algorithm. We denote by R the number of rounds. The product Rb represents
the total number of bits received by a node through one link, and we call it the
cost of the algorithm.

An algorithm may be deterministic or randomized. We distinguish two sub-
cases of randomized algorithms: the private-coin setting, where each node flips its
own coin; and the public-coin setting, where the coin is shared between all nodes.
An ε-error algorithm A that computes a function f is a randomized algorithm
such that, for every input graph G, Pr(A outputs f(G)) ≥ 1 − ε. In the case
where ε → 0 as n → ∞, we say that A computes f with high probability (whp).

Function f defines the problem to be solved. A 0−1 function corresponds to
a decision problem (such as connectivity [11]). For other, more general types of
problems, f should be defined, in fact, as a relation. This happens, for instance,

136 P. Montealegre et al.

when we want to construct a minimum spanning tree [9,14], a maximal inde-
pendent set [10], a 3-ruling set [13], all-pairs shortest-paths [4], etc.

The most difficult problem one could attempt to solve is the reconstruction
problem, where nodes are asked to reconstruct the input graph G. In fact, if at
the end of the algorithm every node v has full knowledge of G, then it could
answer any question concerning G. (This holds because in the congested clique
model nodes have unbounded computational power).

In centralized, classical graph algorithms, a widely used approach to cope
with NP-hardness is to restrict the class of graphs where the input G belongs. We
are going to use an analogous approach here, in the congested clique model. But,
as we are going to explain later, surprisingly, the complexity of the reconstruction
problem will only depend on the cardinality of the subclass of n-node graphs in G.

Formally, for any fixed set of graphs G, we are going to introduce two
problems. The first one, the strong recognition problem G-Strong-Rec, is the
following.

Input: An arbitrary graph G

Output:
all the edges of G if G ∈ G;
reject otherwise.

G-Strong-Rec

Recall that the output is computed by every node of the network. In other
words, every node of an algorithm that solves G-Strong-Rec must end up
knowing whether G belongs to G; and, in the positive cases, every node also
finishes knowing all the edges of G.

We also define a weak recognition problem G-Weak-Rec. This is a promise
problem, where the input graph G is promised to belong to G. In other words,
for graphs that do not belong to G, the behavior of an algorithm that solves
G-Weak-Rec does not matter.

Input: G ∈ G
Output: all the edges of G

G-Weak-Rec

For any positive integer n we define Gn as the set of n-node graphs in G. There
is an obvious lower bound for Rb, even for the weak reconstruction problem G-
Weak-Rec and even in the public-coin setting. In fact, Rb = Ω(log |Gn|/n).
This can be easily seen if we note that, in the randomized case, there must be at
least one outcome of the coin tosses for which the correct algorithm reconstructs
the input graph in at least (1 − ε) of the cases.

In this paper we are going to prove that this bound is essentially tight even
with R = 1 (if G is an hereditary class of graphs) and R = 2 (in the general
case).

Graph Reconstruction in the Congested Clique 137

1.1 Our Results

We start this paper by studying a very natural family of graph classes known
as hereditary. A class G is hereditary if, for every graph G ∈ G, every induced
subgraph of G also belongs to G. Many graph classes are hereditary: forests,
planar graphs, bipartite graphs, k-colorable graphs, bounded tree-width graphs,
d-degenerate graphs, etc. [3]. Moreover, any intersection class of graphs –such as
interval graphs, chordal graphs, unit disc graphs, etc.– is also hereditary [3].

In Sect. 3 we give, for every hereditary class of graphs G, a one-round
private-coin randomized algorithm that solves G-Strong-Rec with bandwidth
O(maxk∈[n] log |Gk|/k + log n).

We emphasize that our algorithm runs in one round, and therefore it runs in
the broadcast congested clique, a restricted version of the congested clique model
where, in every round, the n−1 messages sent by a node must be the same. (This
equivalence is a consequence of the requirement that all nodes must compute
the output after one round). We also remark that for many hereditary graph
classes, including all classes listed above, our algorithm is tight. Moreover, our
result implies that G-Strong-Rec can be solved in one round with bandwidth
O(log n) when G is the class of forests, planar graphs, interval graphs, unit-circle
graphs, or any other hereditary graph class G such that |Gn| = 2O(n log n).

In Sect. 4 we give a very general result, showing that two rounds are sufficient
to solve G-Strong-Rec in the congested clique model, for any set of graphs
G. More precisely, we provide a two-round deterministic algorithm that solves
G-Weak-Rec and a two-round private-coin randomized algorithm that solves
G-Strong-Rec whp. We also give a three-round deterministic algorithm solving
G-Strong-Rec. All algorithms run using bandwidth O(log |Gn|/n + log n), so
they are asymptotically optimal when |Gn| = 2Ω(n log n).

Our result implies, in particular, that G-Strong-Rec can be solved in two
rounds with bandwidth O(log n), when G is any set of graphs of size 2O(n log n).
The only property of the set of graphs G used by our algorithm is the cardinality
of Gn. Our algorithm does not require G to be closed under isomorphisms.

In Sect. 5 we revisit the one-round case. Our general algorithm can be adapted
to run in one round (i.e., in the broadcast congested clique model) by allowing a
larger bandwidth. We show that, for every set of graphs G, there is a one-round
deterministic algorithm that solves G-Weak-Rec, and a one-round private-
coin algorithm that solves G-Strong-Rec whp, both of them using bandwidth
O(

√
log |Gn| log n + log n). We finish Sect. 5 pointing out that these algorithms,

with respect to the bandwidth, are tight.

1.2 Some Remarks

Lenzen’s Algorithm. Lenzen’s algorithm performs a load balancing procedure
in the congested clique model [18]. Therefore, if the input graph is sparse, it solves
the reconstruction problem very fast (by simply distributing all the edges among
the nodes, and then broadcasting everything). For instance, if the input graph
G contains O(n) edges, then it reconstruct G in a constant number of rounds

138 P. Montealegre et al.

with bandwidth O(log n). Our result is much more general. We do not need the
graphs to be sparse. We just need the class to be small . For example, the class of
interval graphs contains very dense graphs (including the clique), but it is small,
since it contains 2O(n log n) different labeled graphs. In Sect. 4 we prove that, if the
class G is such that |Gn| = 2O(n log n), then there exists a three-round determin-
istic algorithm that reconstructs G using bandwidth O(log n). Therefore, our
three-round deterministic algorithm can be applied to sparse graphs, interval
graphs, etc.

Broadcast Congested Clique. Consider the case where G is indeed sparse
but we want to reconstruct it using the broadcast congested clique model (and
therefore we can not use Lenzen’s algorithm). Suppose, for instance, that the
number of edges of graphs in G is O(n). The naive algorithm, where every node
broadcasts its incident edges, may take Ω(n/b) rounds, because some nodes may
have Ω(n) neighbors (recall that b is the bandwidth). In Sect. 5 we prove that,
in the broadcast congested clique model, we can reconstruct any class of graphs
G in one round using bandwidth b = O(

√
log |Gn| log n + log n). The class of

graphs having O(n) edges satisfies that log |Gn| = O(n log n). Hence, we can
reconstruct it in one round using bandwidth b = O(

√
n log n). This algorithm

is much faster than the naive one, that would take, for the same bandwidth,
Ω(

√
n/ log n) rounds.

Reconstruction Versus Recognition. The recognition problem is the classi-
cal decision problem, where we simply want to decide whether the input graph
belongs to some class G. It is clear that finding a formal proof showing some type
of equivalence between the reconstruction and the recognition problems would
yield a non-trivial lower bound on the recognition problem. However, in [6], the
authors show that any non-trivial unconditional lower bound on a decision prob-
lem in the congested clique model would imply novel Boolean circuit complexity
lower bounds. Nevertheless, proving lower bounds for explicit Boolean functions
in the theory of circuit complexity has been an elusive goal for decades. There-
fore, even though for some graph classes G, it seems that the only strategy to
decide whether G ∈ G is to reconstruct G, proving this is as difficult as proving
fundamental conjectures in circuit complexity, a notoriously difficult challenge.

1.3 Techniques

The main techniques we use in this paper are fingerprints and error correcting
codes. A fingerprint is a small representation of a large vector which statisfies
that, if two vectors are different, then their fingerprints, whp, are also differ-
ent [25]. We define in this paper the fingerprint of a graph, which is simply
the collection of fingerprints of the rows of its adjacency matrix. Consider two
graphs G and H defined on the same set of nodes. The fingerprints of these two
graphs are different with a probability that grows exponentially with respect
to the number of nodes having different neighborhoods in G and H. Therefore,
roughly speaking, if G is a set of graphs where all graphs are very different, then
each graph in G will have a different fingerprint.

Graph Reconstruction in the Congested Clique 139

What happens when G differs from H only in a few nodes? We have two dif-
ferent answers, depending on whether: (i) the graphs belong to some hereditary
class of graphs G; (ii) the graphs are arbitrary. In the first, hereditary case, we
prove that, for any graph G, the number of graphs H ∈ G which are close to G
(in terms of the number different rows in the corresponding adjacency matrices)
is small. Therefore, the fingerprints will be different even for graphs which are
close between themselves.

In the second, general case, we use, together with fingerprints, error-
correcting codes. More precisely, we use Reed-Solomon codes [23]. The idea of
these codes consists in mapping a vector into a slightly larger one, satisfying that
the mapping of two different vectors differ in many coordinates. With this, we
define error-correcting-graphs where, instead of vectors, we map any graph into
a slightly larger one. The mapping of two different graphs will have many nodes
with different neighborhoods. We show that the fingerprint of such mapping
uniquely identifies the graphs in G, for any G. The advantage of our construc-
tions is that it mainly depends on the neighborhoods of the nodes (i.e., rows
of the adjacency matrix), and can be implemented efficiently in the congested
clique model.

1.4 Related Work

All known results concerning the reconstruction of graphs obtained so far, have
been obtained in the context of hereditary graph classes. For instance, let G
be the class of cograph, that is, the class of graphs that do not contain the 4-
node path as an induced subgraph. This class is obviously hereditary. In [15], the
authors presented a one-round public-coin algorithm that solves G-Strong-Rec
with bandwidth O(log n). Note that |Gn| = 2Θ(n log n). The result we give in this
paper is stronger, because our one-round algorithm needs the same bandwidth
but uses private coins.

In [2,22] it is shown that, if G is the class of d-degenerate graphs, then there is
a one-round deterministic algorithm that solves G-Strong-Rec with bandwidth
O(d log n) = O(log n). A graph G is d-degenerate if one can remove from G a
vertex r of degree at most d, and then proceed recursively on the resulting graph
G′ = G − r, until obtaining the empty graph. Note that planar graphs (or more
generally, bounded genus graphs), bounded tree-width graphs, graphs without a
fixed graph H as a minor, are all d-degenerate, for some constant d > 0. Since
the class of d-degenerate graphs is hereditary and satisfies |Gn| = 2Θ(n log n), it
follows, from this paper, the existence of a one-round private-coin randomized
algorithm that solves G-Strong-Rec with bandwidth O(log n). However, the
result of [2] for this particular class is stronger, since their algorithm is deter-
ministic.

Another example of reconstruction with one-round deterministic algorithms
can be found in [6]. There, the authors consider the class of graphs defined by
one forbidden subgraph H. They show that such classes can be reconstructed
deterministically in one round with bandwidth b = O((ex(n,H) log n)/n), where
ex(n,H) is the Turán number of H, defined as be the maximum number of edges

140 P. Montealegre et al.

in an n-node graph not containing an isomorphic copy of H as a subgraph. For
example, if C4 is the cycle of length 4, then ex(n,C4) = O(n3/2). This implies
that, if we define G as the class of graphs not containing C4 as a subgraph, then
there is a one-round deterministic algorithm that solves G-Strong-Rec with
bandwidth O(

√
n log n).

2 Preliminaries

2.1 Some Graph Terminology

Two graphs G and H are isomorphic if there exists a bijection ϕ : V (G) → V (H)
such that any pair of vertices u, v are adjacent in G if and only if f(u) and f(v)
are adjacent in H. A class of graphs G is a set of graphs which is closed under
isomorphisms, i.e., if G belongs to G and H is isomorphic to G, then H also
belongs to G. For a class of graphs G and n > 0, we call Gn the subclass of
n-node graphs in G. For a graph G = (V,E) and U ⊆ V we denote G[U] the
subgraph of G induced by U . More precisely, the vertex set of G[U] is U and
the edge set consists of all of the edges in E that have both endpoints in U . A
class G is hereditary if it is closed under taking induced subgraphs, i.e., for every
G = (V,E) ∈ G and every U ⊆ V , the induced subgraph G[U] ∈ G.

For a graph G = ({v1, . . . , vn}, E), we call A(G) its adjacency matrix, i.e.,
the 0 − 1 square matrix of dimension n where [A(G)]ij = 1 if and only if vi is
adjacent to vj . Let M be a square matrix of dimension n, and let i ∈ [n] =
{1, . . . , n}. We call Mi the i-th row of M . Let N be another square matrix of
dimension n. We denote by dr(M,N) the row-distance between M and N , that
is, the number of rows that are different between M and N . In other words,
dr(M,N) = |{i ∈ [n] : Mi �= Ni}|. For k > 0 and G = (V,E), we denote by
D(G, k) the set of all graphs H = (V,E′) such that dr(A(G), A(H)) = k.

2.2 Fingerprints

Let n be a positive integer and p be a prime number. In the following, we
denote by Fp the finite field of size p and by Fp[X] the polynomial ring on Fp. A
polynomial P ∈ Fp[X] is an expression of the form P (x) =

∑d
i=1 aix

i−1, where
ai ∈ Fp.

Let q be a prime number such that q < n < p. For each a ∈ F
n
q , consider

the polynomial FP (a, ·) ∈ Fp[X] defined as FP (a, x) =
∑

i∈[n] aix
i−1 mod p.

(Note that we interpret the coordinates of a as elements of Fp).
For t ∈ Fp, we call FP (a, t) the fingerprint of a and t. The following lemma

is direct.

Lemma 1. [19] Let n be a positive integer, p and q be two prime numbers such
that q < n < p. Let a, b ∈ (Fq)n such that a �= b. Then, |{t ∈ Fp : P (a, t) =
P (b, t)}| ≤ n − 1.

Graph Reconstruction in the Congested Clique 141

We extend the definition of fingerprints to matrices. Let M be a square
matrix of dimension n and coordinates in Fq, and let T be an element of (Fp)n.
We call FP (M,T) ∈ (Fp)n the fingerprint of M and T , defined as FP (M,T) =
(FP (M1, T1), . . . , FP (Mn, Tn)), where Mi is the i-th row of M , for each i ∈ [n].
Moreover, for a graph of size n, and T ∈ (Fp)n we call FP (G,T) the fingerprint
of A(G) and T .

3 Reconstructing Hereditary Graph Classes

In this section we start giving the main result. Later we explain the consequence
of this result on well-known hereditary graph classes.

Theorem 1. Let G be an hereditary class of graphs. There exists a one-round
private-coin algorithm that solves G-Strong-Rec whp and bandwidth

O(max
k∈[n]

(log(|Gk|)/k) + log n).

Proof. In the algorithm, nodes use a prime number p, whose value will be cho-
sen later. The algorithm consists in: (1) Each node i picks ti in Fp uniformly at
random (using private coins), and computes FP (xi, ti). (2) Each node com-
municates ti and FP (xi, ti). (3) Every node constructs T = (t1, . . . tn) and
FP (G,T) = (FP (x1, t1), . . . , F (xn, tn)) from the messages sent in the commu-
nication round. Finally: (4) Every node looks in Gn for a graph H such that
FP (H,T) = FP (G,T). If such graph H exists, the algorithm outputs H, oth-
erwise it rejects.

Let T in (Zp)n, picked uniformly at random. We aim to show that, for every
G, if some H ∈ Gn satisfies FP (H,T) = FP (G,T), then G = H whp. First,
note that

Pr(∃H ∈ Gn s.t. H �= G and FP (G,T) = FP (H,T))
≤

∑

k∈[n]
Pr(∃H ∈ Gn ∩ D(G, k) s.t. FP (G,T) = FP (H,T)).

Now suppose that H �= G and let k > 0 such that H belongs to D(G, k)∩Gn.

From Lemma 1 we deduce that Pr(FP (G,T) = FP (H,T)) ≤
(

n
p

)k

. It follows
that

Pr(∃H ∈ Gn ∩ D(G, k) s.t. FP (G,T) = FP (H,T)) ≤
(

n

p

)k

· |Gn ∩ D(G, k)|.

We now claim that |Gn∩D(G, k)| ≤ (
n
k

)|Gk|. Indeed, we can interpret a graph
H in D(G, k) as a graph built by picking k vertices {v1, . . . vk} of G and then
adding or removing edges between those vertices. Since G is hereditary, the graph

142 P. Montealegre et al.

induced by {v1, . . . , vk} must belong to Gk. Therefore, |Gn ∩ D(G, k)| ≤ (
n
k

)|Gk|.
This claim implies:

Pr(∃H ∈ Gn ∩ D(G, k) s.t. FP (G,T) = FP (H,T)) ≤
(

n

p

)k

·
(ne

k

)k

· |Gk|

≤
(

n2 · e · (|Gk|)1/k

p

)k

.

Let f : N → R be defined as f(n) = n · maxk∈[n]
log |Gk|

k . Note that this
function is increasing, satisfies f(n)/n ≤ f(n + 1)/(n + 1), and log |Gn| ≤ f(n).
Therefore, (|Gk|)1/k ≤ 2f(k)/k ≤ 2f(n)/n. We deduce:

Pr(∃H ∈ Gn s.t. H �= G and FP (G,T) = FP (H,T)) ≤
∑

k∈[n]

(
n2 · e · 2f(n)/n

p

)k

.

We now fix p as the smallest prime number greater than n4 · e · 2f(n)/n, and we
get that with probability at least 1 − 1/n, either G = H or F (H,T) �= F (G,T),
for every H ∈ Gn. Hence, the algorithm solves G-Strong-Rec whp.

Note that the bandwidth required by node i in the algorithm equals the
number of bits required to represent the pair (ti, F (xi, ti)), which are two integers
in [p]. Therefore, the bandwidth of the algorithm is

2�log p = O(f(n)/n + log n) = O
(

max
k∈[n]

(log(|Gk|)/k) + log n

)
.

��
We deduce the following corollary.

Corollary 1. Let G be an hereditary class of graphs, and h be an increasing
function such that |Gn| = 2θ(nh(n)). Then, our private-coin algorithm solves G-
Strong-Rec whp, in one-round, with bandwidth Θ(log |Gn|/n + log n). This
matches the lower bound on the cost Rb (which must be satisfied even in the
public coin setting).

In [24], Scheinerman and Zito showed that hereditary graph classes have a
very specific growing rate. They showed (Theorem 1 in [24]) that, for any
hereditary class of graphs G, one of the following behaviors must hold: |Gn| ∈
{O(1), nΘ(1), 2Θ(n), 2Θ(n log n), 2ω(n log n)}. Corollary 1 implies that our algorithm
is tight for any hereditary class of graphs such that |Gn| = 2Θ(n log n).

4 Reconstructing Arbitrary Graph Classes

In this section we show that there exists a two-round private-coin algorithm
in the congested clique model that solves G-Strong-Rec whp and bandwidth
O(log |Gn|/n + log n). Our algorithm is based, roughly, on the same ideas used

Graph Reconstruction in the Congested Clique 143

to reconstruct hereditary classes of graphs. But the problem we encounter is
the following: while in the case of hereditary classes of graphs, we had for every
graph G and k > 0, a bound on the number of graphs contained in D(G, k)∩Gn,
this is not the case in an arbitrary family G. Therefore, fingerprints alone are not
enough to differentiate graphs. To cope with this obstacle, we use error correcting
codes.

Definition 1. Let 0 ≤ k ≤ n, and let q be the smallest prime number greater
that n + k. An error correcting code with parameters (n, k) is a mapping C :
{0, 1}n → (Fq)n+k, satisfying:

(1) For every x ∈ {0, 1}n and i ∈ [n], C(x)i = xi.
(2) For each x, y ∈ {0, 1}n, x �= y implies |{i ∈ [n + k] : C(x)i �= C(y)i}| ≥ k.

For sake of completeness, we give the construction of an error correcting code
with parameters (n, k). For x ∈ {0, 1}n, let Px be the unique polynomial of degree
(at most) n in Fq[X] satisfying Px(i) = xi for each i ∈ [n]. The function C is
then defined as C(x) = (Px(1), . . . , Px(n + k)). This function satisfies properties
(1) and (2). We now adapt the definition of error correcting codes to graphs.

Definition 2. For a graph G, we call C(G) the square matrix of dimension n+k
with elements in Fq defined as follows.

– For each i ∈ [n], the i-th row of C(G) is C(A(G)i) ∈ (Fq)n+k (recall that
A(G)i is the i-th row of the adjacency matrix of G).

– For each i ∈ [k], the (n + i)-th row of C(G) is the vector

(C(x1)n+i, . . . , C(xn)n+i,0) ∈ (Fq)n+k,

where 0 is the zero-vector of Fd
q , and C(x)j ∈ Fq is the j-th element of C(x).

We can represent C(x) as a pair (x, x̃), where x̃ belongs to (Fq)k. Similarly,
for a graph G, we can represent C(G) as the symmetric matrix:

C(G) =

[
A(G) ˜A(G)
˜A(G)

T
0

]

,

where ˜A(G) is the matrix with rows C(A(G)i)n+1, . . . , C(A(G)i)n+k, with
i ∈ [n].

Remark 1. Note that dr(C(G), C(H)) > k, for every two different n-node graphs
H and G. Indeed, if G �= H, there exists i ∈ [n] such that A(G)i is different than
A(H)i. Then, by definition of C, |{j ∈ [n + k] : C(A(G))i,j �= C(A(H))i,j}| > k.
This means that dr(C(G), C(H)) > k, because C(G) and C(H) are symmetric
matrices.

Lemma 2. Let G be a set of graphs, C the error correcting code with parameters
(n, k), and let p be the smallest prime number greater than (n + k) · |Gn|2/k.
Then, there exists T ∈ (Fp)n+k depending only on G, satisfying FP (C(G), T) �=
FP (C(H), T) for all different G,H ∈ Gn.

144 P. Montealegre et al.

Proof. From Remark 1, we know that dr(C(G), C(H)) > k, for every two differ-
ent n-node graphs H and G. Then, if we pick T ∈ (Fp)n+k uniformly at random
we have, from Lemma 1:

Pr(FP (C(G), T) = FP (C(H), T)) <

(
n + k

p

)k

.

Then, by the union bound

Pr(∃G,H ∈ Gn s.t. G �= H and FP (C(G), T) = FP (C(H), T))

<

(
n + k

p

)k

· |Gn|2 ≤ 1.

The last inequality follows from the choice of p. Therefore, there must
exist a T ∈ (Fp)n+k such that FP (C(G), T) �= FP (C(H), T), for all different
G,H ∈ Gn. ��
Theorem 2. Let G be a set of graphs. The following holds:

(1) There exists a two-round deterministic algorithm in the congested clique
model that solves G-Weak-Rec with bandwidth O(log |Gn|/n + log n).

(2) There exists a three-round deterministic algorithm in the congested clique
model that solves G-Strong-Rec with bandwidth O(log |Gn|/n + log n).

(3) There exists a two-round private-coin algorithm in the congested clique
model that solves G-Strong-Rec with bandwidth O(log |Gn|/n+log n) whp.

Proof.

(1) Let p be the first prime greater than 2n · |Gn|2/n (then p ≤ 4n · |Gn|2/n), and
let q be the smallest prime number greater than 2n. In the algorithm, node
i first computes C(xi), where C is the error correcting code with parameters
(n, n). Then, for each j ∈ [n] node i communicates C(xi)j+n to node j. This
communication round requires bandwidth �log q = O(log n). After the first
communication round, node i knows C(xi) and (C(x1)i+n, . . . , C(xn)i+n),
i.e., it knows rows i and i + n of matrix C(G). Each node computes a
vector T ∈ (Fp)2n such that FP (C(G), T) �= FP (C(H), T), for all differ-
ent G,H ∈ Gn (each node computes the same T). The existence of T is
given by Lemma 2. Then, node i communicates (broadcasts) FP (C(G)i, Ti)
and FP (C(G)i+n, Ti+n). This communication round requires bandwidth
2�log p = O((log |Gn|)/n + log n). After the second communication round,
each node knows FP (C(G), T). Then, they locally compute the unique
H ∈ Gn such that FP (C(H), T) = FP (C(G), T). Since G belongs to Gn,
then necessarily G = H.

(2) Suppose now that we are solving G-Strong-Rec. In this case G does not
necessarily belong to Gn. After receiving the fingerprints of C(G), nodes look
for a graph H in Gn that satisfies FP (C(G), T) = FP (C(H), T). If such a
graph exists, we call it a candidate. Otherwise, every node decides that G
is not in Gn, so they reject. Note that, if the candidate exists, then it is

Graph Reconstruction in the Congested Clique 145

unique, since FP (C(H1), T) �= FP (C(H2), T) for all different H1, H2 in Gn.
So, if the candidate H exists, each node i checks whether the neighborhood
of vertex i on G and H are equal, and announces the answer in the third
round (communicating one bit). If every node announces affirmatively, then
they output G = H. Otherwise, it means that G is not in Gn, so every node
rejects.

(3) We now show that, if we allow the algorithm to be randomized, then we
can spare the third round. Let p′ ∈ [n2, 2n2] be a prime number. In the
second round, node i picks Si ∈ Fp, and it communicates, together with
FP (C(G)i, Ti) and FP (C(G)i+n, Ti+n), also FP (xi, Si). After the second
round of communication, if a candidate H ∈ Gn exists, each node computes
S = (S1, . . . , Sn), FP (G,S) = (FP (x1, S1), . . . , FP (xn, Sn). If FP (G,S) =
FP (H,S), then nodes deduce that G = H. Otherwise, they deduce that
G /∈ Gn and rejects. Note that if G belongs to Gn, then the algorithm always
give the correct answer. Otherwise, it rejects whp. Indeed, if G /∈ Gn, then
H �= G, and from Lemma 1, Pr(FP (G,T) = FP (H,T)) ≤ 1/n.

��
Our private-coin algorithm for G-Strong-Rec has one-sided error. In fact, if

the input graph belongs to G, then our algorithm reconstructs it with probability
1. On the other hand, if G does not belong to G, then our algorithm fails to
discard the candidate with probability at most 1/n.

5 Revisiting the One Round Case

In this section we revisit the one-round case (and therefore the broadcast con-
gested clique model). But, instead of studying hereditary graph classes, we study
arbitrary graph classes, and we show that for this general case we need a larger
bandwith. Our results, in terms of the bandwidth, are tight.

Theorem 3. Let G be a set of graphs. The following holds:

(1) There exists a one-round deterministic algorithm in the congested clique
model that solves G-Weak-Rec with bandwidth O(

√
log |Gn| log n + log n).

(2) There exists a one-round private-coin algorithm in the congested clique
model that solves G-Strong-Rec with bandwidth O(

√
log |Gn| log n+log n)

whp.

Proof. The algorithm in this case are very similar to the algorithms we provided
in the proof of Theorem 2. Let k be a parameter whose value will be chosen
at the end of the proof, and let C be the error-correcting-code with parameters
(n, k). Let p be the smallest prime number greater than 2n · |G|2/k. Let T ∈
(Fp)n+k be the vector given by Lemma 2, corresponding to G. In the algorithm,
every node i computes C(xi), and communicates FP (C(xi), Ti) together with
C(xi)n+1, . . . , C(xi)n+k ∈ (Fq)k, where q is the smallest prime greater than k+n.
Note that the communication round requires bandwidth

146 P. Montealegre et al.

O(log p + k · log(n + k)) = O(log |Gn|/k + (k + 1) · log n).

After the communication round, every node knows FP (C(xi), Ti), for all
i ∈ [n], and also knows the matrix ˜A(G). Therefore, every node can com-
pute FP (C(xi), Ti), for all i ∈ {n + 1, . . . , n + k}, and, moreover, compute
FP (C(G), T).

From the construction of T , there is at most one graph H ∈ Gn such that
FP (C(G), T) = FP (C(H), T). Therefore, if G belongs to G, every node can
reconstruct it.

On the other hand, if we are solving G-Strong-Rec, then we proceed as
in the algorithm of Theorem 2, either testing whether H = G in one more
round, or sending a fingerprint of G to check with high probability if a candidate
H ∈ Gn such that FP (C(G), T) = FP (C(H), T) is indeed equal to G. This
verification requires to send O(log n) more bits, which fits in the asymptotic
bound of the bandwidth. The optimal value of k, that is, the one which minimizes

the expression O(log |Gn|/k + (k + 1) · log n), is such that k = O
(√

log |Gn|
log n

)
.

Therefore, the bandwidth is O(
√

log |Gn| log n + log n). ��
Now we are going to show that previous algorithms for solving G-Weak-Rec

and G-Strong-Rec are in fact tight. For proving this, we are going to exhibit a
class of graphs G satisfying |Gn| ≤ 2O(n) such that every algorithm (deterministic
or randomized) solving G-Weak-Rec in the broadcast congested clique model
has cost Rb = Ω(

√
log |Gn|). This lower bound matches the upper one-round

bound given in Theorem 3 (up to logarithmic factors).

Theorem 4. There exists a class of graphs G+ satisfying |G+
n | ≤ 2O(n) such

that, any ε-error public-coin algorithm in the broadcast congested clique model

that solves G+-Weak-Rec, has cost Rb = Ω(
√

n) = Ω(
√

log |G+
n |).

Proof. Let G+ be the class of graphs defined as follows: G belongs to G+
n if

and only if G is the disjoint union of a graph H of �√n nodes and n − |H|
isolated nodes. Note that |G+

n | =
(

n
�√

n�
) · 2(�√

n�
2) ≤ 2O(n). Indeed, there are

2(�√
n�
2) = 2O(n) labeled graphs of size �√n, and at most

(
n

�√
n�

)
= 2O(

√
n log n)

different labelings of a graph of
√

n nodes using n labels (so G+ is closed under
isomorphisms).

Let A be an ε-error public-coin algorithm solving G+-Weak-Rec in R(n)
rounds and bandwidth b(n), on input graphs of size n.

Consider now the following algorithm B that solves U-Weak-Rec, where U
is the set of all graphs: on input graph G of size n, each node i ∈ [n] supposes
that it is contained in a graph G+ formed by G plus n2−n isolated vertices with
identifiers (n + 1), . . . , n2. Note that G+ belongs to G+. Then, node i simulates
A as follows: at each round, node i ∈ [n] produces the message of node i in G+

according to A. Note that the messages produced by nodes labeled (n+1), . . . , n2

do not depend on G, so they can be produced by any node of G without any

Graph Reconstruction in the Congested Clique 147

extra communication. Since A solves G+-Weak-Rec, when the algorithm halts
every node knows all the edges of G+, so they reconstruct G ignoring vertices
labeled (n + 1), . . . , n2.

We deduce that algorithm B solves U-Weak-Rec. Note that the cost of B is
R(n2)b(n2) on input graphs of size n. We deduce that R(n2)b(n2) = Ω(n), i.e.,
the cost of A is Ω(

√
n). ��

6 Discussion

Our result gives a straightforward, general strategy to solve arbitrary problems
when the input graph belongs to some particular class of graphs. Hence, instead
of designing ad-hoc algorithms to solve specific problems, we can reconstruct the
input graph G and solve locally any question concerning G.

Even though in the congested clique model, by definition, the only complexity
measure taken into account is communication, it is important to point out that
the general algorithms we presented in this paper run in exponential local time.

However, note that, unless P = NP (or even if stronger conjectures in com-
putational complexity are false), this difficulty can not be overcome. In fact,
for many graph classes G, solving G-Strong-Rec in polynomial local time is
impossible.

Let us illustrate this with an example. Consider the hereditary, sparse class
of 3-colorable planar graphs, that we denote 3-col-plan. It is NP -complete to
decide whether an arbitrary graph belongs to 3-col-plan [7]. Any algorithm in
the congested clique model that runs in polynomial local time can be simulated
by a sequential algorithm that also runs in polynomial time: simply run the
computation of each node one by one at each round. Therefore, unless P = NP ,
there is no algorithm running in polynomial local time solving 3-col-planar-
Strong-Rec.

References

1. Beame, P., Koutris, P., Suciu, D.: Communication steps for parallel query process-
ing. J. ACM 64(6), Article 40 (2017)

2. Becker, F., Matamala, M., Nisse, N., Rapaport, I., Suchan, K., Todinca, I: Adding
a referee to an interconnection network: what can(not) be computed in one round.
In: IPDPS 2011, pp. 508–514 (2011)

3. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM, Philadel-
phia (1999)

4. Censor-Hillel, K., Kaski, P., Korhonen, J. H., Lenzen, C., Paz, A., Suomela, J.:
Algebraic methods in the congested clique. In: PODC 2015, pp. 143–152 (2015)

5. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

6. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model.
In: PODC 2014, pp. 367–376 (2014)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability. W H Freeman,
New York (2002)

148 P. Montealegre et al.

8. Ghaffari, M.: An improved distributed algorithm for maximal independent set. In:
SODA 2016, pp. 270–277 (2016)

9. Ghaffari, M., Parter, M.: MST in log-star rounds of congested clique. In: PODC
2016, pp. 19–28 (2016)

10. Ghaffari, M.: Distributed MIS via all-to-all communication. In: PODC 2017, pp.
141–149 (2017)

11. Hegeman, J.W., Pandurangan, G., Pemmaraju, S.V., Sardeshmukh, V., Scquizzato,
M.: Toward optimal bounds in the congested clique: graph connectivity and MST.
In: PODC 2015, pp. 91–100 (2015)

12. Hegeman, J.W., Pemmaraju, S.V.: Lessons from the congested clique applied to
MapReduce. In: SIROCCO 2014, pp. 149–164 (2014)

13. Hegeman, J.W., Pemmaraju, S.V., Sardeshmukh, V.B.: Near-constant-time dis-
tributed algorithms on a congested clique. In: Kuhn, F. (ed.) DISC 2014. LNCS,
vol. 8784, pp. 514–530. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45174-8 35

14. Jurdzinski, T., Nowicki, K.: MST in O(1) rounds of the congested clique. In: SODA
2018, pp. 2620–2632 (2018)

15. Kari, J., Matamala, M., Rapaport, I., Salo, V.: Solving the induced sub-
graph problem in the randomized multiparty simultaneous messages model. In:
Scheideler, C. (ed.) SIROCCO 2015. LNCS, vol. 9439, pp. 370–384. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-25258-2 26

16. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In:
SODA 2010, pp. 938–948 (2010)

17. Klauck, H., Nanongkai, D., Pandurangan, G., Robinson, P.: Distributed computa-
tion of large-scale graph problems. In: SODA 2015, pp. 391–410 (2015)

18. Lenzen, C.: Optimal deterministic routing and sorting on the congested clique. In:
PODC 2013, pp. 42–50 (2013)

19. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications.
Cambridge University Press, Cambridge (1994)

20. Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight spanning tree
construction in O (log log n) communication rounds. SIAM J. Comput. 35(1), 120–
131 (2005)

21. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: SIGMOD
2010, pp. 135–146 (2010)

22. Montealegre, P., Todinca, I.: Brief announcement: deterministic graph connectivity
in the broadcast congested clique. In: PODC 2016, pp. 245–247 (2016)

23. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind.
Appl. Math. 8(2), 300–304 (1960)

24. Scheinerman, E.R., Zito, J.: On the size of hereditary classes of graphs. J. Comb.
Theory, Ser. B 61(1), 16–39 (1994)

25. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27(4), 701–717 (1980)

26. White, T.: Hadoop: The definitive guide. O’Reilly Media Inc., Sebastopol (2012)

https://doi.org/10.1007/978-3-662-45174-8_35
https://doi.org/10.1007/978-3-662-45174-8_35
https://doi.org/10.1007/978-3-319-25258-2_26

Space-Efficient Uniform Deployment
of Mobile Agents in Asynchronous

Unidirectional Rings

Masahiro Shibata1(B), Hirotsugu Kakugawa2, and Toshimitsu Masuzawa2

1 Department of Computer Science and Electronics, Kyushu Institute of Technology,
680-4, Kawadu, Iizuka, Fukuoka 820-8502, Japan

shibata@cse.kyutech.ac.jp
2 Graduate School of Information Science and Technology,

Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
{kakugawa,masuzawa}@ist.osaka-u.ac.jp

Abstract. In this paper, we consider the uniform deployment problem
of mobile agents in asynchronous unidirectional ring networks. This prob-
lem requires agents to spread uniformly in the network. In this paper,
we focus on the memory space per agent required to solve the problem.
We consider two problem settings. The first setting assumes that agents
have no multiplicity detection, that is, agents cannot detect whether
another agent is staying at the same node or not. In this case, we show
that each agent requires Ω(log n) memory space to solve the problem,
where n is the number of nodes. In addition, we propose an algorithm
to solve the problem with O(k + log n) memory space per agent, where
k is the number of agents. The second setting assumes that each agent
is equipped with the weak multiplicity detection, that is, agents can
detect another agent staying at the same node, but cannot learn the
exact number. Then, we show that the memory space per agent can be
reduced to O(log k + log log n). To the best of our knowledge, this is
the first research considering the effect of the multiplicity detection on
memory space required to solve problems.

Keywords: Distributed system · Mobile agent · Uniform deployment
Ring network · Space-efficient

1 Introduction

1.1 Background and Related Works

A distributed system consists of a set of computers (nodes) connected by commu-
nication links. As a promising design paradigm of distributed systems, (mobile)

A preliminary brief announcement of this work appeared in the proceedings of the 19th
International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS 2017). This work was partially supported by JSPS KAKENHI Grant Number
16K00018, 17K19977, and 18K18031, and Japan Science and Technology Agency (JST)
SICORP.

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 149–164, 2018.
https://doi.org/10.1007/978-3-030-01325-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_16&domain=pdf

150 M. Shibata et al.

agents have attracted much attention [1]. Agents traverse the system carrying
information collected at visited nodes and process tasks on each node using the
information. In other words, agents encapsulate the process code and data, which
simplifies design of distributed systems [2].

In this paper, we consider the uniform deployment (or uniform scattering)
problem as a fundamental problem for coordination of agents. This problem
requires agents to spread uniformly in the network. Uniform deployment is use-
ful for network management. In a distributed system, it is necessary that regu-
larly each node gets software updates and is checked whether some application
installed on the node is running correctly or not [3]. Hence, considering agents
with such services, uniform deployment guarantees that agents visit each node
at short intervals and provide services. Uniform deployment might be useful also
for a kind of load balancing. That is, considering agents with large-size database
replicas, uniform deployment guarantees that not all nodes need to store the
database but each node can quickly access the database [4]. Hence, we can see
the uniform deployment problem as a kind of the resource allocation problem
(e.g., the k-server problem).

As related works, the uniform deployment problem is considered in ring net-
works [5,6] and grid networks [7]. All of them assumed that agents are oblivious
(or memoryless) but can observe multiple nodes within its visibility range. On
the other hand, our previous work [8] considered uniform deployment in asyn-
chronous unidirectional ring networks for agents that have memory but cannot
observe nodes except for their currently visiting nodes.

1.2 Our Contribution

In this paper, we consider the uniform deployment problem in asynchronous uni-
directional ring networks. Similarly to [8], we consider agents that have memory
but cannot observe nodes except for their currently visiting nodes. While the
previous work [8] considered uniform deployment with such agents for the first
time and clarified the solvability, this work focuses on the memory space per
agent required to solve the problem and aims to propose space-efficient algo-
rithms in weaker models than that of [8]. That is, while agents in [8] assumed
that they can send a message to the agents staying at the same node, agents
in this paper do not have such ability. Instead, each agent initially has a token
and can release it on a visited node, and agents can communicate only by the
tokens. After a token is released, it cannot be removed. We also analyze the
time complexity and the total number of moves. We assume that agents have
knowledge of the number k of agents.

In Table 1, we compare our contributions with the results for agents with
knowledge of k in [8]. We consider two problem settings. The first setting consid-
ers agents without multiplicity detection, that is, agents cannot detect whether
another agent staying at the same node or not. In this model, we show that
each agent requires Ω(log n) memory space to solve the problem, where n is
the number of nodes. In addition, we propose an algorithm to solve the problem
with O(k+log n) memory space per agent, O(n log k) time, and O(kn log k) total

Space-Efficient Uniform Deployment of Mobile Agents 151

number of moves. The second setting considers agents with the weak multiplicity
detection, that is, agents can detect another agent staying at the same node, but
cannot learn the exact number. In this setting, we also assume that agents know
an upper bound log N of log n such that log N = O(log n). Then, we propose
an algorithm to reduce the memory space per agent to O(log k + log log n), but
it uses O(n2 log n) time and O(kn2 log n) total number of moves. To the best of
our knowledge, this is the first research considering the effect of the multiplicity
detection on memory space required to solve problems.

Due to limitation of space, we omit several pseudocodes and proofs of
theorems.

Table 1. Results for agents with knowledge of k (n, #nodes, k, #agents)

Previous results [8] Results of this paper

Result 1 Result 2 Model 1 Model 2

Communication Messages Messages Unremovable tokens Unremovable tokens

Multiplicity detection Required Required Not required Required

Agent memory O(k logn) O(logn) O(k + log n) O(log k + log log n)

Time complexity Θ(n) O(n log k) O(n log k) O(n2 log n)

Total number of moves Θ(kn) Θ(kn) O(kn log k) O(kn2 logn)

2 Preliminaries

2.1 System Model

We use almost the same model as that in [8]. A unidirectional ring network R
is defined as 2-tuple R = (V,E), where V is a set of anonymous nodes and E is
a set of unidirectional links. We denote by n (= |V |) the number of nodes, and
let V = {v0, v1, . . . , vn−1} and E = {e0, e1, . . . , en−1} (ei = (vi, v(i+1) mod n)).
We define the direction from vi to vi+1 as the forward direction. In addition, we
define the i-th (i �= 0) (forward) agent a′ of agent a as the agent such that i − 1
agents exist between a and a′ in a’s forward direction. Moreover, the distance
from node vi to vj is defined to be (j − i) mod n.

An agent is a state machine having an initial state. Let A = {a0, a1, . . . , ak−1}
be a set of k (≤ n) anonymous agents. Since the ring is unidirectional, agents
staying at vi can move only to vi+1. We assume that agents have knowledge of k.
Each agent initially has a token and can release it on a visited node. After a token
is released, it cannot be removed. The token on an agent can be realized by one
bit memory and cannot carry any additional information. Hence, the tokens on
a node represents just the number of the tokens and agents cannot recognize the
owners of the tokens1. Moreover, we assume that agents move through a link in
a FIFO manner, that is, when agent ap leaves vi after agent aq, ap reaches vi+1

1 In practice, each node can store more information, but it is sufficient to store infor-
mation about tokens when considering anonymous agents.

152 M. Shibata et al.

after aq. Note that such a FIFO assumption is natural because (1) agents are
implemented as messages in practice, and (2) the FIFO assumption of messages
is natural and can be easily realized using sequence numbers.

We consider two problem settings: agents without multiplicity detection and
agents with weak multiplicity detection. While agents without multiplicity detec-
tion cannot detect whether another agent is staying at the same node or not,
agents with weak multiplicity detection can detect another agent staying at the
same node, but cannot learn the exact number2. Each agent ai executes the fol-
lowing three operations in an atomic action: (1) Agent ai reaches a node v (when
ai is in transit to v), or starts operations at v (when ai stays at v), (2) agent
ai executes local computation, and (3) agent ai leaves v if it decides to move.
For the case with weak multiplicity detection, the local computation depends
on whether another agent is staying at v or not. Note that these assumptions of
atomic actions are also natural because they can be implemented by nodes with
an incoming buffer that stores agents about to visit the node and makes them
execute actions in a FIFO order. We consider an asynchronous system, that is,
the time for each agent to transit to the next node or to wait until the next
activation (when staying at a node) is finite but unbounded.

Table 2. Meaning of each element in configuration C = (S, T, P, Q)

Element Meaning and example

S = (s0, s1, . . . , sk−1) Set of agent states (si: the state of agent ai)

T = (t0, t1, . . . , tn−1) Set of node states (ti: the number of tokens at node vi)

P = (p0, p1, . . . , pn−1) Sets of agents staying at nodes
(pi: a set of agents staying at node vi)

Q = (q0, q1, . . . , qn−1) Sets of agents residing on links
(qi: a sequence of agents in transit from vi−1 to vi)

A (global) configuration C is defined as a 4-tuple C = (S, T, P,Q) and
the correspondence table is given in Table 2. Element S is a k-tuple S =
(s0, s1, . . . , sk−1), where si is the state (including the state to denote whether it
holds a token or not) of agent ai. Element T is an n-tuple T = (t0, t1, . . . , tn−1),
where ti is the state (i.e., the number of tokens) of node vi. The remaining
elements P and Q represent the positions of agents. Element P is an n-tuple
P = (p0, p1, . . . , pn−1), where pi is a set of agents staying at node vi. Element
Q is an n-tuple Q = (q0, q1, . . . , qn−1), where qi is a sequence of agents residing
in the FIFO queue corresponding to link (vi−1, vi). Hence, agents in qi are in
transit from vi−1 to vi.

We denote by C the set of all possible configurations. In initial configuration
C0 ∈ C, all agents are in the initial state (where each has a token) and placed at

2 This is why such multiplicity detection is called weak.

Space-Efficient Uniform Deployment of Mobile Agents 153

distinct nodes3, and no node has any token. The node where agent a is located
in C0 is called the home node of a and is denoted by vHOME(a). For convenience,
we assume that in C0 agent a is stored at the incoming buffer of its home node
vHOME(a). This assures that agent a starts the algorithm at vHOME(a) before
any other agents make actions at vHOME(a).

A (sequential) schedule X = ρ0, ρ1, . . . is an infinite sequence of agents, intu-
itively which activates agents to execute their actions one by one. Schedule X
is fair if every agent appears in X infinitely often. An infinite sequence of con-
figurations E = C0, C1, . . . is called an execution from C0 if there exists a fair
schedule X = ρ0, ρ1, . . . that satisfies the following conditions for each h (h > 0):

– If agent ρh−1 ∈ pi (i.e., ρh−1 is an agent staying at vi) for some i in Ch−1, the
states of ρh−1 and vi in Ch−1 are changed in Ch by local computation of ρh−1.
If ρh−1 releases its token at vi, the value of ti increases by one. After this, if
ρh−1 decides to move to vi+1, ρh−1 is removed from pi and is appended to the
tail of qi+1. If ρh−1 decides to stay, ρh−1 remains in pi. The other elements
in Ch are the same as those in Ch−1.

– If agent ρh−1 is at the head of qi (i.e., ρh−1 is the next agent to reach vi) for
some i in Ch−1, ρh−1 is removed from qi and reaches vi. Then, the states of
ρh−1 and vi in Ch−1 are changed in Ch by local computation of ρh−1. If ρh−1

releases its token at vi, the value of ti increases by one. After this, if ρh−1

decides to move to vi+1, ρh−1 is appended to the tail of qi+1. If ρh−1 decides
to stay, ρh−1 is inserted in pi. The other elements in Ch are the same as those
in Ch−1.

Note that if the activated agent ρh−1 has no action, then Ch−1 and Ch are
identical. Actually after uniform deployment is achieved, the same configuration
is repeated forever.

2.2 The Uniform Deployment Problem

The uniform deployment problem in a ring network requires k (≥ 2) agents to
spread uniformly in the ring, that is, all the agents are located at distinct nodes
and the distance between any two adjacent agents should be identical. Here, we
say two agents are adjacent when there exists no agent between them. However,
we should consider the case that n is not a multiple of k. In this case, we aim to
distribute the agents so that the distance of any two adjacent agents should be
�n/k� or �n/k	.

We consider the uniform deployment problem without termination detection.
In this case, suspended states are defined as follows. An agent stays at a node
(not in a link) when it is at a suspended state. When agent ai enters a sus-
pended state, it neither changes its state nor leaves the current node v unless

3 We assume this for simplicity, but even if two or more agents exist at the same node
in C0, agents can solve the problem similarly by using the number of tokens at each
node and atomicity of execution.

154 M. Shibata et al.

the observable local configuration of v (i.e., existence of another agent or the
number of tokens for agents with weak multiplicity detection, or the number of
tokens for agents without multiplicity detection) changes. The uniform deploy-
ment problem without termination detection allows agents to stop in suspended
states, which is also known as communication deadlock. We define the problem
as follows.

Definition 1. An algorithm solves the uniform deployment problem without ter-
mination detection if any execution satisfies the following conditions.

– All agents change their states to the suspended states in finite time.
– When all agents are in the suspended states, qi = ∅ holds for any qi ∈ Q and

the distance of each pair of adjacent agents is �n/k� or �n/k	. ��
Next, we define the time complexity as the time required to solve the problem.
Since there is no bound on time in asynchronous systems, it is impossible to
measure the exact time. Instead we consider the ideal time complexity, which
is defined as the execution time under the following assumptions: (1) The time
for an agent to transit to the next node or to wait until the next activation
is at most one, and (2) the time for local computation is ignored (i.e., zero)4.
Note that these assumptions are introduced only to evaluate the complexity,
that is, algorithms are required to work correctly without such assumptions. In
the following, we use terms “time complexity” and “time” instead of “ideal time
complexity”.

3 Agents Without Multiplicity Detection

In this section, we consider uniform deployment for agents without multiplicity
detection.

3.1 A Lower Bound of Memory Space per Agent

First, we show the following lower bound of memory space per agent.

Theorem 1. For agents without multiplicity detection, the memory space per
agent to solve the uniform deployment problem is Ω(log n). ��
Proof. We show the theorem by contradiction. We assume that there exists an
algorithm to solve the uniform deployment problem with at most log n − 2 bit
memory per agent. Then, each agent has at most 2(log n−2) = n/4 states. Hence,
when an agent enters a suspended state, it moved at most n/4 times after it last
observed a token.

We consider the initial configuration such that two agents a1 and a2 are
placed at neighboring nodes in a n-node ring. Then, the distance between the
4 This definition is based on the ideal time complexity for asynchronous message-

passing systems [9].

Space-Efficient Uniform Deployment of Mobile Agents 155

two agents in the final configuration should be �n/2� or �n/2	. We assume that
a1 and a2 move in a synchronous manner. Then, since they are placed at neigh-
boring nodes and execute the same algorithm, they release tokens (if do) also at
neighboring nodes. In addition, since a1 and a2 move at most n/4 times after
they last observed a token and enter suspended states, the distance between them
is at most n/4 + 1(�= �n/2� or �n/2). However, this contradicts the condition
of uniform deployment. ��

3.2 An Algorithm with O(k + logN) Memory Space per Agent

Next, we propose an algorithm to solve the uniform deployment problem with
O(k + log n) memory space per agent, O(n log k) time, and O(kn log k) total
number of moves. From Theorem 1, the algorithm is optimal in memory space
per agent when k = O(log n). The algorithm consists of two phases as do the
two algorithms in [8]: the selection phase and the deployment phase. In the
selection phase, agents select some base nodes, which are the reference nodes for
uniform deployment. In the deployment phase, based on the base nodes, each
agent determines a target node where it should enters a suspended state and
moves to the node. For simplicity, we assume n = ck for some positive integer c
since we can easily remove this assumption, but we omit the description.

3.2.1 Selection Phase
In this phase, some home nodes are selected as base nodes. The selected base
nodes satisfy the following conditions called the base node conditions: (1) At
least one base node exists, (2) the distance between every pair of adjacent base
nodes is the same, and (3) the number of home nodes between every pair of
adjacent base nodes is the same. We say that two base nodes are adjacent when
there exists no base node between them. In Fig. 1, distances from vHOME(a1) to
vHOME(a2), from vHOME(a2) to vHOME(a3), and from vHOME(a3) to vHOME(a1)
are all 6, and the number of home nodes between vHOME(a1) and vHOME(a2),
between vHOME(a2) and vHOME(a3), and between vHOME(a3) and vHOME(a1)

Fig. 1. An example of the base node conditions (n = 18, k = 9).

156 M. Shibata et al.

are all 2. Thus, vHOME(a1), vHOME(a2), and vHOME(a3) satisfy the base node
conditions. When the selection phase is completed, each agent stays at its home
node and knows whether its home node is selected as a base node or not. We call
an agent a leader (but probably not unique) when its home node is selected as a
base node, and call it a follower otherwise. The state of an agent is active, leader
or follower. Active agents are candidates for leaders, and initially all agents are
active. We say that node v is active (resp., follower) when v is the home node of
an active (resp., a follower) agent.

At first, we explain the basic idea of the selection phase in [8], which assumes
weak multiplicity detection, and then we explain the way of applying the idea
to the model in this section. In the selection phase of [8], agents use IDs (but
probably not unique) and decrease the number of active agents. We explain
the detail of the IDs later. At the beginning of the algorithm, each agent ai

releases its token at vHOME(ai). The selection phase consists of several subphases.
At the beginning of each subphase, each agent ai stays at vHOME(ai). During
the subphase, if ai is a follower, it keeps staying at vHOME(ai). On the other
hand, each active agent ai travels once around the ring and gets its ID by the
method described later5. Then, ai compares its ID with IDs of other agents one
by one (ai gets them during the traversal of the ring) and determines the next
behavior. Briefly, (a) if all active agents have the same ID, it means that home
nodes of the active agents satisfy the base node conditions. Hence, the active
agents become leaders and enter to the deployment phase. (b) If all agents do
not have the same ID but ai’s ID is the maximum, it remains active and executes
the next subphase. (c) If ai does not satisfy (a) or (b), it becomes a follower.
Agents execute such subphases until base nodes are selected.

Now, we explain the detail of the ID. The ID (not necessarily unique) of an
active agent ai is given in the form of (fNumi, di), where fNumi is the number
of follower nodes between vHOME(ai) and the next active node in the subphase,
say vnext, and di is the distance from vHOME(ai) to vnext. In Fig. 2(a), when
agent ai moves from its home node vj(= vHOME(ai)) to the next active node
v′

j(= vnext), it observes two follower nodes and visits four nodes. Hence, ai gets
its ID IDi = (2, 4). Note that since active agents traverse the ring and follower

(a) (b)

Fig. 2. (a): An ID of an active agent ai in [8]. (b): An ID of an active agent ai in this
section (vj and v′

j are active and v� and v′
� are followers).

5 Each agent can detect when it completes one circuit of the ring using knowledge
of k.

Space-Efficient Uniform Deployment of Mobile Agents 157

agents stay at their home nodes, ai can detect its arrival at the next active
node when it visits a token node with no agent. This statement holds even
in asynchronous systems by the FIFO property of links and the atomicity of
execution (these facts are used in Sect. 4). Agents in [8] use O(log n) memory
space to get such an ID and decide whether they remain active (or they have the
lexicographically maximum ID) or not. Notice that an agent may get different
IDs in different subphases.

In the following, we explain how to apply the previous idea to the model in
this section (i.e., without multiplicity detection). Agents in this section cannot
detect existence of other agents staying at the same node and cannot detect the
arrival of the next active node using existence of an agent. To deal with this,
each agent memorizes the state of all agents by using an array Activenow of k
bits. The value of Activenow[i] is true iff its i-th agent is active (otherwise it is a
follower). Hence, agents can get an ID by going from node v to v′ each of whose
corresponding value of Activenow is true. In Fig. 2(b), if vj and v′

j are active and
v� and v′

� are followers, ai can gets its ID IDi = (2, 4). In addition, each follower
agent also moves in the ring instead of staying at its home node, and we explain
this next.

Now, we explain implementation of the subphase. Each follower agent firstly
moves to the nearest active node to simulate the behavior of the active agent.
To do this, each agent has variable nearActivenow that indicates the number of
tokens to the nearest active node in the subphase (the values of nearActivenow for
active agents are 0). Then, each active or follower agent ai travels once around
the ring. While traveling, ai executes the following actions:

(1) Get its ID IDi = (fNumi, di): Agent ai gets its ID IDi by moving from the
current node (i.e., vHOME(ai) for active agent ai or the nearest active node
for follower agent ai) to vnext with counting the numbers of followers and
visited nodes (Fig. 2(b)).

(2) Compare IDi with IDs of all active agents: During the traversal, ai compares
IDi with IDs of all active agents one by one, and checks (1) whether IDi is
the lexicographically maximum and (2) whether the IDs of all active agents
are the same. To check these, ai keeps variables IDmax that is the largest
ID among IDs ai ever found, and same (same = true means that IDs ai

ever found are the same), and it updates the variables (if necessary) every
time it finds an ID of another active agent. When IDmax is updated, ai also
updates the value of nearActivenext, indicating the number of tokens to the
nearest active node in the next subphase.

When completing one circuit of the ring, ai returns to vHOME(ai) and determines
its state for the next subphase. (a) If same = true, ai (and all the other active
agents) become leaders and completes the selection phase. (b) If same = false
and IDi = IDmax, ai remains its state (active or follower) and executes the
next subphase. (c) If ai does not satisfy (a) or (b), each active (resp., follower)
agent becomes (resp., remains) a follower and executes the next subphase. By
repeating such subphase at most �log k	 times, all the remaining active agents
become to have the same ID in some subphase and they are selected as leaders

158 M. Shibata et al.

so that their home nodes should satisfy the base node conditions. Notice that
�log k	 subphases are sufficient, intuitively because (1) the largest ID increases
every time a subphase completes, and thus (2) no pair of adjacent active agents
remain active in every subphase.

Pseudocode is described in Algorithm 1. Each agent uses variable preActive
for storing the position (i.e., the ordinary number) of the active node it visited
for the last time before coming to the current node, and boolean array Activenext
of k bits for storing the states of all agents for the next subphase. In addition,
agents use procedure nextActive() to move to the next active node. Note that,
in each subphase each follower agent firstly moves to the nearest active node,
travels once around the ring from the active node, and returns to its home node.
Hence, each follower agent travels twice around the ring in each subphase and
each active agent does so for simplicity. In addition, in Algorithm1 each agent
can get the number n of nodes when it finishes traveling once around the ring,
but we omit the description.

3.2.2 Deployment Phase
In this phase, each agent determines its target node and moves to the node.
At first, the nearest base node is first selected as the base node. Hence, if
vHOME(ai) is a base node (i.e., ai is a leader), vHOME(ai) is ai’s target node
and ai stays there. Otherwise (i.e., if ai is a follower), ai firstly moves until
it observes nearActivenow tokens to reach the nearest base node. After this, ai

moves nearActivenow×n/k times to reach its target node. When all agents move
to their target nodes, the final configuration is a solution of the uniform deploy-
ment problem.

We have the following theorem for the proposed algorithm.

Theorem 2. For agents without multiplicity detection, the proposed algorithm
solves the uniform deployment problem with O(k+log n) memory space per agent,
O(n log k) time, and O(kn log k) total number of moves. ��

4 Agents with Weak Multiplicity Detection

In this section, we consider agents with weak multiplicity detection, and pro-
pose an algorithm to solve the uniform deployment problem that reduces the
memory space per agent to O(log k + log log n), but it uses O(n2 log n) time and
O(kn2 log n) total number of moves. The algorithm consists of three phases: the
selection phase, the collection phase, and the deployment phase. In the selec-
tion phase, agents select base nodes similarly to Sect. 3. In the collection phase,
agents move in the ring so that they stay at consecutive nodes starting from the
base nodes. In the deployment phase, agents move to their target nodes. In this
section, we assume that agents know an upper bound log N of log n such that
log N = O(log n).

Space-Efficient Uniform Deployment of Mobile Agents 159

Algorithm 1. The behavior of active or follower agent ai in the selection phase
Behavior of Agent ai

1: /*selection phase*/
2: phase = 1, nearActivenow = 0, nearActivenext = 0, preActive = 0, same = true
3: for j = 0; j < k − 1; j + + do Activenow[j] = true, Activenext[j] = true
4: release a token at its home node vHOME(ai)
5: while phase �= �log k� do
6: if ai is a follower then
7: move until it observes nearActivenow tokens // reach the nearest active node
8: t = nearActivenow
9: end if

10: execute NextActive() and get the first ID IDi = (fNumi, di), IDmax = IDi

11: while t �= nearActivenow do
12: execute NextActive() and get ID IDoth = (fNumoth, doth) of the next active

agent
13: if IDoth �= IDi then same = false
14: if IDmax > IDoth then Activenext[preActive] = false
15: if IDmax < IDoth then
16: IDmax = IDoth, nearActivenext = preActive
17: for j = 0; j < t − 1; j + + do Activenext[j]= false
18: end if
19: end while
20: return to its home node vHOME(ai)
21: if same = true then // active nodes satisfy the base node conditions
22: if ai is active then enter a leader state
23: terminate the selection phase and enter the deployment phase
24: end if
25: if (ai is active) ∧ (IDi �= IDmax) then enter a follower state
26: phase = phase+1, same = true, nearActivenow = nearActivenext
27: for j = 0; j < k − 1; j + + do Activenow[j] = Activenext[j]
28: end while
29:
Procedure NextActive()
30: preActive = t
31: move to the next token node and set t = (t + 1) mod k
32: while Activenow[t] �= true do
33: move to the next token node and set t = (t + 1) mod k
34: end while

4.1 Selection Phase

Similarly to Sect. 3, in this phase some home nodes are selected as base nodes.
The basic idea is the same as that in Sect. 3, that is, agents use IDs and decrease
the number of active agents. However, compared with the algorithm in Sect. 3,
memory space is reduced to O(log k + log log n) from O(k + log n). We use two
techniques for the reduction: (i) As in [8], a follower remains at its home node
and informs an active agent of its state using the weak multiplicity detection:
when an agent is detected at a node, it is recognized as a follower. This improves
memory space from O(k) to O(log k) since the algorithm in Sect. 3 requires O(k)
memory space to maintain the states of all agents. (ii) Distances are computed
using Residue Number System (RNS) [10] that represents a large number as a set
of small numbers. In particular, we use the technique called Chinese Remainder
Theorem (CRT) [11]. The CRT says that for two positive integers n1 and n2

(n1, n2 < n), if the remainders of the integers when divided by each of the

160 M. Shibata et al.

Fig. 3. An ID of an active agent ai (primel = 3).

first log n prime numbers 2, 3, 5, . . . , U are the same, then n1 = n2 holds [11].
The prime number theorem guarantees that the (log n)-th prime U satisfies
U = O(log2 n). Thus, agents compare distances between adjacent active nodes
using the CRT and reduce memory space from O(log n) to O(log log n).

We explain the outline of the selection phase. As in Sect. 3, the state of an
agent is active, leader, or follower, and initially all agents are active. At the
beginning of the algorithm, each agent ai releases its token at vHOME(ai). The
selection phase consists of at most �log k	 subphases. As in Sect. 3, dropping out
from active agents is realized by IDs each of which consists of the number of
followers and the distance between active nodes. The only difference is that the
distance part is compared using remainders by primes (Fig. 3). Each subphase
consists of several iterations. At the beginning of each iteration, each agent ai

stays at vHOME(ai). For the l-th iteration in each subphase, if ai is a follower,
different from Sect. 3, it keeps staying vHOME(ai) to inform active agents visiting
the node of its state. On the other hand, each active agent ai travels once around
the ring and gets the distance part dprime

l of its ID as the remainder divided by
the l-th prime primel. In Fig. 3, when primel = 3, ai gets its ID IDi = (2, 1).

During the traversal, ai lexicographically compares its ID IDi with IDs of
other active agents one by one, and it determines its next behavior when it
returns to vHOME(ai). As in Sect. 3, ai uses variable same (same = true means
that IDs ai ever found are the same). Then, (a) if same = true and l = log N ,
it means that the distances between all the pairs of adjacent active nodes are
the same, and these home nodes satisfy the base node conditions. Hence, the
active agents become leaders and enter the collection phase without staying at
its home node. (b) If same = true but l �= log N , ai executes the next (l + 1)-th
iteration using the next prime primel+1. (c) If same = false, they terminate the
current subphase. If ai has the maximum ID, ai remains active and starts the
next subphase. Otherwise, ai becomes a follower. Each active agent executes
such subphases at most �log k	 times. Notice that the distances are compared
using the CRT, which implies that the agents with the maximum distance among
the agents with the maximum fNum (the number of followers between adjacent
active agents) do not necessarily remain active in the subphase. Hence, agents
remaining active in the subphase may differ from those in the algorithm of Sect. 3.
However, �log k	 subphases are still sufficient as in Sect. 3, which is guaranteed
by selecting active agents with the maximum fNum.

Space-Efficient Uniform Deployment of Mobile Agents 161

Algorithm 2. The behavior of active agent ai in the selection phase
Behavior of Agent ai

1: /*selection phase*/
2: phase = 1, prime = 2, same = true, max = true
3: release a token at its home node vHOME(ai)
4: while (phase �= �log k�) ∨ (prime �= (log N)-th ptime) do

5: move to the next active node and get its own ID IDi = (fNumi, d
prime
i)

6: while ai is not at vHOME(ai) do

7: move to the next active node and get ID IDoth = (fNumoth, d
prime
oth) of the next

active agent
8: if IDoth �= IDi then same = false
9: if IDoth > IDi then max = false // there exists an agent having a larger ID

10: end while
11: if (same = true) ∧ (prime = (log N)-th prime) then terminate the selection

phase, start the collection phase with a leader state, and leave the current node
// all active agents have the same ID for all target primes

12: if (same = true) ∧ (prime �= (log N)-th prime) then prime = (next prime)
13: if max = false then terminate the selection phase and start the collection phase

with a follower state
14: else phase = phase + 1, prime = 2, same = true, max = true
15: end while

Pseudocode is described in Algorithm 2. Each agent ai uses boolean variable
max (max = true means IDi is the maximum among IDs ai has ever found).

4.2 Collection Phase

In this phase, leader agents instruct follower agents so that they move to and
stay at consecutive nodes starting from the base nodes. Concretely, each leader
agent ai firstly moves to the follower node vj (i.e., the token node with another
agent) so that ai makes the follower agent to execute the collection phase. Then,
ai waits at vj until the follower leaves vj

6. After this, ai leaves vj and moves to
the next follower node. This process is repeated until ai reaches the next leader
node (i.e., the token node with no agent)7. On the other hand, each follower
agent ai waits at the current node until another agent (i.e., a leader) comes.
Then, ai firstly moves to the nearest leader node. After this, ai moves until
it reaches a node with no agent and stays there. When all agents finish their
movements, the agents are divided into groups (possibly only one group) each
of which consists of fNum + 1 agents, and the agents in a group are deployed at
consecutive nodes starting from a base node.

For example, in Fig. 4 there exists one leader agent a0 and two follower agents
a1 and a2 between a0 and its adjacent leader (i.e., fNum = 2). From (a) to (b), a0

firstly moves to the nearest token node with an agent (i.e., follower node), and

6 When an agent in the selection phase visits vj , it leaves vj without staying there
by the atomicity of an action. Hence, the behavior of leader agent ai can inform a
follower agent of the beginning of the collection phase.

7 By the atomicity of an action, when an agent moves to some leader node, the leader
agent already starts its collection phase and leaves the leader node.

162 M. Shibata et al.

(a) (b) (c)

(d) (e) (f)

Fig. 4. An example of the collection phase (fNum = 2).

stays there until the follower agent leaves the node. From (b) to (c), a1 detecting
another agent a0 firstly moves to the token node with no agent (i.e., leader node
v), and then moves to the next node. From (c) to (d), a0 similarly moves to the
next follower node where agent a2 exists. From (d) to (e), a2 firstly moves to
leader node v and moves until it visits a node with no agent. From (e) to (f), a0

moves to leader node v and finishes the collection phase.

4.3 Deployment Phase

In this phase, leader agents control follower agents so that they should move to
and stay at their target nodes to achieve uniform deployment. The basic idea is
as follows. The deployment phase consists of several subphases, and the distance
between every pair of adjacent agents in the same group is increased by one in
each subphase. To realize it, each subphase consists of several iterations. For
explanation of an iteration, consider a group where a0 is a leader and follow-
ers a1, a2, . . . , afNum are following a0 in this order. At the beginning of the first
subphase, they stay at consecutive nodes. Each subphase consists of fNum itera-
tions. In the l-th iteration, each of the l agents afNum−l+1, afNum−l+2, . . . , afNum

moves to the next node. Consequently, in each subphase am moves m times and
thus the distance between every pair of adjacent agents increases by one.

The l-the iteration is realized as follows. Leader agent a0 firstly moves to
the node where afNum−l+1 is staying and stays there until afNum−l+1 moves to
the next node. Then, a0 moves to the node where afNum−l+2 is staying to make
afNum−l+2 to move to the next node. This process is repeated until afNum moves
to the next node. After this, a0 makes a remaining circuit of the ring, returns
to the node where it started the deployment phase, say vdep(a0), and terminates
the l-th iteration. Then, a0 checks if the locations of agents from vdep(a0) to the
next leader node are uniform or not using the CRT. If the locations are uniform,
a0 returns to vdep(a0) and enters a suspended state. Otherwise, a0 executes the
next iteration. When a0 executes the fNum-th iteration and the locations are
not uniform, a0 executes the next subphase.

Space-Efficient Uniform Deployment of Mobile Agents 163

(a) (b) (c)

(d) (e) (f)

Fig. 5. An example of the deployment phase (fNum = 2).

For example, in Fig. 5 there exist one leader agent a0 and two follower agents
a1 and a2 (i.e., fNum=2). Let d1 (resp., d2) be the distance from a0 to a1 (resp.,
a1 to a2). In (a), d1 = d2 = 1 holds. From (a) to (b), as the first iteration in
the first subphase a0 moves to the node where the fNum-th follower agent (i.e.,
a2) exists and stays there until a2 moves to the next node. From (b) to (c),
a0 returns to the node vdep(a0) where it started the deployment phase. Then,
d1 = 1 and d2 = 2 hold. If a0 recognizes that the locations of agents are not
uniform, it executes the next iteration. From (c) to (d), as the second iteration
in the first subphase a0 moves to the node where the (fNum − 1)-th agent (i.e.,
a1) exists and stays there until a1 moves to the next node. From (d) to (e), a0

moves to the next follower’s (i.e., a2’s) node and stays there until a2 moves to the
next node. From (e) to (f), a0 returns to node vdep(a0). Then, d1 = d2 = 2 holds
and ai determines its next behavior depending on the location of agents. Each
leader repeats such a behavior until it recognizes that the locations of agents are
uniformly deployed.

We have the following theorem for the proposed algorithm.

Theorem 3. For agents with weak multiplicity detection and knowledge of an
upper bound log N of log n satisfying log N = O(log n), the proposed algorithm
solves the uniform deployment problem with O(log k + log log n) memory space
per agent, O(n2 log n) time, and O(kn2 log n) total number of moves. ��

5 Conclusion

In this paper, we proposed two space-efficient uniform deployment algorithms
in asynchronous unidirectional ring networks. For agents without multiplicity
detection, we showed that each agent requires Ω(log n) memory space, and pro-
posed an algorithm to solve the problem with O(k + log n) memory space per
agent, O(n log k) time, and O(kn log k) total number of moves. This algorithm
is optimal in memory space per agent when k = O(log n). For agents with
weak multiplicity detection, we proposed an algorithm to solve the problem with

164 M. Shibata et al.

O(log k + log log n) memory space per agent, O(n2 log n) time, and O(kn2 log n)
total number of moves.

As a future work, for agents without multiplicity detection we want to pro-
pose a space-optimal (i.e., O(log n) memory) algorithm to solve the problem.
Also, for agents with weak multiplicity detection we want to show a lower bound
of memory space per agent. We conjecture that it is Ω(log k + log log n), which
implies that the second algorithm is asymptotically optimal in memory space
per agent.

References

1. Gray, R.S., Kotz, D., Cybenko, G., Rus, D.: D’agents: applications and performance
of a mobile-agent system. Softw. Pract. Exper. 32(6), 543–573 (2002)

2. Lange, D.B., Oshima, M.: Seven good reasons for mobile agents. CACM 42(3),
88–89 (1999)

3. Kranakis, E., Krizanc, D.: An algorithmic theory of mobile agents. In: Montanari,
U., Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp. 86–97. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75336-0 6

4. Cao, J., Sun, Y., Wang, X., Das, S.K.: Scalable load balancing on distributed web
servers using mobile agents. JPDC 63(10), 996–1005 (2003)

5. Flocchini, P., Prencipe, G., Santoro, N.: Self-deployment of mobile sensors on a
ring. Theor. Comput. Sci. 402(1), 67–80 (2008)

6. Yotam, E., Alfred, B.M.: Uniform multi-agent deployment on a ring. Theor. Com-
put. Sci. 412(8), 783–795 (2011)

7. Barriere, L., Flocchini, P., Mesa-Barrameda, E., Santoro, N.: Uniform scattering of
autonomous mobile robots in a grid. Int. J. Found. Comput. Sci. 22(03), 679–697
(2011)

8. Shibata, M., Mega, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Uniform deploy-
ment of mobile agents in asynchronous rings. In: PODC, pp. 415–424 (2016)

9. Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press, Cam-
bridge (2000)

10. Amos, O.R., Benjamin, P.: Residue Number Systems: Theory and Implementation,
vol. 2. World Scientific, Singapore (2007)

11. Pei, D., Salomaa, A., Ding, C.: Chinese Remainder Theorem: Applications in Com-
puting, Coding, Cryptography. World Scientific, Singapore (1996)

https://doi.org/10.1007/978-3-540-75336-0_6

Explorable Families of Graphs

Andrzej Pelc(B)

Département d’informatique, Université du Québec en Outaouais,
Gatineau, Québec J8X 3X7, Canada

pelc@uqo.ca

Abstract. Graph exploration is one of the fundamental tasks performed
by a mobile agent in a graph. An n-node graph has unlabeled nodes, and
all ports at any node of degree d are arbitrarily numbered 0, . . . , d − 1.
A mobile agent, initially situated at some starting node v, has to visit all
nodes of the graph and stop. In the absence of any initial knowledge of
the graph the task of deterministic exploration is often impossible. On
the other hand, for some families of graphs it is possible to design deter-
ministic exploration algorithms working for any graph of the family. We
call such families of graphs explorable. Examples of explorable families
are all finite families of graphs, as well as the family of all trees.

In this paper we study the problem of which families of graphs are
explorable. We characterize all such families, and then ask the question
whether there exists a universal deterministic algorithm that, given an
explorable family of graphs, explores any graph of this family, without
knowing which graph of the family is being explored. The answer to
this question turns out to depend on how the explorable family is given
to the hypothetical universal algorithm. If the algorithm can get the
answer to any yes/no question about the family, then such a universal
algorithm can be constructed. If, on the other hand, the algorithm can
be only given an algorithmic description of the input explorable family,
then such a universal deterministic algorithm does not exist.

Keywords: Algorithm · Graph · Exploration · Mobile agent
Explorable family of graphs

1 Introduction

Network exploration is one of the fundamental tasks performed by mobile agents
in networks. Depending on the application, the mobile agent may be a software
agent that has to collect data placed at nodes of a communication network, or it
may be a mobile robot collecting samples of ground in a contaminated building or
mine whose corridors form links of a network, with corridor crossings represented
by nodes.

Research supported in part by NSERC Discovery Grant 8136 – 2013 and by the
Research Chair in Distributed Computing of the Université du Québec en Outaouais.

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 165–177, 2018.
https://doi.org/10.1007/978-3-030-01325-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_17&domain=pdf

166 A. Pelc

The network is modeled as a finite simple connected undirected graph G =
(V,E) with n nodes, called graph in the sequel. The number n of nodes is called
the size of the graph. Nodes are unlabeled, and all ports at any node of degree d
are arbitrarily numbered 0, . . . , d−1. The agent is initially situated at a starting
node v of the graph. When the agent located at a current node u gets to a
neighbor w of u by taking a port i, it learns the port j by which it enters node w
and it learns the degree of w. The agent has to visit all nodes of the graph and
stop. We assume that the agent is computationally unbounded (it is modeled as
a Turing machine) and cannot mark the visited nodes.

It is well-known that, without any a priori information, the task of deter-
ministic exploration is impossible to perform in arbitrary graphs. In fact, it is
impossible even in quite simple and restricted families of graphs, such as the
class of rings in which ports at all nodes are numbered 0,1 in clockwise order.
Even if the agent knows that it is in some such ring (but does not know which),
it cannot learn its size. If there existed a deterministic exploration algorithm for
the class of such rings, not using any a priori knowledge, then the agent would
have to stop after some t steps in every ring, and hence it would fail to explore
a (t + 2)-node ring.

On the other hand, there exist classes of graphs for which deterministic explo-
ration of any graph in the class is possible without knowing in which graph of
the family the agent operates. Such are, for example, all finite classes of graphs.
Knowing such a class, the algorithm can find an upper bound N on the size of
all graphs in the family, and then apply, e.g., the algorithm from [19], based on
universal exploration sequences, that visits all nodes of any graph of size at most
N , regardless of the starting node. On the other hand, there are also infinite fam-
ilies of graphs that are possible to explore without any initial information. Such
is, for example, the family of all trees. Indeed, any tree can be visited using the
basic walk that consists in leaving the starting node by port 0 and then leaving
every node w by port (i + 1) mod d, where i is the port by which the agent
entered node w and d is the degree of w. Performing such a walk, the agent
realizes when it made the full tour of the tree and got back to the starting node,
where it stops.

The aim of this paper is to study families of graphs that have the property
that any graph in the family can be deterministically explored without knowing
in which graph the agent operates. We adopt the following definition.

A family F of graphs is explorable, if there exists a deterministic algorithm
A(F) dedicated to this family, such that a mobile agent that executes
algorithm A(F) starting from any node v of any graph G ∈ F , visits all
nodes of G and stops.

1.1 Our Results

We give an exact characterization of explorable families of graphs by formulating
a condition C with the following properties. Given a family F of graphs that
does not satisfy condition C, no deterministic algorithm can explore all graphs

Explorable Families of Graphs 167

of F . On the other hand, given any family F of graphs satisfying condition C
we construct a deterministic algorithm A(F) that explores all graphs of F .

The above algorithm A(F) used to explore graphs of a family F that has
property C is dedicated to the family F , i.e., it works only for graphs from F , and
for different families F different algorithms A(F) are used. Hence it is natural to
ask if there exists a universal deterministic algorithm U that, given an explorable
family F of graphs (i.e.. any family satisfying condition C), explores any graph
of this family, without knowing which graph of the family it is exploring. The
answer to this question turns out to depend on how the explorable family F
is given to the hypothetical universal algorithm. (Since interesting explorable
families are infinite, the input of U cannot be given as a finite object all at once,
e.g., coded as a finite binary string). If the universal algorithm can get the answer
to any yes/no question about the family, then such a universal deterministic
algorithm U can be constructed. If, on the other hand, the universal algorithm
can be only given an algorithmic description of the input explorable family, then
such a universal deterministic algorithm does not exist.

1.2 Related Work

Exploration of unknown environments by mobile agents has been studied for
many decades (cf. the survey [18]). The explored environment can be modeled
in two distinct ways: either as a subset of the plane, e.g., an unknown terrain with
convex obstacles [8], or a room with polygonal [10] or rectangular [4] obstacles,
or as a graph, assuming that the agent may only move along its edges. The graph
model can be further split into two different scenarios. One of them assumes that
the graph is directed, in which case the agent can move only from tail to head of
a directed edge [1,5,6]. The other scenario assumes that the graph is undirected
and the agent can traverse edges in both directions [3,7,12,16]. Some authors
impose further restrictions on the moves of the agent. In [3,7] it is assumed that
the agent has a restricted tank, and thus has to periodically return to the base
for refueling, while the authors of [12] assume that the agent is attached to the
base by a cable of restricted length.

An important direction of research concerns exploration of anonymous
graphs. In this case it is impossible to perform exploration with termination
of arbitrary graphs in the absence of any a priori knowledge of the graph, if
no marking of nodes is allowed. Hence some authors [5,6] allow pebbles which
the agent can drop on nodes to recognize already visited ones, and then remove
them and drop them in other nodes. A more restrictive scenario assumes that
a stationary token is placed at the starting node of the agent [9,17]. Exploring
anonymous graphs without the possibility of marking nodes (and thus possibly
without stopping) is investigated, e.g., in [11,14]. In these papers the authors
concentrate attention on the minimum amount of memory sufficient to carry out
exploration. If marking of nodes is precluded, some knowledge about the graph
is required in order to guarantee stopping after exploration, e.g., an upper bound
on its size [2,9,19].

168 A. Pelc

In [13,15], the authors study the problem of the minimum size of information
that has to be given to the mobile agent in order to perform fast exploration.
In [13], only exploration of trees is considered, and the algorithm performance
is measured using the competitive approach. In [15], exploration of arbitrary
graphs is studied, and the performance measure is the order of magnitude of
exploration time.

2 Characterization of Explorable Families

In this section we provide a necessary and sufficient condition on the explorability
of a family of graphs. From now on, we restrict attention to infinite families of
graphs, since, as mentioned in the introduction, all finite families are trivially
explorable. In order to formulate the condition we need the notion of a truncated
view from a node v in a graph G. Let G be any graph, v a node in this graph
and k a natural number. The truncated view from v in G of depth k, denoted
V(v,G, k), is the tree of all simple paths of length at most k, starting from node
v and coded as sequences of port numbers, where the rooted tree structure is
defined by the prefix relation of sequences. This definition is equivalent to that
from [20]. It follows from the above paper that the information that a mobile
agent starting at node v in graph G can obtain after k steps is “included” in
V(v,G, k + 1) in the following sense. For any deterministic algorithm A that
works in graphs G and G′ and any mobile agents A1 and A2 executing this
algorithm, starting, respectively, from node v in G and from node v′ in G′, such
that V(v,G, k + 1) = V(v′, G′, k + 1), the behaviors of agents A1 and A2 during
the first k steps of these executions, i.e., their trajectories and possible decisions
to stop, are identical.

Since the set of (finite) graphs is countable, every (infinite) family F of graphs
can be represented as a sequence {Gi : i ≥ 1}, ordered so that no two graphs
Gi and Gj are port-preserving isomorphic, and the sizes of the graphs are non-
decreasing. In order to make the enumeration unambiguous, graphs of the same
size are ordered lexicographically, using some fixed graph representation. The
resulting ordering will be called canonical and used from now on.

The following condition C concerns a family F = {Gi : i ≥ 1} of graphs:

For every i ≥ 1 and every node v in Gi, there exist positive integers k,m,
such that V(v,Gi, k) is different from truncated views of depth k from all
nodes in all graphs Gj , for j > m.

We now proceed to the proof that C is a necessary and sufficient condition
on the explorability of F . We first prove the necessity.

Lemma 1. A family F = {Gi : i ≥ 1} that does not satisfy the condition C is
not explorable.

Proof. Suppose that the condition C is not satisfied for a family F = {Gi :
i ≥ 1} of graphs. This implies that there exists a positive integer i and a node
v in graph Gi, such that for all positive integers k,m, there exists an index

Explorable Families of Graphs 169

j(k,m) > m and a node v(k,m) in the graph Gj(k,m), satisfying the equality
V(v(k,m), Gj(k,m), k) = V(v,Gi, k).

Suppose, for a contradiction, that the family F is explorable. Hence there
exists an algorithm A(F) that explores any graph of the family, starting from
any node. Consider the execution of this algorithm by an agent A1 on graph Gi,
starting from node v. For some integer x, after x steps, the agent explores the
graph Gi and stops. Take k = x + 1 and any m such that all graphs Gj , for
j > m, have sizes larger than x + 1. Consider an index j(k,m) > m and a node
v(k,m) in Gj(k,m) for which V(v(k,m), Gj(k,m), k) = V(v,Gi, k). Now consider
the execution of algorithm A(F) by an agent A2 starting at node v(k,m) in
Gj(k,m). Since V(v(k,m), Gj(k,m), k) = V(v,Gi, k), the behavior of this agent
during the first x steps must be the same as the behavior of agent A1. It follows
that agent A2 stops after x steps in the graph Gj(k,m) as well. However, this
graph has size larger than x+1 and hence it cannot be explored in x steps. This
contradiction proves the lemma. ��
We next proceed to the proof of the sufficiency of condition C. In order to do
this we will construct an algorithm Explo(F), dedicated to a family of graphs
F = {Gi : i ≥ 1} satisfying condition C, such that Explo(F) explores all graphs
in this family. For any i ≥ 1 and every node v in Gi, let (k(v, i),m(v, i)) be the
lexicographically first couple of integers (k,m), such that V(v,Gi, k) is different
from truncated views of depth k from all nodes in all graphs Gj , for j > m.
Call the integer k(v, i) the depth witness of (v, i) and call the integer m(v, i)
the range witness of (v, i). For every graph, we define a non-backtracking path
as a path in which the agent never exits a node by a port p immediately after
entering it by the port p. The reverse of a path P = (w1, w2, . . . , ws) is the path
P = (ws, ws−1, . . . , w1).

We first describe Procedure Check (v, i), for a positive integer i and for a
node v in Gi. The aim of this procedure is to check whether the truncated view
of depth k(i, v) from the unknown initial position of the agent in an unknown
graph from F is equal to the truncated view V(v,Gi, (k(i, v)). To this end, the
agent traverses (in lexicographic order) all non-backtracking maximal paths from
V(v,Gi, (k(i, v)) starting at its initial node and returning to it after travers-
ing each path, using the reverse of this path. In the case when a given non-
backtracking path is impossible to traverse, either because the agent enters ear-
lier a node of degree 1, or because the entry port at a given edge is different from
that in V(v,Gi, (k(i, v)), then the agent interrupts the traversal of this path and
returns using the reverse of the path traversed till this point.

There are two possible terminations of Procedure Check (v, i). The first pos-
sibility is that all non-backtracking paths of length k(v, i) are identical as in
V(v,Gi, (k(v, i)). This is called the success of Check (v, i). The second possibil-
ity, called the failure of Check (v, i), is that the above condition is not satisfied.

The next procedure is used to find a couple (v, i) for which Check (v, i) is
terminated with success. Such a couple must exist: indeed, if the agent starts
from node v in the graph Gi, then Check (v, i) is terminated with success.

170 A. Pelc

Procedure Find Success

i := 1
result := failure
while result = failure do

for all nodes v in Gi do
Check (v, i)
if Check (v, i) terminated with success then

result := success
i := i + 1

return parameters v and i for which the variable result changed from
failure to success.

Let R(N) be the procedure from [19] based on universal exploration
sequences, that visits all nodes of any graph of size at most N , and stops,
regardless of the starting node. Now the algorithm Explo(F) can be succinctly
formulated as follows.

Algorithm Explo(F)

Find Success
(v, i) := parameters returned by procedure Find Success
M := the maximum size of all graphs in the family {Gt : t ≤ m(v, i)}
R(M)

Lemma 2. For every family F of graphs, satisfying condition C, Algorithm
Explo(F) correctly explores any graph of the family F , starting at any node of
this graph.

Proof. The while loop in Procedure Find Success must be exited at some
point, i.e., the variable result must be set to success. This happens at the latest
in the execution of Procedure Check (v, i), where the graph from the family
F in which the agent is operating is Gi and the starting node of the agent
is v. Indeed, in this case, the truncated view from the initial position of the
agent at any depth h is identical with the truncated view V(v,Gi, h). Hence the
Procedure Find Success terminates and the agent learns parameters v and i
for which the variable result changed from failure to success. By the definition
of m(v, i), the agent learns that it is in one of the graphs from the (finite) family
{Gt : t ≤ m(v, i)}. It follows that the execution of procedure R(M), where M is
the maximum size of all graphs in this family, must result in the exploration of
the graph in which the agent operates, regardless of which graph of the family
{Gt : t ≤ m(v, i)} it is and regardless of which node of this graph is the starting
node of the agent. This proves the lemma. ��
Lemmas 1 and 2 imply the following characterization result.

Explorable Families of Graphs 171

Theorem 1. A family of graphs is explorable if and only if it satisfies condi-
tion C.

3 Universal Exploration Algorithm

In this section we use the characterization from Sect. 2 to investigate the follow-
ing problem. Does there exist a universal algorithm U , which when given as input
an explorable family F of graphs, explores any graph of this family, starting from
any initial node in it? Note that Algorithm Explo(F) from the preceding section
was dedicated to the exploration of graphs of one particular explorable family
F , i.e., it was supposed to work only for graphs of this family. Consequently,
important information about the family, such as functions k(v, i) and m(v, i),
could be included in the text of the algorithm. For a universal algorithm this
is not the case: in contrast to dedicated algorithms, a universal algorithm must
gain sufficient knowledge about the input explorable family F , in order to be
able to successfully explore any graph of this family.

Here comes the subtle issue of how the input explorable family is given. First
recall that we may restrict attention to infinite families, as finite families are
trivial to explore by applying the procedure R(N) from [19], where N is an
upper bound on the sizes of all graphs in the family. For a finite family, it can
be given to the universal algorithm as a single finite input object, the algorithm
can find N , apply R(N) and we are done. By contrast, in the case of infinite
explorable families F , the family cannot be given to the hypothetical universal
algorithm U as a single input object all at once. How then could it be given?

It seems reasonable to assume that the universal algorithm should be able
to get knowledge about the input family F “piece by piece”, i.e., it should be
able to get items of information about this family as responses to queries. This
idea can be implemented in at least two ways. We start with the more liberal
way that intuitively allows the algorithm to get an answer to any yes/no query
about the input family F . This can be formalized as follows. Consider the set
X of all infinite families of finite graphs. Observe that, while each family in X
is countable, the set X which is the set of all these families is uncountable, but
this fact has no impact on our formalization. Consider any definable subfamily
Ξ of X , i.e., a family Ξ = {G ∈ X : G satisfies Φ}, where Φ is some set-theoretic
predicate. The questions that the universal algorithm is allowed to ask are of
the form: “Is the input family F an element of Ξ?” This is of course equivalent
to asking “Does the input family F satisfy the predicate Φ?” Such questions
can be asked by the universal algorithm, using all possible predicates Φ, one at
a time, and it is assumed that the algorithm will obtain a truthful answer to
any such question. This formalization can be thought of as using an oracle that
knows everything about the input family but answers only yes or no. Examples
of questions that the algorithm can ask are: “Are there infinitely many planar
graphs in F?”, “Is the 17-th graph in the canonical order of F a tree? or “Does
there exist a tree in F?”.

It should be noted that although the allowed queries are only of yes/no type,
they are very powerful, as the universal algorithm may get some information

172 A. Pelc

about the entire infinite input family all at once, as in the query “Does there
exist a tree in F?”. A negative answer to such a query could not be obtained by
looking at any finite part of F . We will show that this powerful feature allows us
to construct a correct universal exploration algorithm. Before doing it, we need
some preparation.

Let {Hi : i ≥ 1} be the canonical enumeration of the family X . Consider an
explorable family F that is the input to the universal algorithm that we are going
to describe. We first describe the procedure Find i-th graph that returns the
graph that is the i-th element in the canonical enumeration of F . The procedure
asks the questions “Is the i-th element in the canonical enumeration of F equal
to Hj?”, for j = 1, 2, ..., until the answer yes is obtained, and returns Hj for
which the positive answer is obtained.

The aim of the next two procedures is finding, respectively, the depth wit-
ness and the range witness of (v, i), where v is a node in the i-th element in
the canonical enumeration of F . Procedure Find the depth witness of (v, i)
asks questions “Is the depth witness of (v, i) equal to j, for j = 1, 2, ..., until the
answer yes is obtained, and returns the integer j for which the positive answer
is obtained. Similarly, procedure Find the range witness of (v, i) asks ques-
tions “Is the range witness of (v, i) equal to j, for j = 1, 2, ..., until the answer yes
is obtained, and returns the integer j for which the positive answer is obtained.

We will now modify the procedure Check (v, i) from Sect. 2 to make it work
in the context of the universal algorithm. The modification, for any (v, i) con-
sists in first applying procedure Find i-th graph and then applying procedure
Find the depth witness of (v, i). Suppose that the first procedure returns the
graph Gi and the second procedure returns the integer k(v, i). The rest of proce-
dure Check (v, i) is as in Sect. 2. Again, the procedure may terminate with success
or failure, defined as previously. Procedure Find Success is as before, using the
modified version of Check (v, i). We will call it Universal Find Success. Now
our universal algorithm can be formulated as follows, assuming that the input
explorable family given to the oracle that answers queries is F .

Algorithm Universal Exploration

Universal Find Success
(v, i) := parameters returned by procedure Find Success
Find range witness of (i, v)
Let m(i, v) be the range witness of (i, v)
for t = 1 to m(i, v) do

Find the t-th graph
Let Gt be the graph returned by procedure Find the t-th graph

M := the maximum size of all graphs in the family {Gt : t ≤ m(v, i)}
R(M)

The correctness of Algorithm Universal Exploration follows from the fact
that it correctly finds the depth and range witnesses, as well as the graphs

Explorable Families of Graphs 173

{Gt : t ≤ m(v, i)}. Other than that, the algorithm works like the dedicated
algorithm A(F), and thus achieves exploration of any graph in the family. Hence
we have the following theorem.

Theorem 2. Algorithm Universal Exploration correctly explores any graph
of an explorable family F , starting at any node of this graph, if this family is
given as input to an oracle that can answer all yes/no queries about it.

The capability of getting an answer to any yes/no query about the input
explorable family is very strong. It assumes the existence of an oracle that has a
“magical” complete insight in this family. It can be argued that such an oracle
could not exist in practice, and thus it would be desirable to design a univer-
sal exploration algorithm to which input explorable families would be given in
a way possible to implement realistically. Here comes the second natural way
in which a potential universal algorithm could get information about the input
family. Suppose that the input explorable family F is recursively enumerable
and let E(F) be the enumeration algorithm. More precisely, the algorithm E(F),
given a positive integer i as input, returns the i-th graph of F in the canonical
enumeration. The second natural way of providing information about the family
F to the hypothetical universal exploration algorithm U would be to give to
U the text of algorithm E(F) as input. Then the algorithm U would be able,
for any positive integer i, to run E(F) on i and get the i-th graph of F in the
canonical enumeration, returned by E(F). For simplicity, we may assume that
finding this i-th graph is done in one step. This is reminiscent of the definition
of Turing reducibility in which an algorithm A1 reducible to A2 may run A2 on
some input and receive the output in one step. In any case, in this paper we
are not concerned with efficiency of exploration, only with the feasibility of this
task.

We will say that a universal exploration algorithm processes algorithmic
input, if it works as described above. Such an algorithm would be able to explore
any graph of any (recursively enumerable) explorable family, given to it in this
algorithmic way, without the help of any oracle. Unfortunately, we have the
following negative result.

Theorem 3. There does not exist a universal exploration algorithm that pro-
cesses algorithmic input, which correctly explores any graph of any recursively
enumerable explorable family.

Proof. Suppose that there exists a universal exploration algorithm U that pro-
cesses algorithmic input, which correctly explores any graph of any recursively
enumerable explorable family. Denote by Rk, for k ≥ 3, the ring of size k with
ports at all nodes numbered 0,1 in the clockwise order. Let Ck denote the graph
resulting from the ring Rk by attaching one node of degree 1 to one of the nodes
of Rk. By definition, the edge joining the single node v of degree 3 with the
single node of degree 1 corresponds to port number 2 at v. In Ck we will say
that an agent goes clockwise if it leaves a node by port 1. For i ≥ 1, let Gi be
the graph Ci+2, and consider the family F = {Gi : i ≥ 1} of graphs. Since the
sizes of graphs Gi are strictly increasing, this is the canonical enumeration of F .

174 A. Pelc

We first observe that the family F is explorable. The (dedicated) exploration
algorithm A(F) can be simply formulated as follows.

If the starting node is of degree 1 then take port 0, go clockwise until getting
to a node of degree 3 and stop.
If the starting node is of degree 3 then take port 2, take port 0, go clockwise
until getting to a node of degree 3 and stop.
If the starting node is of degree 2 then go clockwise until the second visit at a
node of degree 3, take port 2 and stop.

Suppose that E(F) is an enumeration algorithm corresponding to F , given
to U as input. Consider the execution E1 of U with this input, where the agent
is initially placed at the single node v of degree 3 in graph G1. Suppose that in
execution E1 the agent stops after k steps. Let r be the largest integer for which
algorithm E(F) was called in the execution E1 of U .

For any positive integer j, define the following graph Dj (cf. Fig. 1).

Fig. 1. The graph D2

Consider the ring R6j . Attach to every third node of R6j a distinct node of
degree 1. Finally, to one of the 2j resulting nodes of degree 3 attach another
node of degree 1. Thus graph Dj has 1 node of degree 4 and 2j − 1 nodes of
degree 3, partitioning the ring R6j from which the construction started into 2j
segments of length 3. Moreover, Dj has 2j + 1 nodes of degree 1. The port at
each node of degree 3 corresponding to the edge joining it to a node of degree
1 has number 2. The ports at the single node of degree 4 corresponding to the
edges joining it to nodes of degree 1 have numbers 2 and 3.

We now define the graphs Hi, for i ≥ 1, as follows. For 1 ≤ i ≤ r, let
Hi = Gi; for i > r, let Hi = Di. Finally, we consider the family F∗ = {Hi : i ≥ 1}

Explorable Families of Graphs 175

of graphs. Since the sizes of graphs Hi are strictly increasing, this is the canon-
ical enumeration of F∗. We show that the family F∗ is explorable. In order to
formulate the (dedicated) algorithm A(F∗), we first describe the following pro-
cedure that explores any graph Dj starting from a node of degree 3. (For this
purpose, repeating until the second visit at a node of degree 4 would be enough,
but we need the third visit to make it work within algorithm A(F∗)).

Procedure Go around

repeat
take port 1, take port 1, take port 2, take port 0

until the third visit at a node of degree 4
take port 3 and stop.

Now algorithm A(F∗) can be described as follows. Its high level idea is to
go clockwise around the ring in any graph Hj , sufficiently long to see if j is at
most r or larger than r. In the first case, algorithm A(F) is applied because the
graph is Gj , and in the second case procedure Go around is used to terminate
exploration because the graph is Dj .

Algorithm A(F∗)

if the starting node is of degree 1 then take port 0
Go clockwise for r + 1 steps.
if no node of degree 4 is visited then apply the algorithm A(F)
else

go clockwise to the closest node of degree 3
Go around

Let m = max(k, r) + 1 and suppose that E(F∗) is an enumeration algorithm
corresponding to F∗, given to U as input. Consider the execution E2 of algorithm
U with this input, where the agent is initially placed at the node w antipodal
to the unique node of degree 4 in the graph Hm = Dm. Consider the first k
steps of this execution. Observe that V(v,G1, k) = V(w,Hm, k), by construction
of graphs Gi and Hi. By induction on the step number, in the first k steps of
execution E2, algorithm U calls the input enumeration algorithm for exactly the
same integers as it does in execution E1. For execution E1 the input algorithm is
E(F) and for execution E2 it is E(F∗), but these integers are at most r and the
first r graphs in the canonical enumeration of F and of F∗ are identical. Hence
the returned graphs in these calls in both executions are identical. It follows
that the k steps in both executions are identical. Since the agent stops after the
k-th step of execution E1, it must also stop after the k-th step of execution E2.
However, in execution E2 it cannot explore the graph Hm = Dm because this
graph has more than k + 1 nodes. This concludes the proof. ��

One could hope for salvaging the idea of a universal exploration algorithm
processing algorithmic input by restricting the class of input explorable families

176 A. Pelc

from recursively enumerable (as we did above) to recursive. In this case the
hypothetical universal algorithm could be given as input the decision algorithm
that answers, for any graph G, if this graph belongs to the family F of graphs
that should be explored. Similarly as before, the hypothetical universal algorithm
could run the decision algorithm on any graph of its choice and learn in one step
if this graph belongs to the recursive family of graphs that should be explored.
However, it is easy to see that even with this restriction our negative result still
holds. Indeed, it is enough to modify the proof of Theorem 3 by defining r to
be the largest size of a graph for which the decision algorithm was called in the
execution E1. The rest of the proof remains unchanged.

4 Conclusion

We gave a characterization of explorable families of graphs, and provided, for
any such family, a dedicated exploration algorithm that explores any graph of
the family starting from any node. Then we studied the issue of the existence of
a deterministic universal exploration algorithm that, for any explorable family
given as input, would explore any graph of the family starting from any node.
Since such families may be infinite, it has to be made precise how would they
be given to the hypothetical universal algorithm. We showed that a very liberal
approach to this issue of providing the input, namely the assumption of an oracle
that can answer any yes/no query asked by the universal algorithm about the
input family, permits us to construct such a universal algorithm. This approach,
however, is arguably unrealistic. Hence we defined the way of presenting the
input family to the hypothetical universal algorithm in a more restrictive but
more realistic way: by giving the universal algorithm either the enumeration
algorithm of the input family of graphs, in the case when this family is recursively
enumerable, or giving it the decision algorithm for the input family, if the latter
is recursive. We showed that this more realistic way of presenting the input
explorable family precludes the existence of a deterministic universal exploration
algorithm.

A similar idea to that in the proof of Theorem3 can be used to prove that
the problem of explorability of a family of graphs is undecidable in the following
sense. There does not exist a decision algorithm that, given as input an enu-
meration algorithm of a recursively enumerable family G of graphs, can decide
whether the family G is explorable.

In this paper we concentrated on the issue of feasibility of exploration for
families of graphs, rather than on the efficiency of exploration. An open, probably
very challenging problem yielded by our study is to find, for any explorable family
of graphs, a dedicated algorithm which would explore any graph of this family
in optimal time.

Explorable Families of Graphs 177

References

1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput.
29, 1164–1188 (2000)

2. Aleliunas, R., Karp, R., Lipton, R., Lovasz, L., Rackoff, C.: Random walks, univer-
sal traversal sequences, and the complexity of maze problems. In: Proceedings of
20th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1979),
pp. 218–223 (1979)

3. Awerbuch, B., Betke, M., Rivest, R.L., Singh, M.: Piecemeal graph exploration by
a mobile robot. Inf. Comput. 152, 155–172 (1999)

4. Bar-Eli, E., Berman, P., Fiat, A., Yan, R.: On-line navigation in a room. J. Algo-
rithms 17, 319–341 (1994)

5. Bender, M.A., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.P.: The power of a
pebble: exploring and mapping directed graphs. Inf. Comput. 176, 1–21 (2002)

6. Bender, M.A., Slonim, D.: The power of team exploration: two robots can learn
unlabeled directed graphs. In: Proceedings of 35th Annual Symposium on Foun-
dations of Computer Science (FOCS 1994), pp. 75–85 (1994)

7. Betke, M., Rivest, R., Singh, M.: Piecemeal learning of an unknown environment.
Mach. Learn. 18, 231–254 (1995)

8. Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar geometric terrain.
SIAM J. Comput. 26, 110–137 (1997)

9. Chalopin, J., Das, S., Kosowski, A.: Constructing a map of an anonymous graph:
applications of universal sequences. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.)
OPODIS 2010. LNCS, vol. 6490, pp. 119–134. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17653-1 10

10. Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an unknown environ-
ment I: the rectilinear case. J. ACM 45, 215–245 (1998)

11. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little mem-
ory. J. Algorithms 51, 38–63 (2004)

12. Duncan, C.A., Kobourov, S.G., Anil Kumar, V.S.: Optimal constrained graph
exploration. ACM Trans. Algorithms 2, 380–402 (2006)

13. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Tree exploration with advice. Inf. Comput.
206, 1276–1287 (2008)

14. Fraigniaud, P., Ilcinkas, D.: Directed graphs exploration with little memory. In:
Proceedings of 21st Symposium on Theoretical Aspects of Computer Science
(STACS 2004), pp. 246–257 (2004)

15. Gorain, B., Pelc, A.: Deterministic graph exploration with advice. In: Proceed-
ings of 44th International Colloquium on Automata, Languages and Programming
(ICALP 2017), pp. 132:1–132:14 (2017)

16. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33,
281–295 (1999)

17. Pelc, A., Tiane, A.: Efficient grid exploration with a stationary token. Int. J. Found.
Comput. Sci. 25, 247–262 (2014)

18. Rao, N.S.V., Kareti, S., Shi, W., Iyengar, S.S.: Robot navigation in unknown
terrains: introductory survey of non-heuristic algorithms, Technical report
ORNL/TM-12410, Oak Ridge National Laboratory, July 1993

19. Reingold, O.: Undirected connectivity in log-space. J. ACM 55, 17:1–17:24 (2008)
20. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I - charac-

terizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7, 69–89 (1996)

https://doi.org/10.1007/978-3-642-17653-1_10
https://doi.org/10.1007/978-3-642-17653-1_10

A Characterization of t-Resilient
Colorless Task Anonymous Solvability

Carole Delporte-Gallet1, Hugues Fauconnier1, Sergio Rajsbaum2(B),
and Nayuta Yanagisawa3

1 IRIF-GANG-Université Paris-Diderot, Paris, France
{cd,hf}@irif.fr

2 Instituto de Matemáticas, UNAM, Mexico City, Mexico
rajsbaum@math.unam.mx

3 Department of Mathematics, Graduate School of Science,
Kyoto University, Kyoto, Japan
nayuta87@math.kyoto-u.ac.jp

Abstract. One of the central questions in distributed computability is
characterizing the tasks that are solvable in a given system model. In the
anonymous case, where processes have no identifiers and communicate
through multi-writer/multi-reader registers, there is a recent topologi-
cal characterization (Yanagisawa 2017) of the colorless tasks that are
solvable when any number of asynchronous processes may crash. In this
paper, we consider the case where at most t asynchronous processes may
crash, where 1 ≤ t < n. We prove that a colorless task is t-resilient solv-
able anonymously if and only if it is t-resilient solvable non-anonymously.
We obtain our results through various reductions and simulations that
explore how to extend techniques for non-anonymous computation to
anonymous one.

Keywords: MWMR registers · Anonymity · Distributed task
Topology

1 Introduction

One of the central questions in distributed computability is characterizing the
tasks which are solvable in a given system model. A task is the distributed
equivalent of a function in sequential computing: each process starts with a
private input value, communicates with other processes, and eventually decides
an output value, such that the vector of output values is valid for the vector of
input values according to the task specification.

The asynchronous computability theorem (ACT) [26] is one of the central
results in distributed computability. It characterizes the tasks that are solvable

C. Delporte-Gallet and H. Fauconnier—Supported by LiDiCo.
S. Rajsbaum—Supported by UNAM-PAPIIT IN109917. Part of this work was done
while visiting Université Paris-Diderot.

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 178–192, 2018.
https://doi.org/10.1007/978-3-030-01325-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_18&domain=pdf

t-Resilient Solvable Colorless Tasks in Anonymous Shared-Memory Model 179

in shared-memory systems where n processes that may fail by crashing communi-
cate by reading and writing shared registers. It is sometimes called the wait-free
characterization, because any number of processes may crash and the processes
are asynchronous (run at arbitrary speeds, independent from each other). The
characterization is of an algebraic topological nature. In terms of algebraic topol-
ogy, a task is represented as a relation Δ between an input complex I and an
output complex O. Each simplex σ in I is a set that specifies the initial inputs
to the processes in some execution. The processes communicate with each other,
and eventually decide output values that form a simplex τ in O. The computa-
tion is correct if τ is in Δ(σ). The complex I (resp. O) is chromatic because each
simplex specifies not only input values, but also which process gets which input
(resp. output) value. Roughly, the ACT characterization states that the task is
solvable if and only if there is a chromatic simplicial map δ from a chromatic
subdivision of I to O respecting Δ.

The ACT is the basis to obtain a characterization of distributed task com-
putability in the case where at most t asynchronous processes may crash, where
1 ≤ t < n. It is also the basis to study other failure, timing, and communica-
tion models, and even mobile robot models [30]. There are basically two ways
of extending the results from the wait-free model to other models. One is by
directly generalizing the algorithmic and topological techniques, and the other
is by reduction to other models using simulations (either algorithmic [6] or topo-
logical [24]). An overview of results in this area can be found in the book [20].

The theory of distributed computing presented in [20] assumes that the pro-
cesses, p0, . . . , pn−1, communicate using single-writer/multi-reader (SWMR) reg-
isters, R0, . . . , RN−1. Thus, pi knows that it is the i-th process and it can write
exclusively to Ri while the size of the namespace, N , is assumed to be much
bigger than the number of the process, n. In this situation, preallocating a
register for each identifier would lead to a distributed algorithm with a very
large space complexity, namely N registers. Instead, it is shown in [13] that n
multi-writer/multi-reader (MWMR) registers are sufficient to solve any read-
write wait-free solvable task.

However, in some distributed systems, processes are anonymous; they have no
ids at all or they cannot make use of their identifiers (e.g., due to privacy issues).
In such a system, processes run identical programs, and the means by which
processes access the shared memory are identical to all processes. A process
cannot have a private register to which only this process may write, and hence
the shared memory consists only of MWMR registers. This anonymous shared
memory model of asynchronous distributed computing has been studied since
early on [3,29], in the case where processes do not fail.

In an anonymous system, colorless tasks are natural, because they are defined
only in terms of input and output values without stating which process receives
which input value or which process produces which output value. Furthermore,
the class of colorless tasks includes various important tasks, such as consensus
and set agreement, and is rich enough to be undecidable even for three pro-
cesses [17,21].

180 C. Delporte-Gallet et al.

Colorless tasks have been well studied in shared-memory and message passing
models, where each process has a distinct identifier [20], but less so in anony-
mous systems. Only recently, the ACT has been extended to the anonymous
case [31], providing a characterization of wait-free anonymous computability of
colorless tasks. The characterization implies that the anonymity does not reduce
the computational power of the asynchronous shared-memory model as far as
colorless tasks are concerned. In consequence, the topological characterization is
in terms of input and output complexes which are not chromatic.

Results. Our main result is an exten-
sion of the wait-free characterization of
[31] to the case where at most t pro-
cesses may crash, where 1 ≤ t < n. We
prove that a colorless task is t-resilient
solvable anonymously if and only if it is
t-resilient solvable non-anonymously. This
implies a complete characterization of
t-resilient, asynchronous, and anonymous
computability of colorless tasks.

The result is obtained through a
series of reductions depicted in the figure
below. First, we design an anonymous
non-blocking implementation of an atomic
weak set object with n registers. The con-
struction is based on the non-blocking
atomic snapshot of [15,19]. Then, we build a wait-free implementation of a safe
agreement object for an arbitrary value set V . Our implementation is a gen-
eralization of the anonymous consensus algorithm proposed in [3]. We describe
two ways of deriving the t-resilient anonymous solvability characterization. One
way is through a novel anonymous implementation of the BG-simulation [6],
which we use to simulate a non-anonymous system by an anonymous system,
both t-resilient. The other way is to use the safe-agreement object to solve k-set
agreement and then do the topological style of analysis [24,31].

Related work. Colorless tasks were first identified in [6]. They include funda-
mental tasks such as consensus [16], set agreement [11], and loop agreement
[22], and have been widely studied in the non-anonymous setting. The first part
of the book [20] is devoted to colorless tasks. Not all tasks of interest are colorless
though, and general tasks can be much harder to study, notably renaming [9,10].

A characterization of the colorless tasks that are solvable in the presence of
processes that can crash in a dependent way is provided in [23], and a character-
ization when several processes can run solo is provided in [25]. Both encompass
the wait-free colorless task solvability characterization, and the former encom-
passes the t-resilient characterization that we use in this paper.

t-Resilient Solvable Colorless Tasks in Anonymous Shared-Memory Model 181

A certain kind of anonymity has been considered in [26] to establish the
anonymous computability theorem. However, they allow the use of SWMR reg-
isters while we assume a fully anonymous model with only MWMR registers.

Anonymous distributed computing remains an active research area since the
shared-memory seminal papers [3,29] and the message-passing paper [1]. For
some recent papers and references therein see, e.g. [8,18].

Closer to our paper is [19] where the anonymous asynchronous MWMR fault-
tolerant shared-memory model is considered. Our weak set object uses n MWMR
registers and is non-blocking; it provides an enhanced atomic implementation of
the weak set object supporting non-atomic operations presented in [12]. A wait-
free implementation of a weak set object using 2n registers is in [14]. A set
object that also supports a remove operation, but satisfies a weaker consistency
condition, called per-element sequential consistency is presented in [4,5].

Organization. In Sect. 2 we briefly recall some of the notions used in this paper,
about the model of computation and the topology tools, both of which are stan-
dard. In Sect. 3 we present the anonymous implementation of an atomic weak set
object from MWMR registers. In Sect. 4 we present the safe agreement imple-
mentation. In Sect. 5 we derive our anonymous characterization of the t-resilient
solvability of colorless tasks. Some proofs are omitted from this extended abstract
for lack of space.

2 Preliminaries

We recall here briefly some standard notions of concurrent programming, for
more precise definitions see [27]. We assume a standard anonymous asynchronous
shared-memory model e.g., [19] consisting of n sequential processes that have no
identifiers and execute an identical code. We assume that at most t of the pro-
cesses may fail by crashing, where 1 ≤ t < n. Processes are asynchronous, i.e.,
they run at arbitrary speeds, independent from each other. We consider lin-
earizable implementations where each operation appears to take effect instanta-
neously at some point between its invocation and response [28]. A non-blocking
algorithm guarantees system-wide progress, while a wait-free also guarantees
per-process progress. The processes communicate via multi-writer/multi-reader
(MWMR) registers. Let R[0 . . . m − 1] denote an array of m registers. The read
operation, denoted by read(i), returns the state of R[i]. The write operation,
denoted by write(i, v), changes the state of R[i] to v and returns ack. The regis-
ters are assumed to be atomic (linearizable). We sometimes refer to the processes
by unique names p0, . . ., pn−1 for the convenience of exposition, but processes
themselves have no means to access these names. Let Π = {p0, . . . , pn−1}.

3 Atomic Weak Set

Here, we present an anonymous implementation of an atomic weak set object on
an arbitrary value set V .

182 C. Delporte-Gallet et al.

3.1 Specification and Algorithm

An atomic weak set object, denoted by SET , is an atomic object used for storing
a set of values. The object supports only two operations, add() and get(), and
has no remove operation, which is why it is called “weak.” The add(v) operation
takes an argument v ∈ V and returns ACK. The get() operation, takes no
argument and returns the set of values that have appeared as arguments in
all the add() operations preceding the get() operation. We assume that SET
initially holds no values, i.e., it holds ∅.

We assume that a non-blocking n-component atomic snapshot object is avail-
able. An implementation in an anonymous setting with n registers is described
in [15,19]. The snapshot object exports two operations, update() and scan().
Informally, an update(i, v) updates the i-th component of the object with the
value v and a scan() returns an array of n values, which are contained in the n
components at some point in time between the invocation and the response of
the scan() operation.

We present an anonymous non-blocking implementation of the atomic weak
set object on an n-component atomic snapshot object. The pseudocode of the
implementation appears in Fig. 1. If Snap is an array of n cells, we define
vals(Snap) = ∪i∈{0,...,n−1}Snap[i]. The idea of the algorithm is as follows. To
execute an add(v) operation, the algorithm repeatedly tries to store the value
v in each one of the n components of the snapshot object, using an update
operation (line 5) until it detects that v appears in all the components. In each
iteration, the algorithm deposits in the snapshot object not only v but V iew
containing all the values known to be in the set so far. Once v is detected to
be in all components of the snapshot object, the add(v) terminates. The get()
operation is similar, except that now the V iew of the process has to appear in
all the components of the snapshot for the operation to terminate. Intuitively,
once a value v (or a set of values) appears in all n components of the snapshot
object, it cannot be overwritten and cannot go unnoticed by other processes.
This is because the other processes can be covering (about to overwrite) at most
n − 1 components.

Theorem 1. The algorithm of Fig. 1 is an anonymous non-blocking implemen-
tation of an atomic weak set object using n MWMR registers.

Here is a sketch of the proof.
Given an operation op, invoc(op) denotes its invocation and resp(op) its

response. Let H be a history of the algorithm as defined in [28]. Let H ′ be
the history H in which some of the operations that are invoked by a process
that crashes during the operation and doesn’t get a response are removed. Hseq

denotes the sequential history in which each operation of H ′ appears as if it has
been executed at a single point (the linearization) of the time line.

Safety. For the safety part, we have to define linearization points and prove that

– the linearization point of each operation get() and add() appear between
the beginning and the end of this operation;

t-Resilient Solvable Colorless Tasks in Anonymous Shared-Memory Model 183

– the sequential history that we get with these points respects the sequential
specification of the weak set.

Consider a history H, let v be a value or a set of values. Define time τv as
the first time, if any, that v belongs to all components of R. When there is no
such time, τv is ⊥.

Fig. 1. Non-blocking implementation of atomic weak set for n processes.

Lemma 1. If the operation add(v) terminates, then v belongs to all components
of R at some time instance before the end of this operation. If the operation
get() terminates and returns V , then V belongs to all components of R before
the end of this operation.

By Lemma 1, τv is not ⊥ for each operation add(v) that terminates and τV
is also not ⊥ for each operation get() that terminates and returns V .

184 C. Delporte-Gallet et al.

It can be shown that the linearization points for operations add() and get()
are as follows

– op = add(v): If τv �= ⊥, the linearization point τop of an operation op =
add(v) is max{τv, invoc(op)}. If τv = ⊥, the operation op does not terminate
and is not linearized.

– op = get(): The linearization point τop of an operation op = get() that
returns V is max{τV , invoc(op)}. A get() operation that does not terminate
is not linearized.

The main safety claim is the following.

Lemma 2. Hseq satisfies the sequential specification of the weak set.

Liveness. We prove that the algorithm is non-blocking; namely, if processes
perform operations forever, an infinite number of operations terminate. By con-
tradiction, assume that there is only a finite number of operations get() and
add() that terminate and some operations made by correct processes do not
terminate.

Operations add() or get() may not terminate because the termination con-
ditions of the while loop are not satisfied (Lines 4 or 13): for an add(v) operation,
in each scan() made by the process, v is not in at least one of the components
of R, and for a get() operation, in each snap, all the components are not equal
to the view of the process.

There is a time τ0 after which there is no new process crash and all processes
that terminate get() or add() operations in the run have already terminated.
Consider the set N of processes alive after time τ0 that do not terminate opera-
tions in the run. Notice that after time τ0 only processes in N take steps. Also,
as no process in N may crash, each process in N takes an infinite number of
steps.

Notice that all values in variables V iew have been proposed by some add().
If there is a finite number of operations, then all variables V iew are subsets of
a finite set of values. The main idea of the liveness proof is to analyze stable
views. That is, the sequence of views of each process is non-decreasing, each two
consecutive views satisfy view ⊆ view′. Thus, there is a time τ1 > τ0 after which
the view of each process p in N converges to a stable view SV iewp: forever after
time τ1 the view of p is SV iewp. Let SV = {SV iewp|p ∈ N}, be the set of all
stable views for processes in N . It can be shown that there is no minimal stable
view, proving that SV = ∅ and also N = ∅, a contradiction.

4 Safe Agreement Object

A safe agreement object [6] on a set V provides two operations, propose and
resolve. A propose operation, denoted by propose(v), takes an argument v ∈ V
and returns ACK. A resolve operation, denoted by resolve(), takes no argu-
ment and returns u ∈ V or ⊥, where ⊥�∈ V . An execution is well-formed if each

t-Resilient Solvable Colorless Tasks in Anonymous Shared-Memory Model 185

process invokes at most one propose operation and no process invokes a pro-
pose or resolve operation before its previous operation has terminated. In any
well-formed execution, the object satisfies the following four conditions [2,7]:

Validity. Any non-⊥ value returned by a resolve operation is an argument
of some propose operation;
Agreement. If two resolve operations return non-⊥ values v and v′, then
v = v′;
Termination. Every operation invoked by a non-faulty process eventually
terminates;
Nontriviality. If no process fails while performing its propose operations,
every resolve operation started after some time instance returns a non-⊥
value.

An anonymous wait-free implementation of a safe agreement object for an
arbitrary value set V is presented in Fig. 2. The implementation makes use of an
array of n weak set objects, denoted by SET [0 . . . n − 1]. To perform a propose
operation, each process first assigns its input value to a local variable view.
Then, the process repeats the following procedure for i = 0, . . . , n − 1: it adds
view to SET [i]; if SET [i] holds a set of cardinality more than one and view
is the minimum value of the set, it returns ACK and immediately breaks the
loop; otherwise, it assigns the minimum value of the set to view. To perform
a resolve operation, each process checks the set held by SET [n − 1]. If the set
is not empty, the process returns the minimum value in the set. Otherwise, the
process returns ⊥.

Our implementation is a generalization of the anonymous consensus algo-
rithm proposed by Attiya et al. [3]. Bouzid and Corentin [7] have proposed an
anonymous implementation of a safe agreement object for the case of V = {0, 1},
also based on [3]. However, their implementation does not (directly) extend to
the case of an infinite value set.

We now sketch the correctness proof of the algorithm of Fig. 2. Recall that,
although we refer to the processes by unique names p0, . . ., pn−1, processes do
not know these names and that Π = {p0, . . . , pn−1}.

Lemma 3. Fix a well-formed execution of the algorithm of Fig. 2. Let Vi be the
set of all the values that are added to SET [i] in the execution. Then, Vi ⊇ Vi+1

holds for all i = 0, . . . , n − 2.

Lemma 4 (Validity). The algorithm of Fig. 2 satisfies the validity condition.

Lemma 5. Fix a well-formed execution of the algorithm of Fig. 2. Let Vi be the
set of the all values that are added to SET [i] in the execution. Let us define

Πi = {p∈ Π | p performs propose() and adds some v ∈ Vi \ {min Vi} toSET [i]}.

Then, Πi ⊇ Πi+1 holds for all i = 0, . . . , n − 2.

Lemma 6 (Agreement). The algorithm of Fig. 2 satisfies the agreement con-
dition.

186 C. Delporte-Gallet et al.

Fig. 2. Anonymous implementation of safe agreement object

Lemma 7 (Termination). The algorithm of Fig. 2 satisfies the termination
condition.

Lemma 8 (Nontriviality). The algorithm of Fig. 2 satisfies the nontriviality
condition.

By Lemmas 4, 6, 7, and 8, we obtain the following theorem. Furthermore,
notice that the algorithm uses n atomic registers, because an arbitrary finite
number of atomic weak set objects can be simulated on top of a single atomic
weak set object.

Theorem 2. The algorithm of Fig. 2 is an anonymous wait-free implementation
of safe agreement object, using n atomic registers.

5 t-Resilient Solvable Colorless Tasks

We give a characterization of t-resilient solvable colorless tasks (see formal defi-
nitions below) in the anonymous shared-memory model.

t-Resilient Solvable Colorless Tasks in Anonymous Shared-Memory Model 187

Theorem 3. A colorless task is t-resilient solvable in the anonymous shared-
memory model if and only if it is t-resilient solvable in the non-anonymous one.
Moreover, if a colorless task is t-resilient solvable by n anonymous processes, it
can be solved by n shared atomic registers.

The only if part of the theorem is immediate because every anonymous pro-
tocol can be executed by non-anonymous processes. We next describe the if part
by two different approaches, a topological one and an operational one.

5.1 Topological Approach

We briefly recall some notions of combinatorial topology for distributed comput-
ing, additional details can be found in [20].

Let I and O be complexes. A carrier map from I to O is a mapping Δ :
I → 2O such that, for each s ∈ I, Δ(s) is a subcomplex of O and s′ ⊆ s implies
Δ(s′) ⊆ Δ(s). If a continuous map f : |I| → |O| satisfies f(|σ|) ⊆ |Δ(σ)| for all
σ ∈ I, we say that f is carried by Δ. If a simplicial map δ : barybI → O satisfies
δ(barybσ) ⊆ Δ(σ) for all σ ∈ I, we say that δ is carried by Δ. As an immediate
consequence of Lemma 3.7.8. of [20], the following lemma holds.

Lemma 9. If Δ : I → 2O is a carrier map and f : |I| → |O| is a continuous
map carried by Δ, then there is a non-negative integer b and a simplicial map
δ : barybI → O carried by Δ.

A colorless task is a triple T = (I,O,Δ), where I and O are simplicial
complexes and Δ is a carrier map. A colorless task T is solvable, if for each input
simplex s ∈ I, whenever each process pi starts with input value vi ∈ s (different
processes may start with the same value), eventually it decides an output value
v′
i, such that the set of output values form a simplex s′ ∈ Δ(s). The colorless tasks

that are fundamental to the present paper are b-iterated barycentric agreement
and k-set agreement. The b-iterated barycentric agreement task is a colorless
task T = (I,barybI,baryb), where we write by baryb the carrier map that maps
s ∈ I to barybs for an abuse of notation. The k-set agreement task is a colorless
task Tk = (I, skelkI, skelk), where skelk denotes the carrier map that maps a
simplex s ∈ I to the subcomplex skelkI.

To prove the if part of Theorem 3, we first show that the (t+1)-set agreement
task is t-resilient solvable by n anonymous processes. An algorithm of Fig. 3
presents an anonymous t-resilient protocol for the (t + 1)-set agreement task. In
the protocol, input value to SA[i] for i = 0, . . . , t. Then, the process repeatedly
performs a resolve() operation to all SA[i] in the round-robin manner until it
gets non-⊥ value. Once the process gets non-⊥ value, the process returns the
value.

Theorem 4. The algorithm of Fig. 3 is a t-resilient anonymous protocol for the
(t + 1)-set agreement task.

Proof. Termination: It suffices to show that the while loop of Line 4–6 eventually
terminates. In the protocol, each process performs propose() operations to

188 C. Delporte-Gallet et al.

Fig. 3. Anonymous t-resilient (t + 1)-set agreement protocol

SA[0], . . . , SA[t] sequentially. Thus, even if t processes fail, there is at least one
safe agreement object such that no process fails while performing a propose()
operation on the object. By the nontriviality property of safe agreement objects,
after some time instance, resolve() operations on some safe agreement object
return non-⊥ value and thus the while loop eventually terminates.

Validity: Every argument of a propose() operation is a proposed value. Because
of the validity property of safe agreement objects, a non-⊥ value returned by
some resolve() operation is one of the arguments of propose() operations.
Thus, the validity condition holds.

k-Agreement: There are t+1 distinct safe agreement objects. Thus, by the agree-
ment property of safe agreement objects, at most t+1 distinct values are decided.

As the b-iterated barycentric agreement task is wait-free solvable by anony-
mous processes [31], the following lemma holds.

Lemma 10. Let T = (I,O,Δ) be a colorless task. If there exists a continuous
map f : |skeltI| → |O| carried by Δ, T is t-resilient solvable by n anonymous
processes.

Proof. By Lemma 9, there is an integer b and a simplicial map δ : barybskeltI →
O that satisfies δ(barybσ) ⊆ Δ(σ) for every σ ∈ skeltI.

The following anonymous protocol solves the colorless task. Suppose that the
set of all inputs to the processes is s ∈ I. Execute first the anonymous (t+1)-set
agreement protocol so that the processes all choose vertices that form a simplex
sigma in skeltI, and then the b-iterated barycentric agreement protocol (for a
sufficiently large value of b). Each process chooses a vertex of a common simplex
of barybskeltσ. Finally, each process determines its output by applying δ to the
vertex it chose.

t-Resilient Solvable Colorless Tasks in Anonymous Shared-Memory Model 189

Fig. 4. n anonymous processes simulates n non-anonymous processes

The if part of Theorem 3 follows from Lemma 10 and the following theorem
by Herlihy and Rajsbaum:

Theorem 5 ([23, Theorem 4.3]). A colorless task T = (I,O,Δ) is t-resilient
solvable by n non-anonymous processes if and only if there exists a continuous
map f : |skeltI| → |O| carried by Δ.

Note that the protocol in the proof of Lemma 10 only makes use of a finite
number of atomic weak set objects, which are constructed on top of a single
atomic weak set object. Thus, every colorless task that is t-resilient solvable by
n anonymous processes is solved with n atomic registers. The space complexity
upper bound of Theorem 3 follows.

5.2 Simulation-Based Approach

We now prove the if part of Theorem 3 by a simulation, which is an anonymous
variant of the BG-simulation [6]. More precisely, we show that n anonymous
t-resilient processes with atomic weak set objects can simulate n non-anonymous
t-resilient processes with atomic snapshot objects. We denote the anonymous

190 C. Delporte-Gallet et al.

simulators by p0, . . ., pn−1 and the non-anonymous simulated processes by P0,
. . ., Pn−1. Without loss of generality, we may assume that non-anonymous pro-
cesses communicate via a single n-ary atomic snapshot object and execute a
full-information protocol. In the protocol, the process Pi repeatedly writes its
local state to the i-th component of the array, takes a snapshot of the whole
array and updates its state by the result of the snapshot until it reaches a ter-
mination state. When the process reaches the termination state, it decides on
the value obtained by applying some predefined function f to the state.

Our simulation algorithm for each simulator is presented in Fig. 4. The
algorithm makes use of a two dimensional array of safe agreement objects
SA[0 . . .][0 . . . n−1], where the column SA[0 . . .][i] is for storing simulated states
of the process Pi. The local variables view i and round i stand for the current
simulated state and the current simulated round of Pi respectively. The func-
tion latest views maps a set of tuples consisting of a process name, its simulated
state, and its simulated round to the array whose i-th component is the simu-
lated view of Pi associated with the largest simulated round number of Pi. The
function latest round i maps a set of the same kind to the latest round number
of Pi.

In the algorithm, each simulator first proposes its input value to SA[0][i]
for all P0, . . . , Pn−1. Then, a simulator repeats the following procedure for
P0, . . . , Pn−1 in the round-robin manner until one of P0, . . . , Pn−1 reach a ter-
mination state: it performs resolve() operation on SA[round i][i]; if the return
value of the resolve() operation is not ⊥, the simulator adds the return value,
with the name Pi and its current simulated round, to SET , updates simulated
state and round, and proposes the new simulated state of Pi to SA[round i][i].

By the use of safe agreement objects, simulators can agree on the return value
of each simulated snapshot. Note that there is no need to use a safe agreement
object on each simulated update because each value to be updated is determin-
istically determined by the return value of the preceding simulated snapshot. In
the algorithm of Fig. 4, each simulator performs propose() operations sequen-
tially. Thus, even though t simulators crash, they block at most t simulated
processes by the nontriviality property of the safe agreement object. By these
observations, we establish the following lemma:

Lemma 11. If a colorless task is t-resilient solvable by n non-anonymous pro-
cesses with atomic snapshot objects, it is also t-resilient solvable by n anonymous
processes with atomic weak set objects.

The proof of the lemma is similar to the proof of Theorem 5 in [6], while we
omit the proof.

The space complexity of the simulation of Fig. 4 is exactly n atomic registers
because a single atomic weak set object can simulate, in the non-blocking man-
ner, an arbitrary finite number of atomic weak set objects and safe agreement
objects. This establishes the space complexity upper bound of Theorem 3.

t-Resilient Solvable Colorless Tasks in Anonymous Shared-Memory Model 191

6 Conclusion

In this paper, we have extended the wait-free colorless task solvability of [31] to
the case where at most t processes may crash, where 1 ≤ t < n. Furthermore, we
have shown that any t-resilient solvable colorless task can be t-resilient solvable
anonymously using only n MWMR registers. We have derived our result through
a series of reductions that seem interesting in themselves, to study anonymous
computability. We hope they are useful to study further long-lived objects (as
opposed to tasks), perhaps using a wait-free implementation of the weak set
object [14], and uniform solvability (instead of a fixed number of processes n).
Also, it would be interesting to look for lower bounds on the number of MWMR
registers needed to solve specific colorless tasks.

References

1. Angluin, D.: Local and global properties in networks of processors. In: 12th Annual
ACM Symposium on Theory of Computing (STOC), pp. 82–93 (1980)

2. Attiya, H.: Adapting to point contention with long-lived safe agreement. In:
Flocchini, P., G ↪asieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 10–23.
Springer, Heidelberg (2006). https://doi.org/10.1007/11780823 2

3. Attiya, H., Gorbach, A., Moran, S.: Computing in totally anonymous asynchronous
shared memory systems. Inf. Comput. 173(2), 162–183 (2002)

4. Baldoni, R., Bonomi, S., Raynal, M.: Value-based sequential consistency for set
objects in dynamic distributed systems. In: D’Ambra, P., Guarracino, M., Talia, D.
(eds.) Euro-Par 2010. LNCS, vol. 6271, pp. 523–534. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15277-1 50

5. Baldoni, R., Bonomi, S., Raynal, M.: Implementing set objects in dynamic dis-
tributed systems. J. Comput. Syst. Sci. 82(5), 654–689 (2016)

6. Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG distributed simulation
algorithm. Distrib. Comput. 14(3), 127–146 (2001)

7. Bouzid, Z., Travers, C.: Anonymity-preserving failure detectors. In: Gavoille, C.,
Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 173–186. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53426-7 13

8. Capdevielle, C., Johnen, C., Kuznetsov, P., Milani, A.: On the uncontended com-
plexity of anonymous agreement. Distrib. Comput. 30(6), 459–468 (2017)

9. Castañeda, A., Rajsbaum, S., Raynal, M.: The renaming problem in shared mem-
ory systems: an introduction. Comput. Sci. Rev. 5(3), 229–251 (2011)

10. Castañeda, A., Imbs, D., Rajsbaum, S., Raynal, M.: Generalized symmetry break-
ing tasks and nondeterminism in concurrent objects. SIAM J. Comput. 45(2),
379–414 (2016)

11. Chaudhuri, S.: More choices allow more faults: set consensus problems in totally
asynchronous systems. Inf. Comput. 105(1), 132–158 (1993)

12. Delporte-Gallet, C., Fauconnier, H.: Two consensus algorithms with atomic regis-
ters and failure detector Ω. In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds.)
ICDCN 2009. LNCS, vol. 5408, pp. 251–262. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-92295-7 31

13. Delporte-Gallet, C., Fauconnier, H., Gafni, E., Rajsbaum, S.: Linear space boot-
strap communication schemes. Theor. Comput. Sci. 561(Pt. B), 122–133 (2015).
Special Issue on Distributed Computing and Networking

https://doi.org/10.1007/11780823_2
https://doi.org/10.1007/978-3-642-15277-1_50
https://doi.org/10.1007/978-3-662-53426-7_13
https://doi.org/10.1007/978-3-540-92295-7_31
https://doi.org/10.1007/978-3-540-92295-7_31

192 C. Delporte-Gallet et al.

14. Delporte-Gallet, C., Fauconnier, H., Rajsbaum, S., Yanagisawa, N.: An anony-
mous wait-free weak-set object implementation. In: 6th International Conference
on Networked Systems (NETYS). LNCS (2018, to appear)

15. Ellen, F., Fatourou, P., Ruppert, E.: The space complexity of unbounded times-
tamps. Distrib. Comput. 21(2), 103–115 (2008)

16. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

17. Gafni, E., Koutsoupias, E.: Three-processor tasks are undecidable. SIAM J. Com-
put. 28(3), 970–983 (1999)

18. Gelashvili, R.: On the optimal space complexity of consensus for anonymous pro-
cesses. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 452–466. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48653-5 30

19. Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-memory com-
puting. Distrib. Comput. 20(3), 165–177 (2007)

20. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combi-
natorial Topology. Morgan Kaufmann, San Francisco (2013)

21. Herlihy, M., Rajsbaum, S.: The decidability of distributed decision tasks (extended
abstract). In: 29th Annual ACM Symposium on Theory of Computing (STOC),
pp. 589–598 (1997)

22. Herlihy, M., Rajsbaum, S.: A classification of wait-free loop agreement tasks. Theor.
Comput. Sci. 291(1), 55–77 (2003)

23. Herlihy, M., Rajsbaum, S.: The topology of shared-memory adversaries. In: 29th
ACM Symposium on Principles of Distributed Computing (PODC), pp. 105–113
(2010)

24. Herlihy, M., Rajsbaum, S.: Simulations and reductions for colorless tasks. In: 31st
ACM Symposium on Principles of Distributed Computing, PODC 2012, pp. 253–
260. ACM, New York (2012)

25. Herlihy, M., Rajsbaum, S., Raynal, M., Stainer, J.: From wait-free to arbitrary
concurrent solo executions in colorless distributed computing. Theor. Comput. Sci.
683, 1–21 (2017)

26. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(6), 858–923 (1999)

27. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann, San Francisco (2008)

28. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

29. Jayanti, P., Toueg, S.: Wakeup under read/write atomicity. In: 4th International
Workshop on Distributed Algorithms, pp. 277–288 (1991)

30. Rajsbaum, S., Castañeda, A., Flores-Peñaloza, D., Alcantara, M.: Fault-tolerant
robot gathering problems on graphs with arbitrary appearing times. In: 31st IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pp. 493–
502, May 2017

31. Yanagisawa, N.: Wait-free solvability of colorless tasks in anonymous shared-
memory model. In: Theory of Computing Systems, pp. 1–18 (2017)

https://doi.org/10.1007/978-3-662-48653-5_30

Deterministic Distributed Ruling Sets of
Line Graphs

Fabian Kuhn(B), Yannic Maus(B), and Simon Weidner(B)

Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
{kuhn,yannic.maus,simon.weidner}@cs.uni-freiburg.de

Abstract. An (α, β)-ruling set of a graph G = (V, E) is a set R ⊆ V
such that for any node v ∈ V there is a node u ∈ R in distance at most
β from v and such that any two nodes in R are at distance at least α
from each other. The concept of ruling sets can naturally be extended
to edges, i.e., a subset F ⊆ E is an (α, β)-ruling edge set of a graph
G = (V, E) if the corresponding nodes form an (α, β)-ruling set in the
line graph of G. This paper presents a simple deterministic, distributed
algorithm, in the CONGEST model, for computing (2, 2)-ruling edge
sets in O(log∗ n) rounds. Furthermore, we extend the algorithm to com-
pute ruling sets of graphs with bounded diversity. Roughly speaking, the
diversity of a graph is the maximum number of maximal cliques a vertex
belongs to. We devise (2, O(D))-ruling sets on graphs with diversity D
in O(D+log∗ n) rounds. This also implies a fast, deterministic (2, O(�))-
ruling edge set algorithm for hypergraphs with rank at most �.

Furthermore, we provide a ruling set algorithm for general graphs that
for any B ≥ 2 computes an

(
α, α�logB n�)-ruling set in O(α · B · logB n)

rounds in the CONGEST model. The algorithm can be modified to com-
pute a

(
2, β

)
-ruling set in O(βΔ2/β + log∗ n) rounds in the CONGEST

model, which matches the currently best known such algorithm in the
more general LOCAL model.

Keywords: Ruling set · Ruling edge set · Congest · Bounded diversity

1 Introduction, Motivation and Related Work

This paper presents fast and simple deterministic distributed algorithms, in the
CONGEST model, for computing ruling sets of graphs, line graphs, line graphs
of hypergraphs, and graphs of bounded diversity as introduced in [3].

The CONGEST Model of Distributed Computing [30]. The graph is abstracted
as an n-node network G = (V,E) with maximum degree at most Δ. Each node
is assumed to have a unique O(log n)-bit ID. Communication happens in syn-
chronous rounds. Per round, each node can send one message of at most O(log n)
bits to each of its neighbors and perform (unbounded) local computations1.

Supported by ERC Grant No. 336495 (ACDC)
1 All our algorithms only use local computations that require at most polynomial time.

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 193–208, 2018.
https://doi.org/10.1007/978-3-030-01325-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_19&domain=pdf

194 F. Kuhn et al.

At the end, each node should know its own part of the output, e.g., whether
it belongs to the ruling set or not. The time complexity of an algorithm is the
number of rounds it requires to terminate.

Ruling Sets. A
(
α, β

)
-ruling set of a graph G = (V,E) is a subset R ⊆ V of

the nodes such that any two nodes in R are at distance at least α in G and for
every node v ∈ V \ R, there is a node in R within distance β [2]. That is, R
is an independent set in Gα−1, where Gr denotes the graph with node set V
and where two nodes u, v are connected by an edge if dG(u, v) ≤ r. Typically,
α is called the independence parameter and r the domination parameter of the
ruling set R. If α = 2, one often also simply calls R a β-ruling set. The concept
of ruling sets can naturally be extended to edges, i.e., a subset F ⊆ E is an
(α, β)-ruling edge set of a graph G = (V,E) (or a hypergraph H = (V,E)) if
the corresponding nodes form an (α, β)-ruling set in the line graph of G (or H).
In the present paper, we concentrate on deterministic algorithms for computing
ruling sets in the CONGEST model. We will specifically see that edge ruling sets
of graphs and low-rank hypergraphs can be computed particularly efficiently.

The Relevance of Ruling Sets. The distributed computation of ruling sets is
a simple and clean symmetry breaking problem. In particular, ruling sets are
a generalization of maximal independent sets (MIS), arguably one of the most
central and best studied distributed symmetry breaking problems. A (2, 1)-ruling
set is an MIS of G and more generally, a (r + 1, r)-ruling set is an MIS of Gr.
For β ≥ 1, a (2, β)-ruling set of G is therefore a strict relaxation of an MIS of
G, where the problem becomes weaker with larger values of β. The parameter β
thus allows to study a trade-off between the strength of the symmetry breaking
requirement and the complexity of computing a ruling set.

Ruling sets have been introduced by Awerbuch, Goldberg, Luby, and Plotkin
as a building block to efficiently construct a so-called network decomposition (a
partition of a graph into clusters of small diameter together with a coloring of
the cluster graph with a small number of colors) [2]. Since then, ruling sets have
been used as a powerful tool in various distributed graph algorithms. Computing
ruling sets can often replace computing the more stringent and harder to obtain
maximal independent sets. Ruling sets have for example been used in order to
compute network decompositions [2,29], graph colorings [28], maximal indepen-
dent sets [21], or shortest paths [16]. Ruling sets are also used as a subroutine
to obtain the state-of-the-art randomized distributed algorithms for many of the
classic distributed graph problems, such as distributed coloring [7,15], maximal
independent set [11], or maximal matching [4]. These algorithms are based on the
so-called graph shattering technique, which was originally introduced by Beck
in [5]. Using an efficient randomized algorithm, the problem is solved on most of
the graph such that the only unsolved remaining parts are components of size
at most poly(Δ · log n), where Δ is the maximum degree of G. Using existing
ruling set algorithms, one can then further reduce the problems on the remaining
components to problems on graphs of size poly log n.

Deterministic Distributed Ruling Sets of Line Graphs 195

Previous Work on Distributed Ruling Set Algorithms. As mentioned before the
first appearance of ruling sets was in the work of Awerbuch, Goldberg, Luby,
and Plotkin [2], who provided a deterministic distributed algorithm to compute
an (α,O(α log n))-ruling set in O(α log n) rounds. Their algorithm uses the bit
representation of the node IDs to recursively compute ruling sets. For each of
the O(log n) bits of the IDs, the nodes are divided into two parts according to
the value of the current bit and ruling sets are computed recursively for the two
parts. The two recursively computed ruling sets S0 and S1 are merged to a single
ruling set by keeping all nodes in S0 and all nodes in S1 that do not have an
S0-node in their (α−1)-neighborhood. Note that the algorithm loses an additive
α in the domination for each of the O(log n) recursion levels.

Schneider and Wattenhofer refine the ideas of [2] to deterministically com-
pute (2, β)-ruling sets in time O(βΔ2/β +log∗ n) [31]. At the cost of an increased
running time, they use a larger branching factor than Awerbuch et al. to decrease
the recursive depth and thus the domination parameter. Further, for small val-
ues of β, the best known deterministic algorithm requires time 2O(

√
log n), even

for β = 1. It is based on first computing a network decomposition using the
algorithm of [29] and to then use this decomposition to compute the ruling
set. All these algorithms work in the LOCAL model, where the size of messages
is unbounded. In [16], Henzinger, Krinninger, Nanongkai sketch how the algo-
rithm of [2] can be adapted to compute a

(
α,O(α log n)

)
-ruling set in O(α log n)

rounds in the CONGEST model. Any (2, β)-ruling set algorithm applied to Gα−1

implies a (α, (α − 1)β)-ruling set algorithm on G, e.g., [31] can be used to com-
pute

(
α,O(α2 ·β)

)
-ruling sets in time O(α2βΔ2/β+α·log∗ n). However, the black

box simulation of an algorithm on Gα−1 heavily relies on the LOCAL model.
In contrast to the few deterministic ruling set algorithms there are many

randomized algorithms for the problem. In particular, there is a long history
of efficient randomized algorithms for computing an MIS. The famous algo-
rithms by Luby and Alon, Babi, and Itai allow to compute an MIS (and thus
a (2, 1)-ruling set) in time O(log n) [1,25]. In [11], Ghaffari improved the ran-
domized running time of computing an MIS to O(log Δ) + 2O(

√
log log n). There

are also more efficient randomized algorithms that directly target the com-
putation of (2, β)-ruling sets for β > 1. Gfeller and Vicari found an algo-
rithm that finds a (1, O(log log Δ))-ruling set in time O(log log Δ) such that
the degree in the graph induced by the ruling set nodes is O(log5 n) [10].
Together with the ruling set algorithms of [2,31], the algorithm allows to com-
pute a (2, O(log log n))-ruling set in time O(log log n). In [4], Barenboim et
al. used the graph shattering technique to compute (2, β)-ruling set in time
O(β log1/(β−1/2)) + 2O(

√
log log n). This was later improved by Ghaffari to com-

pute (2, β)-ruling sets in O(β log1/β)+O(2
√
log log n) rounds [11]. Kothapalli and

Pemmaraju showed how to compute
(
2, 2

)
-ruling sets in O(log3/4 n) rounds

[19]. The core idea is a randomized sparsification process that reduces the
degree while maintaining some domination property. Afterwards the algorithm
of [4] is applied to the sparsified graph. The same authors presented a ran-
domized algorithm that computes (2, β)-ruling sets in time O(β log1/(β−1) n) if

196 F. Kuhn et al.

β ≤ √
log log n and in time O(

√
log log n) for arbitrary β [6]. Pai et al. showed

how to compute 3-ruling sets in O(log n/ log log n) rounds and 2-ruling sets in
O(log(Δ) · (log n)1/2+ε + log n ε log log n) rounds in the CONGEST model [26].
Further, the work deals with the message complexity of ruling set algorithms.
They provide a Ω(n2) lower bound on the message complexity for MIS if nodes
have no knowledge about their neighbors and in contrast present a 2-ruling set
algorithm that uses O(n log2 n) messages and runs in O(Δ log n) rounds.

We are not aware of any work that explicitly studies ruling edge sets. How-
ever, there is substantial work on computing maximal matchings and maximal
hypergraph matchings, i.e., on computing (2, 1)-ruling edge sets. While for the
MIS problem no polylogarithmic-time deterministic algorithm is known, in [13],
Hańćkowiak, Karoński and Panconesi showed that a maximal matching can be
computed in O(log7 n) rounds deterministically. They improved the algorithm
to O(log4 n) rounds in [14]. The current best algorithm is by Fischer and it com-
putes a maximal matching in time O(log2 Δ · log n) [8]. Fischer, Ghaffari and
Kuhn have recently shown that maximal matchings can even be computed effi-
ciently in low-rank hypergraphs. For hypergraphs of rank at most r (i.e., every
hyperedge consists of at most r nodes), they presented a deterministic algorithm
to compute hypergraph maximal matching in O(logO(logr) Δ · log n) [9]. Later
in [12], the dependency on the rank was improved; the paper obtains a runtime
of ΔO(r) + O(r log∗ n) to compute a hypergraph maximal matching. Further-
more, [4] contains a randomized algorithm that (combined with [8]) computes a
maximal matching in O(log Δ + log3 log n) rounds.

Finally, we note that the Ω(log∗ n) lower bound of [24] that was designed
for coloring and MIS on a ring network also holds for computing ruling sets.
On a ring, given a β-ruling (edge) set, an MIS can be computed in time O(β).
Maximal matchings have a lower bound of O

(√
log n/ log log n

)
rounds [20].

Contributions. The ruling set algorithms for general graphs by Awerbuch et al.
[2] and Schneider et al. [31] only works in the LOCAL model. In [16] Henzinger,
Krinninger, and Nanongkai sketch a variant of the algorithm that achieves a
ruling set of the same quality as Awerbuch et al. but that also works in the
CONGEST model. In the full version of this paper [22], we provide a formal
analysis and a generalization of the algorithm of [16]. Further, slightly beyond
[16], our simple deterministic distributed algorithm also levels Schneider et al.’s
work in the CONGEST model.

Theorem 1. Let α be a positive integer. For any B ≥ 2 there exists a deter-
ministic distributed algorithm that computes a

(
α, (α − 1)�logB n�)-ruling set of

G in O(α · B · logB n) rounds in the CONGEST model.

The n in the runtime of Theorem 1 stems from the size of the ID-space. To
compute a (2, β)-ruling set it is sufficient to use the colors of a cΔ2-coloring
computed with Linial’s algorithm [23] as IDs; setting B = c · Δ2/β implies the
same trade-off as in [31].

Deterministic Distributed Ruling Sets of Line Graphs 197

Corollary 1. Let β > 2 be an integer. There exists a deterministic distributed
algorithm that computes a

(
2, β

)
-ruling set of G in O(βΔ2/β +log∗ n) rounds in

the CONGEST model.

Algorithm Sketch (consult [22] for details): The simple algorithm of Theorem 1
begins with a tentative ruling set S = V and iteratively sparsifies S until it
is an independent set. In iteration i of O(logB n) iterations it removes nodes
from S such that S is independent with regard to the i’th digit of the B-ary
representation of the ids—the set S is called independent with regard to digit i if
both endpoints of each edge of G[S] have the same value at the i’th digit. Then,
if all bits are independent S is an independent set; the node removal in each
iteration is such that the domination increases by at most two in each iteration.

All further contributions center around the fast computation of ruling sets
in line graphs and their generalizations. The main result is the computation of
2-ruling edge sets in O(log∗ n) rounds.

Theorem 2. There exists a deterministic distributed algorithm that computes a
2-ruling edge set of G in Θ(log∗ n) rounds in the CONGEST model.

The main idea of the algorithm can actually be explained in a few lines: In
the first step each node sends a proposal along one of its incident edges; in the
second step each node that received a proposal adds exactly one of the edges
through which it received a proposal to a set F ; in the third step nodes compute
a matching on the graph induced by the edges in F and add matching edges to
the ruling edge set. One can show that the graph that is induced by the edges in
F has maximum degree at most two and thus the computation of the matching
only takes O(log∗ n) rounds. The resulting ruling edge set is a 3-ruling edge set
and we use our following result to transform it into a 2-ruling edge set.

The proposal technique is similar the one of Israeli et al. in [17] for the
randomized computation of maximal matchings. For multiple phases they first
reduce the maximal degree of the graph using a randomized version of the pro-
posal algorithm. Then they randomly add certain edges from the reduced graph
to the matching and remove their adjacent edges. They show that the algorithm
removes a constant fraction of the edges in each phase and thus they obtain a
maximal matching in O(log n) rounds.

Theorem 3. Let β ≥ 2. Any β-ruling edge set can be transformed into a 2-
ruling edge set in O(β) rounds of communication in the CONGEST model.

We emphasize that a further reduction of the domination parameter, i.e., to 1-
ruling edge sets or equivalently to maximal matchings, cannot be done in less
than O

(√
log n/ log log n

)
rounds due to the lower bound of [20].

The algorithm from Theorem 2 can be seen as a 2-ruling set algorithm on
line graphs and it is significantly faster than any known algorithm to compute
2-ruling sets on general graphs. Our third contribution extends the ideas of
the algorithm for line graphs to a much larger class of graphs, i.e., graphs with
bounded diversity. For a graph G, a clique edge cover Q is a collection of cliques of
G such that every edge (and node) of G is contained in at least one of the cliques.

198 F. Kuhn et al.

The diversity of a pair (G,Q) where Q is a clique edge cover of G is D if any node
is contained in at most D distinct cliques of the clique edge cover. The diversity
of a graph G is the minimum diversity of all (G,Q) where Q is an arbitrary
clique edge cover of G. The concept of diversity was introduced in [3]. In the
following we always assume that the clique edge cover Q is known by all nodes,
i.e., each node knows all the cliques in which it is contained. Note that for many
graphs, e.g., for line graphs of graphs or hypergraphs of small rank a clique edge
cover with a small diversity is obtained in a single round of communication by
taking a clique for each node v consisting of the set of all the edges containing v.
Note that in [3], the definition of diversity is defined by using maximal cliques.
However, we do not require maximality in our algorithms.

Theorem 4. There exists a algorithm that, given a graph with a clique edge
cover of diversity D, computes a (D + 4)-ruling set in O(D + log∗ n) rounds in
the CONGEST model.

Line graphs have diversity two and (non-uniform) hypergraphs with rank � have
diversity �. The corresponding clique edge covers can be computed in a single
round which implies the following corollary.

Corollary 2. There exists a algorithm that computes (�+4)-ruling edge sets in
O(� + log∗ n) rounds in (non uniform) hypergraphs with rank at most �.

Outline. Section 2 focuses on ruling edge sets. We believe that it is helpful to
read this section to understand the more involved algorithm in Sect. 3 which
extends results to graphs of bounded diversity and line graphs of hypergraphs.

2 Ruling Edge Sets of Simple Graphs

We provide an algorithm to compute ruling edge sets with an asymptotically
optimal runtime. Even though the same asymptotic runtime can be obtained
with the more general algorithm in Sect. 3 (the algorithm works for graphs of
bounded diversity — line graphs have diversity two) we believe that this section
is simpler and more straightforward. This section also helps to understand the
more involved algorithm in Sect. 3. In Sect. 2.1 we show how to compute 3-ruling
edge sets in O(log∗ n) rounds and in Sect. 2.2 we show how any β-ruling edge
set can be transformed into a 2-ruling edge set in O(β) rounds.

The distance dist(e, f) between two edges e and f is defined as the distance
of the corresponding nodes in the line graph. The graph G = (V,E) induced by
a set of vertices U ⊆ V is defined as G[U] = (U, {{u, v} | {u, v} ∈ E, u, v ∈ U}
and the graph induced by a set of edges as F ⊆ E is G[F] = (V, F). We extend
the definition of ruling (vertex) sets to ruling edge sets.

Definition 1 (Ruling Edge Set). An (α, β)-ruling edge set R ⊆ E of a graph
G = (V,E) is a subset of edges such that the distance between any two edges in R
is at least α and for every edge e ∈ E there is an edge f ∈ R with dist(e, f) ≤ β.

Deterministic Distributed Ruling Sets of Line Graphs 199

In the LOCAL model the computation of ruling edge sets is equivalent to
computing ruling sets on line graphs. Note that line graphs have many addi-
tional properties, e.g., bounded diversity (cf. Sect. 3), and not every graph can
appear as a line graph of another graph. We focus on ruling edge sets with dis-
tance two between any two ‘selected’ edges. The next remark indicates why: any
independence greater than two immediately leads to results for ruling vertex
sets.

Remark 1. Any
(
α, β

)
-ruling edge set with α ≥ 2, β ≥ 1 directly leads to a(

α − 1, β + 1
)
-ruling set.

Proof. Let S be a
(
α, β

)
-ruling edge set. For each edge {v1, v2} ∈ S add one of

the nodes, e.g., v1 to the node set R. Isolated nodes are also added to R.

Independence. Let v1 and v′
1 be two nodes in R. By construction there are two

distinct edges e = {v1, v2} and e′ = {v′
1, v

′
2} in S. As the distance between e and

e′ is at least α the shortest path p that contains both edges e and e′ has at least
α + 1 edges. Hence the distance between v1 and v2 is at least α − 1.

Domination. Let v ∈ V be a node with incident edge e = {v, w}. Then there is
an edge f = {vf , wf} ∈ S with dist(e, f) ≤ β. Either vf or wf is contained in R
and thus there is a node in distance β + 1 to v. 	

Maximal matchings are
(
2, 1

)
-ruling edges sets. These can be computed in

poly log n time with [8] or with a large dependency on the maximum degree and
only a O(log∗ n) dependence on n.

Corollary 3 ([27]). Maximal matchings in graphs with maximum degree at most
Δ can be computed in O(Δ + log∗ n) deterministic distributed time.

2.1 Proposal Technique for Simple Graphs

In the first step of our ruling edge set algorithm we compute, in a constant
number of rounds, a subset F ⊆ E of the edges such that (1) for every edge
e ∈ E there is an edge f ∈ F such that the distance between e and f is small
and (2) the graph G[F] has small maximum degree. In the second step we apply
any (known) ruling edge set algorithm on the edges of G[F], e.g., the algorithm
from Corollary 3. We call a set F with these properties an edge-kernel.

Definition 2 (Edge-kernel). Let G = (V,E) be a graph. A (d, r)-edge-kernel
F ⊆ E is a subset of edges, so that the degree of the induced graph G[F] is at
most d and for every edge e ∈ E there exists an edge f ∈ F with distG(e, f) ≤ r.

The core idea of our algorithm is the proposal technique of the next lemma.

Lemma 1. There is a deterministic two round CONGEST algorithm to compute
a (2, 2)-edge-kernel.

200 F. Kuhn et al.

Fig. 1. Non-dotted lines form a (2, 2)-edge-kernel.

Algorithm: Each node proposes one of its incident edges and in the next
step each node accepts a single of its incident edges that were proposed by
other nodes. Return the set F of accepted edges.

Algorithm 1 Proposal Technique
1: for each node n in parallel do
2: Propose one incident edge to all neighbor nodes
3: Arbitrarily add one of the edges that are proposed by neighbors to the set F

4: return F

Proof. The algorithm requires two rounds in the CONGEST model. We claim is
that F is a (d, r)-edge-kernel with d, r ≤ 2.

d ≤ 2. Any node v ∈ V has at most two incident edges in F : the edge that v
proposed itself if it was accepted by the corresponding neighbor and the edge v
accepted. This concludes that Δ(G[F]) ≤ 2.

r ≤ 2. Consider any edge e = {v, u} ∈ E, the vertex v proposed some edge
f = {v, w} in the first step of the algorithm. Thus w has at least one incident
edge that was proposed by a neighbor. Let g = {w,w′} ∈ F be the edge that
is accepted by w. Then the distance between f and g is at most 2 through the
path e, f, g. Note that the distance is even smaller if v proposed edge e or if w
accepted edge f . 	

Computing a ruling edge set on an edge-kernel provides a ruling edge set of
the original graph whose domination parameter is the sum of the domination
parameters of the edge-kernel and the ruling edge set.

Lemma 2. Let d, r1 and r2 be positive integers. Given an (d, r1)-edge-kernel
F ⊆ E of a graph G = (V,E) and an r2-ruling edge set algorithm with runtime
T (n,max degree), one can compute an (r1 + r2)-ruling edge set of G in time
T (n, d).

Algorithm: Apply the r2 ruling edge set algorithm on the graph G[F]; let
R ⊆ F be its output.

Proof. R is independent on G: Let e and f be two edges in R ⊆ F . They are
not adjacent in G[F] by the guarantees of the algorithm. Further, if they were

Deterministic Distributed Ruling Sets of Line Graphs 201

adjacent in G then they would, by the definition of the induced graph, also be
adjacent in G[F], a contradiction.

R is r1 + r2 dominating on G: Let e ∈ E be an arbitrary edge of G. Due to
the edge-kernel properties there is an edge f ∈ F with distG(e, f) ≤ r1. As R
is an r2-ruling edge set in G[F] there is an edge g ∈ R with distG[F](f, g) ≤ r2.
This implies that distG(e, g) ≤ distG(e, f) + distG(f, g) ≤ r1 + r2. 	

The bottleneck when computing a maximal matching is the maximum degree
(cf. Corollary 3). An (d, r)-edge-kernel reduces the degree to d. By first comput-
ing an (2, 2)-edge-kernel and thereafter running our matching algorithm on it we
obtain a

(
2, 3

)
-ruling edge set.

Proof. (of Theorem 2). First compute a (2, 2)-edge-kernel F with Lemma 1 in
O(1) rounds. Thereafter run the matching algorithm Corollary 3 on G[F] in
O(log∗ n + 2) = O(log∗ n) rounds and return the matching. If we formulate
these steps in the language of line graphs to apply Lemma 2 we obtain that the
returned set is a 3-ruling edge set of G.

Use Theorem 3 to reduce the domination from 3 to 2 in O(1) rounds. The
lower bound of Ω(log∗ n) follows from Linial’s lower bound [24] as the line graph
of the ring forms an isomorphic ring. 	

The concept of edge-kernels as introduced in Definition 2 is not helpful to com-
pute ruling edge sets with independence parameter α > 2. Given an edge-kernel
F , we use that we can handle the connected components of G[F] separately as the
distance between connected components is at least two. If one was to compute
ruling edge sets with independence α > 2 one had to ensure that the distance
between connected components is at least α. Note that Remark 1 implies that
such an algorithm would immediately imply an (unknown) algorithm for the
computation of a (non trivial) ruling set of G.

2.2 From β-Ruling Edge Sets to 2-Ruling Edges Sets

In this subsection we show how to decrease the domination parameter of ruling
edge sets from β to 2 within O(β) rounds. In particular, we show how to trans-
form 3-ruling edge sets into 2-ruling edge sets in O(1) rounds and essentially
repeating the algorithm β times leads to the result for general β.

The core idea is adding additional edges to a β-ruling edge set R to decrease
its domination parameter: Let E2 be the set of edges whose shortest distance to
an edge in R is two. We carefully select an independent set I ⊆ E2 such that
every edge in distance three to R has an edge in distance at most two in I.
Then R ∪ I forms the desired 2-ruling edge set. Note that adding all edges with
distance two (or any other fixed distance) to R cannot be done without losing
independence. Furthermore the induced graph G[E2] might have degree up to Δ.
Thus, to obtain constant runtime, we cannot apply any of the known algorithms
with non-constant runtime in a black box fashion to G[E2]. We first need one
very simple but also very useful observation.

202 F. Kuhn et al.

Observation 1. The distance of any pair of incident edges to the closest edge
in an ruling edge set differs at most by one (cf. Fig. 2).

Lemma 3. A 3-ruling edge set can be transferred into a 2-ruling edge set in
O(1) CONGEST rounds.

Algorithm: Given a 3-ruling edge set R ⊆ E, we compute a 2-ruling edge set
R ⊆ S ⊆ E. First, split the edges E into four sets E = E0∪E1∪· · ·∪E3 according
to their distance to an edge in R. This can be done in three rounds. Then every
node that is adjacent to at least one edge from E2 and at least one edge from
E3 selects a single of its incident edges e2 ∈ E2 as a candidate edge. Now, each
node with at least one incident candidate edge that also has an incident edge in
E1 chooses one of its incident candidate edges and adds it to the set I. Finally
return the set S = R ∪ I.

1

1 ∨ 2

t u v
2 3

2 ∨ 3

Fig. 2. Neighborhood of a candidate edge e = {u, v} ∈ E2 proposed by node v. Solid
edges exist in any graph, dotted edges may exist in any cardinality.

Proof. S is independent. It is helpful to keep the essence of Observation 1 in mind
which implies that the set of nodes that propose an edge cannot be connected by
an edge in E2. For contradiction, assume such an edge e = {u, v} ∈ E2 exists. As
both nodes propose an edge they both have incident edges in E3. However, then
both nodes do not have an incident edge in E1 which contradicts that e ∈ E2

(cf. Fig. 2).
As the set I of added edges is a subset of E2 none of them is adjacent to edge

edge in E0. Thus we only need to prove that no two edges in I are adjacent.
Assume there are two edges e = {u, v}, f = {u,w} in I ⊆ E2 that are adjacent.
Then v proposed e and w proposed f because if any of the edges would have
been proposed by u the other edge could not be proposed at all by our previous
observation that proposed nodes cannot be connected by an edge in E2. As the
proposals of e and f compete at u and u can only accept one of them not both
edges can be contained in I.

S has domination two. Edges in E \E3 are still dominated in distance two as
R ⊆ S. Let e = {u, v} ∈ E3. At least one of its endpoints has an incident edge f
in E2 that it proposed. W.l.o.g. assume that u proposed edge f = {u,w} ∈ E2.
Either f is accepted by w which implies that e is dominated or w accepted some
other edge g which dominates e in distance two. 	

We use the same idea to improve the domination parameter.

Deterministic Distributed Ruling Sets of Line Graphs 203

Lemma 4. Any β-ruling edge set with β ≥ 3 of a simple graph can be trans-
formed into an β − 1-ruling edge set in O(1) rounds of communication in the
CONGEST model.

Proof. Let R be the given β-ruling edge set. First, for each edge e ∈ E we check
whether its 3-neighborhood contains an edge of R and split the edges E into
four sets according to their distance to R, i.e., E = E0 ∪ E1 . . . E3 ∪ E≥4. Let
H = G[E≤3] be the subgraph induced by the edges E≤3 = E0∪E1∪E2∪E3 and
apply Lemma 3 to transform R into a 2-ruling edge set S of H in O(1) rounds.

We observe that this 2-ruling edge set of H is a (β − 1)-ruling edge set of
G: In the graph G the shortest path p = eβ , . . . , e3, e2, e1, e0 from any edge eβ

(with distance β to R) to E0 = R contains an edge of E3; the indices of the path
edges correspond to their distances to e0. As e3 has an edge at distance at most
2 in S, the edge eβ has an edge in S at distance at most β − 1. 	

Lemma 4 reduces the domination of a β-ruling edge set in a constant number of
rounds, independent from β. Particularly, the reduction even works in constant
time if no node knows how far it is from the closest ruling edge before the
algorithm starts. Iteratively applying Lemma 4 implies the following theorem.

Proof (of Theorem 3). Apply Lemma 4 β − 2 times iteratively reducing β to 2
in O(β) rounds. 	

3 Ruling Sets of Bounded Diversity Graphs

In Sect. 2, we have seen that the computation of ruling sets on line graphs seems
to be much easier than on general graphs. In this section, we identify graph
properties that allow us to essentially apply the same algorithm as in Sect. 2 to
a much more general class of graphs, in particular to bounded diversity graphs.
Bounded diversity was introduced in [3]. Given a graph G = (V,E) and a clique
edge cover Q, i.e., a set of cliques (where each clique is a subgraph of G) such
that any node of G is contained in at least one clique and for any two nodes
u, v ∈ V that are adjacent in G there exists a clique C ∈ Q in which u and v are
adjacent. The diversity with respect to the cover Q is the maximal number of
cliques a vertex is contained in. The diversity of a graph is the minimum diversity
over all clique edge covers. We show that, given such a cover with diversity D,
we can compute an O(D)-ruling set in time O(D + log∗ n). In many cases, e.g.,
in line graphs and line graphs of hypergraphs clique edge covers with very low
diversity can be computed in constant time even in the CONGEST model.

Definition 3 (Diversity). Given a graph G = (V,E) and a clique edge cover
Q, the diversity of (G,Q) is defined as maxv∈V |{C ∈ Q | v ∈ C}|. The diversity
of G is the minimum of the diversities of (G,Q) over all clique edge covers Q.

Definition 3 is slightly different from the definition in [3] where the cliques
are required to be maximal. However, none of our algorithms use this prop-
erty and going without it might lead to covers with smaller diversity and hence

204 F. Kuhn et al.

faster runtimes. One downside of both definitions is that (so far) algorithms rely
on a globally known cover that, in the best case, levels the diversity of the graph.
In both models of computation it is not clear that computing such a cover can
always be done efficiently. However, in the LOCAL model it is straightforward
to compute a cover with diversity Δ: For each node, add all maximal cliques
that it is contained in. In the full version of this paper, we provide an example
that shows that this is not necessarily optimal [22]. In the CONGEST model the
seemingly hard problem of triangle detection (see e.g., [18]) can be reduced to
the problem of identifying maximal cliques. Often it is not difficult to compute
a clique edge cover with a small diversity, e.g., a cover with diversity two in line
graphs can be computed in constant time in the CONGEST model. For a further
discussion of the computability of such covers consult [3].

A hypergraph H is a tuple (V,E) of vertices and edges and each edge is a
set of vertices. The rank of a hypergraph is the maximum number of vertices
that are contained in an edge. One way to define a distributed algorithm on a
hypergraph is that, in one round, each vertex v of the hypergraph broadcasts
one message on each of its incidents hyperedges e (the messages can be different
for different hyperedges but all nodes in the same hyperedge receive the same
message from v on that edge) and receives the messages sent by its neighbors.
The diversity of line graphs of hypergraphs is bounded above by the rank of the
hypergraph. Simple graphs are (uniform) hypergraphs of rank two and hence
have diversity of at most two.

Remark 2. The diversity of the line graph of a hypergraph of rank at most � is
at most � and a corresponding cover can be computed in constant time.

Proof. Let H = (V,E) be a hypergraph and L = L(H) its line graph. For each
vertex v we define the (constant time computable) clique Cv = {e | e ∈ E, v ∈ e}
and Q = {Cv | v ∈ V }. Then Q is a clique edge cover of L with diversity � as an
edge e = {v1, . . . , v�} is only contained in the cliques Cv1 , . . . , Cv�

. 	

In this section we show how to adapt the proposal technique of Lemma 1 in

Sect. 2. Recall that we used the proposal technique to compute (d, r)-edge-kernels
of a graph. In this section we use vertex-kernels.

Definition 4 (Vertex-kernel). Let G = (V,E) be a graph. A (d, r)-vertex-
kernel A ⊆ V is a subset of nodes, so that the degree of the induced graph
G[A] is at most d and for every node v ∈ V there exists a node u ∈ A with
distG(v, u) ≤ r.

First, we rephrase the proposal technique of Lemma 1 directly on the line graph.
Each node of the original graph can be identified with a clique in the line graph.
The ‘proposing an edge’ in Algorithm 1 corresponds to proposing a single node
from each such clique. Then, ‘accepting a proposed edge’ corresponds to accept-
ing one of the proposed nodes in the clique. In Lemma 1 we showed that at most
two nodes per clique survive this process on the line graph. In general many
more nodes can survive a single step of this proposal and accepting technique.
We repeat the process to sparsify the selected nodes further and further.

Deterministic Distributed Ruling Sets of Line Graphs 205

Lemma 5. There exists an O(D) time algorithm in the CONGEST model that,
given a graph G = (V,E) and a set of cliques Q with diversity D, computes a
subset of nodes A with the following properties:

(small degree) For all cliques C ∈ Q : |A ∩ C| ≤ D,

(domination) For all nodes v ∈ V there is a node p ∈ A with distG(v, p) ≤ D.

Moreover, A is a (D2,D)-vertex-kernel of the graph.

Algorithm: At the start each node is set active. Then, in each of D phases,
each clique proposes one of its active nodes that it has not proposed in any phase
before (if such a node exists). Any node that was active before, has not been
proposed in the current phase but has a neighbor that is proposed in the current
phase is set inactive. In the end we return the set of active nodes. Confer the
full version of this paper for detailed pseudocode [22].

For the correctness of the algorithm we show that any node in A ∩ C has
been proposed by clique C and as each clique proposes at most one node in each
of the D iterations the claim (small degree) follows. The second property follows
as a node is only set inactive if it has a neighbor that is active in the next phase.

Proof. For i = 1, . . . ,D let Ai denote the set of nodes that are active at the
end of phase i, Si the set of nodes that are proposed in phase i, Wi the set of
nodes that are active at the end of phase i and do not have a neighbor that is
proposed in phase i and RC

i be the set of nodes that have been proposed by
clique C until phase i. To prove the lemma we first prove the following property:
(1) S1 ⊇ S2 ⊇ . . . ⊇ SD. Assume for contradiction, that v /∈ Sj and v ∈ Sj+1

for some j < d. Let C be a clique that proposes v in phase j + 1. In phase j + 1
only nodes in Aj can be proposed. Thus v is contained in Aj = Wj ∪ Sj . As v
is not contained in Sj we deduce that v ∈ Wj , i.e., v does not have a neighbor
that is proposed in phase j. In particular, C does not propose a neighbor of v in
round j, i.e., either C proposed v in phase j or v does not propose any node in
phase j at all. In both cases C cannot propose v in phase j + 1, a contradiction.

Fix a clique C ∈ Q. We show that each node in P ∩ C has been proposed by
C. As C proposes at most D nodes the claim (small degree) follows. If there is
an i < d with (Ai ∩ C) \ RC

i = ∅ the claim holds because A ∩ C ⊆ Ai ∩ C and
clique C already proposed all nodes in Ai ∩ C in the first i rounds. So assume
that (AD−1 ∩ C) \ RC

D−1 �= ∅ and let v be the node that C proposes in the last
phase. All nodes in C that are not proposed in phase D are set inactive as their
neighbor v is proposed. Thus any node in A ∩ C is a node in SD, i.e., any such
node is proposed in phase D by some clique and due to Property (1) also in each
phase before. Thus any node in A ∩ C has been proposed by D many cliques.
As no clique can propose a node twice and each node is in at most D cliques
(including clique C) each such node has been proposed by C.

Domination. At the start every node has an active neighbor (i.e., a neighbor in
A). A node is only set inactive (i.e., removed from A) in some phase if it has

206 F. Kuhn et al.

neighbor that is proposed in the phase. Thus the domination distance increases
at most by one per phase which proves the claim.

The Algorithm Runs in O(D) Rounds in the CONGEST Model. In a single phase,
removing the non proposed nodes with a proposed neighbor from the set of active
nodes can be done in a single round. Thus the runtime is in the order of the
number of phases, i.e., it is O(D).

A is a (D2,D)-vertex-kernel. Due to diversity D any v can only be part of D
distinct cliques. Due to the (small degree) property it has at most D−1 neighbors
in each clique. As the cliques cover every edge of G this implies that the maximum
degree of G[A] is upper bounded by D(D − 1) ≤ D2. The domination follows
immediately from the second property. 	

Analogously to Lemma 2 one can prove the following lemma.

Lemma 6. Let d, r1 and r2 be positive integers. Given an (d, r1)-vertex-kernel
S ⊆ V of a graph G = (V,E) and an r2-ruling set algorithm with runtime
T (n,max degree) one can compute an (r1 + r2)-ruling set of G in time T (n, d).

Lemmas 5 and 6 and the ruling set algorithm from Corollary 1 imply the main
result of the section.

Proof. (of Theorem 4). First use Lemma 5 to compute a (D2,D)-vertex-kernel
A of G in O(D) rounds. Then run the ruling set algorithm from Corollary 1 with
β = 4 on G[A] in O(D + log∗ n). With Lemma 6 this yields a (D + 4)-ruling set.
	

As hypergraphs of rank � have diversity � and we can efficiently compute a
corresponding clique decomposition and we obtain Corollary 2.

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)

2. Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network decomposition
and locality in distributed computation. In: Proceedings of the IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 364–369 (1989)

3. Barenboim, L., Elkin, M., Maimon, T.: Deterministic distributed (Δ+o(Δ))-edge-
coloring, and vertex-coloring of graphs with bounded diversity. In: Proceedings of
ACM Symposium on Principles of Distributed Computing (PODC), pp. 175–184
(2017)

4. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed
symmetry breaking. J. ACM 63(3), 20 (2016)

5. Beck, J.: An algorithmic approach to the lovász local lemma. I. Random Struct.
Algorithms 2(4), 343–365 (1991)

6. Bisht, T., Kothapalli, K., Pemmaraju, S.: Brief announcement: Super-fast t-ruling
sets. In: Proceedings of ACM Symposium on Principles of Distributed Computing
(PODC), pp. 379–381 (2014)

Deterministic Distributed Ruling Sets of Line Graphs 207

7. Chang, Y.J., Li, W., Pettie, S.: An optimal distributed (Δ+1)-coloring algorithm?
In: Proceedings of 50th ACM Symposium on Theory of Computing (STOC) (2018)

8. Fischer, M.: Improved deterministic distributed matching via rounding. In: Pro-
ceedings of Symposium on Distributed Computing (DISC). LIPIcs, vol. 91, pp.
17:1–17:15 (2017)

9. Fischer, M., Ghaffari, M., Kuhn, F.: Deterministic distributed edge-coloring via
hypergraph maximal matching. In: Proceedings of IEEE Symposium on Founda-
tions of Computer Science (FOCS), pp. 180–191 (2017)

10. Gfeller, B., Vicari, E.: A randomized distributed algorithm for the maximal inde-
pendent set problem in growth-bounded graphs. In: Proceedings of ACM Sympo-
sium on Principles of Distributed Computing (PODC), pp. 53–60 (2007)

11. Ghaffari, M.: An improved distributed algorithm for maximal independent set.
In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
270–277 (2016)

12. Ghaffari, M., Harris, D.G., Kuhn, F.: On derandomizing local distributed algo-
rithms. CoRR abs/1711.02194 (2017)

13. Hańćkowiak, M., Karoński, M., Panconesi, A.: On the distributed complexity of
computing maximal matchings. In: Proceedings of ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 219–225 (1998)

14. Hańćkowiak, M., Karoński, M., Panconesi, A.: A faster distributed algorithm for
computing maximal matchings deterministically. In: Proceedings of ACM Sympo-
sium on Principles of Distributed Computing (PODC), pp. 219–228 (1999)

15. Harris, D.G., Schneider, J., Su, H.H.: Distributed (Δ+1)-coloring in sublogarithmic
rounds. In: Proceedings of the 48th ACM Symposium on Theory of Computing
(STOC), pp. 465–478 (2016)

16. Henzinger, M., Krinninger, S., Nanongkai, D.: A deterministic almost-tight dis-
tributed algorithm for approximating single-source shortest paths. In: Proceedings
of ACM Symposium on Theory of Computing (STOC), pp. 489–498 (2016)

17. Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm for maximal
matching. Inf. Process. Lett. 22(2), 77–80 (1986)

18. Izumi, T., Le Gall, F.: Triangle finding and listing in CONGEST networks. In:
PODC, pp. 381–389 (2017)

19. Kothapalli, K., Pemmaraju, S.V.: Super-fast 3-ruling sets. In: FSTTCS. LIPIcs,
vol. 18, pp. 136–147 (2012)

20. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: lower and upper
bounds. J. ACM 63(2), 17:1–17:44 (2016)

21. Kuhn, F., Moscriboda, T., Nieberg, T., Wattenhofer, R.: Fast deterministic dis-
tributed maximal independent set computation on growth-bounded graphs. In:
Proceedings of the 19th International Conference on Distributed Computing
(DISC), pp. 273–287 (2005)

22. Kuhn, F., Maus, Y., Weidner, S.: Deterministic distributed ruling sets of line graphs
(2018)

23. Linial, N.: Distributive graph algorithms global solutions from local data. In: Pro-
ceedings of IEEE Symposium on Foundations of Computer Science (FOCS), pp.
331–335 (1987)

24. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–
201 (1992)

25. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput. 15(4), 1036–1053 (1986)

208 F. Kuhn et al.

26. Pai, S., Pandurangan, G., Pemmaraju, S.V., Riaz, T., Robinson, P.: Symmetry
breaking in the congest model: time- and message-efficient algorithms for ruling
sets. In: Proceedings of Symposium on Distributed Computing (DISC). LIPIcs,
vol. 91, pp. 38:1–38:16 (2017)

27. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks.
Distrib. Comput. 14(2), 97–100 (2001)

28. Panconesi, A., Srinivasan, A.: The local nature of Δ-coloring and its algorithmic
applications. Combinatorica 15(2), 255–280 (1995)

29. Panconesi, A., Srinivasan, A.: On the complexity of distributed network decompo-
sition. J. Algorithms 20(2), 581–592 (1995)

30. Peleg, D.: Distributed computing: a locality sensitive approach. SIAM (2000)
31. Schneider, J., Elkin, M., Wattenhofer, R.: Symmetry breaking depending on the

chromatic number or the neighborhood growth. Theor. Comput. Sci. 509, 40–50
(2013)

Broadcast with Energy-Exchanging
Mobile Agents Distributed on a Tree

Jurek Czyzowicz1(B), Krzysztof Diks2, Jean Moussi1, and Wojciech Rytter2

1 Département d’informatique, Université du Québec en Outaouais, Gatineau,
Québec, Canada

{jurek,Jean.Moussi}@uqo.ca
2 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,

Warsaw, Poland
{diks,rytter}@mimuw.edu.pl

Abstract. Mobile agents are deployed at selected nodes of an edge-
weighted tree network. Each agent originally possesses an amount of
energy, possibly different for all agents. Initially, in a given source node
of the network is placed a piece of information (data packet) that must
be broadcast to all other nodes. Such transfer of the packet needs to be
achieved with aid of collaborating mobile agents, which may transport
copies of the packet to all nodes.

Agents travel in the network spending energy proportionally to the
distance traversed. They can stop only at network nodes. If two agents
are present at a node at the same time, they can exchange any amount of
currently possessed energy. Our goal is to verify if there exists a sequence
of agents’ movements (a schedule) and energy exchanges between meet-
ing agents, which results in the packet reaching all nodes of the tree
network.

Our algorithm produces an optimal centralized scheduler as we assume
that the central authority knows everything about the network and con-
trols the movement of the agents, which do not need to possess any
knowledge. In this sense it is a semi-distributed algorithm.

The important part of our algorithm uses dynamic programming in
order to compute an optimal agents migration flow of every edge of the
network, i.e. the number of agents traversing every edge in each direc-
tion. The approach is far from being straightforward, as its correctness
is based on multiple complex interactions between the subtrees obtained
by removal of any given edge.

It is known that, if energy exchange is not allowed, the broadcasting
problem for trees (even for lines) is NP-complete.

Keywords: Mobile agents · Data delivery · Broadcast
Energy exchange · Tree network

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 209–225, 2018.
https://doi.org/10.1007/978-3-030-01325-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_20&domain=pdf

210 J. Czyzowicz et al.

1 Introduction

We are given a weighted tree T of n nodes and its distinguished source node r. An
edge weight represents its length, i.e., the distance between its endpoints along
the edge. There is a collection of k mobile agents that are deployed at selected
nodes of the tree. Initially, each agent possesses an amount of energy (possibly
distinct for different agents). If the agent has enough energy it can move to a
neighbouring node - its energy is then reduced by the length of the traversed
edge. Agents can stop only at nodes. When two agents meet at a same node,
one of them can transfer a portion of currently possessed energy to another one.
We assume that the source node r of the tree possesses a piece of data (packet).
This data must be broadcast to all other tree nodes using mobile agents for its
transportation. Initially no agent possesses the knowledge of the packet and the
only node knowing the packet is the source. A node of the tree learns the packet
when visited by an agent possessing its knowledge. An agent learns the packet
by visiting the source node or any other node, which was previously visited by
an agent possessing its knowledge.

Our goal is to solve the following decision problem:

Data broadcasting decision problem: We are given a source node r of an
n-node tree T , and a configuration of k agents, placed at selected nodes, each
having some initial amount of energy (possibly different for all agents). Is it
possible to schedule the moves of the agents and energy transfers so that the
initial packet of information placed at node r reaches all nodes of T?

We will look for schedules of agents’ movements that will not only result in
completing the broadcast, but also attempt to maximize the energy, which is
eventually brought to the root. We call such schedules optimal. Consequently,
our approach permits to solve a more general optimization problem:

Data broadcasting optimization problem: What is the largest amount of
energy, which may be deposited at source r while some sequence of moves of
the agents and energy transfers result in the initial packet reaching all nodes
of T?

1.1 Related Work

The research questions in mobile agents computing concern problems for which a
collection of individual mobile processors collaborate in order to solve efficiently
an assigned task. Most studied problems for mobile agents involve some sort
of environment search or exploration (cf. [2,9,14–16]). In the case of a team of
collaborating mobile agents, the challenge is to balance the workload among the
agents in order to minimize the exploration time. However this task is often hard
(cf. [17]), even in the case of two agents in a tree [5]. The tree exploration by
energy-constrained mobile agents has been considered in [14].

Broadcast with Energy-Exchanging Mobile Agents Distributed on a Tree 211

The task of broadcast consists in communicating the information available
to some designed processor to all other processors of the network. This problem,
in the case of stationary processors, has been previously studied in the case
of the wireless model (cf. [10]) and the message passing model (e.g. [3]). The
problem of data communication performed by collaborating data-transporting
mobile agents has been recently studied in [1,6–8,11]. The mobile agents of [1]
perform efficient convergecast and broadcast for line networks. However, in the
case of trees, both problems turn up to be strongly NP-hard (cf. [3]). The related
problem of data delivery, when the data packet has to be transmitted by energy
constrained agents between two given network nodes, has been studied in [11].
It was proved in [11] that data delivery is NP-hard already in the case of line
networks. A number of positive and negative results concerning the data delivery
problem has been provided in the PhD Thesis of Bärtschi [8] (see also [6,7]). The
question is closely related to the vehicle routing problem, e.g. see [18].

The result of [11] implies that, in the case when agents cannot exchange
energy, the data broadcasting problem is NP-hard for line networks. The present
paper shows that the situation is quite different if the agents are allowed to trans-
fer energy. The communication problems for energy-exchanging mobile agents in
tree networks were studied in [13] (the case of data delivery and convergecast)
and in [12] (the case of broadcast by agents starting from the same node). The
setting where the agents are originally distributed at arbitrary positions turns
up to be much more involved.

1.2 Preliminairies

In the remainder of the paper we assume that the tree T is rooted at its source
r.

In our algorithm we propose a specific treatment for each tree node, related
to its number of children, presence or absence of an agent and weight of the
incident edges. To ease its understanding, we convert the given tree to another
one, in which every node will have only one property that needs to be taken
into account by our algorithm. The structure of the tree and the lengths of the
corresponding weighted paths remain the same for the converted tree, hence the
movements of the agents performing broadcasting produced by our algorithm
may be reconverted back to the original tree.

We observe first that using the standard folklore technique, by adding extra
nodes and edges of zero weight, the original weighted tree may be converted
to a binary tree, in which all weighted path lengths between the corresponding
tree nodes are the same. Although the depth of such converted binary tree is
increased, its complexity remains O(n) and it may be obtained in O(n) time.
Hence w.l.o.g. we can assume that the given initial tree is binary.

212 J. Czyzowicz et al.

Lemma 1. By adding extra nodes and edges of zero weight we can convert a
binary tree T with agents placed at its nodes into a tree with the following four
types of nodes: (see Fig. 1):

(a) if v is a terminal node, then it initially contains no agents,
(b) if v is a parent of two children, then v contains no agents and both children

are accessible by edges of zero weight,
(c) if v originally contains one or more agents, it has exactly one child accessible

by an edge of zero weight, or
(d) node v, which has one child and no agents (this is the only type of node that

may have an edge of non-zero weight incoming from a child).

Moreover, the converted tree is of O(n) size and the paths between the cor-
responding nodes in the converted tree are of the same weight as in the original
one.

Fig. 1. Four cases of node v in tree T : (a) terminal node, (b) node with two children,
(c) node containing Av agents having total energy ev, (d) node with an incoming edge
of non-zero weight.

The proof of the lemma is easy and we omit it. It is possible to make such
conversion in linear time with respect to the size of the original tree. For con-
venience we add to such converted tree one extra node r of type (d), which we
make parent of the root of T , using zero-weight edge (cf. Fig. 2). In the remainder
of the paper we assume that T denote the converted, rooted version of the tree.
Despite the fact that tree T is undirected, as agents move along the edges in
particular direction, we consider also directed version of the edges. In particular,
for two adjacent nodes v, w, we denote by (v, w) an undirected edge between
v, w and by v → w and w → v the two directed edges. For any node v �= r, we
denote by Tv a subtree of T , rooted at v, and containing all descendants of v in
T . If w = parent(v) we call v → w the exit edge of tree Tv. Hence all exit edges
point in the direction of the root.

Broadcast with Energy-Exchanging Mobile Agents Distributed on a Tree 213

2 Testing Feasibility of Broadcast

In this section we describe an algorithm, which computes the largest amount of
energy that may be deposited at the root r by the agents performing a success-
ful packet broadcasting from r to all remaining nodes. The algorithm needs to
manipulate its three resources in the form of information (packet), agents and
energy. Consequently, energy might be transported by agents from some parts
of the tree T to other parts, where it is more needed. Similarly, agents might be
more useful when moving from some parts of T so that they finish their walks in
other parts. The main idea of our algorithm is to find a combination of transfers
of energy and agents across the tree, resulting in the largest unused energy, which
is eventually deposited at the root. This is realized by a dynamic programming
approach.

Consider an isolated subproblem of the broadcast of the packet present at
node v to all nodes of the sub-tree Tv. Such a broadcast might be successfully
performed using only agents originally present in Tv (and their energy). However,
we may also use agents originally from outside Tv and/or extra energy, incoming
via its reversed exit edge. On the other hand, unused energy and/or agents which
do not need to terminate their walks inside Tv may be transferred through its
exit edge to other parts of tree T , where they turn up to be more useful. We
will show that with respect to any given exit edge v → w, an optimal schedule
might consist of three steps (in this order):

1. If the total energy available inside Tv is sufficiently large, an agent will first
traverse edge v → w bringing an excessive energy to node w. Such energy
may be subsequently transferred and deposited at the root r. Depending on
the distribution of energy inside Tv this step may or may not exist.

2. An agent A will traverse edge w → v in order to transport the packet into
Tv.

3. Then
(a) Either a number of other agents traverse together edge w → v. Then all

these agents, together with agent A and the agents initially present inside
Tv will transport the packet to all nodes of Tv.

(b) Or, a number of other agents traverse together edge v → w. Before exiting
from Tv these agents together with agent A and the agents initially present
inside Tv will transport the packet to all nodes of Tv.

(c) Or, no other agent traverses either of the edges w → v and v → w. In this
case agent A together with agents initially present inside will transport
the packet to all nodes of Tv, eventually terminating their walks inside
Tv.

Suppose for a moment that we know some optimal schedule. Suppose also that,
for this optimal schedule and for every subtree Tv, the integer iv denotes the
difference between the number of agents’ walks traversing the exit edge v → w
and the number of agents’ walks traversing the reverse edge w → v. For a given
schedule, we call such iv the agents migration flow of the edge v → w or shortly
its M-flow. For any possible value of M-flow iv, we denote by Bv[iv] the energy

214 J. Czyzowicz et al.

potential of the exit edge v → w. The value Bv[iv] equals the largest energy that
could be deposited at node v, which would permit a successful completion of the
broadcast from node v to all nodes of Tv, assuming iv being the M-flow of the
edge v → w. More exactly, if Bv[iv] ≥ 0, then it represents the maximum energy
that may be left at node v after a successful broadcast from v to all nodes of Tv.
Similarly, if Bv[iv] < 0, then −Bv[iv] represents the minimum energy that must
be added at node v, after which it would be possible to perform a successful
broadcast inside Tv.

It is assumed, that if iv ≥ 0, there will be a total of iv agents available at node
v after the broadcast and ready to be used outside Tv. Similarly, it is assumed
that if iv < 0, the total number of −iv extra agents that were not initially placed
inside Tv will be used to terminate their broadcasting walks inside Tv.

Figure 2 illustrates the values of all tables B computed for an example tree.
At this stage, it may not be completely clear to the reader how the values of
tables B are computed. This is the goal of Algorithm Test-Broadcast-from-
Root given below. However, it is interesting to note, that each table contains
a non-increasing sequence of values. This is due to the fact that energy and
agents are, to some extent, exchangeable resources. Consider a tree with “heavy”
terminal edges. If we send one agent to broadcast a packet inside a given subtree
Tv, this agent needs to traverse all but one heavy terminal edges twice (once in
each direction). If we have more agents available, they may terminate their walks
inside Tv, so that many heavy edges will be traversed once only and energy will
be saved.

As in fact we do not know in advance any optimal schedule, our algorithm
will compute energy potential for any possible M-flow of every edge. It is worth
noting that more than one value of M-flow of a given edge may lead to an optimal
schedule. The most important part of our algorithm is the computation of M-
flows for all edges of T , resulting from some optimal broadcast schedule. This
process is done in bottom-up order (i.e. postorder) of tree T . For each exit edge
of some tree Tv we compute the array Bv[] by calculating the energy potentials
for all possible M-flows through this edge.

The following algorithm computes the upper bound on the amount of energy
that may be brought to the root of T , so that the broadcast may be still per-
formed successfully. We use the procedure Compute B(v) computing the array
Bv[] for each node v, assuming that the arrays for the children (or child) of v
has been previously computed. For nodes of type (a) and (c) the computation
straightforward. For a node v of type (b) the procedure computes for each com-
ponent Bv[i] what is the agent migration flow between v and its children, which
results in the optimal energy potential (i.e. larger gain or the smallest deficit).
Finally, for a node of type (d), the procedure considers the energy expense along
the weighted edge (u, v), taking into account that there may be an agent trans-
ferring an excessive energy along u → v towards the root and there must be one
agent travelling along v → u that brings the packet into tree Tu.

Broadcast with Energy-Exchanging Mobile Agents Distributed on a Tree 215

ALGORITHM Test-Broadcast-from-Root(T);
{ input: tree T rooted at r; if node v contains agents, then Av is

the number of agents present at v and ev is their total energy }
1. for all v ∈ T and all −k ≤ i ≤ k do

2. Initialise Bv[i] := −∞;

3. for all v ∈ T taken in an ascending order with respect to root do

4. Compute B(v);

5. if Br[0] ≥ 0

6. then Report r as a possible broadcast node;

7. Report Br[0] as the maximum energy which may be left
at r during a succesful broadcast from r;

8. else Report broadcast from r is infeasible;

PROCEDURE Compute B(v);

1. for i := k to −k do

2. case type of node v of

3. (a) if i ≤ 0 then Bv[i] := 0;

4. (b) Bv[i] := max{Bu1 [j] + Bu2 [h] : j + h = i};

5. (c) if (i − Av ≥ −k)

6. then Bv[i] := Bu[i − Av] + ev

7. else Bv[i] := Bu[−k] + ev;

8. (d) if i ≥ 0 ∨ Bu[i] > 2 · weight(u, v)

9. then Bv[i] := Bu[i] − (|i| + 2) · weight(u, v)

10. else Bv[i] := i · weight(u, v);

11. if (i < k) ∧ (Bv[i] < Bv[i + 1]) then Bv[i] := Bv[i + 1];

Figure 2(b) contains the tables B computed for all nodes of converted tree
from Fig. 2(a). The following lemma proves that for each node v the sequence of
elements of the table Bv[] is nondecreasing.

Lemma 2. For any node v and any index i∗, s.t. −k < i∗ ≤ k, we have
Bv[i∗ − 1] ≥ Bv[i∗].

Proof. The proof goes by induction on the height of node v. The claim is clearly
true for each node of depth 0 (node of type (a)), for which Bv[i] = 0 if i ≤ 0 and
Bv[i] = −∞ if i > 0 (cf. line 2 of algorithm Test-Broadcast-from-Root(T)
and line 3 of procedure Compute B(v)).

Suppose that the claim of the lemma is true for each node of height at most
h and consider any node v of height h + 1. Three cases are possible:

216 J. Czyzowicz et al.

Fig. 2. Part (a) contains an example tree T . At nodes b, c, h, i there are present agents
B,C,H, I having the initial amounts of energy 14, 35, 4, 7, respectively. Part (b) illus-
trates the converted tree (for clarity we assume that all its unweighted edges have
weight 0). Each tree node of the converted tree has a B table associated to it. Only
the significant entries of each table B are illustrated: for larger indices of each table all
entries are equal to −∞; for smaller indices of each table the entries are the same as
the first one illustrated. As an example note that Bb[1] = −2 corresponds to agent B
trajectory bdbeh of length 16 and agent I trajectory ieieb of length 7. Agent H does
not move and its energy is lost in this case. Bb[1] = −2 means that 2 extra units of
energy are needed initially at b so that the broadcast resulting in 1 agent eventually
arriving at b.

Case 1 (node v is of type (b), cf. Fig. 1). Take any index i∗ and suppose that
j∗ and k∗ are such that i∗ = j∗ + k∗ and

Bv[i∗] = max{Bu1 [j] + Bu2 [k] : j + k = i∗} = Bu1 [j
∗] + Bu2 [k

∗]

according to line 4 of procedure Compute B(v). As nodes u1 and u2, which are
the children of v, are both of height at most h, by the inductive hypothesis we
have

Bv[i∗] = max{Bu1 [j] + Bu2 [k] : j + k = i∗} = Bu1 [j
∗] + Bu2 [k

∗]
≤ Bu1 [j

∗ − 1] + Bu2 [k
∗] ≤ max{Bu1 [j] + Bu2 [k] : j + k = i∗ − 1} = Bv[i∗ − 1]

Case 2 (node v is of type (c)). Suppose first that i∗ −Av −1 ≥ −k. Then, using
the inductive hypothesis, according to line 6 of procedure Compute B(v) we
have

Bv[i∗] = Bu[i∗ − Av] + ev ≤ Bu[i∗ − Av − 1] + ev = Bv[i∗ − 1]

Consider the remaining case, when i∗ −Av −1 < −k. Then we have Bv[Av −k] =
Bu[−k] + ev and for which i < Av − k, the value of Bv[i] is computed in line 7 of
procedure Compute B(v). In this case we have

Bv[Av − k] = Bv[Av − k − 1] = · · · = [−k]

Broadcast with Energy-Exchanging Mobile Agents Distributed on a Tree 217

hence the claim of the lemma in this case is also true.

Case 3 (node v is of type (d)). The claim of the lemma follows directly from line
11 of procedure Compute B(v). Indeed, in this case either we have Bv[i∗ − 1] ≥
Bv[i∗] or the condition of the if-clause from line 11 is true and after its execution
we obtain Bv[i∗ − 1] = Bv[i∗].

This completes the proof. ��
Before proving that no broadcasting algorithm can bring to the root more

energy than Algorithm Test-Broadcast-from-Root(T) in line 7, we give
some intuition.

For any node v of type (b), the computation of each component Bv[i] results
in a choice of respective indices j, h for nodes u1, u2, which maximize the energy
that may be transferred towards the root. This implies the optimal choice of
M-flows through the exit edges of Tu1 and Tu2 . Considering exit edges in the
top-down order, we can compute then the index iv of each table Bv[] obtaining
the M-flows of all edges of tree T , which result in the deposit of Br[0] energy
at the root. Each such value iv is the difference between the number of agents
traversing the exit edge v → w of Tv and the reverse edge w → v. We call iv an
optimal flow index of node v.

The broadcasting schedule induces some directed multigraph TM , built over
the set of nodes of T : each directed edge x → y ∈ TM corresponds to a traversal
by some agent of the edge (x, y) ∈ T . We can partition the edges of TM into three
classes: packet transfer edges Tp, energy transfer edges Te and agent migration
edges Ta. The class Tp is composed of one copy of each edge x → y, such that x
is parent of y in T . As the packet kept in r needs to be broadcast to all nodes
of T , each such multi-edge is clearly needed in TM .

The class Te contains multi-edges going up the tree T . Their goal is to con-
jointly move portions of energy in the direction of the root. Clearly only some
edges of T induce multi-edges belonging to Te, as energy is moved towards the
root only when some excess of it is available. Although the subgraph Te may
turn out to be disconnected we create in Te a multi-edge v → y whenever
B[iv] > 2 · weight(v, y) or when iv ≥ 0 and B[iv] > weight(v, y).

All remaining edges of TM belong to class Ta and their number and direction
observe the M-flow of the corresponding edge of T . In particular, consider any
exit edge v → y of Tv. Let k = 1 if there exists a multi-edge v → y ∈ Te,
otherwise k = 0. Then if the optimal flow index iv ≥ 0, there are iv − k copies
of v → y multiedge in Te. Otherwise, if iv < 0, we have k − 1 − iv copies of the
reverse, y → v multiedge in Te.

In the sequel, we denote by f(x → y) the element of the M-flow being the
number of agents that traverse the edge x → y. Consequently, if x is a child of
y in T , we have

ix = f(x → y) − f(y → x)

The following lemma shows that the value of Br[0], as computed by the algo-
rithm Test-Broadcast-from-Root(T), is the upper bound on the amount of

218 J. Czyzowicz et al.

energy, which may be left at the root of T , when executing a successful broad-
casting algorithm.

Lemma 3. There exists no schedule of agents’ movements which performs suc-
cessful broadcasting and results in depositing at the root r of tree T an amount
of energy larger than Br[0].

Proof. Suppose that the claim of the lemma is not true and consider a broad-
casting schedule S∗ depositing at r an amount of energy E∗ > Br[0]. Let M∗

denote the agent migration flow of such schedule and Mv denote (for any node
v) the amount of energy Ev, deposited by S∗ at node v. We prove by induction
on the height of node v that Ev ≤ Bv[iv], where iv is the agents’ migration flow
through the exit edge of Tv, as computed by the algorithm Test-Broadcast-
from-Root(T). The claim is clearly true for each node v of height 0 (leaf).
Suppose that the claim is true for any node of height h and consider a node v
of height h + 1. Let iv be the flow of the exit edge of Tv in M∗. Three cases are
possible:

Case 1 (node v is of type (b)), see Fig. 1. Let iu1 and iu2 denote the flows
of M∗ through the edges (u1, v) and (u2, v), respectively. As weight(u1, v) =
weight(u2, v) = 0, we can assume that in the optimal schedule S∗ no agent
finishes its walk at node v. Moreover, as no agent was initially present at v we
have iv = iu1 + iu2 . By the inductive hypothesis Eu1 ≤ Bu1 [iu1] and Eu2 ≤
Bu2 [iu2]. Hence,

Ev ≤ Eu1 + Eu2 ≤ Bu1 [iu1] + Bu2 [iu2] ≤ max{Bu1 [j] + Bu2 [k] : j + k = iv} = Bv[iv]

For the remaining Cases 2 and 3 we denote by iu the flow of M∗ along the exit
edge of Tu and we assume, by the inductive hypothesis, that Eu ≤ Bu[iu].

Case 2 (node v is of type (c)). As at node v there are Av new agents with total
energy ev, we have iv ≤ iu + Av, otherwise flow M∗ is not feasible. Therefore,
by line 6 of the procedure we have

Ev ≤ Eu + ev ≤ Bu[iu − Av] + ev = Bv[iv]

Case 3 (node v is of type (d)). Denote w = weight(u, v). In order to show the
bound on Ev, we need to evaluate the cost of energy Ẽ spend by the agents
traversing the edge e = (u, v) in both directions. Clearly

Ẽ ≥ w · (f(u → v) + f(v → u))

There is at least one agent which has to traverse edge e in the direction from
v to u, namely the agent which brings the broadcast packet to u. Therefore,
f(v → u) ≥ 1. We will consider 3 sub-cases of Case 3.

Sub-case 3a (iu ≥ 0). In this situation, iu + 1 agents have to traverse the edge
u → v, i.e. f(u → v) = iu + 1 and

Ẽ ≥ w · (f(u → v) + f(v → u)) = (|iu| + 2) · w

Broadcast with Energy-Exchanging Mobile Agents Distributed on a Tree 219

However, this case is treated at line 9 of procedure Compute B(v), according
to which

Ev = Eu − Ẽ ≤ Bu[iv] − (iu + 2) · w = Bv[iv] (1)

Sub-case 3b ((iu < 0) ∧ (Bu[iu] ≥ 2w)), i.e. there exists an amount of energy
that is not needed to perform a local broadcasting inside Tu. If f(u → v) = 0,
then no agent can transport this energy so it may be subsequently potentially
transferred to the root r of T . In such a case this energy is lost. We can then
assume that one agent transports the amount of Bu[iu]−2w units of energy from
u to its parent v and later there is an agent that returns to u with the packet, so
that the broadcasting inside Tu may be successfully completed. Note that such
energy may later reach the root or lost (if the cost of its subsequent transfer is to
large), but its transfer from u to v would never imply that the energy deposited
at the root is diminished.

Consequently, we can assume that f(u → v) = 1, hence f(v → u) = −iu − 1
and the Eq. (1) holds in this sub-case as well.

Sub-case 3c ((iu < 0)∧(Bu[iu] < 2w)). In this case, even if Bu[iu] > 0 the extra
energy available at u cannot be transferred towards the root without a loss of
energy deposited at the root. Indeed, as iu < 0, an attempt to transfer energy
from u to v results in f(u → v) ≥ 1, which in turn implies Ẽ ≥ |iu + 2|w. In
such a case we would obtain

Bv[iv] ≤ Bu[iu] − Ẽ ≤ Bu[iu] − |iu + 2|w < −|iu| · w = iu · w

where the last amount equals the energy potential computed for this case in line
10 of procedure Compute B(v). We conclude by induction that Er ≤ Br[0],
which completes the proof. ��

3 Constructing Broadcast Schedule

Lemma 3 shows the upper bound on the amount of energy which may be
deposited at the root of the tree from which a broadcast may be performed.
We present now an algorithm generating a broadcasting schedule which suc-
ceeds in depositing such maximal amount of energy. Obviously, if this amount
of energy is negative, there exists no broadcasting schedule for the given tree.
The rough idea of the algorithm is the following. Firstly, we compute an optimal
M-flow of T . Then, using this M-flow, in each sub-tree, the excessive energy is
transferred up the tree towards the root, deposited there and never used. Finally,
a recursive procedure transferring the broadcast packet from the root r is called.
This procedure performs the agents’ transfer according to the optimal M-flow
computed before. Interestingly, the algorithm performs four traversals of tree
T , which are alternately bottom-up (1st and 3rd) and top-down (2nd and 4th).
Each of them may be given as a recursive procedure, but, for clarity, we chose
only the last one to be recursive. Before giving our algorithm we describe below
its idea in more details. Because of the lack of space the proof of correctness of
the algorithm is deferred to the Appendix.

220 J. Czyzowicz et al.

ALGORITHM Broadcast-in-Tree(T);

STEP 1: Test-Broadcast-from-Root(T);

STEP 2: r.Mindex := 0;

for each edge u → v of T taken in top-down order do

u.Mindex := the value used to obtain v.Mindex when
computing Bv in Test-Broadcast-from-Root(T)

STEP 3: for each edge u → v of T taken in an bottom-up order do

if Bu[u.Mindex] > 0 then Move-Extra-Energy-Up(u)

STEP 4: Remove-Energy(r,Br[0]);

Inform(r);

In the first step of the algorithm we call procedure Test-Broadcast-from-
Root(T) computing for each node v its table Bv.

The second step performs a top-down traversal of tree T and, using the tables
B compute an optimal distribution of agent flows between any given node and
its children. Note that, when a node v is of type (b) for any already computed
optimal flow iv through the exit edge of tree Tv, we obtain feasible optimal
flows iu1 and iu2 . This step computes the entire M-flow of tree T , which results
in achieving the amount of Br[0] energy deposited at the root. The rest of the
algorithm refers to this M-flow.

The agents’ moves forming an optimal broadcasting schedule are generated in
the third and the fourth step of the algorithm. The third step generates the moves
corresponding to the energy transfer edges Te of the multigraph TM . This step
makes a bottom-up traversal of T and identifies the subtrees containing excessive
energy, i.e. the energy which is not needed to perform the local broadcast inside
the subtree. Such amounts of energy are moved up the tree by mobile agents
and the amount of Br[0] energy is eventually accumulated at the root. Observe
that a bottom-up traversal ensures that, whenever two or more different agents
arrive to the same node, they wait until the last such agent appear at the node.
Then a single agent collects the energy of all other agents and alone continues
its upward walk. Note that, it may happen that some energy of the system may
be lost (cf. energy of agent H from Fig. 2) because transferring it up the tree
results in a bigger cost than the amount of energy to transport. Moreover, the
set of edges Te may be disconnected, hence some energy that is moved up might
not reach the root. The edges used to transfer energy are marked, so that in
the rest of the algorithm the number of agents traversing them according to the
computed M-flow is diminished by 1.

The final, fourth step starts when one of the agents walking up the tree
reaches the root and deposits there the amount of Br[0] energy. This agent
starts the procedure of distributing it down the tree. The diffusion is performed
by the recursive procedure Inform. When a recursive call of Inform is made
to a node with two children, a child with a larger flow is visited first. Indeed, it
might be necessary to bring superfluous agents exiting from this child in order
to use them in its sibling sub-tree.

Broadcast with Energy-Exchanging Mobile Agents Distributed on a Tree 221

Procedure Inform generates the sequence of agents’ moves resulting in mov-
ing the packet from the root down to all other nodes. It also controls the migra-
tion of the agents according to the optimal M-flow computed earlier.

PROCEDURE Inform(v);

1. case type of node v of

2. (a) Exit ;

3. (b) if u1.Mindex ≥ u2.Mindex then f1 := u1, f2 := u2

else f1 := u2, f2 := u1;

4. Move-Down(u1); Inform(u1); Move-Up(u1);

5. Move-Down(u2); Inform(u2); Move-Up(u2);

6. (c), (d) Move-Down(u); Inform(u); Move-Up(u);

Procedure Inform calls two procedures Move-Down(u) and Move-
Up(u) to execute the travel according to the flow of the exit edge u → v, for
v = parent(u). These procedures call the function Move, whose purpose is to
generate the schedule of the agents’ moves.

Procedure Move-Extra-Energy-Up(u) tests whether the excessive energy
available in Tu is sufficiently large so that the transferring it along edge u → v
is not too costly.

PROCEDURE Move-Extra-Energy-Up(u);

1. v := parent(u); w := weight(u, v); iu := u.Mindex;

2. if (iu < 0 ∧ Bu[iu] > 2w) ∨ Bu[iu] > w then

3. Move-Energy(u); Mark-Edge(u → v);

Procedures Move-Down(u) and Move-Up(u) generate the moves of the
groups of agents, respectively, up and down a given edge u → parent(u). We
assume that, when the sequence of such moves is made from the function Move-
Up(u), or from the function Move-Down(u) for which u is an only child, they
carry the entire energy available. Otherwise, if u has a sibling (i.e. it’s parent is a
node of type (b)), the energy is split according to the calls to Move-Down(u1)
and Move-Down(u2). Procedure Move-Energy(u) creates a move of a single
agent up the tree from node u, carrying entire energy (brought to u by all agents
present there).

PROCEDURE Move-Down(u);

1. v := parent(u); iu := u.Mindex;

2. Move(v → u); {move of the agent transfering the packet}
3. if edge u → v marked then e := −iu else e := −(iu + 1);

4. for i := 1 to e do Move(v→u); {moves of other agents according to M-flow}

222 J. Czyzowicz et al.

PROCEDURE Move-Up(u);

1. v := parent(u); iu := u.Mindex;

2. if edge u → v marked then e := iu − 1 else e := iu; {e agents to exit Tu;

if edge marked, an energy-transferring agent moved earlier}
3. for i := 1 to e do Move(u → v); {agents exiting according to M-flow}

Lemma 4. The excessive energy of Br[0] is accumulated at the root r at the
completion of STEP 2 of algorithm Broadcast-in-Tree.

Proof. We prove that, after each iteration of the for-loop from STEP 2, the
maximal energy Bx[x.Mindex], available inside Tx but not used for the broadcast
from x into Tx, is present at node x. Moreover, if Bx[x.Mindex] > 0 at least
one agent is present at x. The prove goes by induction on the height of Tx. The
statement is clearly true for x being a leaf of T . Suppose that the statement
of the lemma is true for trees of height h. Take edge x → y leading to node
y of height h + 1. If Bx[x.Mindex] ≤ w = weight(x, y) then no energy may
be transferred to node y, as the cost of this transfer equals w. Otherwise, if
i = x.Mindex < 0, two cases are possible: either i agents enter Tx and no agent
exits it, so no energy transfer along edge x → y is made, or, one agent exits Tx

transporting excessive energy along edge x → y and i + 1 agents enter Tx. The
total cost of all traversals of edge x → y is then iw in the former case and (i+2)w
in the latter one. The transfer of such energy is then profitable only in the case
when it exceeds 2w, otherwise it is lost and never used in the schedule. This
is exactly what is done in lines 2 and 3 of procedure Move-Extra-Energy-
Up. Observe that, as Bx[x.Mindex] > 0, by inductive assumption, the energy
required for the transfer is already available at x as well as an agent necessary
to perform the transfer is present at x. ��
We omit the proof of the following fact.

Lemma 5. All agent actions generated by the calls of procedure Inform(y) are
feasible, i.e. when an agent move is generated along an edge x → y (or along
an edge y → x) then, there is an agent available at node x (or y) and there
is at least weight(x, y) energy available at x (or y), so that such move may be
successfully completed.

Theorem 1. If Br[0] ≥ 0, the algorithm Broadcast-in-Tree produces a cor-
rect broadcasting schedule, which deposits Br[0] energy at the root of T .

Proof. By Lemma 4 the excessive energy Br[0] is indeed accumulated at the root
r at the end of the for-loop from STEP 2. This energy is removed by the function
Remove-Energy.

The remaining part of the algorithm is done by the function Inform. By
Lemma 5, all agent moves generated from the main call of Inform(r) are feasi-
ble. Observe, that the sequence of produced agent moves contains a subsequence

Broadcast with Energy-Exchanging Mobile Agents Distributed on a Tree 223

which results in transferring the information from the root to all other nodes.
Indeed, procedure Inform is called for the root r and then recursively for all
other nodes of the tree in the top-down order. Each call of Inform to any node
v contains calls to the children of v, at the same time generating agent moves
along edges leading to these children. This results in the transfer of the broadcast
information to all nodes. This completes the proof. ��
Theorem 2. The optimal broadcasting on a tree of n nodes having k agents can
be computed in O(nk2) time. The size of the optimal schedule is O(nk).

Proof. Observe that for any given tree of n nodes its converted version (cf.
Fig. 2) is of size Θ(n) and it may be obtained in O(n) time. The time com-
plexity of algorithm Test-Broadcast-from-Root is dominated by the call of
Broadcast-in-Tree(T), which calls function Compute B O(n) times. The
function Compute B consists of a for-loop executed O(k) times. The most
expensive case is when an iteration of the loop executes the max operation
at line 4 (the case of node of type (b)) which takes O(k) time, resulting in the
overall time of O(nk2). The complexity of for-loops from lines 2 and 4 of the algo-
rithm Test-Broadcast-from-Root equal O(n) as each iteration is carried in
constant time. Finally, the recursive call to function Inform in STEP 4 takes
O(nk) time. Indeed, there are O(n) total number of calls of function Inform.
Every call to Inform executes functions Move-Up and Move-Down, each one
containing a loop executed the number of times equal to the flow of the corre-
sponding parameter. As each flow is bound by k, we have O(nk) complexity of
the function Inform and the same complexity for the number of agent moves
generated by our algorithm. ��

4 Final Remarks

Our approach may be extended as follows:

Theorem 3. In O(nk2) time we can find all nodes from which we can perform
a successful broadcasting in a given tree T of n nodes with k agents.

Proof. (sketch) Consider a converted version of T . The algorithm Broadcast-
in-Tree(T) computes the optimal energy, which can be deposited by the suc-
cessful broadcast at its root r. The algorithm considers the set of directed edges
u → v, for all nodes u, v such that the path from u to r in T contains v. The
algorithm computes tables Bu performing a bottom-up traversal of this set of
edges. Observe that we can consider the set of all directed edges of the tree (in
both directions), which is only twice larger. It is easy to see, that this set may
be ordered so that for any edge u → v, each edge y → u, for u �= y is earlier in
this order. We can run slightly modified our algorithm Broadcast-in-Tree for
such set of edges. Consequently, for any node x of the tree, we will have avail-
able the tables Bu for u being children of x (x has at most two children for
the converted version of T). Having them, in constant time we can compute the
largest energy which may be delivered to x, from which the broadcast needs to be
performed. ��

224 J. Czyzowicz et al.

We pose as an open question an improvement of the complexity of our algorithm.
Other open questions concern the design of polynomial-time algorithms for the
problem of broadcasting from a set of many source nodes and for the gossiping
problem for trees (in energy exchange setting).

Acknowledgment. The work of K. Diks and W. Rytter was supported by National
Science Centre of Poland grant NCN2014/13/B/ST6/00770. The work of J. Czyzowicz
was supported by NSERC.

References

1. Anaya, J., Chalopin, J., Czyzowicz, J., Labourel, A., Pelc, A., Vaxès, Y.: Collecting
information by power-aware mobile agents. In: Aguilera, M.K. (ed.) DISC 2012.
LNCS, vol. 7611, pp. 46–60. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33651-5 4

2. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput.
29(4), 1164–1188 (2000)

3. Awerbuch, B., Goldreich, O., Peleg, D., Vainish, R.: A trade-off between informa-
tion and communication in broadcast protocols. J. ACM 37(2), 238–256 (1990)

4. Annamalai, V., Gupta, S.K.S., Schwiebert, L.: On tree-based convergecasting in
wireless sensor networks. IEEE Wirel. Commun. Netw. 3, 1942–1947 (2003)

5. Averbakh, I., Berman, O.: A heuristic with worst-case analysis for minimax routing
of two traveling salesmen on a tree. Discr. Appl. Math. 68, 17–32 (1996)

6. Bärtschi, A., Chalopin, J., Das, S., Disser, Y., Geissmann, B., Graf, D., Labourel,
A., Mihalák, M.: Collaborative delivery with energy-constrained mobile robots. In:
Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 258–274. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48314-6 17

7. Bärtschi, A., Chalopin, J., Das, S., Disser, Y., Graf, D., Hackfeld, J., Penna, P.:
Energy-efficient delivery by heterogeneous mobile agents. In: STACS , pp. 10:1–
10:14 (2017)

8. Bärtschi, A.: Efficient Delivery with Mobile Agents (Ph.D. thesis), ETH Zurich
(2017)

9. Baeza-Yates, R.A., Schott, R.: Parallel searching in the plane. Comput. Geom. 5,
143–154 (1995)

10. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: an exponential gap between determinism and random-
ization. J. Comput. Syst. Sci. 45(1), 104–126 (1992)

11. Chalopin, J., Jacob, R., Mihalák, M., Widmayer, P.: Data delivery by energy-
constrained mobile agents on a line. In: Esparza, J., Fraigniaud, P., Husfeldt, T.,
Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 423–434. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-43951-7 36

12. Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Energy-optimal broadcast in a
tree with mobile agents. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A.,
Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 98–113. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-72751-6 8

13. Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Communication problems for
mobile agents exchanging energy. In: Suomela, J. (ed.) SIROCCO 2016. LNCS,
vol. 9988, pp. 275–288. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48314-6 18

https://doi.org/10.1007/978-3-642-33651-5_4
https://doi.org/10.1007/978-3-642-33651-5_4
https://doi.org/10.1007/978-3-319-48314-6_17
https://doi.org/10.1007/978-3-662-43951-7_36
https://doi.org/10.1007/978-3-319-72751-6_8
https://doi.org/10.1007/978-3-319-48314-6_18
https://doi.org/10.1007/978-3-319-48314-6_18

Broadcast with Energy-Exchanging Mobile Agents Distributed on a Tree 225

14. Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration by energy-
constrained mobile robots. In: Scheideler, C. (ed.) Structural Information and
Communication Complexity. LNCS, vol. 9439, pp. 357–369. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-25258-2 25

15. Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree explo-
ration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS,
vol. 3894, pp. 341–351. Springer, Heidelberg (2006). https://doi.org/10.1007/
11682127 24

16. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration.
In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 141–151. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24698-5 18

17. Frederickson, G., Hecht, M., Kim, C.: Approximation algorithms for some routing
problems. SIAM J. Comput. 7, 178–193 (1978)

18. Toth, P., Vigo, D.: Vehicle Routing. Problems, Methods and Applications. MOS-
SIAM series on Optimization, 2nd edn. (2014)

https://doi.org/10.1007/978-3-319-25258-2_25
https://doi.org/10.1007/11682127_24
https://doi.org/10.1007/11682127_24
https://doi.org/10.1007/978-3-540-24698-5_18

A Deterministic Distributed
2-Approximation for Weighted Vertex
Cover in O(logN logΔ/ log2 logΔ)

Rounds

Ran Ben-Basat1(B), Guy Even2, Ken-ichi Kawarabayashi3,
and Gregory Schwartzman3

1 Department of Computer Science, Technion, Haifa, Israel
sran@cs.technion.ac.il

2 School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
guy@eng.tau.ac.il
3 NII, Tokyo, Japan

{k keniti,greg}@nii.ac.jp

Abstract. We present a deterministic distributed 2-approximation
algorithm for the Minimum Weight Vertex Cover problem in the CON-
GEST model whose round complexity is O(log n log Δ/ log2 log Δ). This
improves over the currently best known deterministic 2-approximation
implied by [KVY94]. Our solution generalizes the (2 + ε)-approximation
algorithm of [BCS17], improving the dependency on ε−1 from lin-
ear to logarithmic. In addition, for every ε = (log Δ)−c, where c ≥
1 is a constant, our algorithm computes a (2 + ε)-approximation in
O(log Δ/ log log Δ) rounds (which is asymptotically optimal).

1 Introduction

The Minimum Weight Vertex Cover Problem (MWVC) is defined as follows.
The input is a graph G = (V,E) with nonnegative vertex weights w(v). A subset
U ⊆ V is a vertex cover if, for every edge e = {u, v}, the intersection U ∩{u, v} is
not empty. The weight of a subset of vertices U is

∑
v∈U w(v). The goal is to find

a minimum weight vertex cover. This problem is one of the classical NP-hard
problems [Kar72].

In this paper we deal with distributed deterministic approximation algo-
rithms for MWVC. We focus on the CONGEST model of distributed computa-
tion in which the communication network is the graph G itself.1 Computation

R. Ben-Basat—This work was partially sponsored by the Technion-HPI research
school.
K. Kawarabayashi and G. Schwartzman—This work was supported by JST ERATO
Grant Number JPMJER1201, Japan.

1 In the CONGEST model vertices have distinct IDs (that are polynomial in |V |),
however, as in [BCS17], our algorithm works also in the case of anonymous vertices.

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 226–236, 2018.
https://doi.org/10.1007/978-3-030-01325-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_21&domain=pdf

A Deterministic Distributed 2-Approximation for Weighted Vertex Cover 227

proceeds in synchronous rounds. Each round consists of three parts: each ver-
tex receives messages from its neighbors, performs a local computation, and
sends messages to its neighbors. The sent messages arrive at their destination
in the beginning of the next round. In the CONGEST model, message lengths
are bounded by O(log |V |). In order to send vertex weights, we assume that
all the vertex weights are positive integers bounded by polynomial in n � |V |.
See [BCS17,ÅS10] for detailed overviews of distributed algorithms for MWVC.

Let Δ denote the maximum vertex degree in G. Two of the most rele-
vant results in this setting to our paper are the lower bound of [KMW16]
and the upper bound of [BCS17]. The lower bound of Kuhn et al. [KMW16]
states that every constant approximation algorithm for MWVC requires at least
Ω(log Δ/ log log Δ) rounds of communication. The upper bound of Bar-Yehuda
et al. [BCS17] presents a deterministic distributed (2 + ε)-approximation algo-
rithm (BCS Algorithm) that requires O(log Δ/(ε·log log Δ)) rounds for ε ∈ (0, 1).
For ε = Ω(log log Δ/ log Δ), the running time is O(log Δ/ log log Δ), with no
dependence on ε, and is optimal according to [KMW16].

In this paper, we present a generalization of the BCS Algorithm with
improved guarantees on the running time for certain ranges of ε. We focus
on decreasing the dependency of the number of rounds on ε. Since the round
complexity of the BCS Algorithm is optimal for constant values of ε (and even
ε = Ω(log log Δ/ log Δ)), we consider values of ε that depend on Δ.

Our main result2 is a deterministic distributed (2 + ε)-approximation algo-
rithm in which the number of rounds is bounded by

O

(
log Δ

log log Δ
+

log ε−1 log Δ

log2 log Δ

)

.

This result assumes that all the vertices know Δ or an estimate that is a poly-
nomial in Δ. This result leads to the following consequences:

1. If ε−1 = (log Δ)c, for a constant c > 0, then the number of rounds asymp-
totically matches the lower bound, and is thus optimal. In [BCS17] the same
asymptotic running time is guaranteed only for ε−1 = O(log Δ/ log log Δ).

2. If ε−1 = (log Δ)ω(1), then the dependency of the round complexity on 1/ε
is reduced from linear to logarithmic. In addition, the round complexity is
decreased by an additional factor of log log Δ.

3. Every (2 + ε)-approximation is a 2-approximation if ε < 1/(nW), where
W = maxv w(v). Since we assume that W = nO(1), where n = |V |,
we obtain a 2-approximate deterministic distributed algorithm for MWVC
with round complexity O(log n · log Δ/ log2 log Δ). This improves over the
2-approximation in O(log2 n) rounds implied by [KVY94]3 (which has the
lowest round complexity for deterministic 2-approximation to the best of our
knowledge).

2 All logarithms are base 2 unless the basis is written explicitly.
3 The actual result is stated as a (2 + ε)-approximation in O(log ε−1 log n) rounds,

from which we infer a 2-approximation by setting ε = 1/nW .

228 R. Ben-Basat et al.

Our round complexity increases for the case that the maximum degree Δ is
unknown to the vertices of the graphs. We propose two alternatives for the case
that Δ is unknown. The first alternative holds for every ε ∈ (0, 1), and achieves
a (2 + ε)-approximate solution with a round complexity of O

(
log ε−1 log Δ

log log Δ

)
. The

second alternative holds for ε > (log Δ)q, where q > 0 is a constant. In the second
alternative, a (2+ε)-approximation is achieved with an optimal asymptotic round
complexity of O(log Δ/ log log Δ).

Our algorithm builds on the BCS Algorithm [BCS17]. This algorithm adapts
the local ratio framework [BE85] to the distributed setting, with several improve-
ments that provide the desired speedup. The BCS Algorithm can be also inter-
preted as the following “primal-dual” algorithm. Essentially the algorithm aims
to increase the edge variables (i.e., dual) such that the following holds:

1. The sum of edge variables incident to every node does not exceed its weight
(feasibility of edge variables).

2. The set of vertices whose edge variable sum is at least (1 − ε)-fraction of the
vertex weight constitute a vertex cover.

The above conditions yield a (2 + ε)-approximation for MWVC.
The challenge in the above framework is to maintain feasibility of the edge

variables while converging as fast as possible to a vertex cover. To increase the
edge variables, vertices send offers to their neighbors. The neighbors respond
to these offers in a way that guarantees feasibility of the edge variables. This
requires a coordination mechanism in the distributed setting, as a vertex both
sends and receives offers simultaneously. To this end, the weight of every vertex
is divided into two parts: vault and bank. Offers are allocated from the vault,
while responses are allocated from the bank, respectively. Hence the agreed
upon increases to the edge variables do not violate the feasibility of the edge
variables. The BCS algorithm sets the vault to be an ε-fraction of the vertex
weight (and the bank to be the remainder). This leads to a running time of
O(ε−1 log Δ/ log log Δ) and O(log Δ/ log log Δ) if ε = Ω(log log Δ/ log Δ).

Our algorithm introduces three modifications to the BCS Algorithm, which
allows us to improve the round complexity. First, we attach levels to the vertices
that measure by how much the remaining weight of a vertex has decreased. Sec-
ond, the size of the vault decreases as the level of the vertex increases. Third,
offers are not sent to all the neighbors. Instead, offers are sent only to the neigh-
bors whose level is the smallest level among the remaining neighbors.

Related Work. An excellent overview of the related work is presented in
[BCS17,ÅS10] which we summarize hereinafter. Minimum vertex cover is one
of Karp’s 21 NP-hard problems [Kar72]. A simple 2-approximation for the
unweighted version can be achieved by a reduction from maximal matching (see,
e.g., [CLRS09,GJ79]). For the weighted case, [BE81] achieves the first linear-
time 2-approximation algorithm using the primal-dual schema, while [BE85]
achieves the same result using the local-ratio technique. Prior to that, the first
polynomial-time 2-approximation algorithm was due to [NJ75] and observed

A Deterministic Distributed 2-Approximation for Weighted Vertex Cover 229

by [Hoc82]. For any constant ε > 0, if the Unique Games conjecture holds, no
polynomial-time algorithm can compute a (2−ε) approximation of the minimum
vertex cover [KR08].

Let us now turn our attention to the distributed setting. Let us start
from the unweighted case. A 2-approximation can be found in O(log4 n)
rounds [HKP01] and in O(Δ+log∗ n) rounds [PR01]. Completely local algorithms
with no dependence on n are presented in [ÅFP+09] which gives an O(Δ2)-
round 2-approximation algorithm, and in [PS09] which gives an O(Δ)-round 3-
approximation algorithm. Using the maximal matching algorithm of [BEPS12]
gives a 2-approximation algorithm for vertex cover in O(log Δ + (log log n)4)
rounds. This can be made into a (2+1/polyΔ)-approximation algorithm within
O(log Δ) rounds [Pet16].

For the weighted case, [GKP08] presents a randomized 2-approximation algo-
rithm in O(log n + log W) rounds (where W is a bound on the vertex weights).
In [KY11] the first (randomized) 2-approximation algorithm running in O(log n)
rounds is presented (note that the running time is logarithmic in n and indepen-
dent of the weights). A deterministic 2-approximation algorithm in O(Δ+log∗ n)
rounds is given within [PR01]. In [KVY94], a deterministic (2+ε)-approximation
algorithm is given within O(log ε−1 log n) rounds. As for deterministic algo-
rithms independent of n, [KMW06] presents a (2 + ε)-approximation algorithm
in O(ε−4 log Δ) rounds and [ÅFP+09] presents a 2-approximation algorithm in
O(1) rounds for Δ ≤ 3, while [ÅS10] presents a 2-approximation algorithm in
O(Δ + log∗ W) rounds (where W � maxv w(v)). Finally in [BCS17] a determin-
istic (2 + ε)-approximation which runs in O(ε log Δ/ log log Δ) rounds is given.
In [Sol18] a (2 + ε)-approximation in O(ε−1 log(α/ε)/ log log(α/ε)) rounds for
graphs of arboricity bounded by α.

As the result of [Sol18] uses the algorithm of [BCS17] as a black box, plugging
Δ = α/ε, our results can also be used. This means all of results stated in this
paper also hold for bounded arboricity graphs setting Δ = α/ε. We list the
previous results and the results of this paper in Table 1 (Adapted from [ÅS10]).

2 The MWVC Local Ratio Template

In this section we overview [BCS17]’s local ratio paradigm for approximating
MWVC. We note that the template does not assume anything about the model of
computation and that our algorithms will fit into this framework. This template
can also be viewed via the primal-dual schema.

Let G = (V,E) denote a graph with a vertex-weight function w : V →
R

+. An edge-weight function δ : E → R
+ is G-valid if for every vertex v the

incident edges weight sum does not exceed w(v); that is, δ is G-valid if ∀v ∈ V :∑
v�e δ(e) ≤ w(v). (In fact, a G-valid function δ is a feasible solution to the dual

edge packing LP.)
Next, for a G-valid function δ, define the vertex-weight function w̃δ : V → R

+

by w̃δ(v) =
∑

e:v∈e δ(e). Let Sδ = {v ∈ V | w(v) − w̃δ(v) ≤ ε′w(v)} be the set of
vertices for which w and w̃ differ by at most ε′w(v), for ε′ = ε/(2 + ε). We refer

230 R. Ben-Basat et al.

Table 1. In the table (adapted from [ÅS10]), n = |V | and ε ∈ (0, 1). The running
times are stated for the case of unit weight vertices. For randomized algorithms the
running times hold in expectation or with high probability.

Deterministic Weighted Approximation Time (W = 1) Algorithm

no yes 2 O(log n) [GKP08]

no yes 2 O(log n) [KY09]

yes no 3 O(Δ) [PS09]

yes no 2 O(log4 n) [HKP01]

yes no 2 O(Δ2) [ÅFP+09]

yes yes 2 + ε O(log ε−1 log n) [KVY94]

yes yes 2 O(log2 n) [KVY94]

yes yes 2 + ε O(ε−4 log Δ) [Hoc82,KMW06]

yes yes 2 O(Δ + log∗ n) [PR01]

yes yes 2 O(Δ) [ÅS10]

yes yes 2 O(1) for Δ ≤ 3 [ÅFP+09]

yes yes 2 + ε O(ε−1 log Δ/ log log Δ) [BCS17]

yes yes 2 + log log Δ
log Δ O(log Δ/ log log Δ) [BCS17]

yes yes 2 + ε O
(

log Δ
log log Δ + log ε−1 log Δ

log2 log Δ

)
This work

yes yes 2 + (log Δ)−c O(log Δ/ log log Δ) This work, ∀c = O(1)

yes yes 2 O(log n log Δ/ log2 log Δ) This work

to vertices in Sδ as ε′-tight vertices. The essence of the template consists of two
parts: (1) The sum of the weights of the vertices in Sδ is at most (2+ε) times the
weight of an optimal solution to MWVC. (2) When the algorithm terminates,
Sδ is a vertex cover.

Theorem 1. ([BCS17]) Fix ε > 0 and let δ be a G-valid function. Let OPT be
the sum of weights of vertices in a minimum weight vertex cover SOPT of G.
Then

∑
v∈Sδ

w(v) ≤ (2 + ε)OPT . In particular, if Sδ is a vertex cover, then it
is a (2 + ε)-approximation for MWVC for G.

3 A Fast Distributed Implementation

In this section, we present a modification of the distributed algorithm for MWVC
of Bar-Yehuda et al. [BCS17]. The pseudo-code for our algorithm is given in
Algorithm 1. In this section we assume that the maximal degree Δ is known to
all vertices.4 In Sect. 4 we provide an algorithm with a slightly higher running
time in which this assumption is lifted.

For clarity of presentation, we first describe an implementation for the
LOCAL model. This algorithm can be easily adapted to the CONGEST model
using the techniques of [BCS17].

4 A polynomial upper bound of ΔO(1) would yield the same asymptotic bound on the
number of rounds.

A Deterministic Distributed 2-Approximation for Weighted Vertex Cover 231

Overview of Algorithm 1. The algorithm uses the following parameters: (i) ε′ �
ε/(2 + ε), (ii) γ ∈ (0, 1), (iii) z �

⌈
logγ ε′⌉. The parameter ε′ is used for defining

tightness of the dual packing constraint. The parameter γ is used for defining
levels. Loosely speaking, in every iteration the weight of a vertex is reduced, and
the level of a vertex is proportional to logγ(wi(v)/w0(v)). The parameter z is
used to bound the number of levels till a vertex becomes ε′-tight, meaning that
wi(v)/w0(v) ≤ ε′.

Our algorithm, listed as Algorithm 1, is a variation of the Algorithm of Bar-
Yehuda et al. [BCS17] with a few modifications. We begin with a description
of the common features. In the course of the algorithm, the weight of each
vertex is reduced. Once a vertex v becomes ε′-tight (i.e., the reduced weight
is an ε′-fraction of its original weight) it decides to join the vertex cover and
terminates after sending the message (v, cover) to its remaining neighbors. The
message (v, cover) causes the neighbors of v to erase v from their list of remaining
neighbors. If a vertex v loses all its neighbors (i.e., becomes isolated), it decides
that v is not in the vertex cover, and terminates. Upon termination, the ε′-tight
vertices constitute a vertex cover.

The handling of offers is as in [BCS17]. Vertex v sends an irrevocable offer
requesti(v, u) to every u ∈ Ni(v). The offers are allocated from the vault. The
responses to the offers are allocated greedily from the bank, namely v’s responses
satisfy: budgeti(v, u) ≤ requesti(u, v) and

∑
u budgeti(v, u) ≤ banki(v). The

updating of the weights can be interpreted as follows. For every edge e = {u, v}
the dual edge packing variable δ(e) is increased by budgeti(u, v) + budgeti(v, u).
The remaining weight satisfies wi+1(v) = w0(v) − ∑

e�v δ(e). Note that each
iteration of the while-loop requires a constant number of communication rounds.

The first modification is that we attach a level to each vertex as follows. Let
wi(v) denote the weight of v in the beginning of iteration i of the while-loop.
The level of v in iteration i satisfies �i(v) = 1+

⌊
logγ

wi(v)
w0(v)

⌋
. Note that the initial

level is one, and that if the level of v is greater than z, then v is ε′-tight (see
Claim 3.1).

The second modification is how we partition wi(v) between the vault and the
bank. Instead of using a fixed fraction of the initial weight for the vault, our vault
decreases as the level of the vertex increases. Formally, vaulti(v) � w0(v) ·γ�i(v).
The bank is the rest of the weight, namely, banki(v) � wi(v) − vaulti(v).

The third modification is that in each iteration, every vertex v only sends
offers to its remaining neighbors with the smallest level. Let Ni(v) denote the set
of remaining neighbors of v in the beginning of the ith iteration. The smallest
level of the neighbors of v is defined by �′

i(v) � min{�i(u) | u ∈ Ni(v)}. The set
of neighbors of lowest level is defined by N ′

i(v) � {u ∈ Ni(v) | �i(u) = �′
i(v)}.

Let d′
i(v) = |N ′

i(v)|. The size of each offer sent is vaulti(v)/d′
i(v).

Note that if γ = ε′, then Algorithm 1 reduces to the BCS Algorithm because
there is just one level, and the vault size is fixed and equals to ε′ · w0(v). On
the other hand, if γ = 1/2, then there are O(log 1/ε) levels. Per level �i(v), the
algorithm can be viewed as a version of the BCS algorithm with ε′ = 1/2�i(v).
This also explains why our algorithm may be adapted to the CONGEST model

232 R. Ben-Basat et al.

of distributed computation using the techniques of [BCS17]. In essence they give
an adaptation for a single level of our algorithm, which can easily be extended
to multiple levels.

We now state the main theorem of this work.

Theorem 2. Algorithm 1 (with γ = 1√
log Δ

if Δ > 16 and γ = 0.5
otherwise) is a deterministic distributed (2 + ε)-approximation algorithm for
MWVC. The number of rounds required for the algorithm to terminate is
O

(
log Δ

log log Δ + log ε−1 log Δ
log2 log Δ

)
if Δ > 16 and O(log ε−1) otherwise.

3.1 Proof of Theorem 2

Notation. In the analysis we use wi(v), �i(v), d′
i(v) to denote the value of these

variables at the beginning of the ith iteration.
The following claim states an invariant that Algorithm 1 satisfies.

Claim. The following invariant holds in every iteration of the while-loop:

γ�i(v) <
wi(v)
w0(v)

≤ γ�i(v)−1 (1)

Hence, (i) vaulti(v) < wi(v) and (ii) if �i+1(v) ≥ z + 1, then wi+1(v)
w0(v)

≤ ε′.

This invariant of Claim 3.1 implies, among other things, that every vertex
that decides to join the vertex cover is ε′-tight. This property, together with
the fact that the set of vertices that join the vertex cover constitute a vertex
cover leads to the proof that Algorithm 1 is a (2 + ε)-approximation algorithm.
An analogous lemma and its proof also appears in [BCS17]. We remark that
termination of the algorithm is implied by the upper bound on the number of
iterations of the while-loop proved in the sequel.

Lemma 1. ([BCS17, Lemma 3.2]) For every ε, γ ∈ (0, 1), upon termination
Algorithm 1 computes a (2 + ε)-approximate solution to MWVC.

In the following lemma we show that, for every vertex v and every iteration of
the while-loop, either many of v’s neighbors of the smallest level have increased
their level or v’s weight has decreased significantly.

Lemma 2. Let K > 1. Let i be an iteration of the while-loop in the execution
of Algorithm 1 by vertex v in which v does not join the cover. At least one of
following conditions must hold:

1. At least d′
i(v)(1−1/K) of the neighbors of v of the lowest level have increased

their level. Formally, If �′
i+1(v) = �′

i(v), then d′
i+1(v) < d′

i(v)/K.
2. wi+1(v) ≤ wi(v) − w0(v)γ�i(v)/K.

A Deterministic Distributed 2-Approximation for Weighted Vertex Cover 233

Algorithm 1. A distributed (2 + ε)-approximation algorithm for MWVC,
code for vertex v. (Listing taken from [BCS17] and edited to include our
modifications.)

1 γ = parameter in the interval (0, 1).
2 ε′ = ε/(2 + ε)
3 z =

⌈
logγ ε′⌉

4 w0(v) = w(v)
5 �0(v) = 1

6 N0(v) = N(v), di(v) � |Ni(v)|
7 //Let N ′

i(v) be the set of neighbors of lowest level in iteration i and

d′
i(v) � |N ′

i(v)|
8 i = 0
9 while true do

10 vaulti(v) = w0(v) · γ�i(v)

11 banki(v) = wi(v) − vaulti(v)
12 wi+1(v) = wi(v) and �i+1(v) ← �i(v)
13 foreach u ∈ N ′

i(v) do
14 requesti(v, u) = vaulti(v)/d′

i(v)
15 Send requesti(v, u) to u
16 Let budgeti(u, v) be the response from u
17 wi+1(v) = wi+1(v) − budgeti(u, v)

18 Let u1 . . . umi be an arbitrary order of neighbors that sent requests in this
iteration

19 foreach k = 1, . . . , mi do
20 Let requesti(uk, v) be received from uk ∈ N ′

i(v)

21 budgeti(v, uk) = min{requesti(uk, v), banki(v) − ∑k−1
t=1 budgeti(v, ut)}

22 Send budgeti(v, uk) to uk

23 wi+1(v) = wi+1(v) − ∑di(v)
k=1 budgeti(v, uk)

24 if wi+1(v) �= 0 and wi+1(v) ≤ vaulti(v) then

25 �i+1(v) = 1 +
⌊
logγ

wi+1(v)

w0(v)

⌋

26 if wi+1(v) = 0 or �i+1(v) ≥ z + 1 then
27 Send (v, cover) to all neighbors
28 Return InCover

29 foreach (u, cover) received from u ∈ Ni(v) do
30 Ni(v) = Ni(v) \ {u}
31 if di(v) = 0 then
32 Return NotInCover

33 Ni+1(v) = Ni(v)
34 i = i + 1

234 R. Ben-Basat et al.

Proof. Assume that �′
i+1(v) = �′

i(v) and d′
i+1(v) ≥ d′

i(v)/K. Note that if the level
of a vertex remains unchanged (i.e., �′

i+1(v) = �′
i(v)), then either wi+1(v) = 0

or wi+1(v) > vaulti(v). If wi+1(v) = 0, then v joins the cover, a contradiction.
If wi+1(v) > vaulti(v), then the bank was not exhausted and budgeti(u, v) =
requesti(v, u). To conclude, at least d′

i(v)/K vertices u ∈ N ′
i(v) responded with

budgeti(u, v) = requesti(v, u). This implies that

wi(v) − wi+1(v) ≥ d′
i(v)
K

· vaulti(v)
d′

i(v)

= w0(v)γ�i(v)/K.

Lemma 3. For every γ ∈ (0, 1) and K > 1, the number of iterations of the
while-loop for every vertex v is bounded by:

z ·
(

K

γ
+

log d(v)
log K

)

.

Proof. The number of levels is bounded by z. Hence it suffices to prove that the
number of rounds per level is at most K/γ + logK d(v). Indeed, the number of
rounds that satisfy Condition 1 per level is bounded by logK d(v) because d′

i(v)
is divided by at least K in each such iteration.

We now bound the number of iterations that satisfies Condition 2 per level.
By Claim 3.1, w0(v) · γ�i(v)−1 ≥ wi(v). Hence, the number of iterations that
satisfies Condition 2 is bounded by K/γ, as required, and the lemma follows.

We now prove Theorem 2.

Proof. First, consider the case where Δ ≤ 16. We set γ = 0.5 (hence, z =
O(log ε−1)) and K = 2. Lemma 3 immediately shows that the termination
time is O(log ε−1). Next, assume that Δ > 16 (thus hereafter: log log Δ > 2,
log Δ/ log log Δ > 2, 1/

√
log Δ < 1/2, and

√
log Δ/log log Δ > 1). We set

γ = 1/
√

log Δ and K =
√

log Δ/ log log Δ. Now we can express the running
time as:

z ·
(

K

γ
+

log d(v)

logK

)
≤ z

(
Kγ−1 +

logΔ

logK

)
= z

(
logΔ

log logΔ
+

logΔ

0.5 log logΔ − log log logΔ

)

= O

(
z logΔ

log logΔ

)
.

Let us analyze the running time according to the values of ε. First, consider
the case where ε−1 = logO(1) Δ. Since ε ∈ (0, 1), it follows that ε′ = Θ(ε). We
get that z < 1+ logγ ε′ = O(1+ log ε−1/ log γ−1) = O(1+ log log Δ/ log log Δ) =
O(1). Thus, the total running time for this case is O(log Δ/ log log Δ). Next
we consider the complementary case, where ε−1 = logω(1) Δ. This means that
log ε−1 =ω(log log Δ). Therefore, z =O(log ε−1/ log γ−1)= O(log ε−1/ log log Δ),
and the running time for the second case is given by O(log ε−1 log Δ/ log2 log Δ).
Thus, we may express the running time of our algorithm asymptotically as:

O(log Δ/ log log Δ + log ε−1 log Δ/ log2 log Δ).

The number of rounds is bounded as required, and the theorem follows.

A Deterministic Distributed 2-Approximation for Weighted Vertex Cover 235

4 An Algorithm Without Knowing Δ

The bound on the round complexity in Theorem 2 assumes that every vertex
knows the maximum degree Δ (or a polynomial upper bound on Δ). This is
required in order to determine the value of γ. In this section we consider the
setting in which Δ is unknown to the vertices.

Note that the analysis in Lemma 3 is per a vertex. Hence, in the analysis of
the round complexity, we may use a different K per a vertex. Let Kv denote the
value of K that is used in the analysis for bounding the round complexity of v.

We propose two alternatives for the setting of unknown maximum degree, as
follows:

1. In the first setting, we simply set γ = 1/2 in the algorithm. For the analysis,
we consider Kv = log d(v)

log log d(v) , where d(v) denotes the degree of v. Plugging in

these parameters in Lemma 3 gives a round complexity of O
(

log ε−1 log d(v)
log log d(v)

)
.

2. For any q = O(1), we can set γ = ε1/2q (hence, z = O(1)). An analysis with Kv

= γ log d(v)
log log d(v) shows that v terminates in the optimal O (log d(v)/ log log d(v))

rounds for any ε > (log Δ)−q. This is because

Kv =
ε1/2q log d(v)
log log d(v)

>
log−0.5 d(v) log d(v)

log log d(v)
=

log0.5 d(v)
log log d(v)

.

That allows us to express the running time as

z
(
Kvγ−1 + log d(v)/ log Kv

)
= O (log d(v)/ log log d(v)) .

References

[ÅFP+09] Åstrand, M., Floréen, P., Polishchuk, V., Rybicki, J., Suomela, J., Uitto, J.:
A local 2-approximation algorithm for the vertex cover problem. In: Keidar,
I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 191–205. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04355-0 21

[ÅS10] Åstrand, M., Suomela, J.: Fast distributed approximation algorithms for
vertex cover and set cover in anonymous networks. In: SPAA 2010 Proceed-
ings of the 22nd Annual ACM Symposium on Parallelism in Algorithms and
Architectures, Thira, Santorini, Greece, pp. 294–302, 13–15 June 2010

[BCS17] Bar-Yehuda, R., Censor-Hillel, K., Schwartzman, G.: A distributed (2 + ε)-
approximation for vertex cover in o(log Δ / ε log log Δ) rounds. J. ACM
64(3), 23:1–23:11 (2017)

[BE81] Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the
weighted vertex cover problem. J. Algorithms 2(2), 198–203 (1981)

[BE85] Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the
weighted vertex cover problem. N.-Holland Math. Stud. 109, 27–45 (1985)

[BEPS12] Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of dis-
tributed symmetry breaking. In: 53rd Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, pp.
321–330, 20–23 October 2012

https://doi.org/10.1007/978-3-642-04355-0_21

236 R. Ben-Basat et al.

[CLRS09] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algo-
rithms, 3rd Edition. The MIT Press, Cambridge (2009)

[GJ79] Garey, M.R., Johnson, D.S., Freeman, W.H.: Computers and Intractability:
A Guide to the Theory of NP-Completeness (1979)

[GKP08] Grandoni, F., Könemann, J., Panconesi, A.: Distributed weighted vertex
cover via maximal matchings. ACM Trans. Algorithms 5(1) (2008)

[HKP01] Hanckowiak, M., Karonski, M., Panconesi, A.: On the distributed complex-
ity of computing maximal matchings. SIAM J. Discrete Math. 15(1), 41–57
(2001)

[Hoc82] Hochbaum, D.S.: Approximation algorithms for the set covering and vertex
cover problems. SIAM J. Comput. 11(3), 555–556 (1982)

[Kar72] Karp, T.M.: Reducibility among combinatorial problems. In: Proceedings
of a Symposium on the Complexity of Computer Computations. The IBM
Thomas J. Watson Research Center, Yorktown Heights. Springer, New
York, pp. 85–103, 20–22 March 1972. https://doi.org/10.1007/978-1-4684-
2001-2 9

[KMW06] Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted.
In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2006, Miami, Florida, USA, pp. 980–989, 22–26
January 2006

[KMW16] Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: lower and
upper bounds. J. ACM 63(2), 17:1–17:44 (2016)

[KR08] Khot, S., Regev, O.: Vertex cover might be hard to approximate to within
2-epsilon. J. Comput. Syst. Sci. 74(3), 335–349 (2008)

[KVY94] Khuller, S., Vishkin, U., Young, N.E.: A primal-dual parallel approximation
technique applied to weighted set and vertex covers. J. Algorithms 17(2),
280–289 (1994)

[KY09] Koufogiannakis, C., Young, N.E.: Distributed and parallel algorithms for
weighted vertex cover and other covering problems. In: Proceedings of the
28th ACM Symposium on Principles of Distributed Computing, PODC
2009, pp. 171–179. ACM, New York (2009)

[KY11] Koufogiannakis, C., Young, N.E.: Distributed algorithms for covering, pack-
ing and maximum weighted matching. Distrib. Comput. 24(1), 45–63 (2011)

[NJ75] Nemhauser, G.L., Trotter Jr., L.E.: Vertex packings: structural properties
and algorithms. Math. Program. 8(1), 232–248 (1975)

[Pet16] Pettie, S.: Personal communication (2016)
[PR01] Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse net-

works. Distrib. Comput. 14(2), 97–100 (2001)
[PS09] Polishchuk, V., Suomela, J.: A simple local 3-approximation algorithm for

vertex cover. Inf. Process. Lett. 109(12), 642–645 (2009)
[Sol18] Solomon, S.: Local algorithms for bounded degree sparsifiers in sparse

graphs. In: ITCS, volume 94 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, pp. 52:1–52:19 (2018)

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

Online Service with Delay on a Line

Marcin Bienkowski(B) , Artur Kraska, and Pawe�l Schmidt

Institute of Computer Science, University of Wroc�law, Wroc�law, Poland
{marcin.bienkowski,artur.kraska,pawel.schmidt}@cs.uni.wroc.pl

Abstract. In the Online Service with Delay (OSD) problem, introduced
recently by Azar et al. (STOC 2017), there are an n-point metric space
and a server occupying some point. Points request service over time and
these requests need to be eventually served by moving the server to these
points. To exploit spatial locality of requests, a service may be delayed
and requests may be served in batches. However, there are certain penal-
ties associated with the delays, e.g., such penalty may be proportional to
the waiting time of a given request. The goal is to minimize the sum of
the total distance traveled by the server and all delay penalties. The OSD
problem is closely related to widely studied optimization problems, such
as the reordering buffer management and the multi-level aggregation.
Azar et al. (STOC 2017) gave a randomized online O(log4 n)-competitive
algorithm for general metric spaces. In this paper, we present a determin-
istic O(log n)-competitive algorithm for the case when the metric space
is a line consisting of n equidistant points.

Keywords: Delayed service · Server problems · Online algorithms
Competitive analysis

“They also serve who only stand and wait”
— John Milton, On His Blindness

1 Introduction

In the Online Service with Delay (OSD) problem, there are n points in the metric
space and a server occupying some point. During runtime, points request service
and these requests have to be eventually served. To this end, an algorithm has
to move its server to the requesting point. To minimize the traveled distance,
an algorithm may serve the requests not immediately, e.g., it may travel to
a remote location once the number of requests there is sufficiently large. This
however incurs a waiting cost, which is a non-decreasing function of the delay
between the time a request is issued and the time it is served by an algorithm.
The goal is to minimize the total cost, defined as the sum of total distance
traveled by the server and the waiting costs of all issued requests.

Supported by Polish National Science Centre grant 2016/22/E/ST6/00499.

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 237–248, 2018.
https://doi.org/10.1007/978-3-030-01325-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_22&domain=pdf
http://orcid.org/0000-0002-2453-7772

238 M. Bienkowski et al.

The OSD problem is inherently online: an algorithm learns about a request
only once it is issued and has to make decisions about server movement without
knowing the future requests. The cost of an online algorithm Alg is then com-
pared to the cost of an optimal offline solution Opt for the same instance; the
ratio between their costs is called the competitive ratio [12]. We say that Alg is
α-competitive if its competitive ratio is at most α. The OSD problem has been
recently introduced by Azar et al. [6], who presented an O(log4 n)-competitive
randomized solution.

For a real-life example modeled by this problem, consider a technician (the
server) who needs to respond to repair requests from clients (points in the metric
space). The speed of the technician is not restricted and once she arrives at the
scene, she fixes the problem immediately. The waiting cost function for a request
represents its urgency, e.g., it may depend on the importance of a given client.

1.1 Related Problems

The solution given by Azar et al. for the OSD problem [6] is an O(h3)-competitive
deterministic algorithm for any hierarchically separated tree of depth h. As any
metric space on n points can be randomly approximated by an HST of depth
O(log n) with the expected distance distortion of O(log n) [7,19], this result
yields a randomized O(log4 n)-competitive algorithm for any metric space.

Essentially, the OSD problem studies a trade-off between serving requests in
batches (and saving because they are located close to each other) and minimizing
the delays of particular requests. Similar trade-offs occur naturally in many areas
of logistics and planning, scheduling or supply chain management.

While the OSD problem has been defined only recently, it is closely related
to the reordering buffer management (RBM) problem [1–5,9,17,18,20–22] and
the multi-level aggregation (MLA) problem [8,10,11,13–15]. The MLA problem
can be seen as a special variant of the OSD problem on a tree. In this variant,
the server is initially stored at the root. At any time, the server may choose a set
of requests, serve them by navigating along a minimum sub-tree spanning these
requests and the root, and then return to the root.

In contrast, in the RBM problem, requests do not have waiting costs, but
at any time there may be at most b unserved requests. The currently best
(randomized) algorithm for general metrics, due to Englert and Räcke [16], is
O(log n · log b)-competitive. An important observation that separates the OSD
and the RBM problems is the performance of the following “rent-or-buy” strat-
egy. Assume that an online algorithm waits till there is a subset of requests whose
total waiting cost becomes equal to the total cost of serving them. An algorithm
for OSD that simply serves only these requests would be Ω(n)-competitive even
on simple metrics such as weighted stars [6], while an analogous algorithm for
RBM would be O(h · log b)-competitive for trees of depth h [17].

Online Service with Delay on a Line 239

1.2 Line Metric: Our Contribution

In this paper, we study the OSD problem on a line consisting of n equidistant
points. Apart from the theoretical importance, the original motivation for study-
ing such metric comes from minimizing the movement of a hard disk head: in
this scenario, a request is a write demand to a particular cylinder of the disk
(where a cylinder is represented by a point on a line) [20].

Refined results are known for the line metrics both for the MLA and RBM
problems. For the RBM problem, Gamzu and Segev constructed a deterministic
O(log n)-competitive algorithm Moving Partition [20]. Beating this compet-
itive ratio is a long standing challenge: surprisingly, O(log n) is also the best
known approximation ratio for the offline variant and the best known lower
bound on the competitive ratio is only 2.154 [20]. The MLA problem is better
understood in such spaces: Bienkowski et al. presented a 5-competitive algorithm
for a line [11] and no algorithm can beat the ratio of 4 [8].

Our contribution. In this paper, we present a deterministic O(log n)-compe-
titive algorithm Bckt (short for Bucket) for the OSD problem on a line. Our
algorithm combines ideas from the Moving Partition [20] and the preemptive
service approach used for the OSD and MLA problems [6,8]. Namely, once our
algorithm identifies an interval I of a line, such that the total waiting cost
of requests pending in I is comparable to the cost of travelling to I, it puts
an additional work into serving not only requests from I, but also from its
surrounding. As we prove, this extra work significantly reduces the algorithm
cost in the future.

A bit surprisingly, our algorithm is non-clairvoyant : when a request is pre-
sented, the algorithm does not need to know its waiting cost function upfront.
(We require that the waiting cost functions are continuous, though.) This stands
in contrast to the bound presented by Azar et al. for weighted stars [6]: they
show that for such metrics, the competitive ratio of any non-clairvoyant deter-
ministic algorithm is at least Ω(Δ), where Δ is the aspect ratio of the metric.
(This lower bounds holds even if waiting cost functions are continuous.)

1.3 Preliminaries

In the OSD problem on a line, the metric space is a line consisting of n equidistant
points (each consecutive pair is connected with an edge of length 1). The server
of an algorithm starts at a position chosen by the adversary. An input consists
of requests and each request is a triple (τ, p, f), where τ is its arrival time, p is
the point an algorithm has to visit to serve the request and f : R≥0 → R≥0 is
an arbitrary continuous non-decreasing function, such that f(0) = 0. If, at time
τ ′ ≥ τ , an algorithm serves the request (τ, p, f), i.e., moves its server to point p,
the request incurs the waiting cost of f(τ ′ − τ). The service cost of an algorithm
is defined as the sum of distances traveled by the server. The goal is to serve all
requests and minimize the sum of the service cost and all waiting costs.

240 M. Bienkowski et al.

2 The Algorithm

We present a deterministic algorithm Bckt solving the OSD problem for a line
metric comprising n equidistant points. Bckt balances service and waiting costs.
It works in phases, each consisting of a waiting subphase and a serving subphase.
In the waiting subphase, Bckt does not move the server and waits until there is
a group of requests whose overall waiting cost becomes roughly the distance to
this group from the current position of the algorithm’s server. In the subsequent
serving subphase, Bckt serves this group of requests along with its surrounding
(to be defined later). The serving subphase is immediate, i.e., the waiting cost
is accrued only in the waiting subphases.

2.1 Algorithm Definition

More concretely, at the beginning of the waiting subphase, Bckt (re)numbers
the points on the line from left to right with consecutive integers, so that the
position of its server is at point 0. Next, Bckt splits the line points into O(log n)
buckets. For i ≥ 1, the i-th right (left) bucket consists of 2i−1 points that lie to the
right (left) from the server’s position and whose distances from server’s position
are in the range [2i−1, 2i − 1]. By B+i and B−i we denote the i-th right and left
bucket, respectively; we say that their indexes are equal to i. The size |B| of
a bucket B is the number of points it contains, i.e., |B+i| = |B−i| = 2i−1.

Note that the position of the server does not belong to any bucket and
all requests arriving at this point are immediately served for free. For each
bucket B and time τ , we define its weight wτ (B) as the total waiting cost
incurred by requests in B still pending for Bckt at time τ . We will omit τ and
write w(B) whenever it does not lead to ambiguity. We say that a bucket B is full
if w(B)≥ |B|.

Fix any phase S. The waiting subphase lasts until some bucket B becomes
full. (As the waiting cost functions are continuous, we may then assume that
for such bucket w(B) becomes exactly equal to |B|.) At that moment, Bckt
considers quarter-full buckets, i.e., buckets B′ satisfying w(B′) ≥ |B′|/4. Let B±r

(for r ≥ 1) be the quarter-full bucket farthest from the server, i.e., the one with
the largest index r. We call this bucket critical for phase S. (If there are two
such buckets, left and right, we pick an arbitrary one of them to be critical.)

On the basis of the critical bucket index, r, we define two notions: the phase
label becomes equal to r and the cleaning area C(S) is defined as the region
⊎r+1

j=1(B−j �B+j) = [−(2r+1 −1), 2r+1 −1]. An example is presented in Figure 1.
In the serving subphase, Bckt serves all requests pending in the cleaning

area C(S). To this end, Bckt chooses its new position to be the closest point
of the critical bucket (the point ±2r−1). Bckt’s server follows then the shortest
route that visits both endpoints of the cleaning area and ends at point ±2r−1.
For simplicity, we make Bckt visit each point of C(S) even if there is no request
waiting at that point. Note that the corresponding service cost is at most twice
the size of the cleaning area. A pseudocode of Bckt in a single phase is given
in Algorithm 1.

Online Service with Delay on a Line 241

Fig. 1. An example phase (of label 3) of Bckt. After a waiting subphase, B+3 is
the critical bucket (the quarter-full bucket with the largest index). Within a serving
subphase, Bckt moves its server, so that it visits all the points from the cleaning area
and finishes at the closest point of B+3.

2.2 Correctness

We start with proving that Bckt is defined properly, i.e., right after a serving
phase ends and the algorithm splits the line into new buckets, no bucket is full.
Intuitively, buckets that are close to the new server’s position are contained in
the cleaning area of the serving phase and are now empty. On the other hand,
buckets that are far from the server’s position are properly contained in two
consecutive buckets (of the previous phase) whose weight was small.

Lemma 1. No bucket is full at the beginning of a phase of Bckt.

Proof. Fix a phase S and let r ≥ 1 be its label. The cleaning area of the phase
is then C(S) = [−(2r+1 − 1), 2r+1 − 1]. Assume, without loss of generality, that
the critical bucket of S is the right bucket, B+r = [2r−1, 2r − 1], i.e., Bckt ends
the phase with its server at the point s = 2r−1.

We denote the (old) buckets of the serving phase by B±i and the buckets of
the new waiting phase, i.e., constructed relative to the point s, by B′

±i. We will
show that all buckets B′

±i satisfy w(B′
±i) < |B′

±i|.
First, we observe that buckets B′

−(r+1), B
′
−r, . . . , B

′
−1 and B′

+1, . . . , B
′
+r are

fully contained in the cleaning area C(S). As all the requests in these buckets
were served, the weights of these buckets are now equal to 0. Second, all buckets
B′

±i are shifted by 2r−1 to the right relative to B±i. Thus, for any i ≥ r + 1,
bucket B′

+i is contained in the union B+i � B+(i+1). Since B+r was the farthest
quarter-full bucket, the weights of buckets B+i and B+(i+1) are less than a
quarter of their sizes. Hence, w(B′

+i) ≤ w(B+i) + w(B+(i+1)) < 2i−1/4 + 2i/4 <
2i−1 = |B′

+i|. Similarly, for i ≥ r + 2, bucket B′
−i is contained in B−i � B−(i−1),

i.e., the union of two buckets that are not quarter-full, and therefore w(B′
−i) ≤

w(B−i) + w(B−(i−1)) < 2i−1/4 + 2i−2/4 < 2i−1 = |B′
−i|. This concludes the

proof. ��

242 M. Bienkowski et al.

Algorithm 1. Single phase S of the algorithm Bckt.
Waiting subphase:

Number the points relatively to the current server’s position.
Split the line into buckets.
Wait until there exists a bucket B, such that w(B) = |B|.

Serving subphase:

Let B±r be the farthest quarter-full bucket.
/* B±r is the critical bucket. Phase S gets label r. */
Let C(S) = [−(2r+1 − 1), 2r+1 − 1]
if B±r is a left bucket then

/* Go right and then left. */
Move to 2r+1 − 1 serving all requests on the way.
Move to −(2r+1 − 1) serving all requests on the way.
Move to −2r−1.

else
/* Go left and then right. */
Move to −(2r+1 − 1) serving all requests on the way.
Move to 2r+1 − 1 serving all requests on the way.
Move to 2r−1.

3 Competitiveness

In this section, we prove that Bckt is O(log n)-competitive, where n is the
number of points on the line. In our reasoning, we do not aim at minimizing the
constants, but rather at the simplicity of the argument.

3.1 Waiting and Service Costs

We start by showing that our algorithm balances its waiting and service costs,
which allows us to focus only on bounding the latter. By Bcktwait and Bcktserv

we denote, respectively, the waiting and the service costs of Bckt.

Lemma 2. It holds that Bcktwait ≤ Bcktserv.

Proof. Fix any phase S and let r ≥ 1 be its label, i.e., the cleaning area of the
phase is equal to C(S) = [−(2r+1 − 1), 2r+1 − 1]. As the server starts in the
middle of the cleaning area and has to visit its both endpoints, the service cost
incurred in the serving subphase is at least 3 · (2r+1 − 1) > 2 · 2r+1.

On the other hand, by the definition of Bckt, the weight of each bucket
contained in C(S) is at most the size of this bucket. Hence, the total wait-
ing cost incurred by requests served in phase S is

∑r+1
i=1 (w(B−i) + w(B+i)) ≤

∑r+1
i=1 (|B−i| + |B+i|) < 2 · 2r+1.
Each request is eventually served by Bckt, and therefore summing the wait-

ing and service costs of all phases yields the lemma. ��

Online Service with Delay on a Line 243

By Lemma 2, it suffices to bound Bcktserv, the total distance traveled by
the Bckt’s server. In our proof later we would like to use the following local
argument: “if our algorithm traverses an edge, then it moves towards requests
(whose total waiting cost was sufficiently large)”. Unfortunately, this is not true
for all edges from the route traversed by Bckt, especially for the edges near the
borders of the cleaning area.

Therefore (for the analysis purposes only), we define the following “virtual”
algorithm Bckteff that operates almost in the same way as Bckt does, and we
analyze Bckteff instead of Bckt. Bckteff has identical notion of waiting sub-
phases and buckets as Bckt. The only difference is that in the serving subphase,
Bckteff moves the server directly to the closest point of the critical bucket (i.e.,
to the final position of Bckt’s server in the serving subphase).

We will pretend that such server movement of Bckteff serves all the pend-
ing requests in the cleaning area C(S), i.e., serves the same set of requests as
Bckt does. Furthermore, we will assume that Bckteff is charged only for server
movement, i.e., it does not pay for the waiting costs. It can be easily observed
that replacing Bckt by Bckteff changes the cost at most by a constant factor.

Lemma 3. It holds that Bckt ≤ 32 · Bckteff .

Proof. Consider a single phase S and let r ≥ 1 be its label. The cost of Bckteff

on this phase is 2r−1 while Bckt pays at most 2 · 2r+2 for the server movement
(the server visits each point of the cleaning area at most twice). This implies
that Bcktserv ≤ 16 · Bckteff for a single phase, and hence also for the entire
input sequence. Combining this relation with Lemma 2 concludes the proof. ��

3.2 Critical Requests and Freshness Property

Fix any phase S and let r be its label. The set of requests for phase S which
is served in the critical bucket B±r is called a critical set and denoted R(S).
The following properties of critical sets will become useful once we define our
charging scheme in Sect. 3.4.

Lemma 4. Fix any edge e and consider two phases S and S′ of the same label r
during which the server of Bckteff moves along e in the same direction. The
following two properties hold.

Weight property. The total waiting cost of requests from R(S′) is at least 2r−3.
Freshness property. All requests from R(S′) appeared after phase S ended.

Proof. The first condition of the lemma follows immediately by the definition of
the algorithm: R(S′) is the set of requests from the bucket B′

±r, which is critical
and hence quarter-full. That is, w(B±r) ≥ |B±r|/4 = 2r−3.

For the second condition, we assume, without loss of generality, that within
both phases Bckteff moves to the right. Let B+r and B′

+r be the critical buckets
in phases S and S′, respectively. Observe that C(S), the cleaning area of S, covers
all edges that Bckteff traverses and also 2r+1 − 2r−1 points to the right of this
path. Hence, C(S) covers at least 2r+1 − 2r−1 points to the right of edge e.

244 M. Bienkowski et al.

In phase S′, the bucket B′
+r is also to the right of edge e and the distance

between e and the farthest point of B′
+r is at most 2r. Hence, B′

+r ⊆ C(S),
which means that all the requests at points from B′

+r are served in phase S.
Therefore, all the requests from B′

+r that are served by Bckteff during phase S′

must have arrived after the end of phase S. ��

3.3 Moving Towards and Away from OPT

From now on, we fix any optimal solution Opt and analyze both Bckteff and
Opt running on the same input simultaneously. Roughly speaking, we would
like to argue that if Bckteff traverses an edge e many times, then Opt has to
either move along e or pay large waiting costs. However, if Bckteff traverses
edge e towards Opt, we cannot say anything about the relative position of Opt
and the requests Bckteff serves (it might even happen that Opt serves them for
free). Therefore, we split the moves of Bckteff into Bcktaway— the moves in
the direction away from the current position of Opt’s server and Bckttoward—
the moves towards it. Note that Bcktaway and Bckttoward are defined only in
the analysis. It turns out that by focusing only on Bcktaway we lose only a
constant factor in the competitive ratio.

Lemma 5. It holds that Bckttoward ≤ Bcktaway + Opt.

Proof. Fix any edge e. Let Bckttoward(e) and Bcktaway(e) be the total cost of
moves of Bckteff ’s server along edge e in the directions toward and away the
Opt’s server, respectively. Let Opt(e) be the total costs of Opt traversals of e.
It is sufficient to show that

Bckttoward(e) ≤ Bcktaway(e) + Opt(e). (1)

To prove this inequality, we analyze how its both sides evolve in time. Clearly,
at the beginning, both sides are equal to zero. Since Bckteff and Opt start at
the same side of e, before Bckteff moves toward Opt for the first time (i.e., the
left hand side of (1) increases for the first time), either Bckteff needs to move
away from Opt along e or Opt needs to traverse e (i.e., the right hand side
of (1) increases for the first time).

Furthermore, between any two consecutive increases of Bckttoward(e) (two
consecutive increments of the left hand side of (1)) either Bckteff traverses e
in the direction away from Opt or Opt traverses e (the right hand side of (1)
increments). ��

3.4 Charging Scheme

The plan for the remaining part of the analysis is as follows. We look at any
increment of the value Bcktaway over time. It corresponds to a traversal of
some edge e performed by the server of Bckteff in the direction away from
Opt. We call any such movement an away-traversal of edge e.

Online Service with Delay on a Line 245

Fig. 2. Illustration of the charging scheme for away-traversals of edge e performed by
the algorithm Bckteff . The figure contains a single e-epoch defined by the times at
which Opt traversed edge e. The route of Opt’s server is drawn as a dash-dotted line.
All depicted away-traversals of edge e performed by Bckteff have the same label r:
each corresponding movement of Bckteff (thick right arrows) consists of 2r−1 away-
traversals. The shaded regions contain critical sets of requests (represented by small
discs) that are served by Bckteff at the ends of the phases in critical buckets (of sizes
2r−1). Dashed arrows denote our charging of away-traversals.

We will map (charge) all away-traversals to some action(s) of Opt. Some
away-traversals will be charged directly to the moves of Opt’s server. Others
will be charged to the waiting of requests; we will show that these requests
incurred sufficiently large cost in the solution of Opt. Then, we will estimate,
for any action of Opt, how many away-traversals are mapped to them.

To formally define the charging, we now focus entirely on a single edge e. We
split the execution of both Bckteff and Opt into e-epochs using the moves of
Opt along e: when Opt traverses edge e in any direction, an e-epoch ends and
the next one begins. Fix any such e-epoch. Assume, without loss of generality,
that in this e-epoch the server of Opt remains on the left side of edge e. In
this case, all away-traversals of e within the e-epoch are movements of Bckteff ’s
server to the right. Any such away-traversal of e is a part of a path traveled
by Bckteff in the serving subphase of S. The away-traversal receives the same
label that is assigned to phase S.

In a given e-epoch, for each label value r, we will charge away-traversals of e
in the following way.

The first away-traversal of e with label r. We charge this away-traversal
either to the movement of Opt’s server along e that initiates the current
e-epoch or to the movement that finishes it. Such move always exists as Opt
eventually serves all requests.
Subsequent away-traversals of e with label r. Recall that this away-
traversal is a part of a movement performed by the Bckteff ’s server within

246 M. Bienkowski et al.

a phase S. We charge the away-traversal to the waiting of the requests from
the critical set R(S) (in the solution of Opt).

An example of our charging scheme is given in Fig. 2. Using the charging
scheme, we may finally relate the cost of Bcktaway to the cost of Opt. Let
Optserv and Optwait be the total service and waiting costs of Opt, respectively.

Lemma 6. The number of away-traversals mapped to the movements of Opt
is at most O(log n) · Optserv.

Proof. We fix any traversal q of Opt’s server of some edge e. Note that q finishes
one e-epoch E and initiates another e-epoch E ′. For any label r, only the first
away-traversals of edge e with label r from e-epochs E and E ′ may charge to q.

The number of different labels is upper bounded by the number of possible
labels for phases, that is, by O(log n). Hence, the number of different away-
traversals that may charge to q is at most 2 · O(log n). The lemma follows by
summing over all edge traversals performed by Opt. ��
Lemma 7. The number of away-traversals mapped to the waiting of requests in
the solution of Opt is at most 4 · Optwait.

Proof. We now fix any phase S of the algorithm Bckteff , let r be its label
and let R(S) be the corresponding critical set of requests (served in the serving
subphase of S). For succinctness, we define the waiting cost of R(S) as the total
waiting cost of all requests from R(S). We will now claim that the number of
away-traversals that charge to R(S) is at most 4 times larger than the waiting
cost of R(S) incurred by Opt. The lemma will then follow by summing over all
critical set of requests (they are clearly disjoint).

If no away-traversals charge to R(S), then the claim follows trivially.
We may therefore assume that there exists an away-traversal of some edge e

that charges to R(S). Without loss of generality, we assume that Bckteff tra-
verses e to the right, and within the corresponding phase Opt remains to the
left of edge e. Note that the label of the away-traversal has to be the same as the
label of phase S, i.e., equal to r. By the definition of our charging, the preceding
away-traversal of edge e with label r belongs to the same e-epoch; let Sp be the
phase during which this preceding away-traversal is performed. By the freshness
property of Lemma 4, all requests from the critical set R(S) arrived after Sp.
By the weight property of the same lemma, the waiting cost of R(S) incurred
on Bckteff is at least 2r−3.

As Opt remains on the left side of edge e for the whole e-epoch, it cannot
serve the requests of R(S) earlier than Bckteff , and therefore the waiting cost
of R(S) incurred on Opt is also at least 2r−3. The claim follows by observing
that only edges belonging to the Bckteff ’s server movement in phase S (2r−1

edges) may charge to R(S). ��
Recall that Bcktaway is the set of all away-traversals. As all away-traversals

are mapped by our charging scheme, using Lemmas 6 and 7, we immediately
obtain the following corollary.

Corollary 1. It holds that Bcktaway ≤ 4 · Optwait + O(log n) · Optserv.

Online Service with Delay on a Line 247

3.5 The Competitive Ratio

Theorem 1. Bckt is O(log n)-competitive.

Proof. The theorem follows by a straightforward combination of the definitions
and lemmas proven in this section.

Bckt ≤ 32 · Bckteff (by Lemma 3)
= 32 · (Bckttoward + Bcktaway)
≤ 32 · (2 · Bcktaway + Opt) (by Lemma 5)
= O(1) · Optwait + O(log n) · Optserv (by Corollary 1)
= O(log n) · Opt

��

4 Final Remarks

Our algorithm Bckt can easily be adapted, with virtually no changes, to the set-
ting where points are not necessarily equidistant. The competitive ratio becomes
then O(log Δ), where Δ is the aspect ratio of the metric (the ratio between the
largest and the smallest distances). The details will appear in the full version of
the paper.

References

1. Aboud, A.: Correlation clustering with penalties and approximating the reordering
buffer management problem. Master’s thesis, Computer Science Department, The
Technion Israel Institute of Technology (2008)

2. Adamaszek, A., Czumaj, A., Englert, M., Räcke, H.: Almost tight bounds for
reordering buffer management. In: Proceedings 43rd ACM Symposium on Theory
of Computing (STOC), pp. 607–616 (2011)

3. Avigdor-Elgrabli, N., Im, S., Moseley, B., Rabani, Y.: On the randomized compet-
itive ratio of reordering buffer management with non-uniform costs. In: Proceed-
ings 42nd International Colloquium on Automata, Languages and Programming
(ICALP), pp. 78–90 (2015)

4. Avigdor-Elgrabli, N., Rabani, Y.: An improved competitive algorithm for reorder-
ing buffer management. In: Proceedings 21st ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 13–21 (2010)

5. Avigdor-Elgrabli, N., Rabani, Y.: An optimal randomized online algorithm for
reordering buffer management. In: Proceedings 54th IEEE Symposium on Foun-
dations of Computer Science (FOCS), pp. 1–10 (2013)

6. Azar, Y., Ganesh, A., Ge, R., Panigrahi, D.: Online service with delay. In: Pro-
ceedings 49th ACM Symposium on Theory of Computing (STOC), pp. 551–563
(2017)

7. Bansal, N., Buchbinder, N., M ↪adry, A., Naor, J.: A polylogarithmic-competitive
algorithm for the k-server problem. J. ACM 62(5), 40:1–40:49 (2015)

248 M. Bienkowski et al.

8. Bienkowski, M., et al.: Online algorithms for multi-level aggregation. In: Proceed-
ings 24th European Symposium on Algorithms (ESA), pp. 12:1–12:17 (2016)

9. Bienkowski, M., et al.: Logarithmic price of buffer downscaling on line metrics.
Theor. Comput. Sci. 707, 89–93 (2018)

10. Bienkowski, M., Byrka, J., Chrobak, M., Jeż, L., Nogneng, D., Sgall, J.: Better
approximation bounds for the joint replenishment problem. In: Proceedings 25th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 42–54 (2014)

11. Bienkowski, M., Byrka, J., Chrobak, M., Jeż, �L., Sgall, J., Stachowiak, G.: Online
control message aggregation in chain networks. In: Proceedings 13th International
Workshop on Algorithms and Data Structures (WADS), pp. 133–145 (2013)

12. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, New York (1998)

13. Brito, C., Koutsoupias, E., Vaya, S.: Competitive analysis of organization networks
or multicast acknowledgement: how much to wait? Algorithmica 64(4), 584–605
(2012)

14. Buchbinder, N., Feldman, M., Naor, J.S., Talmon, O.: O(depth)-competitive algo-
rithm for online multi-level aggregation. In: Proceedings 28th ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 1235–1244 (2017)

15. Buchbinder, N., Kimbrel, T., Levi, R., Makarychev, K., Sviridenko, M.: Online
make-to-order joint replenishment model: primal dual competitive algorithms. In:
Proceedings 19th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
952–961 (2008)

16. Englert, M., Räcke, H.: Reordering buffers with logarithmic diameter dependency
for trees. In: Proceedings 28th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1224–1234 (2017)

17. Englert, M., Räcke, H., Westermann, M.: Reordering buffers for general metric
spaces. Theory Comput. Syst. 6(1), 27–46 (2010)

18. Englert, M., Westermann, M.: Reordering buffer management for non-uniform cost
models. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 627–638. Springer, Heidelberg (2005). https://
doi.org/10.1007/11523468 51

19. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)

20. Gamzu, I., Segev, D.: Improved online algorithms for the sorting buffer problem
on line metrics. ACM Trans. Algorithms 6(1), 15:1–15:14 (2009)

21. Khandekar, R., Pandit, V.: Online and offline algorithms for the sorting buffers
problem on the line metric. J. Discret. Algorithms 8(1), 24–35 (2010)

22. Räcke, H., Sohler, C., Westermann, M.: Online scheduling for sorting buffers. In:
Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 820–832. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45749-6 71

https://doi.org/10.1007/11523468_51
https://doi.org/10.1007/11523468_51
https://doi.org/10.1007/3-540-45749-6_71

Mixed Fault Tolerance in Server
Assignment: Combining Reinforcement

and Backup

Tal Navon and David Peleg(B)

The Weizmann Institute, Rehovot, Israel
david.peleg@weizmann.ac.il

Abstract. We study the mixed approach to fault tolerance in the gen-
eral context of server assignment in networks. The approach is based
on mixing two different existing strategies, namely, reinforcement and
backup. The former strategy protects clients by reinforcing the servers
assigned to them and making them fault-resistant (at a possibly high
cost), while the latter protects clients by assigning to them alternate low
price backup servers that can replace their primary servers in case those
fail. Applying the mixed approach to fault tolerance gives rise to new
fault-tolerant variations of known server assignment problems. We intro-
duce several NP-hard problems of this type, including the mixed fault-
tolerant dominating set problem, the mixed fault-tolerant centers prob-
lem, and the mixed fault-tolerant facility location problem, and present
polynomial time approximation algorithms for them, demonstrating the
viability of the mixed strategy for server assignment problems.

Keywords: Approximation · Fault tolerance · Backup
Reinforcement · Server assignment problems · Dominating set
Centers · Facility location

1 Introduction

Background and Motivation. An important aspect of network design con-
cerns coping with potential failures, such as link disconnections or vertex crashes.
Many different approaches were proposed in the literature for avoiding or over-
coming failures. A natural approach that’s been applied in numerous settings
relies on introducing redundancy to the system, by employing more resources
than needed, as backup. An alternative approach is to reinforce some of the net-
work components (possibly at a high cost) so as to prevent their failure, or at
least lower their failure probability.

The current paper deals with a typical setting of a computer network with
clients and failure-prone servers. The goal is to cope with situations where (up to
f) servers might crash simultaneously, thus depriving certain clients of nearby
service. Previous studies of such problems (cf. [6,10]) employed redundancy-
based fault tolerance, relying on selecting sufficiently many backup servers. Note,
c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 249–263, 2018.
https://doi.org/10.1007/978-3-030-01325-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_23&domain=pdf

250 T. Navon and D. Peleg

however, that the backup-reinforcement tradeoff occurs naturally in this setting,
as one can cope with potential server failures either by buying some extra servers
as backup, or alternatively, by using resilient servers that are less likely to fail but
are more expensive. Depending on the relative prices and the network topology,
intermediate (mixed) solutions may turn out to be desirable.

To illustrate this approach, we consider a number of NP-hard network design
problems involving clients and servers, and introduce new fault-tolerant versions
of these problems that employ a mixed strategy based on using a combination of
both redundancy and reinforcement. (These new versions are proper extensions
of the original problems, hence are also NP-hard.)

As a “warm-up”, we first look at an easy but illustrative example, namely,
the minimum dominating set (DS) problem, defined as follows. Given a graph G,
it is required to find a smallest possible set of vertices D such that each vertex
in G is either in D or has a neighbor in D. Intuitively, thinking of the vertices
of D as locations where we want to place certain services, the goal is to ensure
that every vertex in G has nearby service (at most one hop away from it). Hence
this is one of the simplest examples of a server assignment problem.

A redundancy-based fault-tolerant version of this problem, named the mini-
mum f -fault-tolerant dominating set (or f -FT-DS) problem, aims to cope with
the failure of (up to f) vertices in D, thus leaving certain vertices without a
dominating neighbor in D, by taking an appropriately larger set D, such that
each vertex is either in D or has f +1 neighbors in D. Intuitively, the redundancy
introduced into the solution ensures that even if f vertices of D have failed, each
surviving vertex will still have a functioning neighbor in D.

In order to study mixed fault-tolerant solutions, based on both backup and
reinforcement, we define the minimum cost f -mixed fault-tolerant dominating
set-pair (or f -MFT-DSP) problem as follows. Intuitively, each client vertex can
be protected in one of two ways: either it has a reinforced neighbor (including
possibly itself) that cannot fail, or it has f +1 normal neighbors that are chosen
as servers. Hence given a graph G and prices p for a normal server and p̃ for a
reinforced server, it is required to find a cheapest possible pair of sets of vertices
(normal servers D and reinforced D̃ servers), such that each vertex in G either
belongs to one of the sets, or has f +1 neighbors in D or one neighbor in D̃. (Pre-
cise definitions to all the problems studied are given in the respective sections.)
As it turns out, this problem can be easily approximated with ratio similar to
the (ordinary or redundancy-based fault-tolerant) dominating set problem, using
the same methods.

We then turn to our main problems. We first study fault-tolerant versions
of the k-centers problem. Two redundancy-based fault-tolerant versions of the
problem were studied in the past. The first is the f -neighbor k-centers problem.
Again we make the assumption that no more than f vertices might fail simul-
taneously. Given a weighted graph G and a set D of k vertices, each client v
will always use the nearest available server in D. If the f closest servers to v
have crashed, then v is forced to turn to the next ((f + 1)st) closest server. Let
δf (v,D) denote the distance from v to that server. The client v̂ most affected by

Mixed Fault-Tolerant Server Assignments 251

the failures is the one with the largest distance δf (v̂, D). Hence the problem is
to find the set D of k vertices that minimizes this value. The second version is
the f -all-neighbor k-centers problem, defined similarly except that the vertices
in D itself are also considered as clients, and need to be serviced even when the
server located in them crashes. In other words, we want the vertices in D whose
server has failed to also have a close vertex in D that did not fail.

To study mixed fault-tolerant solutions to the k-centers problem, based on
mixing backup and reinforcement, we define the f -MFT neighbor centers prob-
lem as follows. Given a weighted graph G, prices p and p̃ for normal and rein-
forced servers respectively, and a budget B, it is required to find a pair of vertex
sets D and D̃ such that the vertex that is not in D ∪ D̃ and is the farthest
away from the closest f + 1 vertices in D and the closest vertex in D̃, is as close
as possible. We define the f -MFT all-neighbor centers problem similarly, except
that the vertices selected to D are also clients that require service.

The last (and most elaborate) problem we study is the uncapacitated facil-
ity location (UFL) problem. The redundancy-based fault-tolerant version of the
fault-tolerant facility location (FT-FL) problem, studied in the past, again aims
to cope with crashes by providing clients with nearby backup servers. The prob-
lem is defined as follows. We are given a weighted graph G, an opening price for
each vertex, and an individual “backup demand” ri for each vertex i (such that
i must be protected against the possible failure of up to ri − 1 of its servers). It
is required thus to find a set of vertices D and assign them to the vertices in G
such that, each client vertex i in G is assigned to at least ri servers in D, and
the sum of distances from all the clients to their servers in D plus the opening
prices of all the vertices in D is as small as possible. (Note that in this version
of the problem, a client needs to pay for all ri servers it is assigned to.)

To study mixed fault-tolerant solutions for this problem, we define the mixed
fault-tolerant facility location (MFT-FL) problem as follows. Given a weighted
graph G, an opening price for each vertex, and a backup demand ri for each
vertex i, it is required to find a pair of vertex sets (a reinforcement set D̃ and
a backup set D) and assign them to the vertices in the graph such that each
vertex is assigned either to at least ri vertices in D or to at least one vertex in
D̃, and the sum of distances from each client to the servers it is assigned to (in
D or D̃) plus the opening prices of all the vertices in D and D̃ is as small as
possible.

Related Work. The minimum dominating set problem is well-studied and one
of the first problems shown to be NP-hard [1]. Observe that this problem is
a special case of minimum set cover. By [5], the minimum set cover problem
has a polynomial time log n approximation greedy algorithm. Hence, the min-
imum dominating set problem also has a polynomial time log n approximation
algorithm. More generally, every integer linear program (ILP) with nonnegative
integer values (ILP+ as defined in Sect. 2) enjoys submodularity and hence has a
logarithmic factor approximation by the greedy algorithm by [11]. The minimum
f -FT DS problem can be defined as an ILP+, hence it too has a logarithmic
factor approximation.

252 T. Navon and D. Peleg

Gonzalez presented a polynomial time 2-approximation greedy algorithm for
the k-centers problem [2]. Hochbaum and Shmoys also gave a polynomial time
2-approximation algorithm for that problem, based on finding maximal indepen-
dent sets in (the powers of) suitable subgraphs of the given graph, and prove that
this is the best approximation possible in polynomial time assuming NP �= P
[4]. Based on the latter, Khuller, Pless, and Sussmann gave a polynomial time
2-approximation algorithm for the f -neighbor k-centers problem (which is the
best possible assuming NP �= P since the problem is an extension of the basic
k-centers problem) and a polynomial time 3-approximation (2-approximation for
f ≤ 3) algorithm for the f -all-neighbor k-centers problem [6].

The uncapacitated facility location (UFL) problem is widely studied as well.
An approximation algorithm for the problem is presented in [9]. In [10], Swamy
and Shmoys give a 2.076-approximation polynomial time algorithm for the
fault-tolerant facility location (FT-FL) problem. They also give a simpler 4-
approximation algorithm for the problem.

The mixed approach to fault tolerance, based on combining redundancy and
reinforcement, was utilized before in the context of fault-tolerant network struc-
tures. Specifically, the problem of constructing fault-tolerant BFS structures in
graphs was studied in [7].

Results. Our main contribution is in demonstrating that redundancy-based
fault tolerance can be augmented into mixed fault tolerance in the context
of server assignment problems in networks. In particular, our concrete results
involve extending known approximation algorithms for the redundancy-based
fault-tolerant versions of the problems discussed above into approximation algo-
rithms for the corresponding mixed fault-tolerant versions. While each of these
algorithms is based on a different approach (a greedy algorithm for the f -MFT-
DSP problem, combinatorial graph algorithms for the FT-centers problems, and
a linear programming based algorithm for the MFT-FL problem), all of them
exhibit a dependence on the relative prices, and in particular, on whether or not
p̃ ≤ (f + 1)p.

In more detail, in Sect. 2 we extend the known polynomial time log(n(f +
1))+1 approximation algorithm for the minimum f -FT dominating set problem
into a log(n(f + 1)) + 1 approximation algorithm for the minimum cost f -MFT
dominating set-pair problem. In Sect. 3 we extend the algorithms of [6] into a
polynomial time 3-approximation algorithm for the f -MFT all-neighbor cen-
ters problem and a polynomial time 8-approximation algorithm for the f -MFT
neighbor centers problem. In Sect. 4 we extend the 4-approximation algorithm
of [10] into a (rather involved) polynomial time (3 + max{3, 2r})-approximation
algorithm (where r = max{ri} is the maximum demand for all the vertices) for
the mixed fault tolernt facility location (MFT-FL) problem.

Discussion. The dependence of the approximation ratio of our algorithm for
the MFT-FL problem on r is dissatisfactory. It seems plausible that the problem
enjoys an approximation algorithm of constant ratio independent of r. This
question is left for future study.

Mixed Fault-Tolerant Server Assignments 253

A broader intriguing question left for future study is whether there may
be a general relationship between redundancy-based and mixed fault-tolerant
versions of server assignment (as well as other) NP-hard problems. In particular,
it would be useful to have a general transformation technique that will allow
taking a solution for a redundancy-based fault tolerance problem and using it
to generate a solution for a mixed fault tolerance version of the problem, with
roughly similar approximation qualities. While our results seem to hint that such
a relationship may exist, if only for some suitably restricted scope of problems,
it is unclear to us at the moment how to formally define and establish it in a
general setting.

Another possible extension is to consider a hierarchy of component types
T1, . . . , Tm (rather than just two types), where components of type Ti+1 are
more expensive than components of type Ti, but also more resilient (e.g., have
lower probability of failing). This extension may lead to a number of intriguing
modeling and optimization problems, where the goal may be, for instance, to
maximize the resilience achievable with a given budget, or to minimize the cost
of achieving a specified resilience. These problems are also left for future study.

2 Warm-Up: Mixed Fault-Tolerant Dominating Sets

In this section we illustrate the mixed approach on a simple example problem,
namely, the minimum dominating set problem and its mixed fault-tolerant vari-
ant. Consider a graph G = (V,E). A vertex set D ⊆ V is a dominating set in
G if every vertex v /∈ D has a neighbor in D. The basic minimum dominat-
ing set problem is to find a minimum size dominating set for a given graph G.
This problem is NP-hard and has a log |V | + 1 approximation algorithm [5,11].
The redundancy-based fault-tolerant version of the problem, called the mini-
mum fault-tolerant dominating set (FT-DS) problem, can be approximated in a
similar manner.

We now introduce our new mixed variant of the fault-tolerant dominating
set problem, which allows both backup and reinforcement. Assume that at most
f of the vertices can fail (and be removed from the graph). A solution consists
of a set-pair (D̃,D), where the backup vertices in D host normal (failure-prone)
servers of low price p and the reinforcement vertices in D̃ host stronger servers of
high price p̃ that cannot fail. The pair (D̃,D) is an f -MFT dominating set-pair
in G = (V,E) if for every F ⊆ V s.t. |F | ≤ f , (D \ F) ∪ D̃ is a dominating set
in G \ F . The cost of the set-pair is Cost(D̃,D) = p|D| + p̃|D̃|.
Observation 1. The pair (D̃,D) is an f-MFT dominating set-pair in G iff
every vertex v �∈ D ∪ D̃ has either a neighbor in D̃ or f + 1 neighbors in D.

We next formulate the problem of finding a minimum cost f -MFT dominating
set-pair as an integer linear program in the class ILP+, as follows. Given a graph
G = (V,E), where |V | = n, define a matrix A2n×n of nonnegative integers s.t.

254 T. Navon and D. Peleg

for 1 ≤ i ≤ n:

Aij =

⎧
⎨

⎩

f + 1, if i = j,
1, if (vi, vj) ∈ E,
0, otherwise,

Ai(n+j) =

⎧
⎨

⎩

f + 1, if i = j,
f + 1, if (vi, vj) ∈ E,

0, otherwise.

Also define a vector b of length n s.t. bi = f +1 for 1 ≤ i ≤ n. Finally, define
a vector c of length 2n s.t. ci = p if 1 ≤ i ≤ n and ci = p̃ otherwise. The problem
is to minimize cx subject to Ax ≥ b for x ∈ {0, 1}2n.

Given D̃,D ⊂ V we represent these sets by defining a vector x of length 2n
s.t. for 1 ≤ i ≤ n, xi = 1 if vi ∈ D, and 0 otherwise, and xn+i = 1 if vi ∈ D̃, and
0, otherwise. It is easy to verify that the set-pair (D̃,D) is f -FT dominating in
G iff Ax ≥ b, and has minimum cost iff cx is minimum.

According to [11], optimization problems that can be formulated as an ILP+

(hence enjoy submodularity) have a log(
∑

i bi)+1 approximation algorithm. This
implies:

Lemma 1. The problem of finding a minimum cost f-MFT dominating set-pair
has a polynomial time greedy log(n(f + 1)) + 1 approximation algorithm.

3 Mixed Fault-Tolerant Centers

In this section we consider the k-centers problem and its mixed fault-tolerant
variants. Throughout this section, we consider a weighted graph G = (V,E, ω),
with the weight function ω. Define a distance function d on G as follows. The
length of a path P in G is the sum of the weights of all the edges in P . The
distance dv,u is the length of the shortest path between v and u.

The basic k-centers problem is defined as follows. Given G, find a subset
D ⊆ V such that |D| = k and the maximum distance from a vertex in V to the
closest vertex in D is a as small as possible. Formally, define the distance from
a vertex v to a set of vertices D to be δ(u,D) = minv∈D{du,v}. The radius of G
w.r.t D is rad(D) = maxu∈V {δ(u,D)}. We look for a subset D∗ of size at most
k attaining a minimum radius, D∗ = arg minD⊆V,|D|≤k{rad(D)}. This problem
is NP-hard. It has a 2-approximation algorithm by [3] and this is known to be
the best possible in polynomial time assuming NP �= P [4].

Introducing redundancy, the f -neighbor k-centers problem requires, given
G = (V,E, ω), to find a subset D ⊆ V , |D| = k, s.t. the maximum distance from
and v ∈ V \D to the set of f +1 closest vertices in D is as small as possible. (Note
that only vertices of V \D are considered as clients, i.e., the vertices of D are used
only as servers.) Formally, let δf (u,D) = minA⊆D,|A|=f+1 maxa∈A{du,a}. The f -
radius f rad− of a set D in G is defined as f rad−(D) = maxu∈V \D{δf (u,D)}.
We look for a subset D∗ of size at most k attaining a minimum f rad− value,
i.e., D∗ = arg minD⊆V,||D|≤k{f rad−(D)}. This problem has a 2-approximation
algorithm [6] and being an extension of the basic k-centers problem, it is the
best possible in polynomial time assuming NP �= P .

Mixed Fault-Tolerant Server Assignments 255

The f -all-neighbor k-centers problem is similar, except the vertices of D are
also clients. Formally, the f -radius is now f rad+(D) = maxu∈V {δf (u,D)}. We
look for D∗ = arg minD⊆V,||D|≤k{f rad+(D)} attaining a minimum f rad+.
This problem has a 3-approximation, and a 2-approximation for f < 4 [6].

Turning to mixed fault tolerance, let us define the f -MFT neighbor centers
problem as follows. Given G = (V,E, ω) and constants p (the price of setting up
a normal center at a vertex), p̃ (the price of setting up a reinforced center at a
vertex) and B (the total budget), find subsets D̃,D ⊆ V such that Cost(D̃,D) =
|D̃|p̃ + |D|p ≤ B (i.e., the centers set-up cost is within the budget) and the
maximum distance from a vertex in V \ (D̃ ∪ D) to a vertex in D̃ or a set
of f + 1 vertices in D is a as small as possible. Formally, let δf (u, D̃,D) =
min{δf (u,D), δ(u, D̃)}. The mixed radius Mrad− of a set-pair (D̃,D) in G is
Mrad−(D̃,D) = maxu∈V \(D̃∪D){δf (u, D̃,D)}. We look for a set-pair (D̃,D) of
Cost(D̃,D) at most B attaining a minimum Mrad− value,

(D̃∗,D∗) = arg min{Mrad−(D̃,D) | D̃,D ⊆ V, Cost(D̃,D) ≤ B} .

Let opt−(G) be the mixed radius of the optimal solution (D̃∗,D∗) in G.
Define the f -MFT all-neighbor centers problem similarly, except that the

vertices of D are also clients. Formally, the mixed radius Mrad+ of a set-pair
(D̃,D) in G is Mrad+(D̃,D) = maxu∈V {δf (u, D̃,D)}. We look for a set-pair
(D̃,D) of Cost(D̃,D) at most B attaining a minimum Mrad+ value,

(D̃∗,D∗) = arg min{Mrad+(D̃,D) | D̃,D ⊆ V, Cost(D̃,D) ≤ B} .

Let opt+(G) be the mixed radius of the optimal solution (D̃∗,D∗) in G.

3.1 Approximating the f-MFT All-Neighbor Centers Problem

In this section we give a 3-approximation algorithm for f -MFT all-neighbor
centers that relies on ideas of the algorithms for the ordinary and f -all-neighbor
k-centers problems by [4,6] and extends them to handle also reinforcement.

A solution to the problem must specify, for each client v, either a node in
D̃ or f + 1 nodes in D that serve it. We use the following notation. Denote by
S(D̃,D)(v) the node or nodes that “serves” v (i.e., the closest f + 1 nodes in D

or the closest node in D̃, if it is closer than the (f + 1)st closest node in D. If
there is a tie between the closest node in D̃ and the (f + 1)st closest node, then
S(D̃,D)(v) will contain the closest node in D̃. If there is a tie between nodes in D

or between nodes in D̃ we break it arbitrarily, say, by picking the nodes with the
smaller indices.) For v ∈ D̃ ∪ D, let us denote the client nodes that v “serves”
by C(D̃,D)(v) = {u | v ∈ S(D̃,D)(u)}. For any graph G = (V,E), define the power
graph G2 = (V, {(v, u) | ∃w ∈ V s.t. (v, w), (w, u) ∈ E}).

We can assume the graph is complete (if it is not, then we can add a new
edge (u, v) for every (u, v) /∈ E, and define ω(u, v) as the weight of the shortest
path between u and v). Sort the edges in a nondecreasing order e1, e2, ..., e|E| and

256 T. Navon and D. Peleg

define Ei = {e1, e2, ..., ei} and Gi = (V,Ei) (the unweighted graph that contains
all the edges in G whose weight is less than or equal to ei).

Algorithm MFT all centers uses a procedure named MIS centers. It runs the
procedure on Gi for i = 1, ...,m, and halts once the procedure returns a set pair
(D̃,D) of cost at most B. (If this never happens, then the procedure returns
“No feasible solution”.)

Invoked on the subgraph Gi, Procedure MIS centers computes a maximal
independent set I in G2

i (using a simple greedy algorithm). If (f +1)p ≥ p̃, then
the procedure sets D ← ∅ and D̃ ← I. On the other hand, if (f + 1)p < p̃, then
the procedure looks at the subset I ′ ⊆ I of vertices with at most f −1 neighbors
in Gi, sets D̃ ← I ′ and for each v ∈ (I \ I ′) it adds to D the node v and f of its
neighbors in Gi (chosen arbitrarily). The procedure then returns (D̃,D). Formal
code for our algorithms is given next.

Main algorithm MFT all centers

for i ← 1 to m do
Run (D̃,D) ← MIS centers(Gi)
if Cost(D̃,D) ≤ B then stop and return the solution (D̃,D).

end
return ”no feasible solution”

Procedure MIS centers

1. Find a maximal independent vertex set I in G2
i .

2. Let I ′ ⊆ I be the set of vertices with at most f − 1 neighbors in Gi.
3. if (f + 1)p < p̃ then do:

D̃ ← I ′; D ← ∅
for each v ∈ (I \ I ′) do

D ← D ∪ {v} ∪ {f arbitrarily chosen neighbors of v in Gi}
4. else set D ← ∅; D̃ ← I
5. Return (D̃,D)

The analysis is based on the following claims (some proofs are deferred to
the full paper).

Observation 2. There exist a feasible solution iff either B ≥ p̃ or |V | ≥ f + 1
and B ≥ (f + 1)p.

Consider iteration i of the algorithm. Let (D̃i,Di) be the solution returned
by MIS centers on the graph Gi, and let (D̃′

i,D
′
i) the solution with minimum cost

possible with radius ω(ei). The following two observations are used to establish
the approximation ratio of the algorithm.

Lemma 2. Cost(D̃i,Di) ≤ Cost(D̃′
i,D

′
i).

Mixed Fault-Tolerant Server Assignments 257

Proof. Let I be the maximal independent set selected by procedure MIS centers
in iteration i. Let us first observe that for every v, u ∈ I such that v �= u, their
servers are disjoint, namely, S(D̃′

i,D
′
i)

(v) ∩ S(D̃′
i,D

′
i)

(u) = ∅. Otherwise there is a
node w ∈ S(D̃′

i,D
′
i)

(v) ∩ S(D̃′
i,D

′
i)

(u) which means ω(v, w) ≤ ω(ei) and ω(u,w) ≤
ω(ei) (since ω(ei) is the radius of (D̃′

i,D
′
i)), hence u and w are neighbors in Gi

and v and w are neighbors in Gi, which means u and v are neighbors in Gi
2, in

contradiction to the fact that I is an independent vertex set in Gi
2. Hence for

each node v in I there must be at least one distinct node in D̃′
i or f + 1 distinct

nodes in D′
i (serving v and no other vertices in I). This implies that there must

be at least x nodes in D̃′
i and (f + 1)(|I| − x) nodes in D′

i for some 0 ≤ x ≤ |I|.
If (f + 1)p ≥ p̃, then procedure MIS centers returns (D̃i,Di) = (I, ∅), hence,

Cost(D̃i,Di) = |D̃i|p̃ + |Di|p = |I|p̃ = xp̃ + (|I| − x)p̃
≤ xp̃ + (f + 1)(|I| − x)p = |D̃′

i|p̃ + |D′
i|p = Cost(D̃′

i,D
′
i) .

Now consider the case (f + 1)p < p̃. In this case, it is cheaper to serve a client
using f + 1 backup servers than using a reinforced server, if at all possible.
Note, however, that for each v ∈ I ′, using backup servers is infeasible, hence
S(D̃′

i,D
′
i)

(v) ∈ D̃′
i. (By definition the nodes in I ′ have strictly fewer than f neigh-

bors in G at distance smaller or equal to ω(ei)). Hence, there must be at least
|I ′| nodes in D̃′

i, i.e., |I ′| ≤ x ≤ |I|. Therefore

Cost(D̃i,Di) = |D̃i|p̃ + |Di|p = |I ′|p̃ + (f + 1)|I \ I ′|p
= |I ′|p̃ + (f + 1)(|I| − x)p + (f + 1)(x − |I ′|)p
≤ |I ′|p̃ + (f + 1)(|I| − x)p + (x − |I ′|)p̃ = xp̃ + (f + 1)(|I| − x)p
= |D̃′

i|p̃ + |D′
i|p = Cost(D̃′

i,D
′
i). �

Lemma 3. Procedure MIS centers on Gi returns a solution (D̃i,Di) with radius
Mrad+(D̃i,Di) ≤ 3ω(ei).

Proof. For every vertex v in I, either v is in D̃i or v is in Di and is a neighbor
in Gi of at least f vertices in Di. Since I is a maximal independent set in G2

i ,
all the vertices in the graph Gi are at distance at most 2 from some vertex in I.
Hence all the vertices in the graph Gi are at distance at most 2 from a vertex in
D̃i or at distance at most 3 from at least f + 1 vertices in Di. And since all the
edges in Gi have weights at most ω(ei) in G, the distance (in G) between any
vertex in G to the closest vertex to it in Di or the closest f + 1 vertices to it in
D̃i is no more then 3ω(ei). Hence the mixed radius of (D̃i,Di) is no more than
3ω(ei). �
Lemma 4. Algorithm MFT all centers returns a solution of cost at most B and
radius at most 3opt+(G) (assuming a feasible solution exists).

Proof. Let (D̃′,D′) be a solution with cost at most B, let r = Mrad+(D̃′,D′) be
the mixed radius of that solution, and let ei be an edge in the graph such that
ω(ei) ≥ r. If the algorithm does not reach the i’th iteration it must mean that the

258 T. Navon and D. Peleg

algorithm found a solution with cost smaller than B and returned it in an earlier
iteration. Else in the i’th iteration algorithm MFT all centers will run Procedure
MIS centers on Gi and by Lemma 2 Procedure MIS centers will return a solution
(D̃,D) satisfying Cost(D̃,D) = cost(D̃i,Di) ≤ cost(D̃′

i,D
′
i) ≤ Cost(D̃′,D′) ≤

B, and algorithm MFT all centers will stop and return that solution.
Let (D̃∗,D∗) be the optimal solution in G (a solution with cost at most B

and the smallest possible radius under the restriction), and let r = ω(ei) be
the radius of that solution (there must be an edge ei of that weight). If the
algorithm stops at iteration j such that j ≤ i, then it will return the solution
given by procedure MIS centers on Gj . By Lemma 3 that solution has a radius of
no more than 3ω(ej) ≤ 3ω(ei) = 3opt+(G). Else the algorithm will reach the i’th
iteration and will run procedure MIS centers on Gi. By Lemma 3 that solution
has a radius of no more than 3ω(ei) = 3opt+(G). Since (D̃∗,D∗) has cost at most
B and radius ω(ei), by Lemma 2 the solution returned by procedure MIS centers
has cost at most B, hence algorithm MFT all centers will stop and return it. �

3.2 Approximating the f-MFT Neighbor Centers Problem

We next present an 8-approximation algorithm named MFT centers for f -MFT
neighbor centers, making use of two existing 2-approximation algorithms. The
first is Procedure Actr for the basic k-centers problem [3]. For a graph G and
integer k, Actr(G, k) returns a vertex set D of size k s.t. rad(D) ≤ 2rad(D′),
where D′ is the optimal solution for the problem. The second is Procedure
Afneig ctr for the f -neighbor k-centers problem [6]. For a graph G and
integers f and k, Afneig ctr(G, f, k) returns a vertex set D of size k s.t.
f rad−(D) ≤ 2f rad−(D′′), where D′′ is the optimal solution for the problem.

Main algorithm MFT centers

if (f + 1)p < p̃ then /* no need to use reinforced centers */
k ← �B/p�
run D ← Afneig ctr(G, f, k)
return (∅,D)

else /* (f + 1)p ≥ p̃ */
for i ← 1 to m do

Dlow
i ← ∅; S ← V ;

while there exists some v ∈ S such that |Γ(S,Ei)2(v)| < p̃/p do
Dlow

i ← Dlow
i ∪ {v}; S ← S \ {v}

end

Ĝi ← G \ Dlow
i ; k ← �B−|Dlow

i |p
p̃ �

run D̃i ← Actr(Gi, k)
end
imin = arg min

0≤i≤m
Mrad−(D̃i,D

low
imin

)

return (D̃imin
,Dlow

imin
)

end

Mixed Fault-Tolerant Server Assignments 259

As in Sect. 3.1, assume G is complete and define Ei and Gi for 1 ≤ i ≤ m.
If (f+1)p < p̃, then there is no need to use reinforced centers, so the algorithm

sets k ← �B/p�, runs D ← Afneig ctr(G, f, k), and returns the set pair (∅,D).
In case (f + 1)p ≥ p̃, the algorithm generates a set pair (D̃i,D

low
i) for every

i ∈ {1, ...,m}, based on Gi. The algorithm first selects the set of ordinary servers,
Dlow

i , as follows. It sets Dlow
i ← ∅ and S ← V . Then, while there exists some

v ∈ S such that |Γ(S,Ei)2(v)| < p̃/p, the algorithm moves v from S to Dlow
i .

Once Dlow
i is fixed, the algorithm removes its vertices from G, remaining with

a subgraph Ĝi. It then sets k ← �(B − |Dlow
i |p)/p̃� and runs Procedure Actr

to get D̃i ← Actr(Gi, k). Finally, the algorithm returns the set pair (D̃i,D
low
i)

with the lowest Mrad− value.

Observation 3. The problem has a feasible solution iff B ≥ min{(f +
1)p, |V |p, p̃}.
Lemma 5. Assume the problem admits a feasible solution. Then Alg.
MFT centers returns a solution with cost at most B. Moreover, the solution has
radius at most 4opt−(G) if (f + 1)p < p̃, and at most 8opt−(G) if (f + 1)p ≥ p̃.

4 Mixed Fault-Tolerant Facility Location

This section presents an approximation algorithm for the mixed fault-tolerant
facility location (MFT-FL) problem, which generalizes the fault-tolerant facility
location (FT-FL) problem. The FT-FL problem concerns a graph G = (V,E)
where each node vi represents both a client (with backup demand ri) and a
potential facility (with opening price pi). We slightly simplify notation by denot-
ing the vertices by 1, . . . , n and the distance between nodes i and j by dij . The
goal is to select a set of vertices D, open a facility in each of these vertices, and
assign each client i to ri of them, such that the total cost, composed of the sum
of all the opening prices of the open facilities plus the sum of all the distances
dij from each client i to a facility j it’s assigned to, is as small as possible.

The MFT-FL problem is defined in a similar setting, except that in each
site i it is possible to open either a normal facility (with opening price pi) or a
reinforced facility (with opening price p̃i). The goal is to open a set D of normal
facilities and a set D̃ of reinforced facilities, and to assign each client i to either
ri of the normal facilities or one of the reinforced facilities, such that the total
cost, namely, the sum of all the opening costs of the open normal and reinforced
facilities plus the sum of all the distances dij from each client i to a facility j
it’s assigned to is as small as possible.

Our algorithm (which is more involved than the previous ones) is based on
the ideas of the algorithm presented in Sect. 2 of [10] for the usual (redundancy-
based) fault-tolerant facility location problem, modified to fit our problem. We
represent the MFT-FL problem as the following integer linear program, where
yi = 1 (respectively, ỹi = 1) means that a normal (resp., reinforced) facility is
opened at node i, namely, i ∈ D (resp., i ∈ D̃), and xij = 1 (resp., x̃ij = 1)
means the client j is assigned to the normal (resp., reinforced) facility of node i.

260 T. Navon and D. Peleg

ILP: minimize C(x, y, x̃, ỹ) =
n∑

i=1

piyi+
n∑

i=1

p̃iỹi+
n∑

j=1

n∑

i=1

dijxij+
n∑

j=1

n∑

i=1

dij x̃ij

subject to the constraints

(ILP1)
∑n

i=1(xij + x̃ijrj) ≥ rj for every 1 ≤ j ≤ n

(ILP2) xij ≤ yi for every 1 ≤ i, j ≤ n

(ILP3) x̃ij ≤ ỹi for every 1 ≤ i, j ≤ n

(ILP4) yi, ỹi, xij , x̃ij ∈ {0, 1} for every 1 ≤ i, j ≤ n

Towards an approximation algorithm for our problems, we define the linear
program LP, which is a relaxed version of problem ILP, and its dual DP.

LP: minimize C(x, y, x̃, ỹ) subject to the constraints

(LP1)
∑n

i=1(xij + x̃ijrj) ≥ rj for every 1 ≤ j ≤ n

(LP2) xij ≤ yi for every 1 ≤ i, j ≤ n

(LP3) x̃ij ≤ ỹi for every 1 ≤ i, j ≤ n

(LP4) yi ≤ 1 for every 1 ≤ i ≤ n

(LP5) ỹi ≤ 1 for every 1 ≤ i ≤ n

(LP6) yi, ỹi, xij , x̃ij ≥ 0 for every 1 ≤ i, j ≤ n

DP: maximize
n∑

j=1

rjαi −
n∑

i=1

(zi + z̃i) subject to the constraints

(DP1) αj ≤ βij + dij for every 1 ≤ i, j ≤ n

(DP2) αj ≤ β̃ij + dij for every 1 ≤ i, j ≤ n

(DP3)
∑n

j=1 βij ≤ pi + zi for every 1 ≤ i ≤ n

(DP4)
∑n

j=1 β̃ij ≤ p̃i + z̃i for every 1 ≤ i ≤ n

(DP5) αi, βij , β̃ij , zi, z̃i ≥ 0 for every 1 ≤ i, j ≤ n

The following lemma summarizes some basic connections between the vari-
ables of the LP program and its dual DP, derived by the complementary slackness
theorem (see Chap. 7.9 of [8]).

Lemma 6.

(1) xij > 0 ⇒ αj = βij + dij for every 1 ≤ i, j ≤ n.
(2) x̃ij > 0 ⇒ αj = β̃ij + dij for every 1 ≤ i, j ≤ n.

Mixed Fault-Tolerant Server Assignments 261

(3) yi > 0 ⇒ ∑n
j=1 βij = pi + zi for every 1 ≤ i ≤ n.

(4) ỹi > 0 ⇒ ∑n
j=1 β̃ij = p̃i + z̃i for every 1 ≤ i ≤ n.

(5) αj > 0 ⇒ ∑n
i=1(xij + x̃ijrj) = rj for every 1 ≤ j ≤ n.

(6) βij > 0 ⇒ xij = yi for every 1 ≤ i, j ≤ n.
(7) β̃ij > 0 ⇒ x̃ij = ỹi for every 1 ≤ i, j ≤ n.
(8) zi > 0 ⇒ yi = 1 for every 1 ≤ i ≤ n.
(9) z̃i > 0 ⇒ ỹi = 1 for every 1 ≤ i ≤ n.

Lemma 7. Consider a solution (x, y, x̃, ỹ) for LP. Without loss of generality,
we may assume that for every 1 ≤ j ≤ n,

(1)
∑

i(xij + x̃ijrj) = rj ,
(2) there cannot be more than one i such that 0 < xij < yi or 0 < x̃ij < ỹi,
(3) there cannot be any i such that both 0 < xij < yi and 0 < x̃ij < ỹi.

The algorithm operates in three stages. In the preliminary Stage 0, it solves
the linear program LP and obtains its optimal fractional solution (x, x̃, y, ỹ).

In Stage 1, the algorithm selects initial sets L = {i | yi = 1} of normal centers
and L̃ = {i | ỹi = 1} of reinforced centers, and opens normal facilities at the
nodes of L and reinforced facilities at the nodes of L̃. In addition, for every client
1 ≤ j ≤ n, the algorithm identifies the sets Lj = {i ∈ L | xij > 0} of normal
servers that serve j in the fractional solution, and L̃j = {i ∈ L̃ | x̃ij > 0}, and
assigns j to every center in Lj ∪ L̃j . Denote the number of normal (respectively,
reinforced) facilities serving j by nj = |Lj | (resp., ñj = |L̃j |). Note that ñj must
be 0 or 1. If ñj = 1, then the residual (unsatisfied) backup demand of j is r̂j = 0.
Otherwise, r̂j = rj−nj . As the final step of this stage, the algorithm prepares the
sets of potential servers for j that were not used yet, Fj = {i | yi < 1, xij > 0}
and F̃j = {i | ỹi < 1, x̃ij > 0}.

Stage 2 aims at handling the set S = {j | r̂j ≥ 1} of unsatisfied clients,
starting from D = L and D̃ = L̃ and building up. This is done in successive
iterations, as long as S �= ∅. Iteration l focuses on the client j ∈ S such that αj

is minimal (later denoted J(l) in the analysis) and tries to satisfy its rquirements.
This is done in one of two ways.

Case (a): The client j under consideration satisfies
∑

i∈F̃j
ỹi ≥ 1/(2rj). In this

case, the algorithm picks the node with the cheapest price p̃i in F̃j , imin =
argmini∈F̃j

{p̃i}, and opens a reinforced facility at imin. Then, for each client k

such that F̃k ∩ F̃j �= ∅, it assigns the reinforced imin to serve k, and de-assigns
k from any other (normal) facility assigned to it in previous steps. As the client
k is now satisfied, it sets r̂k = 0. The algorithm now removes the facilities in F̃j

from the input (setting the value ỹi′ of each such node i′ ∈ F̃j to 0, and for all
1 ≤ j′ ≤ n setting x̃i′j′ = 0 and removing i′ from F̃j′).

Case (b): The client j has
∑

i∈F̃j
ỹi < 1/(2rj). In this case, the algorithm

will satisfy j’s requirements using a set Mj of normal facilities. It first sorts the
facilities by nondecreasing opening prices. If

∑
i∈Fj

yi ≤ r̂j , then taking Mj ← Fj

262 T. Navon and D. Peleg

satisfies j. If, on the other hand,
∑

i∈Fj
yi > r̂j , then a more elaborate selection

is necessary. We first pick the elements of Fj into Mj in nondecreasing order
of opening prices until

∑
i∈Mj

yi ≥ r̂j . If
∑

i∈Mj
yi > r̂j , then we replace the

last facility i in Mj with two copies, i1 and i2, and set yi1 = r̂j − ∑
i′∈Mj\{i} y′

i,
yi2 = yi−yi1 , ỹi1 = 0 and ỹi2 = ỹi. Next, for each client k (including j) such that
xik > 0, we set xi1k and xi2k such that xi1k ≤ yi1, xi2k ≤ yi2, xi1k + xi2k =
xik. For each k (including j) such that x̃ik > 0, we set x̃i1k ← x̃ik and x̃i2k ← 0.
Finally, the algorithm includes i1 in Mj .

Note that once Mj is selected, it satisfies
∑

i′∈Mj
yi′ = r̂j . The algorithm

now opens r̂j cheapest (normal) facilities in Mj . These facilities are used to serve
every client k (including j) such that Fk ∩ Mj �= ∅. Specifically, for each such
k, the algorithm assigns min{r̂k, r̂j} of the open facilities to serve k, and then
sets r̂k = r̂k − min{r̂k, r̂j} and Fk ← Fk \ Mj . Once this is done, tha algorithm
removes the facilities in Mj from the input. This completes the iteration.

At the end of each iteration, the algorithm updates the set S ← {j | r̂j ≥ 1}.
The algorithm terminates when S = ∅, returning the obtained solution.

We now sketch the analysis (leaving a detailed description of the algorithm
and some of the proofs to the full paper).

Denote the cost of stage 1 facility selection and client assignments by Cost1.
This cost is bounded as follows.

Lemma 8. Cost1 ≤
n∑

j=1

(nj + ñj)αj −
n∑

i=1

(zi + z̃i).

To analyze Stage 2, we look at the iterations of the main loop. For every
client k, let r̂k(l) be the value of r̂k at the end of iteration l, and let r̂k(0) be
the value of r̂k at the beginning of stage 2. Let Fk(l) and F̃k(l) be the values of
Fk and F̃k at the end of iteration l, and let Fk(0) and F̃k(0) be the values of Fk

and F̃k at the beginning of stage 2.

Claim. At the beginning of stage 2, for every client k,
∑

i∈Fk(0)

yi + rk
∑

i∈F̃k(0)

ỹi ≥ r̂k(0) .

Lemma 9. After iteration l, for every client k,
∑

i∈Fk(l)

yi + rk
∑

i∈F̃k(l)

ỹi ≥ r̂k(l).

To establish the correctness of the algorithm, we show the following.

Lemma 10. The final solution obtained by our algorithm satisfies constraints
(ILP1) - (ILP4) of the ILP problem.

It remains to analyze the approximation ratio. Denote the cost of the service
between the clients and the facilities that are opened in stage 2 by Cost2ser,
the cost of opening the facilities in iteration l of stage 2 by Cost2op(l), and the
cost of opening the facilities in stage 2 by Cost2op =

∑I
l=1 Cost2op(l), where

Mixed Fault-Tolerant Server Assignments 263

I is the number of iterations in stage 2. Finally, denote the cost of the optimal
solution to the LP version by OPTLP , and set r = maxj{rj}.

Our analysis relies on the key observation that for each iteration l, either
Cost2op(l) ≤ 2r

∑
i∈F̃J(l)

ỹip̃i and the servers of F̃J(l) are removed from the
input, or Cost2op(l) ≤ 3

∑
i∈MJ(l)

yipi and the servers of MJ(l) are removed from
the input. This allows us to bound the cost as follows.

Lemma 11. Cost2op ≤ max{3, 2r} · (
∑n

i=0 piyi +
∑n

i=0 p̃iỹi).

Lemma 12. Let k be a client assigned to a facility i in stage 2. Then dik ≤ 3αk.

Lemma 13. The cost of the service between the clients and the facilities that
are opened in stage 2 satisfies Cost2ser ≤ 3

∑n
j=1 r̂jαj.

Combining, we get, letting C−
1+2 = Cost2ser + Cost1,

Lemma 14. The cost of service between the clients and the facilities that are
opened in stage 2, plus the cost of stage 1, satisfies C−

1+2 ≤ 3 · OPTLP .

Lemma 15. The cost of the overall solution is Cost ≤ (3+max{3, 2r})·OPTLP .

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co., New York (1979)

2. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 293–306 (1985)

3. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem.
Math. Oper. Res. 10(2), 180–184 (1985)

4. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms
for bottleneck problems. J. ACM 33(3), 533–550 (1986)

5. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9(3), 256–278 (1974)

6. Khuller, S., Pless, R., Sussmann, Y.J.: Fault tolerant k-center problems. Theor.
Comput. Sci. 242(1), 237–245 (2000)

7. Parter, M., Peleg, D.: Fault tolerant BFS structures: a reinforcement-backup trade-
off. In: 27th ACM Symposium on Parallel Algorithms and Architectures (2015)

8. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Wiley-
Interscience Series in Discrete Mathematics and Optimization (1999)

9. Sviridenko, M.: An improved approximation algorithm for the metric uncapaci-
tated facility location problem. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002.
LNCS, vol. 2337, pp. 240–257. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-47867-1 18

10. Swamy, C., Shmoys, D.B.: Fault-tolerant facility location. ACM Trans. Algorithms
(TALG) 4(4), 51 (2008)

11. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica 2(4), 385–393 (1982)

https://doi.org/10.1007/3-540-47867-1_18
https://doi.org/10.1007/3-540-47867-1_18

Communication Complexity in Vertex
Partition Whiteboard Model

Tomasz Jurdzinski(B), Krzysztof Lorys, and Krzysztof Nowicki

Institute of Computer Science, University of Wroclaw, Wroc�law, Poland
{tju,lorys,knowicki}@cs.uni.wroc.pl

Abstract. We study the multi-party communication model, where play-
ers correspond to the nodes of a graph and each player knows its neigh-
bors in the input graph. The players can send messages on a whiteboard
which are immediately available to each player. Eventually, the referee
which knows only messages on the whiteboard is supposed to give a solu-
tion to the considered (graph) problem. We distinguish between oblivious
and adaptive variant of the model. The former model is related to simul-
taneous multi-party communication complexity, while the latter is closely
related to so-called broadcast congested clique.

Communication complexity is the maximum over all nodes of the sizes
of messages put on the whiteboard by a node. Our goal is to study the
impact of adaptivity on communication complexity of graph problems.
We show that there exists an infinite hierarchy of problems with respect
to the number of rounds for constant size messages. Moreover, motivated
by unsuccessful attempts to establish non-adaptive communication com-
plexity of graph connectivity in recent years, we study the connectivity
problem in the severely restricted class of two-regular graphs We deter-
mine an asymptotically tight bound on communication complexity in the
oblivious model and provide ω(1) lower bound on the number of rounds
in the adaptive model for some message size b(n) = ω(1).

1 Introduction

Simultaneous two-party communication with referee model was proposed in [16].
In this paper we focus on the simultaneous multi-party communication model
with referee, a generalization to the larger number of players. Additionally we
consider two variants of the model – oblivious (nonadaptive) and adaptive.

In the oblivious two-party communication model, each player sends one mes-
sage to a referee, who computes output of the protocol. Instead of considering
referee we may think that all players simultaneously write messages on the white-
board and, based on the state of the whiteboard, the result of the protocol is
computed. The adaptive two-party communication model corresponds to the
recently studied broadcast congested clique model model with referee. In this

This work was supported by the National Science Centre, Poland grant
2017/25/B/ST6/02010

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 264–279, 2018.
https://doi.org/10.1007/978-3-030-01325-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_24&domain=pdf

Communication Complexity in Vertex Partition 265

model, each protocol may consist of multiple rounds. In each round, all play-
ers write messages simultaneously on the whiteboard, but each message might
depend on the private input of the player and the state of the whiteboard after
the previous round. At the end, the result of the protocol is computed based on
the final content of the whiteboard.

Additionally, for graph problems we may consider two variants of input par-
tition: edge partition and vertex partition. In the former variant the set of edges
of the input graph is arbitrary distributed among players, therefore each player
knows some subset of the set of edges of the graph. The latter variant (vertex
partition) requires that each player is associated with a fixed subset of the set
of vertices of the graph, which means that this player knows all the edges adja-
cent to the nodes associated to it. Significantly, in the vertex partition model,
each edge (u, v) of the input graph is known to two players: the player asso-
ciated with u and the player associated with v. The vertex partition model is
potentially more powerful than the edge partition model. This strength makes it
difficult to prove non-trivial lower bounds in the vertex partition model for some
specific problems, especially for connectivity. We focus on the vertex partition
simultaneous multi-party communication model, both adaptive and oblivious, in
the context of graph problems.

The whiteboard n-party model with vertex-partition of an input graph closely
corresponds with recently studied broadcast congested clique. The broadcast
congested clique in turn is a restricted variant of the unicast congested clique,
which attracted interest since its close relationships with more realistic models
of computing on big data as k-machine big data model [12] or MapReduce [7,11].

1.1 Related Work

There is quite a broad research related to the connectivity of the input graph in
the whiteboard model as well as in the congested clique. This includes algorithm
research on the connectivity problem (CONN), where the goal is only to deter-
mine whether the input graph is connected and the connected components (CC)
problem, where the partition into connected components has to be determined.
The difference between CC and CONN, which we want to emphasize, is that
CC problem trivially requires Ω(n log n) bits to be sent on the whiteboard in
the worst case (even in the vertex partition of input) in order to distinguish all
partitions of the set of n nodes in disjoint connected components.

For edge partition 2-party communication model, it is known for quite long
time that the connectivity problem (CONN) requires Ω(n log n) bits of commu-
nication as well. More recently, it was shown that any one-round protocol with
public randomness requires Ω(nk/ log2 k) bits to be written on the whiteboard
in the k-party simultaneous communication model [15]. This result implies that,
for k = n parties, Ω(n/ log2 n)-bit messages are necessary to solve the CONN
problem.

Vertex partition version of simultaneous multi-party communication model is
more powerful. In [1] authors give a non-adaptive protocol finding CC with high
probability using public randomness with communication complexity O(log3 n),

266 T. Jurdzinski et al.

which is way below Ω(n/ log2 n) bits required in the edge partition model. There
are also randomized algorithms which solve MST (and CC) in O(1) rounds
and O(log n)-size messages in the unicast congested clique [5,6,8]. Moreover,
deterministic algorithms solving CC in O(1) rounds with O(nε)-bit messages
for ε < 1 and in O(log / log log n) rounds with O(log n)-bit messages have been
obtained recently in the broadcast congested clique [9,14].

Proving lower bounds in the vertex partition whiteboard model is much
harder than in the edge partition version, as it is impossible to manipulate with
input of one player without changing the input of other players (as information
about each edge is shared by two players). However, there are quite recent lower
bound results, including subgraph detection lower bounds [2,4,10].

1.2 Model Definition and Complexity Classes

We consider a model of distributed computation and communication, where
k ≤ n players work in synchronous rounds. At the beginning of each round,
all players perform some internal computation. Then, all players simultaneously
write messages of limited size b on the whiteboard. At the end of the round, each
player can see (and store locally) all messages written by all other players so far.
The joint input is an undirected n-node (for n ≥ k) graph G(V,E). The set of
nodes V of G is split into k subsets and the ith player for i ∈ [k] is associated
with the ith subset of V . Moreover, each player has as input information about
all edges adjacent to nodes of G associated with that player.

We define WBk
r (b) as the set of problems, which can be decided by r-round,

b-bit, k-party protocols working in the above described model. We assume that
a protocol is parametrized by the size of the input graph n, while k, r, b might
be either constants or functions of n.

The most popular variant of the above defined general model called broadcast
congested clique assumes that n = k, i.e., each party is associated with one
vertex of the input graph. Moreover, special emphasis has been made on one-
round protocols; this model is called the whiteboard communication in some
papers. Therefore, we use the following simplified notations for specific variants
of WBk

r (b):

– WBr(b) = WBn
r (b). That is, WBr(b) is the set of problems, which can be

decided by r-round, b-bit, n-party protocols,
– WBr =

⋃
b∈N

WBr(b). That is WBr is the class of problems which can be
decided by r-round, O(1)-bits, n-party protocols.

– WB(b) = WB1(b) (i.e., WB(b) = WB1(b) = WBn
1 (b). That is WB(b) is the

class of problems which can be decided by 1-round, b-bits, n-party protocols

The model with only one round of communication and n parties, i.e., cor-
responding to

⋃
b WB1(b), will be called non-adaptive (or oblivious) whiteboard

model. The adaptive whiteboard model corresponds to the situation that the
allowed number of rounds of communication is larger than 1.

Communication Complexity in Vertex Partition 267

1.3 Our Results

The results of the paper are twofold. On one hand, we establish complexity the-
oretic results separating classes of problems solvable for various parameters b
(message size) and r (the number of rounds). Moreover, we focus on (limited
variants of) the connectivity problem, one of the most studied problems in con-
text of the considered model. Below, we discuss the specific results split in two
parts: round hierarchy results and lower bounds for (restricted variants of) con-
nectivity. (Due to limited space, some proofs are deferred to the full version of
this paper.)

Round hierarchy theorem. There exists an infinite sequence of natural num-
bers r1 < r2 < r3 < · · · such that, the family of problems solvable in ri+1

rounds strictly includes the family of problems solvable in ri rounds for each
i > 0 and constant b: WBri

(b) � WBri+1(b). Moreover, smaller number of
rounds cannot be overcome by larger size of messages, i.e., for each b = O(1),
WBri+1 = WBri+1(1) �⊂ WBri

(b).

Lower bounds for connectivity and its restricted variants. We show that
communication complexity of CONN is Θ(n log n), even in 2-party computation.
As a simple corollary, we obtain logarithmic lower bound on communication
complexity of CONN in one-round n-party model, i.e., CONN �∈ WB(c log n).

As the above lower bound does not apply for 2-degree graphs, we then focus
on CONN problem in n-party whiteboard for 2-regular graphs. We call it the
HAM problem, since connectivity of a 2-regular graphs corresponds to the fact
that a graph is just a Hamiltonial cycle. We show that Θ(log n) is the optimal size
of messages for deterministic one-round protocols solving CONN. By adjusting
our proof technique to multi-round protocols, we also show that HAM cannot
be decided in O(1) rounds with O(1)-size messages. The result is even stronger,
i.e., HAM �∈ WBf(n)(g(n)) for some f(n), g(n) = ω(1).

1.4 Notations

For natural numbers a ≤ b, [a, b] denotes the set of integers {a, a + 1, . . . , b} and
[a] = [1, a]. The set of neighbors of a vertex v ∈ V in a graph G(V,E) is denoted
by NG(v) or shortly N(v). For a one-round n party whiteboard protocol P , a
node v and a set X ⊂ V , Pv(X) denotes the message of v in P when N(v) = X.
We say that a set of edges E is a perfect bipartite matching between disjoint sets
V1 and V2 if edge edge from E has an endpoint in V1 and an endpoint in V2 and
each node from V1 ∪ V2 is incident to exactly one edge from E.

2 Two-party Communication

In this section we consider connectivity (CONN) in the two-party non-adaptive
whiteboard model. We show that Θ(n log n) bits are necessary and sufficient
to solve CONN, i.e., CONN ∈ WBn

1 (O(n log n) and CONN �∈ WBn
1 (b(n)) for

268 T. Jurdzinski et al.

each b(n) = o(n log n). Then, as corollaries, we establish lower bounds for mes-
sage sizes necessary to solve CONN in the non-adaptive whiteboard model with
arbitrary number k ≤ n parties.

Theorem 1. In the k-party communication model for k ≥ 2, O(n log n) bits per
player are sufficient to decide whether an input graph is connected, Ω(n

k log n)
bits are necessary.

In the k-party communication model, O(n log n) bits per player are sufficient
to decide whether an input graph is connected, Ω(n

k log n) bits are necessary.

3 Non-adaptive n-Party Communication

In this section we focus on the non-adaptive n-party whiteboard model. More
precisely, we analyze communication complexity of the connectivity problem
restricted to graphs with maximal degree two.

3.1 Non-adaptive Complexity of HAM

In this section we consider the HAM problem, i.e., the connectivity problem for
two-regular graphs. Our goal is to establish communication complexity of this
problem for the non-adaptive n-party whiteboard model. Formally, the HAM
problem is to decide whether a given input graph is a Hamiltonian cycle. Note
that the lower bound Ω(log n) on the message size for the connectivity problem
and k = n players from Theorem 1 does not apply to the HAM problem, since
the graphs analyzed in the proof of Theorem 1 might have nodes of degree three.

First, let us make a simple observation.

Fact 1. The graph is a Hamiltonian cycle if and only if every node has two
neighbors and graph is connected.

Given the above property, one can easily solve HAM by a O(log n)-bit n-party
protocol. It is sufficient that each party sends a bit encoding information whether
its degree is two or not and then each node of degree two sends 2 log n bits with
IDs of its neighbors. (By a simple trick generalized in [3] one can even limit the
actual size of messages to 2 + log n.)

In the following theorem, we give an Ω(log n) lower bound on asymptotic
complexity of HAM for the n-party non-adaptive whiteboard model. Theorem 2
combined with the above described algorithm show that communication com-
plexity of HAM in n-party non-adaptive whiteboard model is Θ(log n).

Theorem 2. Each one-round protocol solving HAM in the n-party whiteboard
model requires messages of size at least (log n)−3

3 .

We give the proof of the above theorem in the remaining part of this section.
The idea of the proof is to show that the protocol P , using messages of size
smaller than (log n)−1

3 , does not distinguish a graph G1 which is a Hamiltonian

Communication Complexity in Vertex Partition 269

cycle and a graph G2 which is a sum of disjoint cycles. For a node v of the input
graph we can define an auxiliary conflict graph i.e., a graph in which we put
an edge between u and w, if message sent by v has to differentiate between the
case that {v, u} and the case that {v, w} is an edge of the input graph. Then
we can argue that the graph Hv has to be 2b colorable, if the protocol solves
HAM problem. To prove that there exists a node v for which Hv requires large
number of colors (for correct node coloring), we show that each pair of nodes
{u,w} is connected by an edge in Hv for many nodes v of the input graph. This
allows, by counting argument, to show that there is v such that Hv has large
number of edges. Then, we use a specific lower bound on the chromatic number
of a graph as a function of the number of the edges of the graph. This gives the
lower bound on the number of colors 2b of Hv with many edges and in turn we
obtain a lower bound on the size of messages b of the protocol P .

The proof is given by an analysis of P on graphs from a specific family G. For
a fixed n ∈ N, consider graphs on the set of vertices V = {v1, . . . , v4n} split into
L1, L2, L3, L4 such that Li (or layer i) is equal to{v(i−1)n+1, v(i−1)n+2, . . . , vin}
for i ∈ [4]. Let G be a family of such graphs, such that each graph G(V,E) from
G satisfies the following constraints:

– vi is connected by an edge with vi+2n for each i ∈ [2n]; that is each node vi

from L1 ∪ L2 is connected by an edge with its mirror vi+2n;
– E contains a perfect matching between L1 and L2; that is each v ∈ L1 (v ∈ L2,

resp.) has exactly one neighbor in L2 (L1, resp.);
– E contains a perfect matching between L3 and L4; that is each v ∈ L3 (v ∈ L4,

resp.) has exactly one neighbor in L4 (L3, resp.);
– there are no more edges in G except of those described above.

For brevity of notation, we will denote nodes by their indices, i.e., the node
vi will be denoted just as i. For a node u ∈ L1 (u ∈ L2, resp) and w ∈ L2

(w ∈ L1, resp.), let Pu(w) denote the message of u in the protocol P when
N(u) = {w, u + 2n}. That is, Pu(w) = Pu({w, u + 2n}).

For given u, v ∈ L2, we split L1 into 22b buckets according to messages, which
u and v send on the whiteboard, for various graphs from G. More precisely,
for binary strings Mu,Mv of length b, a node w ∈ L1 belongs to the bucket
BMu,Mv

iff Pu(w) = Mu and Pv(w) = Mv. That is, all elements of a bucket are
indistinguishable for u and v which means that u and v send the same message
on the whiteboard for each element of the bucket being their neighbor.

Now, for each w ∈ L1, we define the auxiliary graph Hw(L2, Ew) such that
{u, v} ∈ Ew iff Pw(u) �= Pw(v). That is, the edge {u, v} says that the message
w sends on the whiteboard when u is its neighbor and the message w sends on
the whiteboard when v is its neighbor are different.

Below, we show that, if the messages written on the whiteboard are small,
each edge {u, v} for u, v ∈ L2 appears in almost all graphs Hw(L2, Ew).

Proposition 1. Let u, v be arbitrary elements of L2 and Mu,Mv be b-bit strings.
Then, for all but (at most) one of elements w ∈ BMu,Mv

, (u, v) is an edge of
Hw(L2, Ew).

270 T. Jurdzinski et al.

Proof. Contrary, assume that {u, v} �∈ Ew1 and {u, v} �∈ Ew2 for some u, v ∈ L2,
w1, w2 ∈ BMu,Mv

.
Then, for any G1, G2 from the family G such that

– {u,w1} and {v, w2} are edges of G1 and are not among edges of G2,
– {u,w2} and {v, w1} are edges of G2 and are not among edges of G1,
– the remaining edges of G1 and G2 are identical (i.e., EG1\{{u,w1}, {v, w2}} =

EG2 \ {{u,w2}, {v, w1}}),

G1 and G2 are indistinguishable by the algorithm, i.e., they give the same output
on the whiteboard. We call such G1 and G2 twins.

Now, let us choose arbitrary 1 < i < n−1. Consider a permutation of L1 and
L3 in which w1 and w2 are on the ith and (i+1)st position respectively. Similarly,
consider a permutation of L2 and L4 in which u and v are on the ith and (i+1)st
position respectively. Let v′

j , v
′
n+j , v

′
2n+j , v

′
3n+j denote the jth node of L1, L2,

L3 and L4 respectively after the application of these permutations. Now, we will
fix a set of edges E′ such that graphs G1 with edges E′ ∪ {{u,w1}, {v, w2}} and
G2 with edges E′ ∪ {{u,w2}, {v, w1}} are twins. Moreover, we ensure that G1

forms two separate cycles while the set of edges of G2 is a Hamilton cycle.
Thus, we get a contradiction with the assumption that the algorithm solves

the HAM problem: we get the same result for G1 and G2, while G2 is in HAM
and G1 is not in HAM. �	

Given Proposition 1, we are ready to prove Theorem 2. As each pair u, v from
L2 splits L1 in at most 22b buckets, for each u, v ∈ L2, the edge {u, v} appears
in at least n − 22b of graphs Hv1(L2, Ev1), Hv2(L2, Ev2), . . . , Hvn

(L2, Evn
), by

Proposition 1. This in turn implies (by the pigeonhole principle) that Hvi
con-

tains at least
(
n
2

)
n−22b

n edges for some i ∈ [n]. On the other hand, by assigning
the color c(u) = (Pvi

(u)) for each u ∈ L2, we obtain a correct coloring of Hvi

with at most 2b colors. Indeed, c(u) = (Pvi
(u)) �= (Pvi

(v)) = c(v) for each u, v
connected by an edge in Hvi

, according to the definition of Hvi
. Now, we can

apply the following lemma establishing a relationship between the number of
edges of an n-node graph and its chromatic number.

Lemma 1. The following property holds for any natural numbers x and b: if an
n-node graph with at least

(
n
2

)
n−2xb

n edges is 2b colorable, then b ≥ (log n)−1
x+1

By Lemma 1 applied to Hvi
, b ≥ (log n)−1

3 . This gives us that any protocol
solving HAM requires messages of size (log n)−1

3 for 4n-node graphs. Therefore
for an n-node graph, it would require messages of size (log(n/4))−1

3 = (log n)−3
3 .

4 Lower Bounds and Hierarchy Result for Adaptive
Whiteboard Model

In this section we consider adaptive n-party whiteboard model, i.e., protocols
with many (more than one) rounds. In Sect. 4.3 we show that HAM cannot be

Communication Complexity in Vertex Partition 271

solved in O(1) rounds with messages of size O(1). Then, in Sect. 4.4, we show
that there exist an infinite hierarchy of problems with respect to the number of
rounds with O(1)-message size. The hierarchy result is obtained by providing
an algorithm and a lower bound for the PATHd problem for d ∈ N, where we
ask whether the input graph contains a connected component equal to a path of
length d.

Firstly, in Sects. 4.1 and 4.2, we introduce auxiliary notions of matching sen-
sitivity and grid graphs with gadgets. They will serve as the main tools in lower
bounds presented in Sects. 4.3 and 4.4.

Since we are considering protocols with many rounds, we need to introduce
some new notations. Let P (i)(G) denote the state of the whiteboard of the pro-
tocol P after the ith round for an input graph G. Moreover, let us fix a decision
problem A on graphs. We will say that a family of graphs G is (P, i)-fooling (with
respect to A), if P (i)(G1) = P (i)(G2) for each G1, G2 ∈ G, while G contains at
least one graph for which the output for A is equal to true and G contains at
least one graph for which the output for A is equal to false.

4.1 MATCHING Sensitivity

Let G be a family of graphs containing (among others) the vertices v1, . . . , v2n

such that:

– the set of edges with one endpoint in {v1, . . . , v2n} is fixed (the same in all
graphs from G),

– the edges connecting nodes from {v1, . . . , v2n} form a perfect bipartite match-
ing between V1 = {v1, v2, . . . , vn} and V2 = {vn+1, vn+2, . . . , v2n}.

We say that an algorithm P is insensitive after i rounds on V1, V2 in the family
G if the content of messages transmitted by v1, . . . , v2n is the same for all graphs
from G after i rounds. In other words, the whiteboard does not give any infor-
mation about edges between nodes of V1 ∪ V2 (except of the fact that there is a
perfect bipartite matching on (V1, V2)), provided the input graph belongs to G.

Lemma 2. Assume that an adaptive whiteboard algorithm P with b-bit messages
is insensitive on V ′

1 , V
′
2 of size p after i rounds for constant i ≥ 0. Then, there

exist V ′′
1 ⊂ V ′

1 and V ′′
2 ⊂ V ′

2 of size log log p
2b such that P is insensitive on V ′′

1 , V ′′
2

after i + 1 rounds, provided n and p are large enough.

Proof. Let q ≤ p be a natural number. Moreover, let U ⊂ V ′
1 be an arbitrary

subset of V ′
1 of size q, U = {u1, . . . , uq}. We split V ′

2 into buckets labeled with
bq-bit words in the following way. A node v ∈ V ′

2 is assigned to the bucket with
the label (Pu1(v), Pu2(v) . . . Puq

(v)), where Puj
(v) is the message written in the

(i + 1)-st round on the whiteboard by the node uj if it is connected with v in
the matching on sets V ′

1 , V
′
2 . Using the pigeonhole principle, we can deduce that

there exists a bucket containing at least p
2bq nodes.

Now consider an r-element subset U ′ of the largest bucket, U ′ = {u′
1, . . . , u

′
r}

and set r = p
2bq . Then, let us assign labels to the nodes of U , defined

272 T. Jurdzinski et al.

by messages of nodes from U ′. The node u ∈ U is assigned the label
(Pu′

1
(u), Pu′

2
(u) . . . Pu′

p
(u)), where Pu′

j
(u) is the message written on the white-

board by the node u′
j in the (i + 1)st round if it would be matched with u in

the input graph. Next, we split the nodes of U into buckets with respect to the
labels defined by the elements of U ′. Thus there are at least q

2br nodes in a largest
bucket, by the pigeonhole principle. Let U ′′ be a subset of a largest bucket of
size q

2br . Observe that the sets U ′ and U ′′ are chosen such that P is insensitive
on V ′′

1 , V ′′
2 after i + 1 rounds for each V ′′

1 , V ′′
2 such that V ′′

1 ⊂ U ′′, V ′′
2 ⊂ U ′ and

|V ′′
1 | = |V ′′

2 |. Indeed, according to the definitions of U ′ and U ′′, for each u′ ∈ U ′

(u′′ ∈ U ′′, resp.) connected with a node from U ′′ (U ′, resp.), the messages sent
by u′ up to the round i + 1 do not depend on the fact which element of U ′′

(U ′, resp.) is a neighbor of u′ (u′′, resp.). Thus, in order to prove the lemma, it
is sufficient to show that a it is possible to choose choose U ′, U ′′ satisfying the
above constraints such that

min{|U ′|, |U ′′|} = min{r,
q

2br
} ≥ log log p

2b
,

where r = p
2bq . Let us consider q as a variable (we chosen arbitrary q ≤ p).

Note that |U ′| = r is a decreasing function of q, thus |U ′′| = q
2br is a growing

function of q. Thus, min{|U ′|, |U ′′|} is maximized when |U ′| = |U ′′| which gives
the relationship r = p

2bq = q
2br . The relationship r = q

2br implies that q = r2rb

which combined with r = p
2bq gives p = r2br2rb

. The right-hand side expression
r2br2rb

of the above relationship is the growing function of r. Thus, in order to
finish the proof of the lemma, it is sufficient to check whether r satisfying the
above equality is larger than log log m

2b , i.e., whether r2br2rb

< p for r = log log m
2b :

r2br2rb

=
log log p

2b
· 2b log log p

2b 2
log log p

2b
b

=
log log p

2b
2

log log p
2 2

log log p
2

= 2log log log p−log(2b) · 2
√
log p log log p

2 = 2Θ(
√
log p log log p) < p

where the last inequality holds if p is large enough. One may argue that r and q
should be natural numbers, while our setting does not guarantee that property.
However, the inequality in the above estimation can be guaranteed also e.g. when
|U ′| = |U ′′| is equal to
r� if p is large enough. �	

4.2 Grid Graphs with Gadgets and Shuffles

Now, we discuss a kind of embedding of some families of graphs on a grid and
specific rearrangements of such embeddings called shuffles.

Let m, d, k, δ, g be positive natural numbers such that g + kδ < d. Moreover,
let τ = (τ1, . . . , τmd) be a sequence of pairwise different natural numbers. We
define the family of grid graphs with gadgets (ggg) Gτ

m,d,g,k,δ as follows.
Consider m-column, d-row rectangular grid and the set of nodes

vτ(1), . . . , vτ(md). Then, we put consecutive nodes from the sequence
vτ(1), . . . , vτ(md) in consecutive rows of the grid, i.e., the node vτ(a) is located in

Communication Complexity in Vertex Partition 273

the row i = �1 + (a − 1)/m and the column j = a − (i − 1)m. For brevity of
notation, the node located in the row i and the column j will be denoted by ui,j .
Then, we distinguish k gadgets in the grid. The jth gadget for j ∈ [1, k] consists
of the (g + (j − 1)δ)th row Wj = {ug+(j−1)δ,1, . . . , ug+(j−1)δ,m} (the top row of
gadget j) and the (g+1+(j−1)δ)th row W ′

j = {ug+1+(j−1)δ,1, . . . , ug+1+(j−1)δ,m}
(the bottom row of gadget j). We say that m is the width of a gadget and δ is
the distance between gadgets.

Finally, an md-node graph G put on the grid in the above described way
belongs to the family Gτ

(m,d,g,kδ), if the set of edges of G satisfies the following
conditions:

1. For each rows j and j +1 which do not form a gadget and each i ∈ [m], there
is a “vertical” edge connecting the ith node in the jth row and the ith node
in the (j +1)st row. Formally, for each i < d such that i �∈ {g+ lδ | 0 ≤ l < k},
and each j ∈ [m], there is an edge (ui,j , ui+1,j).

2. For each gadget j ∈ [k] consisting of rows Wj and W ′
j (i.e., the rows g+(j−1)δ

and g + 1 + (j − 1)δ – see above), G contains a perfect bipartite matching
between Wj and W ′

j .
3. There are no more edges connecting nodes of G, except of those described

above.

Thus, all graphs from the family share the same set of “vertical” edges outside
of gadgets, while they can have arbitrary bipartite matchings “inside” gadgets.
We also distinguish the family of cyclic grid graphs with gadgets (cggg) Cτ

m,d,g,k,δ

which satisfy requirements of Gτ
m,d,g,k,δ with additional set of “vertical” edges

connecting nodes in the last row (row d) and the first row: for each j ∈ [m],
there is an edge (ud,j , u1,j).

We will use the shuffle operation on a graph G defined as follows. Let j ∈
[k − 1] and let τj be a permutation of {1, . . . , m}. In the (j, τj)-shuffle of the
graph G, we use the permutation τj in all rows starting in the bottom row W ′

j

of the gadget j and finishing at the top row Wj+1 of the gadget j + 1. Formally,
for each row i ∈ [g + 1 + (j − 1)δ, . . . , g + jδ + 1], the nodes ui,1, . . . , ui,m (nodes
from the row i) are permuted according to τj . That is, after the (j, τj)-shuffle,
the position (i, l) of the grid for i ∈ [g + 1 + (j − 1)δ, . . . , g + jδ] is occupied by
the node ui,τj(l).

If G is a ggg (i.e., without cycles), the (0, τ0)-shuffle ((k, τk)-shuffle, resp.)
is just the application of the permutation τ0 (τk, resp.) to the top row (bottom
row, resp.) of the first (last, resp.) gadget and to all rows preceding (following,
resp.) it.

If G is a cggg (with cycles), the above definition of shuffles is extended for
(k, τk)-shuffle by assuming that the gadget 1 is preceded by the last gadget k
and gadget k is followed by the gadget 1. Below, we state a simple but useful
observation that ggg and cggg are closed under shuffles.

Lemma 3. Let Gτ
m,d,g,k,δ (Cτ

m,d,g,k,δ) be a family of grid graphs with gadgets
(cyclic grid graphs with gadgets, respectively). Moreover, let 0 ≤ j1 < j2 < · · · <
jl and let τj1 , . . . , τj1 be permutations of {1, . . . , m}. Then, after applying the set

274 T. Jurdzinski et al.

of shuffles S = {(j1, τj1), . . . , (jl, τjl
)}, we obtain the family of graphs Gτ ′

m,d,g,k,δ

(Cτ
m,d,g,k,δ, resp.), where τ ′ is determined by τ and τj1 , . . . , τj1 . Moreover, for

each j ∈ {j1, . . . , jl} the top row of gadget j and the bottom row of gadget j + 1
are obtained by the application of τj to these rows on graphs from Gτ

m,d,g,k,δ

(Cτ
m,d,g,k,δ, resp.).

4.3 Adaptive Complexity of the HAM problem

In this section we show that any adaptive algorithm solving HAM in the n-
party adaptive whiteboard model with message size b = O(1) requires Ω(log∗ n)
rounds. More generally, we prove the following theorem.

Theorem 3. Any adaptive whiteboard protocol P with b-bit messages requires
Ω(log∗ n − log∗ b) rounds to solve HAM problem.

In the remaining part of this section we prove Theorem 3 and give the final
conclusion in Corollary 1. In order to prove Theorem 3 we will show that there
exist (P, i)-fooling family of graphs for i ∈ [Θ(log∗ n − log∗ b)] and a protocol
P . Let n,m, k, δ ∈ N such that n is divisible by m and n ≥ mkδ. Moreover,
let σ be a permutation of {1, . . . , n} and let d = n/m. We define the family of
graphs Hσ

(m,k,δ) as the family of cyclic grid graphs with gadgets Cσ
m,d,1,k,δ. That

is, Hσ
(m,k,δ) is the specific instantiation Cσ

m,d,1,k,δ of a family of cyclic grid graphs,
where σ is just a permutation of {1, . . . , n} (thus, the grid contains the nodes
with indices {v1, . . . , vn}) and the top row of the first gadget is just the top row
of the grid.

Observe that, as long as k ≥ 1 ∧ m ≥ 2, there are both disconnected and
connected graphs in Hσ

(m,k,δ). Our goal is to build families of graphs defined
above for consecutive i = 1, 2, 3, . . . with various parameters such that the con-
sidered protocol P is insensitive on all gadgets Wj ,W

′
j after i rounds. Then,

as long as there is at least one gadget, the family contains both connected and
disconneccted graphs and therefore it is (P, i)-fooling.

Let φ(n) = log log n
2b , and let φ(i) denote the i-fold composition of φ, i.e.,

φ(0)(n) = n and φ(i)(n) = φ
(
φ(i−1)(n)

)
for i > 0. Moreover, let φ∗(n) =

min{r |φ(r)(n) < 2}.

Lemma 4. Let P be an adaptive whiteboard algorithm with b-bit messages.
Then, for each i ∈ N, there are infinitely many naturals n satisfying the
following condition: there exists a permutation σ of {1, . . . , n} such that
Hσ

(φ(i)(log n), 2
φ∗(log n)

2i ,2i+1)
is (P, i)-fooling.

Proof. We will prove Lemma 4 by induction. Note that there is nothing on
the whiteboard before the first round. Therefore, any set of graphs containing
both connected and disconnected graphs is (P, 0)-fooling. In particular the set
HId

(log n),2φ∗(log n),2
is (P, 0)-fooling, where Id denotes the identity permutation.

This observation (applied for all large enough n) gives the base step of the
inductive proof.

Communication Complexity in Vertex Partition 275

Now, let m = φ(i)(log n), 2k = 2φ∗(log n)

2i , and δ = 2i+1. For the inductive
step, assume that Hσ

(φ(i)(log n), 2
φ∗(log n)

2i ,3·2i−1)
= Hσ

(m,2k,δ) is a (P, i)-fooling set

for i > 0 and some permutation σ. To prove the inductive step, it is sufficient to
show that there exists a family Hσ′

(m′,k,δ′) included in Hσ
(m,2k,δ) which is (P, i+1)-

fooling, where

– σ′ is a permutation of {1, . . . , n},
– m′ = log log m

2b = φ(i+1)(log n), δ′ = 2δ = 2i+2 and k = 2φ∗(log n)

2i+1 .

In other words, we build a (P, i + 1)-fooling subfamily of Hσ′
(m′,k,δ′) of Hσ

(m,2k,δ)

embedded in the m′ × n/m′ grid with k gadgets in distances δ′.
Observe that, according to the assumption that Hσ

(m,2k,δ) is a (P, i)-fooling
set, the protocol P is insensitive on each gadget, i.e., on the sets (Wj ,W

′
j)

for j ∈ [2k], where Wj , W ′
j are the rows 1 + δ(j − 1) and 2 + δ(j − 1), resp.

Therefore, we can apply Lemma 2 on each gadget. In our construction, we
apply Lemma 2 simultaneously to all gadgets with odd indices, i.e., (W1,W

′
1),

(W3,W
′
3) . . . (W2k−1,W

′
2k−1). Moreover, we fix edges in all gadgets with even

indices and some edges in gadgets with odd indices such that we will eventually
get a new family of graphs which is (P, i + 1)-fooling.

Lemma 2 implies that the following property holds after round i+1: for each
j ∈ {1, 3, . . . , 2k − 1} there are sets Uj ⊂ Wj , U ′

j ⊂ W ′
j of size log log m

2b such that
P is insensitive on Uj , U

′
j after i + 1 rounds.

Given the sets Uj , U
′
j for odd js, we shuffle the nodes in the grid and fix some

edges in gadgets such that the elements of Uj form the leftmost log log m
2b nodes of

the row (j − 1)δ + 1 (i.e., the top row of the jth gadget), and the elements of U ′
j

form the leftmost log log m
2b nodes of the row (j−1)δ+2 (i.e., the bottom row of the

jth gadget). Simultaneously we maintain the property that the graph obtained
after the shuffles is a cyclic grid graph with gadgets. Recall that m′ = log log m

2b .
In order to satisfy the above described property, we apply Lemma 3 as follows.
For each odd gadget j ∈ {1, 3, . . . , 2k − 1}, we choose permutations σj,top and
σj,bottom of {1, . . . , m} such that all elements of Uj are on the first |Uj | = m′

positions of σj,top and all elements of U ′
j are on the first |U ′

j | = m′ positions of
σj,bottom. Then, we apply (j − 1, σj,top)-shuffle and (j, σj,bottom)-shuffle.

Finally, we set edges in all even gadgets and some edges in odd gadgets in
order to build such a subfamily of Hσ

(m,k,δ) that only edges connecting sets Uj

and U ′
j remain undetermined (though there must be a perfect matching between

Uj and U ′
j in order to guarantee that the graph is in Hσ

(m,k,δ)) and the nodes of

graphs can be rearranged in the grid with m′ = log log m
2b = |Uj | (for each odd

j) columns such that the pairs of the sets Uj , U
′
j form new gadgets in distance

2δ = 2i+2. Firstly, we describe how the edges in even gadgets of the graphs
from Hσ

(m,k,δ) are set. Let j ∈ [k] be an even number of the gadget. Recall that
we apply two shuffles affecting the nodes from gadget j: (j − 1, σj−1,bottom)-
shuffle and (j + 1, σj+1,top)-shuffle. For each i ∈ [m], we connect the node from
the column σj−1,bottom(i) in the top row of gadget j with the node from the

276 T. Jurdzinski et al.

column σj+1,top(i) in the bottom row of gadget j. That is, we set the edge
(u(j−1)δ+1,σj−1,bottom(i), u(j−1)δ+2,σj+1,top(i)). (Note that this is a vertical edge in
the family obtained through the above described shuffles.)

Secondly, consider an odd gadget j from Hσ
(m,k,δ). As described above, the

nodes in the top row Wj of gadget j are reordered according to the permutation
σj,top of {1, . . . , m} and the nodes in the bottom row W ′

j of gadget j are reordered
according to the permutation σj,bottom of {1, . . . , m}. Analogously to the above
discussed case of odd gadgets, we would like to set vertical edges inside the
gadget, i.e., connect the node from the column σj,top(i) in the top row of gadget
j with the node from the column σj,bottom(i) in the bottom row of gadget j.
That is, we set the edge (u(j−1)δ+1,σj,top(i), u(j−1)δ+2,σj,bottom(i)). However, recall
that the sets Uj ⊂ Wj and U ′

j ⊂ W ′
j form m′ = |Uj | = |U ′

j | leftmost elements of
the sequences σj,top and σj,bottom. And, the goal is to build a family of graphs,
where arbitrary perfect bipartite matchings between Uj and U ′

j might appear.
Therefore, we add the edges (u(j−1)δ+1,σj,top(i), u(j−1)δ+2,σj,bottom(i)) only for

i > |Uj | = |U ′
j | = m′ =

log log m

2b

and leave the possibility that the set of edges inside Uj ∪ U ′
j forms an arbitrary

bipartite matching between Uj and U ′
j .

Given the above described setting of edges and rearrangement of nodes in
the grid, the leftmost m′ columns of the original m × d grid might either form
a connected subgraph or not, depending on perfect matchings between U2j and
U ′
2j for js in [1, k]. However, for each i > m′, the nodes from the column i

form a separate connected component, i.e., a cycle consisting of vertical edges
connecting nodes in consecutive rows. Thus, all graphs from the obtained family
are disconnected. On the other hand, our goal is to build a subfamily of Hσ

(m,k,δ)

which is (P, i + 1)-fooling, i.e., all nodes from the subfamily should give the
same content of the whiteboard after i + 1 rounds while the subfamily should
contain both connected and disconnected graphs. Therefore we make a slight
but significant change in the above described setting of edges. By choosing large
enough appropriate n we can assure that m is divisible by m′. Then, we choose
an even gadget, say W2k,W ′

2k. Applied shuffles in the original grid imply that
the edges set in the gadget 2k

(u(2k−1)δ+1,σ2k−1,bottom(i), u(2k−1)δ+2,σ1,top(i)) for i ∈ [m]

are just vertical edges connecting nodes in the same column. Instead of vertical
edges, we make a cyclic shift by m′, i.e., the ithe node of the top row of gadget
2k will be connected by an edge with: the (i + m′)th node of the bottom row of
gadget 2k if i + m′ ≤ m and with the (i + m′ − m)th node of the bottom row of
gadget 2k if i + m′ > m. Thus, we add the edges

(u(2k−1)δ+1,σ2k−1,bottom(i), u(2k−1)δ+2,σ1,top(i+m′)) for i ∈ [m]

instead of (u(2k−1)δ+1,σ2k−1,bottom(i), u(2k−1)δ+2,σ1,top(i)). In this way, for each i ∈
[1,m′], the nodes from the columns i + m′, i + 2m′, . . . , i + m − 2m′, i + m − m′

Communication Complexity in Vertex Partition 277

are connected by a path which is entered from the ith column of gadget 2k
(after the shuffles in the original grid) and the last node of this path has an edge
connecting it with the node of the ith column of the top row of the gadget 1.

Finally, the above construction gives us the way to put graphs from Hσ
(m,k,δ)

in the m′×n/m′ grid and satisfy constraints of Hσ′
(m′,k,δ′), where the permutation

σ′ is determined by σ, the above described shuffles (following from the choices
of Uj , U

′
j for odd j < 2k) and the next rearrangement of nodes from columns

i > m′ into paths which can be put in the first m′ columns. Therefore we
obtained a family of graphs Hσ′

(m′,k,δ′) with k = 2φ∗(log n)

2i+1 gadgets of width m′ =
log log m

2b = φ(φ(i)(log n)) = φ(i+1)(log n) with distance between them 2δ = 2i+2,
which finishes the inductive step of the proof of Lemma 4. �	
Recall that non-empty family Hσ

(m,k,δ) contains both connected and disconnected
graphs, provided that k ≥ 1 and m ≥ 2. Therefore, by Lemma 4, any adaptive
algorithm solving HAM using b-bit messages needs φ∗(log n) rounds. As φ is
actually the function of n and b, one can prove the following relationship.

Fact 2. φ∗(log n) ∈ Ω(log∗ n − log∗ b) for the function φ(n) = log log n
2b .

Finally, Theorem 3 is a simple consequence of Lemma 4 and Fact 2. For any
constant b, Fact 2 implies Ω(log∗ n) lower bound on the number of rounds nec-
essary to solve HAM using b-bit messages. Moreover, for each b(n) such that
(log∗ n− log∗ b(n)) ∈ ω(1) we have a super constant lower bound on the number
of rounds necessary to solve HAM using b(n)-bit messages. In particular, there
are b(n) ∈ ω(1) such that log∗ n − log∗ b ∈ ω(1), which implies the following
corollary.

Corollary 1. Any adaptive whiteboard protocol for HAM with messages of size
b ∈ O(1) requires Ω(log∗ n) rounds. Moreover, there exists b ∈ ω(1) such that
each whiteboard protocol for HAM with b-bit messages requires ω(1) rounds.

4.4 Round Hierarchy Theorem by the Analysis of the PATHd

Problem

In this section we prove a round hierarchy theorem for messages of size b = O(1).
The result is obtained by analysis of the PATHd problem. We say that a graph
G(V,E) belongs to PATHd iff V contains a connected component equal to a
path of length d. First, we give a simple algorithm which solves PATHd using
1-bit messages in �d

2 + 1 rounds. Then, a lower bound Ω(log d) on the number
of rounds necessary to solve the PATHd problem is given.

The algorithm for PATHd Our whiteboard adaptive algorithm for PATHd

uses 1-bit messages and works in �d
2 + 1 rounds. In the first round, the nodes

of degree 1 are writing 1 on the whiteboard. In the round i ∈ [2, �d
2 + 1], a

node writes 1 on the whiteboard if it did not write 1 before, its degree is equal
to 2 and one of its neighbors wrote 1 in round i − 1. The last �d

2 + 1th round
looks slightly different for odd and even d. If d is odd, a node v writes 1 on the

278 T. Jurdzinski et al.

whiteboard if one of its neighbors and v wrote 1 in the previous round and the
degree of v is equal to 2. For even d, a node v writes 1 if both its neighbors
wrote 1 in the previous round and the degree of v is equal to 2. One can easily
check that the input graph belongs to PATHd iff at least one node writes 1 on
the whiteboard in the last round.

Lemma 5. For each d ∈ N, the problem PATHd can be solved in �d
2 + 1

rounds in the adaptive whiteboard model using 1-bit messages, i.e., PATHd ∈
WB� d

2+1�(1)

The lower bound for PATHd The main results of this section establishes a
lower bound on the number of rounds sufficient to solve PATHd with constant-
size messages.

Theorem 4. Any oblivious whiteboard protocol P with b-bit messages requires
Ω(min(log d, log∗ n − log∗ b)) rounds to solve PATHd problem.

The proof of Theorem 4 is based on similar ideas to those from the proof of
Theorem 3. The key difference with respect to the proof of Theorem 3 is in the
inductive step. Before, we rearranged and restricted a family of grid graphs such
that the number of rows was growing and the number of columns was decreasing.
Now, the number of rows will correspond to the parameter d of the considered
PATHd problem. Therefore, we will keep the number of rows unchanged and
conceptually “remove” the part of the graphs which is fixed and has no impact
of the fact whether the graph belongs to PATHd. Moreover, we assure that the
new ‘subfamily” contains both graphs from PATHd and graphs which do not
belong to PATHd.
The following result establishes a more exact separation at the bottom level of
the hierarchy.

Theorem 5. Each one-round protocol solving PATH1 requires messages of size
at least (log n)−3

5 .

By combining Lemma 5 and Theorems 4, 5, we have the following corollary.

Corollary 2. Let b = O(1) be an arbitrary constant. Then, there exists c > 0
such that WBri

(b) � WBri+1(b) and WBri+1(1) �⊂ WBri
(b) for each i ∈ N, where

r1 = 1, r2 = 2 and rj+1 =
c · 2rj � for j > 1.

References

1. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measure-
ments. In: Discrete Algorithms, SODA 2012, pp. 459–467 (2012)

2. Becker, F., et al.: Allowing each node to communicate only once in a distributed
system: shared whiteboard models. Distrib. Comput. 28(3), 189–200 (2015)

3. Becker, F., Montealegre, P., Rapaport, I., Todinca, I.: The simultaneous number-
in-hand communication model for networks: private coins, public coins and deter-
minism. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 83–95.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09620-9 8

https://doi.org/10.1007/978-3-319-09620-9_8

Communication Complexity in Vertex Partition 279

4. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model.
In: PODC 2014, pp. 367–376. ACM (2014)

5. Ghaffari, M., Parter, M.: MST in log-star rounds of congested clique. In: PODC
2016, pp. 19–28. ACM (2016)

6. Hegeman, J.W., Pandurangan, G., Pemmaraju, S.V., Sardeshmukh, V.B., Scquiz-
zato, M.: Toward optimal bounds in the congested clique: graph connectivity and
MST. In: Distributed Computing, PODC 2015, pp. 91–100. ACM (2015)

7. Hegeman, J.W., Pemmaraju, S.V.: Lessons from the congested clique applied to
mapreduce. Theor. Comput. Sci. 608, 268–281 (2015)

8. Jurdzinski, T., Nowicki, T.: MST in O(1) rounds of congested clique. In: SODA
2018, SIAM, pp. 2620–2632 (2018)

9. Jurdzinski, T., Nowicki, K.: Brief announcement: on connectivity in the broadcast
congested clique. In: DISC 2017, LIPIcs, pp. 54:1–54:4 (2017)

10. Kari, J., Matamala, M., Rapaport, I., Salo, V.: Solving the Induced Subgraph
problem in the randomized multiparty simultaneous messages model. In: Schei-
deler, C. (ed.) Structural Information and Communication Complexity. LNCS,
vol. 9439, pp. 370–384. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25258-2 26

11. Karloff, H.J., Suri, S., Vassilvitskii, S.: A model of computation for mapreduce. In:
SODA 2010, SIAM, pp. 938–948 (2010)

12. Klauck, H., Nanongkai, D., Pandurangan, G., Robinson, P.: Distributed computa-
tion of large-scale graph problems. In: SODA 2015, SIAM, pp. 391–410 (2015)

13. Korhonen, J.H., Suomela, J.: Brief announcement: towards a complexity theory
for the congested clique. In: DISC 2017, pp. 55:1–55:3 (2017)

14. Montealegre, P., Todinca, I.: Brief announcement: deterministic graph connectivity
in the broadcast congested clique. In: PODC 2016. ACM (2016)

15. Phillips, J.M., Verbin, E., Zhang, Q.: Lower bounds for number-in-hand multiparty
communication complexity, made easy. In: SODA 2012, SIAM, pp. 486–501 (2012)

16. Yao, A.C.-C.: Some complexity questions related to distributive computing (pre-
liminary report). In: STOC 1979, pp. 209–213. ACM (1979)

https://doi.org/10.1007/978-3-319-25258-2_26
https://doi.org/10.1007/978-3-319-25258-2_26

Time-Bounded Influence Diffusion
with Incentives

Gennaro Cordasco1(B), Luisa Gargano2, Joseph G. Peters3,
Adele A. Rescigno2, and Ugo Vaccaro2

1 Department of Psychology, Università della Campania
“Luigi Vanvitelli”, Caserta, Italy

gennaro.cordasco@unicampania.it
2 Department of Computer Science, Università di Salerno, Fisciano, Italy

3 School of Computing Science, Simon Fraser University, Burnaby, Canada

Abstract. A widely studied model of influence diffusion in social net-
works represents the network as a graph G = (V, E) with an influence
threshold t(v) for each node. Initially the members of an initial set S ⊆ V
are influenced. During each subsequent round, the set of influenced nodes
is augmented by including every node v that has at least t(v) previously
influenced neighbours. The general problem is to find a small initial set
that influences the whole network. In this paper we extend this model
by using incentives to reduce the thresholds of some nodes. The goal is
to minimize the total of the incentives required to ensure that the pro-
cess completes within a given number of rounds. The problem is hard
to approximate in general networks. We present polynomial-time algo-
rithms for paths, trees, and complete networks.

1 Introduction

The spread of influence in social networks is the process by which individuals
adjust their opinions, revise their beliefs, or change their behaviours as a result
of interactions with others (see [14] and references therein quoted). For exam-
ple, viral marketing takes advantage of peer influence among members of social
networks for marketing [13]. The essential idea is that companies wanting to
promote products or behaviours might try to target and convince a few indi-
viduals initially who will then trigger a cascade of further adoptions. The intent
of maximizing the spread of viral information across a network has suggested
several interesting optimization problems with various adoption paradigms. We
refer to [5] for a recent discussion of the area. In the rest of this section, we will
explain and motivate our model of information diffusion, describe our results,
and discuss how they relate to the existing literature.

1.1 The Model

A social network is a graph G = (V,E), where the node set V represents the
members of the network and E represents the relationships among members.
c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 280–295, 2018.
https://doi.org/10.1007/978-3-030-01325-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_25&domain=pdf

Time-Bounded Influence Diffusion with Incentives 281

We denote by n = |V | the number of nodes, by N(v) the neighbourhood of v,
and by d(v) = |N(v)| the degree of v, for each node v ∈ V .

Let t : V → N = {1, 2, . . .} be a function assigning integer thresholds to the
nodes of G; we assume w.l.o.g. that 1 ≤ t(v) ≤ d(v) holds for all v ∈ V . For
each node v ∈ V , the value t(v) quantifies how hard it is to influence v, in the
sense that easy-to-influence elements of the network have “low” t(·) values, and
hard-to-influence elements have “high” t(·) values [16]. An influence process in
G starting from a set S ⊆ V of initially influenced nodes is a sequence of node
subsets,1

InfluencedG[S, 0] = S

InfluencedG[S, �]=InfluencedG[S, �−1]∪
{

v :
∣∣N(v)∩ InfluencedG[S, �−1]

∣∣ ≥ t(v)
}

,

� > 0.
Thus, in each round �, the set of influenced nodes is augmented by including every
uninfluenced node v for which the number of already influenced neighbours is
at least as big as v’s threshold t(v). We say that v is influenced at round � > 0
if v ∈ InfluencedG[S, �] \ InfluencedG[S, � − 1]. A target set for G is a set S such
that it will influence the whole network, that is, InfluencedG[S, �] = V , for some
� ≥ 0.

The classical Target Set Selection (TSS) problem having as input a network
G = (V,E) with thresholds t : V −→ N, asks for a target set S ⊆ V of minimum
size for G [1,8]. The TSS problem has roots in the general study of the spread
of influence in social networks (see [5,14]). For instance, in the area of viral
marketing [13], companies wanting to promote products or behaviors might try
to initially convince a small number of individuals (by offering free samples or
monetary rewards) who will then trigger a cascade of influence in the social
network leading to the adoption by a much larger number of individuals.

In this paper, we extend the classical model to make it more realistic. It was
first observed in [12] that the classical model limits the optimizer to a binary
choice between zero or complete influence on each individual whereas customized
incentives could be more effective in realistic scenarios. For example, a company
promoting a new product may find that offering one hundred free samples is far
less effective than offering a ten percent discount to one thousand people.

Furthermore, the papers mentioned above do not consider the time (number
of rounds) necessary to complete the influence diffusion process. This could be
quite important in viral marketing; a company may want to influence its poten-
tial customers quickly before other companies can market a competing product.

With this motivation, we formulate our model as follows. An assignment
of incentives to the nodes of a network G = (V,E) is a function p : V →
N0 = {0, 1, 2, . . .}, where p(v) is the amount of influence initially applied on
v ∈ V . The effect of applying the incentive p(v) on node v is to decrease its
threshold, i.e., to make v more susceptible to future influence. It is clear that
to start the process, there must be some nodes for which the initially applied
influences are at least as large as their thresholds. We assume, w.l.o.g., that

1 We will omit the subscript G whenever the graph G is clear from the context.

282 G. Cordasco et al.

0 ≤ p(v) ≤ t(v) ≤ d(v). An influence process in G starting with incentives given
by a function p : V → N0 = {0, 1, 2, . . .} is a sequence of node subsets
Influenced[p, 0] = {v : p(v) = t(v)}
Influenced[p, �] = Influenced[p, �−1]∪

{
v :

∣∣N(v)∩Influenced[p, �−1]
∣∣ ≥ t(v)−p(v)

}
,

� > 0.
The cost of the incentive function p : V −→ N0 is

∑
v∈V p(v).

Let λ be a bound on the number of rounds available to complete the pro-
cess of influencing all nodes of the network. The Time-Bounded Targeting with
Incentives problem is to find incentives of minimum cost which result in all nodes
being influenced in at most λ rounds:

Time-Bounded Targeting with Incentives (TBI).
Instance: A network G = (V,E) with thresholds t : V −→ N and time

bound λ.
Problem: Find incentives p : V −→ N0 of minimum cost

∑
v∈V p(v) s.t.

Influenced[p, λ] = V.

Example 1. Solutions to the TBI problem can be quite different from solutions to
the TSS problem for a given network. Consider a complete graph K8 on 8 nodes
with thresholds shown in Fig. 1. The optimal target set is S={v8} which results
in all nodes being influenced in 4 rounds. The TBI problem admits different
optimal solutions (with different incentive functions) depending on the value of
λ, as shown in Fig. 1.

Fig. 1. A complete graph K8. The number inside each circle is the node threshold.
Optimal solutions for the TSS problem and the TBI problem, with various values of
λ, are shown.

1.2 Related Work and Our results

The study of the spread of influence in complex networks has experienced a
surge of interest in the last few years. Kempe et al. [17] introduced the Influence

Time-Bounded Influence Diffusion with Incentives 283

Maximization (IM) problem, where the goal is to find a subset of nodes in a
social network that has cardinality bounded by a certain budget β and that
could maximize the spread of influence. However, they were mostly interested in
networks with randomly chosen thresholds.

Chen [6] studied the TSS problem. He proved a strong inapproximability
result that makes unlikely the existence of an algorithm with approximation
factor better than O(2log

1−ε |V |). Chen’s result stimulated a series of papers
including [1–4,7–9,15,20,22] that isolated many interesting scenarios in which
the problem (and variants thereof) become tractable.

The problem of maximizing the number of nodes activated within a specified
number of rounds has also been studied [8,9,23]. The problem of dynamos or
dynamic monopolies in graphs is essentially the target set problem with every
node threshold being half its degree [21].

The Influence Maximization problem with incentives was introduced in [12].
In this model the authors assume that the thresholds are randomly chosen values
in [0, 1] and they aim to understand how a fractional version of the Influence
Maximization problem differs from the original version. To that purpose, they
introduced the concept of partial influence and showed that, in theory, the frac-
tional version retains essentially the same computational hardness as the integral
version, but in practice, better solutions can be computed using heuristics in the
fractional setting.

The Targeting with Partial Incentives (TPI) problem, of finding incentives
p : V −→ N0 of minimum cost

∑
v∈V p(v) such that all nodes are eventually

influenced, was studied in [11]. Exact solutions to the TPI problem for special
classes of graphs were proposed in [10,11]. Variants of the problem, in which the
incentives are modelled as additional links from an external entity, were studied
in [18,19]. The authors of [23] study the case in which offering discounts to nodes
causes them to be influenced with a probability proportional to the amount of
the discount.

It was shown in [11] that the TPI problem cannot be approximated to within
a ratio of O(2log

1−ε n), for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)),
where n is the number of nodes in the graph. As a consequence, for general
graphs, the same inapproximability result still holds for the time bounded version
of the problem that we study in this paper.

Theorem 1. The TBI problem cannot be approximated to within a ratio of
O(2log

1−ε n), for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)), where
n is the number of nodes in the graph.

Our Results. Our main contributions are polynomial-time algorithms for path,
complete, and tree networks. In Sect. 2, we present a linear-time greedy algorithm
to allocate incentives to the nodes of a path network. In Sect. 3, we design a
O(λn log n) dynamic programming algorithm to allocate incentives to the nodes
of a complete network. In Sect. 4, we give an O(λ2Δn})algorithm to allocate
incentives to a tree with n nodes and maximum degree Δ.

284 G. Cordasco et al.

2 A Linear-Time Algorithm for Paths

In this section, we present a greedy algorithm to allocate incentives to nodes of
a path network. We prove that our algorithm is linear-time.

We denote by L(0, n − 1) the path with n nodes 0, . . . , n − 1 and edges
{(i, i + 1) : 0 ≤ i ≤ n − 2}. Since the threshold of each node cannot exceed its
degree, we have that t(0) = t(n − 1) = 1 and t(i) ∈ {1, 2}, for i = 1, . . . , n−2.
For 0 ≤ j ≤ k ≤ n − 1, we denote by L(j, k) the subpath induced by the nodes
j, . . . , k.

Fig. 2. An example of the execution of the Algorithm 1 on a path L(0, 21) with a 2-
path satisfying Lemma 3 and two 2-paths satisfying Lemma 4. Filled nodes represents
nodes having threshold 2. Dashed nodes represents dummy nodes. The number inside
the nodes represents the incentive assigned to the node.

Lemma 1. Let L(j, k) be a subpath of L(0, n−1) with t(j+1) = · · · = t(k−1) =
2 and t(j) = t(k) = 1. For any incentive function p : V → {0, 1, 2} that solves
the TBI problem on L(0, n − 1) and for any λ,

k−1∑

i=j+1

p(i) ≥

⎧
⎪⎨

⎪⎩

k−j−2 if both j + 1 and k − 1 are influenced by j and k, resp.

k−j−1 if either j + 1 or k − 1 is influenced by its neighbour (j or k)

k − j otherwise.

Proof. Let p be an incentive function that solves the TBI problem on L(0, n−1).
For any node i ∈ {j + 1, . . . , k − 1}, let inf(i) ∈ {0, 1, 2} be the amount of
influence that i receives from its neighbours in L(0, n − 1) during the influence
process starting with p (that is, the number of i’s neighbours that are influenced
before round i).

Time-Bounded Influence Diffusion with Incentives 285

For each i = j + 1, . . . , k − 1, it must hold that inf(i) + p(i) ≥ t(i) = 2.
Hence,

k−1∑
i=j+1

p(i) ≥
k−1∑

i=j+1

(2 − inf(i)) ≥ 2(k − j − 1) −
k−1∑

i=j+1

inf(i). (1)

Noticing that each link in E is used to transmit influence in at most one direction,
we have

k−1∑

i=j+1

inf(i) ≤

⎧
⎪⎨

⎪⎩

k−j, if both j + 1 and k − 1 are influenced by j and k, resp.

k−j−1, if either j+1 or k−1 is influenced by its neighbour (j or k)

k−j−2, otherwise.

As a consequence, using Eq. (1) gives the desired result.
In the following we assume that λ ≥ 2. The case λ = 1 will follow from the

results in Sect. 4, since the algorithm for trees has linear time when both λ and
the maximum degree are constant.

Definition 1. We denote by OPT (0, n − 1) the value of an optimal solution
p : V → {0, 1, 2} to the TBI problem on L(0, n−1) in λ rounds. For any subpath
L(j, k) of L(0, n − 1), we denote by:

(i) OPT (j, k) the value
∑k

i=j p(i) where p is an optimal solution to the TBI
problem on L(j, k);

(ii) OPT (j, k,←) the value
∑k

i=j p(i) where p is an optimal solution to the TBI
problem on L(j, k) with the additional condition that the node k gets one
unit of influence from k + 1;

(iii) OPT (j, k, �→) the value
∑k

i=j p(i) where p is an optimal solution to the TBI
problem on L(j, k) with the additional condition that k is influenced by round
λ − � without getting influence from node k + 1;

(iv) OPT (→, j, k) the value
∑k

i=j p(i) where p is an optimal solution to the
TBI problem on L(j, k) with the additional condition that j gets one unit
of influence from j − 1;

(v) OPT (�←, j, k) the value
∑k

i=j p(i) where p is an optimal solution to the TBI
problem on L(j, k) with the additional condition that node j is influenced
by round λ − � without getting influence from j − 1.

Lemma 2. For any subpath L(j, k) and for each 1 ≤ � < �′ ≤ λ:
(1) If t(k) = 1 then OPT (j, k, ←) ≤ OPT (j, k) ≤ OPT (j, k, �

→) ≤ OPT (j, k, �′
→)

≤ OPT (j, k, ←)+1.

(2) If t(j) = 1 then OPT (→, j, k) ≤ OPT (j, k) ≤ OPT (�
←, j, k) ≤ OPT (�′

←, j, k) ≤
OPT (→, j, k)+1.

Proof. We first prove (1). We notice that each of the first three inequali-
ties OPT (j, k,←) ≤ OPT (j, k), OPT (j, k) ≤ OPT (j, k, �→), OPT (j, k, �→) ≤
OPT (j, k, �′

→) is trivially true since each solution that satisfies the assumptions of
the right term is also a solution that satisfies the assumptions of the left term. It

286 G. Cordasco et al.

remains to show that OPT (j, k, �′
→) ≤ OPT (j, k,←)+1. Let p be a solution that

gives OPT (j, k,←). Consider p′ such that p′(i) = p(i), for each i = j, . . . , k − 1
and p′(k) = 1. Recalling that t(k) = 1, we get that the cost increases by at most
1 and p′ is a solution in which node k is influenced at round 0 ≤ λ− �′. A similar
proof holds for (2).
�
Definition 2. L(j, k), with j + 1 ≤ k − 1, is called a 2-path if t(j + 1) = . . . =
t(k − 1) = 2 and t(j) = t(k) = 1.

Lemma 3. For any value of λ, if L(j, k) is a 2-path with m = k − j − 1 �= 2
then OPT (0, n − 1) = OPT (0, j, 1→) + k − j − 2 + OPT (1←, k, n − 1).

Outline of Proof. The proof shows that one can always find an optimal solution
in which the m = k − j − 1 nodes in L(j + 1, k − 1) receive the incentives using
the sequence 0(20)∗ when m is odd and 01(20)∗ when m > 2 is even. See Fig. 2
for an example of the odd case.
�
Lemma 4. For any time bound λ > 1, if t(0) = t(1) = . . . = t(j − 1) = 1 and
L(j, j + 3) is a 2-path then OPT (0, n−1) is equal to

1+ min
{

OPT (0, j, 1→)+OPT (2←, j+3, n−1), OPT (0, j, 2→)+OPT (1←, j+3, n−1)
}

.

Outline of Proof. The proof is a case analysis that shows that there is always
an optimal solution in which either

1. p(j + 1) = 0, p(j + 2) = 1 or 2. p(j + 1) = 1, p(j + 2) = 0.
�
Lemma 5. For any value of λ, the minimum cost for the TBI problem on a
path of n nodes having threshold 1 is n/(2λ + 1)�.
Outline of Proof. The basic idea is to break the path into subpaths of 2λ + 1
nodes and assign an incentive of 1 to the middle node of each subpath and
incentive 0 to the others.
�
Remark 1. OPT (j, k, �→) can be obtained by solving the TBI problem on an
augmented path L(j, k + �) obtained from L(j, k) by concatenating � dummy
nodes on the right of k with t(k + 1) = t(k + 2) = . . . = t(k + �) = 1. Notice
that, for � ≤ λ, it is always possible to find an optimal assignment of incentives
for the augmented path L(j, k + �) in which all dummy nodes get incentive 0.
Indeed it is possible to obtain such an assignment starting from any optimal
assignment and moving the incentives from the dummy nodes to node k. An
analogous observation holds for OPT (�←, j, k).

Our algorithm iterates from left to right, identifying all of the 2-paths and,
using Lemma 3 or 4 and Lemma 5, it optimally assigns incentives both to the
nodes of threshold 2 and to the nodes (of threshold 1) on the left. It then removes
them from the original path. Eventually, it will deal with a last subpath in which
all of the nodes have threshold 1.

Time-Bounded Influence Diffusion with Incentives 287

Algorithm 1. TBI-Path(L(0, n−1))
Input: A Path L(0, n−1), thresholds t(i) ∈ {1, 2}, i = 0, . . . , n − 1, and a time

bound λ.
Output: A solution p(i) : V → {0, 1, 2} of the TBI problem.

1 i = 0
2 while there exists a node j with t(j) = 2 for some i < j < n − 1 do
3 Identify the leftmost 2-path in the current path L(i, n − 1); let it be L(j, k).
4 if L(j, k) is a 2-path satisfying Lemma 3 then
5 assign incentives to the nodes j + 1, . . . , k − 1 as in Lemma 3;
6 t(j + 1) = t(k − 1) = 1;
7 obtain p(i), . . . , p(j) by using Lemma 5 on L(i, j+1) with

t(i) = · · · = t(j+1) = 1;
8 i = k − 1;

9 else if L(j, k = j + 3) is a 2-path satisfying Lemma 4 then
10 if j − i + 2 = c(2λ + 1) for some c > 0 then // Case 1 of Lemma 4
11 p(j + 1) = 0; p(j + 2) = 1; i′ = j + 1;

12 else // Case 2 of Lemma 4
13 p(j + 1) = 1; p(j + 2) = 0; i′ = j + 2;

14 t(j + 1) = t(j + 2) = 1;
15 obtain p(i), . . . , p(j) by using Lemma 5 on L(i, i′) with

t(i) = · · · = t(i′) = 1;
16 i = i′;

17 Assign incentives to L(i, n − 1) (with t(i) = . . . = t(n − 1) = 1), using Lemma 5;
18 return p;

Theorem 2. For any time bound λ > 1, Algorithm 1 provides an optimal solu-
tion for the TBI problem on any path L(0, n−1) in time O(n).

Proof. We show that the algorithm selects an optimal strategy according to
the length and the position of the leftmost 2-path L(j, k) and then iteratively
operates on the subpath L(i, n − 1) where i = k − 1 (one dummy node on the
left) or i = k − 2 (two dummy nodes on the left). See Fig. 2.

Let L(i, n − 1) be the current path and L(j, k) be the leftmost 2-path. If
L(j, k) satisfies the hypothesis of Lemma 3, then we have

OPT (i, n − 1) = OPT (i, j, 1→) + k − j − 2 + OPT (1←, k, n − 1).

Hence, we can obtain optimal incentives for nodes i, . . . , j by using the result in
Lemma 5 on L(i, j + 1) (where j + 1 is a dummy node). Moreover, we assign
k − j − 2 incentives to the nodes j + 1, . . . , k − 1 as suggested in Lemma 3 (i.e.,
0(20)∗ when the length of the 2-path is odd and 01(20)∗ otherwise) and the
algorithm iterates on L(k − 1, n − 1) (where k − 1 is a dummy node).

Now suppose that L(j, k = j + 3) satisfies the hypothesis of Lemma 4. We
have that OPT (i, n−1) is equal to

1+min
{

OPT (i, j, 1→)+OPT (2←, k, n−1), OPT (i, j, 2→)+OPT (1←, k, n−1)
}

. (2)

288 G. Cordasco et al.

We have two cases to consider, according to the distance between i and j.
First assume that j−i+2 = c(2λ+1) for some c > 0. By Lemma 5 and Remark 1
we know that in this case OPT (i, j, 2→) = OPT (i, j, 1→) + 1 and since by (2) of
Lemma 2 we know that OPT (2←, k, n − 1) ≤ OPT (1←, k, n − 1)+1, we have that
OPT (i, j, 1→) + OPT (2←, k, n − 1) corresponds to the minimum of Eq. (2) and
hence the solution described by case 1 in Lemma 4 (i.e., p(j+1) = 0, p(j+2) = 1)
is optimal. Incentives to i, . . . , j are assigned exploiting the result in Lemma 5
on L(i, j + 1) (where j + 1 is a dummy node) and the algorithm iterates on
L(k − 2, n − 1) (where both k − 1 and k − 2 are dummy nodes).
Now assume that j − i + 2 �= c(2λ + 1) for some c > 0. In this case, we have
OPT (i, j, 2→) = OPT (i, j, 1→).
By (1) of Lemma 2 we know that OPT (1←, k, n − 1) ≤ OPT (2←, k, n − 1). Hence,
OPT (i, j, 2→) + OPT (1←, k, n − 1) corresponds to the minimum of Eq. (2) and
the solution in case 2 in Lemma 4 (i.e., p(j + 1) = 1, p(j + 2) = 0) is optimal.
Incentives to i, . . . , j are assigned using the result in Lemma 5 on L(i, j + 2)
(considering both j + 1 and j + 2 as dummy nodes) and the algorithm iterates
on L(k − 1, n − 1) (where k − 1 is a dummy node).

If there remains a last subpath of nodes of threshold one, this is solved
optimally using Lemma 5.

Complexity. The identification of the 2-paths and their classification can be
easily done in linear time. Then, the algorithm operates in a single pass from
left to right and the time is O(n).
�

3 An O(λn log n) Algorithm for Complete Graphs

In this section, we present an O(λn log n) dynamic programming algorithm to
allocate incentives to the nodes of a complete network Kn = (V,E). We begin
by proving that for any assignment of thresholds to the nodes of Kn, there is
an optimal solution in which the thresholds of all nodes that are influenced at
round � are at least as large as the thresholds of all nodes that are influenced
before round � for every 1 ≤ � ≤ λ.

Let Km be the subgraph of Kn that is induced by Vm = {v1, v2, . . . , vm}.
We will say that an incentive function p : Vm −→ N0 is �-optimal for Km,
1 ≤ m ≤ n, 0 ≤ � ≤ λ, if

∑
v∈Vm

p(v) is the minimum cost to influence all nodes
in Vm in � rounds.

Lemma 6. Given Km, thresholds t(v1) ≤ t(v2) ≤ . . . ≤ t(vm), and 1 ≤ � ≤ λ, if
there exists an �-optimal solution for Km that influences k < m nodes by the end
of round �−1, then there is an �-optimal solution that influences {v1, v2, . . . , vk}
by the end of round � − 1.

Proof. Let p∗ be an �-optimal incentive function for Km that influences a set
V ∗

k = {u1, u2, . . . , uk} of k nodes of Km by the end of round � − 1. We will show
how to construct an �-optimal incentive function for Km that influences nodes
Vk = {v1, v2, . . . , vk} by the end of round �− 1 where t(v1) ≤ t(v2) ≤ . . . ≤ t(vk)
and t(vj) ≥ t(vk) for j = k + 1, k + 2, . . . ,m.

Time-Bounded Influence Diffusion with Incentives 289

Suppose that p is an incentive function for Km that influences nodes Vk =
{v1, v2, . . . , vk} by the end of round � − 1. If V ∗

k is different from Vk, then there
is some ui ∈ V ∗

k \Vk and some vj ∈ Vk\V ∗
k such that t(ui) ≥ t(vj). Since vj is

influenced at round � in the �-optimal solution p∗, it must require the influence
of t(vj) − p∗(vj) neighbours. (If it required the influence of fewer neighbours,
then p∗ would not be �-optimal.) Note that t(vj) − p∗(vj) ≥ 0. Similarly, ui

requires the influence of t(ui)−p∗(ui) ≥ 0 neighbours. Consider the set of nodes
V ∗

k ∪ {vj}\{ui} and define p as follows. Choose p(vj) and p(ui) as

t(vj) − p(vj) = t(ui) − p∗(ui) and t(ui) − p(ui) = t(vj) − p∗(vj)

so that vj is influenced at the same round as ui was influenced in the �-optimal
solution and ui is influenced at round �. Set p(v) = p∗(v) for all other nodes in
Km. The difference in value between p and p∗ is

p(vj)+p(ui)−p∗(vj)−p∗(ui) = 0

We can iterate until we find an �-optimal solution that influences {v1, v2, . . . , vk}
by the end of round � − 1.
�

By Lemma 6, our algorithm can first sort the nodes by non-decreasing thresh-
old value w.l.o.g. The sorting can be done in O(n) time using counting sort
because 1 ≤ t(v) ≤ n − 1 = d(v) for all v ∈ V . In the remainder of this section,
we assume that t(v1) ≤ t(v2) ≤ . . . ≤ t(vn).

Let Opt�(m) denote the value of an �-optimal solution for Km, 1 ≤ m ≤ n,
0 ≤ � ≤ λ. Any node v that is influenced at round 0 requires incentive p(v) = t(v)
and it follows easily that

Opt0(m) =
m∑

i=1

t(vi), 1 ≤ m ≤ n. (3)

Now consider a value Opt�(m) for some 1 ≤ m ≤ n and 1 ≤ � ≤ λ. If exactly
j nodes, 1 ≤ j ≤ m, are influenced by the end of round � − 1 in an �-optimal
solution for Km, then each of the m − j remaining nodes in Vm has j influenced
neighbours at the beginning of round � and these neighbours are v1, v2, . . . , vj

by Lemma 6. For such a remaining node v to be influenced at round �, either
t(v) ≤ j or v has an incentive p(v) such that t(v) − p(v) ≤ j. It follows that

Opt�(m) = min
1≤j≤m

{
Opt�−1(j) +

m∑
i=j+1

max{0, t(vi) − j}
}

, 1 ≤ m ≤ n. (4)

We will use Ind�(m) to denote the index that gives the optimal value
Opt�(m), that is,

Ind�(m) = arg min
1≤j≤m

{
Opt�−1(j) +

m∑
i=j+1

max{0, t(vi) − j}
}

, 1 ≤ m ≤ n. (5)

290 G. Cordasco et al.

A dynamic programming algorithm that directly implements the recurrence
in Eqs. (3) and (4) will produce the optimal solution value Optλ(n) in time
O(λn3). We can reduce the complexity by taking advantage of some structural
properties.

Lemma 7. For any 1 ≤ � ≤ λ, if k < m then Ind�(k) ≤ Ind�(m), 1 ≤ k ≤ n−1,
2 ≤ m ≤ n.

Outline of Proof. The lemma always holds when k < Ind�(m). Assuming that
Ind�(k) > Ind�(m) when k ≥ Ind�(m) leads to a contradiction.

Theorem 3. For any complete network Kn = (V,E), threshold function t :
V −→ N, and λ ≥ 1, the TBI problem can be solved in time O(λn log n).

Proof. Our dynamic programming algorithm computes two n × (λ + 1) arrays
VALUE and INDEX and returns a solution p of n incentives. VALUE [m, �] =
Opt�(m) is the value of an �-optimal solution for Km (for a given threshold
function t : V −→ N), and INDEX [m, �] = Ind�(m) is the index that gives the
optimal value, 1 ≤ m ≤ n, 0 ≤ � ≤ λ.

The array entries are computed column-wise starting with column 0. The
entries in column VALUE [∗, 0] are sums of thresholds according to (3) and the
indices in INDEX [∗, 0] are all 0, so these columns can be computed in time O(n).
In particular, VALUE [j, 0] =

∑j
i=1 t(vi), j = 1, . . . , m.

Suppose that columns 1, 2, . . . , �− 1 of VALUE and INDEX have been com-
puted according to (4) and (5) and consider the computation of column � of the
two arrays. To compute INDEX [m, �] for some fixed m, 1 ≤ m ≤ n, we define a
function

A(j) = Opt�−1(j) +
∑m

i=j+1
max{0, t(vi) − j}, 1 ≤ j ≤ m

and show how to compute each A(j) in O(1) time.
By (5), Ind�(m) = arg min{A(j) | 1 ≤ j ≤ m}.

First we compute an auxiliary vector a where a[j] contains the smallest inte-
ger i ≥ 1 such that t(vi) ≥ j, 1 ≤ j ≤ n. This vector can be precomputed once
in O(n) time because the nodes are sorted by non-decreasing threshold value.
Furthermore, the vector a together with the entries in column VALUE [∗, 0] allow
the computation of

∑m
i=j+1 max{0, t(vi) − j} in O(1) time for each 1 ≤ j ≤ n.

Since Opt�−1(j) = VALUE [j, �−1] has already been computed, we can compute
A(j) in O(1) time. The values Opt�(m) = VALUE [m, �] can also be computed
in O(1) time for each 1 ≤ m ≤ n given Ind�(m) = INDEX [m, �], vector a, and
column VALUE [∗, 0]. The total cost so far is O(λn). It remains to show how to
compute each column INDEX [∗, �] efficiently.

The following algorithm recursively computes the column INDEX [m, �], 1 ≤
m ≤ n assuming that columns 0, 1, 2, . . . , � − 1 of INDEX and VALUE have
already been computed. The algorithm also assumes that two dummy rows have
been added to array INDEX with INDEX [0, �] = 1 and INDEX [n + 1, �] = n,

Time-Bounded Influence Diffusion with Incentives 291

0 ≤ � ≤ λ, to simplify the pseudocode. The initial call of the algorithm is
COMPUTE-INDEX(1, n).

We claim that algorithm COMPUTE-INDEX(1, n) correctly computes the
values INDEX [m, �] for 1 ≤ m ≤ n. First, it can be proved by induc-
tion that when we call COMPUTE-INDEX(x, y), the indices INDEX [x − 1, �]
and INDEX [y + 1, �] have already been correctly computed. By Lemma 7,
Ind�(x − 1) ≤ Ind�(x+y

2 �) ≤ Ind�(y + 1), so the algorithm correctly searches
for INDEX [m, �] between INDEX [x − 1, �] and INDEX [y + 1, �].

Algorithm 2. COMPUTE-INDEX(x, y)
Input: Indices x, y.
Output: The values INDEX [i, �] for i = x, . . . y.

1 if x ≤ y then // Assume that INDEX [0, �] = 1 and INDEX [n + 1, �] = n
2 m = �x+y

2
	;

3 INDEX [m, �] =
arg min {A(j) | INDEX [x − 1, �] ≤ j ≤ min{INDEX [y + 1, �], m}};

4 COMPUTE-INDEX(x, m − 1);
5 COMPUTE-INDEX(m + 1, y);

It is not hard to see that the height of the recursion tree obtained calling
COMPUTE-INDEX(1, n) is log(n + 1)�. Furthermore, the number of values
A(j) computed at each level of the recursion tree is O(n) because the ranges
of the searches in line 3 of the algorithm do not overlap (except possibly the
endpoints of two consecutive ranges) by Lemma 7. Thus, the computation time
at each level is O(n), and the computation time for each column � is O(n log n).
After all columns of VALUE and INDEX have been computed, the value of the
optimal solution will be in VALUE [n, λ]. The round during which each node is
influenced and the optimal function p of incentives can then be computed by
backtracking through the array INDEX in time O(λ + n). The total complexity
is O(λn log n).
�

4 A Polynomial-Time Algorithm for Trees

In this section, we give an algorithm for the TBI problem on trees. Let T = (V,E)
be a tree having n nodes and the maximum degree Δ. We will assume that T is
rooted at some node r. Once such a rooting is fixed, for any node v, we denote by
Tv the subtree rooted at v, and by C(v) the set of children of v. We will develop
a dynamic programming algorithm that will prove the following theorem.

Theorem 4. For any λ > 1, the TBI problem can be solved in time O(nλ2Δ)
on a tree having n nodes and maximum degree Δ.

292 G. Cordasco et al.

The rest of this section is devoted to the description and analysis of the
algorithm that proves Theorem 4. The algorithm performs a post-order traversal
of the tree T so that each node is considered after all of its children have been
processed. For each node v, the algorithm solves some TBI problems on the
subtree Tv, with some restrictions on the node v regarding its threshold and the
round during which it is influenced. For instance, in order to compute some of
these values we will consider not only the original threshold t(v) of v, but also
the reduced threshold t′(v) = t(v)−1 which simulates the influence of the parent
node.

Definition 3. For each node v ∈ V , integers � ∈ {0, 1, . . . , λ}, and t ∈
{t′(v), t(v)}, let us denote by P [v, �, t] the minimum cost of influencing all of
the nodes in Tv, in at most λ rounds, assuming that

• the threshold of v is t, and for every u ∈ V (Tv) \ {v}, the threshold of u is
t(u);

• v is influenced by round � in Tv and is able to start influencing its neighbours
by round � + 1.2

Formally the value of P [v, �, t] corresponds to P [v, �, t] =

min
p:Tv→N0, InfluencedTv [p,λ]=Tv

|C(v)∩InfluencedF (v,d)[p,�−1]|≥t−p(v)

{ ∑
v∈Tv

p(v)

}
We set P [v, �, t] = ∞ when the

above problem is infeasible. Denoting by pv,�,t : V (Tv) → N0 the incentive
function attaining the value P [v, �, t], the parameter � is such that:

1. if � = 0 then pv,�,t(v) = t,
2. otherwise, v’s children can influence v at round �, i.e. |{C(v) ∩

Influenced[pv,�,t, � − 1]}| ≥ t − pv,�,t(v).

Remark 2. It is worthwhile mentioning that P [v, �, t] is monotonically non-
decreasing in t. However, P [v, �, t] is not necessarily monotonic in �.

Indeed, partition the set C(v) into two sets: C ′(v), which contains the c children
that influence v, and C ′′(v), which contains the remaining |C(v)| − c children
that may be influenced by v. A small value of c may require a higher cost on
subtrees rooted at a node u ∈ C ′(v), and may save some budget on the remaining
subtrees; the opposite happens for a large value of c.

The minimum cost to influence the nodes in T in λ rounds follows from
decomposing the optimal solution according to the round on which the root is
influenced and can then be obtained by computing

min
0≤�≤λ

P [r, �, t(r)]. (6)

2 Notice that this does not exclude the case that v becomes an influenced node at
some round �′ < �.

Time-Bounded Influence Diffusion with Incentives 293

We proceed using a post-order traversal of the tree, so that the computations of
the various values P [v, �, t] for a node v are done after all of the values for v’s
children are known. For each leaf node v we have

P [v, �, t] =

⎧
⎪⎨
⎪⎩

1 if � = 0 and t = t(v) = 1
0 if 1 ≤ � ≤ λ and t = t(v) − 1 = 0
∞ otherwise.

(7)

Indeed, a leaf v with threshold t(v) = 1 is influenced in the one-node subtree Tv

only when either pv,�,t(v) = 1 (� = 0), or for some 1 ≤ � ≤ λ, it is influenced by
its parent (i.e., the residual threshold t = t(v) − 1 = 0).

For any internal node v, we show how to compute each value P [v, �, t] in time
O(d(v) · t · λ).

In the following we assume that an arbitrary order has been fixed on the
d = d(v) − 1 children of any node v, that is, we denote them as v1, v2, . . . , vd,
according to the fixed order. Also, we define F (v, i) to be the forest consisting of
the subtrees rooted at the first i children of v. We will also use F (v, i) to denote
the set of nodes it includes.

Definition 4. Let v be a node with d children and let � = 0, 1, . . . , λ. For
i = 0, . . . , d, j = 0, 1, . . . , t(v), we define Av,�[i, j] (resp. Av,�[{i}, j]) to be the
minimum cost for influencing all nodes in F (v, i), (resp. Tvi

) within λ rounds,
assuming that:

(i) if � �= λ, at time � + 1 the threshold of vk is t′(vk), for each k = 1, . . . , i;
(ii) if � �= 0, at least j nodes in {v1, v2, . . . , vi} (resp. {vi}) are influenced by

round � − 1, that is

|{v1, v2, . . . , vi} ∩ Influenced[πv,�,i,j , � − 1]| ≥ j,

where πv,�,i,j : F (v, i) → N0 denotes the incentive function attaining
Av,�[i, j].

We also define Av,�[i, j] = ∞ when the above constraints are not satisfiable.

By decomposing a solution according to how many nodes in C(v) are influ-
enced prior to the root v being influenced and denoting this number as j, the
remaining cost to influence the root v is t−j Hence, we can easily write P [v, �, t]
in terms of Av,�[d, j] as follows.

Lemma 8. For each node v with d children, each � = 0, . . . , λ and each t ∈
{t(v), t′(v)}

P [v, �, t] =

{
t + Av,0[d, 0] if � = 0

min0≤j≤t

{
t − j + Av,�[d, j]

}
otherwise.

(8)

Lemma 9. For each node v, each t∈{t(v), t′(v)}, and each �=1, . . . , λ, it is
possible to compute Av,�[d, t], as well as Av,0[d, 0], recursively in time O(λdt)
where d is the number of children of v.

294 G. Cordasco et al.

Outline of Proof. The proof shows that the values Av,0[d, 0] and Av,�[d, t]
can be computed, in time O(λd) and O(λdt) respectively, using the follow-
ing recursive equations. Let M(�1, �2, t) = min�1≤�′≤�2{P [vi, �

′, t]} we have
Av,0[d, 0] =

∑
vi∈C(v)

min {P [vi, 0, t(vi)],M(1, λ, t′(vi))} ,

Av,�[i, j]=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if i = j = 0
∞, if i < j

min
{

Av,�[i−1, j−1] + M(0, �−1, t(vi)),

Av,�[i−1, j]+ min
{

M(0, �, t(vi)),M(�+1, λ, t′(vi))
}}

, otherwise.

�
Lemmas 8 and 9 imply that for each v ∈ V, for each � = 0, . . . , λ,

and t ∈ {t′(v), t(v)}, the value P [v, �, t] can be computed recursively in time
O(λd(v)t(v)). Hence, the value in (6) can be computed in time∑

v∈V O(λd(v)t(v)) × O(λ) = O(λ2Δ) × ∑
v∈V O(d(v)) = O(λ2Δn), where Δ

is the maximum node degree. Standard backtracking techniques can be used to
compute the (optimal) influence function p∗ that influences all of the nodes in
the same O(λ2Δn) time.

References

1. Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds for
target set selection. Theor. Comput. Sci. 411, 4017–4022 (2010)

2. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the
complexity of target set selection. Discret. Optim. 8, 87–96 (2011)

3. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can
make target set selection tractable. In: Even, G., Rawitz, D. (eds.) MedAlg 2012.
LNCS, vol. 7659, pp. 120–133. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34862-4 9

4. Coja-Oghlan, A., Feige, U., Krivelevich, M., Reichman, D.: Contagious sets in
expanders. In: Proceedings of SODA 2015, pp. 1953–1987 (2015)

5. Chen, W., Lakshmanan, L.V.S., Castillo, C.: Information and Influence Propaga-
tion in Social Networks. Morgan & Claypool, San Rafael (2013)

6. Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete
Math. 23, 1400–1415 (2009)

7. Chiang, C.-Y., Huang, L.-H., Li, B.-J., Wu, J., Yeh, H.-G.: Some results on the
target set selection problem. Journal of Comb. Opt. 25(4), 702–715 (2013)

8. Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Peters, J., Vaccaro, U.: Spread
of influence in weighted networks under time and budget constraints. Theor. Com-
put. Sci. 586, 40–58 (2015)

9. Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Vaccaro, U.: Latency-
Bounded target set selection in social networks. Theor. Comput. Sci. 535, 1–15
(2014)

10. Cordasco, G., Gargano, L., Rescigno, A.A.: On finding small sets that influence
large networks. Soc. Netw. Anal. Min. 6(94) (2016)

https://doi.org/10.1007/978-3-642-34862-4_9
https://doi.org/10.1007/978-3-642-34862-4_9

Time-Bounded Influence Diffusion with Incentives 295

11. Cordasco, G., Gargano, L., Rescigno, A.A., Vaccaro, U.: Optimizing spread of
influence in social networks via partial incentives. In: Scheideler, C. (ed.) Struc-
tural Information and Communication Complexity. LNCS, vol. 9439, pp. 119–134.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25258-2 9

12. Demaine, E.D., et al.: How to influence people with partial incentives. In: Proceed-
ings of WWW 2014, pp. 937–948 (2014)

13. Domingos, P., Richardson, M.: Mining the network value of customers. In: Pro-
ceedings of 7th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 57–66 (2001)

14. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press, Cambridge (2010)

15. Gargano, L., Hell, P., Peters, J.G., Vaccaro, U.: Influence diffusion in social net-
works under time window constraints. Theor. Comput. Sci. 584, 53–66 (2015)

16. Granovetter, M.: Thresholds models of collective behaviors. Am. J. Sociol. 83(6),
1420–1443 (1978)

17. Kempe, D., Kleinberg, J.M., Tardos, E.: Maximizing the spread of influence
through a social network. In: Proceedings of 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

18. Lafond, M., Narayanan, L., Wu, K.: Whom to befriend to influence people. In:
Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 340–357. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48314-6 22

19. Narayanan, L., Wu, K.: How to choose friends strategically. In: Das, S., Tixeuil,
S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 283–302. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-72050-0 17

20. Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of
target set selection. Soc. Netw. Anal. Min. 3(2), 233–256 (2013)

21. Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theor.
Comput. Sci. 282, 231–257 (2002)

22. Reddy, T.V.T., Rangan, C.P.: Variants of spreading messages. J. Graph Algorithms
Appl. 15(5), 683–699 (2011)

23. Liu, X., Yang, Z., Wang, W.: Exact solutions for latency-bounded target set selec-
tion problem on some special families of graphs. Discret. Appl. Math. 203(C),
111–116 (2016)

https://doi.org/10.1007/978-3-319-25258-2_9
https://doi.org/10.1007/978-3-319-48314-6_22
https://doi.org/10.1007/978-3-319-72050-0_17

Balanced Allocations and Global Clock
in Population Protocols:
An Accurate Analysis

Yves Mocquard1, Bruno Sericola2, and Emmanuelle Anceaume3(B)

1 Université de Rennes 1 - IRISA, Rennes, France
yves.mocquard@irisa.fr

2 INRIA Rennes - Bretagne Atlantique, Rennes, France
bruno.sericola@inria.fr

3 CNRS - IRISA, Rennes, France
emmanuelle.anceaume@irisa.fr

Abstract. The context of this paper is the two-choice paradigm which is
deeply used in balanced online resource allocation, priority scheduling,
load balancing and more recently in population protocols. The model
governing the evolution of these systems consists in throwing balls one
by one and independently of each others into n bins, which represent the
number of agents in the system. At each discrete instant, a ball is placed
in the least filled bin among two bins randomly chosen among the n ones.
A natural question is the evaluation of the difference between the number
of balls in the most loaded bin and the one in the least loaded. At time
t, this difference is denoted by Gap(t). A lot of work has been devoted to
the derivation of asymptotic approximations of this gap for large values
of n. In this paper we go a step further by showing that for all t ≥ 0,
n ≥ 2 and σ > 0, the variable Gap(t) is less than a(1 + σ) ln(n) + b with
probability greater than 1 − 1/nσ, where the constants a and b, which
are independent of t, σ and n, are optimized and given explicitly, which
to the best of our knowledge has never been done before.

1 Introduction

In this paper we address the important issue of the two-choice paradigm anal-
ysis [10]. To illustrate the multi-choice paradigm, suppose that we have a set
of m balls which are sequentially throws into n bins, where each ball is placed
in the least filled bin among d ≥ 1 ones randomly chosen among the n bins.
Azar et al. [5] have characterized this problem by those three values (m,n, d). A
natural question is the analysis of the maximum load in any of the bins, or the
maximal gap that may exist between the least loaded bin and the most loaded

This work was partially funded by the French ANR project SocioPlug (ANR-13-INFR-
0003), and by the DeSceNt project granted by the Labex CominLabs excellence labo-
ratory (ANR-10-LABX-07-01).

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 296–311, 2018.
https://doi.org/10.1007/978-3-030-01325-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_26&domain=pdf

Balanced Allocations and Global Clock in Population Protocols 297

one. It has been proven that in the simplest case where d = 1 (see for exam-
ple [14]), the maximum load is equal to m/n + Θ

(√
(m/n) ln n

)
, leading to a

gap that increases with the square root of m. Now, instead of choosing a single
bin at random, d bins, with d ≥ 2, are independently and randomly chosen, and
the least loaded bin one among those d ones receives a ball. Then Azar et al. [5]
have shown that when m = n the maximum load is ln(ln(n))/ ln(2) + O(1), and
the largest gap is also equal to ln(ln(n))/ ln(2) + O(1). These results show that
by simply introducing a small choice we get a drastically improved balanced load
among all the bins. Citing Mitzenmacher et al. [10], “having just two random
choices (i.e., d = 2) yields a large reduction in the maximum load over having
one choice, while each additional choice beyond two decreases the maximum
load by just a constant factor”. Hence the name of the two-choice paradigm.
Later Berenbrink et al. [7] have studied the case (m,n, d) for d ≥ 2 and m � n,
and proved that the maximum load is equal to m/n + O(ln(ln(n))). Note that a
simpler proof of this result has been recently found by Talwar and Wieder [15].
Very recently, Peres et al. [12,13], using a measurement based on the hyper-
bolic cosine, have generalized the problem in the (1 + β)-choice problem. The
(1 + β)-choice consists, with probability 1 − β, in choosing one bin uniformly
at random and to throw a ball in it, and with probability β, in choosing two
bins uniformly at random and to throw a ball in the least loaded one. The name
comes from the fact that E{d} = 1 + β. We can note that in their model, each
ball is assigned with a random weight. They found a logarithmic bound for both
the gap between the maximum loaded bin and the average one [12], and for the
gap between the maximum loaded bin and the minimum one [13]. In both cases
the gap is O (log(n)/β).

The two-choice paradigm can be used in a multitude of applications, including
balanced online resource allocation (where jobs need to be dynamically allocated
to the least loaded processor) [1,6,8], priority scheduling [4], load balancing
[2,7,9], and very recently, population protocols [3]. In the later case, the model
governing the evolution of these systems consists in throwing balls one by one
and independently of each others into n bins, which represent the number of
agents in the system. At each discrete instant, a ball is placed in the least filled
bin among two bins randomly chosen among the n ones. A natural question is the
evaluation of the difference between the number of balls in the most loaded and
the one in the least loaded bin. At time t, this difference is denoted by Gap(t).
A lot of work has been devoted to the derivation of asymptotic approximations
of this gap for large values of n. In this paper we go a step further by showing
that for all t ≥ 0, n ≥ 2 and σ > 0,

P {Gap(t) ≥ a(1 + σ) ln(n) + b} ≤ 1
nσ

, (1)

where the constants a and b, which are independent of t, σ and n, are optimized
and given explicitly, which to the best of our knowledge has never been done
before.

The remaining of the paper is structured as follows. In Sect. 2 we present
the addressed problem and a simple algorithm to solve it. Section 3 is the main

298 Y. Mocquard et al.

contribution of our work which consists in providing an accurate bound of the
distribution of the gap between any two nodes. Section 4 evaluates constants a
and b obtained by our analysis and compares it to constants that we derived from
the work of [4]. The gain in accuracy we obtained by our analysis is significant.
Finally Sect. 5 provides a summary of simulations results.

2 Problem description

We consider a very large set of n nodes (also called agents), interconnected by
a complete graph, that asynchronously start their execution in a given state.
Agents do not maintain nor use identifiers (agents are anonymous and cannot
determine whether any two interactions have occurred with the same agents or
not). However, for ease of presentation the agents are numbered 1, 2, . . . , n. Each
agent keeps a local counter, initialized at 0. Agents communicate through random
pairwise interactions. On each interaction, the two interacting agents compare
their counters, and the one with the lower counter value increments its local
counter. The objective of this simple algorithm is the construction of a global
clock by guaranteeing that the values of all agent counters are concentrated
according to Relation (1). As interactions are uniformly random, this can be
related to the classic two-choice load balancing process [13]. The goal of the paper
is to evaluate the gap between any two agents, that is the maximal difference that
may exist at any time t between any two local counters, by accurately evaluating
constants a and b. By accurately estimating the maximal gap between any two
local counters, other population protocols can use it as a global clock to perform
actions in a probabilistic synchronized way.

We denote by C
(i)
t the state of agent i at time t. The stochastic process

C = {Ct, t ≥ 0}, where Ct = (C(1)
t , . . . , C

(n)
t), represents the vector state of the

system at time t.
The choice of the two agents which interact is made using a uniform distri-

bution. Given the pair (i, j) of agents which interact at time t, we consider the
following evolution of the agents states

(
C

(i)
t+1, C

(j)
t+1

)
=

⎧
⎪⎪⎨
⎪⎪⎩

(
C

(i)
t + 1, C

(j)
t

)
if C

(i)
t ≤ C

(j)
t

(
C

(i)
t , C

(j)
t + 1

)
if C

(i)
t ≥ C

(j)
t .

Note that in the case where agents i and j interact at time t with C
(i)
t = C

(j)
t

then either of two agents can be chosen to have its value increased by 1 at time
t + 1. A particular choice is made below.

The state space of process C is thus Nn and a state of this process is also
called a protocol configuration. At time 0, we set C

(i)
t = 0, for every i = 1, . . . , n.

At each instant the value of only one agent is increased by 1 which means that
we have, for every t ≥ 0,

Balanced Allocations and Global Clock in Population Protocols 299

n∑
i=1

C
(i)
t = t.

For every i = 1, . . . , n, we introduce the quantities xi(t) = C
(i)
t − t/n, which

leads, for every t ≥ 0, to

n∑
i=1

xi(t) = 0.

The value C
(i)
t maintained by agent i is its own view of the global clock t of the

system divided by n. More precisely, the approximation of time t, provided by
agent i, is nC

(i)
t .

At each discrete time t ≥ 0, any two indices i and j are uniformly chosen to
interact, independently of the vector state with probability 1/(n(n − 1)).

In order to simplify the presentation, we suppose without any loss of gener-
ality that at each instant t, the values of xi(t) are reordered in a decreasing way,
assigning an arbitrary order to agents with the same value. More precisely, at
time t the reordering gives

x1(t) = max
i=1,...,n

(C(i)
t − t/n) ≥ · · · ≥ xn(t) = min

i=1,...,n
(C(i)

t − t/n).

We denote by X the rank of the agent whose value is incremented when inter-
action occurs between 2 agents. In the case where two agents interacting, say i

and j, are such that C
(i)
t = C

(j)
t , we choose to increase by 1 the one with the

highest rank. If X1 and X2 are the ranks of the successive agents which interact,
then the probability p� that agent of rank � is incremented is, for � = 1, . . . , n,

p� = P{X = �} = P{X1 = �,X2 < �} + P{X1 < �,X2 = �} =
2(� − 1)
n(n − 1)

. (2)

As mentioned in the introduction, the goal of the paper is the evaluation of the
distribution of difference between the maximum and the minimum of the entries
of vector Ct. This difference is denoted by Gap(t) and is given, for t ∈ N, by

Gap(t) = max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t = x1(t) − xn(t).

In order to bound the complementary distribution of Gap(t), we introduce the
following potential functions defined, for α ∈ R, by

Φ(t) =
n∑

i=1

eαxi(t), Ψ(t) =
n∑

i=1

e−αxi(t) and Γ (t) = Φ(t) + Ψ(t).

The use of these two functions has been proposed in a very clever way by Peres
et al. in [13]. The potential function Γ (t) is then related to function Gap(t) by
the following lemma.

300 Y. Mocquard et al.

Lemma 1. For every t ≥ 0, we have

Γ (t) ≥ 2eαGap(t)/2. (3)

Proof. The exponential function being convex, we have, for every a, b ∈ R,
2e(a+b)/2 ≤ ea + eb. Recalling that Gap(t) = x1(t) − xn(t), we obtain

Γ (t) =
n∑

i=1

eαxi(t) +
n∑

i=1

e−αxi(t) ≥ eαx1(t) + e−αxn(t) ≥ 2eαGap(t)/2,

which completes the proof. �

This result will be used at the end of the paper for the evaluation of the
distribution of Gap(t) which is based on the evaluation of the one of Γ (t), which
forms the main part of the paper.

3 Analysis

We first need the two following technical lemmas which are proved in [11].

Lemma 2. For all x ∈ R, we have 1 + x ≤ ex. For all x ∈ (−∞, c], we have
ex ≤ 1+x+x2, where c is the unique positive solution to equation ec−1−c−c2 =
0. The value of c satisfies 1.79 < c < 1.8.

Lemma 3. Let u = (uk)k≥1 and v = (vk)k≥1 be two monotonic sequences of
real numbers and let mn be the sequence of mean values of sequence v defined,
for n ≥ 1, by

mn =
1
n

n∑
k=1

vk.

If the sequences u and v are both non-decreasing or both non-increasing then
we have

n∑
k=1

ukvk ≥ mn

n∑
k=1

uk.

If one of these two sequences is non-increasing and the other is non-decreasing
then we have

n∑
k=1

ukvk ≤ mn

n∑
k=1

uk.

For every t ≥ 0, we introduce the notation x(t) = (x1(t), . . . , xn(t)).

Lemma 4. For all α ∈ (−1, 1), we have

E{Φ(t + 1) − Φ(t) | x(t)} ≤
(

α + α2

(
1 − 2

n

)) n∑
i=1

pie
αxi(t) −

(
α

n
− α2

n2

)
Φ(t).

(4)

Balanced Allocations and Global Clock in Population Protocols 301

Proof. Since the xi(t) are ordered, they may change value at each time. We
can thus define a permutation on {1, 2, . . . , n} named σt such that, for every
u = 1, . . . , n, if xi(t) = C

(u)
t − t/n then xσt(i)(t+1) = C

(u)
t+1 − (t+1)/n. Suppose

that the rank of the agent (say agent u), whose value is incremented at time t,
is equal to i. In this case, we have

xσt(i)(t + 1) = C
(u)
t+1 − t + 1

n
= C

(u)
t + 1 − t + 1

n

= C
(u)
t − t

n
+ 1 +

t

n
− t + 1

n
= xi(t) + 1 − 1

n
.

This leads, for every i = 1, . . . , n, to xσt(i)(t + 1) = xi(t) + 1{X=i} − 1
n , where

1A is the indicator function of event A. We then get

Φ(t + 1) − Φ(t) =
n∑

i=1

(
eαxi(t+1) − eαxi(t)

)
=

n∑
i=1

(
eαxσt(i)(t+1) − eαxi(t)

)

=
n∑

i=1

(
eα(1{X=i}−1/n) − 1

)
eαxi(t).

Using the fact that ex ≤ 1 + x + x2 for x ≤ 1, see Lemma 2, we obtain, since
α(1{X=i} − 1/n) ≤ 1,

eα(1{X=i}−1/n) − 1 ≤ α(1{X=i} − 1/n) + α2(1{X=i} − 1/n)2

= α(1{X=i} − 1/n) + α2

(
1{X=i}(1 − 2

n
) +

1
n2

)

=
(

α + α2

(
1 − 2

n

))
1{X=i} −

(
α

n
− α2

n2

)
.

Taking the expectation of Φ(t + 1) − Φ(t), given x(t), we obtain since
E{1{X=i}} = pi,

E{Φ(t + 1) − Φ(t) | x(t)} ≤
n∑

i=1

[
pi

(
α + α2

(
1 − 2

n

))
−

(
α

n
− α2

n2

)]
eαxi(t)

=
(

α + α2

(
1 − 2

n

)) n∑
i=1

pie
αxi(t) −

(
α

n
− α2

n2

)
Φ(t),

which completes the proof. �

The following relations will be frequently used in the sequel. Since, for i =
1, . . . , n, pi = 2(i − 1)/(n(n − 1)), we have for all λ ∈ (0, 1) with λn ∈ N,

302 Y. Mocquard et al.

1
n

n∑
i=1

pi =
1
n

(5)

1
λn

λn∑
i=1

pi =
λn − 1

n(n − 1)
≤ λ

n
(6)

1
(1 − λ)n

n∑
i=λn+1

pi =
(1 + λ)n − 1

n(n − 1)
≥ 1 + λ

n
(7)

Corollary 5. For all α ∈ (0, 1), we have

E{Φ(t + 1) − Φ(t) | x(t)} ≤ α2

n

(
1 − 1

n

)
Φ(t).

Proof. To prove this result, observe that sequence
(
eαxi(t)

)
i

is a non-increasing
sequence and (pi)i is an non-decreasing sequence, so using Relation (5) and
applying Lemma 3 we obtain

n∑
i=1

pie
αxi(t) ≤ 1

n

(
n∑

i=1

pi

)(
n∑

i=1

eαxi(t)

)
=

Φ(t)
n

.

Putting this result in inequality (4), we get

E{Φ(t + 1) − Φ(t) | x(t)} ≤
(

α + α2

(
1 − 2

n

)) n∑
i=1

pie
αxi(t) −

(
α

n
− α2

n2

)
Φ(t)

≤
[
α

n
+

α2

n

(
1 − 2

n

)
−

(
α

n
− α2

n2

)]
Φ(t)

=
α2

n

(
1 − 1

n

)
Φ(t),

which completes the proof. �

Lemma 6. For all α ∈ (−1, 1), we have

E{Ψ(t+1)−Ψ(t) | x(t)} ≤
(

−α + α2

(
1 − 2

n

)) n∑
i=1

pie
−αxi(t)+

(
α

n
+

α2

n2

)
Ψ(t).

(8)

Proof. It suffices to replace α by −α in the proof of Lemma 4. �

Corollary 7. For all α ∈ (0, 1), we have

E{Ψ(t + 1) − Ψ(t) | x(t)} ≤ α2

n

(
1 − 1

n

)
Ψ(t)

Proof. See [11]. �

Balanced Allocations and Global Clock in Population Protocols 303

The two previous lemmas, which give a bound of the increase of functions
Φ(t) and Ψ(t), will be used to prove Theorem 12. The proof of the results fol-
low the clever ideas of the seminal paper [13] in which the authors prove that
Gap(t) is less than O(ln(n)) with high probability. In [4], Alistarh et al. provide
a more rigorous proof from which we have extracted constants associated with
this asymptotic behavior. Those constants are given at the end of Sect. 4. The
main original idea of our paper is to parametrize as much as possible the proofs
in order to obtain the smallest values of constants a and b used in Relation (1)
which is proved in Theorem 14. The numerical evaluation of these constants,
obtained in Sect. 4, shows that they are remarkably small with respect to the
ones of [4].

In the following, we introduce two variable parameters μ, ρ ∈ (0, 1/2)
(which are fixed to 1/4 in [13] and [4]). Since xi(t) are non-increasing we have
xρn(t) ≥ x(1−μ)n(t). Lemmas 8 and 9 deal with the balanced conditions case
that is xρn(t) ≥ 0 ≥ x(1−μ)n(t). The unbalanced conditions that are the com-
plementary cases xρn(t) ≥ x(1−μ)n(t) > 0 and 0 > xρn(t) ≥ x(1−μ)n(t) are
considered respectively in Lemmas 10 and 11. Theorem 12 examines systemati-
cally each case which lead to recurrence relation for E{Γ (t)}. Theorem 13 uses
this recurrence relation to bound E{Γ (t)}. Finally, Theorem 14 gives a precise
lower bound of Γ (t) with high probability.

Lemma 8. Let α, μ ∈ (0, 1) with μn ∈ N and μ > α/(1 + α). If x(1−μ)n(t) ≤ 0
then we have

E{Φ(t + 1) | x(t)}

≤
(

1 − α

n

[
μ − α(1 − μ) +

α(1 − 2μ)
n

])
Φ(t) + α + α2

(
1 − 2

n

)

≤
(
1 − α

n
[μ − α(1 − μ)]

)
Φ(t) + α + α2. (9)

Proof. See [11]. �

An analogous result is obtained for Ψ(t) in the following lemma.

Lemma 9. Let α, ρ ∈ (0, 1) with ρn ∈ N and ρ > α/(1 − α). If xρn(t) ≥ 0 then
we have

E {Ψ(t + 1) | x(t)} ≤
(

1 − α

n

[
ρ − α(1 + ρ) +

α(1 + 2ρ)
n

])
Ψ(t) + αρ(1 + ρ)

≤
(
1 − α

n
[ρ − α(1 + ρ)]

)
Ψ(t) + αρ(1 + ρ). (10)

Proof. See [11]. �

Lemma 10. Let α, μ ∈ (0, 1/2) with μn ∈ N and μ ∈ (α/(1+ α), (1− 2α)/
(1− α)), let μ′ ∈ (0, 1) with μ′n ∈ N and μ′ ∈ (μ/(1 − μ), 1/(1 + α)) and let
γ1 ∈ (0, 1).

304 Y. Mocquard et al.

If x(1−μ)n(t) > 0 and E{Φ(t + 1) − Φ(t) | x(t)} ≥ − (1 − μ′(α + 1))
αγ1
n

Φ(t)

and Φ(t) ≥ λ1Ψ(t) then we have Γ (t) ≤ c1n, where

c1 =
(

1 +
1
λ1

)
C1

(
C1

μλ1

)μ/((1−μ)μ′−μ)

, C1 =
(1 − μ′) (2 + α)

(1 − γ1) (1 − μ′(1 + α))

and

λ1 =
1 − μ − α(2 − μ)

2α
.

The condition μ < (1− 2α)/(1−α) is needed ta assure that constant λ1 > 0.
The value of λ1 will be used in Theorem 12. The condition μ′ > μ/(1 − μ) is
needed to assure that the power involved in constant c1 is positive.

Proof. See [11]. �

Lemma 11. Let α, ρ ∈ (0, 1/2) with ρn ∈ N and ρ ∈ (α/(1 − α), 1/(1 + α)), let
ρ′ ∈ (ρ/(1 − ρ), (1 − 2α)/(1 − α)) with ρ′n ∈ N and let γ2 ∈ (0, 1).

If xρn(t) < 0 and E{Ψ(t+1)−Ψ(t) | x(t)} ≥ − [1 − 2α − ρ′(1 − α)]
αγ2
n

Ψ(t)

and Ψ(t) ≥ λ2Φ(t) then we have Γ (t) ≤ c2n, where

c2 =
(

1 +
1
λ2

)
C2

(
C2

ρλ2

)ρ/((1−ρ)ρ′−ρ)

, C2 =
(1 − ρ′) (2 − 2α − ρ′(1 − α))
(1 − γ2) (1 − 2α − ρ′(1 − α))

and

λ2 =
1 − ρ(1 + α)

2α
.

The condition ρ < 1/(1 + α) is needed ta assure that constant λ2 > 0. The
value of λ2 will be used in Theorem 12. The condition ρ′ > ρ/(1 − ρ) is needed
to assure that the power involved in constant c2 is positive.

Proof. See [11]. �

Theorem 12. Let α, μ, ρ ∈ (0, 1/2) with μn, ρn ∈ N, μ ∈ (α/(1 + α), (1 −
2α)/(1 − α)) and ρ ∈ (α/(1 − α), 1/(1 + α)). Let μ′ ∈ (μ/(1 − μ), 1/(1 + α))
with μ′n ∈ N and let ρ′ ∈ (ρ/(1 − ρ), (1 − 2α)/(1 − α)) with ρ′n ∈ N. Let
γ1, γ2 ∈ (0, 1). We then have

E{Γ (t + 1) | x(t)} ≤
(
1 − c4

α

n

)
Γ (t) + c3,

where

c4 = min
{

μ − α(1 − μ), ρ − α(1 + ρ), γ1 (1 − μ′(α + 1)) ,
α (1 − μ − α(2 − μ))

1 − μ(1 − α)
,

γ2 (1 − 2α − ρ′(1 − α)) ,
α (1 − ρ(1 + α))

1 − ρ(1 − α) + 2α

}

Balanced Allocations and Global Clock in Population Protocols 305

and

c3 = max
{
α (1 + α + ρ(1 + ρ)) , α(1 − μ)(2 − μ), (α + c4)αc1, α + α2,

(α + c4)αc2} ,

in which

c1 =
(

1 +
1
λ1

)
C1

(
C1

μλ1

)μ/((1−μ)μ′−μ)

, C1 =
(1 − μ′) (2 + α)

(1 − γ1) (1 − μ′(1 + α))
,

c2 =
(

1 +
1
λ2

)
C2

(
C2

ρλ2

)ρ/((1−ρ)ρ′−ρ)

, C2 =
(1 − ρ′) (2 − 2α − ρ′(1 − α))
(1 − γ2) (1 − 2α − ρ′(1 − α))

,

λ1 =
1 − μ − α(2 − μ)

2α
, λ2 =

1 − ρ(1 + α)
2α

.

Proof. See [11]. �

We are now able to give a upper bound of the expected value of Γ (t).

Theorem 13. For all t ≥ 0, under the hypothesis of Theorem 12, we have
E{Γ (t)} ≤ c3n/(αc4).

Proof. We prove this result by induction. For t = 0, we have Γ (0) = 2n. More-
over, we have

c3 ≥ α (1 + α + ρ(1 + ρ)) ≥ α and c4 ≤ μ − α(1 − μ) ≤ μ ≤ 1/2,

which implies that c3/(αc4) ≥ 2. We thus have E{Γ (0)} = 2n ≤ c3n/(αc4).
Suppose that the result is true for a fixed t ≥ 0. From Theorem 12, we have

E{Γ (t + 1)} = E {E{Γ (t + 1) | x(t)}} ≤ E
{(

1 − c4
α

n

)
Γ (t) + c3

}

≤
(
1 − c4

α

n

) c3
αc4

n + c3 =
c3
αc4

n.

which completes the proof. �

Theorem 14. For all t ≥ 0 and σ > 0, under the hypothesis of Theorem 12, we
have

P

{
Gap(t) ≥ 2(1 + σ)

α
ln (n) +

2
α

ln
(

c3
2αc4

)}
≤ 1

nσ

Proof. From Lemma 1 and Theorem 13, we have

Γ (t) ≥ 2eαGap(t)/2 and
c3n

αc4
≥ E{Γ (t)}.

It follows that

2eαGap(t)/2 ≥ nσ c3n

αc4
=⇒ Γ (t) ≥ nσ c3n

αc4
=⇒ Γ (t) ≥ nσE{Γ (t)}.

306 Y. Mocquard et al.

Using Markov inequality, we obtain

P

{
Gap(t) ≥ 2(σ + 1)

α
ln (n) +

2
α

ln
(

c3
2αc4

)}
= P

{
2eαGap(t)/2 ≥ nσ c3n

αc4

}

≤ P {Γ (t) ≥ nσE{Γ (t)}} ≤ 1
nσ

,

which completes the proof. �

The following corollary shows that at any time, and for any agent, its local
counter approximates the global clock with high probability.

Corollary 15. For all t ≥ 0 and σ > 0, under the hypothesis of Theorem 12,
we have

P

{∣∣∣∣C(i)
t − t

n

∣∣∣∣ <
2(1 + σ)

α
ln (n) +

2
α

ln
(

c3
2αc4

)
, ∀i = 1, . . . , n

}
≥ 1 − 1

nσ

Proof. By definition, we have xi(t) = C
(i)
t − t/n, and since xn(t) ≤ 0 ≤ x1(t),

we have |xi(t)| ≤ x1(t) − xn(t) = Gap(t). It follows, from Theorem 14, that

P

{∣∣∣∣C(i)
t − t

n

∣∣∣∣ ≥ 2(1 + σ)
α

ln (n) +
2
α

ln
(

c3
2αc4

)
, ∀i = 1, . . . , n

}

≤ P

{
Gap(t) ≥ 2(1 + σ)

α
ln (n) +

2
α

ln
(

c3
2αc4

)}
≤ 1

nσ

which completes the proof. �

4 Evaluation of the constants

This section is devoted to the evaluation of constants a and b of Relation (1)
and, to compare them with the ones that we can derive from the analysis of
Alistarh et al. [4].
From Theorem 14, we have

a =
2
α

and b =
2
α

ln
(

c3
2αc4

)
,

where c3 and c4 are given by Theorem 12. First of all, note that constraints given
in Theorem 12 imply the following inequality: ρ/(1 − ρ) < (1 − 2α)/(1 − α),
that is, ρ ≤ (1 − 2α)/(2 − 3α), which combined with ρ ≥ α/(1 − α), leads to
α ≤ (5 − √

5)/10 ≈ 0.276.
For a fixed value of α, we have to determine the values of parameters μ, ρ, μ′,

ρ′, γ1, γ2 that minimize constant b. This is achieved by applying a simple Monte-
Carlo algorithm. Figure 1 shows several optimal values of the constants a and b,
used in Theorem 14, and computed for several values of α.

Let us now evaluate constants a and b obtained in the paper of Alistarh
et al. [4]. Note that the goal of their work was not necessarily focused on the

Balanced Allocations and Global Clock in Population Protocols 307

Fig. 1. Optimal values of a and b in function of α

optimization of a and b constants. Nevertheless, as we will see, the evaluation of
a and b constants is an important motivation of our work. From Relations (1)
and (2) of [4] and as β = 1, we get 0 < δ ≤ ε = 1/16 and thus we obtain, for
γ > 0 and c ≥ 2,

1 + γ + cα(1 + γ)2

1 − γ − cα(1 + γ)2
≤ 17

16
,

which gives,

α ≤ 1
33c(1 + γ)2

− 1
c(1 + γ)2

≤ 1
33c(1 + γ)2

≤ 1
66

.

Considering the difference between the lower bound and the upper bound of the
inequality following (11), we obtain

exp
(

αB

n

(
3 − 1

1 − λ

))
≤ 16λC(ε)

ε
,

which can also be written as

exp
(

αB

(1 − λ)n

)
≤

(
16λC(ε)

ε

)1/(2−3λ)

.

Using the last inequality obtained in the proof of Lemma 4.8, we get

Γ (t) ≤ 4 + ε

ε
λnC(ε) exp

(
αB

(1 − λ)n

)
≤ 4 + ε

ε
λnC(ε)

(
16λC(ε)

ε

)1/(2−3λ)

.

Using this result, we obtain from Lemma 4.11, E{Γ (t)} ≤ 4Cn/(α̂ε), where

C =
4 + ε

ε
λC(ε)

(
16λC(ε)

ε

)1/(2−3λ)

, C(ε) =
(1 + δ)/λ − 1 + 3ε

3ε − ε/3

and α̂ = α(1 − γ − cα(1 + γ)2).

Following the same ideas we used to prove Theorem 14, we get

a =
2
α

and b =
2
α

ln
(

2C

α̂ε

)
.

Since α ≤ 1/66, we have a ≥ 132. Moreover, since 0 ≤ δ ≤ ε = 1/16, λ =
2/3 − 1/54 = 35/54, γ > 0 and c ≥ 2, we obtain

C(ε) =
(1 + δ)/λ − 1 + 3ε

3ε − ε/3
≥ 1/λ − 1 + 3ε

3ε − ε/3
=

1227
280

308 Y. Mocquard et al.

which leads to

C =
4 + ε

ε
λC(ε)

(
16λC(ε)

ε

)1/(2−3λ)

≥ 26585
144

(
6544

9

)18

.

Regarding α̂, we have α̂ = α(1 − γ − cα(1 + γ)2) ≤ α ≤ 1/66. Therefore, we
have

b =
2
α

ln
(

2C

α̂ε

)
≥ 132 ln

(
1169740

3

(
6544

9

)18
)

≥ 17354.

It follows that constants a and b obtained from [4] satisfy a ≥ 132 and b ≥ 17354,
which are at least two orders of magnitude larger than the ones we derived (see
Fig. 1).

5 Simulations

We complete this paper by giving a summary of the experiments we have carried
out to illustrate the performances of our protocol. Recall that n is the number
of nodes in the system, and T = t/n is the total number of interactions divided
by n, which is often called the parallel time. We have conducted two types of
experiments, the first one illustrates the expected proportion of nodes YT (n, k)
whose counter is equal to T +k at time nT , for different values of n and k. More
precisely, YT (n, k) is defined by

YT (n, k) =
1
n

n∑
i=1

1{C
(i)
nT =T+k}.

We show in Fig. 2(a) the expected value of YT (n, k), for n = 1000 and
k = −2,−1, 0, 1, as a function of the parallel time T . These results have been

Fig. 2. Expected proportion and gap

Balanced Allocations and Global Clock in Population Protocols 309

Table 1. Expectation of Y50(n, k) from number of nodes n and shift k

k n

103 104 105 106 107

−13 0.0 0.0 0.0 1.4E-9 1.42E-9

−12 0.0 2.0E-8 8.0E-9 9.0E-9 6.14E-9

−11 2.0E-7 4.0E-8 2.2E-8 2.8E-8 3.048E-8

−10 2.0E-7 8.0E-8 1.88E-7 1.436E-7 1.4814E-7

−9 4.0E-7 8.0E-7 7.7E-7 7.438E-7 7.2784E-7

−8 3.0E-6 3.6E-6 3.586E-6 3.48E-6 3.6029E-6

−7 1.42E-5 1.8E-5 1.8222E-5 1.7767E-5 1.7758E-5

−6 8.98E-5 8.602E-5 8.7176E-5 8.7372E-5 8.72753E-5

−5 4.372E-4 4.2706E-4 4.2957E-4 4.2901E-4 4.29349E-4

−4 0.0021144 0.0021023 0.0021071 0.0021092 0.0021086

−3 0.0102474 0.0102890 0.0102777 0.0102800 0.0102810

−2 0.0481626 0.0483366 0.0483382 0.0483465 0.0483437

−1 0.1930704 0.1932864 0.1933165 0.1933143 0.1933182

0 0.4389352 0.4380932 0.4380715 0.4380374 0.4380346

1 0.2824746 0.2827344 0.2826797 0.2827057 0.2827070

2 0.0243744 0.0245499 0.0245973 0.0245953 0.0245949

3 7.6E-5 7.224E-5 7.2248E-5 7.27752E-5 7.27974E-5

4 0.0 0.0 0.0 4.0E-10 3.6E-10

obtained after running 10, 000 independent experiments. Figure 2(a) shows that
the expected value of YT (n, k) seems to converge when T goes to infinity, and this
convergence is reached very quickly. Note that for other values of k, proportions
of nodes are too close to 0 to be depicted, as shown in Table 1. Table 1 shows the
expected proportion of nodes YT (n, k) whose counter is equal to T + k at time
T = 50, for different values of n = 103, 104, 105, 106, 107 and k = −13, . . . , 4.
These results have been obtained after running 5, 000 independent experiments,
for each value of n. The expected value of Y50(n, k) seems to be almost indepen-
dent of n for large values of n.

The second experiment illustrates the gaps (i.e., the maximal, average, and
minimal) for different values of the size n of the system. Let B = 2 × 109 be
the total number of interactions considered. The maximal gap is computed as
max100n≤t≤B Gap(t), the minimal one is given by min100n≤t≤B Gap(t), and the
average gap is given by

1
B − 100n

B−1∑
t=100n

Gap(t).

310 Y. Mocquard et al.

Figure 2(b) shows respectively the minimal, average and maximal gap in a system
of size n over the interval [100n,B] of interactions. As one may expect, the
logarithmic progression of the Gap is clearly shown.

6 Conclusion

In this article we have gone a step further in the study of the two-choice paradigm
by providing an accurate analysis of the gap problem. An important applica-
tion of this study would be the improvement of leaderless population protocols.
Indeed, we have shown in this paper that agents can construct a global clock by
guaranteeing that the values of all agent counters are concentrated according to
Relation (1), and thus can locally use this global clock to determine the instants
at which some specific actions need to be triggered, or the instants from which all
the agents of the system have converged to a given state. In the former case, this
would allow agents to solve more complex problems by triggering a series of pop-
ulation protocols, whereas in the latter case this would allow agents to determine
the instant from which all the agents have successfully computed a given feature
of the population. The construction of efficient leaderless population protocols
inspired from this orchestration is left for future work.

References

1. Adler, M., Berenbrink, P., Schröder, K.: Analyzing an infinite parallel job allocation
process. In: Bilardi, G., Italiano, G.F., Pietracaprina, A., Pucci, G. (eds.) ESA
1998. LNCS, vol. 1461, pp. 417–428. Springer, Heidelberg (1998). https://doi.org/
10.1007/3-540-68530-8 35

2. Adler, M., Chakrabarti, S., Mitzenmacher, M., Rasmussen, L.: Parallel randomized
load balancing. Random Struct. Algorithms 13(2), 159–188 (1998)

3. Alistarh, D., Aspnes, J., Gelashvili, R.: Space-optimal majority in population pro-
tocols. In: Czumaj, A. (ed.) Proceedings of the Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 2221–2239 (2018)

4. Alistarh, D., Kopinsky, J., Li, J., Nadiradze, G.: The power of choice in priority
scheduling. In: Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC) (2017)

5. Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations (extended
abstract). In: Proceedings of the ACM Symposium on Theory of Computing
(STOC) (1994)

6. Berenbrink, P., Czumaj, A., Friedetzky, T., Vvedenskaya, N.D.: Infinite parallel
job allocation (extended abstract). In: Proceedings of the ACM Symposium on
Parallel Algorithms and Architectures (SPAA), pp. 99–108 (2000)

7. Berenbrink, P., Czumaj, A., Steger, A., Vöcking, B.: Balanced allocations: the
heavily loaded case. SIAM J. Comput. 35(6), 1350–1385 (2006)

8. Berenbrink, P., Meyer auf der Heide, F., Schröder, K.: Allocating weighted jobs in
parallel. Theory Comput. Syst. 32(3), 281–300 (1999)

9. Mitzenmacher, M.: Load balancing and density dependent jump Markov processes.
In: Proceedings of International Conference on Foundations of Computer Science
(1996)

https://doi.org/10.1007/3-540-68530-8_35
https://doi.org/10.1007/3-540-68530-8_35

Balanced Allocations and Global Clock in Population Protocols 311

10. Mitzenmacher, M., Richa, A.W., Sitaraman, R.: The power of two random choices:
a survey of techniques and results. In: Handbook of Randomized Computing, pp.
255–312. Kluwer (2000)

11. Mocquard, Y., Sericola, B., Anceaume, E.: Balanced allocations and global clock in
population protocols: An accurate analysis (Full version), Technical report (2018).
https://hal.archives-ouvertes.fr/hal-01790973

12. Peres, Y., Talwar, K., Wieder, U.: The (1+β)-choice process and weighted balls
into bins. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA) (2010)

13. Peres, Y., Talwar, K., Wieder, U.: Graphical balanced allocations and the (1 +
β)-choice process. Random Struct. Algorithms 47(4), 760–775 (2015)

14. Raab, M., Steger, A.: “Balls into Bins” — a simple and tight analysis. In: Luby,
M., Rolim, J.D.P., Serna, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 159–170.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49543-6 13

15. Talwar, K., Wieder, U.: Balanced allocations: a simple proof for the heavily loaded
case. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP
2014. LNCS, vol. 8572, pp. 979–990. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43948-7 81

https://hal.archives-ouvertes.fr/hal-01790973
https://doi.org/10.1007/3-540-49543-6_13
https://doi.org/10.1007/978-3-662-43948-7_81
https://doi.org/10.1007/978-3-662-43948-7_81

On Knowledge and Communication
Complexity in Distributed Systems

Daniel Pfleger and Ulrich Schmid(B)

TU Wien, Treitlstrasse 3, 1040 Vienna, Austria
{dpfleger,s}@ecs.tuwien.ac.at

Abstract. This paper contributes to exploring the connection between
epistemic knowledge and communication complexity in distributed sys-
tems. We focus on Action Models, a well-known variant of dynamic epis-
temic logic, which allows to cleanly separate the state of knowledge of
the processes and its update due to communication actions: Exactly like
the set of possible global states, the possible actions are described by
means of a Kripke model that specifies which communication actions are
indistinguishable for which process. We first show that the number of
connected components in the action model results in a lower bound for
communication complexity. We then apply this result, in the restricted
setting of a two processor system, for determining communication com-
plexity lower bounds for solving a distributed computing problem P: We
first determine some properties of the action model corresponding to any
given protocol that solves P, and then use our action model communi-
cation complexity lower bounds. Finally, we demonstrate our approach
by applying it to synchronous distributed function computation and to
a simple instance of consensus in directed dynamic networks.

Keywords: Distributed systems · Dynamic epistemic logic
Communication complexity

1 Introduction

Our paper is concerned with the idea to infer the communication complexity for
solving a general distributed computing problem P from the epistemic knowledge
that must be attained by the processes to solve P. More specifically, we take a
first step to bridge Hintikka’s epistemic logic [12], variants of which have very
successfully been applied in distributed computing already [3,4,11], and Yao’s
communication complexity [18]. In this seminal work, Yao introduced methods
for deriving communication complexity lower bounds for distributed function
computation in a system of 2 processes.

Epistemic logic [12] allows to formally reason about knowledge and belief in
static multi-agent systems. It relies on a Kripke model M that describes the

This work has been supported by the Austrian Science Fund FWF under the projects
ADynNet (P28182) and RiSE/SHiNE (S11405).

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 312–330, 2018.
https://doi.org/10.1007/978-3-030-01325-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_27&domain=pdf

On Knowledge and Communication Complexity in Distributed Systems 313

possible global states (“possible worlds”) of the system, where certain atomic
propositions (facts like “variable xi of process pi is zero”) hold true or not,
along with an indistinguishability relation s ∼a s′ between global states s, s′

for every agent (= process) a. Knowledge of some fact φ about the system in
global state s is primarily captured by a modal knowledge operator Ka, used in
formal expressions like M, s |= Kaφ, which captures the intuition that, being in
the global state s, process a knows φ if φ holds in every global state s′ that is
indistinguishable from s for a. We will use the term epistemic model to refer to
this type of Kripke models, which focus entirely on a given “static” knowledge
state of the processes.

Dynamic Epistemic Logic (DEL) [8,10] also allows to incorporate
communication-induced knowledge gain into the formal reasoning. We will focus
on a variant of DEL called Action Models [8], which are particularly suitable
for our purpose. Action Models can be used to describe possible communica-
tion events that may occur at certain times in an execution of some algorithm.
Formally, this is modeled by applying a sequence of (arbitrary) communica-
tion action models AM1, AM2, . . . to an initial epistemic model M0, which results
in a sequence of epistemic models M0,M1, . . . that describes the evolution of
knowledge in the execution. Every AMk is represented by an independent Kripke
model here, which is orthogonal to the epistemic model Mk−1 it is applied to.
By means of a well-defined product ⊗ (see Sect. 2.1), this leads to the epistemic
model Mk = Mk−1 ⊗ AMk. This abstraction is particularly suitable for modeling
synchronous systems, as AMk can be used to express all the possible communica-
tion in round k here.

Our Contributions: (1) We first exploit the clean separation of epistemic mod-
els and action models to infer a natural lower bound for the number of bits that
some process a must receive in any protocol that faithfully implements a given
action model AM. It is closely related to the number of partitions in a’s indistin-
guishability relation in AM. (2) Restricting our attention to systems of 2 processes,
we then infer a communication complexity lower bound for solving a problem
P by (i) determining the properties of the action model corresponding to any
protocol that correctly solves P, and (ii) inferring a communication complexity
lower bound from this via the result of (1). We apply our approach to distributed
function computation in synchronous systems [18] and sketch how it is applied
to consensus under message adversaries [1,5].

Related Work: Van Ditmarsch et al. [8] provide a comprehensive introduc-
tion into Dynamic Epistemic Logic, including Action Models. Fagin et al. [9]
introduces the powerful runs and systems framework, which allows to reason
about knowledge in general distributed systems. Halpern and Moses [11] use
this framework to reason the role of (various forms of) common knowledge in
solving distributed consensus. They also elaborate on the Muddy Children prob-
lem, which is very closely related to the Cheating Husbands problem [15] that
we use for illustrating Action Models in Sect. 4.

Communication complexity lower bounds deserve much to the seminal work
[18] by Yao, which studies distributed function computation for two processes.

314 D. Pfleger and U. Schmid

Indeed, [18] also sparked quite some interest in the distributed systems commu-
nity, which led to very interesting lower bounds based on information-theoretic
arguments. A few examples, among many possible others, are symmetry break-
ing in chains and rings [7] and lower bounds for all pair shortest paths [13].
However, unlike our results, these approaches are usually tied to the specific
problem P at hand and do not use epistemic logic.

We are not aware of much work on the relation between communication
complexity and epistemic models. Somewhat similar to our work is [6], which
used dynamic epistemic logic and action models in a combinatorial way to find
a lower bound on communication complexity for the Russian Cards problem.
Alechina et al. [2] investigated bounds for a system of reasoning agents, where
agents may have different knowledge and inferential capabilities and have to draw
conclusions from received messages, which contain formulas. They established a
framework to verify time, memory and communication bounds in such a system.
Since the communication complexity in this work is defined as the number of
formulas, rather than the number of bits, however, it cannot be compared to our
approach.

Paper Organization: We start by defining our system model in Sect. 2, fol-
lowed by an introduction to the relevant basics of Action Models (Sect. 2.1) and
Communication Complexity (Sect. 3). In Sect. 4, we demonstrate how Action
Models work by means of the well-known Cheating Husbands problem [15], and
explain the connection between communication complexity and the number of
partitions in action models. Sect. 5 elaborates further on the connection between
Action Models and Protocol Trees introduced in [18]. Our main results can be
found in Sect. 5.2, along with two applications in Sect. 5.3. Some conclusions and
directions of future work in Sect. 6 round off our paper.

2 Model

We consider synchronous message passing systems only. Such systems are mod-
eled as a set Π of n processes with unique identifiers, which are reliable and
operate in lock-step rounds r = 1, 2, The processes are modeled as state
machines and connected by point-to-point communication links. We consider
both reliable links and unreliable links controlled by a message adversary [1,5],
which determines the links that successfully deliver the message sent over it in
a round. More specifically, at the beginning of round r, all processes send out a
message to every other process (and to themselves). Rounds are communication-
closed, in the sense that each message sent in round r can only be delivered in
r. The message adversary determines which message is indeed be delivered to
the intended receiver. After this message exchange, all processes simultaneously
perform an instantaneous local computation step that terminates round r.

Note that, in the case of reliable links, the guarantee that all the messages
sent in round r will be delivered by the end of round r allows communication
by time: if a process a did not receive the message from process b by the end of
round r, then a knows that b did not send this message. Conversely, if a sends a

On Knowledge and Communication Complexity in Distributed Systems 315

message to b at the beginning of round r, a knows at the end of round r that b
received this message. Note that Ben-Zvi and Moses [4] modeled communication
by time via explicitly sending a virtual NULL-message instead of a real one.

Regarding the connection of action models and the synchronous model, we
assume that a single action model AMr is applied in each round r. For every pos-
sible communication pattern in round r, which is determined (i) by the protocol
and (ii) by the message adversary, it contains a corresponding action. Clearly,
two actions are indistinguishable for process a, if it receives the same messages.
Note carefully that the synchrony assumption makes sure that every process
knows that the action model AMr is to be applied, even if it does not receive a
single message in round r.

2.1 Knowledge and Action Models

Usually, distributed computing problems also involve global constraints, like
agreement in distributed consensus (see Sect. 5.3). The actions of a single process
in a distributed system depend solely on its local information, though, and the
global behavior emerges from those local actions. Thus, defining and proving
the correctness of distributed systems typically involves arguments about the
behavior and interaction between individual processes. In such proofs, it is often
argued that: “Once the synchronous round r begins, all processes know that all
the sent messages have been delivered.”, for example.

To formalize such arguments, frameworks like [8,9] allow to formally reason
about knowledge in such systems. We utilize a variant of Dynamic Epistemic
Logic [10,17], namely, Action Models, which are well-suited for the simple syn-
chronous systems considered in our paper. The following Definition 1 to 4 and
7 will define epistemic models and action models, as well as the semantics of
action model logic. Illustrating examples can be found in Sect. 4 (Figs. 2 and 3).

Definition 1 (Kripke model, see [8], Definition 2.6). A Kripke model M
is a tuple 〈S,R, V 〉 on a set of processes A, where S �= ∅ is a set of states, R
is a set of accessibility relations: R = {Ra | a ∈ A}, with Ra ⊆ S × S. A state
t ∈ S is accessible for process a ∈ A from state s ∈ S, iff sRat. V : P → 2S, P
a set of atomic propositions (also called atoms), is a valuation function for each
p ∈ P . For any proposition p ∈ P , V (p) ⊆ S is exactly the set of states in which
p is true.

In our context, the epistemic states s ∈ S, denoted (M, s), are the possible
global states of the distributed system, and Ra is interpreted as an indistin-
guishability relation for process a, thus is denoted by ∼a in the sequel.

The following definition formally defines the Kripke model of the possible
actions. It is independent of the epistemic model in Definition 1 it is applied to,
except for the precondition function that governs which actions are applicable
in which epistemic state.

Definition 2 (Action Model, see [8], Definition 6.2). For given processes
A and atomic propositions P and any logical language L, the action model M is a

316 D. Pfleger and U. Schmid

structure 〈S,∼, pre〉 such that S is a set of actions, ∼a is an equivalence relation
on S for each a ∈ A, and pre : S → L a preconditions function that assigns a
precondition pre(s) ∈ L to each s ∈ S. A pointed action model is a structure
(M, s), with s ∈ S.

The following syntax is used to formally specify action model knowledge
formulas. Basically, it consists of formulas φ related to the epistemic state (the
“possible worlds”) of the system, and formulas involving the application of some
action α. The detailed semantics is given in Definition 7 below.

Definition 3 (Syntax of action model logic, see [8], Definition 6.3).
Given processes A and atoms P , the language LKC⊗(A,P) is the union of for-
mulas φ ∈ Lstat

KC⊗(A,P) and pointed action models α ∈ Lact
KC⊗(A,P) defined by:

φ ::= p | ¬φ | (φ ∧ φ) | Kaφ | EBφ | CBφ | [α]φ
α ::= (M, s) | (α ∪ α)

with p ∈ P , a ∈ A, B ⊆ A, and (M, s) a pointed action model with finite domain S

such that for all t ∈ S the precondition pre(t) is a Lstat
KC⊗(A,P) formula that has

already been constructed in a previous stage of the inductively defined hierarchy.
α ∪ α′ denotes a non-deterministic choice between α and α′.

Action models can be composed: To apply two different actions (M, s) and
(M′, s′) to some epistemic state (M, s) subsequently, one can either apply them
one after the other or determine their composition (M′′, s′′) = (M; M′, (s, s′)) and
apply the resulting action (M′′, s′′) in a single step.

Definition 4 (Composition of action models, see [8], Definition 6.7).
Let M = 〈S,∼, pre〉 and M′ = 〈S′,∼′, pre′〉 be two action models in LKC⊗. Then
their composition (M; M′) is the action model M′′ = 〈S′′,∼′′, pre′′〉, such that:

S′′ = S × S′

(s, s′) ∼′′
a (t, t′) iff s ∼a t and s′ ∼′

a t′

pre′′((s, s′)) = 〈M, s〉pre′(s′)

with 〈M, s〉pre′(s′) denoting an abbreviation for ¬[M, s]¬pre′(s′).

To change the static epistemic status starting in an epistemic model M , one
applies an action model M, resulting in a new epistemic modem M ′:

Definition 5 (Application of an action model). We define the application
of action model M on epistemic model M , resulting in M ′, M ′ = (M ⊗ M), as
M ′ = 〈S′,∼′, V ′〉 with:

S′ = {(s, s) | s ∈ S, s ∈ S, and M, s |= pre(s)}
(s, s) ∼′

a (t, t) iff s ∼a t and s ∼a t

(s, s) ∈ V ′(p) iff s ∈ V (p)

Note that our complexity results will primarily rely on the axiom (s, s) ∼′
a

(t, t) iff s ∼a t and s ∼a t, which implies that the application of two

On Knowledge and Communication Complexity in Distributed Systems 317

distinguishable actions s �∼a t to indistinguishable epistemic states s ∼a t causes
distinguishable epistemic states (s, s) �∼′

a (t, t).
To define the semantics of common knowledge, the last ingredient of our

Action Models, we need to introduce the reflexive transitive closure of a relation
R. It allows to express facts and formulas φ that are commonly known to a subset
of the processes, in the sense that “every process knows that every process knows
that every process knows . . . φ.”. We define “everybody in group B knows φ”
(EBφ), as a syntactic equivalence EBφ =

∧
a∈B Kaφ.

Definition 6. The reflexive transitive closure of a relation R is the smallest
relation R∗ such that: (i) R ⊆ R∗, (ii) for all x, y, and z: xR∗y ∧ yR∗z ⇒ xR∗z
(transitivity), (iii) for all x, xR∗x (reflexivity).

We can now give the formal semantics of Action Model logic. It specifies the
meaning of both the operations for reasoning about knowledge in the epistemic
model and the application of action models.1

Definition 7 (Semantics of action model logic, see [8], Definition 6.8).
Let M = 〈S,∼, V 〉 be an epistemic model with (M, s), s ∈ S, an epistemic state
of this model, M = 〈S,∼, pre〉 an action model, and φ ∈ Lstat

KC⊗ and α ∈ Lact
KC⊗.

Furthermore let A be a set of processes and P a set of atoms, while a ∈ A,
B ⊆ A and p ∈ P .

M, s |= p iff s ∈ V (p)
M, s |= (φ ∧ ψ) iff M, s |= φ and M, s |= ψ
M, s |= ¬φ iff M, s �|= φ
M, s |= Kaφ iff for all t ∈ S such that s ∼a t : M, t |= φ
M, s |= EBφ iff for all t ∈ S such that s ∼EB

t : M, t |= φ
M, s |= CBφ iff for all t ∈ S such that s ∼∗

EB
t : M, t |= φ

M, s |= [α]φ iff for all M ′, s′ such that (M, s)[[α]](M ′, s′) : M ′, s′ |= φ
(M, s)[[M, s]](M ′, s′) iff M, s |= pre(s) and (M ′, s′) = (M ⊗ M, (s, s))
[[α ∪ α′]] = [[α]] ∪ [[α′]]

with ∼EB
=

⋃

b∈B

∼b.

In Sect. 4, we will use the Cheating Husbands problem [15] to exemplify how
the Action Model semantics works in practice; particular instantiations can be
found in Sect. 5.3.

3 Communication Complexity Basics

In [18], Yao considers two processes p0 and p1, which jointly solve the problem
of evaluating the non-constant function f : X × Y → Z, where X, Y and Z are
arbitrary finite sets. Herein, the input x ∈ X is only known to p0, whereas the

1 Please observe the different fonts in our notation: in s ∼a t, ∼a is taken from the
epistemic model M , while in s ∼a t, ∼a is from the action model M.

318 D. Pfleger and U. Schmid

input y ∈ Y is only known to p1. Clearly, p0 and p1 have to communicate with
each other in order to solve the problem. Yao’s communication model assumes
that all communication links are reliable and that the processes send information
to each other alternatingly: one bit is sent by p0 then one bit is sent by p1 and so
on, according to some protocol P. The communication complexity of computing
f is the least number of bits that need to be exchanged between p0 and p1 by any
deterministic protocol P in order to determine f(x, y) at p0 or p1. In fact, Yao
assumes that the process that can compute f(x, y) first sends a special NULL
message to the other process and stops. It is also assumed that the processes both
know the identity of themselves and the other process a priori. Note carefully
that this allows the design of an asymmetric protocol, where some agreed-upon
process, say, p0 sends the first bit.

The following definition introduces the convenient notion of protocol trees,
which uniquely describe the possible executions of a given protocol.

Definition 8 (Protocol trees, see [14], Definition 1.1). A protocol Pover
X ×Y with range Z is a binary tree, where each internal node v is labeled either
by a function gv : X → {0, 1} or by a function hv : Y → {0, 1}, and each leaf
is labeled with an element z of Z. The root r is labeled by g1 : X → {0, 1}.
Intuitively, gk (resp. hk) gives the bit sent by p0 (resp. p1) in round k.

The cost of the protocol Pon input (x, y) is the length of the path taken on
input (x, y), denoted by DP(f). As the longest such path is the height of the
protocol tree, the maximal cost over all inputs is the height of this protocol tree.

The cost of a problem f is the minimal cost of any protocol P that computes
f , denoted by D(f).

Every root-leaf path in this tree corresponds to an execution of P on some
input (x, y): At each internal node, the process that is the next to send a bit is
computing gv (resp. hv), to determine the value of the next communicated bit.
Figure 1 shows the definition of a function f : {x0, x1, x2, x3}×{y0, y1, y2, y3} →
{0, 1}, which is computed by the protocol tree next to it.

y0 y1 y2 y3
x0 1 1 0 1
x1 0 0 1 1
x2 0 0 1 1
x3 0 0 0 0

g1(x0) = 1 g1(x1) = 0
g1(x2) = 0 g1(x3) = 0

h2(y0) = 0 h2(y1) = 0
h2(y2) = 1 h2(y3) = 1

h3(y0) = 1 h3(y1) = 1
h3(y2) = 0 h3(y3) = 1

g4(x1) = 1 g4(x2) = 1
g4(x3) = 00

0 1

0 1

Fig. 1. An example of a function f(x, y) and one possible protocol tree for computing
it. The dashed path corresponds to some input in {x3}×{y2, y3}. The left (resp. right)
branch from each node v corresponds to sending bit 0 (resp. 1).

On Knowledge and Communication Complexity in Distributed Systems 319

As witnessed by the leaves in the protocol tree, a protocol P can be seen as a
way to partition the set of possible inputs X×Y to multiple subsets leading to the
same communication pattern. The left (resp. right) child of a node corresponds to
the case where the bit sent by the node’s corresponding process is 0 (resp. 1). For
example, the sequence of communicated bits for any input pair in {x3}×{y2, y3},
corresponding to the dashed path in Fig. 1, is (0, 1, 0). This leads to the crucial
notion of rectangles:

Definition 9 (Rectangles, see [14], Proposition 1.13). A partition R ⊆
X × Y is a rectangle iff: (x, y) ∈ R and (x′, y′) ∈ R ⇒ (x, y′) ∈ R. A rectangle
is f-monochromatic iff for all (x, y) ∈ R the result of f(x, y) = z is the same.

By exploiting the close relation between monochromatic rectangles and leaf,
one can prove the following Corollary 1 [14,18]:

Corollary 1 (Lower Bound, see [14], Corollary 1.17). If any set of f-
monochromatic rectangles induced by f has size at least t, then log2 t ≤ D(f).

In the remaining paper, we will use a similar model as in [18], with the
following two main differences: (i) Each process can send an arbitrary number of
bits in every round. (ii) We consider symmetric function computation (sometimes
without communication by time), i.e., once an algorithm for computing f(x, y)
terminates, the result must be commonly known by both p0 and p1.

4 Communication Complexity of Action Models

We use the Cheating Husbands problem [15] to illustrate the connection between
knowledge and communication complexity. Herein, the women of a city ruled by
a queen want to get rid of unfaithful husbands. It is common knowledge that
each of the women knows the fidelity-status of the husbands of all other women,
but does not know whether or not her own husband is unfaithful. The women are
not allowed to discuss their husbands fidelity with each other. The left model
in Fig. 2 depicts the initial epistemic model MCH for three women (a, b, c).
Each state is labeled with the atomic proposition (abc), a, b, c ∈ {0, 1}, i = 1(0)
interpreted as “husband of i is unfaithful (faithful)”.

In the original problem considered in [15], it is common knowledge among
the women that the queen will publicly announce whether there is at least one
unfaithful husband or not. We can model this announcement using the actions
¬t (“the queen does not announce anything”) and ≥ 1 (“the queen publicly
announces that there is at least one unfaithful husband”). It is well known [15]
that, in this scenario, the women can find all the unfaithful husbands by a
synchronous protocol, which requires every woman who gets to know her husband
is unfaithful some day must shoot him at midnight.

There is a variant of this problem, which also allows a correct solution: Here
it is common knowledge that, iff there is exactly one unfaithful husband, the
queen tells his wife privately that her husband is unfaithful on some a priori

320 D. Pfleger and U. Schmid

MCH (111)(011)

(110)(010)

(101)(001)

(100)(000)
a

b

c
a

b

a
c

b

c

a

b

c M ′
CH (111)(011)

(110)(010)

(101)(001)

(100)(000)

a

b

a
c

b

c

a

b

c

Fig. 2. Example Cheating Husbands: Left: The initial Kripke model MCH for three
wives a, b, c. Right: The epistemic model M ′

CH reached after applying AMpub or AMpriv.

known day. All the other women will never hear anything from the queen, and
in no other case the queen announces anything. This can be modeled by the
actions ¬t (“the queen does not announce anything”) and ti for each woman i
(“the queen tells woman i that her husband is unfaithful”). It can be shown that
the women are also able to shoot all the unfaithful husbands, using the same
protocol.

The two action models AMpub for the public announcement and AMpriv for the
private announcement are depicted in Fig. 3. Applying AMpub and AMpriv on the
initial epistemic model, the resulting epistemic model is the same, depicted in
Fig. 2 (right). Still, in the public scenario AMpub, the queen “sends out” a single
bit (“There is no / at least one unfaithful husband.”) to each woman, summing
up to n bits in total for n women. In the private scenario AMpriv, though, the
queen only needs to send a message (“You!”) to a single woman in some special
cases, and sends nothing in most other cases. Since we are a synchronous setting,
however, every woman knows —via communication by time— that, if the queen
sent her a message, she would have received it by midnight of the a priori known
day. So, effectively, the queen sends a single bit (“Your husband is unfaithful”) to
at most one woman. Consequently, the communication complexity in the public
scenario is higher than in the private one.

One may conjecture that this difference is related to the information complex-
ity of the a priori knowledge: the communication complexity probably decreases
with increasing a priori knowledge. Exploring this relation is a very interest-
ing research question but still out of reach.2 We therefore focus on the relation
between communication complexity and the number of possible “knowledge-
changing” events in an execution, which are neatly encapsulated in the action
models: in essence, an action model just defines the possible observations of the
global system state every single process can make.

Considering a single woman a, it is apparent from Fig. 3 that both of the
action models are partitioned regarding the indistinguishability of a.

2 We note, however, that our findings do support this claim, as the action model is
common a priori knowledge and clearly more complex in the private than in the
public scenario, cp. Fig. 3.

On Knowledge and Communication Complexity in Distributed Systems 321

≥ 1 ta
tb

tcb, c

a, c

a, b

Action model AMpub modeling the public
scenario of the cheating husbands problem.

Action model AMpriv modeling the private
scenario of the cheating husbands problem.

¬t ¬t

Fig. 3. Action models for the two scenarios of Cheating Husbands. The actions are
denoted by: ¬t : the queen does not make a statement, ≥ 1: the queen publicly
announces that there is at least one unfaithful husband, ti : the queens tells i privately
that her husband is unfaithful. The partitioning regarding a is depicted in red.

Definition 10 (Partitions of action models). An Action Model AM = 〈S,∼,
pre〉 is partitioned regarding process a if the underlying indistinguishability
graph, consisting only of edges corresponding to ∼a, is partitioned. I.e., there
are sets of nodes Vi, such that for i �= j Vi ∩ Vj = ∅,

⋃
i Vi = V and v ∈ Vi,

v′ ∈ Vj ⇒ (v, v′) �∈ E.
The number of those partitions is denoted by Na

AM.

Our claim is that there is a strong connection between the communication
complexity, more specifically, the number of bits received by process a, and the
number of such partitions Na

AM in the action model AM. In Fig. 3, both action
models AMpub and AMpriv partition into two partitions, for each woman i. Indeed,
if the queen does not announce anything in AMpriv, woman a does NOT know
that the action has been ¬t, she only knows that the action has been in the
partition {¬t, tb, tc}. In Fig. 3, if ≥ 1 (in AMpub) or ta (in AMpriv) occurs, woman
a of course immediately knows the action itself, without receiving any additional
information. In the case of ¬t (in AMpub) or an action other than ta (in AMpriv),
she learns the partition by not receiving anything, i.e., via communication by
time.

Since every woman has to be able to identify the actual partition the current
action is in, according to the semantics of ⊗ in Definition 5, the number of these
partitions determines a lower bound on the number of bits received by a woman
in some scenario, i.e., a worst-case lower bound: As both action models split into
two partitions for each woman, the queen has to send one bit to each of them in
BOTH scenarios.

Note that this does NOT contradict our above observation that, in AMpriv,
the queen sends a message to at most one woman. In more detail, in action ta in
AMpriv, the queen actively sends a bit = 1 to woman a. In actions ¬t, tb, tc, the
queen does not actively send anything to woman a, but it does so passively via
communication by time: as in [4], we model this by virtually sending a NULL
message.

Definition 11. We define an active bit as a bit (i.e., 0 or 1) sent via explicit
communication from some process a to some process b. A passive bit is defined
as the bit “sent” in a NULL message from some process a to some process b
(communication by time).

322 D. Pfleger and U. Schmid

Note that multiple active bits can be sent from a to b in a round, while a NULL
message counts as a single passive bit only.

We are now ready to define the communication cost of the application of a
single action model:

Definition 12. The worst-case cost Da(AM) of the application of an action
model AM for process a is the worst-case number of active bits received by a when
the action model is applied, i.e., the maximum number of active bits received in
some scenario.

Note carefully that it is the particular protocol that actually determines the
encoding used for communicating the occurrence of the actions to the processes.
The number of active bits received by a may hence depend on which particular
action occurs, which explains why we restrict our attention to the maximum
number of active bits for defining Da(AM). Of course, this implies that we can
only guarantee that Da(AM) bits are sent in some scenario, not in any scenario.
Even worse, we cannot assume that the action causing the worst-case cost Da(AM)
for process a is also causing the worst-case cost Db(AM) for process b. Therefore,
defining the total worst-case cost D(AM) of the application of an action model AM
as the sum of Da(AM) over all processes a, would be overly conservative, and does
hence not give a lower bound for the system-wide communication complexity.
However, we can give a lower bound for Da(AM):

Lemma 1. In a synchronous system with processes A, the worst-case cost
Da(AM) of the application of an action model AM for process a ∈ A satisfies
log2(Na

AM − 1) ≤ Da(AM), where Na
AM is the number of partitions regarding a

in AM.

Proof (Proof by contradiction). Suppose there exists an action model AM such
that Da(AM) < log2(Na

AM − 1) for some process a ∈ A. Then 2D
a(AM) + 1 < Na

AM.
Obviously, by receiving Da(AM) active bits with value 0 or 1, a can distinguish
at most 2D

a(AM) + 1 (including the single passive bit) partitions of AM. Since
2D

a(AM) + 1 < Na
AM, by a pigeonhole argument, there are at least two partitions

P0 and P1 which cannot be distinguished by a.
Now assume that applying (AM, s) at epistemic state (M, s) results in (M ′, s′),

and consider the following scenario: (i) s0 ∼a s1 in epistemic model M , (ii)
s0 ∈ P0, s1 ∈ P1 in action model AM applicable to s0 respectively s1 (s0 �∼a s1,
but P0 and P1 indistinguishable by a). Such a scenario always exists, as one can
choose s1 = s0 as well. By the semantics of Action Models (Definition 5 and
7), we must have (s0, s0) �∼a (s1, s1) in epistemic model M ′. Since a cannot
distinguish between (the actions in) P0 and P1, however, we inevitably have
(s0, s0) ∼a (s1, s1), providing the required contradiction. Thus a has to receive
at least log2(Na

AM − 1) active bits during the application of (AM, s).

Lemma 2 provides a lower bound for Da(AM) in the case in which communi-
cation by time cannot be used, e.g., when communication is unreliable. Its proof
is almost identical to the proof of Lemma 1.

On Knowledge and Communication Complexity in Distributed Systems 323

Lemma 2. In a system with processes A, the worst-case cost of Da(AM) of
the application of an action model AM for process a ∈ A satisfies log2(Na

AM) ≤
Da(AM), where Na

AM is the number of partitions regarding a in AM.

So far, we only considered the application of a single action model. For the
communication complexity of an algorithm A solving a specific problem P using
multiple rounds of communication, the first thing that comes to mind is to
sum up the communication complexity of single round action models. Unfortu-
nately, this would not provide a tight lower bound on the overall communication
complexity of A: while the worst-case execution of A may include the worst-
case scenario of some round r action model AMr, it does not necessarily include
the worst-case scenario of action model AMr′ in round r′. Fortunately, however,
Definition 4 provides a way to alleviate this problem: By computing the compo-
sition of the action models of rounds 1, 2, . . . , k, where k is the round in which
A has terminated, we get a single action model for which we can compute the
lower bound using the above method.

We conclude this section by stressing the fact that the worst-case cost Da(AM)
given by Definition 12 is tied to the communication complexity for applying a
given action model AM, i.e., of an algorithm A that faithfully implements a given
AM. Obviously, this is not equivalent to the communication complexity for solving
a specific problem, since the lower bounds for Da(AM) established in Lemma 1
and Lemma 2 are tied to a specific action model. In the following section, we
will address the communication complexity of a given problem P, by considering
action models that are optimal for P.

5 Action Models and Protocol Trees

In this section, we will restrict our attention to distributed function computation
in synchronous systems of 2 processes. Clearly, all actions correspond to messages
sent by one of the two processes here, and each action can be distinguished from
any other action by both processes at the end of a round.

5.1 Action Models of Protocol Trees

As process a can only send some information x to process b if it knows that x is
valid, an action corresponding to this sending process has to have a precondition
containing Kax. Consequently, even though process a can distinguish the action
s “a sends x to b” in round r from the action t “a sends ¬x to b” in round r, the
application of one of those actions does not change a’s view on the facts x and
¬x in the resulting epistemic state compared to the original one, as a already
knew x resp. ¬x.3 On the other hand, since b can distinguish the actions s and
3 To be precise, this is only true if x is a preserved formula (as introduced in [8]),

which requires x to be propositional or positive knowledge (but not x = ¬Kaφ, for
example). Thus we will also restrict ourselves to algorithms in which preconditions
of actions only involve preserved formulas, which is essentially a non-restriction for
distributed algorithms.

324 D. Pfleger and U. Schmid

t, b learns x resp. ¬x, which eliminates edges in ∼b in the resulting epistemic
model, leading to a partitioning between the states where Kbx and Kb¬x.

Note, however, that the fact that all actions are distinguishable for every
process is only valid because we have just two processes: In a system with e.g.
three processes, it would be possible that p0 doing actions s resp. t is sending 0
resp. 1 to process p1 but nothing to process p2, thus p2 cannot distinguish actions
s and t. Nevertheless, even in a system of n processes, the terminal epistemic
model, in which the n processes all know the result of f , must be partitioned
into several partitions that are separated for all processes: Each such partition
consists of (potentially multiple) epistemic states in which the result of f must
be the same. Otherwise, the result of f would not be common knowledge.

Since all the processes have the same initial knowledge (except for their own
input value), the initial epistemic model M = (S,∼, V) is not partitioned, but
rather a hypercube like in Fig. 2. The terminal epistemic model is the result
of applying the composed action model (for all rounds) to the initial epistemic
model. Thus, the required partitioning of the terminal epistemic model can only
result from some partitioning of the composed action model.

Definition 13. An algorithm A is defined by a set of action models
{AM1, . . . , AMk}, such that a single action model AMi is applicable in round i of
the synchronous execution. The action model AMi partitions into tAMi ≥ 1 disjoint
partitions (identically for both processes p0, p1).

Definition 14. The composed action model of the first k rounds (CAMk) is the
composition of the action models AM1, . . . , AMk, inductively defined as CAM1 = AM1
and CAMk = (CAMk−1; AMk). Every CAMk = (SCAMk ,∼CAMk , preCAMk) partitions into
tCAMk disjoint partitions, where Pk,i denotes the i-th partition of CAMk, consisting
of actions Sk,i ⊆ SCAMk .

Clearly, if A computes f in m rounds, the relevant composed action model
is CAMm. Observe that applying the actions in Pk,i to the initial epistemic model
M = (S,∼, V) leads to a set of partitions of the epistemic model M ′ = M⊗CAMk,
as required.

We can now define the protocol tree corresponding to the action model for
algorithm A:

Definition 15. The protocol tree TA = (P,E) of an algorithm A, starting at
the root vertex v that represents the initial epistemic model M = (S,∼, V), is
defined as:
P = {v} ∪ {Pk,i | Pk,i for some i is a partition of CAMk, k ∈ {1,m}}
E = {(v, P1,j) | P1,j a partition of CAM1} ∪ {(Pk,i, Pk+1,j) | ∃s ∈ Sk,i, t ∈
SAMk+1 : (s, t) ∈ Sk+1,j for some i and j, and k ∈ {1,m − 1}}.

Informally, Definition 15 states that each partition of each composed action
model CAMk is a node in the protocol tree. All the nodes corresponding to the par-
titions of CAM1 are connected to the root node v. There is a connection between
two nodes Pk,i and Pk+1,j on levels k and k + 1 if and only if there is an action

On Knowledge and Communication Complexity in Distributed Systems 325

s ∈ Sk,i which is a prefix of an action (s, t) of Sk+1,j , with t ∈ SAMk+1 an action
of AMk+1. The following Lemma 3 shows that TA is indeed a tree.

Lemma 3. TA is a tree.

Proof. For space reasons, we refer the reader to the full version [16].

So far, we only considered the protocol tree TA, which is solely defined in
terms of the action models CAMk. Now we turn our attention to the application
of TA to the initial epistemic model M = (S,∼, V) that is a hypercube. As
already said, this must induce a partitioning of the resulting epistemic model,
i.e., the leaves in TA, in order to correctly compute f(x, y) at both processes.
The following Lemma 4 shows that the CAMm and the resulting TA of a correct
solution must induce rectangles at the leafs of TA.

Lemma 4. Let M = (S,∼, V) be the hypercube describing the initial epistemic
model of a solution algorithm for computing f(x, y), defined by the action models
AM1, . . . , AMm (resulting in the composed action model CAMm) and the correspond-
ing protocol tree TA. Then, every rectangle corresponds to at least one partition
in the final epistemic model M ′ = M ⊗ CAMm, i.e., at least one leaf, and every
leaf corresponds to some (not necessarily maximal) rectangle.

Proof. First, as A must compute f(x, y) for every input (x, y), and A terminates
only in leaves of TA, every (x, y) leads to some leaf. Consequently, for every rect-
angle R, which usually contains more than one input, say (x1, y1) and (x2, y2),
we can assign the set of leafs LR its constituent inputs lead to.

We now show that actually |LR| = 1, which implies that every leaf corre-
sponds to some rectangle. Suppose that both inputs (x1, y1) and (x2, y2) allow
the application of actions leading to the node � of TA, then also (x1, y2) and
(x2, y1) lead to �: The path through the tree has to be the same for all of the
four input pairs. We start our inductive argument at level k = 0, the initial epis-
temic model. In the initial epistemic model, p0 cannot distinguish the situation
with input (x1, y1) from (x1, y2) resp. (x2, y1) from (x2, y2). A similar argument
holds for p1. Since (x1, y1) and (x2, y2) lead to the same node �, the actions
of AM1 have to be in the same partition for both of them and since p0 cannot
distinguish (x1, y1) from (x1, y2), the action applied by p0 has to be the same
in both cases (similarly for (x2, y2) and (x2, y1)). Since p1 cannot distinguish
(x1, y1) from (x2, y1), the action applied by p1 has to be the same in both cases
(similarly for (x2, y2) and (x1, y2)). As p0’s action is the same for (x1, y1) and
(x1, y2) and p1’s action is the same for (x1, y2) and (x2, y2), and the actions of
AM1 have to be in the same partition for (x1, y1) and (x2, y2), also the action for
(x1, y2) has to be in the same partition in AM1. By the analogous argument, it
follows that also the action for (x2, y1) in AM1 is in the very same partition of
AM1 = CAM1.

For the induction step, assume that the execution of A for (x1, y1) resp.
(x2, y2) reached some node Pk,i on level k of TA. By the induction hypothesis,
also the executions for (x1, y2) and (x2, y1) have reached this node. Due to the

326 D. Pfleger and U. Schmid

initial premise of reaching the same leaf �, the executions for (x1, y1) and (x2, y2)
must reach some common node Pk+1,j corresponding to a partition in CAMk+1 =
(CAMk; AMk+1). As already stated before, the epistemic model after round k + 1
can be derived in two ways: Applying action model by action model or once
applying CAMk+1 on the initial epistemic model: the resulting epistemic models
are equivalent. Thus, by the same argument as before (only using AMk+1 instead
of AM1), it follows that all the actions on the inputs have to be in the same
partition in AMk+1 and hence in CAMk+1. Consequently, all the inputs lead to the
same node on level k + 1 as asserted.

5.2 Communication Complexity Lower Bounds

In this section, we will prove a lower bound on the number of bits received
by the processes during the worst-case execution of a given algorithm A for
computing a function f(x, y), using the action model representation of Sect. 5.1.
In the following, Di = Di(A) denotes the maximum number of bits received by
pi in any execution of A for computing f , and D = D(A) is the maximum total
number of bits received system-wide.

The following Theorem 1 finally establishes a lower bound on D for a given
algorithm A for computing f . It relies on a lower bound on the number of
partitions tCAMm of the composed action model CAMm for A, and can hence be
viewed as an action model analogon for Corollary 1.

Theorem 1. The maximum total number of bits D received by the processes
in any execution of any algorithm A that computes f(x, y) in m rounds has
the lower bound log2 tCAMm ≤ D, where tCAMm is the number of partitions of the
composed action model of A after m rounds. It satisfies tCAMm ≥ t, where t is the
number of monochromatic rectangles of f(x, y).

Proof. Suppose tCAMm < t, i.e., there are less leaves in TA than there are
monochromatic rectangles of f(x, y). Then, there are two rectangles R1,R2

that lead to the same leaf. However, this contradicts Lemma 4, as every leaf
corresponds to a single rectangle.

By Lemma 2, a lower bound for the worst-case cost Da = Da(CAMm) regarding
process a is log2 taCAMm , where taCAMm is the number of partitions of CAMm regarding
a. Additionally, every process has to be able to distinguish all the partitions of
CAMm, else the result of f(x, y) would not be common knowledge. Thus, taCAMm =
tCAMm and hence log2 tCAMm ≤ Da. Since trivially Da ≤ D, we can conclude that
log2 t ≤ log2 tCAMm ≤ D.

5.3 Application Examples

We now demonstrate how to apply our approach by means of two simple exam-
ples. We first consider distributed function computation, using the function
f(x, y) and the protocol A given in Fig. 1, where the processes send a single
bit in each round alternatingly. Recall that A is optimal in terms of communi-
cation complexity.

On Knowledge and Communication Complexity in Distributed Systems 327

The corresponding action models, for the 3 rounds of algorithm A, are given
in Fig. 4. An action of the form e.g. (x0, x1) encodes that p0 sends the informa-
tion that its input value is either x0 or x1 to p1. An expression like Kix0 in a
precondition formula means that, in the appropriate epistemic state, pi knows
that x0 is the input to p0. Self-loops in the indistinguishability relation of the
action models are denoted by loops, in the following.

AM1: SAM1 = {(x0), (x1, x2, x3)} (x0) (x1, x2, x3)∼pi = loops
pre(x0) = K0x0

pre((x1, x2, x3)) = K0(x1 ∨ x2 ∨ x3)

AM2: SAM2 = {(y0, y1, y3), y2, (y0, y1), (y2, y3)} (y0, y1, y3) (y2)

(y0, y1) (y2, y3)

∼pi = loops
pre((y0, y1, y3)) = K1(x0 ∧ (y0 ∨ y1 ∨ y3))

pre(y2) = K1(x0 ∧ y2)
pre((y0, y1)) = K1((x1 ∨ x2 ∨ x3) ∧ (y0 ∨ y1))
pre((y2, y3)) = K1(x1 ∨ x2 ∨ x3) ∧ (y2 ∨ y3))

AM3: SAM2 = {x3, (x1, x2)}
(x3) (x1, x2)∼p0 = loops

pre(x3) = K0(x3 ∧ (y2 ∨ y3))
pre((x1, x2)) = K0((x1 ∨ x2) ∧ (y2 ∨ y3))

The resulting composed action model is CAM3:
SCAM3 = {s0 = (x0, (y0, y1, y3)), s1 = (x0, y2),

s0 s1

s2 s3

s4

s2 = ((x1, x2, x3), (y0, y1)),
s3 = (((x1, x2, x3), (y2, y3)), x3),
s4 = (((x1, x2, x3), (y2, y3)), (x1, x2))}

∼pi = loops
pre((x0, (y0, y1, y2))) = K0x0 ∧ K1(y0 ∨ y1 ∨ y3)

pre((x0, y2)) = K0x0 ∧ K1y2
pre((x1, x2, x3), (y0, y1)) = K0(x1 ∨ x2 ∨ x3) ∧ K1(y0 ∨ y1)

pre(((x1, x2, x3), (y2, y3)), x3) = K0x3 ∧ K1(y2 ∨ y3)
pre(((x1, x2, x3), (y2, y3)), (x1, x2)) = K0(x1 ∨ x2) ∧ K1(y2 ∨ y3)

Fig. 4. Precondition functions (left) and action models (right) for the optimal
algorithm A for f , given in Fig. 1.

The corresponding protocol tree TA and the rectangles corresponding to TA
are depicted in Fig. 5. It is apparent that there are 5 completely separated parti-
tions in CAM3 corresponding to 5 leaves in the protocol tree TA. Theorem 1 thus
reveals that D ≥ log2(5). Alternatively, since A follows the original Yao protocol,
we can also directly apply Corollary 1. It confirms that A has to communicate at
least log2(5) ≤ 3 bits to compute f . And indeed, in the corresponding protocol
tree (of height 3), there are paths where 1 bit is sent/received in each of the 3
rounds.

328 D. Pfleger and U. Schmid

v

P1,0 P1,1

P2,00

0 1

0 1

x1, x2, x3 x0

y0, y1 y2, y3

x3 x1, x2

y2 y0, y1, y3

x0

x1

x2

x3

y0 y1 y2 y3

1

0

0

0

1

0

0

0

0

1

1

0

1

1

1

0

Fig. 5. The protocol tree TA for function f defined in Fig. 1.

As our second application, we sketch how to use the approach developed in
the previous sections to obtain lower bounds for the communication complex-
ity D for distributed consensus in directed dynamic networks controlled by a
message adversary.

In the consensus problem, each process p has an initial value xp and a decision
value yp in its local state. The value yp is written only once, and is undefined
(yp = ⊥) initially. To solve consensus in our model, where processes cannot
fail but communication is unreliable, an algorithm has to fulfill the following
properties for each process p, q ∈ Π:
(Agreement) If p assigns value vp to yp and q assigns value vq to yq, then vp = vq.
(Termination) Eventually, every p assigns a value to yp.
(Validity) If each process p has input xp = v, then all processes q have to decide
yq = v.

We restrict our attention to the very simple directed dynamic network made
up of two synchronous processes p0, p1. The communication graph Gr of each
round r is controlled by an omniscient message adversary (MA) here [1,5],
which determines which messages are delivered resp. lost in round r: it chooses
a sequence σ = G1,G2, . . . of graphs Gr ∈ {←,↔,→} for any round r. We
will focus on the message adversary MA↔2 here, which may generate all graph
sequences not starting with G1 = G2 =↔. There is a simple algorithm A solving
consensus under MA↔2 .

Lacking space forced us to relegate the detailed modeling and analysis to
[16]. In a nutshell, we pursued two different approaches there:
(1) One can consider consensus as the distributed computation of a function
f(x, y, σ), where the result depends on the inputs of p0 (x) and p1 (y) and on
the particular graph sequence σ chosen by the MA.
(2) In order to directly apply our approach, we had to address the problem that
consensus does not specify a unique function: Validity only fixes the outcome
for all inputs being the same, but not in the remaining cases. Agreement, on the
other hand, only requires the outputs at p0 and p1 to be the same. Consequently,
the actual result of f(x, y, σ) depends on x, y and σ, but also on the choices
made by the algorithm A. We solved this problem by partitioning the function
f(x, y, σ) into multiple functions fi(x, y), which can be treated independently.

On Knowledge and Communication Complexity in Distributed Systems 329

Since every fi(x, y) led to the (trivial) lower bound D ≥ 1, we obtained the same
(trivial) lower bound D ≥ 1 as in (1).

6 Conclusions

We established a relation between the number of partitions in the composed
action model of a synchronous distributed algorithm A and the number of bits
received by some process in a worst case execution. For the restricted case of
deterministic distributed function computation among 2 processes, we also pro-
vided a lower bound for the total communication complexity of any correct solu-
tion algorithm. We provided two simple applications of our approach, which con-
firmed an already known communication complexity lower bound for distributed
function computation and even reached out to consensus in directed dynamic
networks under a message adversary. Part of our current work is devoted to
the shortcomings of our current approach, most notably, the restriction to 2
processes.

References

1. Afek, Y., Gafni, E.: Asynchrony from synchrony. In: Frey, D., Raynal, M., Sarkar,
S., Shyamasundar, R., Sinha, P. (eds.) Distributed Computing and Networking.
Lecture Notes in Computer Science, vol. 7730, pp. 225–239. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35668-1 16

2. Alechina, N., Logan, B., Nguyen, H.N., Rakib, A.: Verifying time, memory and
communication bounds in systems of reasoning agents. Synthese 169(2), 385–403
(2009)

3. Ben-Zvi, I., Moses, Y.: Beyond lamport’s Happened-Before: on the role of time
bounds in synchronous systems. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC
2010. LNCS, vol. 6343, pp. 421–436. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15763-9 42

4. Ben-Zvi, I., Moses, Y.: Beyond Lamport’s happened-before: On time bounds and
the ordering of events in distributed systems. J. ACM 61(2), 13:1–13:26 (2014).
https://doi.org/10.1145/2542181

5. Biely, M., Robinson, P., Schmid, U., Schwarz, M., Winkler, K.: Gracefully degrad-
ing consensus and k-set agreement in directed dynamic networks. Theoretical
Computer Science 726, 41–77 (2018). https://doi.org/10.1016/j.tcs.2018.02.019,
http://www.sciencedirect.com/science/article/pii/S0304397518301166

6. Cyriac, A., Krishnan, K.M.: Lower bound for the communication complexity of
the russian cards problem. CoRR arXiv:abs/0805.1974 (2008)

7. Dinitz, Y., Moran, S., Rajsbaum, S.: Bit complexity of breaking and achieving
symmetry in chains and rings. J. ACM 55(1), 3:1–3:28 (2008). https://doi.org/10.
1145/1326554.1326557

8. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic.
Springer, Netherlands (2008). https://doi.org/10.1007/978-1-4020-5839-4

9. Fagin, R., Moses, Y., Halpern, J., Vardi, M.: Reasoning About Knowledge. MIT
Press, Cambridge (2003). https://books.google.at/books?id=xHmlRamoszMC

https://doi.org/10.1007/978-3-642-35668-1_16
https://doi.org/10.1007/978-3-642-15763-9_42
https://doi.org/10.1007/978-3-642-15763-9_42
https://doi.org/10.1145/2542181
https://doi.org/10.1016/j.tcs.2018.02.019
http://www.sciencedirect.com/science/article/pii/S0304397518301166
http://arxiv.org/abs/abs/0805.1974
https://doi.org/10.1145/1326554.1326557
https://doi.org/10.1145/1326554.1326557
https://doi.org/10.1007/978-1-4020-5839-4
https://books.google.at/books?id=xHmlRamoszMC

330 D. Pfleger and U. Schmid

10. Gerbrandy, J.D.: Dynamic epistemic logic. Institute for Logic, Language and Com-
putation (ILLC), University of Amsterdam (1997)

11. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. J. ACM 37(3), 549–587 (1990). https://doi.org/10.1145/79147.79161

12. Hintikka, J.: Knowledge and belief: an introduction to the logic of the two notions.
Contemporary philosophy, Cornell University Press (1962). https://books.google.
de/books?id=N28OAAAAIAAJ

13. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and appli-
cations. In: Proceedings of the 2012 ACM Symposium on Principles of Distributed
Computing, pp. 355–364. PODC 2012. ACM, New York (2012). https://doi.org/
10.1145/2332432.2332504

14. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press (1997). https://books.google.at/books?id=yiV6pwAACAAJ

15. Moses, Y., Dolev, D., Halpern, J.Y.: Cheating husbands and other stories: a case
study of knowledge, action, and communication. Distrib. Comput. 1(3), 167–176
(1986). https://doi.org/10.1007/BF01661170

16. Pfleger, D., Schmid, U.: On knowledge and communication complexity in dis-
tributed systems. Technical report TUW-269752, Technische Universität Wien,
Institute of Computer Engineering (2018). http://publik.tuwien.ac.at/files/publik
269752.pdf

17. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007).
https://doi.org/10.1007/s11229-007-9168-7

18. Yao, A.C.: Some complexity questions related to distributive computing (prelim-
inary report). In: Proceedings of the 11h Annual ACM Symposium on Theory of
Computing, 30 April–2 May 1979, Atlanta, Georgia, USA, pp. 209–213 (1979).
https://doi.org/10.1145/800135.804414

https://doi.org/10.1145/79147.79161
https://books.google.de/books?id=N28OAAAAIAAJ
https://books.google.de/books?id=N28OAAAAIAAJ
https://doi.org/10.1145/2332432.2332504
https://doi.org/10.1145/2332432.2332504
https://books.google.at/books?id=yiV6pwAACAAJ
https://doi.org/10.1007/BF01661170
http://publik.tuwien.ac.at/files/publik_269752.pdf
http://publik.tuwien.ac.at/files/publik_269752.pdf
https://doi.org/10.1007/s11229-007-9168-7
https://doi.org/10.1145/800135.804414

Connectivity and Minimum Cut
Approximation in the Broadcast

Congested Clique

Tomasz Jurdziński(B) and Krzysztof Nowicki

Institute of Computer Science, University of Wroc�law, Wroc�law, Poland
{tju,knowicki}@cs.uni.wroc.pl

Abstract. In this paper we present two graph algorithms in the Broad-
cast Congested Clique model. In this model, there are n players, which
communicate in synchronous rounds. Each player represents a single node
of the input graph; initially each player knows the set of edges incident
to his node. In each round of communication each node can broadcast a
single b–bit message to all other nodes; usually b ∈ O(log n). The goal is
to compute some function of the input graph.

The first result we present is the first sub-logarithmic determinis-
tic algorithm finding a maximal spanning forest of an n node graph in
the Broadcast Congested Clique, which requires only O(log n/ log log n)
rounds. The second result is a randomized 1 + ε approximation algo-
rithm finding the minimum cut of an n node graph, which requires only
O(log n) maximal spanning forest computations. In the Broadcast Con-
gested Clique this approach, combined with the new maximal spanning
forest algorithm, yields an O(log2 n/ log log n) round algorithm. Addi-
tionally, it may be applied to different models, i.e. in the multi-pass
semi-streaming model it allows to reduce required memory by Θ(log n)
factor, with only O(log∗ n) passes over the data stream.

1 Introduction

In this paper we study graph connectivity related problems in the Broadcast
Congested Clique model. In this model there are n players, which communicate
in synchronous rounds. Each player represents a single node of the input graph;
initially each player knows the set of edges incident to his node. In each round
of communication each node can broadcast a single b–bit message to all other
nodes, usually b ∈ O(log n). The main complexity measurement in this model is
the number of rounds.

We propose the first algorithm in the Broadcast Congested Clique model,
which requires only a sublogarithmic number of rounds, which is an improvement

This work was supported by the National Science Centre, Poland grant 2017/25/B/
ST6/02010. Results from Sect. 3 were presented as Brief Announcement at DISC 2018
[8] and their initial version was obtained with support from the National Science Centre,
Poland grant DEC-2012/07/B/ST6/01534.

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 331–344, 2018.
https://doi.org/10.1007/978-3-030-01325-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_28&domain=pdf

332 T. Jurdziński and K. Nowicki

over an O(log n) round implementation of Bor̊uvka’s algorithm, which so far
was the best known algorithm (our algorithm has been presented as a brief
announcement at DISC 2017 [8]). Moreover, we study the minimum cut problem,
which may be considered as a generalization of the graph connectivity problem,
as finding the size of a minimum cut of G is equivalent to finding a maximal
value c, such that G is c–connected. We propose an algorithm, which finds an
(1 + ε) approximation of the minimum cut using only O(log n) spanning forest
computations.

Moreover, this approach can be applied to the Multi–Pass Semi–Streaming
model. This model of computation is a version of the Semi–Streaming model [5],
in which we allow multiple passes over the data stream in order to determine
the output. In this model our approach yields an algorithm, which uses mem-
ory smaller by a Θ(log n) factor, than a single pass semi streaming algorithm,
but requires O(log∗ n) passes over the data stream. Moreover, if we allow the
improvement factor to be Θ(log n/ log(k) n), then we require only O(k) passes
over the data stream.

1.1 Congested Clique: Broadcast and Unicast

There are two version of the Congested Clique model which are usually consid-
ered: Broadcast and Unicast, however, for the latter we usually skip the Unicast
part, and call it just Congested Clique. For both models, the main complexity
measurement is the number of rounds. Both models differ only by the fact that
in the Unicast Congested Clique each player is allowed to send different messages
to different players. This difference has large impact on the complexity in both
models – in particular there are no non–trivial lower bounds in the Congested
Clique model, where in the Broadcast Congested Clique we can show some quite
strong lower bounds [3,4,11].

The other relevant difference is in the complexity of the connected com-
ponents problem in both models. The very first paper [12] regarding the
Congested Clique model established that it is possible to solve the MST problem
(which implies solving the connected components problem) deterministically in
O(log log n) rounds. There are no known o(log log n) deterministic algorithms
solving this problem. On the other hand, quite recently, there was a sequence of
randomized algorithms for the MST problem. The first proved that if we allow
randomization, we can actually be faster and solve the problem in O(log log log n)
rounds [7]. It was improved to an O(log∗ n) round algorithm in [6], and in [9]
the complexity of MST was established to be O(1) rounds.

In the Broadcast Congested Clique model, with a size of a message O(log n) we
had the opposite situation – not a single improvement over Bor̊uvka’s algorithm
[15] was known. However, if we allow message size to be larger, then it is known
that one can

– compute a maximal spanning forest deterministically in O(ε−1) rounds, for
b ∈ O(nε log n)

Connectivity and Min-Cut Apx in the Broadcast Congested Clique 333

– compute a maximal spanning forest using public randomness in a single
round, for b ∈ O(log3 n) [1]1

For the min-cut problem in the Broadcast Congested Clique model we could also
apply the result from the streaming model [2], but a straightforward implemen-
tation requires O(log2 n) spanning forest computations, which with Bor̊uvka’s
algorithm as subroutine yields an O(log3 n) round algorithm. This implies that
our results give an improvement by a Θ(log n log log n) factor in the number of
rounds.

1.2 Problems

In this paper we study graph connectivity related problems. More precisely, we
provide an algorithm finding a maximal spanning forest for a given graph. It may
be considered as a generalization of the graph connectivity problem, which is
one of the fundamental graph problems. Moreover, procedure finding a maximal
spanning forest is used as a subroutine in many more complex algorithms.

The second problem we study, is the minimum cut (min-cut) problem, in
which we have to find a division of the set of nodes V into two parts V1, V2, such
that the set of edges between V1 and V2 is as small as possible. It is equivalent
to asking about the smallest set of edges such that removing them makes a
graph disconnected. In this sense, it may be considered as a generalization of
the connectivity problem, as we say that a graph is c–connected if its min-cut is
not smaller than c.

2 Graph Terminology

Given a partition C of a graph G(V,E) into connected components and v ∈ V ,
Cv denotes the component containing v. We define degC(v) for a vertex v wrt
a partition C as the number of components connected with v, i.e., degC(v) =
|NC(v)|, where NC(v) = {C ∈ C | ∃u ∈ C such that (v, u) ∈ E and C �= Cv}.
For a component C ∈ C, we define degC(C) = maxv∈C{degC(v)}. Note that,
according to this definition, the degree of a component C might be smaller than
the actual number of components containing nodes connected by an edge with
nodes from C. Our definition of degree is adjusted to make it possible that
degrees of components can be determined in O(1) rounds. Given a partition C of
the graph into components, we define the linear ordering � of components, where
C � C ′ iff degC(C) > degC(C ′) or degC(C) = degC(C ′) and ID(C) > ID(C ′).
A component C is a local maximum if all its neighbors are smaller wrt the �
ordering.

By G(p) we denote a random subgraph of G such that each edge is sampled
to G(p) with probability p. By size of a cut V1, V2 we understand the number
of edges between nodes in the sets V1 and V2. Then, the expected size of a cut
V1, V2 in G(p) is the expected number of edges between V1, V2 in G(p).
1 In this paper authors present an algorithm for semi–streaming model, however the

result applies to the Broadcast Congested Clique.

334 T. Jurdziński and K. Nowicki

3 Spanning Forest in the Broadcast Congested Clique

First, we recall a distributed implementation of the well known Bor̊uvka’s algo-
rithm for MST. Then, we design a new algorithm for connectivity which (unex-
pectedly?) shows that the log n bound on round complexity can be broken in
the broadcast congested clique.

3.1 Minimum Spanning Forest in the Broadcast Congested Clique

The minimum spanning forest can be computed using a distributed version of the
classical Bor̊uvka’s algorithm. The algorithm works in phases. At the beginning
of phase i a partition F into fragments of size ≥ 2i is given. During the phase i
new fragments of size ≥ 2i+1 are determined, based on the lightest edges incident
to all fragments.

In the distributed implementation of the Bor̊uvka’s algorithm each node
knows the set of fragments at the beginning of a phase. During the phase
each node v announces (broadcasts) the lightest edge connecting v with a node
u �∈ F v. Using those edges, each node can individually (locally) perform the next
phase of the Bor̊uvka’s algorithm and determine new (larger) fragments.

Theorem 1. Bor̊uvka’s algorithm can be implemented in Broadcast Congested
Clique, so that it requires O(log n) rounds.

3.2 Connected Components Algorithm

To compute the connected components we could use the standard Bor̊uvka’s
algorithm as well. However, we are not forced to select the lightest edge incident
to each component. Our general idea is to prefer those edges which connect nodes
to the components of large degree. And the intended result of a phase should be
that each component either has a small degree or it is connected to some “host”
of large degree (directly or by a path of length larger than one). As the number
of such “hosts” will be relatively small, we obtain a significant reduction of the
number of components of large degree in each phase. Moreover, we separately
deal with components of small degree by allowing them to broadcast all their
neighbours at the final stage of the algorithm. In particular, we show that using
this approach, we can prove the following.

Theorem 2. For a given graph, it is possible to find its maximal spanning forest
in the Broadcast Congested Clique in O

(
log n

log log n

)
rounds.

The remaining part of this section is dedicated to prove Theorem 2.

Algorithm. Our algorithm consists of the main part and the playoff. The main
part is split into phases. At the beginning of phase 1 each node is active and
it forms a separate component. The algorithm is parametrized by a natural
number s which (intuitively) sets the threshold between components of small
degree (smaller than s) and large degree (at least s).

Connectivity and Min-Cut Apx in the Broadcast Congested Clique 335

During an execution of the algorithm, nodes from non growable components
and components of small degree (smaller than s) are deactivated.

At the beginning of a phase, a partition of the graph of active nodes is known
to the whole network.

First, each node v determines N(v) and announces its degree deg(v) wrt the
current partition of the set of active nodes into components (Round 1). With
this information, each node v knows the ordering of components of the graph of
active nodes according to �. Then, each active node v (except of members of
local maxima) broadcasts its incident edge to the largest active component from
N(v) according to � relation (Round 2).

Next, each node v of each local maximum C checks whether edges connecting
C to all components containing neighbors of v (i.e., to components from N(v))
have been already broadcasted. If it is not the case, an edge connecting v to a
new component C ′ (i.e., to such C ′ that no edge connecting C and C ′ was known
before) is broadcasted by v (Round 3).

Based on broadcasted edges, new components are determined and their
degrees are computed (Round 4). Each new component with degree smaller than
s is deactivated at the end of a phase.

The playoff lasts s rounds in which each node v of each deactivated compo-
nent broadcasts edges going to all components connected to v (there are at most
s such components for each deactivated node).

More precise description of this strategy is presented as Algorithm 1. The key
property for an analysis of complexity of our algorithm is that each active com-
ponent C of large degree is either connected during a phase to all its neighbors
or to a component which is larger than C according to �.

Theorem 3. Algorithm 1 solves the spanning forest problem in O(s + logs n)
rounds for an n-node graph.

Proof. First, consider round complexity of the algorithm. It is clear that Playoff
has s rounds. To show the claimed complexity we show that the number of active
components is decreased at least s times in each phase. An intuition is that all
components join with (some) local maxima and thus each local maximum of large
degree “combines” at least s components in a new, larger component. However,
the situation is not that simple, as there might be many local maxima.

In order to formalize the intuition, consider a directed graph Gphase of com-
ponents active at the beginning of a phase, where (C1, C2) is an edge in Gphase

iff a node from C1 broadcasts an edge connecting it with C2 in step 6 of the
phase (edge of type 1) or C1 is a local maximum, a node from C1 broadcasts an
edge connecting it with some C ′ in step 12, while a node from C ′ broadcasts an
edge connecting it with C2 in step 6 (we call it edge of type 2).

The algorithm guarantees that: (a) Gphase is acyclic. Indeed, each edge
(C1, C2) resulted from broadcasts in step 6 satisfies C1 ≺ C2. Moreover, an
edge is broadcasted from C1 to C ′ in step 12 iff all nodes from C ′ broadcasted
connections to components larger than C1 wrt � ordering.
(b) Each connected component C (i.e., each node of Gphase) is either a sink of
Gphase connected with (at least) deg(C) nodes in Gphase or has out-degree at

336 T. Jurdziński and K. Nowicki

Algorithm 1. BroadcastCC(v, s) � s is the threshold between small/large
degree
1: while there are active components do � execution at a node v

2: Round 1: v broadcasts deg(v)

3: if deg(v) > 0 then

4: Cmax(v) ← the largest element of N(v) wrt the ordering �
5: Round 2:

6: if Cv is not a local maximum then v broadcast an edge (u, v) such that

u ∈ Cmax(v)

7: Round 3:

8: if Cv is a local maximum then

9: Nlost(v) ← {C | C ∈ N(v) and no edge connecting C and Cv was broadcasted}
10: if Nlost(v) �= ∅ then

11: u ← a neighbor of v such that u ∈ C for some C ∈ Nlost(v)

12: v broadcasts an edge (u, v)

13: end if

14: end if

15: end if

16: v computes the new partition into components, using broadcasted edges

17: Round 4: v broadcasts deg(v) � degrees wrt the new components!

18: if deg(Cv) < s then deactivate v

19: end while

20: Playoff (s rounds): deactivated nodes broadcast edges to neighboring components.

least one. This property follows from the fact that only nodes of local maxima are
candidates for sinks, as only they do not broadcast in step 6. Moreover, assume
that C is a local maximum and there is a neighbor C ′ of C whose nodes have
not broadcasted connections with C in step 6. Then a node(s) from C broadcast
in step 12 which implies that out-degree of C is at least one.
(c) Each connected component of a partition obtained at the end of a phase
contains at least one sink of Gphase.
If one ignores that edges of Gphase are directed then certainly new components at
the end of the phase correspond to connected components of Gphase. This follows
from the fact that edges of Gphase correspond to connections between components
(by an edge or a path of two edges in the original graph) broadcasted during the
phase. As Gphase is acyclic, each connected component contains a sink.

Let C be a partition into components at the beginning of a phase and C′

be the partition into components at the end of that phase, before deactivating
components of small degree.2 The above observations imply that each component
of C′ either contains only components of C of small degree (smaller than s) or it
contains at least s + 1 components from C. Contrary, assume that a component

2 Note that deactivation of components of degree < s at the end of a phase does not
guarantee that degrees of all components are ≥ s at the beginning of the next phase.
This is caused by the fact that deactivation of some components might decrease
degrees of components which remain active (degrees are calculated only among active
nodes).

Connectivity and Min-Cut Apx in the Broadcast Congested Clique 337

C ′ of C′ contains a component C ∈ C of degree ≥ s, while C ′ contains altogether
at most s components of C. Then, there is a directed path from C to a sink Csink

of degree at least deg(C) ≥ s. Property (b) implies that at least s components of
C have edges towards Csink in Gphase. This contradicts the contrary assumption
that C ′ contains altogether less than s components of C.

Summarizing, assume that we have p active components at the beginning of
a phase. Then, at the end of the phase, there are at most p/s new components
which contain at least one component whose degree at the beginning of the
phase was ≥ s. It remains to consider the final components of the phase which
are composed only from components whose degree was < s at the beginning of
the stage. However, as the degree of a node cannot increase during the algorithm,
the degrees of these new components are < s and they are deactivated at the
end of the phase. Thus, each phase decreases the number of active components
at least s times – there are at most logs n phases.

Correctness of the algorithm follows from the fact that each node of each
deactivated component can broadcast its connections with all other components
during Playoff. Moreover, active components are connected subgraphs of G at
each stage.

If node is deactivated, its degree must be lesser than s. Therefore, announcing
edges of inactive components takes O(s) rounds. In order to show that whole
algorithm needs O(s + logs n) rounds, we will show, that there are at most
O(logs n) iterations of while loop (called stages). In particular we will show
following lemma

Lemma 1. Number of components which are not disabled is decreasing at least
s times in one stage.

Proof. Each node announces edge to a component containing a node of the
highest degree. For each component let us consider node v with the highest
degree. Cv is a component of node v before stage. After the 3-rd line there are
four cases:

1. all neighbours of v announced edges connecting them to Cv and degold(v) ≥ s
2. not all neighbours of v announced edges connecting them to Cv and

degold(v) ≥ s
3. all neighbours of v announced edges connecting them to Cv and degold(v) < s
4. not all neighbours of v announced edges connecting them to Cv and

degold(v) < s

In the first case v is merged with at least s + 1 other components.
In the second case, some neighbours did not announced edge connecting it

with Cv. Thus, it must have a neighbour in component of higher degree. Edge
announced in the line 7 will connect v with such neighbour, thus with component
of higher degree. If node of higher degree in this component also was in case 2
we can repeat this reasoning. At the end we will end up in some node in case 1,
therefore all old components are now part of larger new component composed
from at least s + 1 old components.

338 T. Jurdziński and K. Nowicki

In the third case all nodes in component in new component of v had non
larger degree than v, thus whole component will be disabled in the 8th line.

In the fourth case we can repeat reasoning from case two, but at the end we
will end up either in case 1 or case 3. Thus, Cv will be disabled or connected
with at least (s + 1) other components.

Therefore all components were disabled or connected with s + 1 other com-
ponents, thus number of non deactivated components decreased at least (s + 1)
times. Therefore Lemma 1 is correct.

After O(logs n) stages number of active components will drop to 0, which
implies, that E will be empty. Each phase required a constant round number,
thus so far algorithm required O(logs n) rounds. E = ∅ implies, that we will
end while loop and move to announcing edges from disabled nodes. This part
requires O(s) rounds. Therefore Theorem 3 is correct.

The minimum of s + logs n is obtained for s = log n
log log n . For such s, Algo-

rithm 1 works in O(log n/ log log n) rounds, which ends the proof of Theorem 2.
Moreover, we want to emphasize following remark.

Remark 1. It is possible to solve connectivity problem in the broadcast con-
gested clique using O(logd n) rounds, if we allow in one round to send d log n bit
messages. Moreover, each node transmits only O(log n(d + log n

log d)) bits in total.

Proof. If we take s = d in Algorithm 1, we get logd n phases, each requiring
O(log n) bits per node. Edges from deactivated nodes are broadcasted during
Playoff in one round, using O(d log n) bits. This gives O(logd n) round algorithm,
with total number of bits per player in O(log n(d + log n

log d)).

Remark 1 in a sense gives an improvement over a result from [13], where
the total number of bits per node is O(d log2 n

log d) in O(logd n) rounds. Moreover,
our algorithm is simpler than that in [13], since it does not require number
theoretic techniques as d-pruning and deterministic sparse linear sketches. Also,
we find Remark 1 interesting on its own as it concerns relation between the
total number of bits communicated in the protocol, and the number of rounds
in the protocol, which says something about communication complexity of this
problem in Broadcast Congested Clique.

4 Minimum Cut Approximation

In this section we propose a min-cut approximation algorithm, which finds an
(1 + ε) approximation of the min-cut using only O(log n) maximal spanning
forest computations. Together with our spanning forest algorithm, it yields the
following.

Theorem 4. For a given n node graph G, it is possible to find (1+ε) approxima-
tion of the min-cut in O(ε−2 log2 n/ log log n) rounds of the Broadcast Congested
Clique, for any ε ∈ (0, 1).

Connectivity and Min-Cut Apx in the Broadcast Congested Clique 339

The remaining part of this section is dedicated to prove Theorem 4. In the
first place we recall usage of c–connectivity certificates, together with Karger’s
sampling approach. Then we show how to improve on this approach. In particular
in Subsect. 4.2 we provide analysis of sampling with small probabilities, which
in Subsect. 4.3 we apply, together with regular sampling, to get our improved
version of the algorithm.

4.1 Connectivity Certificates and Karger’s Sampling

The algorithm we propose may be considered as extension of the algorithm
presented in [2]. This algorithm is based on c–connectivity certificates introduced
in [14,16]. In those papers, authors provide a lemma which is useful for min-cut
approximation in the Broadcast Congested Clique and Semi–Streaming models.

Lemma 2 [14,16]. Let G be a graph and F0 an empty set. For i > 0, let Fi

be a maximal spanning forest of G \ ⋃i−1
j=1 Fj. Let Gc =

⋃c
i=1 Fi. Then Gc is

c-connected iff G is c-connected. Moreover, if the min-cut of G is smaller than
c, then Gc has exactly the same min-cut as G.

Therefore, if we compute Gc, we can verify whether G is c connected, and if it’s
not, we can find the min-cut of G. In the remaining part of this section, we will
address to this process of verifying c connectivity and finding the min-cut just
by ‘verifying c–connectivity’. If we combine Lemma 2 with Karger’s sampling
approach [10], it gives us a min-cut approximation algorithm. If by G(p) we
denote random subgraph of G such that each edge is sampled to G(p) with
probability p, then lemma proposed by Karger is following

Lemma 3 [10]. Let G be any graph with min-cut λ and let p = 6 lnn
ε2λ . Then the

probability that the value of some cut in G(p) is larger than (1 + ε) or smaller
than (1 − ε) times its expected value is O(1/n).

A straightforward implementation of the min-cut approximation algo-
rithm using Lemma 3 and Lemma 2 is following. Let consider set P =
{p0, p1 . . . , plog n}, such that pi = 1/2i. Let p∗ be the smallest member of P
such that p∗ is large enough to apply Lemma 3 and small enough, to have
the expected value of the min-cut of G(p∗) in O(log n), with high probability.
Let consider G(p∗)c. For properly chosen c ∈ O(log n), graph G(p∗)c is not c–
connected. Thus, by Lemma 2 it has the same min-cut as G(p∗). By Lemma 3
this cut corresponds to a cut of G which was at most 1 + ε times larger than
the min-cut of G. Since we do not know the value of p∗ beforehand, straightfor-
ward approach to the problem is to compute G(p)c for all p ∈ P , which requires
finding Θ(log2 n) spanning forests.

In Subsects. 4.2 and 4.3, we propose a way of finding p∗, which requires
computing only O(log n) spanning forests. Knowing p∗ allows us to compute
G(p∗)c using c additional spanning forest computations.

340 T. Jurdziński and K. Nowicki

4.2 Sampling with Small Probabilities

In order to explain the algorithm, we have to understand what is the behaviour
of Karger’s sampling Lemma 3, if the expected value of the min-cut is sublog-
arithmic. Since for graphs which are not Θ(log n)–connected, we can find the
min-cut using Θ(log n) –connectivity verification, we consider here only graphs
which are Θ(log n)–connected.

If we sample graph with probability p, significantly smaller than p∗, the
expected size of the min-cut in G(p) may be sublogarithmic. Which means that
in order to have high probability of success, we could set ε to be large. Then, we
do not have any reasonable bound on the probability of a cut appearing smaller
than its expected value, but we still can guarantee that if the expected size of
the min-cut in G(p) was small, the actual size of the min-cut in G(p) is not too
large with high probability. We formalize this in Lemma 4.

Lemma 4. Let G be any graph with the size of a min-cut λ and let p ≤ 6 lnn
αλ .

Then the size of the min-cut of G(p) is O(log n/
√

α), with high probability.

Proof. For p = 6 lnn
αλ , the claimed relationship follows from Lemma 3, if we set

ε =
√

α. Therefore, for each p′ < p, the size of min-cut of G(p′) is O(log n/
√

α),
with high probability. ��
We can use Lemma 4 in a following way: if we check G(p) for c–connectivity,
for some c ∈ O(log n/

√
α), and it is not c connected, then the min-cut of G is

smaller than Θ(p−1 log n/α), with high probability. Pushing this idea a little bit
forward, if we find probability p′, such that G(p′) is not c connected, and G(2p′)
is, it gives us some information about p∗.

Lemma 5. Let consider some some c ∈ O(log n/
√

α), and set of probabilities
P = {p1, p2, . . . , pk}, such that

– p1 = 1/2x, for some nonnegative integer x,
– for all i > 1, pi = pi−1/2,
– l is the index of p∗ in P .

For any r′ such that graph G(pr′) is not c–connected and G(pr′−1) is c–connected,
l ∈ {r′, r′ − 1, . . . , r′ − log α − O(1)}.
Proof. Let consider graphs G(pi)c, for some c ∈ O(log n/

√
α). There exists r,

such that ∀i ≥ r G(pi) are not c connected, and G(pr−1) is c–connected. Let
consider graphs G(pi)c′ , for some c′ ∈ Θ(log n). Then, by Lemma 3, there exists
the largest l, such that ∀i ≤ l G(pi) are c′–connected. Since pr is the largest
probability, for which G(pr) is not c connected, the expected value of the min-
cut of G(pr) is Ω(log n/α). Since expected value of G(pl) is Θ(log n) we have
pl/pr = Θ(log n)/Ω(log n/α) = O(α). Since for each i pi = pi−1/2, we have
r − l ≤ log(Θ(α)) = log α + O(1).

Thus, if we find value r such that ∀i ≥ r G(pi) are not c–connected, we know
that l is in the set {r, r − 1, . . . , r − log α − O(1)}. Which shows that if we would
verify c connectivity for all G(pi), we narrow the number of possible values of

Connectivity and Min-Cut Apx in the Broadcast Congested Clique 341

l to log α + O(1). Moreover, if we find r′ such that G(pr′) is not c–connected
and G(pr′−1) is c connected, then for sure r′ ∈ {r, r − 1, . . . , r − log α − O(1)},
which implies that l ∈ {r′, r′ − 1, . . . , r′ − log α − O(1)}.

4.3 Algorithm

In this subsection we present the algorithm, which finds a constant number of
probabilities, such that p∗ is among them with high probability. The algorithm
uses only O(log n) spanning forest computations.

Our algorithm is performed in phases. We maintain feasible set of probabil-
ities – set of probabilities P , such that p∗ ∈ P with high probability, and in
each phase we narrow this set exponentially. In particular, if we denote by Pi

the set probabilities which are feasible (i.e. p∗ ∈ Pi with high probability) after
ith phase, then we provide procedure which finds subset Pi+1 ⊆ Pi, such that
p∗ ∈ Pi+1 and |Pi+1| ∈ Θ(log |Pi|).

More precisely, we show the following

Lemma 6. Let log(i) be an i-fold composition of log function. After ith phase
the size of the set of feasible probabilities is Θ(log(i+1) n). Moreover, ith
phase require c–connectivity verification for O((log(i) n)1/3) graphs, for c ∈
Θ(log n/(log(i) n)1/2).

Proof. In a single phase of our algorithm, we use Lemma 5, together with reg-
ular sampling, to reduce the size of set of feasible probabilities. Let consider
the ith phase of the algorithm. Let ci ∈ Θ(log n/(log(i) n)1/2). By applying ci–
connectivity verification to G(p), for all p ∈ Pi−1, we can provide Pi of size
log log(i) n + O(1) = O(log(i+1) n), which, by Lemma 5 would provide set of fea-
sible probabilities of size Θ(log(log(i) n)). This approach is not efficient, but we
can replace it with either binary search or regular sampling. Here, we describe
version which employs the regular sampling approach, as it covers both Broadcast
Congested Clique and Multi–Pass Semi–Streaming models. Also, very similar anal-
ysis applies to the version which uses binary search, thus including both versions
seems to be counterproductive.

Regular Sampling. The problem we have to solve is following. We are given set
of probabilities P of size k. Let consider elements of P as a descending sequence
(p1, p2, . . . , pk). Let fc(pi) = 1 if G(pi) is c-connected, 0 otherwise. The sequence
(p1, p2, . . . , pk) has following properties

1. ∃x .∀i ≥ x .fc(pi) = 0
2. ∃y .∀i ≤ y .fc(pi) = 1

Our goal is to find any z such that fc(pz) = 1 ∧ fc(pz+1) = 0.

Lemma 7. It is possible to find z, such that fc(pz) = 1 ∧ fc(pz+1) = 0, using
O(k1/3) c–connectivity verifications.

342 T. Jurdziński and K. Nowicki

Proof. To solve this problem, we use the approach known as the regular sam-
pling. In the first step we compute fc(pi) (verify c connectivity of a proper graph)
for every k2/3th element from the sequence (p1, p2, . . . , pk). Among indices, for
which we computed value of fc(pi), we select two consecutive indices i1 < i2,
such that fc(i1) = 0 ∧ fc(i2) = 1. Those exists by properties 1 and 2. Therefore,
by verifying c–connectivity k/k2/3 + O(1) = k1/3 + O(1) times we reduced our
problem to some subset of indices, which also has properties 1 and 2, but its size
is k2/3 +O(1). Then we can do exactly the same thing, but use every k1/3th ele-
ment. This step require verifying c–connectivity k2/3/k1/3 +O(1) = k1/3 +O(1)
times, and leaves us with set of probabilities of the size k1/3 +O(1), in which we
can verify all possible probabilities using k1/3 +O(1) c–connectivity verification.
In total we executed O(k1/3) c–connectivity verifications.

In the ith phase, we have the size of feasible probabilities Pi−1 of size log(i)(n).
Our goal is to find r′ from Lemma 5, i.e. value r′ such that graph G(pr′) is
not ci–connected, and G(pr′−1) is. By Lemma 7, to find r′ it is enough to use
(log(i)(n))1/3 ci-connectivity verifications.

4.4 Complexity in Broadcast Congested Clique

By Lemma 6, the ith phase of our algorithm requires c–connectivity verifi-
cation for O((log(i) n)1/3) graphs, for c ∈ Θ(log n/(log(i) n)1/2), which give
O(log n/(log(i) n)1/6) spanning forest computations. Moreover, the number of
phases before we are left with set of feasible probabilities is Θ(log∗ n).

In the Broadcast Congested Clique this results with total number of spanning
forest computations

Θ(log∗ n)∑
i=1

O(log n/(log(i) n)1/6) = O(log n).

Since, by Theorem 2 each spanning forest requires O(log n/ log log n) rounds, we
can find p∗ in O(log2 n/ log log n) rounds of Broadcast Congested Clique, which
finishes the proof of Theorem 4.

5 Application to Multi–Pass Semi–Streaming Model

The presented algorithm can be also applied in the Multi–Pass Semi–Streaming
model.

Theorem 5. It is possible to find 1 + ε of the min-cut in a Multi–Pass Semi–
Streaming model, in k + 1 passes and O(n log4 n(ε−2 + log(k) n)) space3, for
ε ∈ Θ(1).
3 Authors of papers [1,2] have inconsistent way of defining space complexity, i.e. c

connectivity in [1] requires O(cn log3 n) ‘space’, when referenced in [2] it only requires
O(cn log2 n) ‘space’. Here we go with the approach from [1], which seems to count
bits.

Connectivity and Min-Cut Apx in the Broadcast Congested Clique 343

Proof. Algorithm on the top level is the same, it is executed in phases, in ith
phase, we verify c–connectivity verification for O((log(i) n)1/3) graphs, for c ∈
Θ(log n/(log(i) n)1/2). Each phase is executed in a single pass over data stream.
To do so, we use c-connectivity certificates from [1], which require O(nc log3 n)
bits. Since, we verify c connectivity, required space is O(log n/(log(i) n)1/6).

After k−1 passes/phases, by Lemma 6, the set of feasible probabilities has size
O(log(k) n). Since we allow O(n log4 n log(k) n) memory, we can verify Θ(log n)–
connectivity for all remaining feasible probabilities, as it requires O(n log4 n)
space per each of remaining O(log(k) n) verifications.

At this point we have constant number of potential values of p∗, in the next
pass for all of them simultaneously we can use naive approach. Since there are
only O(1) graphs to verify, we need O(ε−2n log4 n) space.

Corollary 1. If in Theorem 5 we take k = log∗ n, we get O(log∗ n) passes,
O(ε−2n log4 n) space Multi–Pass Semi–Streaming algorithm, which finds a 1 + ε
min-cut approximation.

6 Conclusions

In this paper we presented O(log n/ log log n) round algorithm for the spanning
forest (connectivity/connected components) problem in the Broadcast Congested
Clique model. This is the first algorithm for this problem, with sublogarithmic
number of rounds. The natural questions which arise are:

– can we use this approach to find minimum spanning forest in this model?
– is it possible to find a spanning forest in o(log n/ log log n) (even if we allow

randomized algorithms)?
– are there any lower bounds on the number of rounds, if a message size is

O(log n)?

Moreover, we presented approximation algorithm for the min-cut problem, which
finds 1 + ε approximation for the min-cut.

– in the Broadcast Congested Clique it requires O(ε−2 log2 n/ log log n) rounds;
– in the Multi–Pass Semi–Streaming model it requires k + 1 passes, and uses

O(n log4 n log(k) n) space, where log(k) is an k-fold composition of log func-
tion.

This, rises the following questions:

– is it possible to c connectivity certificates in a way, which does not use c
spanning forest computations?

– is it possible to find exact min-cut in Broadcast Congested Clique in polylog-
arithmic number of rounds?

344 T. Jurdziński and K. Nowicki

References

1. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measure-
ments. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2012, Kyoto, Japan, 17–19 January 2012, pp. 459–467
(2012)

2. Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and
subgraphs. In: PODS 2012, pp. 5–14. ACM (2012)

3. Becker, F., Montealegre, P., Rapaport, I., Todinca, I.: The simultaneous number-
in-hand communication model for networks: private coins, public coins and deter-
minism. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 83–95.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09620-9 8

4. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model.
In: PODC 2014, pp. 367–376 (2014)

5. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. Theor. Comput. Sci. 348(2), 207–216 (2005)

6. Ghaffari, M., Parter, M.: MST in log-star rounds of congested clique. In: Proceed-
ings of PODC 2016 (2016)

7. Hegeman, J.W., Pandurangan, G., Pemmaraju, S.V., Sardeshmukh, V.B.,
Scquizzato, M.: Toward optimal bounds in the congested clique: graph connec-
tivity and MST. In: Proceedings of the 2015 ACM Symposium on Principles of
Distributed Computing, PODC 2015, Donostia-San Sebastián, Spain, 21–23 July
2015, pp. 91–100 (2015)

8. Jurdzinski, T., Nowicki, K.: Brief announcement: on connectivity in the broadcast
congested clique. In: 31st International Symposium on Distributed Computing,
DISC 2017, Vienna, Austria, 16–20 October 2017, pp. 54:1–54:4 (2017)

9. Jurdziński, T., Nowicki, K.: MST in O(1) rounds of congested clique. In: SODA
2018, pp. 2620–2632 (2018)

10. Karger, D.R.: Random sampling in cut, flow, and network design problems. In:
ACM Symposium on Theory of Computing (STOC), pp. 648–657 (1994)

11. Kari, J., Matamala, M., Rapaport, I., Salo, V.: Solving the Induced Subgraph
problem in the randomized multiparty simultaneous messages model. In: Schei-
deler, C. (ed.) Structural Information and Communication Complexity. LNCS,
vol. 9439, pp. 370–384. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25258-2 26

12. Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight spanning tree
construction in o(log log n) communication rounds. SIAM J. Comput. 35(1), 120–
131 (2005)

13. Montealegre, P., Todinca, I.: Brief announcement: deterministic graph connectivity
in the broadcast congested clique. In: Proceedings of PODC 2016 (2016)

14. Nagamochi, H., Ibaraki, T.: Computing edge-connectivity in multigraphs and
capacitated graphs. SIAM J. Discret. Math. 5(1), 54–66 (1992)

15. Nešetřil, J., Milková, E., Nešetřilová, H.: Otakar Boruvka on minimum spanning
tree problem translation of both the 1926 papers, comments, history. Discret. Math.
233(1), 3–36 (2001)

16. Nishizeki, T., Poljak, S.: Highly connected factors with a small number of edges.
Preprint (1989)

https://doi.org/10.1007/978-3-319-09620-9_8
https://doi.org/10.1007/978-3-319-25258-2_26
https://doi.org/10.1007/978-3-319-25258-2_26

Biased Clocks: A Novel Approach
to Improve the Ability To Perform

Predicate Detection with O(1) Clocks

Vidhya Tekken Valapil(B) and Sandeep Kulkarni

Michigan State University, East Lansing, MI 48823, USA
{tekkenva,sandeep}@cse.msu.edu

Abstract. In this paper, we present the notion of biased hybrid logical
clocks (BHLC). These clocks are intended to improve the ability of a
distributed system to perform predicate detection with just O(1) sized
clocks. In traditional logical clocks (or hybrid logical clocks, their exten-
sion), the only way to guarantee that two events are concurrent is by
checking if their clock values are equal. By contrast, biased clocks pro-
vide a window where this guarantee is provided. We validate our intuition
that these biased clocks substantially improve the ability to successfully
detect a given predicate with just O(1) sized clock. In particular, for
many scenarios, we show that biased clocks improve the ability to detect
predicates by 100–200 times when compared to standard hybrid logical
clocks.

1 Introduction

Debugging distributed systems is essential to ensure their correctness and relia-
bility. More specifically, analyzing and debugging distributed systems to detect
violations or to ensure satisfaction of their system requirements is critical as
well as challenging. One of the basic types of debugging is predicate detection,
where the goal is to detect whether a given condition or predicate P (e.g., that
captures the violation of an invariant condition) is true. The challenge in per-
forming such predicate detection lies in the fact that in distributed systems there
is no single total ordering of events. In other words, due to the underlying non-
determinism, an observer can order the system events (i.e. events that happened
at the involved processes) in several different ways. Hence, to detect violations,
one has to analyze and evaluate all possible event orderings, because any of
these orderings may correspond to the actual order of events that happened in
the underlying system.

To deal with the uncertainty in the ordering of events in a distributed system,
the notion of happened-before [14] is introduced. In a distributed system, an
event e1 is said to have happened before another event say e2, denoted as e1 → e2
iff one of the following conditions hold: (i) if event e1 occurred before event e2 at

This work is supported by NSF XPS 1533802.

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 345–360, 2018.
https://doi.org/10.1007/978-3-030-01325-7_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_29&domain=pdf

346 V. Tekken Valapil and S. Kulkarni

the same process, (ii) if e1 is a message sending event and e2 is the corresponding
message receive event, or (iii) if event e1 happened before event x and event x
happened before event e2. Furthermore, two events e1, e2 are concurrent (denoted
as e1||e2) iff ((e1 �→ e2) ∧ (e2 �→ e1)). Thus, the problem of predicate detection
in distributed systems requires us to find a global snapshot (consistent cut) that
contains a local state of each process such that (1) the states (i.e., local events
created at those states) are concurrent with each other, and (2) the predicate of
interest is true in the corresponding global state.

Another requirement for predicate detection arises from the fact that modern
distributed systems provide partially synchronized clocks. If clocks are synchro-
nized to be within ε then the time (clock values) of the local states in the snapshot
are required to be within ε. Thus, the problem of predicate detection requires
us to find a global snapshot consisting of one local state per process such that
their corresponding local events are concurrent and within ε of each other, and
then evaluate if the predicate of interest is true in that global snapshot.

One can utilize vector clocks [6,11] – consisting of vectors with n elements–
to perform predicate detection. With Vector Clocks, an event a happened before
event b, iff vc.a < vc.b. And, events a, b are concurrent iff (vc.a �< vc.b) ∧ (vc.b �<
vc.a). However, detection using Vector Clocks suffers from two main challenges:
their size can be large and they do not take into account features (specifically
clock synchronization) that are available in many distributed systems. The for-
mer can make the overhead of predicate detection unacceptable and the latter
could result in false positives where the algorithm falsely concludes that the
predicate of interest is true.

To deal with these limitations, we can utilize logical clocks (LC) [10] or hybrid
logical clocks (HLC) [9] that combine logical clocks and physical clocks. Size of
LC/HLC is O(1) and, hence, it permits efficient implementation. Also, predicate
detection with LC/HLC does not have any false positives. However, the cost of
getting these features is that it can result in substantial false negatives where
the predicate of interest is true but is not detected. In other words, HLC can
miss snapshots where the predicate is true. However, without paying O(n) cost,
it is unavoidable.

With this motivation, in this paper, we consider an alternate implementation
of clocks that does not have false positives, reduces the number of false negatives
and maintains O(1) size.

Contributions of the Paper.

– We introduce a new type of O(1) sized clocks called Biased Hybrid Logical
clocks (BHLC) and discuss timestamping and ordering of system events using
BHLC. Compared to logical clocks (or hybrid logical clocks), they provide a
larger window where we can conclude that the given events are concurrent.

– We compare HLC and BHLC (and its variations) in their ability to detect
whether a given predicate is true. We find that BHLC is able to find 100–200
times as many instances as HLC where the given predicate is true. Further-
more, in many scenarios, BHLC is able to find more than 50% of the total
actual instances in the system where the given predicate is true. As a point

Biased Clocks: A Novel Approach 347

of comparison, O(n) sized timestamps are needed to find all snapshots where
the predicate is true and for many scenarios, HLC is able to find less than
1% of instances.

– We present extensions of BHLC where we allow clocks to be reset periodically
and to adapt to the underlying system behavior.

– We discuss the effectiveness of BHLC and its extensions under different con-
ditions.

2 System Model

We consider a distributed system of n processes. Each process has a local phys-
ical clock associated with it and the clocks in the system are guaranteed to
be synchronized within ε of each other.1 The physical clock value of a process
j (where 0 ≤ j < n) is denoted as pt.j. The events on a process are catego-
rized into local events, message send events and message receive events. As the
name suggests, at a send event, a process sends one or more messages to other
processes. And, at a receive event, the process receives one or more messages
from other processes. Our algorithm does not depend on whether the underlying
network is FIFO or lossy. Each event e is assigned a timestamp by the owner
process, i.e. by the process where e occurs.

Since our goal is to provide an algorithm for timestamping, we first describe
the naive HLC algorithm from [9]. This algorithm forms the basis of our biased
clocks presented in this paper.

2.1 Naive HLC

In this algorithm, each process maintains a variable l.j that captures the logical
time associated with an event. Intuitively, l.j maintains a logical clock subject
to the constraint that l.j is always at least as large as pt.j, the physical time
at j. Hence, for a send event, rather than just increasing l.j by 1, we set l.j
to be max(l.j + 1, pt.j). And, for a receive event, instead of setting l.j to be
max(l.j + 1, l.m + 1), we set it to max(l.j + 1, l.m + 1, pt.j). Thus, the naive
HLC algorithm is shown in Algorithm 1.

1 Our implementation of BHLC does not use the value of ε. It is used only during
monitoring to rule out snapshots that are not feasible. Hence, analysis in this paper
can be extended for the case where ε is determined at run time and provided to the
monitor. However, this issue is outside the scope of the paper.

348 V. Tekken Valapil and S. Kulkarni

Algorithm 1 Naive HLC Algorithm from [9]
At node j
1: Initially l.j := 0
Send/Local event
2: l.j := max(l.j + 1, pt.j)
3: Timestamp with l.j
Receive event of message m
4: l.j := max(l.j + 1, l.m+ 1, pt.j)
5: Timestamp with l.j

Algorithm 2 HLC Algorithm from [9]
Send/Local Event
1: l’.a := l.a
2: l.a := max(l’.a, pt.a) //tracking maximum time

event, pt.a is physical time at a
3: If (l.a = l’.a) then c.a := c.a+1 //tracking causality
4: Else c.a := 0
5: Timestamp event with l.a,c.a
Receive Event of message m
6: l’.a := l.a
7: l.a := max(l’.a, l.m, pt.a) //l.m is l value in the

timestamp of the message received
8: If (l.a = l’.a = l.m) then c.a := max(c.a, c.m) + 1
9: Elseif (l.a = l’.a) then c.a := c.a+ 1
10: Elseif (l.a = l.m) then c.a := c.m+ 1
11: Else c.a := 0
12: Timestamp event with l.a,c.a

Key properties of naive HLC are:

e −→ f ⇒ l.e < l.f and l.e = l.f ⇒ e||f

A key disadvantage of naive HLC is that the drift between l.j and pt.j could
grow unbounded. In [9], an alternate algorithm is proposed to deal with this
issue. Specifically, in this alternate algorithm, instead of adding 1 to l.j or l.m
when an event is created, we allow l value to remain unchanged. This creates
the possibility that two successive events on a process (or a send event and the
corresponding receive event) can have the same timestamp. To deal with this
situation, we maintain a variable c.j that is a counter (shown to be provably
bounded). Specifically, the algorithm of HLC is as shown in Algorithm 2. HLC
timestamps are of the form 〈l, c〉 and they provide causality information by
lexicographical comparison. Specifically, HLC satisfies the following property.

e −→ f ⇒ (l.e < l.f) ∨ ((l.e = l.f) ∧ (c.e < c.f))

The algorithm proposed in this paper is based on naive version described in
Algorithm 1. HLC and naive HLC have the same capability in terms of being
able to detect a given predicate.

3 An Idea to Increase Effectiveness of HLC

Consider the system execution shown in Fig. 1a. Here, we have 3 processes whose
clocks are perfectly synchronized (ε = 0). We assume that the physical clock
increases by 1 between every two events. Furthermore, assume that maximum
clock drift ε is 10. (Note that this is the maximum clock drift. In this execution,
clocks happen to increase in lock-step fashion. However, the processes do not
know this.) There are no messages in this execution. This implies that 〈ai, bj , ck〉
is a consistent snapshot for any 1 ≤ i, j, k ≤ 6. In such a system, suppose that
the predicate of interest is ∧prp where prp is a local predicate at process p.

In this execution, since there are no messages, the value of l.e for any event e
is same as the physical time at e. Thus, possible snapshots where HLC can detect

Biased Clocks: A Novel Approach 349

Fig. 1. Intuition behind BHLC

if ∧prp is true include {〈a1, b1, c1〉 〈a2, b2, c2〉 〈a3, b3, c3〉 〈a4, b4, c4〉, 〈a5, b5, c5〉,
〈a6, b6, c6〉 }. Even though there are several consistent snapshots, HLC does not
have enough information to allow us to conclude that. Specifically, HLC does
not allow us to conclude a1 and b2 are concurrent.

Now, suppose that we change the implementation of receive in Algorithm 1
as follows:

Upon receiving message m to create receive event b,
l.j = max(l.j + 1, l.m+ 2)
l.b = l.j

Observe that in this implementation, we have a bias for messages. Specifically,
we add one to differentiate the new event from the previous event on the process.
However, for the message, we added 2 (instead of 1 as done in Algorithm 1). This
implementation, of HLC will guarantee that if e and f are events on two different
processes then e −→ f ⇒ l.e + 1 < l.f . It follows that if e and f are events on
two different processes and |l.e − l.f | ≤ 1 then e and f are concurrent.

From this discussion, it follows that with this new implementation, even
consistent cuts such as 〈a1, b2, c2〉 (cf. Fig. 1a) are valid consistent cuts and we
can use them to evaluate the predicate, i.e. to detect whether the given predicate
∧prp is true. We view the above implementation as a solution with bias of 2. The
default implementation in Sect. 2.1 corresponds to a bias of 1. We also denote it
as unbiased implementation.

With a bias of 2, in Fig. 1a, we can see that there is an increased potential
to find a cut where the given predicate is true. Furthermore, the effectiveness
of predicate detection in the scenario considered in Fig. 1a will increase as the
value of bias increases. In particular, if we use a bias of 6 then all consistent cuts
will be detected.

We note that the addition of bias is not free of cost. In particular, there
is a potential that some cuts that were detected with bias of 1 (Algorithm 1
in Sect. 2.1) but are not detected by an algorithm with higher bias value.

350 V. Tekken Valapil and S. Kulkarni

As an illustration, consider Fig. 1b. Here, process j has received several mes-
sages whereas others have received no messages. In this case, l.j is significantly
higher than l.k. Hence, even with the increased drift permitted between l.j and
l.k, it is possible that some cut detected by naive HLC will not be detected by
an algorithm with higher bias.

One could pursue this idea with pure logical clocks as well. However, HLC
offers something that logical clocks do not. Specifically, HLC smooths the times-
tamps over time. Specifically, if events are not created at every clock tick, then
eventually the physical clock will catch up with the l value (even after a rapid
increase in l caused by reception of multiple messages). Hence, situations such
as those in Fig. 1b will resolve themselves if none of the processes have any
new events for a short duration. By contrast, (pure) logical clocks do not have
this ability.

From the above discussion, we can see that biased hybrid logical clocks
(BHLC) have the potential to increase the effectiveness of monitoring/debugging,
without affecting the overall complexity of the detection algorithm. However,
there is a potential of missing some cuts found by the unbiased algorithm.

4 Algorithm for Biased Clocks (BHLC)

Our first algorithm for biased hybrid logical clocks (BHLC) is based on the idea
discussed in Sect. 3. Specifically in this work, each process j maintains a variable
l.j to keep track of its (biased) clock value. This value is initialized to 0. We also
utilize physical clock pt.j for process j. This value is updated automatically. As
far as our algorithm is concerned, it is a read-only value. However, the underlying
system will ensure that clocks of any two processes differ by at most ε. As an
input, BHLC takes a parameter B, that denotes the bias value.

When a new event is created on process j, l.j is updated. And, the new value
is assigned as a timestamp to the newly generated event. If the event generated
is a send event or a local event then the algorithm works same as the naive HLC
algorithm. It increases the value of l.j by 1 and sets it to a value that is at least
as large as pt.j. If this is a send event then the value of l.j is sent with the
message. If the event generated is a receive event, where message m is received,
then l.j is set to max(l.j+1, l.m+B, pt.j). In other words, the algorithm biases
its clock to be at least l.m + B. Thus, the algorithm is as shown in Algorithm 3.

Algorithm 3. Algorithm BHLC with Input Parameter B

At node j
1: Initially lc.j := 0
2: Set B to bias value
Send/Local event
3: l.j := max(l.j + 1, pt.j)
4: Timestamp with l.j
Receive event of message m
5: l.j := max(l.j + 1, l.m + B, pt.j)
6: Timestamp with l.j

Biased Clocks: A Novel Approach 351

From this algorithm, we can show that the following properties are satisfied.

Lemma 1. Let e and f be events on two different processes and let l.e and l.f
be the timestamps assigned to them by Algorithm3. Then, we have

e −→ f ⇒ l.e + B ≤ l.f

Proof. This proof follows from Line 5 of Algorithm 3.

Lemma 2. Let e and f be events on two different processes and let l.e and l.f
be the timestamps assigned to them by Algorithm3. Then, we have

|l.e − l.f | < B ⇒ e||f

Proof. We consider two cases: l.e ≥ l.f and l.f ≥ l.e. In the first case, clearly ‘e
happened before f ’ is false. Also, since l.e − l.f < B, i.e., l.f + B > l.e. From
Lemma 1, ‘f happened before e’ is also false. Thus, e||f . And, the analysis of the
second case is identical.

4.1 Extension 1: Multiple Simultaneous Instances of BHLC

Algorithm BHLC takes B as a parameter. We can run two versions of this
algorithm, say with B = B1 and B = B2. Observe that if any one of them allows
us to conclude that two events are concurrent then they are indeed concurrent.
However, if we run two versions of the same algorithm, it would increase the
storage cost and computational cost.

4.2 Extension 2: Algorithm BHLCr : Resetting Clocks
at Cut-Points

Based on the analysis of Fig. 1b, we can see that BHLC will work effectively
if the computation length is small so that the number of messages received by
different processes are close. We consider two extensions to deal with these issues.

First, to deal with long computations, we introduce the notion of (periodic)
cut-points with length C. Thus, the first interval is from 〈0..C −1〉. Next interval
is from 〈C..2C − 1〉, and so on. Whenever, the clock of a process reaches its cut-
point, we increase its l value to a large enough value that would not occur before
the cut-point. This is straightforward to achieve since the computation length
between cut-points has a fixed length. Note that this would create a problem in
terms of comparing events when event on one process is just before the cut-point
and one event is just after the cut-point. To deal with this issue, we can maintain
another clock which resets at 1

2C, 3
2C, 5

2C and so on. As discussed in Sect. 4.1, if
even one of these clocks would allow us to conclude concurrency of two events,
it is sufficient. We use BHLCr to denote the resulting algorithm.

352 V. Tekken Valapil and S. Kulkarni

4.3 Extension 3: Algorithm BHLCa : Adjusting Message Rate

Figure 1b also suggests that biased clocks would work most effectively if the
number of messages received by each process is roughly the same. If this is
not true then, we can achieve this by allowing a process to pretend to receive
fake messages. This can be achieved as follows: Let x(t) denote the number
of messages that are expected to be received by a process by time t. If actual
number of messages received by a process is smaller, we pretend to receive a
message (and update the clock value). We denote the resulting algorithm as
BHLCa. We use BHLCra to denote the algorithm that uses both extensions 2
and 3.

5 Comparison of HLC and BHLC in Predicate Detection

5.1 Experimental Setup

To analyze the effectiveness of BHLC (and its extensions), we use simulation of
a system with 10 independent processes, where each process has a physical clock
and a biased clock associated with it. The physical clocks of these processes
are synchronized to be within ε of each other. This is achieved by executing
the processes in a round-robin manner. When a process is given a chance to
execute and increment its physical clock, it does so with a certain probability if
incrementing it will not cause two clocks to differ by more than ε. If a process
is able to increment its physical clock, it sends a message with probability α,
one of the parameters in our simulation. The target is selected randomly with
uniform distribution. These messages are received by the target processes after a
specific message delay of δ. Every process i has a local boolean variable vi which
becomes true at a specific rate of β. When an event (message send or receive
event/local event like change in vi) occurs at a process, it updates its biased
clock accordingly.

To understand the effectiveness of BHLC, we timestamp the events in this
system using biased clock plus physical clock. When a snapshot is identified
as a consistent snapshot using Lemma 2, the physical clock values are used to
determine if the corresponding events are within ε window. The predicate being
considered for our experimental analysis is conjunctive predicate, i.e. in the sys-
tem under consideration, we use biased clocks to evaluate whether the predicate
∧vi (1 ≤ i ≤ n) is satisfied.

We note that our experiments focus on identifying the number of global snap-
shots where the given predicate is true. Subsequently, we determine how many
of these cuts are found by HLC/BHLC. In this sense, our analysis is inde-
pendent of the predicate being considered. However, if we change the predicate
under consideration, we will need to change the algorithm involved in detect-
ing it. However, comparison of cuts identified by HLC and BHLC will remain
unaffected.

One issue in these experiments is caused by the fact that one consistent snap-
shot may have several other consistent snapshots that are close to it. For exam-
ple, if we have two events per process where predicate vi is true and there is no

Biased Clocks: A Novel Approach 353

communication, there are 2n consistent cuts. Counting all these cuts is not only
expensive, but in fact they are not independent cuts. Hence, we require that two
consistent cuts must occur at least ε apart. This ensures that these cuts are in
fact disjoint.

Default Experimental Setup. In our simulations, we treat a clock tick to
be 0.1 ms. Each simulation run is for a total of 100 (virtual) seconds, i.e., each
process increments the clock from 0 to 1, 000, 000. The default set of parameters
that we use are clock drift ε = 10ms (100 clock ticks), message delay δ = 1ms
(10 clock ticks), β = 10% (the expected time before the variable becomes true
is 1 ms), local predicate stays true for just 0.1ms (1 clock tick) and an average
communication frequency of 1000 messages per second (10% chance of sending
a message every clock tick). To compare the effectiveness of biased clocks under
different configurations, we vary one parameter at a time. The raw data from
our experiments is available at http://cse.msu.edu/∼tekkenva/biasedclocks/.

Organization of the Experimental Results. In Sect. 5.2, we present the
algorithm that we use for finding whether the given conjunctive predicate is
true. In Sect. 5.3 we analyze the effectiveness of BHLC in detecting predicates
(conjunctive predicate) as we vary the system parameters namely (a) clock drift
ε (b) local predicate rate β (c) communication frequency α and (d) message
delay δ. In Sects. 5.4 and 5.5, we analyze the effectiveness of BHLCr, BHLCa

and BHLCra (discussed in Sects. 4.2 and 4.3).

5.2 Algorithm for Conjunctive Predicate Detection Using BHLC

As discussed above, the exact method for detecting a predicate is not relevant
to our discussion since we are finding possible cuts where the predicate is true
and comparing it with the ones that are detected by HLC or biased clocks
with different bias value. However, for the sake of completeness, we present the
algorithm we use for detecting conjunctive predicates used in our work.

When an event occurs at a process, the process updates its biased clock value
and then timestamps the event with the updated biased clock value and current
physical clock. Initially, vi is false at every process i. Let e and f denote the
(successive) events where vi becomes true and false respectively. Let 〈b.e, pt.e〉
denote the value of BHLC and physical clock timestamp of event e. Likewise,
let the timestamp of f be 〈b.f, pt.f〉. Thus, vi is true in the interval [〈b.e, pt.e〉,
〈b.f, pt.f〉). Hence, process i creates a candidate [〈b.e, pt.e〉, 〈b.f, pt.f〉) and adds
it to its queue. The monitoring process uses these queues for the detection of
conjunctive predicate i.e. in this instance to detect if the variable v was true at
all processes at a same point in time (∧vi (1 ≤ i ≤ n)).

The monitor forms a snapshot of the system by picking one candidate
per process. It then evaluates if for any two candidates in the snapshot, say
[〈b.ei, pt.ei〉, 〈b.fi, pt.fi〉) and [〈b.ej , pt.ej〉, 〈b.fj , pt.fj〉) if there is some point in
time within a candidate interval that is possibly concurrent with some point
in time within the other candidate interval. This is achieved by checking if
((|b.fi−b.ej | < B)∨(|b.fj−b.ei| < B))∧((|pt.fi−pt.ej | ≤ ε)∨(|pt.fj−pt.ei| ≤ ε)).

http://cse.msu.edu/~tekkenva/biasedclocks/

354 V. Tekken Valapil and S. Kulkarni

If this evaluates to true for every pair of candidates in the snapshot then the
snapshot forms a consistent snapshot. When the monitor detects a consistent
snapshot, it reports a conjunctive predicate satisfaction.

5.3 Effectiveness of BHLC Under Different System Parameters
and Bias B

In this section, we analyze the effect of varying system parameters (clock drift,
communication frequency, message delay, local predicate rate) and the amount
of bias (B) on the ability of detecting predicates using BHLC and HLC.

Fig. 2. (a) Effect of varying frequency of sending a message, (b) Effect of varying the
rate at which local predicate becomes true, (c) Effect of varying frequency of sending
a message, (d) Effect of varying Message delay on Standard biased clocks

Varying Clock Drift (ε). To analyze the effect of varying clock drift or clock
synchronization of the processes in the system, we use the default set of system
parameters and vary the clock drift ε. Specifically, we consider clock drifts of
0.1 ms, 0.2 ms, 0.5 ms, 1 ms, 10 ms and 100 ms. In Fig. 2a, we observe that BHLC
with any value of B performs (orders of magnitude better) than HLC. In
terms of clock synchronization, BHLC implementation performs better when
the processes in the system are more tightly synchronized with each other. More
specifically, when the processes in the system are tightly synchronized with each
other, detection using BHLC with B = 10 detects almost all cuts where the
predicate is true.

Biased Clocks: A Novel Approach 355

Varying Local Predicate Rate (β). Starting from the default experimental
setup, we consider cases where β = 1 (local predicate is always true) to β =
0.1 (probability that a local predicate is true is 0.1). The observed effect is as
shown in Fig. 2b. As β decreases, the number of cuts satisfying the predicate
in the system decrease. As expected, all methods of detection detect fewer cuts
with smaller β. The earlier observation that BHLC performs better than HLC
continues to hold for Fig. 2b. Again, detection using BHLC with B = 10 and a
simultaneous implementation with B = 10 and B = 75 perform the best. More
specifically, simultaneous implementation with B = 10 and B = 75 identifies
approximately 70% of the actual cuts.2

Varying Communication Frequency (α). Starting from the default experi-
mental setup, we vary α from 0.1 (roughly 100 messages per second) to 1 (roughly
10000 messages per second) As shown in Fig. 2c, all detection methods detect
fewer cuts as the communication frequency increases; as the number of messages
increase, there are fewer concurrent events.

We observe that BHLC continues to perform better than the HLC. On
an average, BHLC detects about 50% of the total cuts. In general, predicate
detection based on BHLC performs better if communication frequency is low.
This is expected, given that biased clocks were motivated by what happens
when message communication frequency is very low. Hence, one may consider
allowing for higher bias to improve performance. However, very high bias also
means longer jumps in the BHLC. In turn, this may also result in rejection
of more concurrent cuts. From Fig. 2c, we find that BHLC with B = 25 and
B = 50 works best.

Varying Message Delay (δ). For this case, we vary message delay to 0.1 ms,
0.2 ms, 0.5 ms, 1 ms, 2 ms, 5 ms, 10 ms and 100 ms. Remaining parameters are
the same as in the case of default setup. From Fig. 2d, we can observe that with
increase in message delay, predicate detection using BHLC performs signifi-
cantly better. When the message delay is small, BHLC detects less that 10%
of the cuts in the system. However, as the message delay increases the detection
rate improves rapidly to 80%, specifically when message delay ≥2ms.

5.4 Effectiveness of BHLCr

In this section we analyze the effectiveness of BHLCr, where clocks at the pro-
cesses are reset periodically to overcome the issue of biased clocks growing far
apart over time.

We perform the same set of experiments presented in Sect. 5.3 using BHLCr

where clocks are reset every 1000 clock ticks, i.e. every 100 ms. We vary one
system parameter at a time and present the results in Figs. 3a, b, c and d. We
observe that the detection capability using BHLCr is similar to BHLC.

2 Note that for the sake of comparison the analysis is done over the same set of
execution traces and when we consider multiple bias amounts, common snapshots
are counted only once.

356 V. Tekken Valapil and S. Kulkarni

Fig. 3. (a) Effect of varying clock drift, (c) Effect of varying frequency of sending a
message and (b) Effect of varying the rate at which local predicate becomes true and
(d) Effect of varying Message delay on Extended biased clocks with reset every 100 ms.

5.5 Effectiveness of BHLC Under Non-uniform Message
Distribution

In this section we analyze the effectiveness of BHLC and its extensions in a
system with non-uniform message distribution. Specifically, we focus on the
extension of BHLC discussed in Sect. 4.3, where processes compensate for non-
uniform message distribution.

We consider a scenario where we partition the set of 10 processes into two
sets (5 in each). The first set (processes 1–5) receive messages at twice the rate
of the second set (processes 6–10). Hence, processes 6–10 compensate by adding
twice as much bias in the receive statement. In other words, if we instantiate
BHLC with B = 10, processes 1–5 add 10 on Line 5 and processes 6–10 add
20. In this scenario, we consider two subcases: (1) processes in one set only
talk among themselves (cf. Fig. 4b) and (2) processes choose their destination
randomly and, hence, they could send messages to processes in the other set
(cf. Fig. 4a). For this version (BHLCa), we utilize the following observation to
decide if two events are related by happened-before relation.

e −→ f iff

{
l.e + 10 < l.f f is on processes 1..5
l.e + 20 < l.f f is on processes 6..10

Biased Clocks: A Novel Approach 357

From Figs. 4a and b, we find that BHLC, BHLCa and BHLCra work better
than HLC. However, BHLCa and BHLCr do not provide the desired improve-
ment. Rather, (standard) BHLC works better. In part, this happens because
BHLCa does an abrupt jump of size 2B for processes 6..10. This abrupt jump
makes it harder to find concurrent events at processes 1..5. That said, the addi-
tion of bias improves the predicate detection capability when compared with
unbiased implementation (which corresponds to HLC).

Fig. 4. No. of violations detected in (a) Non-uniform Message distribution 1 and (b)
Non-uniform Message distribution 2

6 Related Work

The problem of predicate detection has been widely studied in the literature
[4,7,13] for debugging distributed systems to identify errors that may happen
due to race conditions. It is also generalized [1,12,15] to detect more complex
properties. In general, the problem of predicate detection in distributed systems
is NP-Complete [3]. This is mainly due to the underlying uncertainty in the
order of events in the system, which in turn leads to the possibility of exponential
number of valid interleavings that need to be examined for predicate satisfaction.

One approach is to order events in the system using physical time. However,
the issue with using only physical time is that it fails to capture causality, espe-
cially when physical clocks at the processes are not perfectly synchronized with
each other. For instance a send event may have a higher physical clock times-
tamp than the receive event, if the clock at the sending process is ahead of the
receiver’s clock due to clock drift. So using only physical time may result in con-
sideration of invalid interleavings. In [16], Stoller showed that if approximately-
synchronized real-time clocks are used for detecting global state predicates, and
if the inter-event spacing, denoted as E, is more than the clock drift in the under-
lying system, then the number of possible states to be evaluated is only O(En),
where n is the number of processes in the system. However, in an asynchronous
system the total number of possible states is Ω(En).

358 V. Tekken Valapil and S. Kulkarni

Another most prominently used approach to order events in distributed sys-
tems is the use of Vector Clocks for timestamping of events in the system. There
are several existing works [2,3,5,8,19] that perform predicate detection using
Vector Clocks. However the problem with using vector clocks is that vector
clock timestamps are of size O(n), where n is the number of processes in the
system under consideration. Also, in modern systems where protocols can utilize
the fact that the underlying system provides clock synchronization, detection
using Vector Clocks can result in false positives, where the algorithm detects
that the predicate is true. The snapshot identified by it may be infeasible under
clock synchronization assumptions/guarantees. Hybrid vector clocks (HVC) [17]
have been proposed to address this issue. However, size of HVC is O(n) in the
worst case. By contrast, BHLC is designed to use only O(1) sized clocks. While
Hybrid Logical Clocks (HLC), which are also O(1) sized clocks, can be used to
order events in the system and for predicate detection [18], they fail to detect
all instances of predicate satisfaction (detect fewer than the number of instances
detected by BHLC) because Hybrid Logical Clocks do not capture enough infor-
mation to detect all possible valid interleavings.

7 Conclusion

This paper presented a novel approach for predicate detection using biased
clocks. It is well-known that if we want to detect all instances where predicate
P is possibly true without finding any phantom instances then O(n) size clocks
are necessary. Logical clocks/Hybrid logical clocks can be used to perform such
predicate detection. However, they cannot find all possible cuts. We considered
the question: “Can we improve the effectiveness of predicate detection while still
maintaining only O(1) sized clocks”.

Our analysis shows that with biased clocks presented in this paper, the
chances of finding the predicate of interest being true increase substantially. On
an average, in our experiments, biased clocks were able to find 100–200 times
as many instances where the given predicate is true when compared to hybrid
logical clocks. We find that this result is true for different communication fre-
quencies, message delays, clock drifts and frequencies of the local predicate being
true. Furthermore, for many scenarios, BHLC was able to find more than half
of the instances where the given predicate is true. Given that BHLC performs
predicate detection with O(1) sized clocks and finds a substantial fraction of
instances where the given predicate is true, we expect that BHLC will provide
an inexpensive and effective way to perform predicate detection.

One of the future work in this area is to develop a theory that will help
identify the bias values that should be used to maximize the predicate detection
capability of BHLC. Another future work is to learn from system behavior (e.g.,
number of messages received by a given process in a given time) and use it to
automatically identify the bias values accordingly.

Biased Clocks: A Novel Approach 359

References

1. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. Form. Methods Syst. Des.
48(1–2), 46–93 (2016)

2. Charron-Bost, B.: Concerning the size of logical clocks in distributed systems. Inf.
Process. Lett. 39(1), 11–16 (1991)

3. Chase, C.M., Garg, V.K.: Detection of global predicates: techniques and their
limitations. Distrib. Comput. 11(4), 191–201 (1998)

4. Chauhan, H., Garg, V.K.: Fast detection of stable and count predicates in parallel
computations. In: Aspnes, J., Bessani, A., Felber, P., Leitão, J. (eds.) 21st Inter-
national Conference on Principles of Distributed Systems, OPODIS 2017, Lisbon,
Portugal, 18–20 December 2017. LIPIcs, vol. 95, pp. 20:1–20:21. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2017)

5. Chauhan, H., Garg, V.K., Natarajan, A., Mittal, N.: A distributed abstraction
algorithm for online predicate detection. In: Proceedings of the 2013 IEEE 32nd
International Symposium on Reliable Distributed Systems, SRDS 2013, pp. 101–
110. IEEE Computer Society, Washington, DC (2013)

6. Fidge, C.J.: Timestamps in message-passing systems that preserve the partial
ordering. In: Proceedings of the 11th Australian Computer Science Conference,
vol. 10(1), pp. 56–66 (1988)

7. Garg, V.K.: Brief announcement: applying predicate detection to the stable mar-
riage problem. In: Richa, A.W. (ed.) 31st International Symposium on Distributed
Computing, DISC 2017, Vienna, Austria, 16–20 October 2017. LIPIcs, vol. 91, pp.
52:1–52:3. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

8. Garg, V.K., Waldecker, B.: Detection of weak unstable predicates in distributed
programs. IEEE Trans. Parallel Distrib. Syst. 5(3), 299–307 (1994)

9. Kulkarni, S.S., Demirbas, M., Madappa, D., Avva, B., Leone, M.: Logical physical
clocks. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.) OPODIS 2014. LNCS,
vol. 8878, pp. 17–32. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
14472-6 2

10. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

11. Mattern, F.: Virtual time and global states of distributed systems. In: Parallel and
Distributed Algorithms, pp. 215–226. North-Holland (1989)

12. Mostafa, M., Bonakdarpour, B.: Decentralized runtime verification of LTL spec-
ifications in distributed systems. In: 2015 IEEE International Parallel and Dis-
tributed Processing Symposium, IPDPS 2015, Hyderabad, India, 25–29 May 2015,
pp. 494–503 (2015)

13. Natarajan, A., Chauhan, H., Mittal, N., Garg, V.K.: Efficient abstraction algo-
rithms for predicate detection. Theor. Comput. Sci. 688, 24–48 (2017)

14. Schwarz, R., Mattern, F.: Detecting causal relationships in distributed computa-
tions: in search of the holy grail. Distrib. Comput. 7(3), 149–174 (1994)

15. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of
safety in distributed systems. In: 26th International Conference on Software Engi-
neering (ICSE 2004), 23–28 May 2004, Edinburgh, United Kingdom, pp. 418–427
(2004)

16. Stoller, S.D.: Detecting global predicates in distributed systems with clocks. Dis-
trib. Comput. 13(2), 85–98 (2000)

https://doi.org/10.1007/978-3-319-14472-6_2
https://doi.org/10.1007/978-3-319-14472-6_2

360 V. Tekken Valapil and S. Kulkarni

17. Yingchareonthawornchai, S., Nguyen, D.N., Tekken Valapil, V., Kulkarni, S.S.,
Demirbas, M.: Precision, recall, and sensitivity of monitoring partially synchronous
distributed systems. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012,
pp. 420–435. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-
9 26

18. Yingchareonthawornchai, S., Tekken Valapil, V., Kulkarni, S., Torng, E., Demirbas,
M.: Efficient algorithms for predicate detection using hybrid logical clocks. In:
Proceedings of the 18th International Conference on Distributed Computing and
Networking, ICDCN 2017, pp. 10:1–10:10. ACM, New York (2017)

19. Zhu, W., Cao, J., Raynal, M.: Predicate detection in asynchronous distributed
systems: a probabilistic approach. IEEE Trans. Comput. 65(1), 173–186 (2016)

https://doi.org/10.1007/978-3-319-46982-9_26
https://doi.org/10.1007/978-3-319-46982-9_26

Gathering in the Plane of Location-Aware
Robots in the Presence of Spies

Jurek Czyzowicz1, Ryan Killick2, Evangelos Kranakis2(B), Danny Krizanc3,
and Oscar Morale-Ponce4

1 Département d’informatique, Université du Québec en Outaouais,
Gatineau, QC, Canada

2 School of Computer Science, Carleton University, Ottawa, ON, Canada
kranakis@scs.carleton.ca

3 Department of Mathematics and Computer Science, Wesleyan University,
Middletown, CT, USA

4 Department of Computer Science, California State University,
Long Beach, CA, USA

Abstract. A set of mobile robots (represented as points) is distributed
in the Cartesian plane. The collection contains an unknown subset of
byzantine robots which are indistinguishable from the reliable ones. The
reliable robots need to gather, i.e., arrive to a configuration in which
at the same time, all of them occupy the same point on the plane. The
robots are equipped with GPS devices and at the beginning of the gather-
ing process they communicate the Cartesian coordinates of their respec-
tive positions to the central authority. On the basis of this information,
without the knowledge of which robots are faulty, the central author-
ity designs a trajectory for every robot. The central authority aims to
provide the trajectories which result in the shortest possible gathering
time of the healthy robots. The efficiency of a gathering strategy is mea-
sured by its competitive ratio, i.e., the maximal ratio between the time
required for gathering achieved by the given trajectories and the optimal
time required for gathering in the offline case, i.e., when the faulty robots
are known to the central authority in advance. The role of the byzantine
robots, controlled by the adversary, is to act so that the gathering is
delayed and the resulting competitive ratio is maximized.

The objective of our paper is to propose efficient algorithms when the
central authority is aware of an upper bound on the number of byzan-
tine robots. We give optimal algorithms for collections of robots known
to contain at most one faulty robot. When the proportion of byzan-
tine robots is known to be less than one half or one third, we provide
algorithms with small constant competitive ratios. We also propose algo-
rithms with bounded competitive ratio in the case where the proportion
of faulty robots is arbitrary.

J. Czyzowicz and E. Kranakis—Research supported in part by NSERC Discovery grant.
R. Killick—Research supported by OGS scholarship.
Due to space limitations all missing proofs can be found in the report [19].

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 361–376, 2018.
https://doi.org/10.1007/978-3-030-01325-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_30&domain=pdf

362 J. Czyzowicz et al.

Keywords: Byzantine · Competitive ratio · Gathering
Location aware · Reliable · Robots

1 Introduction

1.1 The Background

A collection of mobile robots need to meet at some point of the geometric envi-
ronment. This task, known as gathering or rendezvous, has been extensively
investigated in the past. The gathering may be necessary, e.g., to coordinate a
future task or to exchange previously acquired information.

In most formerly studied cases, robots have limited knowledge about the envi-
ronment and they do not know the positions of the other robots. In the present
paper, the robots are distributed in the two-dimensional Cartesian plane. They
are equipped with GPS devices and they can wirelessly communicate their posi-
tions to the central authority. The central authority then informs each individual
robot of the trajectory it is to follow in order to meet. However, the team of reli-
able robots has been contaminated with “spies” - a subset of byzantine robots,
indistinguishable from the original ones, controlled by an omnipotent adversary.
The role of the faulty robots is simple – delay the gathering of the reliable ones
for as long as possible. A byzantine robot may report a wrong position, fail to
report any, or fail to follow its assigned route. As the central authority does not
recognize which robots are byzantine, it sends the travel instructions to all of
them.

Our goal is to design a strategy resulting in gathering of all reliable robots
within the smallest possible time. We attempt to minimize the competitive ratio
– the ratio of the time required to achieve gathering of the reliable robots, to the
time required for such gathering to occur under the assumption that the reliable
robots were known in advance.

1.2 The Model and the Problem

A collection S of n mobile robots move at maximum unit speed within the two-
dimensional plane. It is assumed that each robot in S is equipped with a GPS
device so it is aware of a pair of Cartesian coordinates representing its current
location in the plane.

We consider the problem of gathering an unknown subset N ⊆ S of robots.
The robots of N need to arrive at some time at a same point on the plane in
order to complete some given task. We refer to this set N of at least n−F robots
as the set of reliable robots and define F = S \ N of f ≤ F robots as the set
of byzantine robots. We call this problem of gathering all reliable robots from a
collection containing at most F byzantine robots the Gather(n, F) problem.

At the beginning, all robots in S send a single message recording their starting
positions to the central authority. In turn, the central authority computes a set
of trajectories instructing each robot how to time their respective movements

Gathering in the Plane of Location-Aware Robots in the Presence of Spies 363

in order to achieve gathering. At this point the robots follow the trajectories
provided.

The movement continues until all reliable robots meet for the first time.
We imagine a successful gathering as a meeting of robots possessing pieces of
information allowing them to solve some puzzle. As long as all pieces are disas-
sembled, the puzzle remains unsolved, and the identification of useful or invalid
information is not possible.

The byzantine robots may report incorrect initial locations, which can poten-
tially adversely affect the robots’ trajectories. Clearly, this results in byzantine
robots not being able to follow the assigned trajectories. However, as long as
all reliable robots complete their trajectories, the schedule must lead to their
gathering.

The trajectories designed by the central authority are computed uniquely on
the basis of the reported set of robot positions and possibly using the knowledge
of the upper bound on the number of byzantine robots. Once the robots start
their movements, no adaptation to our algorithm is ever possible as no extra
information may be obtained. We assume that the adversary knows in advance
our algorithm and it will put the byzantine robots in the positions which result
in the worst possible competitive ratio.

We note that the requirement of a central authority may be removed by
allowing the robots to instead broadcast their initial positions to all other robots.
In this situation all robots compute the same set of trajectories using the same
algorithms.

We are interested in developing algorithms solving the Gather(n, F) problem
which are optimal in terms of the competitive ratio for a given initial configura-
tion S of n robots, at most F of which are byzantine. We define the competitive
ratio CRn,F (A,N) of an algorithm A for the specific subset N of the input S
as the ratio of the time TA(N) – the time of the first gathering of all robots
belonging to N – divided by T∗(N) – the minimal time necessary to gather the
robots in N , i.e. CRn,F (A,N) = TA(N)

T∗(N) . We also define the overall competi-

tive ratio ̂CRn,F (A,S) of an algorithm A with input S as the maximal CRn,F

over any subset N of S, i.e. ̂CRn,F (A,S) = maxN⊂S CRn,F (A,N). We further
define the optimal competitive ratio CRn,F (S) for an input S as the minimal
̂CRn,F (A,S) for any algorithm A, i.e. CRn,F (S) = minA ̂CRn,F (A,S). For ease
of presentation we will often drop the subscripts n and F when they are implied
by context.

We define an optimal algorithm A solving the Gather(n, F) problem as any
algorithm satisfying

CRn,F (A,S) = CRn,F (S), ∀ S. (1)

1.3 Our Results

We provide algorithms with constant competitive ratio for all but a small
bounded region in the space of possible n and F pairs. In doing so we demonstrate

364 J. Czyzowicz et al.

that having knowledge of the upper bound of the number of byzantine robots in
the subset (represented by the parameter F) permits fine-tuning of the gather-
ing algorithm, resulting in better competitive ratios. In Sect. 2 we consider the
gathering problem for collections involving only a single byzantine robot. After
developing insight into the problem we give a gathering algorithm that is optimal
for any number of robots, at most one of which is byzantine. For the boundary
case of three robots, one of which is byzantine, we give a closed form expression
for the competitive ratio. Section 3 presents two algorithms with small constant
competitive ratio when the number of byzantine robots is bounded by a small
fraction of n. Specifically, we give algorithms with competitive ratios of 2 and
2
√

2 when F < �n/3� and F < �n/2� respectively. Finally, in Sect. 4, we give two
gathering algorithms solving the problem for any n and any F . The competitive
ratio of one of these algorithms is constant, while the other is bounded by F +2.
We summarize the results of the paper in Table 1 and Fig. 1.

Table 1. Summary of competitive ratio bounds
for various algorithms.

F Upper-bound Reference

1 Optimal Algorithm 4

≤ �n/3� 2 Algorithm 5

≤ �n/2� 2
√

2 Algorithm 6

> �32
√

2� − 2 32
√

2 Algorithm 7

≤ �32
√

2� − 2 F + 2 Algorithm 8

Fig. 1. Competitive ratio bounds
for various regions of the space of
possible n and F pairs.

1.4 Related Work

The gathering problem was originally introduced in [33] as a version of pat-
tern formation (see also [20]). In operations research, Alpern [2,3] considers the
gathering of two robots, referred to as the rendezvous problem (cf. [30]). Both
problems are central in theoretical computer science. The rich related literature
is due to the large variety of studied settings: deterministic and randomized, syn-
chronous and asynchronous, for labeled and anonymous agents, in graphs and
geometric environments, for same-speed or distinct maximal speed agents, etc.
(cf. [4,9,13,21,24,28,31,35]). More recently, efficient solutions were proposed for
the plane [15] and for grids [14].

In many papers on gathering the agents are a priori assumed to have limited
knowledge of the environment. Moreover, most papers supposed that an agent is
not aware of the positions in the environment of other agents. In the determin-
istic settings, one of the central studied questions was feasibility of gathering
or rendezvous, cf. [20,21,31], which most often led to some form of the sym-
metry breaking problem, see [28,30]. Surprisingly, when agents were equipped
with GPS devices, knowledge of the agent’s own position in the environment
permitted executing very efficient rendezvous algorithms (see [12,13]).

Gathering in the Plane of Location-Aware Robots in the Presence of Spies 365

Fault tolerance in mobile agent algorithms has also been extensively studied
in the past, but the failures were more often related to the static elements of the
environment (network nodes or links), cf. [25,29]. The faults of the mobile agents
were studied for the problems of convergence [10], flocking [34], searching [17,18]
or patrolling [16]. Faults or imperfections arriving to mobile agents performing
gathering were investigated in [1,11,22,26,32]. Research in [11], [26] and [32]
considered the gathering problem in the presence of inaccurate or faulty robot
perception components. In [1] the initial positions of the collection is known to
all robots, which operate in so called look-compute-move cycle. The feasibility
of the problem, as a function of faulty robots, is investigated in [1] for crash
and byzantine faults. In [22], the gathering problem is studied in an unknown
graph environment and the feasibility question for byzantine faults in the strong
and weak sense are investigated. The results of [22] depend on the knowledge of
the upper bound on the size of the graph environment (or the absence of such
knowledge).

In [8] the authors studied, similar to ours, the online rendezvous problem
using GPS-equipped robots on a line, where some robots may turn out to be
byzantine. However the robot movements along the line are much easier to ana-
lyze than the setting studied in the present paper. Indeed, in the case of a line,
the robots move inside a corridor forcing robots to meet.

1.5 Notation

We will use S to refer to a general collection of any robots (reliable and/or
byzantine) and use N (F) to represent a set of reliable (byzantine) robots only.
We will represent the cardinality of a set S as |S| and will always use n = |S|,
and f = |F|. We reserve the use of F for the upper bound on the number of
byzantine robots in S (and, as such, it may be that f ≤ F).

As we are dealing with robots in the plane we will use the term robot and
point interchangeably. When it is required to refer to a particular robot/robots
in a set we will use the capital letters A, B, and C. We use the capital letter D
to refer to meeting points of robots.

We let the distance between any two points A and B be |AB|, and use
AB to represent the directed line segment joining A and B. We will refer to the
individual coordinates of a point using the subscripts x and y, e.g., A = (Ax, Ay).

We define MC(S) as the minimum enclosing circle (MEC) of a set of points
S, and let Sup[S] be the supporting set of MC(S). It is a well known property
that 2 ≤ |Sup[S]| ≤ 3 [7]. We further define the radius Radius[S] and Center[S]
of S to be the radius and center of the MEC of S respectively.

Finally, we let FVD(S) represent the furthest-point Voronoi diagram (FVD)
of the point set S, and, for a point A in S, we let FVR(A) be the cell/region in
FVD(S) belonging to the point A. See [5] for a description of the properties of
the FVD.

366 J. Czyzowicz et al.

2 One Byzantine Robot

In this section we develop optimal algorithms for the case that there is only a
single byzantine robot within the collection S. To do this we will need to consider
subsets of S containing n−1 robots and we therefore introduce some convenient
notation. We let Si ⊂ S, i ∈ [0, n−1] represent the n subsets of n−1 robots that
can be formed from S and we define an ordering for the Si in such a way that
Radius[Si] ≤ Radius[Sj] ∀ j ≥ i. For the sake of brevity, we use rS = Radius[S]
and ri = Radius[Si] for the remainder of the section.

We start with the following (trivial) lemma concerning the optimal meeting
time of any set of robots in the plane,

Lemma 1. The minimal time needed to gather a set S of robots is T∗(S) = rS .

An immediate consequence of the above lemma is the following optimal algo-
rithm for gathering a group of n reliable robots.

Algorithm 1. (Optimal Gather(n, 0))

1: Set D = Center[S] ;
2: All robots in S move at full speed towards D ;
3: The algorithm terminates when the last robot in S reaches D ;

To get an idea of how different the problem is when we consider the presence
of even a single byzantine robot, let us run the above algorithm on the two inputs
depicted in Fig. 2.

Fig. 2. Inputs for example analysis of competitive ratio. In both cases the robots
A, B, and C move directly towards the center of the minimum enclosing circle of
S = {A, B, C}.

For a given input S = {A,B,C} the adversary can choose at most one of
the robots A, B, and C to be byzantine. We assume that they will do so in
such a way as to maximize the competitive ratio of our algorithm. Which robot
would they choose? In the case (a) the choice is not so obvious, and, indeed,
the competitive ratios for all three possibilities are not very different. In the case

Gathering in the Plane of Location-Aware Robots in the Presence of Spies 367

(b), however, there is an obvious choice: the adversary would make C byzantine
since the robots A and B were initially very close but travelled far before meeting
(Fig. 2).

This exercise, although simple, highlights an important observation – the
“closest” robots should meet first. It turns out that, when F = 1, we can for-
malize this statement1.

Fig. 3. Setup for the proof of Lemma 4.

Lemma 2. Consider an optimal algorithm A solving the Gather(n, 1) problem
for the input S. Let Si be the first group of n − 1 robots to meet. Then Si = S0,
i.e. Si is the group of n − 1 robots in S with the smallest enclosing circle.

So, we now know that we have to make the smallest group of n − 1 robots
meet first. What choice does this leave the adversary? Well, naturally, they would
choose the byzantine robots in such a way that the second-smallest group of n−1
robots should have gathered. This observation leads us to the following:

Theorem 1. The competitive ratio of any algorithm solving the Gather(n, 1)
problem with input S is at least rS/r1.

At this point we can make a useful observation: an optimal gathering algo-
rithm ends either at the moment the first group of robots meet or the moment
all robots meet. Furthermore, at the moment of the first meeting, all robots are
located at either one of only two positions. Thus, in an optimal algorithm, we
must send these remaining two groups of robots directly towards each other. We
can claim the following:

Lemma 3. An optimal algorithm A solving the Gather(n, 1) problem can be
completely described by the single point D at which the first n − 1 robots gather.

Corollary 1 (Lemma 3). There is an optimal algorithm solving the Gather(n,
1) problem following the strategy given in Algorithm 2.
1 When F > 1 there are cases when this is not true.

368 J. Czyzowicz et al.

Algorithm 2. (General Gather(n, 1))

1: All n robots start moving at full speed towards some point D ;
2: if The first n − 1 robots to arrive at D are all reliable; then
3: The algorithm terminates ;
4: else
5: Let D′ be the midpoint of D and the position of the single robot that has not

yet arrived at D (at the time the first group of robots gather at D) ;
6: All robots move at full speed towards D′. The algorithm terminates once they

meet ;

Corollary 1 reduces the task of searching for an optimal algorithm to the
conceptually simpler task of searching for some optimal meeting point D. The
following lemma tells us how to find this point:

Lemma 4. Consider an optimal algorithm A solving the Gather(n, 1) problem
for the input S parameterized by the point D. Let the group Si represent the first
group of n − 1 robots to gather at the point D. Then the point D lies on the
perpendicular bisector of the two robots in Si furthest from D.

As a last step we derive an expression for the competitive ratio of an optimal
Gather(n, 1) algorithm.

Lemma 5. An optimal algorithm following the strategy in Algorithm 2 solves
the Gather(n, 1) problem for the input S with competitive ratio

̂CR = max
{ |AD|

r0
,

|AD| + |CD|
2r1

}

where A is one of the two points in S0 furthest from D and C is the point in S
that is not in S0.

We are now ready to present our main result:

Algorithm 3. (Optimal Gather(n, 1) point)

1: Set C as the single robot in S that is not in S0;
2: Determine the Furthest-point Voronoi diagram FVD(S0) of the point set S0;
3: Set CRmin = ∞, and Dmin = NULL;
4: for each edge E in FVD[S0] do
5: Set A and B as the two points such that the edge E separates FVR(A) and

FVR(B);

6: Determine the point D′ on E that minimizes CR(D′) = max
{

|AD′|
r0

,

|AD′|+|CD′|
2r1

}
.

7: if CR(D′) < CRmin then
8: Set Dmin = D′ and CRmin = CR(D′)

return Dmin;

Gathering in the Plane of Location-Aware Robots in the Presence of Spies 369

Algorithm 4. (Optimal Gather(n, 1))

1: The robots perform Algorithm 2 with the point D determined by Algorithm 3;

Theorem 2. Algorithm 4 is an optimal algorithm solving the Gather(n, 1) prob-
lem with input S. The complexity of the algorithm is O(n log n).

It does not seem likely that a closed form expression can be derived for the
competitive ratio of Algorithm 4 for arbitrary n. However, in the boundary case
that n = 3 and F = 1 this is possible. The complete solution of the Gather(3,
1) is presented in [19] and the results are reproduced below:

Theorem 3. Algorithm 2 optimally solves the Gather(3, 1) problem with input
�ABC of side lengths a ≤ b ≤ c and respective angles α ≥ β ≥ γ if the
point D is chosen such that Dx = 1

2 [(Bx + Cx) + a tan φ(By − Cy)], Dy =
1
2 [(By + Cy) + a tan φ(Cx − Bx)], and tan φ = tan β if tan β ≤ sin γ, otherwise

tan φ = 2
√

c2−(b−a)2√
(3b−a)2−c2+

√
(b+a)2−c2

. The competitive ratio of the algorithm equals

c/b if tan β ≤ sin γ, otherwise it is 1/ cos φ.

3 Bounded Number of Byzantine Robots

We now consider instances of the Gather(n, F) problem when the value of F
is a small constant fraction of n. We give two algorithms corresponding to the
cases that F < �n

3 �, and F < �n
2 �. In both cases we show that a small constant

competitive ratio is attainable. We start with the case that F < �n
3 �.

Theorem 4. Consider the Gather(n, F) problem with input S and for any F <
�n
3 �. Then, there is a gathering algorithm solving this problem with competitive

ratio at most 2. The complexity of the algorithm is O(n).

Proof (Theorem 4). We will make use of the centerpoint theorem (see [23] [The-
orem 4.3]) which states that any finite set S of n points in R

d admits a point K
(a centerpoint) such that any open half-space avoiding K contains at most � dn

d+1
points of S. In particular, for d = 2, this implies that we can always determine a
K such that any line L through K partitions S into two sets each with at least
F < �n

3 � robots. This result inspires the following algorithm,

Algorithm 5. (Move to centerpoint)

1: The robots compute a centerpoint K of the set S of robots;
2: All robots move directly towards K;
3: The algorithm terminates once the final reliable robot reaches K;

Consider the reliable robot A that is initially furthest away from the point K
determined in Algorithm 5. Draw a line L through K perpendicular to the line

370 J. Czyzowicz et al.

segment AK (as done in Fig. 4). Observe that, since K is a centerpoint, there are
at least �n

3 � robots on either side of L. Furthermore, by assumption, F is strictly
less than �n

3 � and we are thus guaranteed to have a reliable robot on either side
of L. Consider any reliable robot B on the opposite side of L as A and note that
the robot B is at least a distance |AB| ≥ |AK| away from the robot A. The
competitive ratio of Algorithm 5 is therefore at most ̂CR ≤ |AK|/(12 |AB|) ≤ 2.

The complexity bound follows from the need to determine the centerpoint of
the collection. The centerpoint of a set of n points can be determined in O(n)
time using an algorithm by Jadhav [27].

The centerpoint theorem applies generally to any d-dimensional space and
we thus have the following corollary,

Fig. 4. Setup for the proofs of Theorem 4 (left) and Theorem 5 (right).

Corollary 2 (Theorem 4). Consider the Gather(n, F) problem in R
d for any

F < � n
d+1�. Then, there exists a gathering algorithm with competitive ratio at

most 2.

Now consider the case that F < �n
2 �. We claim the following:

Theorem 5. Consider the Gather(n, F) problem with input S and for any F <
�n
2 �. Then, there is a gathering algorithm solving this problem with competitive

ratio at most 2
√

2. The complexity of the algorithm is O(n).

Proof (Theorem 5). The proof is based on the following algorithm,

Algorithm 6. (Move to intersection)

1: The robots compute a line LH that partitions the robots into two disjoint sets each
containing at least �n

2
� robots;

2: The robots compute a line LV , perpendicular to LH , that also partitions the robots
into two disjoint sets each containing at least �n

2
� robots;

3: The robots move towards the point K that is the intersection of LH and LV .
4: The algorithm terminates once the final reliable robot reaches K;

Gathering in the Plane of Location-Aware Robots in the Presence of Spies 371

First, we note that, in Algorithm 6, the existence of the lines LH and LV is
ensured as a result of the ham-sandwich theorem (see [23] [Theorem 4.7]).

Now consider the four open regions R1, R2, R3, and R4 created by the inter-
section of LH and LV (as depicted in Fig. 4). Note that, by assumption, we have
F < �n

2 � and we are therefore guaranteed to have at least one reliable robot in
each of the regions R1 and R3, or in each of the regions R2 and R4.

Consider the reliable robot A that is furthest from K and assume without
loss of generality that A is located in the region R1. If there is a reliable robot B
in R3 then we have |AB| ≥ |AK| which implies that ̂CR ≤ |AK|/(12 |AB|) ≤ 2. If
there is not a reliable robot in R3 then there must be reliable robots B and C in
R2 and R4 respectively. Let d = max{|AB|, |AC|} and let us adopt a coordinate
system such that K = (0, 0) and A = (Ax, Ay). Observe that Ay ≤ |AB| ≤ d and

Ax ≤ |AC| ≤ d. Thus, |AK| =
√

A2
x + A2

y ≤ √
2d and ̂CR ≤ |AK|/(12d) ≤ 2

√
2.

The two lines LH and LV may be found in linear time by first choosing
some line L′ onto which we project the points in S. We then set LH as the line
perpendicular to L′ dividing the points on L′ in half (i.e. we need to find the
median, O(n) time [6]). To find LV we repeat with L′ replaced with LH . ��

4 Arbitrary Number of Byzantine Robots

In this section we consider algorithms that solve the Gather(n, F) for any n and
any F . We give two algorithms: the first, grid-rendezvous, is adapted from [12]
and gives a constant competitive ratio independent of F . The second, shrinking-
the-shortest-interval (SSI), gives a competitive ratio dependent on F .

4.1 Grid Rendezvous

We start with the grid-rendezvous algorithm which is a direct application of
Algorithm 3 in [12]. The algorithm was originally designed to solve the ren-
dezvous problem of two robots unaware of the other’s position (but sharing a
common coordinate system).

The idea of the algorithm is to calculate a hierarchy of grids Π = {π0, π1, ...}
which partition the plane into non-overlapping cells. The robots then travel
through a series of potential meeting points located at the centers of ever larger
cells from successive grids in Π.

In detail, each πi exactly partitions the plane into square cells of side length
2i such that one of the cells in πi, the central cell, has its center at the origin.
In order for the partition to be exact each cell is defined to include its top and
right edges, as well as its top-right vertex (in addition to its interior).

We can nearly apply Algorithm 3 as given in [12]. We only need to specify
the finest grid division that will be used by the robots. Let dε be the size of this
finest grid cell. We present (the slightly modified) Algorithm 3 from [12] below.

372 J. Czyzowicz et al.

Algorithm 7. (Grid-rendezvous [12])

1: The robots choose a dε much smaller than the closest pair of robots in the set;
2: The robots compute the hierarchy of grids Π;
3: repeat for i = 1, 2, 3... and for each robot in S
4: Set H equal to the cell of πi containing your initial position p;
5: Move to the center of H;
6: Wait until

√
2 · 2i−1 time has passed since the start of the current iteration;

7: until Gathering completed

The rendezvous time of the above algorithm is given by Corollary 9 in [12].
Using this time-bound we can state the following:

Theorem 6. Consider the Gather(n, F) problem for the input S. Assume that
the robots A and B are the closest pair of robots in S. Then the competitive ratio
of Algorithm 7 is ̂CR ≤ 2

√
2

(

16 + dε

|AB|
)

where dε can be made as small as one

chooses. The complexity of this algorithm is2 O(n log n).

4.2 Shrink-Shortest-Interval

Consider the following algorithm, generalized from Algorithm 3 in [8]:

Algorithm 8. (Shrink-shortest-interval)
1: repeat
2: Determine the two closest robots A and B in S that are not at the same position;
3: Set D as the midpoint of A and B;
4: Set d = |AB|/2.
5: All robots move a distance d towards D;
6: until All robots in N gather.

Theorem 7. Algorithm 8 solves the Gather(n, F) problem for the input S with
competitive ratio at most F + 2. The complexity of the algorithm is O(n2 log n).

To prove this we will need the following lemma:

Lemma 6. Consider any point D and set of points S such that A ∈ S is the
closest point to D, and C ∈ Sup[S] is the furthest point from D. Let S ′ be the
positions of the points in S after moving them a distance d ≤ |AD| towards the
point D. Then,

Radius[S ′] ≤
{

Radius[S] − d/2, D ∈ MC(S)
Radius[S], otherwise

.

2 The complexity of the algorithm is entirely due to the determination of dε.

Gathering in the Plane of Location-Aware Robots in the Presence of Spies 373

Proof (Theorem 7). Consider the Gather(n, F) problem for the input S, let N
be the subset of S that contains only reliable robots, and let f be the (actual)
number of byzantine robots in S.

Let S(i) and N (i) represent the unique positions of the robots in S and N
after the ith iteration of the algorithm, and let ri = Radius[N (i)]. We also let Di

be the midpoint and di be half the distance between the closest pair of points
in S(i). Finally, set Ci ∈ Sup[N (i)] be the furthest point from Di.

Now, if in the ith iteration the midpoint Di lies within MC(N (i)) then by
Lemma 6 we have ri+1 ≤ ri − di/2. If we assume that their are m iterations
of this kind then the time needed to complete these iterations is at most Tm ≤
∑m

i=0 di ≤ 2
∑m

i=0(ri − ri+1). However, observe that
∑m

i=0 ri = r0 +
∑m

i=1 ri =
r0 +

∑m−1
i=0 ri+1 such that Tm ≤ 2r0 − rm+1 ≤ 2r0.

If Di does not lie within MC(N (i)), then we can only say that ri+1 ≤ ri(1 −
di/|CiDi|) ≤ ri. However, observe that Algorithm 8 always gathers the two
closest robots in S(i) and we know that there is at least one pair of robots in
N (i) with separation no greater than 2ri. This tells us that di ≤ ri. Furthermore,
since all reliable robots are, by definition, within MC(N), it is impossible for
Di to simultaneously be: (a) the midpoint of two reliable robots, and, (b) lie
outside of MC(N). This implies that this type of iteration can occur at most f
times (as it reduces the number of byzantine robots by one each time it occurs).
Thus, the time needed to complete these iterations is at most Tf = f · r0.

Combining Tm and Tf gives us a bound on the total time necessary to com-
plete the algorithm. We get T ≤ Tm + Tf = fr0 + 2r0 = (f + 2)r0. The bound
on the competitive ratio follows from the fact that f ≤ F , and r0 = Radius[N]
is the minimal time necessary to gather the robots in N .

The complexity bound follows from the fact that we need to determine the
closest pair of points O(n) times. ��

In the case that we have no knowledge of the number of byzantine robots
in our collection (i.e. F = n − 2) the algorithm has a worst-case bound on
the competitive ratio of n. This reflects the fact that an adversary, if allowed,
would always choose f = F robots in S to be byzantine. It is worth noting,
however, that it was not necessary to know F in the proof of Theorem 7 and
thus the algorithm has a competitive ratio that is bounded by the actual number
of byzantine robots in S. That is, for a particular instance N ⊆ S such that
f = |S| − |N | we have CR(N) ≤ f + 2 ≤ F + 2.

5 Conclusion

In this paper we analyzed the gathering problem for n > 2 robots in the plane
at most F of which, F ≤ n − 2, are byzantine. The robots were equipped with
GPS and they could communicate their positions to a central authority. Several
algorithms were designed with competitive ratio depending on the number of
byzantine robots and the knowledge available to the robots.

In addition to improving the competitive ratio and/or complexity of our
algorithms, several interesting open problems remain. In particular, one could

374 J. Czyzowicz et al.

consider models that allow the robots to communicate/exchange their positions
at any time during the gathering process. Additionally, it would be interesting
to consider robot gathering (in the presence of byzantine robots) under local
(limited) communication range.

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM J. Comput. 36(1), 56–82 (2006)

2. Alpern, S.: The rendezvous search problem. SIAM J. Control. Optim. 33(3), 673–
683 (1995)

3. Alpern, S.: Rendezvous search: a personal perspective. Oper. Res. 50(5), 772–795
(2002)

4. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Springer,
New York (2003). https://doi.org/10.1007/b100809

5. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-77974-2

6. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)

7. Chrystal, G.: On the problem to construct the minimum circle enclosing n given
points in the plane. Proc. Edinb. Math. Soc. 3, 30–33 (1885)

8. Chuangpishit, H., Czyzowicz, J., Kranakis, E., Krizanc, D.: Rendezvous on a line
of faulty, location-aware robots. In: Proceedings 13th International Symposium
on Algorithms and Experiments for Wireless Networks, Vienna, Austria. LNCS.
Springer (2017)

9. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

10. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in
asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005)

11. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate
sensors and movements. SIAM J. Comput. 38(1), 276–302 (2008)

12. Collins, A., Czyzowicz, J., G ↪asieniec, L., Kosowski, A., Martin, R.: Synchronous
rendezvous for location-aware agents. In: Peleg, D. (ed.) DISC 2011. LNCS, vol.
6950, pp. 447–459. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24100-0 42

13. Collins, A., Czyzowicz, J., G ↪asieniec, L., Labourel, A.: Tell me where I am so
I can meet you sooner. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 502–514.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1 42

14. Cord-Landwehr, A., Fischer, M., Jung, D., Meyer auf der Heide, F.: Asymptotically
optimal gathering on a grid. In: Proceedings of the 28th ACM Symposium on Paral-
lelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific
Grove, CA, USA, 11–13 July 2016, pp. 301–312. ACM (2016)

15. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Certified universal gathering in R
2

for oblivious mobile robots. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS,
vol. 9888, pp. 187–200. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53426-7 14

https://doi.org/10.1007/b100809
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-642-24100-0_42
https://doi.org/10.1007/978-3-642-24100-0_42
https://doi.org/10.1007/978-3-642-14162-1_42
https://doi.org/10.1007/978-3-662-53426-7_14
https://doi.org/10.1007/978-3-662-53426-7_14

Gathering in the Plane of Location-Aware Robots in the Presence of Spies 375

16. Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.:
When patrolmen become corrupted: monitoring a graph using faulty mobile robots.
In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 343–354.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48971-0 30

17. Czyzowicz, J., et al.: Search on a line by byzantine robots. In: 27th International
Symposium on Algorithms and Computation, ISAAC 2016, Sydney, Australia, 12–
14 December 2016. LNCS, pp. 27:1–27:12. Springer (2016)

18. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a
line with faulty robots. In: Proceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, PODC 2016, Chicago, IL, USA, 25–28 July 2016, pp.
405–414. ACM (2016)

19. Czyzowicz, J., Killick, R., Kranakis, E., Krizanc, D., Morale-Ponce, O.: Gather-
ing in the plane of location-aware robots in the presence of spies. arXiv preprint
arXiv:1712.02474 (2017)

20. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: On the computational power
of oblivious robots: forming a series of geometric patterns. In: Proceedings of the
29th PODC, Zurich, Switzerland, 25–28 July 2010, pp. 267–276. ACM (2010)

21. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asyn-
chronous deterministic rendezvous in graphs. Theor. Comput. Sci. 355(3), 315–326
(2006)

22. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algo-
rithms (TALG) 11(1), 1 (2014)

23. Edelsbrunner, H.: Algorithms in Combinatorial Geometry, vol. 10. Springer,
Heidelberg (2012)

24. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–168 (2005)

25. Hromkovič, J., Klasing, R., Monien, B., Peine, R.: Dissemination of information
in interconnection networks (broadcasting & gossiping). In: Du, D.Z., Hsu, D.F.
(eds.) Combinatorial Network Theory. APOP, vol. 1, pp. 125–212. Springer, Boston
(1996). https://doi.org/10.1007/978-1-4757-2491-2 5

26. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita,
M.: The gathering problem for two oblivious robots with unreliable compasses.
SIAM J. Comput. 41(1), 26–46 (2012)

27. Jadhav, S., Mukhopadhyay, A.: Computing a centerpoint of a finite planar set of
points in linear time. Discret. Comput. Geom. 12(3), 291–312 (1994)

28. Kranakis, E., Krizanc, D., Rajsbaum, S.: Mobile agent rendezvous: a survey. In:
Flocchini, P., G ↪asieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9.
Springer, Heidelberg (2006). https://doi.org/10.1007/11780823 1

29. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)
30. Pelc, A.: DISC 2011 invited lecture: deterministic rendezvous in networks: survey

of models and results. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 1–15.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24100-0 1

31. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots.
Theor. Comput. Sci. 384(2–3), 222–231 (2007)

32. Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with
inaccurate compasses. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 333–349. Springer, Heidelberg (2006). https://doi.org/10.1007/
11945529 24

33. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

https://doi.org/10.1007/978-3-662-48971-0_30
http://arxiv.org/abs/1712.02474
https://doi.org/10.1007/978-1-4757-2491-2_5
https://doi.org/10.1007/11780823_1
https://doi.org/10.1007/978-3-642-24100-0_1
https://doi.org/10.1007/11945529_24
https://doi.org/10.1007/11945529_24

376 J. Czyzowicz et al.

34. Yang, Y., Souissi, S., Défago, X., Takizawa, M.: Fault-tolerant flocking for a group
of autonomous mobile robots. J. Syst. Softw. 84(1), 29–36 (2011)

35. Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In:
Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61440-0 163

https://doi.org/10.1007/3-540-61440-0_163

Formalizing Compute-Aggregate
Problems in Cloud Computing

Pavel Chuprikov1,2, Alex Davydow1, Kirill Kogan2, Sergey Nikolenko1(B),
and Alexander Sirotkin1,3

1 Steklov Institute of Mathematics at St. Petersburg, St. Petersburg, Russia
pavel.chuprikov@imdea.org, adavydow@gmail.com, sergey@logic.pdmi.ras.ru,

avsirotkin@hse.ru
2 IMDEA Networks Institute, Madrid, Spain

kirill.kogan@imdea.org
3 National Research University Higher School of Economics, St. Petersburg, Russia

Abstract. Efficient representation of data aggregations is a fundamen-
tal problem in modern big data applications, where network topologies
and deployed routing and transport mechanisms play a fundamental
role to optimize desired objectives: cost, latency, and others. We study
the design principles of routing and transport infrastructure and iden-
tify extra information that can be used to improve implementations of
compute-aggregate tasks. We build a taxonomy of compute-aggregate
services unifying aggregation design principles, propose algorithms for
each class and analyze them.

Keywords: Compute-aggregate problems · Cloud computing

1 Introduction

Data centers store data at different interconnected locations. Modern big data
applications are highly distributed, and requests need to satisfy various objec-
tives: latency, cost efficiency, etc. [2,5,12]. Compute-aggregate problems, where
several data chunks must be aggregated in a network sink, encompass an impor-
tant class of big data applications implemented in modern data centers. Tradi-
tionally, applications have little control over how network transport handles the
data. Latency optimization should account for properties of underlying trans-
ports in order to avoid, e.g., the incast problem [7,23], and optimizing latency
for several compute-aggregate tasks can overload “fastest” (and more expensive)
links. We believe that more fine-grained control is required to implement desired
objectives transparently for applications.

In this work, we assume that each compute-aggregate task should conform
to a budget constraint since different cloud tenants are able to invest different
economic resources to compute their aggregations. To avoid oversubscription of

This work was supported by the Russian Science Foundation grant 17-11-01276.

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 377–391, 2018.
https://doi.org/10.1007/978-3-030-01325-7_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_31&domain=pdf

378 P. Chuprikov et al.

“fastest” links, they can also have different costs of sending data over a link. The
problem now divides into two completely decoupled phases: (1) find a “cheapest”
plan given a distribution of data over the network, an aggregation function (that
computes the size of aggregating two different pieces of data), and the cost of
sending a unit of data over a link; and (2) actually redistribute aggregations
computed in (1) while optimizing desired objectives. We can solve the first phase
in a serial way, independently of the properties of underlying transport protocols,
while the second phase can address such problems as incast. This is a natural
generalization of traditional transports to implement efficient aggregations.

The first phase is of separate interest since it can represent various economic
settings (e.g., energy efficiency) during aggregation; this phase can also lead to
better utilization of network infrastructure since the cost to send a unit of data
through the links can differ for different compute-aggregate instances. Hence, our
primary goal is to identify universal properties of compute-aggregate tasks that
allow for unified design principles of “perfect” aggregations on the first phase.
Incorporating properties of aggregation functions into final decisions requires
new insights on the model level and may lead to more efficient aggregation.
There is definitely room for it: the average final output size jobs is 40.3% of the
initial data sizes in Google [10], 8.2% in Yahoo, and 5.4% in Facebook [6].

In this work, we define a model for constructing an aggregation plan under
budget constraints that requires applications to specify only one property: the
(approximate) size of two data chunks after aggregation. Properties of aggrega-
tion functions can have a significant effect on the aggregation plan. We classify
compute-aggregate tasks with respect to this property, propose algorithms for
these optimization problems, and analyze their properties, proving a number
of results on their performance and complexity, both positive (polynomial algo-
rithms with good approximation ratios) and negative (inapproximability results).

The paper is organized as follows: Sect. 2 summarizes prior art, Sect. 3 intro-
duces the model, Sect. 4 shows a classification of aggregate functions and their
computational properties, i.e., hardness and approximability of optimization
problems, and Sect. 5 concludes the paper.

2 Related Work

Various frameworks split computations into multiple phases: Camdoop [8]
assumes that an aggregation’s output size is a specific fraction of input sizes,
Map-Reduce-Merge [19] extends MapReduce to implement aggregations, Astro-
labe [15] collects large-scale system state and provides on-the-fly attribute aggre-
gation, and so on. Like other data-flow systems [10,20,21], Naiad [14] offers the
low latency of stream processors together with the ability to perform iterative
and incremental computations. The work [21] introduces a distributed mem-
ory abstraction for fault-tolerant in-memory computation on large clusters, with
orders of magnitude better latency than disk accesses. Other stream processing
frameworks support low-latency dataflow computations over a static dataflow
graph [1,13,16], while [9] explores optimal tree overlays to optimize latency of
compute-aggregate tasks under specified budget constraints.

Formalizing Compute-Aggregate Problems in Cloud Computing 379

Fig. 1. Sample compute-aggregate task with 3 vertices, t (target), u, and v: (a) graph;
(b) “move to root” plan with cost 12; (c) optimal aggregation plan with cost 11.
Transmission cost of every edge is specified at the middle, e.g., c(u, v) = 1.

3 Motivation and Model Description

Our main objective is to use a network in the best possible way for a given
compute-aggregate task. This is a problem with many variables. In this work,
we leave most of them to the network transport layer (e.g., it chooses how to
spread transmissions in time), concentrating on the aggregation plan that defines
the order of aggregation and is fully decoupled from transport implementation.

3.1 Compute-Aggregate Tasks and “move to root” Plans

We model a network as an undirected connected graph G = (V,E), where V is
the set of computing nodes connected by links (edges) E. Since we operate on an
application level, we can use any overlay topology in place of G that captures only
information relevant to a specific compute-aggregate task. We model a task as a
set of data chunks C = { x0 , x1 , . . . , xk }, with each chunk xi characterized
by its location v(xi) and size size(xi). Many compute-aggregate tasks require
to send the result to a specific node (e.g., to allow low-latency responses), so we
introduce a root vertex t ∈ V where all data chunks should be finally aggregated.

The hardest part to define is “the best possible way”: application-specific
objectives may include latency, throughput, or a more subtle objective such
as congestion avoidance. We model them with a single per-link parameter, the
cost, a flexible way to both freely combine objectives and keep the optimization
problem clear. Formally, the cost function c : E → R+ on the topology graph
G maps each link e to its transmission cost per data unit c(e); to transmit x
through e one must pay c(e) ·size(x). A simple example of a compute-aggregate
task is shown on Fig. 1a. Costs are shown on the edges, square brackets denote
chunks, and the root vertex is marked by t.

We begin with the simplest form of an aggregation plan that we call “move to
root”: bring everything to the root node t (we say that an aggregation plan moves
or aggregates for simplicity; in practice data transmission and aggregation are
handled by the transport and application layers respectively). “Move to root” can
be suboptimal with regard to transmission costs. Suppose that in the example
on Fig. 1 the aggregation function chooses the best chunk, so the aggregated size
does not exceed the maximal size of initial chunks. Now “move to root” has total

380 P. Chuprikov et al.

cost 12 (Fig. 1b: two chunks of size 2 each moving along edges of cost 3), while
on Fig. 1c one chunk moves to vertex 1 paying 2, then chunks merge, and chunk
of size 2 moves to t with total cost 8.

Other concerns also arise. A naive implementation of the “move to root” plan
that moves all data chunks to the root and then aggregates makes the transport
layer direct a lot of traffic towards t, possibly overflowing ingress buffers and
increasing latency due to the notorious TCP-incast problem. Moreover, in a
low-latency application that aggregates in RAM [4,22] storage capacity can be
exhausted when all data chunks are stored at t. This problem can be alleviated
with intermediate aggregations: send data chunks to t sequentially in some order,
aggregating some chunks immediately in the process. Recent studies [6,10] show
that the result of a compute-aggregate task is often only a small fraction (usually
less than half) of the total input size; e.g., in counting problems the aggregation
result is just a few numbers. Thus, keeping in memory one intermediate chunk
instead of initial data chunks can significantly reduce storage requirements.

In general, not every order can be used for intermediate aggregations because
the final aggregation result might depend on this order (e.g., string field concate-
nation), and it is undesirable for an aggregation plan to affect the result [18].
Fortunately, most aggregation functions do not depend on the aggregation order,
that is, they are associative: aggr(x ,aggr(y , z)) = aggr(aggr(x , y), z),
and commutative: aggr(x , y) = aggr(y , x). Below we assume that aggrega-
tions are both associative and commutative; such systems as MapReduce already
assume this for most reduce functions and allow aggregations of intermediate
data chunks with combiner functions [10]. The TCP-incast problem, on the other
hand, can be mitigated by spreading chunk transmissions in time (to reduce over-
lap), which requires complex synchronization on the part of the transport layer.
Low-latency in-RAM applications also have to synchronize data transmissions
to avoid too many data chunks “in the air” at the same time that cannot be
aggregated; this is hard to implement in a distributed system, and if aggr is not
commutative and associative this leads to more constraints since transmissions
must occur in a specific order. All of the above suggests that it is hard for the
“move to root” heuristic to reconcile network transport limitations with storage
constraints and the distributed environment.

3.2 Moving Aggregation to Data and Aggregation Functions

The basic principle of data locality optimization, which lies at the heart of the
Hadoop framework [17], is to move computation to data and as a result save
on data transmission. We extend this strategy and try to move aggregation to
data by allowing an aggregation plan to exploit intermediate nodes. Formally,
an aggregation plan is a sequence P of operations (o0, o1, . . . , om), where each
oi is either move(x , v), which moves a chunk x to a vertex v, or aggr(x , y),
which merges chunks x and y located at the same vertex; the result is a new
chunk xy at that vertex. After all operations have been applied, the result
must be a single data chunk z at the root: v(z) = t. E.g., Figs. 1b and c

Formalizing Compute-Aggregate Problems in Cloud Computing 381

show aggregation plans for the problem on Fig. 1a. Aggregation plans are fully
decoupled from the transport layer, producing instructions and constraints that
the transport layer must satisfy.

An aggregation plan has an associated transmission cost cost(P), which is
the sum of costs of all operations in P ; here cost(aggr(x , y)) = 0 (there is
no data transmission), and cost(move(x , v)) = size(x) · d(v(x), v), where
d(u, v) is the total cost of the cheapest path from u to v.

This approach of “moving aggregation to data” has some important advan-
tages over “move to root”. First, the TCP-incast problem becomes less pro-
nounced because inbound traffic is spread among different nodes, and fewer
nodes need to be synchronized. Moreover, the total number of transmitted bits
is reduced due to earlier aggregations (we usually expect an aggregation result
to be smaller than the total input size). Second, storage capacity is now less of a
constraint since less data has to be collected per node. Last but not least, data
transmission cost is also reduced (cf. examples on Fig. 1). Note, however, that in
practice not all nodes may be used for data aggregation. For example, we may
be restricted to nodes where initial data chunks reside because it is expensive
to allocate additional compute nodes; or it can be a security concern to perform
computation on intermediate nodes (e.g., initial nodes belong to a private cloud,
and the rest are transit nodes). This question must be carefully answered, and in
what follows we assume that the overlay graph G reflects this answer and maps
aggr operations to appropriate nodes.

In order to formally define the optimization problem for aggregation, we have
to know the following: given x and y , what is the size of their aggregation
result xy ? This directly affects the cost of an aggregation plan, and different
aggregation result sizes can lead to very different solutions. For example, if on
Fig. 1 we assumed that the task is, e.g., sorting, where the size of an aggregated
chunk is the sum of input sizes, the cost of the first plan would still equal 12,
but the plan on Fig. 1c would now cost 14 and become suboptimal.

Unfortunately, the size of an aggregation result is application-specific, and in
most cases the exact value depends on the actual content of x and y ; moreover,
to determine this value we may need to actually perform aggregation (e.g., the
number of key-value pairs in the counting problem cannot be predicted exactly
unless we actually count). This is clearly infeasible since an aggregation plan
must be constructed (and its cost evaluated) before the application performs any
aggregations and the transport layer transmits any data. Therefore, we require
each application to supply the aggregation size function μ : R+ ×R+ → R+ that
would estimate this size using only sizes of the inputs, so that for the purposes of
optimization size(xy) = μ(size(x), size(y)). We do not expect these functions
to be exactly correct, but they should provide the correct order of magnitude
in order for the optimal solution to be actually good in practice. Since aggr is
assumed to be associative and commutative, μ should also have these properties.
Some examples of μ for practical problems include: μ(a, b) = const for finding
the top k elements in data with respect to some criterion; μ(a, b) = min(a, b)

382 P. Chuprikov et al.

Fig. 2. Different μ lead to different plans: (a) sample task; (b) optimal plan for μ(a, b) =
a + b; (c) for μ(a, b) = max(a, b); (d) for μ(a, b) = min(a, b).

or μ(a, b) = max(a, b) for choosing the best data chunk; μ(a, b) = a + b for
concatenation or sorting; max(a, b) ≤ μ(a, b) ≤ a+ b for set union (word count).

Figure 2 shows how μ can affect the optimal aggregation plan. Figure 2a shows
chunks of size 1 at vertex 1, of size 4 at vertex 2, and of size 6 at vertex 3, and
the goal is to aggregate them at vertex 0. For μ(a, b) = a + b, the optimal plan
is to move each chunk to the root separately (Fig. 2b). For μ(a, b) = max(a, b),
it is cheaper to first move the chunk of size 4 along edge 2 → 3 and merge
it, then move the resulting chunk of size 6 to the root (Fig. 2c). Finally, for
μ(a, b) = min(a, b) the optimal plan is to traverse the whole graph with the
smallest chunk, merging larger ones along the way (Fig. 2d). Thus, even in a
simple example the aggregation plan can change drastically depending on μ.

Problem 1. (cam—compute-aggregate minimization). Given an undirected con-
nected graph G = (V,E), cost function c, a target vertex t, a set of initial data
chunks C, and an aggregation size function μ, the cam[μ] problem is to find an
aggregation plan P such that cost(P) is minimized.

Interestingly, for general μ there is little we can do in the worst case.

Theorem 1. Unless P = NP , there is no polynomial time constant approx-
imation algorithm for cam without associativity constraint on μ even if G is
restricted to two vertices.

Proof. We can encode an NP-hard problem in choosing the correct order of
merging for a non-associative μ. For example, consider an instance of the knap-
sack problem with weights w1, . . . , wn, unit values, and knapsack size W ; then
we have n chunks of size w1, . . . , wn, and μ is defined as follows: if either x = 0,
y = 0, or x + y = W then μ(x, y) = 0; else μ(x, y) = x + y. This way, if we can
fill the knapsack exactly the total resulting weight will be zero, and if not, it will
be greater than zero, leading to unbounded approximation ratio unless we can
solve the knapsack problem. ��

In this work, we investigate two main degrees of freedom that the cam prob-
lem has: network topology graph G and aggregation size function μ.

4 A Taxonomy of Aggregation Functions

There are different types of big data applications, a large variation in data-center
network topologies, and countless data distributions, which collectively define

Formalizing Compute-Aggregate Problems in Cloud Computing 383

Fig. 3. The structure of our results in relation to aggregation size function μ and
problem instance (cam, tcam, ccam).

constraints for a compute-aggregate task. Handling each and every variation of
these constraints separately does not scale, so a generalized decision procedure
should be used to construct an aggregation plan. In this section, we present such
a procedure and show worst-case guarantees for every choice.

Intuitively, stricter constraints may lead to better decisions, both in terms of
the cost of an aggregation plan, which is our primary objective, and performance
(running time). E.g., a better algorithm if the network graph is a tree or under
certain constraints on the aggregation size function. Thus, a possible solution
may have to account for network topology, aggregation size function, and initial
chunk distribution. Chunk distribution varies from one instance to another and
is unlikely to prove useful since it is expected to be roughly uniform (big data
storage systems try to achieve even load distribution). Although there are com-
mon network topologies, such as hypercube, fat-tree, or jellyfish, there are plenty
of variations and exceptions. So, while algorithms specifically tailored for, e.g.,
the hyper-cube topology [8] remain a valid topic for future study, in this work
we mostly consider the aggregation size function, with only two special cases.

First, a tree is a topology that is both widespread and has a high potential
for better algorithmic solutions; we call the cam problem where G is a tree
tcam (tree cam). Second, sometimes it is reasonable to limit aggregation to
only those nodes that contain data chunks initially, either for security reasons
or due to the need for additional resource provisioning on intermediate nodes
that may significantly increase latency, while nodes with initial chunks usually
already have computing resources for a preprocessing stage. If either security or
provisioning impose the aforementioned restriction then a network graph G can
be reduced to a complete graph over the nodes that contain chunks, and we call
this special case ccam (complete cam). Our theoretical results are summarized
in Fig. 3; the horizontal axis corresponds to how fast μ grows, and each small
tree of results shows approximation ratios for cam, tcam, and ccam, referring
to specific theorems below.

4.1 General Case

In this subsection we assume no constraints on μ. As an example, consider a
simpler setting where all chunks have size x, and μ(x, x) = x. When paths of

384 P. Chuprikov et al.

Algorithm 1. steiner(G,V ′ ⊆ V (G))
1: if G is a tree then
2: return unique subtree TV ′ covering V ′

3: else if V (G) = {v(x) : x ∈ C} then
4: return min spanning tree(G)
5: else
6: return steiner tree approx(G, {v(x) : x ∈ C})

Algorithm 2. steiner rec(G, t, C)
1: P ← (); T ← steiner(G, {v(x) : x ∈ C})
2: for v ∈ T in decreasing order of depth(v) do
3: � Denote C(v) = {x ∈ C : v(x) = v}
4: while |C(v)| > 1 do
5: P .append(aggr(x, y)), where x, y ∈ C(v)
6: C.update(aggr(x, y))

7: if ∃ x ∈ C(v) and ∃ parent(v) then
8: P .append(move(x, parent(v)))
9: C.update(move(x, parent(v)))

10: return P

two chunks intersect, it is always better to merge at the intersection, so an
optimal aggregation plan always proceeds along a tree subgraph of G, and it
has cost equal to the weight of the tree multiplied by x. Thus, the problem
reduces to finding a minimum weight tree that connects a given set of vertices,
which is a well-studied minimum Steiner tree problem [11], MStT, that has
many constant approximation algorithms. Using one of those we build our first
aggregation plan construction algorithm steiner rec (Algorithm 2). If there is
a polynomial α-approximate algorithm for MStT, then steiner rec provides
an α-approximation for the special case when size(x) = S for any x ∈ C, and
μ(S, S) = S. The steiner rec algorithm has a number of interesting prop-
erties; e.g., it does not require any knowledge of μ or even chunk sizes. The
infrastructure can run steiner rec even before preprocessing (in map-reduce
terminology, before a map phase). It turns out that in the general case, the price
of using steiner rec does not exceed the ratio between the largest and smallest
intermediate chunk. We denote by WC [μ] the maximal aggregate size of a subset
of chunks from the set C, WC [μ] = maxC′⊆C{μ(C ′)}; it is well defined since
μ is associative and commutative. We also denote by wC [μ] the corresponding
minimal aggregate size, wC [μ] = minC′⊆C{μ(C ′)}.

Theorem 2. If there exists a polynomial α-approximate algorithm for MStT,
then there exists a polynomial algorithm that solves cam[μ] with approximation
factor αWC [μ]

wC [μ] .

Proof. First, note that any algorithm, even optimal, has to traverse at least
the Steiner tree of G in total size, and has to carry at least weight wc over

Formalizing Compute-Aggregate Problems in Cloud Computing 385

each edge. The approximate algorithm begins by constructing the approximate
Steiner tree with approximation ratio α, and then carries all chunks along this
tree to the root, merging the chunks at first opportunity; in this process, the
maximal possible chunk size is Wc, and it is carried over at most α times longer
distance than in the actual Steiner tree, getting the approximation bound. ��

A well-known 2-approximation to MStT is based on a minimum spanning
tree (MST) of the distance closure G∗ of G; the best known approximation ratio
is ln 4 + ε ≤ 1.39 [3]. Although steiner rec does not depend on either μ or
chunk sizes, the approximation factor in Theorem 2 includes both. This result
improves for special cases of tcam and ccam. E.g., if every vertex in G contains
a data chunk, MStT is equivalent to MST, so we get the following.

Theorem 3. If every vertex in G contains a data chunk, then MStT can be
solved exactly in polynomial time.

Theorem 4. If G is a tree, MStT can be solved exactly in polynomial time.

Proof. There is only one subtree in G that connects a given set of vertices, and
it can be found in polynomial time. ��

Theorems 3 and 4 essentially say that in these special cases we have 1-
approximation algorithms for MStT. Theorem 2 and this observation together
imply the following.

Corollary 1. There exist polynomial algorithms that solve ccam[μ] and
tcam[μ] on a set of chunks C with approximation factor WC [μ]

wC [μ] .

However, for many μ, including important ones (e.g., set union), Theorem 2
and Corollary 1 provide rather weak approximations; in particular, we would
like to have approximation ratios independent of chunk sizes and specific values
of μ since in practice WC

wC
may be very high. Unfortunately, it is impossible even

for a restricted class of functions μ that reduce the weights.

Theorem 5. There exists an aggregation size function μ such that ∀a, b
μ(a, b) ≤ min(a, b), and no polynomial time constant approximation algorithm
for ccam[μ] or tcam[μ] exists unless P = NP .

Proof. Consider a complete graph G where the root r contains an infinitely large
chunk, all non-root vertices are terminals, edges between two terminal vertices
cost 1, and edges between a terminal vertex and the root cost ∞. Given an
instance of Set Cover, where a set S must be covered with a minimal number
of m subsets Si ⊆ S, we define n(Si) as the number with binary representation
equivalent to S \Si (for some fixed order of elements in the set). We encode S by
a chunk of size 0 and any other subset A ⊂ S by a chunk of size n(A)+4n×2|S|.
The aggregation size function for two chunks corresponding to subsets A and B
produces a chunk of size n(A∪B). Now, if there exists a set cover Si1 , Si2 , · · · , Sik

then there is a solution to cam[μ] of size k × 4n × 2|S| + c, where c ≤ n × 2|S|

386 P. Chuprikov et al.

(we can aggregate Sij in any order and then aggregate the rest with a zero
chunk we obtained). On the other hand, if there exists a solution to cam[μ]
of size g × 4n × 2|S| + c, where c ≤ n × 2|S|, then there exists a solution to
Set Cover of size g (to achieve this solution of cam[μ] we have to obtain 0 in
at most g aggregations). Thus, a constant approximation for cam[μ] implies a
constant approximation of Set Cover which is impossible unless P = NP . For
tcam[μ], consider the following transformation of G to a tree TG: remove all
the edges; introduce a new vertex c; connect c with r by an edge of weight
∞ and with the rest of G’s vertices by edges of weight 1. Changing G to TG

does not increase cost more than twice (we traverse two edges now). Thus, the
transformation preserves approximations, which again implies that tcam[μ] does
not have constant approximations unless P = NP . ��
Since ccam is a strict subset of cam, there is no constant-approximation solution
for cam either.

4.2 Range-Bounded Aggregation Size Functions

Depending on the application, the value of μ may be known to lie in a certain
range. For example, if aggr represents set union then μ(x, y) ∈ [max{x, y}, x+y],
and if aggr represents outer join then μ(x, y) is likely to be always larger than
x+y. We show a taxonomy of algorithms for different μ. Theorem 5 showed that
aggregation size functions that reduce size too much are provably hard. On the
other side of the spectrum, where μ(x, y) ≥ x + y, there is an optimal solution:
bring all chunks to the sink.

Theorem 6. If μ(a, b) ≥ a+b for all a, b then there exists a polynomial optimal
algorithm for cam[μ], ccam[μ], and tcam[μ]; for tcam[μ] the running time is
O(|C| + |G|).
Proof. In this case, it does not make sense to merge chunks at all, it is optimal
to bring all chunks separately to the sink. Formally, consider an optimal aggre-
gation plan for cam that merges two chunks not at the sink. Next, consider a
transformed plan that carries both chunks separately and treats them separately
until the final vertex. Since μ(a, b) ≥ a+b, the total cost does not increase in this
transformation, so we can get an optimal plan without merging. The optimal
strategy without merging is to move all chunks to the root along shortest paths,
which can be computed in polynomial time. Because tcam and ccam are strict
subsets of cam, SPT is optimal for them too. For tcam computing shortest paths
is trivial, and the running time becomes linear. ��

We have found that for μ(x, y) ∈ (−∞,min{x, y}] the problem is inapprox-
imable (Theorem 5), and for μ(x, y) ∈ [x + y,∞) there is an optimal algorithm
(Theorem 6). We split the remaining range [min{x, y}, x + y] at max{x, y} for
two reasons. First, in practice max is a valid bound for many applications: set
intersection, set union, outer join (symmetric or asymmetric); thus, the infras-
tructure often knows on which side of max μ lies. Second, theoretic results

Formalizing Compute-Aggregate Problems in Cloud Computing 387

below show that max is an interesting demarcation line for worst-case guar-
antees: below max chunk sizes are a primary factor, and above max the graph
structure starts to dominate. If μ(x, y) ∈ [min(x, y),max(x, y)], we can replace
the ratio WC [μ]/wc[μ] (Theorem 2), which depends on μ, with a simpler one
that depends only on chunk sizes. In the next theorem WC = maxx∈C{size(x)},
wc = minx∈C{size(x)}.

Theorem 7. If min{a, b} ≤ μ(a, b) ≤ max{a, b} for all a, b and there exists a
polynomial α-approximate algorithm for MStT, then there exists a polynomial
algorithm that solves cam[μ] with approximation factor αWC

wC
.

Corollary 2. If min{a, b} ≤ μ(a, b) ≤ max{a, b} then there exist polynomial
algorithms that solves ccam[μ] and tcam[μ] with approximation factor WC

wC
.

For μ(x, y) ∈ [max{x, y}, x + y], the last remaining range, we employ a
mix of SPT and steiner rec: merge chunks above a certain threshold with
steiner rec; below, with SPT.

Theorem 8. If for all a and b max(a, b) ≤ μ(a, b) ≤ a + b, then there is an
2NV 1/2

√
α cmax

cmin
-approximate polynomial algorithm for cam[μ], which we call

RECH MStTSplit, where V is the number of vertices in G, N is the number of
chunks, cmax is the cost of the most expensive edge in G, cmin, of the cheapest
edge, and α is an approximation factor for MStT.

Proof. The idea of the algorithm is as follows. We split all chunks C into two
sets: chunks with weight at least δM go into set C1 and chunks with weight
smaller than δM go into C2, where M is the weight of the maximal chunk
and δ is a constant to be defined later, so C = C1 ∪ C2. Next we solve two
separate cam problems. For C1 we run the general algorithm from Theorem 2,
and for C2 we run the algorithm from Theorem 6 that we used for μ such that
μ(a, b) ≥ a + b. The first algorithm yields an αN

δ -approximate solution, and the
total weight of the second solution does not exceed δMV Ncmax, where N is
the number of chunks. Let W be the weight of the optimal solution. Now, since
max(a, b) ≤ μ(a, b), and W is at least the weight of the optimal solution for C1,
we can conclude that the weight of the solution for C1 is at most αV

δ W . On
the other hand, since W ≥ Mcmin, the weight of the solution for C2 is at most
δV 2 cmax

cmin
W . Now if we choose δ =

√
acmin

V 1/2√
cmax

to minimize the total result, the

total weight of both solutions will be 2NV 1/2
√

α cmax
cmin

W . ��

To improve the above theorem we cannot apply Theorem 3 to get rid of α for
ccam or tcam since it uses Steiner tree only for a subset of chunks. But, remark-
ably, we can do better for tcam: the following theorem proves that between
max and “+” steiner rec is optimal for tcam. The algorithm is similar to
Theorem 2.

Theorem 9. There exists a polynomial optimal algorithm for the tcam[μ] prob-
lem for any μ such that ∀a, b max(a, b) ≤ μ(a, b) ≤ a + b.

388 P. Chuprikov et al.

Proof. The algorithm is similar to Theorem 2: move chunks towards t, merging
them in intermediate nodes. Consider an arbitrary subtree T of G. All data
chunks from T have to be eventually moved upwards using parent edge e (if
T = G). Minimal cost of this operation is ≤ sT , where sT is the size of the
aggregation result of all chunks from C|T . Can it be less? Assume the opposite:
consider a set of data chunks X that will be moved upwards through e s.t.
CT ⊆ X∗ =

⋃
x∈X x∗ and

∑
x∈X size(x) < sT , where x∗ is the set of initial

chunks that contributed to x. If CT � X∗, we can throw away X∗ \ CT without
any increase in the cost because μ is at least max. Since μ does not exceed the
sum, we can aggregate X with no cost increase. The resulting chunk has size sT ,
but by construction each upward edge e from T will add exactly sT . ��

4.3 Specific Aggregation Size Functions

Sometimes we can improve performance further if we know μ exactly. This is
especially interesting for the “junction points” between previous results.

Theorem 10. If there exists a polynomial α-approximate algorithm for MStT,
then there exists a polynomial 2α-approximate algorithm for cam[min].

Proof. Given an instance (G, t, C) of the cam[min] problem, first we find an
α-approximation T to the MStT instance (G,V ′ = {t}∪{v(x) : x ∈ C}). Then,
we construct an aggregation schedule by taking a data chunk with the smallest
size and walking it through T . The resulting cost does not exceed 2m · w(T),
where m is the size of the smallest chunk. Similar to Theorem 13, an aggregation
schedule defines a subgraph H ⊇ V ′, and so incurs the cost of at least m ·w(H).
A sample solution for this algorithm is shown on Fig. 4. ��
Corollary 3. There exists a polynomial 2-approximate algorithm for
ccam[min].

Theorem 11. There is an optimal polynomial algorithm for tcam[min].

Proof. The optimal algorithm uses dynamic programming. Consider an instance
(G = (V,E), t, C) of the tcam[min] problem, where G is a tree with a root t. For
every vertex v ∈ V we compute mc(v), the size of the smallest chunk in a subtree
Tv rooted at v, and for every c ∈ C we compute dp(v, size(c)), an optimal solution
for Tv with an additional chunk of size size(c) at v. We can find mc(v) for every
vertex in linear time by running depth first search. If dp(v, size(c)) are known for
every u ∈ children(v) then dp(v, size(c)) can be computed as dp(v, size(c)) =∑

u∈ch(v) min{2 · size(c) · d(v, u) + dp(u, size(c)),mc(u) · d(v, u) + dp(u,mc(u))}.
Now dp(t,mc(t)) contains the cost of an optimal aggregation plan, which can be
found with backtracking. ��
Our approximate algorithm for cam[max] is also based on MStT, but with a
different construction.

Formalizing Compute-Aggregate Problems in Cloud Computing 389

Fig. 4. Sample solution from Theorem 10. Steiner tree approximation is shown with
bold lines, and the resulting path of the smallest chunk is shown by a dotted arrow.

Theorem 12. If there exists a polynomial α-approximate algorithm for MStT,
then there exists a polynomial 4α-approximate algorithm for cam[max], which
we call RECH MStTMax.

Proof. Let the maximal chunk size be equal to M . We break data chunks into
several subsets: first with chunks with sizes in (M/2,M], second in (M/4,M/2],
and so on. We build a solution for the first subset, extend it to a solution for
the first two subsets, and so on. First, build a Steiner tree for the root and the
first subset and solve the problem there. This solution is at least 2α-competitive,
where α is the MStT approximation factor: edges used by a different solution
must connect every chunk to the root, so their total cost is at least the cost of a
minimum Steiner tree, and their sizes are at least M/2. Next, we merge the tree
obtained on the first iteration into a single vertex, throw away the first subset,
build a Steiner tree for the second subset, solve the problem for this tree, and so
on. Suppose that there were k such subsets. Since we move chunks of size at most
M/2i−1, and merging vertices does not increase the weight of a Steiner tree, the
cost of the ith subset does not exceed M/2i−1αST(i, i − 1), where ST(i, j) is
the optimal Steiner tree weight for chunks with sizes in (M/2i,M/2j]. Thus, the
total cost does not exceed 2αM

∑k
i=1 ST(i, i − 1)/2i. For the lower bound, we

count the cost of all data movements across every edge. The total cost of all edges
with chunks of mass at least M/2 moved along them is bounded by ST(1, 0), so
the cost is bounded by M

2 ST(1, 0); repeating the process for M
4 , M

8 and so on, we
get in total M

∑k
i=1 ST(i, 0)/2i. Some of the edges are counted more than once:

an edge with the largest chunk of size M/2j moved along it has been counted
once with a factor of M/2j , once with M/2j+1, and so on, but the real lower
bound for this edge is M/2j . Thus for every edge we have an extra factor of
1 + 1/2 + 1/4 + . . . ≤ 2, and the optimal cost is at least M/2

∑k
i=1 ST(i, 0)/2i.

Since ST(i, 0) ≥ ST(i, i − 1), the total approximation factor is 2αM
M/2 = 4α. ��

Theorem 9 implies that tcam[max] has an optimal solution since max{x, y}
lies trivially in [max{x, y}, x + y]. However, results for cam[min] and cam[max]
cannot be significantly improved because both are NP-hard.

390 P. Chuprikov et al.

Theorem 13. If there exists a > 0 s.t. μ(a, a) = a then cam[μ] is NP-hard and
does not have less than 19

18 -approximate polynomial algorithms even if all edge
weights are equal, unless P = NP.

Proof. The proof is by the reduction from the MStT problem. Given a MStT
instance (G,w, V ′ ⊆ V), we place data chunks of size a in each vertex of V ′

except one, which becomes the sink. Any aggregation schedule defines a con-
nected subgraph H of G that contains all vertices from V ′. The minimal cost is
a · w(H), where w(H) =

∑
e∈E(H) w(e), since all transmitted data chunks have

size a, and we can always avoid transmitting more than one chunk across one
link. Any spanning tree of H defines a Steiner tree for V ′, and vice versa, any
Steiner tree T defines an aggregation schedule with cost a · w(T). ��
Theorem 14. The cam[min] problem is NP-hard even if all edge weights are
equal, and each vertex is required to contain a data chunk.

Proof. This time we reduce the Hamiltonian cycle problem. Given a Hamiltonian
cycle problem instance G, we choose the sink arbitrarily, place a chunk of size 1
in the sink and chunks of size |V |2 in every other vertex. The optimal solution
travels with weight 1 along a Hamiltonian cycle. ��

5 Conclusion

In this work, we have introduced a model to find a schedule of aggregations
that satisfies budget constraints rather than directly optimizing desired objec-
tives such as latency or throughput. We believe that this approach will allow
to decouple optimization problems from underlying transports and provide fine-
grained control to exploit network infrastructure. Our primary contribution is a
classification of aggregation functions together with extensive theoretical analy-
sis that lead to unified design principles of “perfect” aggregations.

References

1. Akidau, T., et al.: MillWheel: fault-tolerant stream processing at internet scale.
PVLDB 6(11), 1033–1044 (2013)

2. Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., Vahdat, A.: Hedera:
dynamic flow scheduling for data center networks. In: USENIX, pp. 281–296 (2010)

3. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved LP-based approxi-
mation for Steiner tree. In: Proceedings of the Forty-Second ACM Symposium on
Theory of Computing, STOC 2010, pp. 583–592. ACM, New York (2010)

4. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache flinkTM: stream and batch processing in a single engine. IEEE Data Eng.
Bull. 38(4), 28–38 (2015)

5. Chang, F., et al.: Bigtable: a distributed storage system for structured data. In:
OSDI, pp. 205–218 (2006)

6. Chen, Y., Ganapathi, A., Griffith, R., Katz, R.H.: The case for evaluating MapRe-
duce performance using workload suites. In: MASCOTS, pp. 390–399 (2011)

Formalizing Compute-Aggregate Problems in Cloud Computing 391

7. Chen, Y., Griffith, R., Liu, J., Katz, R.H., Joseph, A.D.: Understanding TCP incast
throughput collapse in datacenter networks. In: WREN, pp. 73–82 (2009)

8. Costa, P., Donnelly, A., Rowstron, A.I.T., O’Shea, G.: Camdoop: exploiting in-
network aggregation for big data applications. In: NSDI, pp. 29–42 (2012)

9. Culhane, W., Kogan, K., Jayalath, C., Eugster, P.: Optimal communication struc-
tures for big data aggregation. In: INFOCOM, pp. 1643–1651 (2015)

10. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

11. Kaklamanis, C., Chlebk, M., Chlebkv, J.: Algorithmic aspects of global computing
the steiner tree problem on graphs: inapproximability results. Theor. Comput. Sci.
406(3), 207–214 (2008)

12. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
Oper. Syst. Rev. 44(2), 35–40 (2010)

13. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: SIGMOD,
pp. 135–146 (2010)

14. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad:
a timely dataflow system. In: SIGOPS, pp. 439–455 (2013)

15. van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: a robust and scalable tech-
nology for distributed system monitoring, management, and data mining. ACM
Trans. Comput. Syst. 21(2), 164–206 (2003)

16. Tucker, P.A., Maier, D., Sheard, T., Fegaras, L.: Exploiting punctuation semantics
in continuous data streams. IEEE Trans. Knowl. Data Eng. 15(3), 555–568 (2003)

17. White, T.: Hadoop: The Definitive Guide, 1st edn. O’Reilly Media Inc., Sebastopol
(2009)

18. Xiao, T., et al.: Nondeterminism in MapReduce considered harmful? An empirical
study on non-commutative aggregators in MapReduce programs. In: Companion
Proceedings of the 36th International Conference on Software Engineering, ICSE
Companion 2014, pp. 44–53. ACM, New York (2014)

19. Yang, H., Dasdan, A., Hsiao, R., Parker, D.S.: Map-Reduce-Merge: simplified rela-
tional data processing on large clusters. In: SIGMOD, pp. 1029–1040 (2007)

20. Yu, Y., et al.: DryadLINQ: a system for general-purpose distributed data-parallel
computing using a high-level language. In: OSDI, pp. 1–14 (2008)

21. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing. In: NSDI, pp. 15–28 (2012)

22. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Com-
mun. ACM 59(11), 56–65 (2016)

23. Zhang, Y., Ansari, N.: On architecture design, congestion notification, TCP incast
and power consumption in data centers. IEEE Commun. Surv. Tutor. 15(1), 39–64
(2013)

Priority Evacuation from a Disk
Using Mobile Robots

(Extended Abstract)

Jurek Czyzowicz1, Konstantinos Georgiou2(B), Ryan Killick3,
Evangelos Kranakis3, Danny Krizanc4, Lata Narayanan5, Jaroslav Opatrny5,

and Sunil Shende6

1 Départemant d’informatique, Université du Québec en Outaouais,
Gatineau, Canada

2 Department of Mathematics, Ryerson University, Toronto, Canada
konstantinos@ryerson.ca

3 School of Computer Science, Carleton University, Ottawa, ON, Canada
4 Department of Mathematics and Computer Science,

Wesleyan University, Middletown, CT, USA
5 Department of Computer Science and Software Engineering,

Concordia University, Montreal, QC, Canada
6 Department of Computer Science, Rutgers University, Camden, USA

Abstract. We introduce and study a new search-type problem with
(n+1)-robots on a disk. The searchers (robots) all start from the center of
the disk, have unit speed, and can communicate wirelessly. The goal is for
a distinguished robot (the queen) to reach and evacuate from an exit that
is hidden on the perimeter of the disk in as little time as possible. The
remaining n robots (servants) are there to facilitate the queen’s objective
and are not required to reach the hidden exit. We provide upper and lower
bounds for the time required to evacuate the queen. Namely, we propose
an algorithm specifying the trajectories of the robots which guarantees
evacuation of the queen in time always better than 2 + 4(

√
2 − 1)π

n
for

n ≥ 4 servants. We also demonstrate that for n ≥ 4 servants the queen
cannot be evacuated in time less than 2 + π

n
+ 2

n2 .

Keywords: Mobile robots · Priority · Evacuation · Exit
Group search · Disk · Wireless communication · Queen · Servants

1 Introduction

A fundamental research topic in mathematics and computer science concerns
search, whereby a group of mobile robots need to collectively explore an envi-
ronment in order to find a hidden target. In the scenarios considered so far, the

J. Czyzowicz, K. Georgiou, E. Kranakis, L. Narayanan and J. Opatrny—Research
supported in part by NSERC Discovery grant.
R. Killick—Research supported by the Ontario Graduate Scholarship.
A full version of this work is available on the Computing Research Repository [14].

c© Springer Nature Switzerland AG 2018
Z. Lotker and B. Patt-Shamir (Eds.): SIROCCO 2018, LNCS 11085, pp. 392–407, 2018.
https://doi.org/10.1007/978-3-030-01325-7_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01325-7_32&domain=pdf

Priority Evacuation from a Disk Using Mobile Robots 393

goal was to optimize the time when the first searcher reaches the target position.
More recently, researchers studied the evacuation problem in which it is required
to minimize the time of arrival to the target position of the last mobile robot in
the group. In the work done on search so far, all robots are generally assumed
to have exactly the same capabilities. However, it is quite natural to consider
collaborative tasks in which the participant robots have different capabilities.
For example, robots may have different maximum speeds, or have different com-
munication capabilities. Robots with different speeds have been studied in the
context of rendezvous [20] and evacuation [25]. In the context of search, a natural
situation may be that only one of the robots has the capability to address an
urgent need at the target, for example, performing an emergency procedure, or
closing a breach in the perimeter. The remaining robots can help in searching for
the target, but their arrival at the target does not accomplish the main purpose
of finding the target. Therefore, the collective goal of the robots is to get the
special robot to the target as soon as possible. In this paper, we are interested
in such a type of search problem, which grants priority to a pre-selected partici-
pant. In other words, we assume that the collection of robots contains a leader,
known in advance, and as long as the leader does not get to the target position,
search is considered incomplete.

In this paper we propose and investigate the priority evacuation problem,
a new form of group search in which a given selected searcher in the group is
deemed more important than the rest. This distinguished robot is given prior-
ity over all other searchers during the evacuation process in that it should be
evacuated as early as possible upon the exit being located by any searcher.

1.1 Model

In the priority evacuation, or PEvacn problem, n + 1 robots (searchers) are
placed at the center of a unit disk. There is a target (exit), placed at an unknown
location on the boundary of the disk. The target can be discovered by any robot
walking over it. A robot that finds the exit instantaneously broadcasts its current
position. Among the robots there is a distinguished one called the queen and
the remaining n robots are referred to as servants. The goal is to minimize the
queen’s evacuation time, i.e. the worst case total time until the queen reaches the
target. We assume that all robots, including the queen, may walk using maximum
unit speed. We note that the queen may or may not actively participate in the
search of the exit.

1.2 Related Work

Search and exploration have been extensively studied in mathematics and various
fields of computer science. If the environment is not known in advance, search
implies exploration, and it usually involves mapping and localizing searchers
within the environment [1,19,24,26]. However, even for the case of a known,
simple domain like a line, there have been several interesting studies attempt-
ing to optimize the search time. These were initiated with the seminal works of

394 J. Czyzowicz et al.

Bellman [6] and Beck [5], in which the authors attempted to minimize the com-
petitive ratio in a stochastic setting. After the appearance of [3], where a search
by a single robot was studied for infinite lines and planes, several other works on
linear search followed (cf. [2]) and more recently the search by a single searcher
was studied for different models, e.g., when the turn cost was considered [18],
when a bound on the distance to the target is known in advance [8], and when
the target is moving or for more general linear cost functions [7].

For the case of a collection of searchers, numerous scenarios have been stud-
ied, such as: graph or geometric terrains, known or unknown environments, sta-
tionary or mobile targets, etc. (cf. [21]). In many papers, the objective is to
decide the feasibility of the search or to minimize its search time.

The evacuation problem from the disk was introduced in [12] where two types
of robots’ communication were studied – the wireless one and communication
by contact (also called face-to-face). The bounds for evacuation of two robots
communicating face-to-face were later improved in [16] and in [9]. The case of
a disk environment with more than one exit was considered in [11,27]. Other
variations included evacuation from environments such as regular triangles and
squares [17], the case of two robots having different maximal speeds [25], and
the evacuation problem when one of the robots is crash or byzantine faulty [13].

Group search and evacuation in the line environment were studied in [4,10].
The authors of [10] proved, somewhat surprisingly, that having many robots
using maximal speed 1 does not reduce the optimal search time as compared
to the search using only a single robot. However, interestingly, [10] shows that
the same bound for group search (and evacuation) is achieved for two robots
having speeds 1 and 1/3. For both types of robots’ communication scenarios, [4]
presents optimal evacuation algorithms for two robots having arbitrary, possibly
distinct, maximal speeds in the line environment.

A priority evacuation-type problem has been previously considered in [22,
23] but with different terminology. Using the jargon of the current paper, an
immobile queen is hidden somewhere on the unit disk, and a number of robots
try to locate her, and fetch (evacuate) her to an exit which is also hidden. The
performance of the evacuation algorithm is measured by the time the queen
reaches the exit. Apart from these results, and to the best of our knowledge
nothing is known about the priority evacuation problem. In this work we provide
a general strategy for the case of n ≥ 4 servants. When there are fewer than 4
servants more ad hoc strategies must be employed which do not fit with the
general framework developed here and they are therefore treated elsewhere [15].

1.3 Results of the Paper

Section 2 introduces nomenclature and notation and discusses preliminaries.
In Sect. 3 we provide an algorithm that evacuates the queen in time always
smaller than 2 + 4(

√
2 − 1)π

n for n ≥ 4 servants (the exact evacuation times
of our algorithm must be calculated numerically). In Sect. 4 we demonstrate
that for n ≥ 4 servants the queen cannot be evacuated in time less than

Priority Evacuation from a Disk Using Mobile Robots 395

1 + 2
n · arccos(− 2

n) +
√

1 − 4
n2 , or, asymptotically, 2 + π

n + 2
n2 . These results

improve upon naive upper and lower bounds of 2 + 2π
n and 2 + π

n+1 respectively
(see Sects. 2.2 and 4). A summary of the evacuation times for our algorithm
(numerical results) as well as the upper and lower bounds (non-trivial and naive)
is provided in Table 1 and in Fig. 1. We conclude the paper in Sect. 5 with a dis-
cussion of open problems. Many of our proofs are omitted from this extended
abstract due to space limitations; see [14] for a full version of this paper.

Table 1. Evacuation times T of the queen using Algorithm 2 (numerical results). The
upper bound of 2+4(

√
2−1)π

n
(Theorem 1), and the lower bound of 1+ 2

n
cos−1

(−2
n

)
+√

1 − 4
n2 (Theorem 5) are also provided. For comparison, the naive upper bound and

lower bound of 2 + 2π
n

(see Sect. 2.2) and 2 + π
n+1

(see Sect. 4) are included.

n T (Algorithm 2) UB (Theorem 1) LB (Theorem 5) UB Naive LB Naive

4 3.113 3.301 2.913 3.571 2.628

5 2.905 3.041 2.709 3.257 2.524

6 2.762 2.868 2.580 3.047 2.449

7 2.660 2.744 2.490 2.898 2.393

8 2.582 2.651 2.424 2.785 2.349

2 3 4 5 6 7
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
Algorithm 3
Upper bound
Lower bound
Naive bounds

2 4 6 8 10 12 14 16 18
2.5

3

3.5

4

4.5

5

5.5

6

6.5

Fig. 1. Evacuation times T of Algorithm 2 for n ∈ [4, 27] (left) and n ∈ [4, 218] (right).
The upper bound of 2+4(

√
2−1)π

n
(Theorem 1), the lower bound of 1+ 2

n
cos−1

(−2
n

)
+√

1 − 4
n2 (Theorem 5) are also provided. For comparison, a naive upper bound and

lower bound of 2 + 2π
n

(see Sect. 2.2) and 2 + π
n+1

(see Sect. 4) are included.

2 Notation and Preliminaries

2.1 Notation

We denote by U the unit circle in R
2 centered at the origin O = (0, 0) which must

be evacuated by the queen and we assume that all robots start from the origin.

396 J. Czyzowicz et al.

We use n to denote the number of servants, and use Q(t) and Sk(t), k = 1, . . . , n,
to represent the trajectories of the queen and kth servant respectively. The set of
all servant trajectories is represented by S = {Sk(t); k = 1, . . . , n}. A trajectory
will be given as a parametric function of time and, when referring to a robot’s
trajectory, it will be implied that we mean the path taken by the robot in the
case that the exit has not been found.

2.2 Evacuation Algorithms

A priority evacuation algorithm A is specified by the trajectories of the queen
and servants, A = {Q(t)} ∪ S. We say that A solves the PEvacn problem if,
in finite time, all points of U are visited/discovered by at least one robot. The
evacuation time T of an algorithm solving the PEvacn problem is defined to be
the worst-case time taken for the queen to reach the exit. As such, the evacuation
time will be composed of two parts: the time taken until the exit is discovered
plus the time needed for the queen to reach the exit once it has been found.

We will find it useful to define the restricted class of evacuation algorithms
S containing all those algorithms in which: (a) the queen does not participate in
searching for the exit, (b) the servants initially move as quickly as they can to the
perimeter of U , (c) each servant searches either counter-clockwise or clockwise
along the perimeter of U at full speed, and, (d) each servant stops and is no
longer used once it reaches an already discovered point of U . Algorithms in this
class can be defined by the trajectory of the queen Q(t) together with the sets
Φ = {φk ∈ [0, 2π]; k = 1, . . . , n} and Σ = {σk = ±1; k = 1, . . . , n} which
respectively specify the angular positions on U to which the servants initially
move, and the directions in which each servant searches. We will enforce an
ordering on the sets Φ and Σ such that for φk ∈ Φ, 1 ≤ k ≤ n− 1, we have φk ≤
φk+1. With this notation we can express the trajectory of the kth servant during
the time it is searching as Sk(t) = (cos (φk + σk(t − 1)), sin (φk + σk(t − 1))).

We additionally define the class of algorithms Ssym ⊂ S containing those
algorithms for which we can split the set of servants into two groups S = S+∪S−
where: (a) servants in S+ follow trajectories which are reflections about the x-
axis1 of servants in S−, and, (b) all servants in S+ search counter-clockwise2.
In the case that n is odd we permit one servant to follow a trajectory that
is symmetric about the x-axis. For an algorithm in Ssym we may write Φ =
Φ+ ∪ Φ− where Φ+ (resp. Φ−) specifies the positions on U to which the servants
above (resp. below) the x-axis initially move. Formally we may write Φ+ =
{φk ∈ [0, π]; k = 1, . . . ,

⌈
n
2

⌉
} and Φ− = −Φ+ for even n and Φ− = {−φk; k =

2, . . . , �n
2 	} for odd n. In the class Ssym the directions in which the servants

search are always counter-clockwise (resp. clockwise) for robots in Φ+ (resp. Φ−)
and thus an algorithm A ∈ Ssym is entirely specified by the set {Q(t)} ∪ Φ+.
1 The choice of the x-axis is arbitrary since we may always rotate U . What is important

is that a diameter of symmetry exists.
2 Again, these choices of search directions are arbitrary since we can reflect U about

the y-axis. What is important is that all servants within a group search in the same
direction.

Priority Evacuation from a Disk Using Mobile Robots 397

As a warm-up to the next section, and to demonstrate the intuitive nature
of these definitions, consider the following trivial algorithm which achieves an
evacuation time of 2+ 2π

n : the queen remains at the origin until the exit is found
and the servants move directly to equally spaced locations on the perimeter of
U each searching an arc of length 2π

n in the counter-clockwise direction. This
algorithm can be seen to be in the class S and we can succinctly represent the
algorithm as follows

Algorithm 1. Trivial Evacuation 1, A ∈ S

1: Q(t) = (0, 0).

2: Φ = { (k−1)
n

2π; k = 1, . . . , n}
3: Σ = {1; k = 1, . . . , n}

Observe that the above algorithm is not in Ssym. We can, however, give an
equivalent algorithm in Ssym which achieves the same evacuation time. This
algorithm is depicted in Fig. 2 along with Algorithm 1 for the case that n = 8.

Fig. 2. Depiction of the two trivial algorithms each achieving an evacuation time of
2 + 2π

n
. Both algorithms are in the class S and the algorithm on the right is also in

the class Ssym. The queen is indicated by the blue point and the servants by the red
points. A red arc indicates points that have been discovered. (Color figure online)

3 Upper Bound

In the previous section we introduced two evacuation algorithms solving PEvacn

with evacuation time 2 + 2π
n . We will show that this can be improved:

Theorem 1. There exists an algorithm solving PEvacn for n ≥ 4 with an
evacuation time at most 2 + 4(

√
2 − 1)π

n ≈ 2 + 1.657π
n .

We will prove Theorem 1 constructively and present an evacuation algorithm in
the class Ssym achieving the desired upper bound for n ≥ 4 servants. For ease
of presentation we will assume that n is even. Furthermore, as it will greatly
simplify the algebra, we will redefine all times (including the evacuation time) to

398 J. Czyzowicz et al.

start from the moment the servants first reach the perimeter. To avoid confusion
we will use Tp to represent the evacuation time of an algorithm as measured
from the moment the servants reach the perimeter. The total evacuation time
will thus be T = Tp + 1.

As we will describe an algorithm in the class Ssym we will only need to specify
the queen’s trajectory Q(t) and the initial angular positions Φ+ of the servants
lying above the x-axis. We start by giving the trajectory for the queen which we
parametrize using α > 0:

Q(t) =

⎧
⎪⎨
⎪⎩

(0, 0) , 0 ≤ t < α

(α − t, 0) , α ≤ t < α + 1
(−1, 0) , t ≥ α + 1,

(1)

In words, the queen waits at the origin until the time t = α at which moment she
begins moving at full speed along the negative x-axis stopping when she arrives
to the point (−1, 0) at the time t = α + 1. The crux of the algorithm will be
in specifying the set Φ+. In order to do this we consider the following simple
observation:

Observation 2. If the queen is to achieve an evacuation time of Tp, then, for all
t < Tp, all of the undiscovered points of U must remain inside the disk centered
on the queen with radius Tp − t.

Assume that we have an algorithm with evacuation time Tp and define CQ(t)
as the circle centered on the queen with radius Tp − t. Then, in light of Observa-
tion 2, it is not so hard to imagine that the intersection points of the circles CQ(t)
and U will be of importance. Thus, assume that Tp is small enough that at some
time t ≥ α the circles CQ(t) and U intersect. Considering the form of the queen’s
trajectory, we can conclude that the circles U and CQ(t) will first intersect at
the time γ = Tp+α−1

2 at the point (1, 0). For times t > γ the circles will inter-
sect at two points A± which are symmetric about the x-axis and which move
from right to left along the perimeter of U . The importance of the points A± is
clear when one considers that A± mark the boundary between those points of U
which must be discovered and those which may yet be undiscovered at the time
t. Intuitively, we will want to position the servants such that they are searching
only when they are to the left of A+ and A−. In particular, a servant will stop
searching at precisely the moment the intercept A+ or A− catches up to it (with
a small caveat to be described shortly). This condition will allow us to specify
the set Φ+.

At this time we will find it useful to re-express the evacuation time as Tp =
1+α+ ρ where ρ is a parameter that will ultimately depend on α. Intuitively, ρ
represents the radius of CQ(t) at the moment the queen reaches the perimeter of
U and its inclusion will greatly simplify algebra. Note that, with this definition,
the circles CQ(t) and U will first intersect at the time γ = α + ρ

2 .
As we only need to specify the set Φ+ we will only consider the intercept

A+. The coordinates of A+ for times γ ≤ t ≤ α + 1 can be determined by
simultaneously solving the implicit equations for U and CQ(t), i.e. U : x2+y2 = 1

Priority Evacuation from a Disk Using Mobile Robots 399

and CQ(t) : (x−α+t)2+y2 = (1+α+ρ−t)2. We find that A+(t) = (xA(t), yA(t))
where

xA(t) =
ρ(2 + ρ)
2(t − α)

− 1 − ρ (2)

and

yA(t) =

√
ρ(ρ + 2)[2(t − α) − ρ][ρ + 2 − 2(t − α)]

2(t − α)
(3)

The angular position of A+ will be represented as φA and is given by:

φA(t) = tan−1

(
yA(t)
xA(t)

)
. (4)

We define νA as the speed at which A+ moves along the perimeter of U . We can

determine νA using νA(t) =

√(
dxA

dt

)2
+

(
dyA

dt

)2

from which we find that:

νA(t) =
1

t − α

√
ρ(ρ + 2)

[ρ + 2 − 2(t − α)][2(t − α) − ρ]
(5)

Now consider the form of the function νA(t). For times just after t = α we can
see that A+ will move with a speed νA >> 1 and, as such, no single servant will
be able to stay to the left of A+ for long. What is not so obvious from (5) is that
νA continuously decreases until some time τ at which νA = 1.3 Furthermore,
starting at the time τ there will be an interval of time during which νA ≤ 1.
Thus, if the intercept reaches a servant at exactly the time τ that servant does
not have to stop searching. We will choose ρ to ensure that the servant Sn/2 ∈ S+

satisfies exactly this property.
Therefore we can describe the following general overview of our algorithm:

the servant S1 begins at φ1 = 0 (for even n) and searches until the time t1 at
which S1(t1) = A+(t1) or when t1 + φ1 = φA(t1). The servant S2 will begin its
search at the position φ2 = φ1 + t1 and it will search for a time t2 until S2(t2) =
A+(t2) or until t2 + φ2 = φA(t2). The servant S3 will begin at the position
φ3 = φ2 + t2 = φ1 + t1 + t2, and so on. Continuing on like this we can see that
the servant Sk will begin its search at the position φk+1 = φk +tk = φ1+

∑k
i=1 ti

with the tk satisfying tk = φA(tk) − φk or, equivalently, φ1 +
∑k

i=1 ti = φA(tk).
We want the servant Sn/2 to be coincident with the intercept A+ at exactly the
time τ (recall that τ is the time at which the speed of A+ is νA = 1) and thus
we will choose ρ to satisfy φn/2 + τ = φA(τ). In this case the servant Sn/2 will
search for a total time π − φn/2 after which all of U will have been discovered.

To extend this algorithm to the case that n is odd we will need to split the
trajectory of the servant S1 ∈ S+ between the upper and lower halves of U .

3 It is not guaranteed that for all ρ > 0 this intercept will reach a speed of one before
the queen reaches the perimeter of U . However, we will choose a ρ such that this
does happen.

400 J. Czyzowicz et al.

We will therefore start the servant S1 at the position φ1 = −t1
2 . All of the other

relevant equations remain unchanged.
We provide links [28,29] to short animations of the algorithm for n = 4, 8.

In these animations the queen is represented by the blue point, the servants
by red points, and the intercepts A± by green points. A plot of the evacuation
time as a function of the time at which the servants find the exit is also shown.
Note that the servants stop searching at the exact moment the intercept reaches
them (except for the two servants furthest to the left) and at these moments
the evacuation time is maximized. The two servants that are last active will
be coincident with the intercepts at the moment these intercepts reach a speed
of one, and, again, at this moment the evacuation time is maximized. In total
there will be n different locations for the exit (counting the top and bottom
of U) which will maximize the evacuation time. A keen eye will note that the
queen reaches the perimeter of U before the servants have finished searching the
perimeter and this would appear to hint that Algorithm 2 can be improved. We
will argue in Sect. 5 that this is not the case.

Our algorithm is formally presented in Algorithm 2 where we have left α as
a parameter. We claim that Algorithm 2 will always do better than the bound
of Theorem 1 when the evacuation time is minimized over α. We will now prove
this claim.

Algorithm 2. IntersectChase(α), Aα ∈ Ssym

1:

Q(t) =

⎧
⎪⎨

⎪⎩

(0, 0) , 0 ≤ t < α

(α − t, 0) , α ≤ t < α + 1

(−1, 0) , t ≥ α + 1,

2: Φ+ = {φk; k = 1, . . . , �n
2
�}, where:

φ1 =

{
0, n even

− t1
2

, n odd
, φk = φ1 +

k−1∑

i=1

ti, φn/2 + τ = φA(τ)

and,

φ1 +
k∑

i=1

ti = φA(tk), νA(τ) = 1

Proof (Theorem 1). To simplify the algebra we will assume that n is even.
Algorithm 2 specifies that we choose the tk in order to satisfy

∑k
i=1 ti = φA(tk)

where φA(t) is defined in (4). We note that each servant will be able to search for
at least a time γ since this marks the first time at which CQ(t) and U intersect.
This motivates us to define the primed time coordinate t′ = t−γ. In this primed
coordinate the defining relation for the t′k is

∑k
i=1 t′k = φA(t′k) − kγ (where we

assume that φA is properly redefined for the primed time coordinate). We are
interested in an asymptotic limit and thus we make the following claim:

Priority Evacuation from a Disk Using Mobile Robots 401

Claim 3. When we take the limit in large n, the sum
∑k

i=1 t′i becomes a def-
inite integral limn→∞

∑k
i=1 t′i =

∫ κ

0
t′(u)du where κ

n is to be interpreted as the
fractional servant number and u is a dummy integration variable.

Due to the Claim 3, the asymptotic defining relation for t′(κ) becomes an
integral equation

∫ κ

0
t′(u)du = φA(t′(κ)) − κγ. Using the fundamental theorem

of calculus we can rewrite this as a differential equation: t′(κ) = d
dκ (φA(t′(κ)) −

κγ) = dφA(t′(κ))
dκ −γ. Applying the chain rule we find that dφA(t′(κ))

dκ = dφA(t′(κ))
dt′ ·

dt′(κ)
dκ . Observe that dφA(t′(κ))

dt′ is simply the speed of the intercept A+ and we can
therefore write the differential equation for t′(κ) as dt′

dκ = t′+γ
νA(t′(κ)) . This ordinary

differential equation can easily be solved for κ in terms of t′ by separation of
variables. We find that κ(t′) =

∫ t′

0
νA(u)
u+γ du. The equation for the speed νA is

given in (5), which, in the primed time coordinate takes the form νA(t′) =
1

(2t′+ρ)

√
ρ(ρ+2)
t′(1−1′) . Substituting this into the expression for κ(t′) yields κ(t′) =

∫ t′

0
1

(u+γ)(2u+ρ)

√
ρ(ρ+2)
u(1−u)du. This integral has the closed form solution

κ(t′) =
1
α

[
2 tan−1

(
t′(2t′ + ρ)

ρ
νA(t′)

)

−
√

ρ(ρ + 2)
γ(γ + 1)

tan−1

(
t′(2t′ + ρ)

√
1 + γ

γρ(ρ + 2)
νA(t′)

)]
.

We require that the servant Sn/2 be coincident with the intercept A+ at the
time τ ′ = τ − γ and this implies that we need κ(τ ′) = n

2 or

n

2
=

1
α

[
2 tan−1

(
τ ′(2τ ′ + ρ)

ρ
νA(τ ′)

)

−
√

ρ(ρ + 2)
γ(γ + 1)

tan−1

(
τ ′(2τ ′ + ρ)

ρ

√
ρ(γ + 1)
γ(ρ + 2)

νA(τ ′)

)]
.

If we set α = aπ
n and note that, by definition, νA(τ ′) = 1, we can simplify the

above to obtain

π

2
=

1
a

[
2 tan−1

(
τ ′(2τ ′ + ρ)

ρ

)
−

√
ρ(ρ + 2)
γ(γ + 1)

tan−1

(
τ ′(2τ ′ + ρ)

ρ

√
ρ(γ + 1)
γ(ρ + 2)

)]
.

Define D(a, ρ) as the quantity

D(a, ρ) =
π

2
− 1

a

[
2 tan−1

(
τ ′(2τ ′ + ρ)

ρ

)

−
√

ρ(ρ + 2)
γ(γ + 1)

tan−1

(
τ ′(2τ ′ + ρ)

ρ

√
ρ(γ + 1)
γ(ρ + 2)

)]

which we want to be zero. We now make the following claim:

402 J. Czyzowicz et al.

Claim 4. The asymptotic behaviour of τ is O
(
ρ1/3

)
.

Using Claim 4, we have that limn→∞
τ ′(2τ ′+ρ)

ρ = limn→∞ O
(
ρ−1/3

)
= ∞

and thus

π

2
= lim

n→∞
tan−1

(
τ ′(2τ ′ + ρ)

ρ

)
= lim

n→∞
tan−1

(
τ ′(2τ ′ + ρ)

ρ

√
ρ(γ + 1)
γ(ρ + 2)

)
.

We can therefore write limn→∞ D(a, ρ) = π
a

(
1 − a

2 −
√

ρ
2γ

)
. Now set ρ = q π

n

such that γ = α + ρ
2 = π

n (a + q
2). Using this notation we have limn→∞ D(a, ρ) =

π
a

(
1 − a

2 −
√

q
2a+q

)
. We want this limit to equal zero which implies that we

need 1 − a
2 −

√
q

2a+q = 0 or q = 2(2−a)2

(4−a) .
Now, to optimize the algorithm we need to minimize the evacuation time Tp.

Since Tp increases with a we equivalently need to minimize a + q = a2−4a+8
4−a .

Taking the derivative of this with respect to a and setting the result equal to zero
gives us the optimal value of a and q to be a = 2(2−

√
2) and q = 2(3

√
2−4). The

asymptotic cost of the algorithm is therefore Tp = 1 + α + ρ = 1 + 4(
√

2 − 1)π
n .

The overall evacuation time is then T = 1 + Tp which is the bound given in
Theorem 1.

We note that, in the case that n is odd, the results of the proof will not
change due to the fact that, as n → ∞, we have φ1 = − t1

2 → 0. �

4 Lower Bound

In this section we develop a lower bound on the evacuation time of the queen.
We first note that we can derive a naive lower bound of 2+ π

n+1 since each robot
can travel with a maximum speed of one and we have n + 1 robots in total. We
will show that this can be improved:

Theorem 5. In any algorithm with n ≥ 4 the queen cannot be evacuated in

time less than 1 + 2
n cos−1

(−2
n

)
+

√
1 − 4

n2 . In the limit of large n this bound

approaches 2 + π
n + 2

n2 .

The outline of the proof is as follows: we first demonstrate that the lower
bound holds for any algorithm in which the queen does not participate in search-
ing for the exit before some critical time. We will then show that the queen is
not able to participate in the search for the exit before this critical time. We
begin with a lemma first given in [12] which is reproduced here for convenience:

Lemma 1. Consider a perimeter of a disk whose subset of total length u+ε > 0
has not been explored for some ε > 0 and π ≥ u > 0. Then there exist two
unexplored boundary points between which the distance along the perimeter is at
least u.

Priority Evacuation from a Disk Using Mobile Robots 403

In the next two lemmas we demonstrate that the lower bound holds if the
queen does not participate in the search.

Lemma 2. For n ≥ 2, any x satisfying π
n ≤ x < 2π

n , and any evacuation
algorithm in which the queen does not participate in searching for the exit before
the time 1 + x, it takes time at least 1 + x + sin

(
nx
2

)
to evacuate the queen.

Lemma 3. For any n ≥ 2 and any evacuation algorithm in which the queen does
not participate in searching for the exit before the time t = 1 + 2

n cos−1
(−2

n

)
it

takes time at least 1 + 2
n cos−1

(−2
n

)
+

√
1 − 4

n2 to evacuate the queen.

We will now demonstrate that the queen is not able to search before the time
1+ 2

n cos−1
(−2

n

)
. This will be the goal of the next four lemmas and the following

simple observation

Observation 6. If the queen is to achieve an evacuation time of T , then, for
any time t ≤ T , she must remain in the region of intersection of all disks centered
on the undiscovered points of U with radii T − t.

Lemma 4. Consider any two points A and B on the unit circle connected by a
chord of length δ. Define the circles CA and CB as the circles centered on A and
B with radii r. Then, if r > δ

2 , the circles intersect at two points C and D at

distances
√

r2 − 1
4δ2 ±

√
1 − 1

4δ2 from the origin.

Lemma 5. For a given r > 0 define the functions f±(x) = 1
2

√
4r2 − x2 ±

1
2

√
4 − x2. Then, for 0 ≤ x ≤ min{2, 2r} f+ is a decreasing function of x

and f− is an increasing function of x if r > 1 otherwise it is decreasing.

Lemma 6. Consider any r > 0 and assume that the unexplored subset of U has
total length φ. Define DP as the disk centered on an undiscovered point P ∈ U
with radius r and define G as the region of intersection of all such disks. Then,
if r ≥ sin

(
φ
2

)
, G is completely contained inside of a disk centered on the origin

with radius R =
√

r2 − sin2
(

φ
2

)
+ cos

(
φ
2

)
. If r < sin φ

2 then G = ∅.

Lemma 7. Consider an algorithm with evacuation time T < 3. Then if the
queen is able to search the perimeter of U we must have

R(t) =

√
(T − t)2 − sin2

(
n(t − 1)

2

)
− cos

(
n(t − 1)

2

)
> 1.

Armed with these lemmas we are now able to tackle our main result.

Proof (Theorem 5). Set T0 = 1 + 2
n cos−1

(−2
n

)
+

√
1 − 4

n2 and assume we have
an algorithm with an evacuation time T < T0. By Lemma 3, this implies that

404 J. Czyzowicz et al.

the queen must search the perimeter of U before the time tc = 1+ 2
n cos−1

(−2
n

)
.4

Assume that at the time tc the robots have collectively searched the perimeter
of U at a rate μ satisfying n < μ ≤ n + 1. Then at the time tc the unexplored
subset of U has length φ(t) = 2π − μ(tc − 1) = 2π − 2μ

n cos−1
(−2

n

)
< π. Since

φ(tc) ≤ π we can use Lemma 6 to say that the queen must be located within a
distance of R(tc) of the origin at the time tc. Furthermore, in order for the queen
to have searched the perimeter of U at the time tc, we must have R(tc) ≥ 1.
However, observe that

R(tc) =

√

(T − tc)2 − sin2

(
n(tc − 1)

2

)
− cos

(
n(tc − 1)

2

)

≤
√

(T0 − tc)2 − sin2

(
n(tc − 1)

2

)
− cos

(
n(tc − 1)

2

)

=

√

1 − 4

n2
− sin2

(
cos−1

(
−2

n

))
− cos

(
cos−1

(
−2

n

))
=

2

n

which is clearly less than one for n ≥ 4. We have therefore arrived to a contradiction
and must conclude that the lower bound holds. To determine the asymptotic behaviour
of T0 we can compute a Taylor series of T0 about n = ∞. We find that the first few
terms in the series are 2 + π

n
+ 2

n2 . 	

5 Conclusions

We studied an evacuation problem concerning priority search on the perimeter
of a unit disk where only one robot (the queen) needs to exit from an unknown
location. We focused on the case of n ≥ 4 servants and showed in Sect. 3 that
for any n ≥ 4 the queen can be evacuated in time at most 2 + 4(

√
2 − 1)π

n .
Furthermore, in Sect. 4, we demonstrated that the queen cannot be evacuated

in time less than 1+ 2
n cos−1

(−2
n

)
+

√
1 − 4

n2 > 2+ π
n + 2

n2 . Thus, in the limit of

large n, we are left with a gap of (4
√

2 − 5)π
n ≈ 0.657π

n between the best upper
and lower bounds. We conjecture that Algorithm 2 is in fact optimal. We will
now justify this conjecture.

As was previously mentioned, one might think from Algorithm 2 that, since
the queen is able to reach the perimeter of U before the servants have finished
their search, it would be possible to improve our algorithm. However, this is
not the case – similar to the proof of Theorem 5 there are critical times (n

2
of them) that occur before the queen reaches the perimeter and anything she
does after these critical times cannot improve the evacuation time. These critical
times result from a tradeoff between maximizing the rate at which the servants
search – for which the queen should remain near the origin – and minimizing
the distance of the queen from possible exits near the end of the algorithm – for
which the queen should be near the perimeter. Furthermore, in order to achieve

4 Alternatively we can say that the robots must search at a collective rate > n by the
time tc. This is why we were able to ignore the “unreasonable case” in Lemma 7.

Priority Evacuation from a Disk Using Mobile Robots 405

the best tradeoff, the queen should travel as fast as she can from the origin to
the perimeter. In other words, between these critical times, the queen should
maximize her radial velocity. If we could prove that the queen does not need
to participate in searching then it would not be so difficult to conclude why
Algorithm 2 would be optimal. Any other trajectory of the queen between the
critical search times will result in the same or a reduced radial velocity of the
queen. It therefore does not seem likely that, with a reduced radial velocity, we
can reduce the evacuation time.

In addition to improving the bounds obtained in this paper there are several
interesting open problems related to priority search and evacuation. In particu-
lar, we may define a weighted evacuation problem (for a given group of agents)
as a generalization of the priority evacuation problem studied here. One can
differentiate on agent preferences by assigning a weight wi to each agent i and
require to evacuate a subset of agents of total weight ≥ W in minimum time.
With this formulation in mind, the regular evacuation problem (see [12]) is the
case where wi = 1 for all agents and W = n, while for the problem considered
in this work wi = 0 for all agents except the queen for which wqueen = 1 and
W = 1.

References

1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput.
29(4), 1164–1188 (2000)

2. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Kluwer
Academic Publishers, Dordrecht (2002)

3. Baeza Yates, R., Culberson, J., Rawlins, G., Rawlins, G.: Searching in the plane.
Inf. Comput. 106(2), 234–252 (1993)

4. Bampas, E., et al.: Linear search by a pair of distinct-speed robots. In: Suomela,
J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 195–211. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-48314-6 13

5. Beck, A.: On the linear search problem. Isr. J. Math. 2(4), 221–228 (1964)
6. Bellman, R.: An optimal search. SIAM Rev. 5(3), 274 (1963)
7. Bose, P., De Carufel, J.-L.: A general framework for searching on a line. In:

Kaykobad, M., Petreschi, R. (eds.) WALCOM 2016. LNCS, vol. 9627, pp. 143–
153. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30139-6 12

8. Bose, P., De Carufel, J.-L., Durocher, S.: Revisiting the problem of searching on
a line. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp.
205–216. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40450-
4 18

9. Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration with-
out communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis,
A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57586-5 10

10. Chrobak, M., Gasieniec, L., Gorry, T., Martin, R.: Group search on the line. In:
Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer,
R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46078-8 14

https://doi.org/10.1007/978-3-319-48314-6_13
https://doi.org/10.1007/978-3-319-30139-6_12
https://doi.org/10.1007/978-3-642-40450-4_18
https://doi.org/10.1007/978-3-642-40450-4_18
https://doi.org/10.1007/978-3-319-57586-5_10
https://doi.org/10.1007/978-3-662-46078-8_14

406 J. Czyzowicz et al.

11. Czyzowicz, J., Dobrev, S., Georgiou, K., Kranakis, E., MacQuarrie, F.: Evacuating
two robots from multiple unknown exits in a circle. In: Proceedings of the 17th
International Conference on Distributed Computing and Networking, Singapore,
4–7 January 2016, pp. 28:1–28:8 (2016)

12. Czyzowicz, J., G ↪asieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evac-
uating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS,
vol. 8784, pp. 122–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45174-8 9

13. Czyzowicz, J., et al.: Evacuation from a disc in the presence of a faulty robot.
In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 158–173.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72050-0 10

14. Czyzowicz, J., et al.: Priority evacuation from a disk using mobile robots. CoRR,
abs/1805.03568 (2018)

15. Czyzowicz, J., et al.: God save the queen. In: 9th International Conference on Fun
With Algorithms (FUN18) (2018)

16. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhu-
ber, B.: Evacuating robots from a disk using face-to-face communication (extended
abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp.
140–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18173-8 10

17. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.:
Wireless autonomous robot evacuation from equilateral triangles and squares. In:
Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp.
181–194. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6 13

18. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theor. Com-
put. Sci. 361(2), 342–355 (2006)

19. Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment.
In: FOCS, pp. 298–303. IEEE (1991)

20. Feinerman, O., Korman, A., Kutten, S., Rodeh, Y.: Fast rendezvous on a cycle by
agents with different speeds. Theor. Comput. Sci. 688, 77–85 (2017)

21. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph
searching. Theor. Comput. Sci. 399(3), 236–245 (2008)

22. Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with one robot on
a disk (track: wireless and geometry). In: Chrobak, M., Fernández Anta, A.,
Gasieniec, L., Klasing, R. (eds.) ALGOSENSORS 2016. LNCS, vol. 10050, pp.
80–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53058-1 6

23. Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with 2 robots on a
disk - wireless and face-to-face communication models. In: Liberatore, F., Parlier,
G.H., Demange, M. (eds.) ICORES 2017, Porto, Portugal, 23–25 February 2017,
pp. 15–26. SciTePress (2017)

24. Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem.
SIAM J. Comput. 31(2), 577–600 (2001)

25. Lamprou, I., Martin, R., Schewe, S.: Fast two-robot disk evacuation with wireless
communication. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp.
1–15. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53426-7 1

26. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. In: Ausiello,
G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989. LNCS, vol. 372,
pp. 610–620. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0035787

https://doi.org/10.1007/978-3-662-45174-8_9
https://doi.org/10.1007/978-3-662-45174-8_9
https://doi.org/10.1007/978-3-319-72050-0_10
https://doi.org/10.1007/978-3-319-18173-8_10
https://doi.org/10.1007/978-3-319-19662-6_13
https://doi.org/10.1007/978-3-319-53058-1_6
https://doi.org/10.1007/978-3-662-53426-7_1
https://doi.org/10.1007/BFb0035787

Priority Evacuation from a Disk Using Mobile Robots 407

27. Pattanayak, D., Ramesh, H., Mandal, P.S., Schmid, S.: Evacuating two robots
from two unknown exits on the perimeter of a disk with wireless communication.
In: ICDCN 2018, Varanasi, India, 4–7 January 2018, pp. 20:1–20:4 (2018)

28. Animation of algorithm 2 for n = 4, 13 February 2018. https://drive.google.com/
open?id=1OhmWeqFZLFLiwQalvPoZSTg9Ah860mMn

29. Animation of algorithm 2 for n = 8, 13 February 2018. https://drive.google.com/
open?id=10ntWmekJr5pTywEfpTNAw6uyxxrfpHsA

https://drive.google.com/open?id=1OhmWeqFZLFLiwQalvPoZSTg9Ah860mMn
https://drive.google.com/open?id=1OhmWeqFZLFLiwQalvPoZSTg9Ah860mMn
https://drive.google.com/open?id=10ntWmekJr5pTywEfpTNAw6uyxxrfpHsA
https://drive.google.com/open?id=10ntWmekJr5pTywEfpTNAw6uyxxrfpHsA

Author Index

Anceaume, Emmanuelle 296

Bank, Dor 48
Bar-Noy, Amotz 3
Ben-Basat, Ran 226
Bienkowski, Marcin 237
Boppana, Ravi B. 88

Choudhary, Keerti 3
Choudhury, Ashish 55
Chuprikov, Pavel 377
Cohen, Johanne 14
Cordasco, Gennaro 280
Czyzowicz, Jurek 209, 361, 392

Datta, Ajoy K. 25
Davydow, Alex 377
Delporte-Gallet, Carole 178
Demianiuk, Vitalii 30
Diks, Krzysztof 209
Dinitz, Yefim 34
Dolev, Shlomi 34
Durand, Anaïs 20

Even, Guy 226

Fauconnier, Hugues 178

Gargano, Luisa 280
Garimella, Gayathri 55
Georgiou, Konstantinos 121, 392
Gorinsky, Sergey 30
Griffiths, Jay 121

Halldórsson, Magnús M. 88

Jurdziński, Tomasz 264, 331

Kakugawa, Hirotsugu 149
Kawarabayashi, Ken-ichi 226
Khankin, Daniel 34
Killick, Ryan 361, 392
Kogan, Kirill 30, 377

Korenblit, Mark 43
Kranakis, Evangelos 361, 392
Kraska, Artur 237
Krizanc, Danny 361, 392
Kuhn, Fabian 193
Kulkarni, Sandeep 345
Kutten, Shay 20

Larmore, Lawrence L. 25
Lorys, Krzysztof 264

Manoussakis, George 14
Masuzawa, Toshimitsu 25, 149
Maus, Yannic 193
Michail, Othon 38
Mocquard, Yves 296
Montealegre, Pedro 134
Morale-Ponce, Oscar 361
Moussi, Jean 209

Narayanan, Lata 392
Navon, Tal 249
Nikolenko, Sergey 30, 377
Nowicki, Krzysztof 264, 331

Opatrny, Jaroslav 392

Patra, Arpita 55
Pelc, Andrzej 165
Peleg, David 3, 249
Perez-Salazar, Sebastian 134
Peters, Joseph G. 280
Pfleger, Daniel 312
Pilard, Laurence 14

Rajsbaum, Sergio 178
Rapaport, Ivan 134
Ravi, Divya 55
Rawitz, Dror 3, 88
Rescigno, Adele A. 280
Rytter, Wojciech 209

Sarkar, Pratik 55
Schmid, Ulrich 102, 312
Schmidt, Paweł 237

Schwartzman, Gregory 226
Schwarz, Manfred 102
Sericola, Bruno 296
Shende, Sunil 392
Shibata, Masahiro 149
Sirotkin, Alexander 377
Sohier, Devan 14
Spirakis, Paul G. 38
Sudo, Yuichi 25
Sulamy, Moshe 48

Tekken Valapil, Vidhya 345
Theofilatos, Michail 38

Todinca, Ioan 134
Turau, Volker 72

Vaccaro, Ugo 280

Waserman, Eyal 48
Weidner, Simon 193
Winkler, Kyrill 102

Yakubov, Yuval 121
Yanagisawa, Nayuta 178

410 Author Index

	Preface
	Organization
	Invited Talks (Abstracts)
	The Distributed Lovász Local Lemma Problem
	On Fair Division for Indivisible Goods
	College Admissions in Practice
	Taking Turing to the Theater (Abstract of Award Lecture)
	Contents
	Invited Talks and Brief Announcments
	Realizability of Graph Specifications: Characterizations and Algorithms
	1 Introduction
	2 Specifications and Realizations
	2.1 Basic Notions
	2.2 Boolean Profiles
	2.3 Notions of Vertex Happiness
	2.4 Approximate Realizations

	3 Three Additional Examples
	3.1 The Clique Profile
	3.2 The Distance Profile
	3.3 Realizations by Vertex-Weighted Graphs

	4 Extensions, Generalizations and Future Work
	References

	A Self-Stabilizing Algorithm for Maximal Matching in Link-Register Model
	1 Introduction
	2 State of the Art
	3 Model
	4 Algorithm A1 - Under the Unfair Daemon
	5 Algorithm A2 - Under the Atomic Register Model and the Fair Daemon
	References

	Message-Efficient Self-stabilizing Transformer Using Snap-Stabilizing Quiescence Detection
	1 Introduction
	2 Quiescence Detection Algorithm Q
	References

	Constant-Space Self-stabilizing Token Distribution in Trees
	1 Introduction
	2 Preliminaries
	3 Algorithms
	3.1 Algorithm Base
	3.2 Algorithm SyncTokenDist
	3.3 Algorithm PIFTokenDist

	References

	Distributed Counting Along Lossy Paths Without Feedback
	1 Background and Problem Settings
	2 Proposed Method
	3 Conclusion
	References

	Make&Activate-Before-Break: Policy Preserving Seamless Routes Replacement in SDN
	References

	Brief Announcement: Fast Approximate Counting and Leader Election in Populations
	1 Introduction
	2 Related Work
	3 Contribution
	4 The Model
	5 Fast Counting with a Unique Leader
	6 Leader Election with Approximate Knowledge of n
	References

	One-Max Constant-Probability Networks: Results and Future Work
	References

	Reaching Distributed Equilibrium with Limited ID Space
	1 Introduction
	2 Model
	2.1 Duplication
	2.2 Leader Election
	2.3 Knowledge Sharing

	3 Solution Basis
	3.1 Enhancements

	4 Contributions
	4.1 Leader Election
	4.2 Knowledge Sharing

	References

	Full Papers
	Crash-Tolerant Consensus in Directed Graph Revisited (Extended Abstract)
	1 Introduction
	2 Preliminaries, Definitions and Notations
	2.1 Some Properties of Graphs with f Crash-Tolerant Node Connectivity

	3 Multi-valued Consensus Protocol Based on Min-Max Strategy
	4 Lower Bounds on Round Complexity of Consensus Protocols Based on Min-Max Strategy
	4.1 Impossibility of Consensus in f + 1 Phases (Irrespective of the Number of Rounds)
	4.2 Impossibility of Consensus with (f+2)(d+1) - 3 Rounds in Total
	4.3 Impossibility of Consensus Based on Min-Max Strategy in 2f + 1 Phases with D Rounds

	References

	A Distributed Algorithm for Finding Hamiltonian Cycles in Random Graphs in O(logn) Time
	1 Introduction
	1.1 Related Work

	2 Computational Model and Assumptions
	3 Informal Description of Algorithm AHC
	4 Formal Description of Algorithm AHC
	4.1 Pre-processing
	4.2 Phase 0
	4.3 Phase 1
	4.4 Middle Phases
	4.5 Final Phases

	5 Analysis of Algorithm AHC
	5.1 Phases 0 and 1
	5.2 Middle Phases
	5.3 The Case c< n/7
	5.4 The Case cn/7
	5.5 Final Phases

	6 Proof of Theorem 1
	7 Conclusion
	References

	Simple and Local Independent Set Approximation
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Performance of Caro-Wei-Turán Bounds
	2.1 Caro-Wei in Bounded-Degree Graphs
	2.2 Caro-Wei in Sparse Graphs
	2.3 Turán Bound
	2.4 Limitations of Distributed Algorithms

	3 Approximations for Weighted Graphs
	3.1 Modified Algorithm
	3.2 Analysis

	4 Conclusion
	References

	On the Strongest Message Adversary for Consensus in Directed Dynamic Networks
	1 Introduction
	2 Related Work
	3 The Model SMP
	4 Failure Detectors in Asynchronous Systems
	5 Message Adversary Simulations and the Strongest Message Adversary for Consensus
	6 Consequences of Our Results
	7 Conclusions
	References

	Symmetric Rendezvous with Advice: How to Rendezvous in a Disk
	1 Introduction
	1.1 Related Work
	1.2 Formal Definitions, Notation and Terminology
	1.3 Our Results

	2 Rendezvous Algorithms in a Disk
	2.1 Some Immediate Benchmark Upper Bounds
	2.2 Rendezvous with Minimal Randomness
	2.3 Improved Rendezvous with 3-Markovian Trajectories

	3 Energy-Efficient Rendezvous
	3.1 Energy Analysis of Our Infinite-Step Rendezvous Algorithm
	3.2 Expected Rendezvous Time - Energy Tradeoffs

	4 Conclusion
	References

	Two Rounds Are Enough for Reconstructing Any Graph (Class) in the Congested Clique Model
	1 Introduction
	1.1 Our Results
	1.2 Some Remarks
	1.3 Techniques
	1.4 Related Work

	2 Preliminaries
	2.1 Some Graph Terminology
	2.2 Fingerprints

	3 Reconstructing Hereditary Graph Classes
	4 Reconstructing Arbitrary Graph Classes
	5 Revisiting the One Round Case
	6 Discussion
	References

	Space-Efficient Uniform Deployment of Mobile Agents in Asynchronous Unidirectional Rings
	1 Introduction
	1.1 Background and Related Works
	1.2 Our Contribution

	2 Preliminaries
	2.1 System Model
	2.2 The Uniform Deployment Problem

	3 Agents Without Multiplicity Detection
	3.1 A Lower Bound of Memory Space per Agent
	3.2 An Algorithm with O(k + logN) Memory Space per Agent

	4 Agents with Weak Multiplicity Detection
	4.1 Selection Phase
	4.2 Collection Phase
	4.3 Deployment Phase

	5 Conclusion
	References

	Explorable Families of Graphs
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Characterization of Explorable Families
	3 Universal Exploration Algorithm
	4 Conclusion
	References

	A Characterization of t-Resilient Colorless Task Anonymous Solvability
	1 Introduction
	2 Preliminaries
	3 Atomic Weak Set
	3.1 Specification and Algorithm

	4 Safe Agreement Object
	5 t-Resilient Solvable Colorless Tasks
	5.1 Topological Approach
	5.2 Simulation-Based Approach

	6 Conclusion
	References

	Deterministic Distributed Ruling Sets of Line Graphs
	1 Introduction, Motivation and Related Work
	2 Ruling Edge Sets of Simple Graphs
	2.1 Proposal Technique for Simple Graphs
	2.2 From -Ruling Edge Sets to 2-Ruling Edges Sets

	3 Ruling Sets of Bounded Diversity Graphs
	References

	Broadcast with Energy-Exchanging Mobile Agents Distributed on a Tree
	1 Introduction
	1.1 Related Work
	1.2 Preliminairies

	2 Testing Feasibility of Broadcast
	3 Constructing Broadcast Schedule
	4 Final Remarks
	References

	A Deterministic Distributed 2-Approximation for Weighted Vertex Cover in O(logNlog/log2log) Rounds
	1 Introduction
	2 The MWVC Local Ratio Template
	3 A Fast Distributed Implementation
	3.1 Proof of Theorem 2

	4 An Algorithm Without Knowing
	References

	Online Service with Delay on a Line
	1 Introduction
	1.1 Related Problems
	1.2 Line Metric: Our Contribution
	1.3 Preliminaries

	2 The Algorithm
	2.1 Algorithm Definition
	2.2 Correctness

	3 Competitiveness
	3.1 Waiting and Service Costs
	3.2 Critical Requests and Freshness Property
	3.3 Moving Towards and Away from OPT
	3.4 Charging Scheme
	3.5 The Competitive Ratio

	4 Final Remarks
	References

	Mixed Fault Tolerance in Server Assignment: Combining Reinforcement and Backup
	1 Introduction
	2 Warm-Up: Mixed Fault-Tolerant Dominating Sets
	3 Mixed Fault-Tolerant Centers
	3.1 Approximating the f-MFT All-Neighbor Centers Problem
	3.2 Approximating the f-MFT Neighbor Centers Problem

	4 Mixed Fault-Tolerant Facility Location
	References

	Communication Complexity in Vertex Partition Whiteboard Model
	1 Introduction
	1.1 Related Work
	1.2 Model Definition and Complexity Classes
	1.3 Our Results
	1.4 Notations

	2 Two-party Communication
	3 Non-adaptive n-Party Communication
	3.1 Non-adaptive Complexity of HAM

	4 Lower Bounds and Hierarchy Result for Adaptive Whiteboard Model
	4.1 MATCHING Sensitivity
	4.2 Grid Graphs with Gadgets and Shuffles
	4.3 Adaptive Complexity of the HAM problem
	4.4 Round Hierarchy Theorem by the Analysis of the PATHd Problem

	References

	Time-Bounded Influence Diffusion with Incentives
	1 Introduction
	1.1 The Model
	1.2 Related Work and Our results

	2 A Linear-Time Algorithm for Paths
	3 An O(n logn) Algorithm for Complete Graphs
	4 A Polynomial-Time Algorithm for Trees
	References

	Balanced Allocations and Global Clock in Population Protocols: An Accurate Analysis
	1 Introduction
	2 Problem description
	3 Analysis
	4 Evaluation of the constants
	5 Simulations
	6 Conclusion
	References

	On Knowledge and Communication Complexity in Distributed Systems
	1 Introduction
	2 Model
	2.1 Knowledge and Action Models

	3 Communication Complexity Basics
	4 Communication Complexity of Action Models
	5 Action Models and Protocol Trees
	5.1 Action Models of Protocol Trees
	5.2 Communication Complexity Lower Bounds
	5.3 Application Examples

	6 Conclusions
	References

	Connectivity and Minimum Cut Approximation in the Broadcast Congested Clique
	1 Introduction
	1.1 CongestedClique: Broadcast and Unicast
	1.2 Problems

	2 Graph Terminology
	3 Spanning Forest in the BroadcastCongestedClique
	3.1 Minimum Spanning Forest in the BroadcastCongestedClique
	3.2 Connected Components Algorithm

	4 Minimum Cut Approximation
	4.1 Connectivity Certificates and Karger's Sampling
	4.2 Sampling with Small Probabilities
	4.3 Algorithm
	4.4 Complexity in BroadcastCongestedClique

	5 Application to Multi–PassSemi–Streaming Model
	6 Conclusions
	References

	Biased Clocks: A Novel Approach to Improve the Ability To Perform Predicate Detection with O(1) Clocks
	1 Introduction
	2 System Model
	2.1 Naive HLC

	3 An Idea to Increase Effectiveness of HLC
	4 Algorithm for Biased Clocks (BHLC)
	4.1 Extension 1: Multiple Simultaneous Instances of BHLC
	4.2 Extension 2: Algorithm BHLCr: Resetting Clocks at Cut-Points
	4.3 Extension 3: Algorithm BHLCa: Adjusting Message Rate

	5 Comparison of HLC and BHLC in Predicate Detection
	5.1 Experimental Setup
	5.2 Algorithm for Conjunctive Predicate Detection Using BHLC
	5.3 Effectiveness of BHLC Under Different System Parameters and Bias B
	5.4 Effectiveness of BHLCr
	5.5 Effectiveness of BHLC Under Non-uniform Message Distribution

	6 Related Work
	7 Conclusion
	References

	Gathering in the Plane of Location-Aware Robots in the Presence of Spies
	1 Introduction
	1.1 The Background
	1.2 The Model and the Problem
	1.3 Our Results
	1.4 Related Work
	1.5 Notation

	2 One Byzantine Robot
	3 Bounded Number of Byzantine Robots
	4 Arbitrary Number of Byzantine Robots
	4.1 Grid Rendezvous
	4.2 Shrink-Shortest-Interval

	5 Conclusion
	References

	Formalizing Compute-Aggregate Problems in Cloud Computing
	1 Introduction
	2 Related Work
	3 Motivation and Model Description
	3.1 Compute-Aggregate Tasks and ``move to root'' Plans
	3.2 Moving Aggregation to Data and Aggregation Functions

	4 A Taxonomy of Aggregation Functions
	4.1 General Case
	4.2 Range-Bounded Aggregation Size Functions
	4.3 Specific Aggregation Size Functions

	5 Conclusion
	References

	Priority Evacuation from a Disk Using Mobile Robots
	1 Introduction
	1.1 Model
	1.2 Related Work
	1.3 Results of the Paper

	2 Notation and Preliminaries
	2.1 Notation
	2.2 Evacuation Algorithms

	3 Upper Bound
	4 Lower Bound
	5 Conclusions
	References

	Author Index

