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Abstract Differential item functioning (DIF) analysis is an essential procedure for
educational and psychological tests to identify items that exhibit varying degrees of
DIF. DIF means that the assumption of measurement invariance is violated, and then
test scores are incomparable for individuals of the same ability level from different
groups, which substantially threatens test validity. In this paper, we investigated the
credible intervals (CI) and odds ratios (OR)methods to detect uniformDIFwithin the
framework of the Rasch model through a series of simulations. The results showed
that the CI method performed better than the ORmethod to identify DIF items under
the balanced DIF conditions. However, the CI method yielded inflated false positive
rates under the unbalancedDIF conditions. The effectiveness of these two approaches
was illustrated with an empirical example.
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1 Introduction

Differential item functioning (DIF) analysis is an essential procedure for educational
and psychological tests. DIF occurs when individuals from different groups (such
as gender, ethnicity, country, or age) have different probabilities of endorsing or
accurately answering a given item after controlling for overall test scores. It violates
the assumption of measurement invariance and the test scores become incomparable
for individuals of the same ability level from different groups, which substantially
threatens test validity. DIF detection can examine how test scores are affected by
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external variables that are not related to the construct (Glas, 1998). Therefore, it is
important to know if items are subject to DIF; that is, to know if the examinees are
fairly measured.

Many approaches have been developed to perform DIF detection, and they can
be classified into two categories (Magis, Béland, Tuerlinckx, & De Boeck, 2010):
item response theory (IRT)-based and non-IRT-based approaches. The IRT-based
approaches include the Lagrange multiplier test (Glas, 1998), the likelihood ratio
test (Cohen, Kim, & Wollack, 1996), Lord’s chi-square test (Lord, 1980), Raju’s
(1988) signed area method, etc. The IRT-based approaches require estimating item
parameters for different groups. After comparing these item parameters of different
groups, an item is identified as a DIF item if the item parameters are significantly
different between groups. By contrast, the non-IRT-based approaches require neither
specific forms for the IRTmodels nor large sample sizes (Narayanon&Swaminathan,
1996). The non-IRT-based approaches include theMantel-Haenszel (MH;Holland&
Thayer, 1988), logistic regression (LR; Rogers & Swaminathan, 1993), simultaneous
item bias test (SIBTEST; Shealy & Stout, 1993) methods, etc.

Among the non-IRT-based approaches, the MH and LR methods perform well in
flagging DIF items when the percentage of DIF items is not very high and there is
no mean ability difference between groups (French & Maller, 2007; Narayanon &
Swaminathan, 1996). A common feature of these twomethods is that examinees from
different groups are placed on a common metric based on the test scores, which are
usually calledmatching variables. The use of thematching variables is critical forDIF
detection (Kopf, Zeileis, & Strobl, 2015). If the matching variables are contaminated
(i.e., consisting of DIF items), examinees with the same ability levels would not be
matched well, and the subsequent DIF detection would be biased (Clauser, Mazor,
& Hambleton, 1993). In practice, it is challenging to identify a set of DIF-free items
as the matching variables for DIF detection, especially when the percentage of DIF
items is high or when DIF magnitudes are large (Narayanon & Swaminathan, 1996;
Rogers & Swaminathan, 1993).

To overcome this difficulty, the odds ratios (OR; Jin, Chen,&Wang, 2018)method
was proposed to detect uniform DIF under various manipulated variables, such as
different DIF pattern, impact, sample size, and with/without purification. Jin, Chen,
and Wang (2018) found that the OR method without a purification procedure out-
performed the MH and LR methods in controlling false positive rates (FPR) and
obtaining high true positive rates (TPR) when tests contained high percentages of
DIF items. Another recently developed IRT-based DIF detection method was the
credible interval (CI) method proposed by Su, Chang, & Tsai (2018) to detect uni-
form and non-uniform DIF items under the Bayesian framework. Su et al (2018)
found that the CI method performed well; however, only unbalanced DIF conditions
and no impact (i.e., mean ability difference between the reference and focal groups
was zero) were considered in their study.

A common feature of the CI and OR methods is that both methods perform
DIF detection after constructing intervals. The OR method follows the frequen-
tist approach, and constructs the confidence interval for the mean ability difference
between the reference and focal groups. By contrast, the CI method follows the
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Bayesian approach, and constructs the credible interval for the item difficulty dif-
ference between the reference and focal groups. See next section for more details.
Because of the nature of the Bayesian framework, the CI method would need more
time to perform DIF examination. Besides, the CI method assumes Rasch (1960)
model is a correct model for the data. By contrast, the OR method does not require
the specification of an IRT model; however, this method may not work when the
number of examinees of any group is very small. Given the very different nature of
these two newly developed methods, it is interesting to compare these two methods
under the Rasch model. In this paper, we investigated the performance of the CI
and OR methods to detect uniform DIF within the framework of the Rasch model
through a series of simulation studies. The effectiveness of these two approaches was
illustrated with an empirical example.

2 The CI and OR DIF Detection Methods

2.1 The CI Method

We first review the CI method proposed by Su, Chang, and Tsai (2018). Let Ypj be
the dichotomous response of examinee p on item j, where p= 1,…, P, and j = 1,…,
J. Denote b j and θp as the difficulty parameter for item j and the examinee ability
parameter for examinee p, respectively. In the Rasch (1960) model, the probability
of examinee p getting a correct response on item j is given by

πpj = P
(
Ypj = 1|θp, b j

) = 1

1 + e−θp+b j
. (1)

An item is flagged as DIF if the probability of answering the item correctly dif-
fers across different groups after controlling for the underlying ability levels. The CI
method was proposed to perform DIF detection under a Bayesian estimation frame-
work (Su et al., 2018). Consider the simplest case of two groups, hence, examinee
p either belongs to the reference group (gp = 0) or to the focal group (gp = 1).
Furthermore, each group has its own difficulty parameter. Then, Eq. (1) becomes

πpj = P
(
Ypj = 1

∣∣gp, θp, b j , d j
) =

{
1

1+e−θp+b j
, gp = 0,

1
1+e−θp+d j

, gp = 1,
(2)

where b j and d j are the difficulty parameters for the reference and the focal groups,
respectively. Alternatively, the notations of Glas (1998) is adopted to rewrite Eq. (2)
as

πpj = P
(
Ypj = 1

∣∣gp, θp, b j , δ j
) =

{
1

1+e−θp+b j
, gp = 0,

1
1+e−θp+b j+δ j

, gp = 1.
(3)
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Equation (3) implies that the responses of the focal group need an additional
difficulty parameter δj. Therefore, the following hypothesis is considered:

H0 : δ j = 0 versus H1 : δ j �= 0.

Due to the complexity of the likelihood function, a Bayesian estimation method
is used. Specifically, we follow closely the Bayesian approaches proposed by Chang,
Tsai, and Hsu (2014), Chang, Tsai, Su, and Lin (2016), and Su et al. (2018). In par-
ticular, a two-layer hierarchical prior is assumed for the model parameters to reduce
the impact of the prior settings on the posterior inference. For model identification,
we follow Frederickx, Tuerlinckx, de Boeck, and Magis (2010)’s paper by assuming
that the marginal distribution of θp is normal:

θp ∼
{
N

(
0, σ 2

r

)
, gp = 0,

N
(
μ f , σ

2
f

)
, gp = 1.

For the first-layer prior settings for the parameters, we assume

b j ∼ N
(
μb, σ

2
b

)
,

d j ∼ N
(
μd , σ

2
d

)
.

Given the first-layer prior, we assume the second-layer prior to be

μ f ∼ N
(
μ1, σ

2
1

)
,

μb ∼ N
(
μ2, σ

2
2

)
,

μd ∼ N
(
μ3, σ

2
3

)
,

σ 2
r ∼ Inv-Gamma(α1, β1),

σ 2
f ∼ Inv-Gamma(α2, β2),

σ 2
b ∼ Inv-Gamma(α3, β3),

σ 2
d ∼ Inv-Gamma(α4, β4).

All parameters in the second-layer priors,

(μ1, μ2, μ3, σ
2
1 , σ 2

2 , σ 2
3 , α1, α2, α3, α4, β1, β2, β3, β4),

are assigned in a reasonable way. Furthermore, we also assume that all the priors are
independent.

More specifically, the CI method proceeds as follows. There are J items in the
test, and each of the J items in the test is examined one at a time. For item j, a size
α test of δj = 0 is constructed. Let item j follow Eq. (3) and the other items follow
Eq. (1). That is, item j is tested if the responses of the focal group need an additional
parameter δj. The Bayesian analysis via the Markov chain Monte Carlo (MCMC)
scheme is implemented to construct the equal-tailed 1 − α credible interval for the
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parameter δj. If the interval includes 0, then δj = 0 is not rejected. Otherwise, δj =
0 is rejected, and hence item j is considered a DIF item.

2.2 The OR Method

The OR method was proposed by Jin, Chen, and Wang (2018) to detect uniform
DIF. Let nR1j and nR0j be the numbers of examinees for the reference group who
answer item j correctly and incorrectly, respectively; and let nF1j and nF0j be the
numbers of examinees for the focal groupwho answer item j correctly and incorrectly,
respectively. For item j, let λ̂ j denote the logarithm of the OR of success over failure
for the reference and focal groups:

λ̂ j = log

(
nR1 j/nR0 j

nF1 j/nF0 j

)
, (4)

which follows a normal distribution asymptotically (Agresti, 2002) with mean λ and
standard deviation

σ(λ̂ j ) =
(
n−1
R1 j + n−1

R0 j + n−1
F1 j + n−1

F0 j

)1/2
, (5)

where λ is the mean ability difference between the reference and focal groups. For
each item j, λ̂ j , σ(λ̂ j ), and λ̂ j ± zα/2 × σ(λ̂ j ) are computed. Then, find the median
for λ̂1, λ̂2, . . . , and λ̂J . An item j is flagged as a DIF item if λ̂ j ± zα/2 × σ(λ̂ j ), the
1−α confidence interval of item j, does not cover the median of λ̂1, λ̂2, . . . , and λ̂J .
Note that this method may not work when the number of examinees are very small
because the values of λ̂ j cannot be computed when any numbers in Eq. (4) is zero.
The scale purification procedures can easily be implemented with the ORmethod; all
that is necessary is the precomputation of the sample median based on presumably
DIF-free items. See Jin, Chen, and Wang (2018) for the details.

3 Simulation Study

3.1 Design

In this section, the simulation studies were conducted to compare the performance
of the CI and OR methods. In each experiment, we simulated a test consisting of
20 items (i.e., J = 20). The number of examinee (P) is 1000. Specifically, we were
interested in the comparisons based on the five factors, which were also considered in
Simulation Study I of Jin et al. (2018). They were (a) equal and unequal sample sizes
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of the reference and focal groups (500/500 and 800/200), (b) percentages of DIF
items (0, 10, 20, 30 and 40%), (c) DIF patterns: balanced and unbalanced, (d) impact
(0 and 1), and (e) purification procedure (with or without). Under the balanced DIF
conditions, some DIF items favored the reference group and the other items favored
the focal group. By contrast, under the unbalanced DIF conditions, all DIF items
favored the reference group.

Item responses were generated according to Eq. (3). The true values of difficulty
parameters b j were generated identically and independently from a uniform distri-
bution between −1.5 and 1.5. The true values of examinee ability parameters θp for
the reference group (gp = 0) were generated from the standard normal distribution.
When impact = 0, the true values of θp for the focal group (gp = 1) were also gen-
erated from the standard normal distribution; when impact = 1, they were generated
from the normal distribution with mean −1 and variance 1. Under the unbalanced
DIF conditions, d j − b j = 0.5 for all DIF items; under the balanced DIF conditions,
d j − b j = 0.5 for the first half of the DIF items and d j − b j = −0.5 for the second
half of the DIF items. We fixed α, the Type-I error of each test, to 0.05.

To construct the credible intervals, we produced 11,000 MCMC draws with the
first 1000 draws as burn-in. A total of 100 replications were carried out under each
condition. The performance of these two methods was compared in terms of the FPR
and TPR. The FPRwas the rate that DIF-free items were misclassified as having DIF
whereas the TPRwas rate that DIF items were correctly classified as having DIF. The
averaged FPR across the DIF-free items and averaged TPR across the DIF items for
these two methods were reported. Both the OR and CI methods were implemented
by using FORTRAN code with IMSL subroutines, and are available upon request.

3.2 Results

The averaged FPR and TPR of two DIF detection methods for equal (500/500) and
unequal (800/200) sample sizes list in Tables 1 and 2, respectively. As expected, both
methods yieldedwell-controlled FPR under the no-DIF (0%DIF items) and balanced
DIF conditions, although the OR method was slightly conservative. Similar to Jin,
Chen, and Wang (2018)’s study, the FPR larger than or equal to 7.5% was defined as
the inflated FPR in the present study. Under the unbalanced DIF conditions, the OR
method yielded slightly inflated FPR only when tests had 40% or more DIF items.
However, the CI method yielded inflated FPR when tests had 20% or more DIF
items under the unbalanced DIF conditions. The TPR of the CI method was higher
than that of the OR methods under two following conditions: (i) the balanced DIF
conditions and (ii) the unbalanced DIF conditions with 10%DIF items. Furthermore,
under these two conditions, the ratio of the TPR of the CI method to that of the OR
method with scale purification procedure ranged from 1.01 to 1.27, and it was larger
for unequal (800/200) sample sizes than that for equal (500/500) sample sizes. When
the total sample size is 1000, the TPR for equal (500/500) sample sizes was higher
than that for unequal (800/200) sample sizes. In general, both the FPR and TPR
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increased with the percentages of DIF items. The TPR for the balanced DIF was
higher than that for the unbalanced DIF, except for the OR method when Impact =
0 with equal (500/500) sample size. In general, the TPR was higher when Impact
= 0 than that when Impact = 1. The purification procedure increased the TPR for
the unbalanced DIF condition, and the higher the percentage of the DIF items, the
higher the ratio of the TPR of the OR method with scale purification to that of the
OR method without scale purification. By contrast, the purification procedure did
not increase the TPR for the balanced DIF condition.

4 Application

In this section, the CI and OR methods described in the previous sections were
applied to the data of the physics examination of the 2010 Department Required Test
for college entrance in Taiwan provided by the College Entrance Examination Center
(CEEC). Each examinee was required to answer 26 questions within 80 min. The 26
questions were further divided into three parts. The total score was 100, and the test
was administered under the formula-scoring directions. For the first part, there were
20 multiple-choice questions, and the examinees had to choose one correct answer
out of 5 possible choices. For each correct answer, 3 points were granted, and 3/4
point was deducted from the raw score for each incorrect answer. The second part
consisted of 4 multiple-response questions, and each question consisted of 5 choices,
examinees needed to select all the answer choices that apply. The choices in each item
were knowledge-related, but were answered and graded separately. For each correct
choice, 1 point was earned, and for each incorrect choice 1 point was deducted from
the raw score. The final adjusted scores for each of these two parts started from 0.
The last part consisted of 2 calculation problems, and deserved 20 points in total.

The data from1000 randomly sampled examinees contained the original responses
and nonresponses information, but we treated both nonresponses and incorrect
answers the same way and coded them as Ypj = 0 as Chang et al. (2014) sug-
gested. As for the calculation part, the response Ypj was coded as 1 whenever the
original score was more than 7.5 out of 10 points, and zero otherwise (see also Chang
et al., 2014). Here, we considered male and female as the reference and focal groups,
respectively. Among the 1000 examinees, 692 of themweremale and the others were
female.

We made more MCMC draws than that in Sect. 3. Specifically, we produced
40,000 MCMC draws with the first 10,000 draws as burn-in. Then we tested δj = 0,
for j = 1, …, 26. Again, we considered α = 0.05. The intervals of λ̂ j ± zα/2 ×σ(λ̂ j )

for the OR method, which were the same for both with and without purification, and
the credible intervals obtained from the real data were summarized in Table 3. Note
that the median of λ̂1, λ̂2, . . . , and λ̂J before and after purification were 0.5687 and
0.6163, respectively, so the OR method identified Items 3, 5, 8, 19 and 23 as DIF
items, which were underlined and bolded in Table 3. Table 3 also showed that the
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Table 3 The intervals of the
OR and CI methods for the
real data

Item no. OR CI

1 (0.195, 0.7438) (−0.247, 0.372)

2 (0.391, 1.102) (−0.650, 0.121)

3 (−0.396, 0.399) (0.196, 1.034)

4 (0.233, 1.012) (−0.481, 0.357)

5 (−0.203, 0.426) (0.138, 0.846)

6 (0.567, 1.112) (−0.738, −0.111)

7 (0.377, 0.993) (−0.564, 0.122)

8 (−0.168, 0.454) (0.111, 0.812)

9 (0.312, 0.860) (−0.404, 0.214)

10 (0.484, 1.210) (−0.783, −0.001)

11 (0.296, 0.850) (−0.396, 0.232)

12 (0.403, 0.993) (−0.570, 0.100)

13 (0.219, 0.910) (−0.431, 0.335)

14 (0.374, 0.925) (−0.494, 0.127)

15 (0.135, 0.736) (−0.243, 0.426)

16 (0.168, 0.717) (−0.228, 0.394)

17 (0.459, 1.246) (−0.798, 0.044)

18 (0.523, 1.235) (−0.829, −0.027)

19 (−0.261, 0.300) (0.305, 0.942)

20 (0.125, 0.677) (−0.180, 0.447)

21 (0.345, 0.888) (−0.445, 0.166)

22 (0.193, 0.858) (−0.365, 0.362)

23 (−0.164, 0.421) (0.158, 0.804)

24 (−0.339, 1.256) (−0.770, 0.855)

25 (0.529, 2.395) (−1.915, −0.052)

26 (−0.149, 1.210) (−0.700, 0.734)

CI method identified not only Items 3, 5, 8, 19 and 23 as DIF items, but also Items
6, 10, 18 and 25. Based on the result from the OR method, the real data could be
contaminated with unbalanced DIF items because the intervals of the identified DIF
items all fell on the same side of the median. According to the simulation results
in Tables 1 and 2, the CI method yielded inflated FPR when test had 20% or more
unbalanced DIF items.

To reduce the inflated FPR of the CI method, we proposed a two-stage CI method
to detectDIF items,whichwas implemented as follows.At the first stage, we detected
the DIF items by using the CI method. Suppose {i1, i2, . . . , ik} were the collection
of the DIF items identified by the CI method. At the second stage, we check, for
j = 1, …, k, if item ik is a real DIF item by deleting the other DIF items, and use
only item ik and the other non-DIF items to fit the Rasch model and then to detect
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if item ik is a DIF item based on the CI method again. Based on the two-stage CI
method, the identified DIF items were Items 3, 5, 6, 8, 19, 23 and 25, the credible
intervals of these items were underlined and bolded in Table 3. Items 10 and 18 were
identified as DIF items at the first stage, but were not identified as DIF items at the
second stage, and the credible intervals of these two items were marked in italic and
underlined in Table 3.

5 Concluding Remarks

In this article, we compared the finite sample performance of the CI and ORmethods
for detecting the need of an additional difficulty parameter for the responses of the
focal group when the data follow the Rasch model. Simulation studies showed that
the CI method worked better than the ORmethod under the balanced DIF conditions.
However, the CI method yielded inflated FPR under the unbalanced DIF condition.
The two methods were then applied to an empirical example. Comparisons of these
two methods to other IRT models will be an interesting future line of research.
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