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Abstract It is well-known that factor analysis and principal component analysis
often yield similar estimated loadingmatrices.Guttman (Psychometrika 21:273–285,
1956) identified a condition under which the two matrices are close to each other
at the population level. We discuss the matrix version of the Guttman condition for
closeness between the two methods. It can be considered as an extension of the
original Guttman condition in the sense that the matrix version involves not only
the diagonal elements but also the off-diagonal elements of the inverse matrices of
variance-covariances and unique variances. We also discuss some implications of
the extended Guttman condition, including how to obtain approximate estimates of
the inverse of covariance matrix under high dimensions.

Keywords High dimensions · Principal components · Unique variances

1 Factor Analysis and Principal Component Analysis

Factor analysis (FA) and principal component analysis (PCA) are frequently used
multivariate statistical methods for data reduction. In FA (Anderson, 2003; Lawley&
Maxwell, 1971), the p-dimensional mean-centered vector of the observed variables
yi , i = 1, . . . , n, is linearly related to a m-dimensional vector of latent factors f i
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via yi = � f i+εi , where � = (λ1, . . . ,λm) is a p × m matrix of factor loadings
(with p > m), and εi is a p-dimensional vector of errors. Typically for the orthogonal
factor model, the three assumptions are imposed: (i) f i ∼ Nm(0, Im); (ii) εi ∼
Np(0,�), where � is a diagonal matrix with positive elements on the diagonal; (iii)
Cov( f i , εi ) = 0. Then, under these three assumptions, the covariance matrix of yi
is given by � = ��′ + �. If yi is standardized, � is a correlation matrix.

Let�+ = (λ+
1 , . . . ,λ+

m) be the p×mmatrix whose columns are the standardized
eigenvectors corresponding to the first m largest eigenvalues of �; � = diag(ω) be
them × m diagonal matrix whose diagonal elements ω = (ω1, . . . , ωm)′ are the first
m largest eigenvalues of �; and �1/2 be the m × m diagonal matrix whose diagonal
elements are the square root of those in �. Then principal components (PCs) (c.f.,
Anderson, 2003) with m elements are obtained as f ∗

i = �+′ yi . Clearly, the PCs are
uncorrelated with a covariance matrix �+′��+. When m is properly chosen, there
exists � ≈ �+��+′ = �*�∗′ , where �∗ = �+�1/2 is the p × m matrix of PCA
loadings.

2 Closeness Conditions Between Factor Analysis
and Principal Component Analysis

It has been well-known that FA and PCA often yield approximately the same results,
especially their estimated loading matrices �̂ and �̂

∗
, respectively (e.g., Velicer &

Jackson, 1990). Conditions under which the two matrices are close to each other
are of substantial interest. At the population level, two such conditions identified by
Guttman (1956) and Schneeweiss (1997) are among the most well-known.

2.1 Guttman Condition

Consider the factor analysis model � = ��′ + �, where � is a diagonal unique
variance matrix, with (�−1) j j = σ j j and (�) j j = ψ j j , j = 1, . . . , p. Let m be the
number of common factors, Guttman (1956; See also Theorem 1 of Krijnen, 2006)
has shown that if m/p → 0 as p → ∞, then ψ j jσ

j j → 1 for almost all j. Here,
“for almost all j” means lim p→∞ #{ j : ψ j jσ

j j < 1}/p = 0. That is, the number of
j that satisfies ψ j jσ

j j < 1 is ignorable as p goes to infinity.

2.2 Schneeweiss Condition

The closeness condition between the loading matrix from FA and that from PCA
by Schneeweiss and Mathes (1995) and Schneeweiss (1997) is evm(�′�−1�) →
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∞, where evk(A) is the k-th largest eigenvalue of a square matrix A. Obviously,
evm(�′�−1�) is the smallest eigenvalue of �′�−1�.

Related with the Schneeweiss condition, Bentler (1976) parameterized the corre-
lation structure of the factor model as �−1/2��−1/2 = �−1/2��′�−1/2 + I p and
showed that, under this parameterization, a necessary condition for evm(�′�−1�) =
evm(�−1/2��′�−1/2) → ∞ is that as p increases, the sum of squared loadings on
each factor has to go to infinity (λ′

kλk → ∞, k = 1, . . . ,m, as p → ∞).

2.3 Relationship Between Guttman and Schneeweiss
Conditions

The relationship between Guttman and Schneeweiss conditions is summarized in
Table 1. Schneeweiss condition (evm(�′�−1�) → ∞) is sufficient for Guttman
condition (m/p → 0 as p → ∞) (Krijnen, 2006, Theorem 3). What we would like
is for the converse (m/p → 0 as p → ∞ ⇒ evm(�′�−1�) → ∞) to hold in
practical applications, as to be discussed in the next section.

First, the condition of m/p → 0 as p → ∞ is sufficient for ψ j jσ
j j → 1 for

almost all j (Guttman, 1956; Krijnen, 2006, Theorem 1). Also, ψ j jσ
j j → 1 for all

j implies evm(�′�−1�) → ∞ (Krijnen, 2006, Theorem 4). Here, “ψ j jσ
j j → 1 for

all j” is slightly stronger than “ψ j jσ
j j → 1 for almost all j .” However, in practice,

it seems reasonable to assume that the number of loadings on every factor increases
with p proportionally, as stated in Bentler (1976). Then the condition of m/p → 0
as p → ∞ becomes equivalent to evm(�′�−1�) → ∞. That is, Guttman and
Schneeweiss conditions become interchangeable.

Table 1 Relationships among conditions and results
Condition(s) Result Source

1. m/p → 0 as p → ∞ ψ j jσ
j j → 1 for almost all j Guttman (1956), Krijnen (2006,

Thm 1)

2. ψ j jσ
j j → 1 for almost all j; evm (�′�−1�) >

c > 0

m/p → 0 as p → ∞ Krijnen (2006, Thm 2)

3. evm (�′�−1�) → ∞ m/p → 0 as p → ∞ Krijnen (2006, Thm 3), Hayashi
and Bentler (2000, Obs 8b)

4. evm (�′�−1�) → ∞ ψ j jσ
j j → 1 for all j Krijnen (2006, Thm 4), Hayashi

and Bentler (2000, after Obs 7)

5. ψ j jσ
j j → 1 for all j evm (�′�−1�) → ∞ Krijnen (2006, Thm 4)

6. evk (�′�−1�) → ∞,k =
1, . . . , r; evk (�′�−1�) < C < ∞,k =
r + 1, . . . ,m; p → ∞,m fixed

ψ j jσ
j j → 1 for almost all j Krijnen (2006, Thm 5)

7. evm (�′�−1�) → ∞ �−1 − �−1 → 0

Notes (i) 2 is a partial converse of 1; (ii) 5 is the converse of 4; (iii) 7 is the matrix version of 4
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3 Extended Guttman Condition

By far the most important consequence of the Schneeweiss condition is that, when
evm(�′�−1�) → ∞, the second term in the right-hand side of the Sherman-
Morrison-Woodbury formula (see, e.g., Chap. 16 of Harville, 1997):

�−1 = �−1 − �−1�(Im + �′�−1�)−1�′�−1 (1)

vanishes, so that

�−1 − �−1 → 0 as evm(�′�−1�) → ∞ (2)

As we noted in the previous section, the condition of m/p → 0 as p → ∞ can
be equivalent to evm(�′�−1�) → ∞ in practical applications. Therefore, we have
�−1 − �−1 → 0 under high dimensions with a large p. We call �−1 − �−1 → 0
the extended Guttman condition. It is an extension of the original Guttman condition
in the sense that ψ j jσ

j j → 1 can be expressed as ψ−1
j j − σ j j → 0, as long as ψ j j is

bounded above (ψ j j ≤ ψsup < ∞).
Note that there exists a similar identity for the FA model:

�−1 − �−1�(�′�−1�)−1�′�−1 = �−1 − �−1�(�′�−1
�)−1�′�−1 (3)

(see, e.g., Hayashi & Bentler, 2001). Clearly, as evm(�′�−1�) → ∞, not only the
second term on the left-hand side of Eq. (3) but the second term on the right-hand
side of Eq. (3) vanishes.

As we have just seen, the extended Guttman condition is a direct conse-
quence of the Schneeweiss condition. Because �−1�(Im + �′�−1�)−1�′�−1 <

�−1�(�′�−1�)−1�′�−1 and Im + �′�−1� is only slightly larger than �′�−1�

when �′�−1� is large in the sense that evm(Im + �′�−1�) = evm(�′�−1�) + 1,
the speed of convergence in �−1 − �−1 → 0 is approximately at the rate of the
reciprocal of smallest eigenvalues of �′�−1�, that is, of 1/evm(�′�−1�).

4 Approximation of the Inverse of the Covariance Matrix

An important point to note here is that the original Guttman condition ofψ j jσ
j j → 1

(for almost all j) has to do with only the diagonal elements of � (or �−1) and �−1,
while�−1−�−1 → 0 involves both the diagonal and the off-diagonal elements of the
matrices. It justifies the interchangeability of �−1 and �−1 as evm(�′�−1�) → ∞,
or assuming that the number of loadings on every factor increases with p propor-
tionally, as m/p → 0 with p → ∞. The important implication is that all the
off-diagonal elements of �−1 approach zero in the limit. Thus, it is a result of spar-
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sity of the off-diagonal elements of the inverted covariance (correlation) matrix in
high dimensions.

One of the obvious advantages of being able to approximate �−1 by �−1 in
high dimensions is that the matrix of unique variances � is a diagonal matrix and
thus it can be inverted only with p operations. Note that, in general, the inversion
of a p –dimensional square matrix requires operations of order O(p3) (see, e.g.,
Pourahmadi, 2013, p. 121).

Consequently, the single most important application of the extended Guttman
condition is to approximate the inverse of the covariance matrix �−1 by �−1 under
high dimensions. This implication is very important because �−1 is involved in the
quadratic form for the log likelihood function of the multivariate normal distribution.
Even if � is positive definite so that �−1 exists in the population, the inverse S−1 of
the sample covariance matrix S does not exist under high dimensions when p > n.
When S−1 does not exist, we cannot estimate �−1 under the FA model using the
generalized least squares (GLS) or the maximum likelihood (ML) method, without
resorting to certain regularization method(s), either. Thus, a natural choice would
be to employ the unweighted least square (ULS) estimation method that minimizes
the fit function of FULS(S,�) = tr{(S − �)2}, which does not require to compute
S−1 or the estimate of �−1. Note that 1 − 1/s j j , a common initial value for the j-th
communarity cannot be used because it requires the computation of S−1. Then, we
can use the value of 1 as the initial communality estimates. In this case, the initial
solution is identical to PCA.

Alternatively, when p is huge, we can employ the following “approximate” FA
model with equal unique variances (e.g., Hayashi & Bentler, 2000), using standard-
ized variables, that is, applying to the correlation matrix:

� ≈ �∗�∗′ + k I p, (4)

with a positive constant k. Note that this model is also called the probabilistic PCA
in statistics (Tipping & Bishop, 1999). Use of the FA model with equal unique
variances seems reasonable, because the eigenvectors of (� − k I p) are the same
as the eigenvectors of �, and the eigenvalues of (� − k I p) are smaller than the
eigenvalues of � by only the constant of k. Thus, the FA model with equal unique
variances is considered as a variant of the PCA, and, the loading matrices between
the FA and the PCA approach the same limit values as evm(�′�−1�) → ∞, or they
become essentially equivalent, under high dimensions.

In Eq. (4), let �* = k I p, then �∗−1 = k−1 I p. Thus, we can use �∗−1 as quick
and fast approximation for �−1. The natural estimator of k is the MLE for k given
�∗ (Tipping & Biship, 1999):

k̂ = 1

p − m

p∑

j=m+1

ev j (S). (5)
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However, a more practical method seems as follows: Once estimating �* = k I p

by �̂
* = k̂ I p, we can compute loadings �̂∗ using the eigenvalues and eigenvectors

of (S− k̂ I p) and find the estimates of�∗ as �̂
∗ = diag(S−�̂∗�̂∗′).Note that �̂ ∗ is

no longer a constant times the identity matrix. Now, invoke the estimator version of

the extended Guttman condition �̂
∗−1 − �̂

−1 ≈ 0 to find the approximate estimator

�̂
−1

of �−1.

5 Illustration

The compound symmetry correlation structure is expressed as � = (1 − ρ)I p +
ρ1p1′

p with a common correlation ρ, 0 < ρ < 1. Obviously, it is a one-factor
model with the vector of factor loadings λ1 = √

ρ1p and the diagonal matrix unique
variances � = (1 − ρ)I p. Because the first eigenvalue and the corresponding stan-
dardized eigenvector of � = (1 − ρ)I p + ρ1p1′

p are ω1 = 1 + (p − 1)ρ and
λ+
1 = (1/

√
p)1p, respectively, the first PC loading vector is

λ∗
1 = λ+

1

√
ω1 = (1/

√
p)

√
1 + (p − 1)ρ · 1p = √

1/p + (1 − 1/p)ρ · 1p, (6)

which approaches the vector of factor loadings λ1 = √
ρ1p with m/p = 1/p → 0

and p → ∞. The remaining p − 1 eigenvalues are ω2 = . . . = ωp = 1 − ρ. Thus,
obviously, the constant k in the FA model with equal unique variances is k = 1− ρ.
Note that the Schneeweiss condition also holds

λ′
1�

−1λ1 = (
√

ρ1p)
′{(1/(1 − ρ))I p}(√ρ1p) = p · ρ/(1 − ρ) → ∞ (7)

with m/p = 1/p → 0 as p → ∞. The inverse of the correlation matrix is:

�−1 = �−1 − �−1λ1(1 + λ′
1�

−1λ1)
−1λ′

1�
−1

= (
1

1 − ρ
)I p − (

1

1 − ρ
)I p · (

√
ρ1p) · (1 + ρ

1 − ρ
· p)−1 · (√ρ1′

p) · (
1

1 − ρ
)I p

= (
1

1 − ρ
)I p − (

ρ

1 − ρ
)(

1

(1 − ρ) + ρ · p )(1p1′
p) → (

1

1 − ρ
)I p = �−1 (8)

with m/p = 1/p → 0 as p → ∞.
For example, it is quite easy to show that if ρ = 0.5, then for p = 10, the diagonal

elements of the inverse of the compound symmetry correlation structure are 2− 1/5.5
= 1.818 and the off-diagonal elements are−1/5.5= –0.182. At p= 100, the diagonal
and the off-diagonal elements become 2 − 1/50.5 = 1.980 and −1/50.5 = –0.0198,
respectively. Furthermore, at p = 1000, the diagonal and the off-diagonal elements
become 2 − 1/500.5 = 1.998 and −1/500.5 = –0.001998. Again, we see the off-
diagonal elements of �−1 approaching 0 as p increases. Also, the diagonal elements
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of �−1 approach 2, which are the value of the inverse of the unique variances in the
FA model.

6 Discussion

We discussed the matrix version of the Guttman condition for closeness between FA
and PCA. It can be considered as an extended Guttman condition in the sense that
the matrix version involves not only the diagonal elements but also the off-diagonal
elements of the matrices �−1 and �−1. Because �−1 is a diagonal matrix, the
extended Guttman condition implies that the off-diagonal elements of�−1 approach
zero as the dimension increases. We showed how the phenomenon happens with the
compound symmetry example in the Illustration section. We also discussed some
implications of the extended Guttman condition, which include the ease of inverting
� compared against inverting �. Because the ULS estimation method does not
involve any inversion of either the sample covariance matrix S or the estimated
model implied population covariance matrix �̂, the ULS should be the estimation of
choice when sample size n is smaller than the number of variables p. Furthermore,
we proposed a simple method to approximate �−1 by �−1 using the FA model with
equal unique variances, or equivalently, the probabilistic PCA model.

Some other implications of the extended Guttman condition (especially with
respect to algorithms) are as follows: First of all, suppose we add the (p + 1)th
variable at the end of already existing p variables. Then, while the values of σ j j ,
j = 1, . . . , p, can change, ψ−1

j j , j = 1, . . . , p, remain unchanged. Thus, with the
extended Guttman condition, only one additional element needs to be computed.

Another implication is on the ridge estimator, which is among the methods to
deal with singularity of S or the estimator of its covariance matrix by introducing
some small bias term (see e.g., Yuan&Chan, 2008, 2016).Warton (2008, Theorem1)
showed that the ridge estimator of the covariance (correlation) matrix �̂η=η�̂+(1−
η)I p (with the tuning parameter η) is the maximum penalized likelihood estimator
with the penalty term proportional to −tr(�−1). Unfortunately, as the dimension
p increases (or the ratio p/n increases), it becomes more difficult to obtain the
inverse of the covariance matrix. Therefore, in high dimensions, it is not practical
to express the ridge estimator of the covariance matrix in the form of the maximum
penalized likelihood with the penalty term involving −tr(�−1). This naturally leads
to employing an “approximate”maximumpenalized likelihoodwith the penalty term
approximately proportional to −tr(�−1) in place of the penalty term proportional
to −tr(�−1), assuming the factor analysis model, when the dimension p is large.

We are aware that, perhaps except approximations of the inverse of covariance
matrix, the majority of implications that we discussed in this article may be of
limited practical utility. For example, because the original Guttman condition, the
Schneeweiss condition, and the extended Guttman condition are all conditions for
closeness between FA and PCA, we can simply employ PCA as an approximation
to FA when the conditions hold. Also, we did not discuss regularized FA with L1
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regularization here, which in itself is a very interesting topic. Yet, we think the
implications we discussed are still of theoretical interest that should continue to be
studied. The compound symmetry example used in the Illustration is probably only
an approximation to the real world. We will need to do an extensive simulation to
come up with some empirical guidelines regarding how to best apply the theoretical
results in practice.
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