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Abstract. The travelling salesman problem (TSP) is one of the NPC
combinatorial optimization problems and still now it remains as an inter-
esting and challenging problem in the field of combinatorial optimization.
In this paper, we propose a consecutive route filtering approach to solv-
ing the symmetric TSP with the help of probe concept such that the
worse routes are filtered out step by step by using a rigorous predesigned
step proportion. In this way, it is important to set up a reasonable value
of the step proportion which is needed in each step during the filter-
ing process. Actually, our proposed algorithm is implemented on the set
of symmetric TSP benchmarks with both small and large numbers of
cities from the TSPLIB dataset. It is demonstrated by the experimental
results that our proposed algorithm can obtain the best results in some
cases and generally get the approximation results close to the best known
solutions.
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1 Introduction

In the field of combinatorial optimization, TSP is arguably the most prominent,
popular, and widely studied problem. It belongs to the class of NP-complete
problems [1], i.e., the most difficult problems without any exact algorithm to
effectively solve it in polynomial time. In fact, with the increase of number of
cities, the executive time of any existing algorithm increases super-polynomially
or even almost exponentially [2]. So, its improvement has been drawn much
attention to researchers due to the growing demands from vast practical appli-
cations in different areas relevant to real life such as vehicle routing, drilling
holes in a circuit board, overhauling gas turbine engine, X-ray diffraction, stor-
age and picking of stock in warehousing, computer wiring, interview scheduling,
crew scheduling, mission planning, DNA sequencing, data association, image
processing, pattern recognition and so on [3,4].
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Originally, this problem comes into being with a salesman who wants to visit
every city exactly once from a list of cities to sell his products and finally return
to the starting city where his purpose is to minimize the total tour cost. In
graph theory, the symmetric TSP is defined by a complete undirected graph
G = (V,E), where V = {v1, v2, · · ·, vN} is the set of nodes and E = {(vi, vj) :
vi, vj ∈ V, i �= j} represent the set of edges [3]. Moreover, a symmetric cost
matrix DN×N is assigned on E for representing the weight of edges. Also, the
TSP can be stated as a permutation problem [24,25] with the motive of finding
a permutation ψ among N cities that minimize the following objective function:

f(ψ) =
N−1∑

i=1

dψ(i),ψ(i+1) + dψ(N),ψ(1) (1)

where ψ(i) indicate the city which is visited at step i, i = 1, 2, · · ·, N and f(ψ) is
the cost of a permutation ψ. The Euclidean distance di,j , between any two cities
i(x1, y1) and i(x2, y2) is calculated by:

di,j =
√

(x1 − x2)2 + (y1 − y2)2 (2)

In the case of symmetric TSP, the distance from city i to city j is the same as
the distance from city j to city i, i.e., di,j = dj,i.

Although the TSP problem is quite simple, the main complexity comes from
the large number of possible solutions. To solve an N -city symmetric TSP prob-
lem, (N−1)!/2 different possible routes arise so that the direct optimization pro-
cedure cannot accomplish in a polynomial time. For this reason, researchers
have been trying to solve this problem in two alternative ways instead of find-
ing the exact solution. The first way is to develop an optimization algorithm
to ensure the optimal solution with longer running time, while the second way
is to develop a heuristical algorithm which can reduce the computational time
significantly and provide only near-optimal solution.

The objective of this work is to propose a new algorithm to solve the symmet-
ric TSP with the help of probe machine. The proposed approach is able to filter
out worse routes and keep potential routes step by step by using an appropriate
choice of proportion value. The rest of the paper is organized as follows. We
review some related works in Sect. 2. Section 3 presents our propose framework.
The experimental results are summarized in Sect. 4 and the final section gives
the conclusion and future research.

2 Related Work

During the past decades, various TSP algorithms have been proposed for finding
an optimal or near-optimal solution. Branch and bound algorithm [5], dynamic
programming algorithm [6] and cutting plane algorithms [7] are most popular
and well known. However, these algorithms are limited to small size instances
and unable to implement in large-scale problems. To get rid of this limitation,
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researchers have developed the heuristic methods. In fact, the nearest neighbour
algorithm (NNA) [8] is a simple and easily implementable heuristic algorithm. It
starts with a randomly chosen city and adds the nearest unvisited city step by
step until all the cities are contained in the tour. Rosenkrantz et al. [9] developed
a repetitive nearest neighbour algorithm (RNNA) and insertion algorithm (IA)
to extend the NNA.

Several algorithms were reported to launch with a complete route and
improve it iteratively through a simple modification. 2-opt [10] and 3-opt [11]
are exoteric methods in this category, where a few edges (2 for 2-opt and 3
for 3-opt) are firstly removed from the current tour and then replace them by
the corresponding number of different edges to obtain a shorter tour. Lin and
Kernighan [12] enlarged this concept to k-opt where k is chosen in a reasonable
way. The variable neighbourhood search (VNS) [13,14] was also based on the
neighbours that are obtained iteratively by a systematic change of the node of
the initial tour. Most recently, Hore et al. [15] made a significant improvement
on the VNS algorithm.

In this context, population-based metaheuristic algorithms draw much more
attention among the researchers in the long run. Simulated annealing (SA) [16]
can be successfully applied to get a global optimal solution, but it requires longer
computational time. Several types of Genetic algorithms (GAs) [17] are also
introduced to rely on the principles of natural selection and genetics, and there
are some developments using the assorted operator and selection methods [18].
Ant colony optimization (ACO) [19] is an alternative technique which depends
on the foraging behaviour of ant colony and its modifications are also reported in
some works [20–22]. Recent population-based algorithm referred to as Symbiotic
organisms search (SOS) proposed by Cheng and Prayogo [23] employs the opti-
mization scheme through the mutualism, commensalism and parasitism phase,
and an extension of this algorithm developed by Ezugwu et al. [24] strengthens
the use of the mutation operator in the local search process.

However, population-based methods can solve the TSP problem quickly, but
might be easily trapped into a local optimum solution because there are a group
of random numbers and fine-tuning parameters in the process. Certainly, some
hybrid algorithms can be established to enhance the overall algorithm perfor-
mance. Recently, Ezugwu et al. [25] proposed a hybrid optimization algorithm
which fuses the SOS and SA algorithm together. On the other hand, Ozden et al.
[26] demonstrated how the parallel computing techniques can be used for TSP
and significantly decrease the overall computational time with the increase of
CPU utilization.

3 Proposed Algorithm

In the proposed framework, we take an attempt to solve the symmetric TSP
with the help of probe concept by using a rigorous step proportion value which
filters out worse route gradually and finally reaches to an optimal route. For an
N -city problem, the process needs to complete [N/2] steps, where
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[N/2] =

{
N
2 if N is even
N−1
2 if N is odd

(3)

The concept of probe, working steps of our proposed framework and the filtering
proportion value in each step are given in details in the following subsection
consecutively.

3.1 Probe Concept

Actually, the probe is a tool which is used to detect a certain substance accu-
rately. The hypothetical probe machine was introduced by Xu [27], in which
there were two types of probes: connective and transitive probes. The connec-
tive probes were used to connect two data, while the transitive probes were used
to pass information from one data to another data through the data fibers. The
probe machine was used to solve two types of NP-complete problems: Hamil-
ton and the graph colouring problem. By the inspiration of his work, we try
to present a new type of probe and also present a new filtering mechanism for
solving the symmetric TSP using a proportion value. Here, each of the sub-route
treats as a probe which is able to automatically find out two unvisited cities and
connect them through their wings. In this way, each probe gradually enhances
in every step and continue until all cities are included in the route. A sample of
3 cities probe and 5, 7, 9 cities probes generated from 3 cities probe in first four
steps are shown in Fig. 1. In the Fig. 1, the sample probes are denoted by xijk,
xijklm, xijklmnp, xijklmnpst and their wings are as follows:

ω(xijk) = {xj
ijk, xk

ijk}, ω(xijklm) = {xl
ijklm, xm

ijklm}

ω(xijklmnp) = {xn
ijklmnp, x

p
ijklmnp}, ω(xijklmnpst) = {xs

ijklmnpst, x
t
ijklmnpst}

3.2 Working Steps

The proposed algorithm accomplishes two tasks in each step. That is, it firstly
generates the possible probes and then filters out the worse probes. The whole
process consists of several steps which are described in details in the followings:

Step-1: In the first step, the process generates three city probes by consider-
ing two paths for each city position. The two path is constructed with an internal
city having other two cities that are adjacent to the internal city. More formally,
consider ci, cj and ck are three different cities, where ci is the internal city with
cj and ck are two different cities both are adjacent to ci, then the set of all two
paths with internal city ci is denoted by F 2(ci) and is defined by Eq. (4) [27]:

F 2(ci) = {cjcick � xijk : cj , ck ∈ I(ci); i, j, k are mutually different} (4)

where I(ci) is the set of cities adjacent to ci and xijk represent the probe that
covers three cities ci, cj and ck. Thus, we construct all possible three cities probe
for an N -city problem as follows:

X3 = ∪N
i=1F

2(ci) = ∪N
i=1{xijk : cj , ck ∈ I(ci); i �= j, k; k �= j} (5)
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(b) Probe ijklmx(a) Probe ijkx (c) Probe ijklmnpx (d) Probe ijklmnpstx

Fig. 1. A sample of 3, 5, 7 and 9 cities probes with their wings.

So there are N3 =| X3 |= N(N−1)(N−2)
2 such types of 3 city probes produced in

the first step for an N -city symmetric problem. Each probe xijk has exactly two
types of wings xj

ijk and xk
ijk, and this wing includes two other unvisited cities

automatically on the probe in next step.
The filtering process starts after the probes have been created. In this phase,

the system keeps some potential probes by using a proportion value defined in
Subsect. 3.3 and we consider these probes as good probes. The algorithm adopts
Euclidean distance (defined in Eq. (2)) to calculate the cost of the probes, and
based on the cost it keeps the best NG3 probes. Consequently, those probes are
good whose best order lies within the range [1, NG3 ], where NG3 indicates the
total number of good probes with 3 cities. If we choose α3 as a proportion value
in the first step, then the total number of good probes is as follows:

NG3 =| G3 |= α3N3, G3 ⊂ X3 (6)

where G3 is the set of all good probes after completing the filtering task in first
step.

Step-2: Based on good probes obtained from the first step, the algorithm
produces 5 cities probe in the second step. Each good probes enlarge the route
through the wings by adding two unvisited cities. In this step, the system needs
to add exactly two cities in the probe from the remaining (N − 3) unvisited
cities. So based on G3, the probe can be built by the following ways:

X5 = {clcjcickcm � xijklm : cjcick ∈ G3; cl, cm ∈ RN−3(cjcick); i �= j �= k �= l �= m}
(7)

where RN−3(cjcick) is the set of remaining unvisited cities corresponding to
good probe cjcick, i.e., RN−3(cjcick) = {c1, c2, · · ·, cN} − {ci, cj , ck}. It is noted
that the two city cl and cm are chosen in both order from RN−3(cjcick). Hence,
the total produced probe is estimated based on Eq. (8):

N5 =| X5 |= 2NG3

(
N − 3

2

)
= NG3(N − 3)(N − 4) (8)
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After generating 5 cities probe the process also takes a filtering proportion value
in this step which gives some good probes and this probe will be used in the
next step to create 7 cities probe. Therefore, the number of good probes at the
end of this stage can be calculated by the following equation:

NG5 =| G5 |= α5N5, G5 ⊂ X5 (9)

where α5 represent the filtering proportion value in the step and G5 is the set
of all good 5 cities probe, respectively.

Step-(k+1): The (k+1)th step of the procedure starts with the good probes
(G2k+1) and their corresponding cost which are obtained from kth step, where

NG2k+1 =| G2k+1 |= α2k+1N2k+1 (10)

In the above Eq. (10), NG2k+1 indicates the number of total good probes, α2k+1

is the filtering proportion value and N2k+1 represent the set of possible generated
probes in kth step. There are (2k+1) cities in each probe of the above mentioned
good probes. In fact, when the algorithm arrive in this step, it needs to include
(N − 2k − 1) more cities in the probe. By adding two cities from (N − 2k − 1),
each probe becomes (2k+3) cities probe. The set of creates probe in the current
step based on good probes (G2k+1) is denoted by X2k+3 and is defined by:

X2k+3 = {cs
(2k+1)cities good probe

︷ ︸︸ ︷

clcj . . . ckcm ct
︸ ︷︷ ︸

(2k+3)cities probe

: cl . . . cm ∈ G2k+1; cs, ct ∈ RN−2k−1(cl . . . cm), s �= t}

(11)
The two cities cs and ct are taken in both ways, i.e., (cs, ct) and (ct, cs) both
are included and RN−2k−1(cl . . . cm) = {c1, c2, · · ·, cN}−{cl, cj , . . . , ck, cm}. The
total produced probes in this step as shown in Eq. (12):

N2k+3 =| X2k+3 |= 2NG2k+1

(
N − 2k − 1

2

)
= NG2k+1(N − 2k − 1)(N − 2k − 2)

(12)
Now, the algorithm adopts a filtering proportion value α2k+3 that filled out the
potential probe. So the number of good probes with (2k + 3) cities obtained as:

NG2k+3 =| G2k+3 |= α2k+3N2k+3, G2k+3 ⊂ X2k+3 (13)

where G2k+3 is the set of all good probes at the end of this step.
In this way, the probe construction and filtering mechanism continue until

all the cities are contained in the probe. When the algorithm reaches in the
last step, it generates probes of N cities and finds out the best probes from all
generated probes. It is important to mention that in the last step of the even
number of problems, there is one city remaining to visit, in this case the probe
uses any one of its wings to include the city properly.
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3.3 Filtering Proportion in Each Step

The filtering proportion plays a vital role in our proposed framework. Usually,
an inappropriate choice of proportion value leads to trap the whole process and
yields a worse solution as well as take longer running time. So it is very chal-
lenging task to design an efficient filtering proportion value that keeps potential
probes from produced probes in each step. In this work, we address a filtering
proportion value of kth step through the experiments by trial and error method
that is denoted as α2k+1 and defined as:

α2k+1 =
C

N +
√

k
; k = 1, 2, 3, · · · · · (14)

where N represents the number of cities and C is the constant. The above
proportion value has been chosen in such a way that it decreases slowly step by
step, i.e., it maintains the relation α3 > α5 > · · · > α2k+1 > α2k+3 · ··. During
the experiment, we found that the number of good probes increases with the
gradually decreases of proportion value in each step, but after a certain step later
it also starts to decrease. In some cases, we use some strategies in the remaining
steps such as trade off to decrease the proportion value and sometimes it is
increased by 1

(N−2k−1)(N−2k−2) . By the experiment, we estimated that the value

of C lie within the interval [ 2(N+1)
N(N−1)(N−2) ,

800(N+1)
N(N−1)(N−2) ] for our computational

results.

4 Experimental Results

In this section, we conduct a number of experiments for measuring the capability
of our proposed framework based on several TSPLIB [28,29] datasets ranging
from 14 up to 1432 cities. Actually, TSPLIB is a publicly available library that
contains the sample of TSP instances and their corresponding optimum solu-
tions. The technical computations in this study are performed in MATLAB
R2016b software by using 4 core GPU system. The average required time is
measured by running each instance ten (10) consecutive times. The experimen-
tal results from our experiments have been displayed in Table 1. In the left part of
the table, the first column represents the serial number (S/N) of the instances,
the second column contains the name of each instance, in the third column
“Scale” denote the total number of cities in each instance, the fourth column
“Results” stands for the length of obtained solution from the experiment, the
fifth one represent average required times (in seconds) of each instance, the sixth
column available for the best known results (BKR) obtained from the TSPLIB
and the right part of the table brings similar indicator as the left part.
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Table 1. The computational results of the proposed algorithm for the symmetric TSP

S/N Instances Scale Results Time (Se.) BKR S/N Instances Scale Results Time (Se.) BKR

1 burma14 14 3323 2.1148 3323 38 u159 159 51624 137.3 42080

2 p01 15 291 0.0101 291 39 si175 175 22051 166.0453 21407

3 ulysses16 16 6859 4.1738 6859 40 brg180 180 1960 347.3403 1950

4 gr17 17 2085 0.0181 2085 41 rat195 195 2512.8 6.1452 2323

5 gr21 21 2707 0.3412 2707 42 d198 198 17366 2.2832 15780

6 gr24 24 1272 31.278 1272 43 kroA200 200 35420 2.1057 29368

7 fri26 26 937 0.4982 937 44 kroB200 200 35895 2.3493 29437

8 bays29 29 2093 613.2 2020 45 ts225 225 135000 958.7 126643

9 bayg29 29 1667 0.0282 1610 46 tsp225 225 4550.5 16.8851 3916

10 dantzig42 42 762 93.6 699 47 pr226 226 94850 863.8 80369

11 swiss42 42 1376 11.8 1273 48 gil262 262 2736.7 12.0015 2378

12 att48 48 10671 1265.2 10628 49 a280 280 3111.8 8.1597 2579

13 hk48 48 11461 206.8 11461 50 pr299 299 57931 43.1237 48191

14 eil51 51 455.86 17.48 426 51 lin318 318 52547 65.6026 42029

15 berlin52 52 7982.2 3.3017 7542 52 rd400 400 18581 101.6123 15281

16 brazil58 58 25649 2.2556 25395 53 fl417 417 15406 44.7756 11861

17 st70 70 762.34 0.1033 675 54 pcb442 442 61346 55.0617 50778

18 eil76 76 601.46 39.8 538 55 d493 493 42408 136.3764 35002

19 pr76 76 124740 63.4 108159 56 att532 532 34239 258.6158 27686

20 gr96 96 61741 2119.6 55209 57 si535 535 50286 322.1954 48450

21 rat99 99 1443.6 0.9600 1211 58 pa561 561 3313 248.8954 2763

22 rd100 100 9283 21.5 7910 59 u574 574 46191 290.0283 36905

23 kroA100 100 24511 0.2025 21282 60 rat575 575 8066.2 272.50 6773

24 kroB100 100 23568 0.3084 22141 61 p654 654 48380 1489.9 34643

25 kroD100 100 25767 45.3334 21294 62 d657 657 63099 282.42 48912

26 kroE100 100 24571 0.4640 22068 63 u724 724 50391 399.1771 41910

27 eil101 101 729.2 83.4142 629 64 rat783 783 11140 558.2935 8806

28 lin105 105 16638 68.2125 14379 65 pr1002 1002 314850 1566.7 259045

29 pr107 107 50448 36.26 44303 66 si1032 1032 96145 1737.3 92650

30 gr120 120 8255 59.3458 6942 67 u1060 1060 287620 2584.8 224094

31 pr124 124 70605 80.9855 59030 68 vm1084 1084 305270 2816.4 239297

32 bier127 127 132320 383.1 118282 69 pcb1173 1173 73093 2408.1 56892

33 ch130 130 7002 1.2577 6110 70 d1291 1291 64050.8 4280.1 50801

34 pr136 136 116580 2.2622 96772 71 rl1304 1304 323060 4228.5 252948

35 pr144 144 62370 356.24 58537 72 rl1323 1323 357230 4386.1 270199

36 ch150 150 7195.8 0.800 6528 73 nrw1379 1379 68157 4541.2 56638

37 kroB150 150 29319 5.7321 26130 74 u1432 1432 190400 5494.4 152970

5 Conclusion and Future Research

We have established a consecutive route filtering approach with the help of probe
concept by using an appropriate filtering proportion value in each step as a new
approach to solving the symmetric TSP. From our experimental results, it is
found that the proposed approach can effectively reach at the optimum point to
all of the tested datasets that contain up to 26 cities and also for the 48 cities
dataset (hk48, Instance no. 13 in Table 1). It is also noted that our obtained
solutions are close to the best known solution of some other datasets whereas,
the performance of our implemented algorithm is also satisfactory on big scale
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datasets. In the future, we try to investigate more effective and efficient filtering
approach to implement this framework to solve the existing asymmetric trav-
elling salesman problems (aTSPs) and the multi travelling salesman problems
(mTSPs). In addition, it is also a good direction to fuse this algorithm with
the other existing heuristic or meta-heuristic algorithms together in our further
study.
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