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Abstract A computerized adaptive test (CAT) is used in this paper where the item
bank is calibrated by using the nonparametric isotonic model proposed by Luzardo
andRodríguez (Quantitative psychology research. Springer International Publishing,
Switzerland, pp. 99-108, 2015). Themodel is based on the estimation of the inverse of
the item characteristic curves (ICC), and it uses a two-stage process. First, it uses the
Ramsay nonparametric estimator of the ICC (Ramsay In Psychometrika 56:611–630,
1991) and then it estimates the density function of the inverse ICC by using Ramsay’s
estimator. By integrating the density function and then symmetrizing it, we obtain the
result. Xu and Douglas (Psychometrika 71:121–137, 2006) studied the possibility of
using Ramsay’s nonparametric model in a CAT. They explored the possible methods
of item selection but they did not use Fisher’s maximum informationmethod because
the derivatives of the ICC may not be estimated well. We present, for the isotonic
model, a suitable way to estimate the derivatives of the ICCs and obtain a formula
for item information that allows us to use the maximum information criterion. This
work focuses on comparing three methods for selecting items in the CAT: random
selection, the maximum Fisher information criterion with the isotonic model, and
the Kullback-Leibler information criterion.

Keywords Isotone IRT nonparametric model · Kullback-Leibler information ·
Computerized adaptive test

1 Introduction

Nonparametric item response models have been an alternative to parametric item
response models, especially when it comes to finding a flexible model for ICC mod-
elling. However, a common problem is how to make CAT administration and, in
particular, automatic item selection operational.
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Xu and Douglas (2006) explored the possibility of applying CAT by using Ram-
say’s nonparametric model. Under this model, the usual methods for estimating the
ICC derivative do not work properly and the derivative may be negative for some val-
ues of the ability. This means it is impossible to use the maximum Fisher information
criterion when choosing the items to be managed. Xu and Douglas (2006) propose as
alternative the use of procedures based on Shannon entropy (Cover & Thomas, 1991;
Shannon, 1948) and Kullback-Leibler information (Chang & Ying, 1996), since the
implementation of these procedures does not require ICC derivatives. In addition,
when the test size is large enough, they are equivalent to the maximum Fisher infor-
mation criterion. The authors used a simulation study to show that both procedures
work properly and have very similar outcomes.

In this paper we will show that when the nonparametric isotonic model is used
to estimate the ICCs, their derivatives can be calculated in a simple way, and they
can be used to estimate the Fisher information for each item. Our aim is therefore to
compare this new approach with those proposed by Xu and Douglas (2006). Since
the Kullback-Leibler procedure and that based on the Shannon entropy produce
very similar results, we will only use Kullback-Leibler. Our main intention is to
compare performances in the case of small test sizes, since the Kullback-Leibler
and the Shannon entropy procedures are asymptotically equivalent to the maximum
information criterion.

2 One-Dimensional Isotonic Model

The isotonic model presented in Luzardo & Rodríguez (2015) estimates the ICC in
two stages. The first stage uses the Ramsay model (1991) as a preliminary estimate
of the ICC, and the second obtains the isotonic estimator.

Let X be a dichotomous item and assume that P(θ) is the probability that a
subject with ability θ will respond to item X correctly. As the random variable X is
Bernoulli, it follows that P(θ) = E(X |� = θ), that is, the ICCs match a conditional
expectation. On this basis, Ramsay estimated the ICCs by means of a nonparametric
kernel regression estimator.

Let us assume thatN subjects with a latent trait θ1 . . . θN respond to n dichotomous
items. Let us denote Xi j as the binary response of subject i to item j (i = 1,…, N j =
1,..,n). The kernel smoothing estimator of Pj (θ) is

Pj (θ)
∧

=
∑N

i=1 Xi j Kh

(
θ̂i − θ

)

∑N
i=1 Kh

(
θ̂i − θ

) (1)

where the bandwidth h contemplates the trade-off between the variance of the esti-

mator and the bias. Function K is a kernel and Kh(θi − θ) = 1
h K

(
(θi−θ)

h

)
. In Eq. (1),

θ̂i is the estimator of the i-th subject’s ability. These estimates can be easily calculated
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by converting the empirical distribution of the sum of the subjects’ scores to the scale
determined by the distribution of the ability.

Wewill take—with no loss of generality—θ to have a uniformdistribution in [0,1].
This assumption is justified by the non-identifiability of the scale. Let us assume that
the distribution of the actual trait τ is F(τ ) and let us consider a specific item with a
strictly increasing ICC, which we will denote as P(τ ).

If we change the variable θ = F (τ ), the function P∗(θ) = P
(
F−1(θ)

) = P(τ ) is
also the ICC of that item. It is clear that the distribution of θ is uniform in [0,1] and
P∗(θ) is increasing.

Note that if U1, . . . ,UT is a sample of independent random variables with a uni-

formdistribution on the interval [0,1], then 1
Thd

∑T
t=1 Kd

(
P∗(Ut )−u

hd

)
is an estimator of

the density of the random variable P∗(U ), where Kd is a kernel and hd a bandwidth.
The density of P∗(U ) is P∗−1′

(u)I[P∗(0),P∗(1)](u), where I is the indicator function.

Then, 1
Thd

∫ θ

−∞
∑T

t=1 Kd

(
P∗(Ut )−u

hd

)
du is a consistent estimator of P∗−1 in θ (Dette,

Neumeyer, & Pilz, 2006).
In order to apply the above property to our problem, let us consider a kernel Kr a

bandwidth hr , and a grid 1
T , . . . , t

T , . . . , 1. Then, the Ramsay estimator of the ICC
in each score is

PR
∧

(
t

T

)

=
∑N

i=1 Kr

( t
T −θ̂i

hr

)
Xi

∑N
i=1 Kr

( t
T −θ̂i

hr

) (2)

Based on the above, the isotonic estimator of the inverse of the ICC in θ is:

P∗−1(θ)

∧

= 1

Thd

∫ θ

−∞

∑T

t=1
Kd

⎛

⎝
PR
∧(

t
T

) − u

hd

⎞

⎠du (3)

The estimator P∗
∧

is obtained by the reflection of P∗−1
∧

with respect to the bisector
of the first quadrant.

3 Item Selection Method Through Maximum Information

The maximum information procedure is based on the fact that when the maximum
likelihood method is used to estimate the ability, the test information is inversely
proportional to the estimation error of θ . It is therefore reasonable to present in the
next step the item that will maximize the accumulated information. This procedure
will be adopted in this article. It is therefore necessary to be able to correctly estimate
the derivative of the ICC of the nonparametric isotonic model.
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Fig. 1 True ICC and
estimated ICC using the
isotone model

True ICC Isotone model

In our case, we easily obtain a simple expression for the derivative of the ICC
which is smooth and always positive by applying the inverse function derivative
theorem.

P∗′
(θ) = 1

(
P∗−1

)′
(P∗(θ))

= Thd
∑T

t=1 Kd

(
P∗(Ut )−P∗(θ)

hd

) (4)

Figure 1 shows the true ICC and the estimated ICC by means of the isotonic
model, and Fig. 2 shows the derivatives of this ICC.

Now, on the basis of (4), we can estimate the information function of item j
through:

I j (θ)
∧

=

(
∂P∗

j

∧

(θ)

∂θ

)2

P∗
j

∧

(θ)
(
1 − P∗

j

∧

(θ)
) =

⎡

⎢
⎢
⎢
⎢
⎣

Thd

∑T
t=1 Kd

⎛

⎜
⎝
P∗( t

T

)∧

−P∗(θ)

hd

⎞

⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎦

2

P∗
j

∧

(θ)
(
1 − P∗

j

∧

(θ)
) (5)

Information estimation works very well on values where item information is
maximum, having distortions when we move away from that value. Our interest is
focused on a setting where information is maximum, so outside that neighborhood,
we can estimate information using a linear model. Figure 3 shows the information
function estimate.
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Fig. 2 True derivative and
estimated derivative of the
ICC

True derivative  Estimated derivative

Fig. 3 Estimated
information function

The maximum likelihood method will be used to estimate the ability. If P∗(θ) is
the ICC when the ability follows a uniform distribution, θ will be estimated in step
k through

θ̂i = argmax
∏k

j=1
P∗(θ)

Xi j
(
1 − P∗(θ)

)1−Xi j (6)
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4 Item Selection Method Using Kullback-Leibler

This divergence proposed by Kullback and Leibler (KL) (1951) measures the dis-
crepancy between two measures of probability. On the basis of this, Chang and Ying
(1996) define a measure of global information for use in CAT.

If P and Q are two probability measures over �, and if dQ
dP is the Radon-Nikodym

derivative of Q with respect to P, the Kullback Leibler divergence is defined as:

K L(P‖Q) = −
∫

�

ln
dQ

dP
dP (7)

In particular, if μ is a measure over �, such that f and g are densities of P and Q
with respect to μ, then

K L(P‖Q) =
∫

�

f ln f

g
dμ (8)

If we consider the maximum likelihood estimate in a parametric family f (θ , x),
and f (θ0, x) as the true density, then:

K L
(
fθ0‖ fθ

) =
∫

f (θ0, x) ln
f (θ0, x)

f (θ, x)
dx (9)

Chang and Ying (1996) define the Kullback Leibler information for item j and
subject i as

K L j (θ‖θi ) = E

[

ln
L j (θi |Xi j )

L j (θ |Xi j )

]

= Pj (θi )ln
Pj (θi )

Pj (θ)
+ (

1 − Pj (θi )
)
ln

1 − Pj (θi )

1 − Pj (θ)

(10)

In the context ofCATs, if θ̂k is themaximum likelihood estimator of θ , after k items

have been responded to, then the global information index GK L j

(
θ̂k

)
is obtained

by taking the average of the discrepancy K L j

(
θ‖θ̂k

)
in the interval centered on θ̂k ,

that is, if εk > 0,

GK L j

(
θ̂k

)
=

∫ θ̂k+εk

θ̂k−εk

K j

(
θ‖θ̂k

)
dθ (11)

The sequence εk → 0 with k. Chang and Ying (1996) recommend εk ∝ k− 1
2 so

that the interval
(
θ̂k − εk, θ̂k + εk

)
will contain the actual value of the ability. Based

on the above, the item to be chosen for step (k + 1) will be the one with the greatest
GKL, which has not been applied yet.
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5 Simulation Study

The objective of this study was to compare three ways of selecting items in the
CAT. The selection methods implemented are: the Kullback-Leibler procedure, the
information-based procedure using the isotonic estimation, and random selection of
items. The ability was estimated by using maximum likelihood and considering the
nonparametrically estimated ICCs.Additionally, the ability for random itemselection
was estimated by maximum likelihood, when the ICC is estimated parametrically.

A bank of 700 items was built whose ICCs followed the two-parameter logistic
model (2PL). The discrimination parameters of the items were simulated from a
uniform distribution [0.75, 2.5] and the difficulty parameters were simulated from a
uniform distribution [−2, 2].

To estimate the ICCs, the responses of 5000 subjects were simulated. The abilities
were assumed to follow a standard normal distribution. On the basis of the responses,
we used the isotonic estimator with Gaussian kernels Kr and Kd .

The bandwidths used were hr = (5000)(−
1
5 ) = 0.18, and a robust estimate for

hd = 0.9(5000)(−
1
5 )min

(
sd, Q3−Q1

1.364

)
, where the deviation and the quartiles refer to

the Ramsay’s estimator of the ICC for each item.
For the CAT, 5000 subjects were generated whose traits had a uniform distribution

on the interval [0,1]. A test of 50 items in length was applied for each of the methods
and the procedures for each subtest of 5, 10, 20, 30, 40 and 50 items in length
were assessed. The different procedures were compared to root mean squared error
(RMSE) and bias across the simulations. The RSME and bias were computed for
each subtest through:

RMSE =
⎛

⎜
⎝

∑N
i=1

(
θ̂ι − θi

)2

N

⎞

⎟
⎠

( 1
2 )

(12)

BI AS =
∑N

i=1

(
θ̂ι − θi

)2

N
(13)

Also, the RSME and bias of the estimators were calculated with a certain value
of θ through:

RMSE(θ) =
⎛

⎜
⎝

∑
iε I (θ)

(
θ̂ι − θi

)2

#I (θ)

⎞

⎟
⎠

( 1
2 )

(14)

BI AS(θ) =
∑

iε I (θ)

(
θ̂ι − θi

)2

#I (θ)
(15)

where I (θ) = {i : θi = θ, 1 ≤ i ≤ N }
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6 Results

Table 1 presents the average root mean square error for the different methods and
for different subtest lengths. This table shows how the procedures based on the
information estimated from the isotonic ICC and the Kullback-Leibler method work
in a similar way. In addition, these methods are better than the random selection of
items, and the estimation of the ability is based on the isotonic nonparametric model
when fewer than 30 items are administered. They are also always better than random
selection and ability estimation using 2PL model. Table 2 shows a similar behavior
for the bias.

Figure 4 graphically shows how the RMSE stabilizes after a test length of 20 items
for the nonparametric isotone model and Kullback-Leibler procedures. The Fig. 5
shows that the bias is also stabilized.

Table 1 Average root mean
square error

Selection
rule

Number of items

5 10 20 30 40 50

Random
isotone

0.203 0.147 0.108 0.085 0.074 0.074

K-L 0.154 0.125 0.098 0.085 0.076 0.074

Isotone
Informa-
tion

0.154 0.123 0.098 0.084 0.080 0.074

Random
2PL

0.242 0.181 0.142 0.116 0.105 0.103

Calculated on the 5000 subjects

Fig. 4 RMSE of selection
procedures
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Fig. 5 Bias of selection
procedures

Fig. 6 RMSE over theta

An analysis of the RMSE(θ) finds that the same behavior is obtained for all θ,
with an equivalence of the Kullback-Leibler method and the nonparametric isotonic
method and the latter’s superiority over random selection using de 2PL model pro-
cedure (Fig. 6).

When the bias is analyzed globally and as a function of θ, both methods behave
appropriately (Fig. 7).
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Fig. 7 BIAS over theta

Table 2 Bias

Selection rule Number of items

5 10 20 30 40 50

Random isotone 0.012 −0.013 0.003 −0.002 0.001 0.001

K-L −0.003 −0.009 0.002 0.004 0.0001 0.001

Isotone Information 0.0004 0.003 0.007 0.005 0.005 0.005

Random 2PL 0.002 −0.014 −0.011 −0.012 −0.01 −0.01

Calculated on the 5000 subjects

7 Discussion

The procedure based on estimating information through the isotonic model quickly
converges to the actual trait, stabilizing after 20 items. The performance of the pro-
cedure presented based on the isotonic model is similar to that of KL in terms of root
mean square error, and simpler to implement. It is also observed that both adaptive
procedures work better than random selection of items in terms of root mean square
error.

It would be wise to expand some studies that would extend these results, for
example by studying the rate of exposure of the items, which it has been omitted in
this work.
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