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Abstract One flexible approach for item response modeling involves use of a
monotonic polynomial in place of the linear predictor for commonly used para-
metric item response models. Since polynomial order may vary across items, model
selection can be difficult. For polynomial orders greater than one, the number of
possible order combinations increases exponentially with test length. I reframe this
issue as a combinatorial optimization problem and apply an algorithm known as sim-
ulated annealing to aid in finding a suitable model. Simulated annealing resembles
Metropolis-Hastings: A random perturbation of polynomial order for some item is
generated and acceptance depends on the change in model fit and the current algo-
rithm state. Simulations suggest that this approach is often a feasible way to select a
better fitting model.

Keywords Combinatorial optimization · Nonparametric item response theory ·
Monotonic polynomial · Balanced incomplete block design

Many standard unidimensional item response models assume a normally distributed
latent trait and a simplistic relationship between the latent trait and the item responses.
For example, the two-parameter logistic model (2PL) represents a multivariate ex-
tension of logistic regression, where the log-odds of obtaining a correct response to
the items is a linear function of the latent trait (Birnbaum, 1968). This relationship
may not be expected to hold for all educational and psychological constructs (Meijer
& Baneke, 2004), and violations may arise from population heterogeneity in expo-
sure to unique item content (Falk & Cai, 2016b) or items that require multiple steps
in order to complete (Lee & Bolt, 2018). Additional flexibility in the trait-response
relationship is possible, including but not limited to nonparametric Kernel smoothing
(Ramsay, 1991), smoothed isotonic regression (Lee, 2007), Bayesian nonparamet-
ric techniques (Duncan & MacEachern, 2013), normal ogive models that assume
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heteroscedastic errors (Molenaar, 2015), and splines (Ramsay &Wiberg, 2017). Al-
ternatively, if the source of this assumption violation stems in part from a non-normal
trait distribution, one could directly model such non-normality (Woods, 2007).

The focus of this paper is on a monotonic polynomial (MP) approach to flexible
item response function (IRF) estimation (Falk&Cai, 2016a, 2016b; Liang&Browne,
2015). The basic idea behind MP item response models is to replace the linear pre-
dictor of a standard item responsemodel with anMP. Like nonparametric techniques,
MP models make few assumptions about the underlying process that produces non-
standard response functions. Rather, increasing polynomial order allows MPmodels
to approximate many different functional forms, regardless of whether the MP is the
true model (Feuerstahler, 2016). In contrast to the 2PL, a logistic function of a mono-
tonic polynomial models the log-odds of a correct response as a polynomial function
of the latent trait with constraints imposed such that this relationship is monotonic.

Webelieve theMPapproachwarrants further study for its potential to fulfill several
needs of large scale or operational testing. For example, a psychometricianmayuse an
MP-based model to improve item fit for a few items on a long test, allowing retention
of expensive-to-develop items, but still use a traditional item model such as the
2PL or three-parameter logistic (3PL) for the remaining test items. Since MP-based
models can also be explained using an analogy with polynomial regression, MP-
based approaches may be more substantively interpretable to some stakeholders. We
also conjecture that the derivatives necessary forMP-based itemmodels to be used in
a computer adaptive test with traditional item selection strategies are readily available
in closed form, in contrast to some other approaches (Xu&Douglas, 2006). Finally, a
testing program that has hundreds of items is likely to employ a planned missing data
design. It would otherwise be burdensome to expect respondents to complete all such
test items in a diligent manner. MP-based item models can be used in conjunction
withmaximummarginal likelihood (MML) estimation (Bock&Aitkin, 1981), which
can be used with planned missing data designs and investigations of differential item
functioning (Falk & Cai, 2016a).

1 The Computational Problem

One potential barrier for MP-based models involves a computational problem in
selecting polynomial order. To further understand, consider the IRF for a logistic
function of a monotonic polynomial (Falk & Cai, 2016a; Liang & Browne, 2015):

Pj (1|θ) = 1

1 + exp(−(c j + m j (θ)))
(1)

where j = 1, . . . , n indexes n test items, θ corresponds to the latent trait, and m j (θ)

is a polynomial term:

m j (θ) = b1, jθ + b2, jθ
2 + · · · + b2k j+1, jθ

2k j+1 (2)
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Fig. 1 Example response functions for three different order polynomials

m j (θ) is parameterized to bemonotonic increasing and has a non-negative deriva-
tive with respect to θ . This is accomplished in part by a polynomial with an odd
number of terms: 2k j + 1, where k j is a non-negative integer that controls polyno-
mial order for item j (see Fig. 1). In addition, the coefficients, b1, j , b2, j , . . . , b2k j+1, j ,
are not directly estimated, but are a function of 2k j + 1 other parameters with con-
straints that maintain monotonicity. Other MPmodels have been developed based on
the 3PL, generalized partial credit, and graded response models (Falk, 2018; Falk &
Cai, 2016a, 2016b).When k j = 0, thesemodels reduce to their standard counterparts
(e.g., Eq. 1 reduces to the 2PL).

The key to the computational problem concerns the selection of k j , which may be
different for each item. This problem is a byproduct of using MML for estimation:
Selection of k j for one itemmay affect itemfit for other items and overall model fit. In
one investigation, Falk andCai (2016a) employed a step-wise approachwherebyAIC
was used to select a single increase in polynomial order for one item at a time. This
approach is difficult to usewith a long test as each stepwould require fitting nmodels.
For example, if n = 100, then 100 models must be fit before increasing polynomial
order for a single item. In a different paper, Falk and Cai (2016b) experimented
with use of summed score item fit statistics, S − X2 (Orlando & Thissen, 2000),
to screen for items that may be good candidates for use of an MP. Although this
approach arguably improved fit, S − X2 had power that was less than expected to
detect non-standard items, and using summed score based item fit statistics may not
always be desirable with missing data. If an observed score substitute for θ is used
in estimation instead, then the modeler may proceed item by item in selection of k j .
However, this approach may not readily handle multiple group models or models
with missing data.

1.1 A Possible Solution

We reframe the selection of k j for each item as a combinatorial optimization problem.
If we consider k j for each item from 0 to 2, then there are 3n possible combinations of
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polynomial order. Clearly for large n, there may bemany combinations and therefore
too many possible models to actually try out even with a modern computer. Further
suppose that there is some combination of polynomial order that may be optimal
(e.g., according to information criterion such as AIC or BIC). In addition to a step-
wise approach being computationally slow, it may also be prone to getting stuck at
a local optimum.

Although there are a number of combinatorial optimization algorithms suitable
for finding an approximate global optimum, we chose to experiment with simulated
annealing (Černý, 1985; Kirkpatrick, Gelatt, & Vecchi, 1983), which has seen some
use by psychometricians (Drezner &Marcoulides, 1999; Edwards, Flora, & Thissen,
2012). SA gets its name in part from an analogy to metallurgy, yet we find it more
intuitive to explain its workings by analogy to Metropolis-Hastings (MH). Given
some model, Ms , at iteration s, SA has the following steps:

1. Generate some candidate model, M∗
s , from a list of possible neighboring models

in a well-defined search space.
2. Compute energy for the candidate, e(M∗

s ), and current model, e(Ms).
3. Determine acceptance/rejection of the candidate, M∗

s , based on the difference
in energy, e(M∗

s ) − e(Ms), and the current temperature, ts , which represents the
current algorithm state.

4. Repeat 1–3 and stop based on an iteration maximum, S, or termination rule.

In the sameway thatMHwill tend to move towards and sample from high-density
regions of a probability distribution, SA will tend to move towards and select models
in regions of a search space that have better fit. In our application, we allowed values
for k j between 0 and 2, which defines the search space as the 3n possible polynomial
order combinations. We considered a neighboring model to be a random increment
or decrement of 1 to k j for one or two items that were randomly sampled with
uniform probability. For example, if item 5 were to be randomly selected and the
current k5 = 1, then the candidate could only change to k5 = 0 or k5 = 2 (selected
with equal probability). If k5 = 0, then the candidate had k5 = 1. k j for all other
items would remain as-is. Changing k j by only one at a time for each item and only
for a couple of items may allow a reduction in estimation difficulty. For example,
use of parameter estimates from a lower-order polynomial may be used as starting
values for some parameters when estimating models with higher-order polynomials.
However, defining neighbors and the search space in this way, it is possible to move
from one state of the search space (e.g., all k j = 0) to the furthest state (e.g., all
k j = 2) within only 300 or 150 steps or less if n = 100 and either one or two items’
polynomials are perturbed at each step.

Energy is a function of the fittedmodel and defines its optimality. For this purpose,
we used e(·) to calculate either AIC or BIC. Thus, lower energy indicates better fit.
The acceptance probability of M∗

s was based on the following,

min
{
1, exp(−(e∗ − e)/ts)

}
(3)



Model Selection for Monotonic Polynomial Item Response Models 79

wherewe use e∗ and e as shorthand for e(M∗
s ) and e(Ms), respectively. In otherwords,

if M∗
s has lower energy (or improves model fit), it is accepted with certainty. If M∗

s
results in worse fit, the model may still be accepted with some non-zero probability.
The function in (3) is based on Kirkpatrick and colleagues’ work (Kirkpatrick et
al., 1983) and is often used in applications of SA, in part due to its similarity to
acceptance probabilities under MH (see p. 672).

Acceptance of a suboptimal model may still be useful, especially early in the
algorithm, to the extent that it allows SA to avoid being stuck in a local optimum.
However, ts typically decreases across iterations as determined by a cooling schedule
so that the probability of accepting a suboptimal model is less likely over time.
A conceptual explanation of this behavior is as follows. If after many iterations
SA has led Ms to (hopefully) be near the global optimum, a lower value for ts
will provide increasingly smaller acceptance probabilities for suboptimal models,
potentially forcing additional acceptedmodels to be closer and closer to the optimum.

Although there is a rich literature on the selection of a starting value and cooling
schedule for ts , in this paper we opted for a simplistic solution as a preliminary test
of SA’s potential. In particular, we considered starting temperatures of 5, 10, and 25.
To provide a concrete example, suppose an increase in BIC of 10 is very undesirable.
With ts = 5, ts = 10, and ts = 25 such an increase would yield acceptance of ap-
proximately .14, .37 and .67, respectively, meaning that in most cases such a model
would be accepted when ts = 25, but rejected when ts = 5 or ts = 10. We chose a
straight cooling schedule in which temperature decreases linearly across iterations:
ts = t0(S − s)/S, where t0 is the starting temperature. Though we note that finer
tuning may result in slightly better performance (Stander & Silverman, 1994).

2 Simulations

Simulations were conducted to test the ability of SA to select polynomial order for
MP-based item models. The main outcome was item response function recovery,
followed by whether SA correctly modeled non-standard items with an MP. A final
purpose was to test MP-based models along with SA under conditions that might
occur with a planned missing data design.

2.1 Method

Fixed Factors. Simulated datasets included 100 dichotomous items, 5000 respon-
dents, and a standard normal θ . Twenty-five replications per cell of the below data
generation design were conducted, with data generation in R (R Core Team, 2015)
and models fitted using rpf Pritikin (2016) and OpenMx Neale et al. (2016).

Data Generation. We manipulated the percentage of items that followed a non-
standard model (20, 40, 60, and 80%), with such IRFs generated as the cumula-
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tive distribution function (CDF) from a mixture of normal variates, p1N (μ1, σ
2
1 ) +

p2N (μ2, σ
2
2 ) + p3N (μ3, σ

2
3 ). To generate variety in IRFs across items and datasets,

the following values were randomly generated, p1 ∼ unif(.1, .6), p2 ∼ unif(.1, .3),
p3 = 1 − p1 − p2, μ1 ∼ N (−2.2, .22), μ2 ∼ N (2.2, .22), μ3 ∼ N (0, .22), σ1 ∼
N (2, .32), σ2 ∼ N (.6, .32), and σ3 ∼ N (.6, .32). The remaining items followed a
normal CDF (analogous to a normal ogive model) with μ ∼ unif(−2.5, 2.5) and
σ ∼ N (2, .42). Although the MP-based item model does not strictly follow the ex-
act same shape as the normal CDF items, we still consider them “standard” items
for the following investigation since these items should be well approximated by a
2PL or MP with k = 0.

We also compared complete data (all respondents completed all items) versus
missing data. The missing data condition emulated a planned missing data design
with a balanced incomplete block design. The 100 items were split into 5 blocks
of 20 items each. Ten test forms with 40 items (i.e., 2 blocks) each were created,
corresponding to 60%missing data.We argue that this number of items per test-taker
is not atypical of such a design for item calibration, while 60% missing data at this
sample size may pose a challenge for MP models.

Fitted Models. To all datasets, we used the logistic function of an MP in (1) as
parameterized by Falk and Cai (2016a) and included three models in which k was
fixed to the same for all items: k = 0, k = 1, and k = 2. Note that k = 0 corresponds
to the 2PL model. Following these models, we performed several runs of SA by
crossing the following conditions: Energy (AIC vs. BIC), starting temperature (5,
10, and 25), and number of items to perturb (1 vs. 2). One of the three fixed models
with the best energy was chosen as the starting model for each SA run. For all MP
models with k > 0, soft Bayesian priors following Falk and Cai (2016a) were used.
One additional model followed the same procedure as SA and started at the best fixed
k model according to BIC, but all candidate models were accepted with certainty.
We refer to this approach as semi-random in what follows, and was included to test
whether SA has any advantage over a completely random search in the neighborhood
of the best BIC of the fixedmodels. This and all SA runs included only 300 iterations,
and the best model according to AIC or BIC was recorded as the selected model,
regardless of whether it was the last accepted model.

2.2 Results

Response Function Recovery. Recovery of response functions was assessed using
root integrated mean square error (RIMSE) (Ramsay, 1991), using Q = 101 equally
spaced quadrature points (Xq ) between −5 and 5:

RIMSE j =
(∑Q

q=1((P̂j (1|Xq) − Pj (1|Xq))
2φ(Xq)

∑Q
q=1 φ(Xq)

)1/2

× 100 (4)
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which can be understood as the root of a weighted mean of squared differences
between true, Pj (1|Xq), and estimated, P̂j (1|Xq), response functions, with the pop-
ulation density for θ , φ(Xq), providing weights. Lower values of RIMSE are better,
and the values we report were averaged across all items and replications in each cell
of the simulation design.

In general, differences across most tuning options for SA were small for RIMSE,
with the number of item perturbations and starting temperature resulting in differ-
ences in average RIMSE less than .1 in each cell of the data generation design.
For brevity, we report RIMSE results using an initial temperature of 5 and a single
item perturbation per iteration of the algorithm. This starting temperature slightly
outperformed the other SA conditions.

The best (according to AIC or BIC) out of the fixed (all k = 0, k = 1, or k = 2)
models was compared with the 2PL (all k = 0), SA (using AIC or BIC), and semi-
randommodels, andRIMSE for thesemodels appears in Table1. The best performing
model is highlighted in bold for each column, and the second best in bold and italics.
We highlight several noticeable trends. First, AIC tended to do better than BIC with
complete data and a higher percentage of non-standard items. This result tended to
hold regardless of whether SA or a fixed k was utilized. For example, with complete
data and 80% non-standard items, use of AIC resulted in RIMSE of 1.98 and 1.95,
for SA and fixed conditions, respectively, whereas BIC resulted in 2.42 and 2.91.
With only 20% non-standard items, BIC performed better than AIC, and this was
especially true under missing data where SA using AIC (RIMSE = 1.93) had worse
performance than SA with BIC (RIMSE = 1.77) and all other models (RIMSE =
1.81). SA in conjunction with AIC selection was otherwise the best or second best
performing model across all other conditions. However, we note that SA with BIC
always outperformed the 2PL and semi-random conditions. In contrast, SA with

Table 1 Root integrated mean square error (response function recovery)

Complete data Missing data

Model 20% 40% 60% 80% 20% 40% 60% 80%

SA (AIC) 1.45 1.57 1.81 1.98 1.93 2.31 2.57 2.75

SA (BIC) 1.39 1.70 2.09 2.42 1.77 2.26 2.66 3.02

Fixed (AIC) 1.58 1.65 1.82 1.95 1.81 2.34 2.71 2.93

Fixed (BIC) 1.50 1.98 2.50 2.91 1.81 2.33 2.80 3.24

2PL 1.50 1.98 2.50 3.01 1.81 2.33 2.80 3.24

Semi-random 1.49 1.96 2.43 2.81 1.81 2.33 2.80 3.23

Note Percentages refer to the number of non-standard true item response models. SA Simulated
annealing; fixed = best out of all k = 0, k = 1, k = 2, models according to AIC or BIC; 2PL =
two-parameter logistic. The best RIMSE value in each column is in bold, the second best is in bold
and italics
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AIC had poor performance in this single cell of the design versus the 2PL and semi-
random model. Finally, SA tended to do better than use of fixed k, though this trend
tended to hold within a particular information criterion. For instance, SA with AIC
tended to do better than fixed k with AIC selection, and SA with BIC did better than
fixed k with BIC selection.

Flagging of Non-standard Items. Although a secondary outcome, we might
expect that better fitting models using SA will tend to have non-standard items
modeled using k > 0. We therefore examined sensitivity = # hits/# actual positives
= # non-standard items using MP/# non-standard items, and the false positive rate =
# false positives/# actual negatives = # standard items using MP/# standard items.

We desire high sensitivity, but low false positives—the upper-left region of each
panel in Fig. 2. A starting temperature of 5 had a slight advantage over 10, which in
turn was better than 25.A better sensitivity/false positive trade-off appears present
under complete versus missing data. AIC (versus BIC) resulted in higher sensitivity,
but also more false positives. It is difficult to further compare AIC and BIC due to
little overlap on each axis. In some casesBIChad near zero false positives, but enough
sensitivity to improve IRF recovery. For BIC and a starting temperature of 5, only
two cells had false positive rates above .02 (both complete data, 80% non-standard,
with .16 and .19). Excluding these two cells, sensitivity for BIC still ranged from .07
to .41. Although not explicitly depicted, a lower percentage of non-standard items
tended towards the lower left of these plots, and increasing percentages are connected
by straight lines. That is, a higher percentage of non-standard items tended to result
in higher sensitivity and higher false positives.

False Positive Rate
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3 Discussion and Conclusion

We conclude that SA has potential to aid in selecting polynomial order for MP-based
item models in that SA tended to improve IRF recovery under most conditions. This
result is promising given our initial attempt at SA implementation. For instance,
tuning of the cooling schedule may further improve performance. In retrospect, a
starting temperature of 25may allow initial acceptance ofmany poorly fittingmodels,
and a lower starting temperature is preferable. The number of iterations could also be
increased, yet a computational advantage is still apparent over a step-wise approach:
300 fitted models would have only allowed change in polynomial order for 3 items
on a test with n = 100.

There were some trade-offs in the choice of AIC versus BIC. AIC tended to have
greater gains in IRF recovery, except undermissing data andwhen few items followed
a non-standardmodel. AsAIC had greater sensitivity inmodeling non-standard items
with an MP, it also tended to result in some over-fitting. Given the great contrast in
sensitivity and false positive rates, we suppose that the psychometrician’s preference
for a conservative (BIC) versus liberal (AIC) flagging of non-standard items may
guide which to use. Of course, other optimality criterion or use of other item fit
statistics may be used in future research. In addition, test length, sample size, and
the amount of missing data may also be important to consider and could be further
examined.

A similar computational problemmay hold for other flexible parametric modeling
techniques (Lee & Bolt, 2018): Should we use a standard item model or a different
modeling approach? To the extent that the test is very long, this same problem may
occur if one is trying to decide between several different models for each test item. Of
course, substantive theory should be used to guide modeling choices where possible.
However, in the absence of good theory, an automated approach such as that we
have provided here may be a reasonable start to help improve fit while identifying
which items require closer examination, especially for a long test or large item bank.
MP-based models do not directly inform about the source of item misfit. Further
follow-up analyseswith alternativemodels and/or content analysis of particular items
may provide insight into whether an MP or other modeling approach is appropriate.
That is, there is both room for MP-based itemmodels to complement other modeling
approaches, and also for such combinatorial optimization algorithms to be used in
selecting whether to use any of these other modeling approaches.
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