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Abstract We simulated Bayesian CFA models to investigate the power of PPP to
detect model misspecification by manipulating sample size, strongly and weakly
informative priors for nontarget parameters, degree of misspecification, and whether
data were generated and analyzed as normal or ordinal. Rejection rates indicate that
PPP lacks power to reject an inappropriate model unless priors are unrealistically
restrictive (essentially equivalent to fixing nontarget parameters to zero) and both
sample size and misspecification are quite large. We suggest researchers evaluate
global fit without priors for nontarget parameters, then search for neglected param-
eters if PPP indicates poor fit.
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Bayesian structural equation modeling (BSEM) has recently received substantial
attention within psychology and the social sciences as an increasingly viable alter-
native to traditional frequentist SEM techniques (MacCallum, Edwards, & Cai, 2012;
Muthén & Asparouhov, 2012; Rindskopf, 2012), such as maximum likelihood (ML)
estimation. Bayesian estimates of model parameters are based on a sampling plausi-
ble parameter values from the posterior distribution of the model parameters, which
is estimated using Markov chain Monte Carlo (MCMC) estimation (see Muthén &
Asparouhov, 2012, for details). Programs available for analyzing a BSEM include
Amos (Arbuckle, 2012), Mplus (Muthén & Muthén, 2012), and more recently the R
(R Core Team, 2018) package blavaan (Merkle & Rosseel, 2018), which utilizes the
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more general Bayesian modeling software JAGS (Plummer, 2003) and Stan (Car-
penter et al., 2017).

An important step in fitting BSEMs (or models in general) is to investigate how
well the hypothesized model can reproduce the observed data, for which posterior
predictive model checking (PPMC; Gelman, Meng, & Stern, 1996) was developed
(see Levy, 2011, for a review of PPMC specifically for BSEM). PPMC is not a
test statistic per se, but it can be based on a test statistic, such as the traditional x>
test of exact fit derived from the ML discrepancy function (although any discrepancy
measure of interest can be used, such as the SRMR fitindex; Levy, 2011). PPMC uses
the samples from the joint posterior distribution to check data—model correspondence
by comparing observed data to expected data. For the sampled parameters at one
iteration of a Markov chain (after the burn-in iterations), a random sample of N
observations is simulated from the population with those parameters. The simulated
sample’s sufficient statistics (means and covariances) are calculated and compared
(using the ML discrepancy function) with the sufficient statistics implied by the model
parameters drawn from the posterior distribution at that iteration; likewise, the same
discrepancy is calculated comparing the sufficient statistics of the observed data to
the model-implied sufficient statistics at that iteration. This results in a discrepancy
measure both for the observed data and for the simulated data. A score of 1 is assigned
if the observed data have less discrepancy (i.e., fit better) than the simulated data;
otherwise, a score of 0 is assigned—this score can be considered as a Bernoulli
random variable. These binary numbers are averaged across all iterations sampled
from the posterior distribution. The average is referred to as the posterior predictive
p value (PPP).

Naturally, the model should fit well to the simulated data at every iteration because
simulated data are drawn from those population parameters. If the hypothesized
model is an appropriate approximation of the population process from which the
real data was sampled, then the model should fit the real data often, too. On average,
an appropriate model will fit the real data better than the simulated data about as
often as the other way around, so the mean of this Bernoulli random variable is
50%, the expected value of PPP when the target model is approximately correct. The
probability will decrease as the appropriateness of the hypothesized model decreases
in its ability to explain the phenomena under investigation. That is, if the model is
grossly inappropriate, the model will continue to fit well to the simulated data drawn
from those population parameters, but it will rarely fit well to the real data, so the
expected value of PPP will approach 0%.

There is no theoretical cutoff for how low PPP must be to indicate unignorable
misfit, nor is there a consensus about how applied users should interpret PPP (e.g.,
treat it like a frequentist p value and compare it to an alpha level, or use as a fit index).
Muthén and Asparouhov (2012) recently suggested after their initial simulations
that the traditional approach of using “posterior predictive p values of 0.10, 0.05, or
0.01 appears reasonable” (p. 315), with the caveat that further investigations were
needed to establish how these methods behave in practice with various models and
data. Depaoli (2012) already began to address that gap in a recent Monte Carlo
simulation study of PPP values in the context of growth mixture modeling, and found
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that PPP and graphical PPMC were only likely to identify extremely misspecified
growth mixture models. We use a Monte Carlo simulation study to investigate (a)
the sensitivity of PPP to varying levels of misspecification in confirmatory factor
analysis (CFA) models, as well as (b) how consistently Muthén and Asparouhov’s
guidelines would apply across varying samples sizes and different informative priors.

1 Method

1.1 Continuous (Standard Normal) Indicators

Using the MONTECARLO command in Mplus (version 6.11 for Linux; Muthén &
Muthén, 2002), we simulated a two-factor CFA with three indicators per factor. In
each of the four population models, factors were standard normal (L =0, o = 1), with
a factor correlation = (.25, factor loadings = 0.70, indicator intercepts = 0.0, and
indicator residual variances = 0.51; thus, indicators had unit variance. To vary levels
of misspecification of the analysis model, the third indicator of the first factor was
specified to have a cross-loading on the second factor (\3;) in the population. The
magnitude of A3, was 0.0, 0.2, 0.5, or 0.7 in the population, but was constrained to be
close to zero in the analysis model using informative priors. For ease of interpretation,
we refer to A3, = 0.2 as minor misspecification (using o = 0.05, the ML ¥ test has
80% power when N > 500, RMSEA = 0.06, SRMR = 0.03, CFI = 0.98), \3, = 0.5
as severe misspecification (80% power when N > 150, RMSEA = 0.12, SRMR =
0.07, CFI = 0.92), and \3, = 0.7 as very severe misspecification (80% power when
N > 100, RMSEA = 0.14, SRMR = 0.07, CFI = 0.89).

In the analysis model, we specified noninformative priors for all target parame-
ters (primary loadings, residual variances, and the factor covariance) using Mplus
defaults—for example, factor loadings ~N(i = 0, o> = “infinity”). For all cross-
loadings, we specified normally distributed priors with four levels of informative
variance, chosen to correspond approximately with the prior belief in a 95% prob-
ability that the cross-loadings are within approximately £0.01, +0.10, £0.20, or
40.30 of zero (i.e., o = 0.005, 0.05, 0.10, and 0.15, or equivalently o2 = 0.000025,
0.0025, 0.01, and 0.0225). In each condition, sample sizes of N = 50-500 were
drawn in increments of 25, along with an asymptotic condition of N = 1000. We
drew 200 samples from each of 320 conditions (20 sample sizes, four levels of CL,
and four prior variances) with normally distributed indicators.

Following Muthén and Asparouhov’s (2012) advice, we kept 100,000 iterations
from the MCMC chains after thinning every 100th iteration. Over 99% of models
converged on a proper solution, yielding 63,480 (out of 64,000) PPP values for
analysis. Convergence in each condition was at least 98% except when sample size
was small (N < 100) and CL was large (A3, > 0.5). The smallest convergence rate
was 82% (N = 50, k3, = 0.7).
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1.2 Categorical Indicators

Because behavioral data are so often measured using discrete scales rather than truly
continuous data, we also simulated binary and ordinal data. Rhemtulla, Brosseau-
Liard, and Savalei’s (2012) simulation results suggest that when ordinal variables
have at least five categories, robust estimation methods for nonnormal data provide
similar conclusions as estimation for categorical data. For few categories, we were
interested in how PPP and constrained nontarget parameters would be affected by the
data distribution. Thus, we manipulated the same conditions as for normal indicators
described above, but we additionally varied the number of categories (from two to
five) and how the data were analyzed (appropriately as ordinal or inappropriately as
normal). Thresholds were not manipulated, but were chosen to mimic a unimodal
symmetric distribution: O for binary; = 0.8 for three categories; —1, 0, and 1 for four
categories; and —1.6, —0.8, 0.8, and 1.6 for five categories. Whereas 100% of the
models converged when the indicators were analyzed as ordinal, when the indicators
were analyzed as normal, convergence rates were 94.78, 97.34, 98.45, and 98.13%
for 2, 3, 4, and 5 categories, respectively.

2 Results

For each model, we investigate the sampling variability of PPP across conditions,
and calculate power and Type I error' rates using traditional cutoff values (o = 0.10,
0.05, or 0.01) for PPP to identify “significant” misfit.

2.1 Sampling Variability of PPP

Table 1 shows the effect sizes for each model under investigation. Using Cohen’s
(1988) criteria for interpreting the size of n? (negligible < 0.01 < small < 0.06 < mod-
erate < 0.14 < large), N had a negligible effect on PPP when normal or ordinal data
were analyzed assuming normality, but N explained 4% of variance in PPP when
data were analyzed as ordinal. PPP values were largely influenced by the magnitude
of the neglected cross-loading (CL), but much more so for normal data (1> = 34.2%)
than for categorical data analyzed as normal (n? = 17.1%) or as ordinal (n? = 18%).
The magnitude of prior variance for estimating nontarget CLs had a large effect on
PPP when normal (n? = 22.1%) or categorical (n> = 20.9%) data were analyzed as
normal, but only a moderate effect when categorical data were analyzed as ordinal
(m? = 7%). When categorical data were analyzed as ordinal, the number of cate-

'We use the term “Type I error” when referring to any model that does not omit a substantial param-
eter, although in the categorical data conditions, the model contains another type of misspecification
(incorrect likelihood) when analyzed as though the data were normally distributed.
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Table 1 Proportions of variance (n%) of PPP explained by Monte Carlo factors

How data were generated (and analyzed)

Normal data (as Categorical data (as Categorical data (as

normal) normal) ordinal)
N 0.002 0.001 0.040
Prior variance 0.221 0.209 0.070
Misfit 0.343 0.171 0.180
Number of categories 0.019 0.072
(#CAT)
N x Prior 0.014 0.024 0.018
N x Misfit 0.002 0.003 0.021
Prior x Misfit 0.103 0.096 0.023
N x #CAT 0.000 0.001
Prior x #CAT 0.010 0.008
Misfit x #CAT 0.013 0.017
N x Prior x Misfit 0.009 0.010 0.012
N x Prior x #CAT 0.001 0.001
N x Misfit x #CAT 0.000 0.001
Prior x Misfit x 0.008 0.003
#CAT
N x Prior x Misfit x 0.002 0.001
#CAT

Note Medium and large effect sizes using Cohen’s (1988) criteria (i.e., effect explains at least 6% of
variance) are in bold font. Data generated as continuous did not have varying numbers of categories,
so cells involving the #CAT effect are blank

gories also had a moderate effect of PPP (n? = 7.2%). The only substantial two-way
interactions were found between prior variance and magnitude of neglected CL, for
normal data (n?> = 10.3%) and for categorical data analyzed as normal (n?> = 9.6%).
All other interactions effects were negligible or small (n> < 4%). The effect of N in
most conditions appears approximately linear in Fig. 1 (and Figs. A1-A8 provided
in the online” supplemental materials), so we treated N as a continuous® covariate to
calculate 2.

Figure 1 (online supplemental material) reveals the nature of the interaction
between magnitude of prior variances and of the neglected parameter (\3,) in normal-
data conditions. When X3, = 0 (no misspecification), the average PPP value is con-
sistent with its expected value of 50%, regardless of the magnitude of prior variance.
As the magnitude of the neglected population parameter increases, the average PPP
decreases, but PPP shows more sensitivity to misspecification when prior variances
are restrictive than when only weakly informative. Figure 1 plots PPP values only

2The online supplemental materials can be retrieved at the following URL: https://osf.io/buhvg/.
3Treating N as a categorical factor showed no substantial difference in the effect sizes.
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Fig. 1 Variability of PPP as a function of sample size, plotted separately for each condition of
prior variance and magnitude of neglected cross-loading (}32). There is a smoothed regression line
indicating how the mean PPP changes, and the horizontal dashed line in each cell at PPP = 50%
refers to the expected value under the null hypothesis of no misfit

for the normal-data conditions, but this two-way interaction is characterized by sim-
ilar patterns in all categorical-data conditions, with the exception that PPP appears
less sensitive for two-category data, especially when analyze as ordinal (see Figures
A1-A4 in the online appendix). PPP is also less variable when categorical data have
fewer categories and are analyzed as ordinal, so PPP’s distribution resembles even
less the expected uniform [0, 1] distribution of traditional p values (Hoijtink & van
de Schoot, 2018).

2.2 Detecting Misfit

Figure 2 (and online supplemental material) plots the rejection rates for normal-data
models against N, with separate panels for each magnitude of prior variance and
misspecification. We used three different criteria for rejecting a model due to lack of
fit: PPP < 0.10, 0.05, or 0.01, to evaluate Muthén and Asparouhov’s (2012, p. 315)
suggestion. Rejection rates in the bottom row of Fig. 2 represent Type I error rates
because the model is not misspecified (i.e., A3 = 0), whereas rejection rates in the
top two rows represent power (i.e., when A3, = 0.5 or 0.7). Rejection rates in the
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Fig. 2 Rejection rates as a function of sample size, plotted separately across conditions of varying
priors and magnitude of neglected cross-loading (\32). The dashed horizontal line at 80% represents
acceptable power, and the dotted vertical line at N = 250 is for convenience when judging sample
sizes required for adequate power

row labeled “Minor Misfit” correspond to h3; = 0.2 and could be classified as Type
I errors or power, depending on the whether the analyst wishes to test exact fit or
close fit (Browne & Cudeck, 1992). That is, a researcher might consider a neglected
cross-loading of 0.2 to be of little substantive consequence, so the analysis model
would be considered to correspond closely enough to the population model that it
should not be rejected.

Consistent with prior research showing that PPP is more conservative than nominal
error rates (Gelmanetal., 1996; Levy, 2011), the Type I error rate is near zero in almost
every condition, much lower than nominal levels using any of the three rejection
criteria. However, power rarely exceeds 80% (a commonly preferred minimum)
unless the neglected parameter is quite large or the prior variance is quite small (or
both). Depending on the rejection criterion, power exceeds 80% when N > 200-300
when using the most restrictive priors. This suggests that with sufficient sample size,
researchers could only be confident about detecting misfit by specifying priors so
informative that their 95% confidence limits are approximately +0.01—so strongly
informative that the model bears little practical distinction from one in which no
informative priors are specified for cross-loadings. Using more realistic informative
priors with 95% confidence limits approximately £0.1, power only exceeded 80%
for the most severe level of misspecification (h3; = 0.7). Perhaps most noteworthy,
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power was close to zero to detect severe misspecification (A3, = 0.5) at any N
when using Muthén and Asparouhov’s (2012) suggested priors (95% confidence
limits approximately +0.2). Similar results were found for categorical data (see
Figs. A9-A16), although power was even lower when data with fewer categories
were analyzed as ordinal (e.g., power remained nearly zero in all binary conditions;
see Fig. A9).

3 Discussion

The assessment of fit and detection of misspecification in SEM is no less important
in a Bayesian context than in a traditional frequentist paradigm, but tools currently
available in BSEM are few, and their behavior is largely unknown. In the conditions
we investigated, PPP lacks power unless N > 200-300, misspecification is severe,
and priors for nontarget parameters are highly (even unrealistically) restrictive. This
implies that informative priors for nontarget parameters should be chosen very care-
fully. Asparouhov, Muthén, and Morin (2015) suggested a data-driven sensitivity
analysis to choose priors that balanced detecting substantial misfit and allowing neg-
ligible misfit. More recently, Cain and Zhang (in press) found larger Type I error rates
with simulated 3-factor models than we did with 2-factor models, and they recom-
mended different PPP criteria for models with different numbers of indicators. This
calls into question whether any uniform cutoffs can be expected to perform con-
sistently across conditions with different data and model characteristics. Because
power to detect substantial misspecification only appears adequate when priors are
so restrictive that they are nearly equivalent to fixing the nontarget parameters to
zero, we suggest researchers simply evaluate global fit without priors for nontarget
parameters, then search for neglected parameters only if PPP indicates poor fit. But
because even minor misspecification can be detected with great power in asymptoti-
cally large samples (Hoofs, van de Schoot, Jansen, & Kant, 2018), the development
of complementary fit indices for evaluating BSEMs (similar to those used in SEM)
would be a welcome and useful addition to the researcher’s toolbox. The BRMSEA
(Hoofs et al., 2018) is the first such attempt, and it appears promising, but further
development is needed.
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