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Abstract. Attribute coordinate comprehensive evaluation method features
subjective weighting in which the weights of indicators are determined by
evaluators, which possibly leads to the arbitrariness in setting the weights. When
there are many indicators, it is difficult to accurately judge if the sample is better
or worse than others. To address the problem, this paper applies principal
component analysis on the attribute coordinate comprehensive evaluation
method. When there are many indicators, they can be reduced to new indicators
with related meanings given through the method of principal component anal-
ysis. With the simplification, it will greatly facilitate experts to rate samples,
which is the paramount basis that provides the preference of experts for the
attribute coordinate comprehensive evaluation method to further calculate all the
satisfaction degrees of objects to be evaluated. Experimental results show the
advantages of the improved algorithm over the original algorithm.
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1 Introduction

In regards to comprehensive evaluation, the most important problem needed to address
is how to set the weight of each evaluated indicator. The setting of weights can fall into
two categories. One is the subjective weighting, such as AHP [1, 2], and the other is the
objective weighting, such as the least square method and the principal component
analysis [3, 4]. The two types have their own advantages and disadvantages. Subjective
weighting is that the weights are given by experts and could be arbitrary in some cases,
while objective weighting is not able to reflect the experiences or preferences of
experts. Attribute coordinate comprehensive evaluation, belonging to the former,
whose characteristic is that it can construct the corresponding psychological preference
curve through evaluators rating the sample data in light of their own experiences or
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preferences, has made certain progress both in theory and practice [5–13]. However,
when indicators are many, it is difficult for experts to accurately distinguish satisfactory
samples from unsatisfactory samples, which might result in arbitrary ratings on some
samples. To address the obstacle, the principal component analysis method is used to
reduce the number of indicators and give the related meanings of new indicators, so it is
easier for experts to rate on samples with new indicators.

This paper first introduces the steps of simplification of indicators by means of the
principal component analysis, then explores the core idea of the attribute coordinate
comprehensive evaluation method, and next elaborates the process of combining the
two methods through the simulation and the comparison of results before and after the
model is improved.

2 Reduction of Indicators by Principal Component Analysis

Principal component analysis is a method of dimensionality reduction in mathematics.
The basic idea is to try to make the original indicators X1, X2, … Xt (for example, there
are t indicators) recombined into a set of relatively unrelated comprehensive indicators
Fm with fewer numbers than the number of original indicators. The specific steps of the
principal component analysis are as follows:

(1) Calculate the covariance matrix

Calculate the covariance matrix s ¼ ðsijÞp�p of sample data

sij ¼ 1
n� 1

Xn
k¼1

ðxki � �xiÞðxkj � �xjÞ i; j ¼ 1; 2; . . .; p ð1Þ

Among them, sij (i, j = 1, 2,…, p) is the correlation coefficient between the original
variable xi and xj. p is the number of indicators. n is the number of samples. �xi and �xj is
respectively the mean of values of indicator i and j. xki is the value of indicator i of a
certain sample, and xkj is the value of indicator j of a certain sample.

(2) Calculate the eigenvalues ki of S and orthogonal unit eigenvectors ai.

The first m larger eigenvalues of S, k1 � k2 � … km > 0, is the variance of the
first m principal components, and the unit eigenvector ai corresponding to ki is the
coefficient of the principal component Fi, and then the ith principal component Fi is:

Fi ¼ aiX ð2Þ

The variance (information) contribution rate of principal components reflects the
information magnitude, ci is:

ci ¼ ki=
Xm
i¼1

ki ð3Þ
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(3) Determine the principal components

The final principal components to be selected are F1, F2, … Fm, and m is deter-
mined by the cumulative contribution rate of variance G(m).

GðmÞ ¼
Xm
i¼1

ki=
Xp

k¼1

kk ð4Þ

When the cumulative contribution rate is greater than 85%, it will be considered
enough to reflect the information of the original variables, and m is the extracted first m
principal components.

(4) Calculate the load of the principal components

The principal component load reflects the degree of correlation between the prin-
cipal component Fi and the original variable Xj, and the load lij(i = 1, 2, …, m; j = 1,2,
…, p) of the original variable Xj (j = 1,2,… p) on the principal component Fi (i = 1, 2,
…, m) is:

lðFi;XjÞ ¼
ffiffiffiffi
ki

p
aijði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; pÞ ð5Þ

(5) Calculate the scores of the principal components

The scores on the m principal components of the sample:

Fi ¼ a1iX1 þ a2iX2 þ � � � þ apiXp i ¼ 1; 2; . . .; m ð6Þ

(6) Select the principal components and give the new meanings

Provide the new meaning of the new evaluation indicator Fi (i = 1, 2, …, m) for
experts to rate on the new samples.

3 Attribute Coordinate Comprehensive Evaluation Model

3.1 Explore Barycentric Coordinates Reflecting Evaluators’ Preference
Weight

Attribute coordinate comprehensive evaluation method combines machine learning
with experts’ ratings on sample data. Set T0 to be the critical total score, Tmax the largest
total score, we evenly select several total scores: T1, T2, … Tn−1 from (T0, Tmax)
regarding the curve fitting requirements, and then select some samples on each total
score Ti(i = 1, 2, 3 … n − 1) and rate them according to experts’ preference or
experiences, which is taken as the process of the learning of samples, so as to get the
barycentric coordinate for Ti (i = 1, 2, 3 … n − 1) according to (7).
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b ffh zð Þg� � ¼
Pt
h¼1

vh1f
h
1

Pt
h¼1

vh1

; . . .;

Pt
h¼1

vhmf
h
m

Pt
h¼1

vhm

0
BB@

1
CCA ð7Þ

Where, {fk, k = 1,… s} � ST \ F is the set for sample fi with the total score equal
to T. In Formula (7), b({vh(z)}) is the barycentric coordinate of {vh(z)}, {fh, h = 1,… t}
is the values of indicators of t sets of samples the evaluator Z selects from {fk}, {v

h(z)} is
the ratings (or taken as weight) the evaluator gives on the samples.

3.2 Calculate the Most Satisfactory Solution

Use the interpolation formula Gj(T) = a0j + a1j T + a2j T2 + … +an+1j Tn+1 and
barycentric coordinates obtained above to do curve fitting and construct the psycho-
logical barycentric line (or most satisfactory local solution line) L(b({fh(z)})); and then
calculate the global satisfaction degree according to (8), and sort them in descending
order to obtain the most satisfactory solution.

satðf ; ZÞ ¼
Pm
i¼1

fij

Pm
j¼1

Fj

0
BBB@

1
CCCA

Pm
i¼1

fj

3ð
Pm
j¼1

fijÞ

0
B@

1
CA

� exp �

Pm
j¼1

wj fj � bðf hðzjÞ
�� ��
Pm
j¼1

wjdj

0
BBB@

1
CCCA ð8Þ

Where, sat(f, Z) is the satisfaction of evaluated object f from evaluator Z, whose
value is expected to be between 0 and 1. fj is the value of each indicator. fj � bðf hðzjÞ

�� ��
is to measure the difference between each attribute value and the corresponding
barycentric value. wj and dj are used as the factor which can be adjusted to make the
satisfaction comparable value in the case where the original results are not desirable.
Pm
j¼1

Fj is the sum of Fj with each indicator value full score.
Pm
ij¼1

fij is the sum of the values

of all the indicators Fij of Fi.

4 Simulation Experiment

To verify the effectiveness of the improved method, we chose the grades of nine
courses from 2008 students in the final exam in a high school as the experimental data,
nine courses being taken as nine indicators including Chinese, mathematics, English,
physics, chemistry, politics, history, geography and biology. The sample data is shown
in Table 1.

First of all, we use the attribute coordinate comprehensive evaluation method to
respectively construct the psychological barycentric curves of several courses without
applying the principal component analysis. And then we improve the method in the
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way that the principal component analysis is used to simplify the indicators, further the
attribute coordinate comprehensive evaluation method is applied to construct the
psychological barycentric lines of the new indicators.

We also compare the global satisfaction degrees between two students before and
after the improved method is applied.

4.1 Attribute Coordinate Comprehensive Evaluation Without Using
Principal Component Analysis

Respectively, we choose the total score of 1000, 701 and 620 as the three evaluation
planes, and select some samples for the experts to rate. The last column (Rating) of
Tables 2 and 3 are respectively the rating data for total score 701 and 620.

According to (7), the barycentric coordinates of total score 701 and 620 with
(Chinese, math, geography) are respectively (88.65625, 92.625, 76.4375) and
(88.79069767, 83.93023256, 67.51162791).

Next, according to the interpolation theorem, we calculate the barycentric curves of
Chinese, mathematics, geography (respectively shown in Figs. 1, 2, 3). It can be seen
that the barycenter curve of Chinese is very unreasonable, as the curve should be
monotonically increasing, while in this curve, the curve for total score of 650 is even
lower than that of the total score of 600. From Figs. 2 and 3, we can see that
barycentric curves of mathematics and geography are almost the same, which is not
obvious to see the expert put more weight on arts or science.

Table 1. Sample data of nine courses

Item Chinese Math English Physics Chemistry Politics History Geography Biology

1 91 68 82 27 55 72 78 71.5 75.5
2 91 77 50 53 65 47 75 70.5 80.5

3 91 88 15 78 48 65 63 66.5 79

Table 2. The samples and ratings for total score 701

Item Chinese Math English Physics Chemistry Politics History Geography Biology Rating

1004 97 96 71 75 68 55 78.5 71.5 90.5 8
1005 89 86 66 80 81 69 74.5 69 87 9

1476 94 102 48 74 76 60 77.5 82.5 87 9
398 69 84 80 82 74 70 75 81 85 6

Table 3. The samples and ratings for total score 620

Item Chinese Math English Physics Chemistry Politics History Geography Biology Rating

1345 85 95 61.5 71 54 47 68 69.5 70 7
1 91 68 82 27 55 72 78 71.5 75.5 9

947 95 90 72.5 79 35 55 65.5 61 67 10
1023 86 80 72.5 52 63 51 76 59 80.5 9
1548 85 89 67.5 69 41 41 71.5 79 77 8
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The most likely reason for the result is that so many indicators make it difficult for
experts to accurately distinguish good samples from bad samples among nine indica-
tors, which could result in arbitrary ratings.

4.2 Attribute Coordinate Comprehensive Evaluation with Principal
Component Analysis

We apply the improved algorithm, first carrying out principal component analysis to
reduce the quantity of indicators.

(1) Calculate the covariance matrix S (correlation coefficient matrix) between
indicators.

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 0:1725 0:3276 �0:2918 0:5982 0:0915 �0:3520 �0:3481 0:2933 �0:2836

x2 0:5151 �0:3978 0:5263 0:4750 0:0890 0:2451 �0:0012 �0:0697 �0:0318

x3 0:2543 0:7953 0:4751 �0:1837 �0:0851 0:1512 0:0638 0:0963 0:0034

x4 0:4274 �0:1859 0:0203 �0:2104 �0:6264 �0:5471 0:0743 0:1566 0:1282

x5 0:3474 �0:0728 �0:0053 �0:3652 0:7509 �0:3622 0:1624 0:1384 �0:0019

x6 0:1596 0:1882 �0:2401 0:2653 0:0964 �0:0190 0:0561 �0:2374 0:8614

x7 0:2310 0:1357 �0:3541 0:1628 �0:0799 0:0730 0:7306 �0:3300 �0:3492

x8 0:3152 �0:0823 �0:4071 �0:1534 �0:0618 0:5785 �0:0036 0:5999 0:0786

x9 0:3983 0:0389 �0:2510 �0:2912 �0:0266 0:1494 �0:5532 �0:5754 �0:1788

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

Fig. 1. The barycenter curve of Chinese Fig. 2. The barycenter curve of Math

Fig. 3. The barycenter curve of Geography
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(2) Calculate the eigenvalue vector of the correlation coefficient matrix

(1.5315, 0.2945, 0.2291, 0.1658, 0.1331, 0.1170, 0.1006, 0.0881, 0.0778)

(3) Calculate the principal component contribution rate vector k and cumulative
contribution rate G(M).

The contribution rate vector k = (55.9456, 10.7591, 8.3684, 6.0553, 4.8631,
4.2733, 3.6763, 3.2172, 2.8418)

The contribution rate of the first three principal components is G(M) = 75.0731%,
although there will be some information loss, it is not so great to affect the overall
situation.

According to the coefficient matrix S, the expressions of the first three principal
components (f1, f2, f3) are respectively as follows.

f1 = 0.1725x1 + 0.5151x2 + 0.2543x3 + 0.4274x4 + 0.3474x5 + 0.1596x6 +
0.231x7 + 0.3152x8 + 0.3983x9
f2 = 0.3276x1 − 0.3978x2 + 0.7953x3 − 0.1859x4 − 0.0728x5 + 0.1882x6 +
0.1357x7 − 0.0823x8 + 0.0389x9
f3 = −0.2918x1 + 0.5263x2 + 0.4751x3 + 0.0203x4 − 0.0053x5 − 0.2401x6 −
0.3541x7 − 0.4071x8 − 0.2510x9

Respectively, x1, x2 … x9 represents Chinese, math…biological.
From the expression of the first principal component f1, it has the positive load on

each variable, indicating that the first principal component represents the comprehen-
sive components.

From the expression of the second principal component f2, the value of f2 decreases
with the increase of x2(Math), x4(physics) and x5(chemistry), whereas increases with
the increase of x3(English), x6(politics), x7(history) and x9(biology), which indicates
f2 reflects a student’s level of liberal arts.

From the expression of the third principal component f3, the value of f3 increases
with the increase of x2(Math), x3(English) and x4(physics), whereas decreases with the
increase of x1(Chinese), x6(politics), x7(history), x8(geography) and x9(biology),
which indicates f3 reflects a student’s level of science.

In this way we can simplify the nine indicators into three ones: f1, f2 and f3. Now
we can calculate students’ scores with the new indicator system. Table 4 is new sample
data with the new indicator system.

Table 4. Sample data with the new indicators

Item f1 (comprehensive) f2 (liberal arts) f3 (science)

1 184.3496 80.13484 55.48093
2 192.4282 40.70861 51.70827
3 192.2151 7.118305 43.40139
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(4) Attribute coordinate comprehensive evaluation

Respectively we provide three total score planes 460, 345 and 311 for the expert to
rate. The scores of the last two total samples are shown in Tables 5 and 6 respectively.
The expert’s preference can be seen directly from the ratings (the last column). When
the total score is higher, the expert pays more attention to the comprehensive level of
students. When the total score is relatively lower, the expert values students’ science
scores more. This evaluation is easier than that without principal component analysis.

We can obtain the barycentric coordinates of 460, 345 and 311 respectively
(268.2157, 92.1146, 100), (223.98, 51.46642, 6922313) and (200.2936, 44.12158,
66.05498). We draw the barycentric curves of indicator f1, f2 and f3 respectively
(shown in Figs. 4, 5, 6). It can be seen that the three curves are all monotonically
increasing, which are more reasonable than those drawn with the old model.

Table 5. The samples and ratings for total score around 345

Item f1 (comprehension) f2 (liberal arts) f3 (science) Total score Ratings

263 238.4894 44.51444 62.95037 345.9542 7
999 228.5096 62.76003 54.17796 345.4476 6
1007 217.0385 52.21342 75.05868 344.3106 10
1066 245.756 37.56391 60.98198 344.3019 9

Table 6. The samples and ratings for total score around 311

Item f1 (comprehension) f2 (liberal arts) f3 (science) Total score Ratings

1074 224.2676 29.82561 57.03609 311.1293 6
1699 166.3697 68.02551 76.22716 310.6224 10
798 205.9612 43.66174 60.83696 310.4599 8
735 199.5349 43.14419 67.52119 310.2003 9

Fig. 4. The barycentric curve of indicator f1 Fig. 5. The barycentric curve of indicator f2
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(5) the Comparison of Satisfaction Degree Before and After Improvement

Finally, we examine the satisfaction degree obtained respectively using the two
models. The followings are the scores of two students No. 466 and No. 196. They
almost have the same total score, however, it is obvious that No. 196 is better at science
than No. 466. So normally the satisfaction degree of No. 196 should be greater than
that of No. 466 under the condition that the evaluator values the science scores more.
However the result is opposite in the case of the unimproved method, which is
unreasonable (shown in Table 7). Comparatively, the improved algorithm fixes the flaw
and obtains the reasonable result, better reflecting the preference of the evaluator
(shown in Table 8).

5 Conclusion

The improved method integrates principal component analysis into the original method
to reduce the number of indicators so as to make the experts’ rating process more
simple and effective. The simulation examines the comparison of the results before and
after using the principal component analysis and shows that the barycentric curves look
more favorable, and the satisfaction degrees of the evaluated objects more accurately
reflect the preferences and experiences of experts.

Fig. 6. The barycentric curve of indicator f3

Table 7. The comparison of satisfaction degrees using the unimproved method

Item Chinese Math English Physics Chemistry Politics History Geography Biology Satisfaction

466 98 65 80 77 53 64 75 55 79.5 0.7896

196 80 72 31 81 71 62 82 80.5 86 0.7745

Table 8. The comparison of satisfaction degrees using the improved method

Item f1 (comprehension) f2 (liberal arts) f3 (science) Satisfaction

196 255.5199 93.5100 126.7342 0.5708
466 220.5927 118.4874 110.3656 0.5524
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