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Abstract. Mixture of Gaussian Processes (MGP) is a generative model
being powerful and widely used in the fields of machine learning and
data mining. However, when we learn this generative model on a given
dataset, we should set the probability density function (pdf) of the input
in advance. In general, it can be set as a Gaussian distribution. But, for
some actual data like time series, this setting or assumption is not rea-
sonable and effective. In this paper, we propose a specialized pdf for the
input of MGP model which is a piecewise-defined continuous function
with three parts such that the middle part takes the form of a uniform
distribution, while the two side parts take the form of Gaussian distribu-
tion. This specialized pdf is more consistent with the uniform distribution
of the input than the Gaussian pdf. The two tails of the pdf with the form
of a Gaussian distribution ensure the effectiveness of the iteration of the
hard-cut EM algorithm for MGPs. It demonstrated by the experiments
on the simulation and stock datasets that the MGP model with these
specialized pdfs can lead to a better result on time series prediction in
comparison with the general MGP models as well as the other classical
regression methods.
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1 Introduction

Gaussian process (GP) is a powerful model and widely used in machine learning
and data mining [1–3]. However, there are two main limitations. Firstly, it can-
not fit the multi-modal dataset well because GP model employs a global scale
parameter [4]. Secondly, its parameter learning consumes O(N3) computational
time [5,6], where N is the number of training samples. In order to overcome
those difficulties, Tresp [4] proposed mixture of Gaussian processes (MGP) in
2000, which was developed from the mixture of experts. Since then, many kinds
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Fig. 1. The sketch of the eLoad data. Fig. 2. The sketch of the transformed
eLoad data.

of MGP model have been proposed and can be classified into two main forms:
the generative model [7–10] and conditional model [4,6,11–13]. In comparison
with the conditional model, the generative model has two main advantages: (1)
The missing features can be easily inferred from the outputs; (2) The influence
of the inputs on the outputs is more clear [8]. Therefore, many scholars have
studied the generative model [14–20].

However, when we learn the generative model on a given dataset, we should
set the probability density function (pdf) of the input in advance. In general, it
can be set as a Gaussian distribution [14–20]. But, for some actual data like time
series, this setting or assumption is not so reasonable and effective. When we
learn MGP model on these actual data, we usually need to utilize the ARMA
model [14–21] to transform the data, and then use the transformed data on
the MGP model. However, this transformation can destroy the correlation of
samples, which is very important for MGP model. Figure 1 shows the eLoad
data [14] from which we can see that samples in three different colors (blue, black,
and red) represent three temporally sequential samples, respectively. Figure 2
shows the transformed eLoad data from which we can find that three temporally
sequential samples are mixed together and cannot be classified effectively. In
this paper, we propose a specialized pdf for the input of the MGP model to
solve this problem. As shown in Fig. 3, this pdf consists of three components.
The left and right side parts are Gaussian distributions, while the middle is a
uniform distribution. For the training of the MGP model, we use the hard-cut
EM algorithm [17] as the basic learning framework for parameter estimation.
Actually, the hard-cut EM algorithm can get better result than some popular
learning algorithms.

The rest of the paper is organized as follows. Section 2 introduces the GP and
MGP models. We describe the specialized probability density function in Sect. 3.
We further propose the learning algorithm for the MGP model of the specialized
pdfs in Sect. 4. The experimental results are contained in Sect. 5. Finally, we
make a brief conclusion in Sect. 6.
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Fig. 3. The sketch of the specialized input distribution.

2 GP and MGP Models

2.1 GP Model

We mathematically define the GP model as follows:

Y ∼ N(m(X ),K(X ,X )) (1)

where D = {X ,Y } = {(x i, yi): i =1,2,...,N }, x i denotes a d -dimensional input
vector, and yi is the corresponding output. m(X ) and K (X ,X ) denote the
mean vector and covariance matrix, respectively. Without loss of generality, we
assume m(X ) = 0 . There are many choices for covariance function, such as
linear, Gaussian noise, squared exponential function and so on. Here, we adopt
the squared exponential (SE) covariance function [10]:

K(x i,x j ; θ) = σ2
fexp(−σ2

l

2
‖x i − x j‖2) + σ2

nI(i=j) (2)

where θ = {σ2
f ,σ2

l ,σ2
n} denote the vector. On the given sample dataset D, the

log-likelihood function can be expressed as follows:

log p(Y |X ,θ) = log N(Y |0 ,K(X,X)) (3)

In order to obtain the estimation of parameters θ, we perform the maximum
likelihood estimation (MLE) procedure [10], that is, we get

θ̂ = argmaxθ log N(Y |0 ,K(X ,X )) (4)

2.2 MGP Model

Denote C and N as the number of GP components and training samples in the
MGP model, respectively. On the basis of the GP model, we define MGP model
by the following steps:
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Step 1. Partition samples into each GP components by the Multinomial
distribution:

p(zn = c) = πc (5)
where c = 1,...,C and n = 1,...,N.

Step 2. Accordingly, each input x i fulfills the following distribution:

p(x i|zn = c) ∼ p(x |ψc) (6)

where {ψc : c = 1, ..., C} is the parameter set. In general, p(x |ψc) is a Gaussian
distribution.

Step 3. Denote I c = {n|zn = c}, X c = {xn|zn = c}, Y c = {yn|zn = c}
(c=1,...,C, n=1,...,N ) as the sample indexes, inputs and outputs of the training
samples in the c-th component, respectively. Given X c, the corresponding c-th
GP component can be mathematically defined as follows:

Y c ∼ N(0 ,K(X c,X c)) (7)

where K (X c,X c) is given by Eq.(2) with the hyper-parameter θc =
{σ2

fc, σ
2
lc, σ

2
nc}.

Based on Eqs. (5), (6) and (7), we mathematically define the MGP model.
The log-likelihood function is derived as follows:

log(p(Y c|X c,Θ,Ψ )) =
C∑

c=1

(
∑

n∈I c

(log(πcp(xn|μc,S c)))

+ log(p(Y c|X c,θc)))

(8)

where Θ = {θc : c = 1, ..., C} and Ψ = {ψc, πc : c = 1, ..., C} denote the
hyper-parameters and parameters of the MGP model, respectively.

3 Specialized Input Distribution and Its Learning
Algorithm

For many real world datasets, such as UCI machine learning repository, Gaussian
distribution is not appropriate for the input. In order to solve this problem, we
propose a specialized distribution for this situation.

3.1 Specialized PDF

This specialized distribution is a piecewise-defined continuous function, which
consists of three parts, the middle part is a uniform distribution density, both
sides are Gaussian distribution densities, shown in Fig. 3. We mathematically
defined the specialized distribution as follows:

P (x;ψ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ1

(
√
2πτ1)

exp
− (x−a )2

2τ2
1 x < a

λ a ≤ x ≤ b

λ2

(
√
2πτ2)

exp
− (x−b )2

2τ2
2 x > b

(9)

where we redefine ψ={λ, λ1, λ2, τ1, τ2,a,b} as the parameter vector.
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3.2 Learning Algorithm for the Specialized PDF

In order to learn ψ, we set that the input interval (a,b) contains the number
of the samples with probability p0. Denote X and N as the training sample set
and the number of training sample, respectively. We summarize the algorithm
framework as following steps:

Step 1. Learn a , b, and λ:

a = XN(1−p0)
2

; b = XN(1+p0)
2

;λ =
p0

(b − a)
(10)

where p(x< XN(1−p0)
2

|x ∈ X ) = (1−p0)
2 . In order to reduce the effect of the

misclassified (or outlier) point on the middle part, we estimate a and b as
Eq.(10) do.

Step 2. Estimate λ1, λ2, τ1 and τ2.
Denote p1 and p2 as the sample ratio at both left side and right side, respec-

tively. The probability density function is continuously integrable, and the inte-
gral of the probability density function is equal to 1. In other word:

∫
P (x;ψ)dx =

⎧
⎪⎨

⎪⎩

p1 x < a

p0 a ≤ x ≤ b

p2 x > b

; p0 + p1 + p2 = 1 (11)

According to the continuity of the probability density function, we only need do
same simple calculations to get {λ1, λ2, τ1, τ2}:

λ1 = 2p1;λ2 = 2p2; τ1 =
λ1√
2πλ

; τ2 =
λ2√
2πλ

(12)

4 The MGP Model of the Specialized PDFs
and Its Learning Algorithm

We now consider the MGP model with these specialized pdfs. For the parameter
learning of the MGP model, there are main three kinds of learning algorithms:
MCMC methods [22,23], variational Bayesian inference [24,25], and EM algo-
rithm [5,9,11]. However, the MCMC methods and variational Bayesian inference
methods have their own limitations: the time complexity of the MCMC method
is very high, and variational Bayesian inference may lead to a rather deviation
from the true objective function. EM algorithm is an important and effective
iterative algorithm to do maximum likelihood or maximum a posterior(MAP)
estimates of parameters for mixture model. However, for such a complex MGP
model, the posteriors of latent variables and Q function are rather complicated.
In order to overcome this difficulty, we implement the hard-cut EM algorithm [17]
to learn parameter, which makes certain approximations in E-step.

Denote znc be the latent variables, where znc is a Kronecker delta function,
znc = 1, if the sample (xn,yn) belongs to the c-th GP component. Therefore,
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we can obtain the log likelihood function of the complete data from Eq. (8) as
follows:

log(p(Y ,Z |X ,Θ,Ψ )) =
C∑

c=1

(
N∑

n=1

(znc log(πcp(xn|ψc)))

+ log(p(Y c|X c,θc)))

(13)

The main idea of hard-cut EM algorithm can be expressed as the following
steps:

E-step. Assign the samples to the corresponding GP component according
to the maximum a posterior (MAP) criterion:

k̂n = argmax1≤c≤C{πcp(xn|ψc)p(yn|θc)} (14)

that is, latent variable z
̂knn=1.

M-step. With the known partition, we can estimate the parameters Ψ and
hyper-parameters Θ via the MLE procedure:

(1) For learning the parameters {ψc}c, we perform the learning algorithm in
the last section.

(2) For estimating the hyper-parameter Θ, we perform the MLE procedure on
each c-th component to estimate θc as shown in Eq. (4).

5 Experimental Results

In order to test the accuracy and effectiveness of the specialized pdf for MGP
model, we carry out several experiments on the simulation and stock datasets.
We employ the root mean squared error (RMSE) to measure the prediction
accuracy, which is defined as follows:

RMSE =

√∑N
n=1(yn − ŷn)2

N
(15)

where ŷn and yn denote the predicted value and true value, respectively. We also
compare our algorithm with some classical machine learning algorithms: kernel,
RBF, SVM, and denote ‘OURS’ as our proposed model with the hard-cut EM
algorithm.

5.1 Simulation Experiments

In the simulation experiments, we generate three groups of synthetic datasets
from MGP model. those three MGP models contain 4, 6, 8 GP components,
respectively. The number of samples in each group is 2600, 3900, 5000, respec-
tively. In each group, there are three datasets, which are the same except the
degree of overlap. Figure 4 shows the dataset with the smallest degree of overlap
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Fig. 4. The dataset with the least
degree of overlap from MGP with 4
components.

Fig. 5. The distribution of the probability
density function of the input on each Gaus-
sian processes component.

with 4 GP components. On each group dataset, we run each algorithm 100 times,
and randomly extract training samples and test samples, where 1/3 are training
samples and other 2/3 are test samples. The RMSE of each algorithm is listed in
Table 1. From the Table 1, We can see that our proposed algorithm obtains the
better results. Figure 5 shows the specialized pdfs on the first group dataset with
the smallest overlapping degree. We can obtain that the specialized pdf at both
ends of the data in the form of a Gaussian distribution of attenuation, the spe-
cialized pdf in the middle of the data is a uniform distribution. This shape of the
specialized pdf is more consistent with the uniform distribution than Gaussian
distribution. The attenuation of both ends of the specialized pdf in the form of
a Gaussian distribution ensures the effectiveness of the iteration of the hard-cut
EM algorithm. Then, the class label of the samples can be updated according to
the MAP criteria in the iteration of hard-cut EM algorithm. If we apply uniform
distribution only, the iterative steps of hard-cut EM algorithm is invalid.

5.2 Prediction on Stock Data

In this section, we obtain the closing price data of three stocks from Shanghai
Stock Exchange, and the IDs are 300015, 002643, and 601058, respectively.

From Eq. (10), we can know that the specialized pdf is closely related to the
interval length of the middle data. In order to check the effect of different input
lengths on the prediction accuracy of the algorithm, we do some transformations
on the input. Since the range of output changes is too large, we use a linear
function to narrow the output down to the same range as the synthetic data. In
summary, we transform the datasets as follows:

(i) Transform the input as following equation:

Xn =
n

δ
(16)

where i = 1,...,N, N is the sample number, δ = {101, 51, 23, 11, 7, 3, 1}.
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Table 1. The RMSEs of the four algorithms on the three groups.

C = 4 Data41 Data42 Data43

Kernel 0.2143 ± 0.0000 0.6871± 0.0000 0.6537± 0.0000

RBF 0.1965 ± 0.0000 0.7065± 0.0000 0.6594± 0.0000

SVM 0.2548 ± 0.0002 0.3739± 0.0060 0.3704± 0.0038

OURS 0.0604 ± 0.0003 0.2991± 0.0319 0.3326± 0.0174

C = 6 Data61 Data62 Data63

Kernel 0.5212± 0.0000 0.5211± 0.0000 0.5392± 0.0000

RBF 0.5411± 0.0000 0.5498± 0.0000 0.5554± 0.0000

SVM 0.2678± 0.0013 0.3378± 0.0033 0.3942± 0.0080

OURS 0.2558± 0.0366 0.3653± 0.0384 0.3392± 0.0210

C = 8 Data81 Data82 Data83

Kernel 0.4247± 0.0000 0.4245± 0.0000 0.4993± 0.0000

RBF 0.4530± 0.0000 0.4265± 0.0000 0.4934± 0.0000

SVM 0.3642± 0.003 0.4238± 0.0023 0.4831± 0.0017

OURS 0.3220± 0.0335 0.3639± 0.0898 0.4668± 0.3434

Table 2. The RMSEs of the four algorithms on the three groups of the transformed
stock datasets.

300015 X1 X2 X3 X4 X5 X6 X7

Kernel 0.6347 0.5439 0.4121 0.2753 0.2241 0.1846 0.2149

RBF 0.5218 0.3717 0.2918 0.2671 0.3435 0.6930 0.9934

SVM 0.3634 0.2532 0.1971 0.1707 0.1869 0.1707 0.1842

OURS 0.3531 0.2325 0.1784 0.1676 0.1601 0.1467 0.1583

002643 X1 X2 X3 X4 X5 X6 X7

Kernel 0.6487 0.4722 0.3116 0.2323 0.1972 0.1533 0.1542

RBF 0.5357 0.4462 0.2744 0.2280 0.2116 0.2110 0.8882

SVM 0.2815 0.2487 0.2364 0.2175 0.1998 0.1902 0.1792

OURS 0.2681 0.2024 0.1835 0.1799 0.1930 0.1805 0.1544

601058 X1 X2 X3 X4 X5 X6 X7

Kernel 0.7200 0.5267 0.3939 0.2738 0.2150 0.1503 0.1256

RBF 0.5296 0.4547 0.3636 0.2644 0.2279 0.2785 0.9705

SVM 0.4079 0.2325 0.1748 0.1502 0.1439 0.1439 0.1458

OURS 0.3271 0.1966 0.1318 0.1507 0.1545 0.1315 0.1472
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(ii) Transform the output by a linearly compressed, and the compressed interval
is [−4.5, 4.5].

ỹ =
9y

M − m
+

4.5
M − m

(17)

where M and m denote the maximum value and minimum value of the stock,
respectively.

Through the above transformations, each stock can produce 7 datasets. In
each 7 datasets of three stock datasets, we repeat each regression algorithm 100
times, and randomly extracted 1/3 as training samples and the other 2/3 as test
samples. The RMSE of each algorithm on those three transformed stock datasets
is listed in Table 2. From Table 2, we can obtain that our proposed algorithm can
get a better predict accuracy than other classical regression algorithms, and our
algorithm obtain the better result with the smaller δ, but this is not absolute.

6 Conclusion

We have designed a specialized pdf for the input of MGP model which con-
sists of three parts: the right and left side parts still take the form of Gaussian
distributions, while the middle part takes the form of a uniform distribution.
This specialized pdf has the advantages of both the Gaussian distribution and
the uniform distribution. That is, the tail Gaussian distributions in the left and
right side parts ensure that the hard-cut EM algorithm can perform more effi-
ciently during each iteration, and the uniform distribution in the middle part
is more reasonable for the time series data. The experiments are conducted on
three groups of synthetic datasets and stock datasets. It is demonstrated by the
experimental results that the hard-cut EM algorithm for the MGPs with the
specialized pdfs can obtain a better prediction accuracy than the other classical
regression algorithms. This specialized input pdf is more effective for the time
series data.
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