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Abstract Cognitive diagnosis seeks to assess an examinee’s mastery of a set of
cognitive skills called (latent) attributes. The entire set of attributes characterizing a
particular ability domain is often referred to as the latent attribute space. The correct
specification of the latent attribute space is essential in cognitive diagnosis because
misspecifications of the latent attribute space result in inaccurate parameter estimates,
and ultimately, in the incorrect assessment of examinees’ ability. Misspecifications
of the latent attribute space typically lead to violations of conditional independence.
In this article, the Mantel-Haenszel statistic (Lim & Drasgow in J Classif, 2019)
is implemented to detect possible misspecifications of the latent attribute space by
checking for conditional independence of the items of a testwith parametric cognitive
diagnosis models. The performance of the Mantel-Haenszel statistic is evaluated in
simulation studies based on its Type-I-error rate and power.

Keywords Cognitive diagnosis model · Dimensionality ·Mantel-haenszel statistic

1 Introduction

Cognitive diagnosis models (CDMs) try to account for the dependence among obser-
vations by latent dimensions that are related to the mastery or possession of cognitive
skills, or “attributes” required for a correct response to an item. Thesemodels have re-
ceived considerable attention in educational research because tests based on CDMs
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promise to provide more diagnostic information about an examinee’s ability than
tests that are based on Item Response Theory (IRT) (Rupp et al., 2010). Specifi-
cally, whereas IRT defines ability as a unidimensional continuous construct, CDMs
describe ability as a composite of K discrete, binary latent skill variables called
attributes that define 2K distinct classes of proficiency.

Like with other measurement models in assessment, the validity of a CDM de-
pends on whether the latent attributes characterizing each proficiency class entirely
determine an examinee’s test performance, so that item responses can be assumed
to be independent after controlling for the effect of the attributes. (This property of
conditional independence is often called “local independence” in the IRT literature.)
As Lord and Novick (1968) pointed out, the misspecification of the latent ability
space underlying a test usually leads to violations of the conditional independence
assumption that, in turn, result in inaccurate estimates of the model parameters and,
ultimately, incorrect assessments of examinees’ ability. For cognitive diagnosis, the
assumption of conditional independence is equivalent to the assumption that the K
attributes span the complete latent space. More to the point, violations of conditional
independence are likely to occur if the latent attribute space has been misspecified
in either including too few or too many latent attributes in the model.

Within the context of IRTmodels, various methods have been proposed for exam-
ining the dimensionality of the latent ability space underlying a test through checking
for possible violations of conditional independence. Stout (1987), for example, de-
veloped DIMTEST, a nonparametric procedure for establishing unidimensionality
of the test items through testing for conditional independence. Another instance is
Rosenbaum’s (1984) use of the Mantel-Haenszel statistic for assessing the unidi-
mensionality of dichotomous items.

Lim and Drasgow (2019) proposed a nonparametric procedure for detecting mis-
specifications of the latent attribute space in cognitive diagnosis, which relies on the
Mantel-Haenszel statistic to check for violations of conditional independence in the
context of nonparametric cognitive diagnosis method approaches. This study extends
the study of Lim and Drasgow (2019) by using the proposed statistic with parametric
cognitive models for the estimation of proficiency classes.

2 The Mantel-Haenszel Test

Lim andDrasgow (2019) propose to use theMantel-Haenszel (MH) chi-square statis-
tic to test for the (conditional) independence of two dichotomous variables j and j ′
by forming the 2-by-2 contingency tables in conditioning on the levels of the strati-
fication variable C . In their study, the stratification variable C is defined in terms of
the latent attribute vector αc = (αc1, αc2, ..., αcK )′, for c = 1, 2, ..., 2K ; that is, the
different strata of C are formed by the 2K proficiency classes.

Let {i j, j ′c} denote the frequencies of examinees in the 2 × 2 × C contingency
table. The marginal frequencies are the row totals {i1+c} and the column totals {i+1c},
and i++c represents the total sample size in the cth stratum. Then, the MH statistic
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is defined as

MHχ2 = [∑c(i11c − ∑
c E(i11c)]2

∑
c var(i11c)

, (1)

where E(i11c) = i1+ci+1c/ i++c and var(i11c) = i0+ci1+ci+0ci+1c/ i2++c(i++c − 1).
The stratum having minimum total sample size i++c equal or larger than 1 is in-
cluded. Under the null hypothesis of conditional independence of the items j and j ′,
for cognitive diagnosis models, the MH statistic has approximately a chi-square dis-
tribution with degrees of freedom equal to 1 if examinee’s true latent attribute vectors
are used as the levels of the stratification variable C . Assume that the odds ratio be-
tween j and j ′ is constant across all strata. Then the null hypothesis of independence
is equivalent to an odds ratio of one

Odds RatioMH j, j ′ = 1

C

C∑

c=1

or j, j ′c, (2)

where or j, j ′c = (i11ci00c)/(i10ci01c).

3 Simulation Studies

The finite test-length and sample-size properties of MHχ2 have been investigated in
simulation studies. For each condition, item response data of sample sizes I = 500, or
2000 were drawn from a discretized multivariate normal distributionMVN(0K ,

∑
),

where the covariance matrix
∑

has unit variance and common correlation ρ = 0.3 or
0.6.TheK-dimensional continuousvectors θ i = (θi1, θi2, ..., θiK )′ weredichotomized
according to

αik =
{
1, if θik ≥ Φ−1 k

K+1 ;
0, otherwise

Test lengths J = 20 or 40 were studied with attribute vectors of length K= 3 or 5.
The correctly specified Q-matrix for J = 20 is presented in Table1 (Attributes with �

were used for Q-matrix (K = 3); attributes with �� for Items 4 and 5). The Q-matrix
for J = 40 was obtained by duplicating this matrix two times.

Data were generated from three different models: the DINA model, the additive-
cognitive diagnosis model (A-CDM), and a saturated model (i.e., the generalized-
DINA (G-DINA) model). For the DINA model, item parameters were drawn from
Uniform (0, 0.3). For the A-CDM and the saturated model, like Chen et al. (2013),
the parameters were restricted as P(α�

i j )min = 0.10 and P(α�
i j )max = 0.90, where α�

i j
was the reduced attribute vector whose components are the required attributes for the
j − th item (see de la Torre, 2011, more details). The R was used for the estimation
in this study (e.g., Robitzsch, Kiefer, George, & Uenlue, 2015) in which model
parameter estimation was performed by maximization of the marginal likelihood.
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Table 1 Correctly specified Q (K = 5)

Item k�
1 k�

2 k�
3 k4 k5 Item k�

1 k�
2 k�

3 k4 k5

1 1 0 0 0 0 11 1 1 0 0 0

2 0 1 0 0 0 12 1 1 0 0 1

3 0 0 1 0 0 13 1 0 0 1 1

4 0�� 0 0 1�� 0�� 14 0 1 0 1 1

5 0�� 0 0 0�� 1�� 15 0 0 1 1 0

6 1 1 0 1 1 16 1 0 0 1 0

7 1 0 0 1 0 17 0 1 0 0 1

8 0 1 0 1 0 18 0 0 1 0 0

9 0 0 1 1 0 19 1 0 0 1 0

10 0 1 0 1 0 20 1 0 0 1 1

For each condition, a set of item response vectors was simulated for 100 replica-
tions. The proposedMHstatistic, Chi-squared statistic x j j ′ (Chen andThissen, 1997),
absolute deviations of observed and predicted corrections r j j ′ (Chen et al. 2013), and
their corresponding p-values were computed for all (J × (J − 1))/2 item-pairs in
an individual replication.

4 Results

Across 100 trials for each condition, the proportion of times the p-value of each item-
pair was smaller than the significance level 0.05 was recorded and is summarized in
the tables shown below.

Type I Error Study In this simulation study, the correctly specified Q-matrices (K
= 5, or K = 3) were used to fit the data to examine type I error rates. Table2 shows
that most type I error rates of the three different statistics were around the nominal
significance level 0.05. The Chi-squared test statistic x j j ′ was conservative, with type
I error rates below 0.024. The MH statistic got consistent under all conditions when
item J = 40, confirming the asymptotic consistency. In the condition of K= 5, J
= 20, and I = 2000, the type I error rates of the MH test slightly increased over
the nominal rate in the A-CDM and the saturated model for the difficulty of correct
classification.
Power Study: 20%misspecified Q-matrix For each replication, 20% of q jk entries
of the correctly specified Q-matrices (K = 5, or K = 3) were randomly misspecified.
It is over-specification when q-entries of 0 are incorrectly coded as 1, and it is
underspecification when q-entries of 1 are incorrectly coded as 0. Table3 shows that
the average rejection rates of all J × (J − 1) × 1/2 item pairs result in relatively
low in the MH test (i.e., 0.310 or below in Non-Parametric Model, 373 or below in
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DINA model, 0.258 or below in A-CDM, 0.270 or below in saturated model). When
K = 5, and I = 500, the power rates appear to be low (i.e., 0.074 or below) in the
A-CDM, and the saturated model. They are rather complex models. It is very likely
for small sample size to increase the difficulty of accurate model estimation.
Power Study: Over-specified Q-matrix For each replication, a data set was gen-
erated with the Q-matrix (K = 3) that is embedded as a subset of the Q-matrix (K
= 5) in Table1. The data was fitted with the Q-matrix (K = 5) to over-specify the
correctly specified Q-matrix (K = 3). A dimension (total 9 items) or two dimensions
(total 4 items) were over-specified. The results were consistent with what Chen et al.
(2013) found.

As Table4 shows, all statistics were insensitive to over-specified Q-matrices when
the true models were the saturated model or the A-CDM. The average power rates
of the item pairs where both items were over-specified in the same dimension were
Non-Parametric Model = 0.074, MH = 0.052, x j j ′ = 0.181, and r j j ′ = 0.220, and
those of the item pairs where either item was over-specified were MH = 0.058,
x j j ′ = 0.104, and r j j ′ = 0.137 when the true model was the DINA model. If more
attributes are included in the Q-matrix than required, as Rupp et al. (2010) indicated,
conditional independence may still be preserved, because true attribute vector may
be embedded in subcomponents of the modeled vector, resulting in a model that is
too complex but preserves conditional independence. This finding implies that unlike
the other statistics, the MH statistic is inappropriate to be used for the detection of
the over-specified Q-matrices when the true model is the DINA model.
Power Study: Under-specified Q-matrix A data set was generated with the Q-
matrix (K = 5) in Table1. The data was fitted with the embedded Q-matrix (K =
3) in each replication. A dimension (total 9 items) or two dimensions (total 4 items)
were under-specified. The average power rates of the item pairs where both items
were under-specified in the same dimensionwereMH= 0.572, x j j ′ = 0.669, and r j j ′ =
0.735, with power relatively consistent across all conditions as shown in Table5. The
average rejection rates across item pairs where either item was under-specified were
MH = 0.124, x j j ′ = 0.144, and r j j ′ = 0.201. The power rates slightly increased when
J = 40, I = 2000, or the true model is the A-CDM in all statistics. Taking this finding
into account, like the other statistics, theMH test is sensitive to Q-underspecification
and has high power in all conditions.
Power Study:ModelMisspecification In this simulation study, a correctly specified
Q-matrix (K = 3 or 5)was used, but with amisspecified cognitive diagnosismodels.
As Chen et al. (2013) indicated, no statistics detected the model misspecification in
all conditions when the fitted model was the saturated model, and the true models
were the DINA model and the A-CDM (i.e., 0.052 or below for MH, 0.024 or below
for x j j ′ , and 0.059 or below for r j j ′). Due to limited space, the output is not included.
The results in Table6 show that the rejection rates of the MH statistic were low (i.e.,
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0.186 or below with few exceptions when the true model was the DINA model, and
the fitted model was the A-CDM, 0.097 or below with few exceptions when verse
versa). When the true model was the A-CDM, and the fitted model was the DINA
model, the power rates were even lower because the DINA model is simper than the
A-CDM.

5 Discussion

A Mantel-Haenszel(MH) statistic proposed by Lim and Drasgow (2019) was eval-
uated for detecting misspecifications of the latent attribute space in parametric cog-
nitive diagnosis models; that is, the Q-matrix might contain too many or too few
latent attributes. (Recall that a misspecified latent attribute space may result in in-
accurate parameter estimates that will cause incorrect assessments of examinees’
ability.) The proposed MH statistic uses as the levels of the stratification variable
the different proficiency classes, with examinees’ individual attribute vectors—that
identify proficiency class membership—estimated from the data. Simulation studies
were conducted for investigating the diagnostic sensitivity of the MH statistic in
terms of Type-I-Error rate and power under a variety of testing conditions. Across
different sample sizes, test lengths, number of attributes defining the true attribute
space, and levels of correlation between the attributes, the MH statistic consistently
attained a Type-I-Error rate that was typically close to the nominal 0.05 − α-level
when the data were generated using the true Q-matrix based on the correctly speci-
fied latent attribute space. When the data were generated using a Q-matrix based on
an under-specified latent attribute space, the MH statistic displayed moderate power
in detecting the resulting conditional dependence among test items. In summary, the
MH statistic might be a promising tool for uncovering possible misspecifications of
the latent attribute space in cognitive diagnosis. Further research is needed to inves-
tigate the specific factors that affect the power of the MH statistic; especially, when
the latent attribute space has been over-specified (i.e., too many attributes have been
included).
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