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Abstract The No-U-Turn Sampler (NUTS) is a relatively newMarkov chainMonte
Carlo (MCMC) algorithm that avoids the random walk behavior that common
MCMC algorithms such as Gibbs sampling or Metropolis Hastings usually exhibit.
Given the fact that NUTS can efficiently explore the entire space of the target distri-
bution, the sampler converges to high-dimensional target distributions more quickly
than other MCMC algorithms and is hence less computational expensive. The focus
of this study is on applying NUTS to one of the complex IRT models, specifically
the two-parameter mixture IRT (Mix2PL) model, and further to examine its perfor-
mance in estimating model parameters when sample size, test length, and number of
latent classes are manipulated. The results indicate that overall, NUTS performs well
in recovering model parameters. However, the recovery of the class membership of
individual persons is not satisfactory for the three-class conditions. Findings from
this investigation provide empirical evidence on the performance of NUTS in fitting
Mix2PL models and suggest that researchers and practitioners in educational and
psychological measurement should benefit from using NUTS in estimating parame-
ters of complex IRT models.

Keywords Markov chain Monte Carlo · No-U-Turn sampler ·Mixture IRT
models

1 Introduction

Classical test theory (CTT; Novick, 1966) has served the measurement community
well formost of the last century.However, problems emerged usingCTThave encour-
aged the development of a modern test theory, namely the item response theory (IRT;
Lord, 1980), which has become a fundamental tool for measurement professionals
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in behavioral sciences (van der Linden &Hambleton, 1997). IRT consists of a family
of models that specify the probability of a response given person latent trait and item
characteristics. Different models exist for different types of response data. Conven-
tional dichotomous IRT models (e.g., Birnbaum, 1969; Lord, 1980; Lord & Novick,
1968; Rasch, 1960), including the one-parameter logistic (1PL), the two-parameter
logistic (2PL), and the three-parameter logistic (3PL) models, are used when test
items require binary responses such as true-false questions or multiple-choice ques-
tions that are scored as correct or incorrect.

These conventional IRT models assume that the observed response data stem
from a homogenous population of individuals. This assumption, however, limits their
applications in test situationswhere, for example, a set of test items can be solvedwith
different cognitive strategies. If the population consists ofmultiple groups of persons,
with each group employing a different strategy for the same item, the parameters for
this item will be different across these groups (or subpopulations), and consequently,
the conventional IRTmodels cannot be used for the response data. On the other hand,
the conventional IRT models may hold when each of the subpopulations employs a
common strategy. As a result, mixture IRT (MixIRT; Rost, 1990) models have been
developed to capture the presence of these latent classes (i.e. latent subpopulations)
that are qualitatively different but within which a conventional IRT model holds.
MixIRT models have become increasingly popular as a technique for investigating
various issues in educational and psychological measurement such as identifying
items that function differently across latent groups (e.g., Choi, Alexeev & Cohen,
2015; Cohen&Bolt, 2005; DeAyala, Kim, Stapleton, &Dayton 2002;Maij-deMeij,
Kelderman, & van der Flier, 2008; Samuelsen, 2005; Shea, 2013; Wu et al., 2017)
or detecting test speededness (e.g., Bolt, Cohen, & Wollack, 2002; Meyer, 2010;
Mroch, Bolt, & Wollack, 2005; Wollack, Cohen, & Wells, 2003).

Over the past decades, the estimation of IRT and particularly MixIRT models
has moved from the traditional maximum likelihood (ML) approach to the fully
Bayesian approach via the use of Markov Chain Monte Carlo (MCMC) techniques,
whose advantages over ML have been well documented in the IRT literature (e.g.,
de la Torre, Stark, & Chernyshenko, 2006; Finch & French, 2012; Kim, 2007; Wol-
lack, Bolt, Cohen, & Lee, 2002). The common MCMC algorithms, such as Gibbs
sampling (Geman & Geman, 1984) and Metropolis Hastings (MH; Hastings, 1970;
Metropolis &Ulam, 1949), have been applied to estimateMixIRTmodels (e.g., Cho,
Cohen,&Kim, 2013;Huang, 2016; Samuelsen, 2005; Shea, 2013). These algorithms,
however, suffer from problems of inefficiently exploring the parameter space due to
their random walk behavior (Neal, 1992). Recent developments of MCMC focus
on non-random walk MCMCs such as the no-U-turn sampler (NUTS; Hoffman &
Gelman, 2011), which can converge to high dimensional posterior distributions more
quickly than common random walk MCMC algorithms, and is hence less computa-
tional expensive. In the IRT literature, Zhu, Robinson, and Torenvlied (2015) applied
NUTS to simple IRTmodels and demonstrated its advantage over Gibbs sampling in
the efficiency of the algorithm. Although NUTS has been applied with simple unidi-
mensional IRT models (e.g., Chang, 2017; Luo & Jiao, 2017; Grant, Furr, Carpenter,
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& Gelman, 2016), to date, no research has investigated its application to the more
complex IRT models, such as MixIRT models.

1.1 Two-Parameter Mixture IRT Model

In the MixIRT modeling framework, persons are characterized by their location on a
continuous latent dimension as well as by their latent class membership. Also, each
subpopulation has a unique set of item parameters (e.g., difficulty, or discrimination).
This study focuses on the two-parameter mixture (Mix2PL) IRT model, which can
be viewed as an extension of the mixture Rasch model proposed by Rost (1990). If
we let Yij detonate a correct (Yij = 1) or incorrect (Yij = 0) response for person i to
item j, the probability of a correct response in the Mix2PL model is defined as

P
(
Yi j = 1|θ ) =

G∑

g=1

πg × P
(
Yi j = 1

∣∣θig, b jg, a jg, g
)

=
G∑

g=1

πg × exp
[
a jg

(
θig − b jg

)]

1+ exp
[
a jg

(
θig − b jg

)] , (1)

where g= 1, …, G is the latent class indicator, θ ig denotes the ability for person i in
class g, πg denotes the proportion of examinees (i.e., the mixing proportion) in each
class with a constraint that all these proportions sum to one, and bjg and ajg are the
difficulty and discrimination parameters, respectively, for item j in the gth class.

1.2 Non-random Walk MCMC

Random walk algorithms such as Gibbs sampling and MH explore the parameter
space via inefficient random walks (Neal, 1992). For complicated models with many
parameters, these methods may require an unacceptably long time to converge to the
target posterior distribution. On the other hand, non-randomwalk algorithms such as
HamiltonianMonte Carlo (HMC;Duane, Kennedy, Pendleton, &Roweth, 1987) and
NUTS avoid the inefficient exploration of the parameter space. Specifically, HMC
borrowed its idea from physics to suppress the randomwalk behavior by means of an
auxiliary variable, momentum, that transforms the problem of sampling from a target
posterior distribution into the problem of simulating Hamiltonian dynamics, allow-
ing it to move much more rapidly through the posterior distribution (Neal, 2011).
The unknown parameter vector θ is interpreted as the position of a fictional particle.
The Hamiltonian is an energy function for the joint state of the position θ and the
momentum φ, which defines a joint posterior distribution p(θ , φ|y). At each iteration,
a random momentum vector φ is generated, which is usually drawn from a multi-
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variate normal distributionN(μ,�) with meanμ and covariance matrix�. Then, the
path of the particle is simulated with a potential energy equal to the negative value
of the log of the posterior density p(θ |y).Values of (θ , φ) are simultaneously updated
over time using the leapfrog algorithm, which breaks the time into discrete steps
such that the total Hamiltonian simulation time is the product of the discretization
interval (or the step size ε) and the number of steps taken per iteration (or the leapfrog
steps L). After a Metropolis decision step is applied, the whole process repeats for an
adequate number of iterations until convergence is reached (Gelman, Carlin, Stern,
Dunson, Vehtari, & Rubin, 2014; Stan Development Team, 2017).

Although HMC is a powerful MCMC technique, it requires choosing suitable val-
ues for three parameters (i.e., the step size ε, the number of leapfrog steps L, and the
mass matrix �) for the fictional particle. Tuning these parameters, and specifically
L, requires expertise and a few preliminary runs, which can be challenging (Neal,
2011; Hoffman & Gelman, 2011). To overcome this, Hoffman and Gelman (2011)
introduced NUTS to eliminate the need to set the number of leapfrog steps that the
algorithm takes to generate a proposal state. Using a recursive algorithm, NUTS cre-
ates a set of candidate points that spans awide path of the target posterior distribution,
stopping automatically when it starts to double back and retrace its steps (i.e. starts
to make a U-turn). Empirically, NUTS performs as efficiently as, and sometimes
better than, a well-tuned HMC without requiring user interventions. Thus, NUTS
is a tune-free technique, which will make it easily accessible by practitioners and
researchers in behavioral sciences to fit various complex measurement models.

In viewof the above, the purpose of this study is to investigate howNUTSperforms
in recovering parameters of the Mix2PL model under various test conditions where
sample size, test length, and number of latent classes are taken into consideration. The
significance of the study lies in that it not only demonstrates the application of a more
efficient MCMC algorithm to the more complex MixIRT model, but also provides
guidelines to researchers and practitioners on the use of such models under the fully
Bayesian framework. The successful implementation of NUTS to theMix2PLmodel
will also help researchers with fittingmore complex IRTmodels using fully Bayesian
estimation. Findings from this investigationwill provide empirical evidence and shed
light on the performance of NUTS in fitting more complicated IRT models.

1.3 Model Identification

Given the difference between Bayesian and likelihood identifiability (Gelfand &
Sahu, 1999), theMix2PL IRTmodelwas identified under the fullyBayesian approach
following the literature to avoid two problems: (a) the indeterminacy and (b) the
problem of label switching, which is inherent in mixture models in general. The
usual practice to avoid the indeterminacy in MixIRT models, as recommended by
Rost (1990), is to impose a sum-to-zero constraint in the item difficulty parameter
within each latent class (i.e.,

∑
j b jg = 0). Under the fully Bayesian estimation using

NUTS, there are several methods available to enforce a sum-to-zero constraint on a
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parameter vector (see Stan Development Team, 2017 for more details). Due to its
ease in implementation, soft centeringwas used in this study to apply the sum-to-zero
constraint on the difficulty parameter in each latent class (i.e., bg ~ N(0, 1)). Further,
one practice for avoiding the problem of label switching of mixture components
in MixIRT models, under the fully Bayesian framework, is to impose an ordinal
constraint on the mixing proportions or the difficulty parameter (e.g., Bolt et al.,
2002) or other parameters (e.g., Meyer, 2010) across latent classes. In this study, an
ordinal constraint had to be imposed on both the mean ability (μg) parameters and
the item difficulty parameters (bg) to ensure Bayesian identifiability with Mix2PL
models.

2 Methods

Monte Carlo simulations were carried out to investigate the performance of NUTS in
terms of parameter recovery of theMix2PLmodel under various test conditions. Data
were generated using the Mix2PLmodel as defined in Eq. (1) with equal proportions
(i.e., equal class sizes) while manipulating three factors: test length (J = 20 or 30),
number of latent classes (G = 2 or 3), sample size in each subpopulation (n =
250 or 500). Specifically, for the two-class condition (G = 2), the total number of
subjects (N) was 500 or 1000; the mixing proportions were π1 = 0.50 and π2 = 0.50;
the person ability parameters were generated from a mixture of two subpopulations
where θ1 ~ N(−2, 1) and θ2 ~ N(2, 1); the class-specific item difficulty parameters
were generated from a uniform distribution where b1 ~ U(−2, 0) and b2 ~ U(0, 2);
and the class-specific item discrimination parameters were generated from a uniform
distribution where ag ~U(0, 2), g= 1 or 2. For the three-class condition (G= 3), the
total number of subjects was 750 or 1500; themixing proportions wereπ1 = 0.33,π2

= 0.33, and π3 = 0.33; the person ability parameters were generated from a mixture
of three subpopulations where θ1 ~ N(−4, 1), θ2 ~ N(0, 1), and θ3 ~ N(4, 1); the
class-specific item difficulty parameters were generated from a uniform distribution
where b1 ~U(−2,−0.5), b2 ~U(−0.5, 0.5), and b3 ~U(0.5, 2); and the class-specific
item discrimination parameters were generated from a uniform distribution where
ag ~ U(0, 2), g = 1, 2, or 3.

Priors and hyperpriors were selected to be comparable to those adopted by others
(e.g., Bolt, Cohen, & Wollak, 2002; Meyer, 2010; Li, Cohen, Kim, & Cho, 2009;
Wollack et al., 2003). Specifically, normal prior densities were used for person ability
parameters θ ig ~ N(μg, 1), with a standard normal distribution for the hyperparame-
ters μg, and a Dirichlet distribution for the mixing-proportion parameters such that
(π1, …, πG) ~ Dirichlet(1, …,1).

Convergence of the Markov chains was examined using the Gelman-Rubin R
statistic (Gelman & Rubin, 1992), with a threshold of 1.10 as suggested by Gelman
et al. (2014). For the conditions involving two latent classes, the warm-up stage of
either 2000 or 3000 iterations followed by 3 chainswith either 3000 or 5000 sampling
iterations was sufficient for the chains to reach convergence when the sample size
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was 500 or 1000, respectively. For the conditions involving three latent classes, in
order to reach convergence, the warm-up stage had to reach 3000, 5000 or 8000
iterations followed by 3 chains with 5000, 7000 or 10,000 sampling iterations for N
= 750 or N = 1000, respectively. Ten replications were conducted for each of the
simulated condition. The precision of the class and item parameter estimates was
evaluated using bias and root mean square error (RMSE), which are defined as

biasξ =
∑R

r=1

(
�

ξr −ξ

)

R
, (2)

RMSEξ =
√

∑R
r=1

(
�

ξr −ξ

)2

R

, (3)

where ξ is the true value of the parameter (e.g., μg, πg, ajg, or bjg), and ˆξ is the esti-
mated value of the parameter in the rth replication where r = 1,…, R. To summarize
the recovery of item parameters, these measures were averaged over items. Further,
the recovery of class memberships was evaluated by computing the percentage of
correct classifications of individual persons into the class from which they were sim-
ulated. This was achieved by first calculating the probability of membership in each
class g for each individual. Then, each individual was assigned to the latent class for
which he or she has the highest probability of belonging (i.e., the largest membership
probability).

3 Results

3.1 Mixing-Proportion and Mean Ability Recovery

The results for recovering the mixing proportion and mean ability for each latent
class in the Mix2PL model are summarized in Tables 1 and 2 for the two- and
three-class conditions, respectively. The small values of bias and RMSE suggest
that NUTS performed well in recovering the mixing-proportion and mean ability
parameters under all simulated conditions, no matter whether there were two or three
latent classes. For the two-class scenarios, the RMSEs for estimating the mixing-
proportion parameters tended to decrease with the increase of either sample size or
test length. However, this pattern was not observed with the three-class scenarios
or with the recovery of the mean abilities. Given that both two- and three-class
conditions considered the same sample size per class (n = 250 or 500) and test
length (J = 20 or 30) conditions, parameter recovery results can also be compared
across the G = 2 versus G = 3 scenarios. Hence, a comparison of Tables 1 and 2
reveals that the RMSEs for estimating the mixing-proportion parameters tended to
decrease with the increase in the number of latent classes from two to three classes,
except for one scenario (i.e., N = 1000, J = 30). This is, however, not the case with
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Table 1 Bias and RMSE for recovering mixing-proportion and mean ability parameters when G
= 2

N J Parameter Bias RMSE Parameter Bias RMSE

500 20 π1 −0.004 0.019 μ1 −0.016 0.205

π2 0.004 0.019 μ2 −0.085 0.196

30 π1 −0.003 0.013 μ1 −0.003 0.013

π2 0.003 0.013 μ2 0.003 0.013

1000 20 π1 0.005 0.012 μ1 0.116 0.197

π2 −0.005 0.012 μ2 −0.039 0.146

30 π1 −0.001 0.011 μ1 0.111 0.152

π2 0.001 0.011 μ2 −0.089 0.150

Table 2 Bias and RMSE for recovering mixing-proportion and mean ability parameters when G
= 3

N J Parameter Bias RMSE Parameter Bias RMSE

750 20 π1 −0.002 0.012 μ1 0.074 0.242

π2 0.001 0.012 μ2 −0.008 0.102

π3 0.001 0.010 μ3 −0.026 0.260

30 π1 −0.002 0.008 μ1 −0.292 0.333

π2 −0.002 0.010 μ2 −0.034 0.133

π3 0.006 0.010 μ3 0.190 0.293

1500 20 π1 −0.001 0.010 μ1 0.032 0.260

π2 −0.001 0.008 μ2 −0.031 0.085

π3 0.002 0.007 μ3 0.075 0.189

30 π1 −0.005 0.007 μ1 −0.282 0.355

π2 0.010 0.012 μ2 −0.025 0.062

π3 −0.005 0.008 μ3 0.284 0.363

the mean ability parameters, whose RMSEs tended to increase whenG= 2 increased
to G = 3.

It is further noted that for the three-class scenarios, the accuracy of estimating the
mean ability of the second latent class was better than that of the first or third latent
class (see Table 2). In addition, the precision of the mean ability estimates for the
second latent class improved with the increase in the sample size.

3.2 Item Parameter Recovery

The results for recovering the difficulty and discrimination parameters are summa-
rized in Tables 3 and 4 for the two- and three-class conditions, respectively. These
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Table 3 Average Bias and RMSE for recovering item parameters when G = 2

N J Parameter Bias RMSE Parameter Bias RMSE

500 20 a1 −0.074 0.397 b1 0.396 0.626

a2 −0.063 0.400 b2 −0.457 0.669

30 a1 −0.061 0.356 b1 0.419 0.601

a2 −0.055 0.359 b2 −0.493 0.691

1000 20 a1 −0.014 0.298 b1 0.447 0.638

a2 −0.076 0.339 b2 −0.397 0.594

30 a1 −0.020 0.288 b1 0.436 0.616

a2 −0.037 0.300 b2 −0.382 0.609

Table 4 Average Bias and RMSE for recovering item parameters when G = 3

N J Parameter Bias RMSE Parameter Bias RMSE

750 20 a1 −0.054 0.409 b1 0.386 0.522

a2 −0.049 0.469 b2 0.057 0.421

a3 −0.053 0.443 b3 −0.398 0.590

30 a1 −0.108 0.413 b1 0.341 0.509

a2 −0.078 0.482 b2 0.017 0.396

a3 −0.085 0.452 b3 −0.375 0.545

1500 20 a1 0.023 0.339 b1 0.352 0.517

a2 −0.058 0.482 b2 0.054 0.421

a3 −0.096 0.419 b3 −0.311 0.499

30 a1 −0.058 0.383 b1 0.377 0.558

a2 −0.071 0.420 b2 0.035 0.379

a3 −0.088 0.356 b3 −0.421 0.579

results indicate that with smaller average bias or RMSE, NUTS was more accurate in
recovering the discrimination parameter than the difficulty parameter of the Mix2PL
model for both classes in the two-class condition and for the first and third classes
in the three-class condition.

The small negative values of the average bias for estimating the discrimination
parameters suggest that they were slightly underestimated across all the simulated
conditions except for one condition (i.e., N = 1500 and J = 20) where the discrimi-
nation for the first class was overestimated (see Table 4). For the two-class condition,
the recovery of the discrimination parameters improved with the increase in sample
size or test length, however, this patternwas not observed in the three-class condition,
which has mixed results.

The difficulty parameters were consistently underestimated for the last latent class
while overestimated for the other classes, no matter whether there were two or three
classes. Also for the three-class condition, the recovery of the difficulty parameters
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Table 5 Percent of correct classifications of individual persons

G = 2 G = 3

N J Average Min Max N Average J Min Max

500 20 90.96 74.40 97.20 750 69.65 20 65.20 81.60

30 92.38 80.80 97.20 69.91 30 66.53 87.60

1000 20 93.55 82.80 96.10 1500 71.59 20 66.60 83.40

30 94.44 86.50 97.20 75.13 30 64.20 90.73

in the second class, as indicated by the average values of bias and RMSE, was better
than the recovery of those in the first or third class across the four data sizes.

In addition, a comparison of Tables 3 and 4 suggests that the average RMSEs
for estimating the discrimination parameter tended to increase with the increase in
the number of latent classes. On the hand, the RMSEs for estimating the difficulty
parameters tended to decrease with the increase in the number of latent classes.

3.3 Class Membership Recovery

For the class membership, the percentages of correct classifications of individual
persons were computed and displayed in Table 5, which suggests that NUTS was
fairly accurate when the population consisted of two latent subpopulations. The
average percentages of correct classifications, across the ten replications, for the
four data sizes were 90.96, 92.38, 93.55, and 94.44. However, in the conditions
where the population consisted of three latent subpopulations, the recovery was
less accurate, where the average percentages of correct classifications for the four
data sizes were 69.65, 69.91, 71.59, and 75.13. Moreover, the recovery of class
memberships is apparently affected by sample size and test length. Specifically, the
average percentage of correct classifications increased with an increase in sample
size or test length, for both the two- and the three-class conditions.

4 Discussion and Conclusion

With Monte Carlo simulations, results of this study suggest that overall, NUTS
performs well in recovering parameters for the Mix2PL model, including the class
parameters (πg and μg), item parameters (ajg and bjg), and class membership (g),
although the recoveryof the classmembership of individual persons is not satisfactory
for the three-class condition.

With respect to the effects of sample size or test length, they play a role in recov-
ering the class membership no matter whether the generated data sets consisted of
two or three latent subpopulations. This is consistent with previous research (e.g.,
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Cho et al., 2013) where the proportion of correct classification of class membership
increased with either sample size or test length. However, their effects on estimating
other parameters in the Mix2PL model is not clear, as some patterns of recovery
improvement with the increment of sample size and/or test length in the two-class
condition are not observed in the three-class condition. For example, for the two-class
condition, the accuracy of estimating the mixing-proportion parameters increases
with the increase of either sample size or test length but this pattern is not observed
with the three-class condition. This is possibly due to the increased complexity of the
mixture item response theory (MixIRT) model with the increased number of latent
classes. Adding one subpopulation may seem trivial, but it would result in a substan-
tial increase in the number of parameters to be estimated. This complexity is further
reflected in the estimation of person mean ability or item discrimination parameters,
whose accuracy decreases with the increased number of classes. On the other hand,
the recovery of the mixing proportions or individual item difficulties in the model is
not seemingly affected by such added complexity. As a matter of fact, their RMSE
values decrease when adding one more subpopulation. This reduction is due to the
fact that the magnitude of RMSE depends on the unit/scale of the parameter. For
instance, the mixing proportion is larger for the two-class condition (πg = 0.5) than
the three-class condition (πg = 0.33), and hence the RMSEs tend to be larger with the
two-class condition. This is certainly a limitation of using RMSE for evaluating the
accuracy in recovering model parameters in this study. Future studies shall consider
other measures, such as the relative RMSE or normalized RMSE that are free from
the scale of the parameters.

The finding that the discrimination parameter is better recovered than the difficulty
parameter in the MixIRT model (based on the comparison of average RMSE/bias
values) agrees with Chang (2017), who focused on the estimation of the conventional
IRTmodel usingNUTS andGibbs sampling.However, it does not agreewith findings
from studies on fitting some other IRT models with non-Bayesian estimations (e.g.,
Batley & Boss, 1993; Kang & Cohen, 2007) although the same RMSE criterion
has been used. Given the limitation of RMSE as noted previously, further studies
are needed to direct the trend of such comparisons. In addition, results based on
the three-class situation suggest that the item difficulty or the class mean ability
parameters are estimated more accurately for the second class than for the first or
third class. This is likely due to the choice of the simulated person ability and item
difficulty parameters for each of the three latent classes. Specifically, the generated
person abilities for the second class (i.e., θ2 ~ N(0, 1)) coincides with the generated
item difficulty (i.e., b2 ~ U(−0.5, 0.5)) for that class. However, the generated person
abilities for the first class (i.e., θ1 ~ N(−4, 1)) is quite distant from the generated
item difficulty (i.e., b2 ~ U(−2, −0.5)) for that class, such that the average person
ability (i.e., −4) is 2.75 standard deviations lower than the average item difficulty
(i.e.,−1.25). Similarly, the generated person ability for the third class (i.e., θ3 ~N(4,
1)) is quit distant from the generated item difficulty (i.e., b2 ~ U(0.5, 2)) for that
class, such that the average person ability (i.e., 4) is 2.75 standard deviations higher
than the average item difficulty (i.e., 1.5). Thus, in order to obtain more accurate
estimates of the person mean ability and item difficulty parameters for the first class,



NUTS for Mixture IRT Models 35

more easy items should be added. On the other hand, in order to obtain more precise
estimations of the person mean ability and item difficulty parameters for the third
class, more difficult items should be added.

This study provides empirical evidence on the performance of NUTS in fitting
MixIRT models. It also shows that researchers and practitioners in educational and
psychological measurement can use NUTS in estimating parameters of complex
IRT models such as MixIRT models. However, conclusions that are made in the
present study are based on the simulated conditions and cannot be generalized to
other conditions. Therefore, for future studies, additional test conditions need to be
explored such as unequalmixing proportions, small sample size, and short test length.
Given the computational expense of fitting NUTS to the complex Mix2PL model,
this study only used 10 replications for each experimental condition. However, as
suggested by Harwell, Stone, Hsu, & Kirisci, (1996), a minimum of 25 replications
is recommended for typical Monte Carlo studies in IRTmodeling. Additional studies
with similar experimental conditions are needed before one can conclude about the
use of the algorithm with fitting the Mix2PL model and further the effects of sample
size, test length, and number of classes on estimating themodel. In addition, this study
focused on the dichotomous Mix2PL model. Future studies may consider evaluating
the performance of NUTS using other dichotomous MixIRT models such as the
Mix1PL model or the Mix3PL models, or using MixIRT models with polytomous
categories such as a mixture version of Bock’s (1972) nominal response model or
a mixture version of Masters’s (1982) partial credit model. Moreover, this study
considered certain population distributions and difficulty ranges. Additional studies
are necessary to consider other person distributions and/or other ranges for item
difficulty parameters to decide on the test condition that leads to more accurate
estimates for all classes. Future studies are also needed to decide on the optimal
number of persons and/or items for more accurate estimations of class membership
in conditions where the population includes three or more subpopulations for any
given class size. Finally, findings from this study are based on simulated conditions
where the true parameters are known, Future studies may adopt NUTS algorithms
to fit the Mix2PL models to real data and examine how NUTS performs in real test
situations.

References

Batley, R.-M., & Boss, M.W. (1993). The effects on parameter estimation of correlated dimensions
and a distribution-restricted trait in a multidimensional item response model. Applied Psycholog-
ical Measurement, 17(2), 131–141. https://doi.org/10.1177/014662169301700203.

Birnbaum, A. (1969). Statistical theory for logistic mental test models with a prior distribution of
ability. Journal of Mathematical Psychology, 6(2), 258–276.

Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two
or more nominal categories. Psychometrika, 37(1), 29–51.

https://doi.org/10.1177/014662169301700203


36 R. Al Hakmani and Y. Sheng

Bolt, D. M., Cohen, A. S., & Wollack, J. A. (2002). Item parameter estimation under conditions
of test speededness: application of a mixture Rasch model with ordinal constraints. Journal of
Educational Measurement, 39(4), 331–348.

Chang, M. (2017). A comparison of two MCMC algorithms for estimating the 2PL IRT models.
Doctoral: Southern Illinois University.

Cho, S., Cohen, A., & Kim, S. (2013). Markov chain Monte Carlo estimation of a mixture item
response theory model. Journal of Statistical Computation and Simulation, 83(2), 278–306.

Choi, Y., Alexeev, N., & Cohen, A. S. (2015). Differential item functioning analysis using a mixture
3-parameter logistic model with a covariate on the TIMSS 2007 mathematics test. International
Journal of Testing, 15(3), 239–253. https://doi.org/10.1080/15305058.2015.1007241.

Cohen, A. S., & Bolt, D. M. (2005). A mixture model analysis of differential item functioning.
Journal of Educational Measurement Summer, 42(2), 133–148.

DeAyala, R. J., Kim, S. H., Stapleton, L.M., &Dayton, C.M. (2002). Differential item functioning:
a mixture distribution conceptualization. International Journal of Testing, 2(3&4), 243–276.

de laTorre, J., Stark, S.,&Chernyshenko,O.S. (2006).Markov chainMonteCarlo estimationof item
parameters for the generalized graded unfolding model. Applied Psychological Measurement,
30(3), 216–232. https://doi.org/10.1177/0146621605282772.

Duane, S., Kennedy, A., Pendleton, B. J., & Roweth, D. (1987). Hybrid Monte Carlo. Physics
Letters B, 195, 216–222. https://doi.org/10.1016/0370-2693(87)91197-X.

Finch, W. H., & French, B. F. (2012). Parameter estimation with mixture item response theory
models: A Monte Carlo comparison of maximum likelihood and Bayesian methods. Journal of
Modern Applied Statistical Methods, 11(1), 167–178.

Gelfand, A. E., & Sahu, S. K. (1999). Identifiability, improper priors, and Gibbs sampling for
generalized linear models. JASA, 94(445), 247–253. https://doi.org/10.2307/2669699.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian
data analysis (3rd ed.). Florida: CRC Press.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences.
Stat Sci, 7(4), 457–472.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6),
721–741. https://doi.org/10.1109/TPAMI.1984.4767596.

Grant, R. L., Furr, D. C., Carpenter, B., & Gelman, A. (2016). Fitting Bayesian item response
models in Stata and Stan. The Stata Journal, 17(2), 343–357. https://arxiv.org/abs/1601.03443.
Accessed 18 Apr 2018.

Harwell, M., Stone, C. A., Hsu, T. C., & Kirisci, L. (1996). Monte Carlo studies in item
response theory. Applied Psychological Measurement, 20(2), 101–125. https://doi.org/10.1177/
014662169602000201.

Hastings,W. K. (1970).Monte Carlo samplingmethods usingMarkov chains and their applications.
Biometrika, 57(1), 97–109. https://doi.org/10.1093/biomet/57.1.97.

Hoffman, M. D., & Gelman, A. (2011). The no-U-turn sampler: Adaptively setting path lengths in
Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(2), 1593–1624.

Huang, H. (2016). Mixture random-effect IRT models for controlling extreme response style on
rating scales. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.01706.

Kang, T., & Cohen, A. S. (2007). IRT model selection methods for dichotomous items. Applied
Psychological Measurement, 31(4), 331–358. https://doi.org/10.1177/0146621606292213.

Kim, S.-H. (2007). Some posterior standard deviations in item response theory. Educational and
Psychological Measurement, 67(2), 258–279. https://doi.org/10.1177/00131644070670020501.

Li, F., Cohen, A., Kim, S., & Cho, S. (2009). Model selection methods for mixture dichoto-
mous IRTmodels.Applied PsychologicalMeasurement, 33(5), 353–373. https://doi.org/10.1177/
0146621608326422.

Lord, F. M. (1980). Applications of item response theory to practical testing problems (2nd ed.).
New Jersey: Hillsdale.

https://doi.org/10.1080/15305058.2015.1007241
https://doi.org/10.1177/0146621605282772
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.2307/2669699
https://doi.org/10.1109/TPAMI.1984.4767596
https://arxiv.org/abs/1601.03443
https://doi.org/10.1177/014662169602000201
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.3389/fpsyg.2016.01706
https://doi.org/10.1177/0146621606292213
https://doi.org/10.1177/00131644070670020501
https://doi.org/10.1177/0146621608326422


NUTS for Mixture IRT Models 37

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Maryland: Addison-
Wesley.

Luo, Y., & Jiao, H. (2017). Using the Stan program for Bayesian item response theory. Educational
and Psychological Measurement, 1–25. https://doi.org/10.1177/0013164417693666.

Maij-de Meij, A. M., Kelderman, H., & van der Flier, H. (2010). Improvement in detection of
differential item functioning using amixture item response theorymodel.Multivariate Behavioral
Research, 45(6), 975–999. https://doi.org/10.1080/00273171.2010.533047.

Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149–174.
Metropolis, N., & Ulam, S. (1949). The Monte Carlo method. Journal of the American Statistical
Association, 44(247), 335–341.

Meyer, J. P. (2010). A mixture Rasch model with Item response time components. Applied Psycho-
logical Measurement, 34(7), 521–538. https://doi.org/10.1177/0146621609355451.

Mroch, A. A., Bolt, D. M., &Wollack, J. A. (2005). A new multi-class mixture Rasch model for test
speededness. Paper presented at the Annual Meeting of the National Council on Measurement in
Education, Montreal, Quebe, April 2005.

Neal, R. M. (1992). An improved acceptance procedure for the hybrid Monte Carlo algorithm.
Retrieved from arXiv preprint https://arxiv.org/abs/hep-lat/9208011.

Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G. Jones, &
X. Meng (Eds.), Handbook of Markov chain Monte Carlo (pp. 113–162). Florida: CRC Press.

Novick, M. R. (1966). The axioms and principal results of classical test theory. Journal of Mathe-
matical Psychology, 3(1), 1–18.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (2nd ed.). Dan-
mark: Danmarks Paedagogiske Institute.

Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to
item analysis. Applied Psychological Measurement, 14(3), 271–282. https://doi.org/10.1177/
014662169001400305.

Samuelsen, K. (2005). Examining differential item functioning from a latent class perspective (Dis-
sertation). University of Maryland.

Shea, C. A. (2013). Using a mixture IRT model to understand English learner performance on
large-scale assessments (Dissertation). University of Massachusetts.

StanDevelopmentTeam. (2017).Stanmodeling language users guide and referencemanual, version
2.17.0. http://mc-stan.org. Accessed 8 Feb 2018.

van der Linden, Wd, & Hambleton, R. K. (1997). Handbook of modern item response theory. New
York: Springer.

Wollack, J. A., Bolt, D. M., Cohen, A. S., & Lee, Y. S. (2002). Recovery of item parameters in the
nominal response model: a comparison of marginal maximum likelihood estimation and Markov
chain Monte Carlo estimation. Applied Psychological Measurement, 26(3), 339–352. https://doi.
org/10.1177/0146621602026003007.

Wollack, J. A., Cohen, A. S., & Wells, C. S. (2003). A method for maintaining scale stability in the
presence of test speededness. Journal of Educational Measurement, 40, 307–330.

Wu, X., Sawatzky, R., Hopman, W., Mayo, N., Sajobi, T. T., Liu, J., … Lix, L. M. (2017). Latent
variable mixture models to test for differential item functioning: a population-based analysis.
Health and Quality of Life Outcomes, 15. https://doi.org/10.1186/s12955-017-0674-0.

Zhu, L., Robinson, S. E., & Torenvlied, R. (2015). A Bayesian approach to measurement bias in
networking studies. The American Review of Public Administration, 45(5), 542–564. https://doi.
org/10.1177/0275074014524299.

https://doi.org/10.1177/0013164417693666
https://doi.org/10.1080/00273171.2010.533047
https://doi.org/10.1177/0146621609355451
https://arxiv.org/abs/hep-lat/9208011
https://doi.org/10.1177/014662169001400305
http://mc-stan.org
https://doi.org/10.1177/0146621602026003007
https://doi.org/10.1186/s12955-017-0674-0
https://doi.org/10.1177/0275074014524299

	NUTS for Mixture IRT Models
	1 Introduction
	1.1 Two-Parameter Mixture IRT Model
	1.2 Non-random Walk MCMC
	1.3 Model Identification

	2 Methods
	3 Results
	3.1 Mixing-Proportion and Mean Ability Recovery
	3.2 Item Parameter Recovery
	3.3 Class Membership Recovery

	4 Discussion and Conclusion
	References




