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Abstract Factorial invariance assessment is central in the development of educa-
tional and psychological instruments. Establishing factor structure invariance is key
for building a strong validity argument, and establishing the fairness of score use.
Fit indices and guidelines for judging a lack of invariance is an ever-developing line
of research. An equivalence testing approach to invariance assessment, based on the
RMSEA has been introduced. Simulation work demonstrated that this technique is
effective for identifying loading and intercept noninvariance under a variety of con-
ditions, when indicator variables are continuous and normally distributed. However,
in many applications indicators are categorical (e.g., ordinal items). Equivalence
testing based on the RMSEAmust be adjusted to account for the presence of ordinal
data to ensure accuracy of the procedures. The purpose of this simulation study is to
investigate the performance of three alternatives for making such adjustments, based
on work by Yuan and Bentler (Sociological Methodology, 30(1):165–200, 2000)
and Maydeu-Olivares and Joe (Psychometrika 71(4):713–732, 2006). Equivalence
testing procedures based on RMSEA using this adjustment is investigated, and com-
pared with the Chi-square difference test. Manipulated factors include sample size,
magnitude of noninvariance, proportion of noninvariant indicators, model parameter
(loading or intercept), and number of indicators, and the outcomes of interest were
Type I error and power rates. Results demonstrated that the T3 statistic (Asparouhov
& Muthén, 2010) in conjunction with diagonally weighted least squares estimation
yielded the most accurate invariance testing outcome.
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1 Introduction

Social scientists, policy makers, and others make use of scores from psychologi-
cal scales to make decisions about persons, and groups of people, for a variety of
purposes, including hiring, schoolmatriculation, professional licensure, and determi-
nations regarding the need for special educational and psychological services. Given
their importance, there must be strong validity evidence for using scores in these
ways (American Education Research Association, American Psychological Asso-
ciation, & National Council on Measurement in Education, 2014). One important
aspect of providing such evidence is the determination as to whether the measures
provide equivalent information for members of different groups in the population,
such as males and females, or members of different economic subgroups (Wu, Li,
& Zumbo, 2007). Traditionally, such factor invariance (FI) assessments have been
made using a Chi-square difference test with multiple group confirmatory analysis
(MGCFA). However, this approach is very sensitive to sample size, so that it might be
statistically significant for very minor differences in group parameter values (Yuan
& Chan, 2016). Perhaps more importantly, information about the magnitude of any
group differences in latent variablemodel parameters identified is not available (Yuan
& Chan, 2016). Yuan and Chan described an alternative approach to FI assessment
that is based on equivalence testing. When indicator variables are normally dis-
tributed, this equivalence testing based method is an effective tool, yielding accurate
results with respect to the invariance (or noninvariance) of the latent variable model
(Finch & French, 2018). The purpose of the current simulation study was to extend
this earlier work by investigating how the equivalence testing technique performed
when the observed indicators were ordinal variables (such as items on a scale), rather
than being normally distributed.

1.1 MGCFA and FI Assessment

FI assessment (Millsap, 2011) refers to a set of nested models with differing levels
of cross group equality assumed about the parameters in a latent variable model
linking observed indicators (x) to latent variables (ξ ). The weakest type of FI is
configural invariance (CI), where only the general latent structure (i.e., number of
latent variables and correspondence of observed indicators to latent variables) is the
same across groups. The next level of FI is measurement invariance (MI), where the
factor loading matrix (�) is assumed to be equivalent across groups (Kline, 2016;
Wicherts & Dolan, 2010). If MI holds, researchers might next assess the equality
of the factor model intercepts (τ ) across groups (Steenkamp & Baumgartner, 1998),
and/or group equality of the unique variances (δ) invariant across groups.

The most common approach for assessing FI is based on the MGCFA model:

xg = τg + �gξ + δg (1)
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where

xg Observed indicators for group g
τg Threshold parameters for group g
�g Factor loading matrix for group g
ξ Latent variable(s)
δg Unique variances of the indicator variables for group g.

The terms in Eq. (1) are as described above, except that the parameters are allowed
to vary by group, which is denoted by the g subscript. MGCFA is used to test each
type of FI through a series of nested models, which differ in terms of that model
parameters that are held equivalent between groups. For example, in order to assess
MI, the researcher would constrain factor loadings to be equivalent across groups,
thereby replacing �g with � in Eq. (1). The fit of the constrained and unconstrained
models are then compared using a difference in Chi-square fit statistic value, χ2

�.
The null hypothesis of this test is that MI is present.

The performance ofχ2
� for invariance testing has yielded somewhatmixed results.

French and Finch (2006) found that for normally distributed indicators and a sample
size of no more than 500, χ2

� had Type I error rates at the nominal (0.05) level,
while also exhibiting relatively high power. Other researchers have reported that χ2

�

is sensitive to sample size, to a lack of normality in the indicators, and to model
misspecification errors, and in such cases may yield inflated Type I error rates when
assessing MI (Chen, 2007; Yuan & Chan, 2016; Yuan & Bentler, 2004).

1.2 Factor Invariance with Equivalence Testing

Given these problems associated with using χ2
�, Yuan and Chan (2016) proposed an

extension of other work designed to assess model fit using an equivalence testing
approach (Marcoulides & Yuan, 2017; Yuan, Chan, Marcoulides, & Bentler, 2016)
to the assessment of FI using MGCFA. In the case of MGCFA for FI assessment, the
null hypothesis is:

H0I : (Fbc0 − Fb0) > ε0 (2)

Fbc0 is the fit function value for a model where group parameters are constrained to
be equal, Fb0 is the fit function value for a model where group latent variable model
parameters are allowed to differ between groups, and ε0 is the maximum acceptable
model misspecification. Rejecting H0I leads to the conclusion that any model mis-
specification due to constraining factor model parameters to be equal across groups
does not greatly degrade model fit vis-à-vis the model where these constraints are
relaxed. Therefore, rejecting H0I in the MI equivalence testing framework would
indicate that when the groups’ factor loadings are constrained to be equal, the dif-
ference in fit between the loadings constrained and loadings unconstrained models
does not exceed an acceptable level of misfit, as expressed by ε0.
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Yuan and Chan (2016) showed that the value of ε0 can be obtained as follows:

ε0 = d f (RMSE A0)
2

m
(3)

where

d f Model degrees of freedom
m Number of groups
RMSE A0 Maximum value of RMSEA that can be tolerated.

For FI assessment, Yuan and Chan recommend using this equivalence testing pro-
cedure to characterize the relative degree of noninvariance present in the data, as
opposed to making strict hypothesis testing based determinations regarding equiva-
lence or not. In this framework, the degree of model parameter invariance present in
the data can be characterized using common guidelines (e.g., MacCallum, Browne,
& Sugawara, 1996) to describe the model constraining group parameters to be equal.
These guidelines for interpreting values of RMSEA suggest the following fit cat-
egories: Excellent fit (<0.01), Close fit (0.01–0.05), Fair fit (0.05–0.08), Mediocre
fit (0.08–0.10), and Poor fit (0.10+). Thus, an RMSEA of 0.17 for a model con-
straining factor loadings to be equal among groups would suggest poor fit of the MI
model, meaning that model parameters are likely not equivalent between the groups.
Yuan and Chan (2016) found that for the purposes of determining the value of ε0,
these standard cutoffs for interpreting RMSEA may be too stringent, and thus rec-
ommended an alternative approach for obtaining adjusted cutoffs based on the data
being analyzed. The interested reader is encouraged to review this earlier paper for a
description of how these alternatives are obtained. This equivalence testing approach
is effective for assessing the fit of a single model, and for invariance assessment (e.g.,
Finch & French, 2018; Marcoulides & Yuan, 2017; Yuan & Chan, 2016). However,
the performance of the equivalence testing approach to invariance assessment when
indicators are categorical and not normally distributed has not been investigated.

1.3 Fit Indices for Categorical Indicators

Yuan and Chan (2016) indicated that the equivalence invariance test was designed
for use with normally distributed indicators. However, in many contexts in the social
sciences researchers workwith ordinal observed variables, such as responses to items
on a rating scale. In such cases, the equivalence testing approach may not be appro-
priate, because calculation of the standard full information χ2 statistic upon which
RMSEA is based is problematic (Maydeu-Olivares & Joe, 2006). In the context of
categorical indicators, this statistic relies on the full cross-tabulation of the entire set
of categorical indicators (full information), leading to the potential for cell sparsity,
and resulting problems in its calculation (Maydeu-Olivares & Joe), which in turn
biases the RMSEA estimate.
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In order to address these problems caused by sparsity, alternative goodness of
fit statistics based on limited information approaches have been proposed for use
with latent variable modeling in the context of categorical indicator variables. One
set of alternatives is based upon a least squares, rather than maximum likelihood,
estimation paradigm. For example, the weighted least squares (WLS) fit function
takes the form:

F(θ;W ) = (
ρ̂ − ρ(θ)

)′
W

(
ρ̂ − ρ(θ)

)
(4)

where

ρ̂ Sample polychoric correlation matrix for the indicator variables
ρ(θ) Model implied polychoric correlation matrix
W Asymptotic covariance matrix of ρ̂.

Given that WLS yields biased estimates and has difficulty in converging when sam-
ples are small (Muthén, 1993), the diagonally weighted least squares (DWLS) esti-
mator was proposed (Muthén, du Toit, & Spisic, 1997). DWLS reduces the compu-
tational burden and yields less biased parameter estimates for smaller sample sizes
by using only the diagonal ofW as the weight matrix (Flora & Curran, 2004). When
W is the identity matrix, (5) is the unweighted least squares (ULS) estimator. For
each of these estimators, a moment corrected goodness of fit statistic, T3, can be
calculated based upon the fit function, and is asymptotically a Chi-square statistic
(Asparouhov & Muthén, 2010). T3 can then be used to calculate RMSEA, which in
turn can be used with the invariance equivalence methodology described above.

An alternative limited information goodness of fit statistic for use with categorical
indicators was proposed byMaydeu-Olivares and Joe (2006). This statistic is defined
as:

M∗
2 = Nê2�̂2ê2 (5)

where

ê2 Vector of first and second order residual probabilities.

�̂2 �̂2 = �−1
2 − �−1

2 �2
(
�′

2�
−1
2 �2

)−1
�′

2�
−1
2

�2 Asymptotic covariance matrix of the first and second order sample proportions
�2 Matrix of derivatives of the first and second order model implied probabilities

with respect to the vector of parameter estimates θ̂ .
M∗

2 is asymptotically distributed as a Chi-square statistic, and can be used to calcu-
late RMSEA for use with the invariance equivalence testing approach described
above.
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1.4 Goals of the Current Study

The goal of the current study was to extend earlier work that investigated the per-
formance of the equivalence testing procedure for normally distributed indicators
(Finch & French, 2018). The current study extends this research by examining the
performance of T3 for both DWLS and ULS, as well as M2 in the context of MI when
the indicator variables are categorical.

2 Method

AMonte Carlo simulation study (1000 replications) was utilized to address the study
goals. Data simulation was completed in Mplus, version 7.11 (Muthén & Muthén,
1998–2016), and data analyses were conducted using R version 3.3.1 (R Develop-
ment Core Team, 2016). Data were generated using a single factor confirmatory
factor analysis model for 2 groups, where the factor, error variances, and factor vari-
ances followed the standard normal distribution, with a mean of 0 and variance of 1.
Indicator variables were simulated to be ordinal with 5 categories, with the following
pattern of thresholds:−1,−0.5, 0.5, 1. Factor loadings were set to 1 for all indicators,
unless manipulated to induce measurement noninvariance, as described below. All
other model parameters were held invariant between the two groups. The referent
indicator method was used to identify the factor models. The following factors were
manipulated in the study, and were based upon earlier published work in this area
(e.g., Finch & French, 2018).

2.1 Sample Size

Given that sample size has been shown to be important in terms of the performance
of the equivalence testing approach, and the χ2

� test (Chen, 2007; Finch & French,
2018; French & Finch, 2006), it was manipulated in the current study. Total sample
sizes were simulated to be 200, 400, 600, 1000, 1500, or 2000, and were designed
to reflect small to large samples.

2.2 Number of Indicator Variables

Either 10 or 20 observed factor indicators were simulated, representing a range of
values that might be encountered in practice.
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2.3 Number of Noninvariant Indicators and Magnitude
of Measurement Noninvariance

Measurement noninvariancewas simulated by creating group differences in the factor
loadings for some observed indicators. For the invariance condition, the difference in
factor loadings between the groups was 0 (complete invariance). For the noninvariant
cases, loadings were simulated to differ by 0.1, 0.2, 0.3, 0.4, or 0.5. The percent
of indicators allowed to be noninvariant was 0, 10, 20, or 30%. As an example
of how noninvariance was simulated, in the 10 indicators, 10% noninvariant, 0.1
noninvariance magnitude condition, the factor loading for indicator 2 was set to 0.9
in one group, and kept at 1.0 in the other group.

2.4 Invariance Assessment Approaches

For each replicationwithin each simulation condition, invariancewas tested using the
MGCFA χ2

� approach, with T3 for DWLS (TDWLS) and ULS (TULS), as well as M∗
2 .

In addition, the equivalence test method based was also used to assess invariance,
with the RMSEA values based upon TDWLS , TULS , and M∗

2 , respectively.

2.5 Study Outcomes

The outcomes were the Type I error and power rates of the χ2
� tests, and the adjusted

equivalence test fit category distribution (Excellent, Close, Fair, Mediocre, or Poor).
Analysis of variance (ANOVA) was used to identify statistically significant main
effects and interactions of the manipulated conditions with respect to the proportion
of cases for which the equivalence testing method identified poor fit. In addition, the
partial η2 effect size was also used to identify ANOVAmodel terms of interest, such
that main effects and interactions of themanipulated conditions had to be statistically
significant with partial η2 value of 0.1 or larger, ensuring that effects accounted for
at least 10% of the outcome variance to be deemed important.

3 Results

3.1 Measurement Invariance Is Present

The interaction of invariance assessment method by sample size was the only sta-
tistically significant model term (F10,8 = 10.527, p = 0.001, η2 = 0.929) when
invariance was present. The Type I error rate for the TDWLS statistic was the only one
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Table 1 Type I error rates and proportion of adjusted equivalence test results in excellent or close
range, by sample size and method

N TDWLS TULS M∗
2 Proportion in excellent/close fit range

RMSEA TDWLS RMSEA TULS RMSEA M∗
2

200 0.07 0.08 0.11 0.39 0.12 0.03

400 0.06 0.08 0.10 0.41 0.13 0.03

600 0.04 0.08 0.10 0.57 0.21 0.04

1000 0.05 0.08 0.07 0.80 0.45 0.25

1500 0.05 0.07 0.06 0.84 0.55 0.34

2000 0.05 0.07 0.05 0.92 0.69 0.50

that was in the acceptable range (0.025–0.075) as defined by Bradley (1978), across
all sample size conditions (Table 1). For the other two statistics, the samples needed
to be at least 1000 (M∗

2 ) or 1500 (TULS) in order for the Type I error rates to be in
this range. Results in Table 1 show that equivalence testing based on TDWLS had
the highest rates in the expected excellent/close fit categories, across sample sizes.
This proportion increased concomitantly with increases in sample size. Finally, the
proportion in the expected excellent/close fit range was below 0.8 for samples of less
than 1000 for TDWLS , which was the best performer in this regard.

3.2 Measurement Invariance Is Not Present

When factor loadings were simulated to differ between the groups, ANOVA found
the interactions of equivalence test statistic by number of noninvariant indicator vari-
ables by magnitude of group loading difference (F16,234 = 14.389, p < 0.001, η2 =
0.496), and equivalence test statistic by number of loadings by magnitude of group
loading difference (F8,234 = 9.104, p < 0.001, η2 = 0.237), to be statistically
significantly related to the performance of the equivalence test procedure. The first
set of results to be examined are those for measurement invariance not present, by
method, magnitude of group loading difference, and percent of noninvariant load-
ings. The proportion of replications in each equivalence testing category for this
combination of conditions appear in Fig. 1. It is clear from these results that when
the magnitude of group loading differences was 0.3 or more, and 20 or 30% of the
indicators were noninvariant between groups, virtually all replications were in the
poor fit range (expected outcome given simulated lack of invariance) for all of the
methods. Under conditions in which the degree of group difference was less pro-
nounced, the invariance tests based on M∗

2 and TULS tended to indicate worse fit
more frequently than did those based on TDWLS . This result was strongest when 30%
of the indicators were simulated to have different loadings between groups, and the
magnitude of these differences was 0.1 or 0.2. Power results for the χ2

� tests appear
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Table 2 Power rates for detecting measurement noninvariance for the chi-square difference test by
the magnitude of group loading difference, number of noninvariant indicators, and test statistic

Magnitude of
group loading
difference

Number of
noninvariant
indicators

TDWLS TULS M∗
2

0.1 1 0.07 0.84 0.15

2 0.11 0.90 0.28

3 0.15 0.90 0.29

0.2 1 0.21 0.93 0.44

2 0.45 0.97 0.63

3 0.61 0.98 0.67

0.3 1 0.53 0.97 0.63

2 0.76 0.99 0.82

3 0.85 0.99 0.87

0.4 1 0.76 0.99 0.79

2 0.91 0.99 0.92

3 0.97 1.00 0.95

0.5 1 0.89 0.99 0.89

2 0.94 0.99 0.94

3 0.99 1.00 0.990

in Table 2, and demonstrate that TULS had the highest rates of power across con-
ditions, whereas TDWLS exhibited somewhat lower power than did M∗

2 , particularly
for lower group loading difference magnitudes, and fewer noninvariant indicators. It
is important when interpreting these results to recall that the Type I error rates were
inflated under many conditions for each of these statistics, particularly M∗

2 and TULS .
The proportion of replications in each equivalence testing category by magnitude

of group loading difference and number of indicators when noninvariance was sim-
ulated to be present appear in Fig. 2. These results revealed that with a larger group
loading difference there was a higher likelihood of mediocre and poor fit, based
on the equivalence test. In addition, with more indicators this effect was magnified
for each of the statistics. For example, the proportion of cases in the mediocre and
poor fit categories was greater for 20 indicators than for 10, across methods stud-
ied here. Power results for the χ2

� tests by magnitude of group loading difference
and number of indicators appear in Table 3, and are aggregated over the number of
non-invariant indicators. Power for all three equivalence testing methods was higher
when more indicators were present, and that power for TULS was the highest across
conditions, whereas power for TDWLS was the lowest for the smallest magnitudes of
group loading difference.
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Fig. 1 Proportion of adjusted equivalence test results in each fit category by equivalence statistic,
number of noninvariant loadings, andmagnitude of group loading difference: noninvariance present
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Fig. 2 Proportion of adjusted equivalence test results in each fit category by equivalence statistic,
number of indicator variables, and magnitude of group loading difference: noninnvariance present
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Table 3 Power rates for detecting measurement noninvariance for the chi-square difference test by
the magnitude of group loading difference, number of indicators, and test statistic

Magnitude of group loading
difference

Number of indicators TDWLS TULS M∗
2

0.1 10 0.10 0.79 0.30

20 0.11 0.97 0.39

0.2 10 0.38 0.93 0.58

20 0.46 0.99 0.68

0.3 10 0.66 0.98 0.74

20 0.77 0.99 0.81

0.4 10 0.84 0.99 0.85

20 0.92 1.00 0.92

0.5 10 0.91 0.99 0.91

20 0.97 1.00 0.97

4 Discussion

The results of this study demonstrated that the equivalence testing procedure based
on TDWLS appeared to correctly identify models in which MI held at the highest
rates among the methods studied here, while at the same time generally identifying
poorly fitting models at a high rate. It is important to note that when the magnitude
of group factor loading difference was relatively low (0.2 or less), this statistic was
less likely to indicate fair to poor fit than the alternatives studied here. This result
could suggest a relative lack of power for this approach, or it could simply reflect
the fact that small differences in factor loadings are not indicative of a major lack
of equivalence between groups. Finally, the χ2

� based approaches exhibited inflated
Type I error rates in many cases, and may not be as useful as the equivalence testing
approach.

Future research in this area should focus on identifying additional alternatives
for calculating RMSEA with categorical indicators. Though TDWLS was the best
performer, it was not without problems, particularly for low levels of noninvariance.
In addition, future work should include a wider array of indicator categories (e.g., 3,
4, 6, 7), and more complex latent structure (e.g., 2 or 3 factors). Such continued work
will allow the invariance literature to continue to expand to address group differences
in the measurement of constructs used to make decisions about individuals.
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